Optimisation of Biochemical Systems

by

Evangelos Simeonidis

A thesis submitted for the degree of

Doctor of Philosophy

of the University of London

Department of Chemical Engineering

University College London

London, 2005



UMI Number: U602618

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U602618
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



_Abstract

The main interest of this work is the application of mathematical programming and
optimisation methodologies to problems of biological nature. Biological data forms
the basis for modelling, simulation and optimisétio_h - techniques developed and
matured successfully within the Procéss Systems Engineering community - to be
carried out in systems like biological networks, metabolic pathways or proteins.
Mathematical programming techniques have not yet extensively been applied to such

. systems.

In the first part of the thesis, optimisation methods for the analysis of biological
networks are developed. Metabolic pathway distances and their correlations with
genome distance and enzyme function for E. coli small molecule metabolism are
examined through the use of a linear programming algorithm. The same technique is
also applied to the study' of the robustness of the p53 cell cycle and apoptotic control
network. The p53 network is found to be robust against mutational perturbation, but
vulnerable to directed assault against its hubs from tumour-inducing viruses, which

act as “biological hackers” to attack the system.

The second part studies protein folding using lattice models. A mixed integer linear
programming framework is developed, to implement a successful three-step solution
strategy for reading the 3D structure of proteins from only the knowledge of the
amino acid sequence and the contact energies among amino acids. The methodology

is validated by its application on model proteins designed to fold in a cubical lattice.

Finally, the third part presents mathematical models for the concurrent synthesis of
optimal peptide tags and purification steps for protein downstream processing in
biochemical processes. In particular, a mixed integer non-linear programming model
for the solution of the problem is proposed. A mixed integer linear programming
model is then developed by modifying the process synthesis constraints and applying
linear approximations of the non-linear functions. The applicability of the models is

demonstrated by examples that rely on experimental data.
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Chapter 1

Introduction

athematical programming techniques have long been recognised as a
fertile environment to sustain a wide range of applications. Nurherous
practitioners in the academia and industry have made vital
contributions in the area of process systems engineering with the most celebrated
being the pioneering work of Prof. Roger Sargent (1977). Over the years, as
computational power became cheaper and widely available, mathematical
programming started to realise its true potential by harnessing the number-crunching
capabilities of modern computers coupled with major advances in the field of process

systems engineering.

1.1. Mathematical programming and
biochemical systems

Recently, there has been increasing interest for the application of process systems
methodologies to problems traditionally belonging to biology and biotechnology.

Advances in sequencing, DNA replication and protein analysis and quantification
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Chapter 1. Introduction

have made an unprecedented amount of biological data available, thus opening new
horizons for Life Sciences in the near future. The sudden influx of information
requires the combination of a large body of biological, biochemical and structural
data, from very different levels of organisation, both inside the cell and across
organisms. There is a need for comprehensive overviews of processes and systematic

methodologies in order to study the biological information offered.

This wealth of data can form the basis for modelling, simulation and optimisation,
techniques developed and matured successfully within the process systems
engineering community, to be carried out in biological systems, where mathematical
programming techniques have not extensively been applied. Working at the interface
of process systems engineering, computational biology and bioinformatics will allow
us to explore fundamental issues of cellular function and dynamics in ways that have
not been possible before. According to Williams (1999), the motivation behind

mathematical programming model building is three-fold:

e Gain insight into the problem. The actual exercise of building a mathematical
model often reveals relationships that were not apparent previously. As a

result greater understanding of the problem is achieved.

e Identify non-obvious solutions to the problem. Having built a model it is then
possible to analyse it mathematically and help suggest course of actions that

might not otherwise be obvious.

o Investigate extreme aspects of the problem. Computational experiments can
be conducted when it is not possible or desirable to conduct an experiment in
real-life, providing in this way useful information concerning the problem

under investigation.

In the past, many researchers have endeavoured to incorporate optimisation
methodologies in biological or biochemical studies. For instance, the potential of the
application of pathway analysis for the purposes of metabolic engineering have been
illustrated by initial attempts to synthesise metabolic pathways (Mavrovouniotis et

al., 1990). Also, kinetic models have been constructed from the stoichiometric and

-16-



Chapter 1. Introduction

rate equation for each reaction assumed present in a metabolic pathway. Biochemical
Systems Theory used S-system representations (Savageau, 1969; Savageau, 1970) to
characterise steady states with linear equations expressed in terms of the logarithms
of the original variables, thus capturing some of the non-linear properties of
metabolic networks. An extension of this approach was later attempted utilising the
linearity of S-systems as a basis for linear programming and establishing a
r.fllathematical framework (Voit, 1992). Systems theory remains a popular and widely
used technique for studying metabolic pathways; a recent study proposed the
modelling of metabolic networks fhrough classical optimisation formulations with an
additional constraint to enforce stability of the system (Chang and Sahinidis, 2005).
Mathematical programming was also applied on the basis of kinetic or steady state
data in order to determine the controlling metabolites and enzymes of a metabolic
system using the maximisation of a production rate or the minimisation of by-
products as the objective (Regan et al., 1993). This method defined a bound for the

production and indicated an appropriate combination of variables.

A model that identifies changes in the regulatory characteristics of enzymes has been
presented by Hatzimanikatis e al. (1996). The S-system representation was used to
formulate the problem using integer programming techniques in order to build a
regulatory superstructure that contained all alternative structures of the pathway. A
log-linear kinetic model for the estimation of the performance of metabolic systems
based on experimentally determined elasticities and control coefficients was also
developed (Hatzimanikatis and Bailey, 1997). The latter model was extended in a
subsequent paper and an optimisation-based method was applied for the
identification of combinations of the metabolic characteristics of enzymes from yeast
and bacteria, in order to maximise ethanol production (Hatzimanikatis et al., 1998).
A systematic quantitative framework for modelling the regulation of transitions in
mammalian cell cycle was formulated (Hatzimanikatis ez al., 1999), which provided
exceptional agreement with experimental observations. A computational framework
applied to the tryptophan biosynthetic pathway (Li et al., 2004) was developed for
the construction and calculation of metabolic pathways, that creates new metabolic
routes for known and novel metabolites in biological systems. A mathematical model

of the critical steps in eukaryotic heat-shock response in yeast and humans was
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presented (Rieger et al., 2005) to understand how exposure to a stress signal is
converted into specific molecular events for activation and/or repression of heat-
shock transcription factors. Finally, a novel optimisation framework for the inference
on gene regulatory networks from DNA array data using an S-systems modelling of

gene expression was presented (Thomas et al., 2004).

The study of metabolic pathways is a major area where mathematical programming
methodologies have been applied broadly (Hatzimanikatis et al., 1996; Pramanik and
Keasling, 1997; Petkov and Maranas, 1997; Burgard and Maranas, 2001). Dissimilar
to S-systems or kinetic methods, a class of simplified models only uses the
stoichiometric data of a metabolic network to generate wider limits of flux
distributions available to the cell. Palsson and his research group proposed Flux
Balance Analysis (FBA) (Varma and Palséon, 1993), which provided a linear
programming framework for modelling metabolism and studying the metabolic
capabilities of an organism. This optimisation framework was later improved and
extended to larger and more comprehensive datasets of E. coli metabolism (Pramanik
and Keasling, 1997; Edwards and Palsson, 2000a). The computational predictions of
the metabolic capabilities for growth rate of E. coli were shown to be consistent with
experimental data (Edwards et al., 2001). Over the years, FBA has been applied to
the metabolic networks of systems other than E. coli, such as Haemophilus
influenzae (Schilling and Palsson, 2000), mitochondrial metabolism (Ramakrishna et
al., 2001), Helicobacter pylori (Schilling et al., 2002) and yeast (Forster et al., 2003).
The analysis capabilities of FBA have advanced to the degree that we are now able to
evaluate the robustness of a metabolic network (Edwards and Palsson, 2000b),
predict phenotypes from the genome of an organism and analyse high throughput
microbial datasets (Reed and Palsson, 2004; Fong and Palsson, 2004).

Other research groups have also used FBA models, such as the work on E. coli by
Pramanik and Keasling (1997) and a study on the hypothesis that knockout metabolic
fluxes undergo a minimal redistribution with respect to the flux configuration of the
wild type (Segre et al.,, 2002), which introduced the method of minimisation of
metabolic adjustment (MOMA). The incorporation of discrete decision variables in

the FBA formulation offered the capability of gene additions and/or deletions to the
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metabolic network and thus the assessment of the performance limits of metabolic
networks (Burgard and Maranas, 2001). As FBA provides a framework for
predicting metabolic flux distributions in the absence of kinetic data, optimisation-
based models can be used for testing. hypothesised objective functions for the
metabolic fluxes are consistent with experimental data (Burgard and Maranas, 2003),
for suggesting gene knockout strategies in order to enhance biochemical production
(Burgard et al., 2003;' Pharkyé et al, '20703), or for genome-scalé metabolic
reconstructions (Burgard et al., 2004; Nikolaev et al., 2005). In addition to their
work on FBA techniques, Maranas and co-workers have made a number of other
important contributions to the field of systems biology. Predictive models for
rﬁodelling and optimisation of DNA recombination in order to generate novel
enzymes were proposed (Moore et al., 2000). A systematic computational framework
for designing DNA sequences through codon usage optimisation was presented
(Moore and Maranas, 2002a). An approach that utilises thermodynamic and
sequence information to calculate the frequency of out-of-sequence reassembly in
DNA shuffling experiments was developed (Moore and Maranas, 2002b). An integer
programming framework for calculating time delay in gene regulatory networks
(Dasika er al, 2004) was also presented. The large-scale inference of the
transcriptional regulatory network of B. subtilis was addressed with two alternative

methodologies, a linear and a power-law model (Gupta et al., 2005).

There have been other attempts to apply mathematical prqgramming to biological
systems. For example, a recursive optimisation algorithm was proposed for
rigorously finding all alternate optima in metabolic networks to allow for data
interpretation or future experiment design (Lee et al., 2000). A model that can
enumerate all the ways fluxes can distribute in a metabolic network was described
for generating alternative flux scenarios, forecasting responses to mutation, or
designing different experiments (Phalakornule ez al., 2001). The proposed model was
recently used in a different capacity: to provide bounds that help with the solution of
the non-linear, non-convex problem of identifying metabolic fluxes from Bc

labelling experiments (Ghosh et al., 2005).

-19-



Chapter 1. Introduction

There has also been considerable research in microarray technology, which allows
the generation of large sets of time series data. A major challenge is to extract the
biologically relevant information from the array experiments in an efficient and
informative way. We have already reviewed relevant research from Hatzimanikatis
and co-workers (Hatzimanikatis ez al., 1999; Thomas et al., 2004). In other studies,
the organisation and regulation of genetic pathways as dynamic systems were
modelled and a mathematical framework for modelling genoiné expfession and
regulation was  introduced (Wolkenhauer, 2002). Lin et al. (2003) combined
microarray experiments with novel integer programming methods to define
topologies of biological signal transduction pathways. A linear programming method
for the classification of tumour samples based on microarray data was proposed
(Antonov, 2004). A framework that integrates machine learning and optimisation
methodologies for the selection of maximally informative genes in microarray

expression experiments was also introduced (Androulakis, 2005).

Finally, an important group of contributions belongs to the area of protein folding.
Because of its importance and complexity, the problem of protein folding has been
investigated by many researchers, nevertheless a relatively small number of
mathematical programming techniques have been applied in the field. Here, we
summarise mathematical programming efforts to characterise the computational
complexity of protein structure prediction with a few indicative examples. Backofen
and Will (2003) presented a constraint programming approach based on the
hydrophobic properties of amino acids. Wagner et al. (2004) demonstrated large-
scale optimisation techniques for the solution of the protein folding problem. Xu ez
al. (2003 and 2004) used a mathematical programming approach to implement a
protein thrcading program for protein structure prediction. Kingsford et al. (2005)
proposed an integer programming formulation for side-chain positioning (a
significant component of homology modelling and protein design). A comprehensive
optimisation based approach for the prediction of three-dimensional structures of
proteins from their amino acid sequence was also presented by Klepeis and Floudas
(2003a).
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1.2. Aims and objectives

Motivated by the promise of better understanding and enhanced problem-solving
capabilities offered by mathematical programming, the aim of this work is fo
facilitate biological studies by applying mathematical programming techniques to
problems of biochemical nature. More specifically, our goal is to develop a number
of mathematical modelling frameworks in order to accommodate characteristic
problems biologists are faced with today and play the role of a first step towards the
establishment of mathematical programming techniques as valuable analysis tools in

the fields of computational biology and bioinformatics.
In order to achieve these goals, the following areas are examined:

Biological networks: As availability of biological data grows with an exponential
rate, it is becoming obvious that certain topological characteristics are common in
otherwise diverse biological networks ranging from signalling and protein interaction
networks, to gene networks and metabolism. At the same time, the function of many
of these networks is not yet fully understood, or the collected data are incomplete.
For this reason, researchers often turn to the study of network architecture instead of
function, using graph-theoretical representations of biological networks, which can
yield valuable information on network evolution, as well as on the importance of key

nodes in the network.

Protein structure prediction: Predicting the three-dimensional structure of a protein
can be characterised as the Holy Grail of modern biology. Each protein has a certain
function, and it is the unique conformation into which its amino acid sequence folds
that allows it to accomplish this function. The problem of protein structure prediction
has its basis on the hypothesis that the folding of a protein only depends on the
specific amino acids that comprise its sequence (Anfinsen, 1973). Therefore, one
could predict the native structure of a protein by minimising a model of its free

energy; hence the scope for application of optimisation methodologies.

Downstream protein purification: Proteins are often the products of biochemical

production plants, produced through genetic manipulation of mutant bacterial strains
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and collected after cell breckage and consequent processing of the mixture.
Downstream purification is arguably the most important stage of the process,
incurring a large part of the manufacturing and investment costs. It is therefore
beneficial to reduce the size of the flowsheet, by decreasing the number of required
puriﬁcation steps. Since the predominant method for purification of the protein
mixture is chromatography, it is possible to enhance the efficiency of the
chromatographic techniques 7 employedr, by rhanipulating the physicochemical
properties of the product protein. This can be accomplished by genetically fusing a
small number of amino acids (a peptide tag) to the product protein. Even though
modern technology offers the means for such genetic manipulation, it is still a
daunting task to select the appropriate amino acids that will make up the optimal tag

for the job for each particular protein.

The research areas that this thesis focuses on are clearly distinct, but there is a
common theme running through all three of them: the problem is always formulated
and solved as a mathematical programming model, facilitating in this way the
investigation of the biological problem under question, and at the same time
demonstrating the applicability of mathematical programming to the study of
biochemical systems. In fact, there are additional commonalities between some of the
objects of our research that are not immediately obvious. For example, in the case of
downstream protein purification, one of the most important considerations related to
the modification of the amino acid chain of the product protein when fusing a peptide
tag is the need to avoid interference with protein structure. The influence the tag may
have on the folding of the protein can be very substantial and largely depends on the
properties of the amino acids selected, so this is a point where two of the research
areas presented above (protein folding and use of purification tags for downstream

processing) tend to converge.

The problems described in the thesis are formulated as Linear Programming (LP),
Mixed Integer Linear Programming (MILP) or Mixed Integer Non-Linear
Programming (MINLP) optimisation models. For their solution the General
Algebraic Modeling System (GAMS; Brooke et al., 1998) is used, which is a
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specially-designed software with access to many different solvers for modelling and

solving linear, non-linear and mixed integer optimisation problems.

1.3. Thesis outline

The rest of the thesis is structured in three parts. Part I explores the area of biological
network analysis and comprises Chapter 2 and Chapter 3. Part II addresses the
problem of protein structure prediction and consists of Chapter 4. Part III tackles the
problem of synthesis of downstream protein processing with simultaneous optimal

purification tag design and includes Chapters 5 and 6.

Chapter 2 studies metabolic pathway distances, which constitute an important step
for evolutionary studies, metabolic reconstruction or selection of key nodes in a
metabolic graph. Pathway distances are examined through the use of an LP
algorithm. The applicability of the algorithm is illustrated by calculating the minimal
pathway distances for E. coli small molecule metabolism enzymes, and considering

their correlations with genome distance and enzyme function.

A second application of the LP technique for biochemical network analysis is
presented in Chapter 3. The algorithm is applied to the study of the robustness of the
p53 cell cycle and apoptotic control network. The diameter of the network (the
average path length among all nodes) is calculated and used as a measure of network
functionality, to study the response of the network to external attacks. The p53
network is found to be robust against mutational perturbation, but vulnerable to
directed assault against its hubs from tumour-inducing viruses, which act as

“biological hackers” to attack the apoptotic control system.

Chapter 4 presents an MILP framework for the prediction of the 3D structure of a
protein based only on sequence data, which is typically an extremely complex task.
Using small proteins, we applied a successful three-step strategy for reading the
three-dimensional conformation of lattice model-designed proteins from only the

knowledge of their amino acid sequence and the contact energies among the amino
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acids. The methodology is validated by its application to model proteins designed to

fold in a cubical lattice.

An MINLP framework, which integrates the selection of optimal peptide purification
tags into an established approach for the synthesis of protein purification processes,
is presented in Chapter 5. Considerable improvements in yields and costs of
downstream protein purification processes can be achieved with the use of
purification tags, which are comparatively short sequences of amino acids genetically
fused on the product protein. The goal is to modify the physical properties of the
desired product in a way that will enhance its separation from contaminants. The
methodology is illustrated through its application on two example protein mixtures

involving up to 13 contaminants and a set of 11 candidate chromatographic steps.

Chapter 6 describes the development of an MILP model for the synthesis of the most
advantageous purification tags and purification steps for downstream processing in
biochemical processes, by modifying the previous process synthesis constraints and
reformulating the MINLP model through piecewise linear approximations of the
non-linear functions. The results are indicative of the benefits resulting by the
appropriate use of peptide tags in purification processes and provide a guideline for

both optimal tag design and downstream process synthesis.

Finally, Chapter 7 summarises the main contributions of the thesis and provides

recommendations for future research work.
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Chapter 2

Analysis of metabolic pathways

n organism is an open system that maintains a continuous flow of energy

and matter with the environment. Metabolism is the way in which the

organism maintains this flux. Simply put, a metabolic pathway is a series
of steps converting substrates into products. Several steps are required as generally
each enzyme is only capable of performing simple chemical reactions and discrete
steps are required to allow the energy released to be 'harnessed'. Cellular metabolism
is however complex: pathways consist of hundreds of metabolic reactions and may
be spatially organised or highly branched such that one substrate may be utilised in a
variety of pathways. This enormous complexity is a fertile ground for the
development of optimisation methodologies that will offer insight into the workings

and the evolution of metabolic pathways.

This chapter presents the mathematical programming formulation of an algorithm
designed to calculate minimal pathway distances in biochemical networks, based on
LP techniques. Two graph-representations of small molecule metabolism are
considered; both derived from the EcoCyc database (Karp et al., 2002): one protein-
centric, the other metabolite-centric. The derived model is applied to the E. coli

metabolic network, and the correlations of minimal pathway distance with genome
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distance (i.e. the number of base pairs separating two SMM genes on the E. coli
chromosome), and minimal pathway distance with enzyme function, as described by

Enzyme Commission (EC) number, are investigated.

2.1. Metabolic pathways

2.1.1. Small molecule metabolism

No strict definition of small molecule metabolism (SMM) exists, but the term usually
describes the metabolism of all non-macromolecules (Teichmann et al, 2001).
Metabolism is divided into catabolism, during which the degradation of metabolites
is performed, and anabolism, during which metabolites are biosynthesised. A
definition of metabolism can be given as the sum of all physical and chemical
processes by which living organised substance is produced and maintained
(anabolism) and also the transformation by which energy is made available for the
uses of the organism (catabolism). The catabolic breakdown of complex metabolites
produces the free energy that is harnessed in high-energy compounds such as ATP
and NADPH. In turn, theses molecules are sources of energy for anabolic pathways
(Voet and Voet, 1995). Nearly all metabolic reactions require biological catalysts

that are called enzymes.

2.1.2. Pathway evolution

There are a number of theories that attempt to explain the evolution of metabolic
pathways. The two most prominent that have gathered the most support are the

patchwork model and the retrograde model (Rison and Thornton, 2002).

The patchwork model proposes that metabolic pathways evolved by ad hoc
recruitment of broad-specificity enzymes — capable of catalysing a variety of
metabolic reactions (Jensen, 1976). These enzymes exhibited broad substrate

specificities and catalyse classes of reactions. The patchwork model of evolution
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would suggest that metabolically-close enzymes are no more likely to be functionally

and evolutionarily similar that distant ones.

The retrograde model proposes that enzymes were recruited in a direction reverse to
the metabolic flow from the preceding enzyme in the pathway (Horowitz, 1945). The
model supposes the pre-existence of a chemical environment where both key
metabolites and potential intermediates were available. An organism would use up
environmental reserves of an essential metabolite A, to the point where falling
availability limits growth. An orgénisin capable of synthesisihg A from
environmental precursors B and C would therefore have an evolutionary advantage.
If metabolism evolved according to the retrograde model, it would mean that nearby

enzymes are likely to be evolutionarily related, and share some functionality.

2.1.3. Escherichia coli

Escherichia coli (E. coli) was first isolated in 1885 by the German bacteriologist
Theodor Escherich (Madigan et al, 1997). E. coli is a rod-shaped bacterium
approximately 1pm long (Margulis and Schwartz, 1998). The metabolic network of
E. coli is very well characterised (Karp et al., 2002), making it an ideal specimen for
the study of metabolic systems. In fact, this bacterium is the primary model organism
in biology, as it is easy to manipulate in the lab, it is capable of conjugation making it
suitable for genetic experimentation, and it is able to support the growth of a range of

bacterial viruses.

The genome of the non-pathogenic E. coli K-12 was one of the first to be fully
sequenced (Blattner et al., 1997). This is the strain which is being used in this study
as well, therefore the term “E. coli” in this chapter will refer to E. coli K-12. The E.
coli bacterium is a free-living organism and, as such, has a set of the small molecular
metabolic pathways sufficient for independent life. Similar sets are believed to exist
in all bacteria and eukaryotes (Teichmann et al., 2001). Because of the extensive
experimentation with E. coli, knowledge of these pathways is probably close to
complete. There exist numerous databases dedicated to these pathways, such as the

EcoCyc database (Karp et al., 2002), which was exploited during this study.
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2.1.4. Modelling metabolism

Much work has already been done on modelling metabolism (Edwards and Palsson,
2000a; Reed and Palsson, 2004) and analysing the possible mechanisms of pathway
evolution (Teichmann et al., 2001; Rison et al., 2002; Rison and Thornton, 2002;
Schmidt et al., 2003; Light and Kraulis, 2004). The wealth of currently available data
can be used in the creation of models that may also be applied for the simulation and
optimisation of metabolic networks. Optimisation techniques have already been used
in studies to meet objectives such as flux maximisation, optimal growth and studying
the effect of gene deletions or additions to network robustness (Varma and Palsson,
1993; Regan et al., 1993; Pramanik and Keasling, 1997; Schilling et al., 1999;
Edwards and Palsson, 2000b; Burgard and Maranas, 2001; Burgard and Maranas,
2003; Fong and Palsson, 2004; Nikolaev et al., 2005).

Lately, there has been an increasing interest in metabolic pathways as an indicator of
“connectivity” between genes (Marcotte et al., 1999; Kolesov et al., 2001; Rison et
al., 2002). The pathway distance metric can serve as such a measured descriptor of
the relationship between two enzymes in the metabolic network. Minimal pathway
distances are identified as the smallest number of metabolic steps separating two

enzymes: the shortest path from one point in the network to another.

Metrics based on the application of shortest path algorithms in biochemical systems
have been considered before. Graph-oriented representations of metabolism have
been used to reconstruct metabolic pathways (Arita, 2000). The large-scale
organisation of cellular networks has been addressed with a systematic comparative
mathematical analysis based on a shortest path algorithm that examines the
properties of the metabolic networks of different organisms (Jeong et al., 2000;
Almaas et al., 2004). A quantitative basis for identifying a set of central metabolites
defining the core of metabolism by calculating the shortest distances between

substrates has also been established (Fell and Wagner, 2000).

Recently, the biochemical properties of the E. coli Small Molecule Metabolism
(SMM) genes and enzymes were investigated using a simple but inefficient graph

depth-first-traversal algorithm (Rison et al, 2002). The work demonstrated that
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propinquity of SMM genes on the E. coli chromosome was matched by propinquity
of the encoded proteins in the metabolic network. Patterns of enzyme homologies
and conservation of catalytic chemistry between homologues were suggestive of a
patchwork model of pathway evolution, as opposed to the retrograde model of
evolution (Rison e al., 2002; Rison and Thornton, 2002). A network approach was
also used to study the evolution of enzymes in metabolism (Alves et al., 2002).
Interestihgly, the authors find that neighbouring éniymes (less than 3 steps apart) in
the reaction network are more likely to be homologous than distant enzymes (more
than 3 steps apart). The work also suggests that blocks of similar catalysis have

evolved in metabolism.

Here, a mathematical programming formulation of an algorithm is demonstrated,
designed to calculate the minimal pathway distances of the SMM of E. coli, based on
LP techniques. The correlations of minimal pathway distance with genome distance,
and enzyme function are investigated. Results demonstrate the effectiveness of the

LP technique, and provide insight into the evolution of metabolic pathways.

2.2. Problem statement

Overall, the problem under examination can be stated as follows:
Given:

o the SMM network of E. coli, which consists of a set of metabolites taking

part in a set of metabolic reactions, catalysed by a set of enzymes;

e the chromosomal location of all genes encoding the SMM enzymes

investigated, which are used to derive genome distances for all gene pairs;

¢ the EC numbers of all enzymes in the dataset.

Determine:
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¢ the minimal pathway distances among enzymes of the SMM of E. coli.

So as to investigate the correlations of minimal pathway distance with genome

distance, and minimal pathway distance with enzyme function.

2.3. Algorithm

2.3.1. Shortest paths

The recognition of the shortest possible directed path from a specified source node to
some other node of a weighted, directed graph is known as a shortest path problem.
A variety of combinatorial problems can be formulated and solved as shortest path
problems. In addition, a number of more complex problems can be solved by
procedures, which call upon shortest path algorithms (Lawler, 1976). Instead of
finding the shortest path from one specified source node to one specified destination
node separately, it is more convenient to compute all shortest paths from a single

source node to all other nodes in the network.

Next, we discuss the appropriate expressions to derive the length of shortest paths
(D)) from the source node to nodes i. First, assume a directed graph with » nodes,

which is characterised by the following parameters.
a; = the (finite) weight of edge (i,j) if there is such an edge; + o otherwise

The source node is numbered 1; the aim here is to calculate the shortest path
distances from node 1 to all other nodes in the network. If there are no negative-
weight cycles (i.e. no cycles for which the sum of edge weights is less than zero)
reachable from the source node, then D; is equal to zero. Then, for each node j (>1),
there must be a final edge (k) in a shortest path from 1 to j, where k is the next to
last node on the path. Thus, the shortest path lengths must satisfy the following

equations, referred to as Bellman’s equations (Bellman, 1958):
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D=0 @.1)

D;= r&l]n {D,+a,} Vj=2,.,n 2.2)

Bellman’s equations solve the single-source shortest path problem in the general
case, in which edge weights may be negative, given a weighted, directed graph with
no negative-weight cycles. Equation (2.2) implies a system of »-I inequalities and,

for fixed j and k # j, we have:
D,<D, +a, 2.3)

Also, for fixed values of D and k # j, the correct value of D; can be determined by a

simple LP model by maximising D; subject to inequalities (2.3), thus satisfying

equation (2.2):

maximise D, (24)
subject to:

D,<D, +ay Vk#j (2.5)

2.3.2. LP model

From the above analysis, an LP model (Lawler, 1976; Cormen et al., 2001) applied
to metabolic networks is suggested, capable of finding in a single pass the minimal
pathway distances (shortest path lengths) of all enzymes in a network that are
reachable from a source enzyme (i°). First, the notation used in the mathematical

model is given:
Indices

ij enzymes
Parameters

E; 1 ifthere is an edge (link) from i to j; 0 otherwise
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Positive continuous variables

D,

1

distance from the i* source enzyme to enzyme i

For each source enzyme (i*) in the network, the algorithm finds the minimal pathway

distances to all other enzymes by solving the following LP optimisation model:

maximise 2 D, (2.6)
subject to:

D, <D, +1 V(ij):E; =1 2.7

D, =0 28)

D,20 29)

According to the analysis described in section 2.3.1, the above LP model can
represent Bellman’s equations. Constraints (2.7) incorporate pathway information
related to reaction connectivity, circularity and reaction directionality, facilitated by
the use of parameter Ej; (for reversible reactions Ej; = E; = 1, however for irreversible
reactions E; = 1 and Ej; = 0). Constraint (2.8) assigns the initial value of zero to
enzyme i to denote it as the source enzyme, while constraints (2.9) require all D;

variables to take positive values.
Finally, unbounded solutions can be avoided by adding:

D, <T Vi (2.10)

1

where T is an appropriately large number. It should be noted that if D; equals T at the
final solution then it can be concluded that there is no path connecting the i source
enzyme with enzyme i in the network under consideration. This feature of the
algorithm is particularly useful to identify cases where the connectivity of part of the

network is missing.
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2.4. Methods

2.4.1. Generating the pathway dataset

Often, the metabolic network is subdivided into individual pathways, as commonly
depicted in biochemistry textbooks (e.g. Glycolysis, TCA, fatty-acid biosynthesis)
(Voet and Voet, 1995). However, whilst each individual pathway can be considered a
separate entity, and distinction can be made between inter-pathway and intra-
pathway properties (Teichmann et al., 2001), metabolism is a complex and complete
network. Thus, the division of metabolism into distinct pathways is arbitrary
(Gerrard et al., 2001). A possible way to deal with this issue is to ignore these
divisions, and instead consider metabolism as a single network. Herein, such a
network approach, similar to that of Alves et al. (2002), was adopted. When
individual pathways are mentioned in the text, this is done in order to simplify the
discussion; the analyses presented were performed on the whole network, not on a

“per pathway” basis.

The SMM network used was obtained from the EcoCyc database (Karp et al., 2002).
EcoCyc is an organism-specific pathway/genome database implemented in Common
Lisp, which describes the metabolic and signal-transduction pathways of E. coli, its
enzymes, its transport proteins and its mechanisms of transcriptional control of gene

expression (Karp et al., 2002).

Two representations of the E. coli network were implemented. The metabolite-
centric representation is the customary representation (Michal, 1998), with the
metabolites as nodes and the enzymes catalysing the reactions between two
metabolites/nodes as the edges. Even though metabolite-centric representations of
metabolic networks are the most common, in this work a second, protein-centric
representation was also adapted (Gerrard et al., 2001). As illustrated in Figure 2.1,
the enzymes are considered-as the nodes of the graph, and the substrates are the
edges. In both cases, the input to the LP algorithm is a list of node pairs connected by

a single edge.
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Figure 2.1: A protein-centric (Gerrard et al., 2001) view of Glycolysis and the tricarboxylic
acid (TCA) cycle (adapted from EcoCyc; http://www.ecocyc.org/).

Key to Figure: pgi: phosphoglucose isomerase; pfkA and pfkB: 6-phosphofructokinase-1 and 2; fbaB
and fbaA: fructose bisphosphate aldolase class I and II; tpid: triose phosphate isomerase; epd:
glyceraldehyde-3-phosphate dehydrogenase 2; gapA: glyceraldehyde-3-phosphate dehydrogenase-A;
pgk: phosphoglycerate kinase; gpmA and gpmB: phosphoglycerate mutase 1 and 2; pgml:
phosphoglycerate mutase, cofactor independent; eno: enolase; pykF and pykA: pyruvate kinase I and
1I; aceE, aceF and IpdA: pyruvate dehydrogenase multienzyme complex; gltA: citrate syntahse; acnA
and acnB: aconitase A and B; icdA: isocitrate dehydrogenase; subA, sucB and IpdA: 2-oxoglutarate
dehydrogenase complex; sucC and sucD: succinyl-CoA synthase complex; sdhA, sdhB, sdhC and
sdhD: succinate dehydrogenase complex; fumA and fumC: fumarase A and fumarase C; mdh: malate
dehydrogenase.
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In Figure 2.1, an example of a protein-centric representation of pathways is
presented. Enzymes are in purple, substrates in red and only key metabolites are
shown. The arrows can be read as “produces a substrate for”. Enolase (the gene
product of eno) produces substrate ‘phosphoenolpyruvate’ for PykF and PykA.
Likewise, PykF and PykA produce ‘phosphoenolpyruvate’ for Eno when catalysing
the reverse direction reaction. Malate dehydrogenase (the gene product of mdh)
produces substrate ‘oxaloacetic acid for GltA, ‘but GItA does not produce
‘oxaloacetic acid’ for Mdh. The minimal pathway distance from GItA to Mdh is
therefore 1 if directionality is not taken into account (all edges are assumed to be bi-
directional), but 7 if directionality is considered (clockwise around the tricarboxylic
acid (TCA) cycle).

When using the metabolite-centric representation, pathway distances for the E. coli
SMM enzymes are derived by reversing the network first. To achieve the reversal,
two enzymes are regarded as connected if they catalyse reactions in which the same
metabolite appears. Therefore in both cases, the final input to the LP model is a

protein-centric network.

Metabolite-centric representations tend to collapse around certain ubiquitous
metabolites (e.g. ATP, NAD(P), O,, water, etc.), therefore all metabolites appearing
in more than 10 reactions were removed from the dataset. A similar strategy is
implemented by Alves et al. (2002). The selection of which highly connected
rﬁetabolites needed to be removed is significant, because of the effect it has on the
results; for this reason we have extensively studied the behaviour of the metabolite-
centric dataset and we illustrate the results in Figure 2.2. When all metabolites
appearing in more than 100 reactions are removed, the average over all minimal
pathway distances in the network is only 2.86, and the largest pathway distance
observed is 10. As more of these ubiquitous metabolites are removed from the
dataset, these values increase considerably, and the behaviour of the metabolite-
centric network approximates that of the protein-centric one. It is clear from the
graph that the progressive removal of highly connected metabolites decreases the

connectivity, and brings the network in line with the protein-centric representation.
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Figure 2.2: Effect of removal of promiscuous metabolites from metabolite-centric dataset.

2.4.2. Genome distance

Genes encoding the SMM enzymes investigated were assigned a chromosomal
location by consulting the Gene Table for E. coli (Blattner et al., 1997). These were
used to derive genome distances for gene pairs, i.e. the smallest distance in base pairs
(bp) separating the two genes on the chromosome. The genome of E. coli is
constituted by a single double-stranded circular DNA chromosome; a graphical
representation of the genome is presented in Figure 2.3. Since the E. coli
chromosome is ~4.6Mbp and only the smallest genome distance is considered, two

genes can, at most, be separated by ~2.3Mbp.

For the needs of the study, pairs are sorted into bins containing genes separated by:
less than 100bp, 101-1,000bp, 1,001-10,000bp, 10,001-100,000bp, 100,001-
1,000,000 and more than 1,000,000bp. The choice of bin sizes has a biological
rationale. The first of these bins accounts for genes likely to belong to the same

operon (Salgado et al., 2000), the second bin size approximates to the average size of
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a prokaryotic gene (Casjens, 1998). Subsequent bins were simply enlarged by an

order of magnitude.

4.6 Mbp

gene 3

gene 1

gene 2

Figure 2.3: The circular chromosome of the E. coli genome.

2.4.3. Function similarity

Enzymes in the datasets were assigned an EC number by reference to the GenProtEC
database (Riley, 1998), and following communications with the database curators.
EC numbers classify reactions within a hierarchical 4-level scheme. For example, the
reaction catalysed by the enzyme glyceraldehyde-3-phosphate dehydrogenase has
EC number 1.2.1.12 (Enzyme Nomenclature, 1992), as demonstrated in Figure 2.4.

G-3-P dehydrogenase 1.2.1.12
12. enzyme 1.2.1.20
10201012 ‘/ SeCifli/C X
V\ p 3 levels of conservation
1. NAD/NADP as
1. oxidoreductase acceptor 1.2.1.12
2. acts on aldehyde 2.2.1.20
Oor OXO group No conservation

Figure 2.4: Example of classification with an EC number of a reaction catalysed by enzyme

G-3-P dehydrogenase. On the right the concept of EC number conservation is demonstrated.
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The level to which EC numbers assigned to two enzymes are identical can be used as
a measure of the similarity of the function they perform (Martin et al., 1998; Todd et
al., 2001). Enzymes assigned identical EC numbers perform the same biochemical
function, enzymes with only the first EC level in common share only very
generalised functional similarity (e.g. both oxidoreductases). Finally, enzymes
assigned completely different EC numbers often share little or no functional
commonalities. Thérefore, the number of lhatching EC levels (none, 1, 2, 3 or 4) is

used as the functional similarity metric.

2.5. Computational results

The algorithm was implemented within the GAMS software (Brooke et al., 1998),
using the CPLEX 6.5 LP solver for solving LP problems such as the one in hand.
Post-processing calculations were incorporated in the algorithm to derive correlations

of minimal pathway distance with genome distance and function similarity.

2.5.1. SMM datasets

The metabolite-centric dataset was composed of 973 metabolite pairs accounting for
795 distinct enzymes and 877 distinct metabolites, of which 71 promiscuous
compounds were removed, leaving 806 metabolites for input into the LP model. A
chromosomal localisation was identified for 740 of the genes encoding for the
enzymes, and these were used to investigate the correlation between pathway
distance and genome distance. For the study of the correlation between pathway
distance and function similarity, an EC number was assigned to 634 genes. Pathway

distances obtained by the solution of the algorithm ranged from 1 to 24.

The protein-centric dataset was composed of 599 enzyme pairs and 391 distinct
metabolites. For 540 distinct enzymes a chromosomal localisation was identified,
and 507 enzymes were assigned an EC number. Pathway distances obtained by the
solution of the algorithm ranged from 1 to 26. Both datasets were kindly provided by
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the curators of the EcoCyc databése (Karp et al.,, 2002). After a certain pathway
distance, the results cease to be informative because: i) they do not deviate
substantially from that found at the previous pathway distance; and/or ii) they are
based on such a small number of pairs that their validity is questionable. Therefore,

in all plots, only phthway distances up to 15 are considered.

2.5.2. Pathway distance and genome distance

The minimal pathway distances for all gene pairs in the SMM network were
calculated for both representations. Then, for the established pairs, the base pair
separation of the genes encoding the enzymes in the E. coli genome was determined,
and the enzyme pairs assigned to the corresponding genome distance bin. For
example, using the results from the protein-centric dataset, the enzymes
glyceraldehyde-3-phosphate dehydrogenase 2 and phosphoglycerate kinase
(respectively epd and pgk in Figure 2.1) have a pathway distance of 1, and are
encoded by genes separated by only 50 base pairs. The pair therefore falls into the
first bin (0-100bp). However, the enzymes phosphoglycerate kinase and
phosphoglycerate mutase 1 (respectively pgk and gpmA in Figure 2.1), which also
have a pathway distance of 1, are encoded by genes separated by 2,282,661bp. The
results for the metabolite-centric representation are presented in Table 2.1 and the

results for the protein-centric one in Table 2.2.

Table 2.1: Number of gene pairs in the six genome distance bins for each pathway distance

Jor the metabolite-centric representation.

Pathway Distance

5 6 7 8 9 10 11 12 13 14 15
5 3 5 2 4 2 1 1 0 0 0
101-1,000bp 91 21 13 10 7 5 5 2 2 4 2 1 1 0
1,001-10,000bp 231 78 98 84 85 57 52 70 69 53 53 16 23 7
10,001-100,000bp 94 196 284 375 516 750 893 848 823 706 526 502 453 336 316

Genome Distance Bin 1 2 3
0-100bp 217 29 11

2000\&

100,001-1,000,000bp 928 1644 2403 3794 5019 6697 7719 8098 7995 7023 5901 5196 4162 3511 2263
1,000,001-10,000,000bp 1250 2265 3661 5381 7282 9710 11228 12111 11659 10169 8751 7692 5873 4735 3545

Totals 2811 4233 6470 9628 12916 17252 19907 21116 20553 17971 15236 13446 10505 8606 6131
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Table 2.2: Number of gene pairs in the six genome distance bins for each pathway distance

for the protein-centric representation.

Pathway Distance

Genome Distance Bin 1 2 3 B

wn
a

i/ 8 9 10 1 12 13 14 15
0-100bp 52 45 8 2 3 Z 2 0 0 0 0
101-1,000bp 12 21 4 2 1 1 1 1 1 1 1 0 0 11
1,001-10,000bp 48 63 31 21 17 12 7 7 3 7 3 1 2 2. 2

(=]
o
(=]
o

10,001-100,000bp 25 35 41 55 54 63 59 71 78 93 59 45 43 33 46
100,001-1,000,000bp 174 311 463 557 645 679 705 777 856 701 516 457 379 304 274
1,000,001-10,000,000bp 263 453 638 816 1015 1081 1062 1125 1108 1061 766 586 550 507 424
Totals 574 928 1185 1453 1735 1838 1836 1981 2046 1863 1345 1089 974 847 747

The percentages of gene pairs in the first four genome distance bins are plotted
against pathway distance in Figure 2.5 for the metabolite-centric representation and
in Figure 2.6 for the protein-centric representation. At each pathway distance (x-

axis), the percentage of enzyme pairs within various genome distance bins is plotted.

'—e—0-100bp —=— 101-1,000bp —&— 1,001-10,000bp —— 10,001-100,000bp |
9% -
8%
7% -

6%

5% -

Percentage

o
o
]
1% W

0%

0 2 4 6 8 10 12 14 16
Pathway distance

Figure 2.5: Pathway distance and genome distance (metabolite-centric dataset with

metabolites involved in more than 10 reactions removed).
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Figure 2.6: Pathway distance and genome distance (protein-centric dataset).

Interestingly, the protein-centric and metabolite-centric representations do not yield
identical graphs. This demonstrates once again the problems with SMM
representations. The metabolite-centric representations traditionally illustrated in
biochemistry textbooks have implicitly considered the ancillary role of promiscuous
compounds such as ATP. However, the input to the LP algorithm always consists of
node-pairs. In the metabolite-pair representation, since all metabolites are
represented, promiscuous compounds will “collapse” the network. In the process of
generating the protein-centric representation, the promiscuous compounds are
empirically accounted for and therefore they do not dramatically affect the results.
This can be seen by contrasting Figure 2.5 and Figure 2.6; when comparing the
percentages of homologies at various distances, there are more pairs detected at short
distances in the more compact network derived from the metabolite-centric
representation, but the actual number of homologous enzyme pairs remains constant,
hence a lower percentage of homologous pairs, and the sharp drop between pathway
distances 1 and 2. The problem of promiscuous compounds is also discussed by
Alves et al. (2002).
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There is a clear correlation between pathway distance and genome distance. As
pathway distance increases, the percentage of genes separated by short genome
distances drops. In the results produced with the protein centric dataset (Figure 2.6),
for pathway distances of 1, 2, 3, and 4 steps, gene pairs separated by at most
10,000bp (i.e. bins 0-160bp, 101-1,000bp, and 1,001_-10,000bp) account for 19.51%,
13.9%, 3.63% and 1.72% respectively of the pairs analysed. In the metabolite-centric
representation (with all metabolites involved in more than 10 reactions omitted), the
drop in chromosomally-close gene pairs with increasing distance is also observed,
but the fall is much more sudden, with percentages of 19.17%, 3.02%, 1.89% and
0.81% (Figure 2.5). For the other three distance bins (101,000bp-1,000,000bp and
1,000,001bp and above, which are not plotted here), no clear trend is evident.

2.5.3. Statistical analysis

A statistical measure is applied to demonstrate that the results of the analysis are not
due to chance. We are using the standard normal deviate, or Z-score, which measures
the distance of a value from the mean of a distribution in standard deviation units.
For the needs of this analysis, the mean and standard deviation used are those of

randomised networks.

Random interconnected networks were created by arbitrarily pairing the enzymes of
the E. coli small molecule metabolism, making sure that the same number of pairs
was created for each distance as for the original protein-centric E. coli network (i.e.
the connectivity of all the random networks was the same as for the protein-centric
network): 574 enzyme pairs at pathway distance 1; 928 pairs at distance 2; 1185
pairs at distance 3; efc. Then, a mean and a standard deviation of the number of pairs
in each genome distance bin were calculated, by averaging over the pairs produced
for 100 random networks. The distance in standard deviation units of the mean of the
distribution from the number of pairs of the protein-centric network existing in each
bin and each pathway distance was calculated: there are 52 pairs with a pathway

distance of 1 in the 0-100bp bin (X ,_,,, ), but only 0.75 pairs appear on average in

the same bin for randomised networks ()—( 0-100). The standard deviation for this bin
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for randomised networks (o,_,,) is 0.78. Therefore, at a pathway distance of 1 and

for the genome distance bin 0-100bp, we have:

PR e Xoao _ 52-0.75
0-100 =
T 0.78

=65.75 @2.11)

Figure 2.7 presents the Z-score results calculated for the protein-centric network
only. The Z-scores indicate how far and in what direction each item deviates from
the random mean, expressed in standard deviation units. Z-score values greater than
3 are usually considered to be significant. As observed in Figure 2.7, our results for
the first 3 bins and the first 4 pathway distances deviate the most from the random
estimations. After that, the network approaches a more or less random behaviour in

the distribution of its enzyme pairs.

| —e— 0-100bp —=— 100-1,000bp —4— 1,000-10,000bp —¢— 10,000-100,000bp

70 -
60 -
50 |
40 |

30

Z score

20 -

10 -

-10 ¢
Pathway Distance

Figure 2.7: At each pathway distance, the Z-score of the number of enzyme pairs within

various genome distance bins is plotted.
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The observations made from the study of correlations between pathway distance and
genome distance for E. coli and the statistical analysis performed indicate that SMM
genes are “metabolically clustered” on the genome. Furthermore, the relatively high
percentage of gene pairs found within 100bp (a very short distance in a ~4.6Mbp
long chromosome) suggests that this clustering is the consequence of prokaryotic
operon structures in which co-regulated genes are rarely separated by longer
distances (Salgado et al., 2000). The observation that short genome distances are
often detected for functionally related genes has been made before (Tamames et al.,
1997; Overbeek et al., 1999; Rison et al., 2002). However, this relationship has not
previously been quantitatively explored in depth and verified for the whole SMM of
an organism. Here, we show that the observation holds true using co-participation in
a metabolic pathway as an indication of shared function and “measuring” this

relationship using our pathway and metabolic distance metrics.

An intriguing feature of these results is that the main “contributors” to the trend
observed are the genes in the 0-100bp bin. The next chromosomal distance bin, 101-
1,000bp, is nearly always the rarest. A possible explanation for this comes from
assuming an average gene length of approximately 1,000bp; a length thought to be
uniform in bacterial genomes (Casjens, 1998). Since the 101-1,000bp just reaches the
average length of a gene, it represents an “impossible distance™: two genes will either
be contiguous (and hence separated by 100bp or less), or separated by at least one

gene (so separated by at least 1,000bp) — thus avoiding the 101-1,000bp bin.

2.5.4. Pathway distance and function similarity

EC numbers were used as an indicator of shared function. The EC numbers assigned
to each enzyme were compared, and the level of EC number conservation was
determined. The metabolite-centric data are presented in Figure 2.8. The results for
the protein-centric representation are plotted in Figure 2.9. At each pathway distance
(x-axis), the percentage of enzyme pairs with all (L1+L2+L3+L4), 3 or more
(L1+L2+L3), 2 or more (L1+L2) or 1 or more (L1) EC levels matching is plotted.
L1+L2+L3+L4 is a subset of the L1+L.2+L3 set (which in turn is a subset of L1+L2,
etc.).
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Figure 2.8: Pathway distance and function similarity (metabolite-centric dataset).
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Figure 2.9: Pathway distance and function similarity (protein-centric dataset).
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No obvious correlation between EC number and pathway distance could be
established. Furthermore, the data show that conservation of EC number is relatively
rare at all distances (the percentage of enzyme pairs with at least two EC levels is
a{lways under 8% for the protein-centric dataset, and under 3% for the metabolite-
centric dataset). Even at short pathway distances, and for the protein-centric data
which produce a larger number of first EC number conservations, enzyme pairs only
catalyse the same type of reaction (as defined by an identical first EC number)
approximately once out of 4. Moreover, this percentage is relatively constant at all
distances, suggesting no particular bias for EC number conservation at shorter

distances.

It is known that the relationship between EC numbers and pathways is complex, with
pathways requiring a number of enzyme types to perform their task (Tsoka and
Ouzounis, 2001). These data would suggest that enzymatic chemistries are varied
along the substrate conversion routes. This contrasts with the recent work of Alves et
al. (2002) who, when analysing the metabolic networks of 12 organisms derived
from the metabolite-centric KEGG database (Kanehisa et al., 2002), concluded there
was often a clustering effect of enzymes belonging to the same class (i.e. sharing the
same first EC number) in metabolic networks. In Alves’ work, although levels of
function conservation in enzyme less than 3 steps apart are significantly higher than
that in enzyme pairs more than 3 steps apart regardless of homology, the correlation
is substantially more pronounced when considering homologous pairs. In our work,
we consider all pairs regardless of homology. It is hard to directly compare the two
studies since they use different databases, and the latter study exploits pathway
distance indirectly (comparing conservation of chemistry in pairs less than 3 steps

apart and pairs 3 or more steps apart).

2.5.5. A case for patchwork evolution

The correlations between pathway distance and genome distance, and also between
pathway distance and enzyme function for the SMM pathways of E. coli were
investigated, in order to search for the existence of evolutionary relationships among

the E. coli enzymes. As expected, there is a demonstrable relationship between
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pathway distance and genome distance, with genes nearby in the genome far more
likely to encode enzymes acting close-by in metabolism. This correlation can be
attributed to operon structure. It can be surmised that, for E. coli SMM enzyme-

encoding genes, operons cluster genes that are within a short pathway distance.

,Ij_Io clear trend was observed when examining the relationship between pathway
distance and conservation of function. The lack of obvious correlation between
pathway distance and EC numbers supports the notion of a “substrate-driven”
evolution (as opposed to a “chemistry-driven” one), which is commonly associated
with the patchwork model of pathway evolution: enzymes were almost randomly
recruited on a need-only basis within the metabolic network of an organism. In
conjunction with the results from investigations that have been performed by other
researchers (Tsoka and Ouzounis, 2001; Teichmann et al., 2002; Rison et al., 2002;
Rison, 2002), the data presented in this thesis can support the growing body of
evidence suggesting patchwork evolution as the prevailing pathway evolution

strategy.

2.6. Conclusions

This work has two salient conclusions: i) the LP technique presented is a fast and
effective method of analysing certain properties of metabolic networks; and ii)
pathway distance and genome distance correlate, but pathway distance and enzyme

function do not, which offers insight into the likely model of pathway evolution.

The algorithm that has been presented in this chapter is a single-source shortest path
algorithm formulated as an LP model. The algorithm is characterised by its
simplicity and deals efficiently with network circularity (i.e. cycles within metabolic
pathways). All the computational experiments were performed on an IBM RS6000
workstation. In the case of the study of correlations between minimal pathway
distance and genome distance, experiments with the protein-centric dataset required
127s for the solution of 540 LPs and experiments with the metabolite-centric dataset

required 1862s for the solution of 795 LPs. In the case of the study of correlations
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between minimal pathway distance and enzyme function, the experiments required
124s for the solution of 507 LPs; experiments with the metabolite-centric dataset
required 6498s for the solution of 634 LPs. It should be noted that these CPU times
include pre- and post-processing of the data, a fairly time-consuming part of the

Pprocess.

Minimal pathway distances between E. coli SMM enzymes have been studied using
the algorithm. The issues related to the use of various conceptualisations of pathway
can be seen by comparing the results obtained from the metabolite-centric and the
protein-centric datasets. In the protein-centric dataset, human intervention has dealt
with the issue of promiscuous compounds such as ATP, NAD(P) or water; in the
metabolite-centric dataset, such compounds are included and “collapse” the network,

giving it undesired properties (Alves et al., 2002).

The correlations between minimal pathway distance and genome distance and
enzyme function have been investigated. As expected, pathway distance correlated
with genome distance with a higher probability of proximity on the genome for genes
encoding enzymes involved in nearby metabolic reactions. However, pathway
distance did not correlate with enzyme function as described by assigning EC
numbers to SMM enzymes. These data, in conjunction with the result of previous
analyses incorporating work concerning sequence and structural similarity of SMM
enzymes (Teichmann et al., 2002; Rison et al., 2002), suggest a patchwork model of
pathway evolution: the lack of obvious correlation between pathway distance and EC
numbers is consistent with the ad hoc recruitment of enzymes where required within

the metabolism of an organism (Jensen, 1976).
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Robustness of the p53 network

and biological hackers

n this chapter, the LP model that was presented in chapter 2 is applied to a
different biochemical problem. The p53 cell cycle and apoptosis control
network is crucial in regulating the multicellular (metazoan) cell cycle and
apoptosis. Here, the robustness of the pS3 network is studied by analyzing its
degeneration under two modes of attack. The LP algorithm is used to calculate
average path lengths among proteins and the network diameter as measures of
functionality. The significance of the results is considered with respect to mutational

knockouts of proteins and the attacks mounted by tumour inducing viruses (TIVs).

3.1. Apoptosis and the pS3 network

Cellular proliferation is tightly regulated in multicellular organisms. Cells
accumulate in a coordinated manner during growth or repair, and undergo

programmed cell death (apoptosis) when genetically damaged, when virally infected
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or when the developmental program requires the death of the cell — a necessary
sacrifice to save the organism as a whole. Proliferation is regulated via cyclical
activation of different cyclin-dependent kinases (CDKs), which mediate the temporal
activation of cell growth, DNA synthesis and cell division. Apoptosis is triggered in
response to specific signals, and the cell is destroyed when a cascade of proteases
(the caspases) are activated. Failure of this control system, leading to either
unregulated proliferation or unnecessary apoptosis, is causative of both

tumourigenesis and developmental diseases.

All organisms control progression through the cell cycle, and can respond to cellular
stress by activating cell cycle checkpoints and by repairing damaged components if
necessary. In addition, multicellular organisms have evolved the ability to trigger
apoptosis in cases where risk to the organism is unacceptably high. In response to
stress, a metazoan cell must decide between continued progression through the cell
cycle or initiation of apoptosis. This decision is mediated by a protein-interaction

network, at the centre of which lies p53.

The pS53 protein is found only in metazoan cells, and combines protein-interaction
domains, regulatory domains and a sequence specific DNA recognition domain that
allow the integration of both intracellular and intercellular signals with gene
transcription (Vogelstein et al., 2000). Under normal conditions, p53 is turned over
rapidly by proteolysis and is inactive. Cellular stress signals result in the stabilisation
of p53 so that it rises in concentration to a level where it can activate transcription of
its target genes. Depending on the circumstances (for example cell type and nature
and strength of the stress signal), gene transcription resulting from elevated p53
levels produces responses including pausing of cell cycle, DNA repair, permanent
arrest of replication, or apoptosis. The p53 protein is activated by both intrinsic and
extrinsic stress signals, including DNA damage (e.g. from ionising radiation), mitotic
spindle damage, aberrant growth signals, hypoxia, ribonucleotide depletion, and loss
of cell adhesion (Robles et al., 2002), many of which are characteristic indicators of

tumourigenesis.

The p53 network is therefore crucial in pausing the cell cycle, in order to repair DNA

damage or initiate apoptosis to destroy a tumorous cell. Such a vital cellular
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mechanism should logically be relatively immune to attack; nevertheless there still
exist certain threats against the p53 network, such as mutation, that can damage it.
Mutations reducing p53 activity are present in over 50% of human tumours (Haupt ez
al., 2003), either directly by knocking out the p53 gene, or indirectly by over-
expressing inhibitors of the protein. For a study of the robustness of the network, one
must be able to observe the response of the network to stimulation and/or
perturbation, but the processes of the p53 network are unfortunately not yet
understood adequately in order to model them. We must then turn to the structure of
the network to find an acceptable measure of network functionality (Mahadevan and
Palsson, 2005).

3.2. Network architectures

Graph theory is a branch of mathematics used to analyse complex networks of nodes
and edges. Until recently, graphs were divided into two main categories; regular and
random. The connections in a regular graph are very strictly ordered with all nodes of
the network having the same degree or connectivity k, (the total number of
connections from a node to other nodes), much like the chemical bonds in a crystal
lattice. In a random network, connections are placed between any two nodes with a

given probability.

The structure of a network with N nodes is often summarised by plotting & against
the probability distribution function, P(k) (the number of nodes with & connections,
divided by the total number of nodes in the network). The plot of P(k) for a random
graph follows a Poisson distribution peaking at the average value of k. For a regular
network, the plot is a spike as all nodes have the same connectivity. Counting the
minimum number of connections that must be followed to traverse from one node, i,
to another, j, yields the path length for that pair, /;. Within a random graph,
connections can 'short-cut' across the entire network and so path lengths are typically

much shorter than in a regular graph (Barabasi and Oltvai, 2004). One global metric
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of the structure of a network is its diameter, which represents the mean path length

between all nodes. It is defined as:

N-1 N

= (N D IS G.1)

i=l j2i+l
where N is the total number of nodes in the graph.

Watts and Strogatz (1998) described the properties of a third class of graphs with an
architecture in-between that of the regular and random extremes. This structure is
similar to that of social networks, where people have close-knit circles of friends
within a larger, but still inter-connected, social network. Millgram (1967)
demonstrated the infamous 'small-world' nature of human acquaintances, and
claimed that any two people in the world are no more than six 'degrees of separation’
apart. Based on the same principle, Watts and Strogatz (1998) named their graphs

'small-world' networks.

‘Small-world’ networks combine the small diameter of random graphs with the high
local connectivity of regular graphs. In addition to this small-world property, many
networks with no pre-designed architecture that grow and evolve over time have a
characteristic pattern of connectivity. P(k) decays as a power-law — the vast majority
of nodes have only a few connections, but there are several hubs that are very highly
connected. Unlike regular or random graphs there is no characteristic degree of
connectivity, and so such networks are termed 'scale-free'. Figure 3.1 demonstrates

the characteristic topologies and P(k) plots of random and scale-free networks.

In recent years, a great number of networks have been shown to be scale-free,
including the Internet (Albert et al., 1999), social interactions (Albert et al., 2000),
neural networks (Strogatz, 2001), ecological food webs (Strogatz, 2001), protein-
protein interactions (Jeong et al., 2001), gene transcription regulation networks
(Barabési and Oltvai, 2004) and metabolism (Jeong et al., 2000). Interestingly, a
recent study (Arita, 2004) claims that the small-world properties of E. coli
metabolism are not inherent in the network but are an artefact of the way that

metabolic relationships are considered. In any case, “small-worldness” does seem to
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be an inherent property of most, if not all biological networks. One explanation for
the occurrence of this structure is that of network growth through preferential
attachment of additional nodes. An initially small network grows by the connection
of additional nodes, not to randomly-selected extant nodes, but with a probability
proportional to each extant node's current connectivity (k), with hubs being created

by a positive-feedback ‘rich getting richer’ process.

Random network Scale-free network
P 14
e 0.1
g‘ 4 X 0014
] 0.0014
0.00014
K i 10 10 1,000

K

Figure 3.1: P(k) plots for random and scale free-networks (from Barabdsi and Oltvai, 2004).

Barabési and Oltvai (2004) explain how this process might operate in biological
systems. Protein-protein interaction networks grow through gene duplication. When
a randomly selected gene duplicates, the protein transcript of the copied gene retains
all the interactions of the original. Thus, all proteins already linked to the original
protein gain an extra connection. Highly connected proteins are more likely to link to
the original protein, and this provides the mechanism for preferential attachment that
results in the power law distribution and high clustering coefficient of small-world
networks. A natural corollary of this mechanism is that the proteins that appeared

earliest in the history of the growing network should become the most well-
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connected. Indeed, in metabolic networks the hubs include coenzyme A, NAD and
GTP, believed to be remnants of the RNA world. In protein interaction networks, the
most evolutionarily ancient proteins, as revealed by comparative genomics, have the
highest k values (Barabasi and Oltvai, 2004).

3.2.1. Network robustness

Much research has been conducted into the robustness of networks, that is, their
ability to remain relatively undisrupted in the face of perturbation. Robustness can be
defined, in topological terms, as the remaining communication ability within a
network as nodes or connections are removed. Real networks also perform one or
more functions, be it electricity distribution or genetic regulation, but modelling a
complex network's performance is often prohibitively difficult. Network navigability
is a necessary (although not sufficient) prerequisite for adequate function, and so the
diameter of the damaged network is taken as an acceptable proxy (Albert et al.,
2000). In order to study the robustness of the network, a series of knockouts
(deletions) of nodes can be performed, and the response of the network diameter is

observed.

Either individual connections, or entire nodes can be removed from a network, with
the latter having a greater impact. There are two main modes of attack upon the
nodes of a network — either removed at random, or the preferential targeting of the
hubs. A random graph responds identically to both random and directed attacks as its
connectivity is homogenous — the majority of its nodes have roughly the same
number of links, approximately equal to the network’s average degree. Upon
successive deletion of nodes the diameter increases monotonically until a critical
threshold fraction has been disabled, and the network undergoes a phase transition as
it disintegrates into isolated fragments. In contrast, a scale-free network is relatively
immune to random node failure, but extremely vulnerable to a targeted onslaught
(Barabasi and Oltvai, 2004).
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3.3. Problem statement

Overall, the problem of the study of robustness of the p53 protein interaction

network can be stated as follows:
Given:

o the list of proteins (nodes) and interactions amongst them (edges) of the p53

cell cycle and apoptosis control network.
Determine:
o the average path lengths (APLs) of all proteins in the p53 network;

e the diameter of the p53 network, defined as the mean path length among all

nodes.
e the minimal pathway distances among enzymes of the SMM of E. coli.

So as to investigate the robustness of the pS3 network against mutational

perturbation and against directed attacks on its hubs.

3.4. Algorithm

The LP model used in Chapter 2 for the calculation of pathway distances in the E.
coli small molecule metabolism is also applied here to calculate the average path
lengths of the proteins in the p53 network. The notation used in the mathematical
model is adapted to suit the needs of the study.

3.4.1. Nomenclature

Indices

ij proteins
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Parameters
N total number of proteins in the network
Cy 1 if there is a connection from protein i to protein j; 0 otherwise
T largé number

Positive continuous variables
APL;+ average path length of source protein i*

l; path length from protein i* to protein i

_3.4.2. Model constraints

The same algofithm used in chapter 2 is also applied here. The only difference is the
objective function (3.2), which has been modified to better reflect the fact that we
use the algorithm to identify the APLs of all proteins in the network. Each protein is
systematically set as the source, i*, and the algorithm finds the shortest path to all

other proteins by solving the following LP optimisation model:

2

maximise APL, = N;——l 3.2)
subject to:

[, <l +1 V@i, j):Cy =1 3.3)

l.=0 (G4

[,20 3.5)

Constraint (3.3) incorporates pathway information related to network connectivity,
facilitated by the use of parameter C;. Constraint (3.4) assigns the initial value of
zero to protein i* to denote it as the source protein, and constraint (3.5) requires all /;

variables to be positive. Unbounded solutions are avoided by adding:

1<T Vi (3.6)

1

If /; equals T then there is no path connecting the i* source protein to protein i.
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3.5. Methods

A model of the p53 network (a large module of the entire metazoan protein
interaction network) was constructed. This model was then subjected to both random
and directed modes of attack, and its changing diameter studied. The objective was to
analyze how the network behaves in response to the stochastic protein knockouts

from mutation during tumourigenesis, and also a targeted attack.

3.5.1. Generation of dataset

There are over 35,000 published articles relating to p53, its interactions, its functions,
and the consequences of its inactivation. These articles describe the function of p53
in multiple organisms, multiple cell types within those organisms, and under a wide
range of different situations within those cells. The result is a bewildering volume of
information relating to p53 interactions, the relative merits of which can be
extremely difficult to judge. Consequently, very few studies have attempted to fully
connect the network in any meaningful way. The raw data therefore had to be created

almost from scratch.

Kohn (1999) performed an extensive literature review and presented an annotated
molecular interaction map of proteins involved in mammalian cell cycle progression
and checkpoints, DNA repair, and apoptosis. The molecular maps of these processes
all feature p53 prominently, and although the connections are incomplete and
inevitably contain inaccuracies, the majority of the described interactions are
experimentally validated and well understood. It is unlikely that a few false-positives
or negatives would drastically alter the architecture of the network or calculations of

its diameter.

Although there is a high degree of modularity within interaction networks, the
dissociation of the “pS3 network™ follows largely arbitrary borders. This study
therefore followed the same boundaries selected in the work of Kohn (1999),
yielding a network containing 104 nodes and 226 unique connections. A

representation of this was constructed as presented in Figure 3.2. It can be seen that

-58-



Chapter 3. Robustness of the p53 network and biological hackers

the vast majority of the nodes are poorly connected within the network, whereas a
very small minority of the nodes are hubs (highlighted here in colour) with a high
centrality. The list of the 104 nodes included in the p53 network is presented in Table
3.1. The list of the 226 interactions (connections) amongst those nodes can be seen in
Table 3.2.

Table 3.1: The 104 nodes of the p53 protein interaction network.

14-3-3 C-TAK1 Gadd45 p19ARF RHA
Abl CycA HBP1 P21 RPA
AP2 CycB HDACI p27 Rpase_2
APC CycD Histones p300 Skpl
ATM CycE HMG p36MATI1 Skp2
Bax CycH HR23B pS3 SL1
BRCA1l DMP1 JNK p57 Spl
C-EBP DNA-PK Jun p68 ssb
Casp3 DP1-2 Karp-1 PARP ssDNA
Cdc25A Dpase_a Ku70 Paxillin TAFII250
Cdc25C Dpase_b Ku80 pCAF TBP
Cdk1 Dpase d Ligase 1 PCNA TFIIH
Cdk2 dsDNA Ligase 3 PKC U-glyc
Cdk4-6 E2F1-2-3 MAPK Plk1 Weel
Cdk7 E2F4 Max pRb XPA
Chkl E2F5 Mdm?2 Rad51 XPB
CK1d-k E2F6 Myc Rad52 XPC
CK2 E-cad Mytl Rafl XPD
Cksl ERCC1 pl107 Ras XPF
Crk FEN-1 p130 Rep_fork XRCC1
CSB Fos pl6 RF-C

Several nodes, such as ssDNA (single-stranded DNA), are not proteins, but are none
the less crucial objects that interact within the p53 control network and therefore they
are included in this study. All interactions were taken to be undirected, a valid
assumption for mutual binding in a complex or phosphorylation of a target protein by
a kinase. Several of the interactions, however, were transcription regulation events,
such as the p53-activated expression of Bax (Kohn, 1999; Vogelstein et al., 2000).
These are directional, in that p53 affects Bax, but not visa versa. Directed interactions
account for only around 5% of the total described by Kohn (1999). Although the LP
algorithm used here is capable of dealing with directionality, the entire map was

taken to be undirected to simplify the analysis.
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3.5.2. Centrality of network nodes

The average path length (APL) fora protein is the mean of the shortest paths between
it and all other nodes in the network. Fell and Wagner (2000) have calculated this
metric for metabolites in E. coli core metabolism. Some studies on network
architecture use “connectivity” as the metric for a node’s importance. It is a simple
count of the number of other nodes it connects to, but it can often be biased. A node
that links to many dead-end nodes, which are not themselves well integrated into the
network, has a high connectivity, but the significance of the node within the network
as a whole is greatly overemphasised. This study, however, calculates the average
path length for a protein in the p53 network, summarising the propinquity of a node
to every other — i.e. the centrality of the node within the graph. It is a global measure
of a node’s importance, and so the adoption of "centrality" rather than "connectivity"
is preferred as the standard metric for node rankings. The network diameter was
calculated by dividing the sum of all path lengths by the total number of protein
pairings (N-(N - 1)).

3.5.3. Network attacks

For studies on the attack tolerance of networks, either individual edges or entire
nodes (and thus all involved connections as well) can be removed. The biological
equivalents of these are simple. A mutation may occur in the regulatory DNA that
creates a null mutant for that protein (absolutely no gene product created — node
knockout) or else within the DNA coding for the binding domain to another protein
that obliterates one specific interaction (e'dge knockout). Here the focus was on node

eliminations, as the effects on network topology are more obvious.

The survivability of the p53 network in the face of both a directed or random attack
against its nodes was examined. At each stage of the attack an additional protein was
knocked-out and the diameter recalculated. For the directed attack regime the proteins
were added to the exclusion list in rank order of centrality (as defined by their
average path lengths). For the random attack a random permutation was applied, and

the attack was repeated 100 times; the diameter at each step averaged across all runs.
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Here, the removal of a node destroyed all the connections it possessed, but an attack

against only one connection at a time is also possible.

A protein knockout decrements the number of nodes over which the diameter is
calculated. Another possible consequence, especially from the loss of a hub, is that
nodes may become isolated from the rest of the network. This produces nodes with no
navigable route to each other, in which case constraint (3.6) sets the path lengths
equal to the arbitrarily large number 7, given the value of 100 in this study. We have
studied the sensitivity of the results to the value of parameter 7; the effect is
illustrated in Figure 3.3, which demonstrates a directed attack against the hubs of the
p53 network with different choices of 7. It is obvious that the choice of the value of
the parameter does not affect the outcomes of our study. There are no qualitative
differences among the plots; the only variation is the scale of the y-axis, which does

not influence at all any of the conclusions drawn in the chapter.
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Figure 3.3: Sensitivity of results to the value of parameter T.
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A path length of 100 means that there is no route between two proteins, for example
if one has already been knocked out or has become isolated from the rest of the
network due to the loss of a crucial hub. The diameter of the network at successive
steps was calculated using all path lengths, including those with a value of 100.
Although this method involves arbitrarily assigned values, it is at least consistent
between different attack modes, and computationally simple to calculate. The
alternative would have been to only calculate the diameter of the largest cluster, only
including nodes that are known to remain connected. Aside from the difficulty of
estimating which is the largest cluster (which can only be accomplished by redrawing
the interaction map at every time step), this approach creates another problem:
knocking out a hub removes many possible routes, causing a sharp increase in
diameter. But hub removal also results in fragmentation into isolated sub-clusters, so
that the largest cluster rapidly decreases in size. If only the diameter of the largest
cluster was considered, these two effects would largely counteract each other so that
the calculated diameter would barely change, grossly misrepresenting the actual
degeneration of the network. Fragmented networks contain many path lengths of 100,

and so the tactic used does capture the breakdown of the network.

3.6. Computational results

Figure 3.4 shows the relationship between connectivity, k£, and the probability
distribution function, P(k). The number of nodes with a given connectivity can be
seen to decay logarithmically as connectivity increases. This power-law relationship
is a defining feature of a scale-free graph, and so it is possible that the p53 network

also possesses such architecture.

When calculating the average path lengths and diameter of the network, the LP model
presented in section 3.3 was solved with an algorithm implemented with GAMS
(Brooke et al., 1998), using the CPLEX 6.5 solver algorithm, and run on a RS6000
workstation. Table 3.3 shows the nodes with lower APLs, with hubs being defined as

those proteins with the very lowest scores.
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Figure 3.4: The power law relationship between k and P (k) for the p53 network.

Table 3.3: The 30 best-connected nodes in the p53 network, in order of ascending Average
Path Length (APL).

APL Proteins

1.9 pS3

2.1 Cdk2

22 CycA

23 Cdkl, Mdm2, DP1-2, pRb

24 PCNA, RPA

255 DNA-PK, p21, p300, E2F1-2-3, Cdk7, CycH
2.6 Abl, Gadd45

257 CycB, CycD, CycE, PARP, ATM

2.8 ssDNA, Cdc25A, 14-3-3, pCAF, PKC
2.9 HMG, Karp-1, BRCAI
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3.6.1. Protein knockouts

Figure 3.5 presents the plots of the diameter of the p53 network over the first 30
knockouts with nodes removed in either a random attack, or one directed against the
hubs (nodes knocked-out in rank order of average path length). The diameter of the
p53 network under a random attack increases very slowly. Thanks to its architecture,
the majority of nodes in the network are poorly-connected and therefore their removal
has a very small effect on network navigability. Hub nodes are uncommon and so
they are rarely hit. The p53 network is shown here to be resistant to a random pattern
of attack, which equates to robustness to mutational perturbation: mutations are
commonly held to be randomly distributed events, and so assuming genes in the p53
network are of roughly equal length, mutations would knock out proteins in a random

failure pattern.

' —e— Directed 7an;cl:agiaiilgtiﬁdbsi; Mean of 100 random attacks |

100

Network diameter

0 5 10 15 20 25 30
Number of protein knock-outs

Figure 3.5: Degeneration of network diameter when nodes are knocked out in either a

random pattern, or in a directed attack against the hubs.

Under a directed onslaught, however, network communication fails as the diameter of

the network rapidly degenerates. The result of knocking out the first hub protein, p53,
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is an increase in network diameter of over five-fold; from 3.1 to 16.1. The loss of no
other protein has such a devastating effect: removal of the next four hubs produces
only a further doubling of the diameter. After the 24™ knockout the diameter levels
off: the directed attack has removed all of the hubs, and consequently the majority of
routes between proteins. The network has shattered into isolated subclusters, and
most of the path lengths between protein pairs are designated as 100, therefore further

knockouts can damage the network no further.

3.6.2. Statistical analysis

To assess the results statistically, the standard normal deviate or Z-score is used,
which measures the distance of any value from the mean of a population in standard
deviation units. The results of the directed attack performed on the p53 network (see
Figure 3.5) are compared to the results of the same pattern of attack on 100 random

networks. For each random network, 104 protein nodes were linked through random

generation of 226 edges; the mean diameter (b) and the standard deviation (o) from

100 random networks, and the p53 network’s diameter (D) were used for Z-score

calculation.

D-D
(el

7z =
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Figure 3.6 presents statistical analyses using Z-scores between the p53 network and
random networks. Note that diameter values were first normalised to compensate for
the fact that the p53 network has a lower initial diameter from any random network,
due to its scale-free nature. Z-scores indicate how far and in what direction each item
deviates from the random mean. Values greater than 3 are typically considered to be
significant. As can be seen in Figure 3.6, our results differ considerably from random;

thus indicating that trends observed cannot be attributed to chance.
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Figure 3.6: At each knock-out, the Z-score of the diameter of the network is plotted. The
mean and standard deviation used for the estimation of the Z-score are those of random

networks with 104 nodes and 226 unique connections.

The plot of network degeneration under directed attack (Figure 3.5) shows some
interesting features. There are several small plateaux where diameter is temporarily
stable. For example, navigability barely alters between the 2™ and 3™ knockouts
(CDK2 and Cyclin A, respectively). These two proteins bind together to allow
progression through a cell cycle checkpoint and activation of the DNA replication
machinery. They thus bind to a large number of the same proteins, and so within this
graph model are largely redundant — it is not until the second one is knocked out that
routes between certain nodes are lost and the diameter jumps up. However, this
behaviour under attack is an artefact of the nature of the model. In reality, CDK2 and
Cyclin A bind together as a complex and so need each other in order to function.
Knockout of either results in a loss of function of the other (and thus disappearance of
its connections), in other words, such nodes in the p53 network are not independent.
The model also assumes bidirectionality of connections, a non-dynamic presence of

proteins in the cell (i.e. the temporal component of protein concentrations is ignored),
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and all connections are given an equal weighting. When more complete data on
protein dependencies, protein ‘complexes, temporal fluctuations, and relative
importance of interactions become available, these factors could be incorporated into

models such as this one.

3.7. Biological hackers

The complete set of proteins involved within the p53 network and connections among
them is still being mapped out, but the power-law relationship demonstrated in Figure
3.4 suggests that it may posses a scale-free structure. The p53 network shows a
similar response under attack to scale-free networks such as the Internet; it is robust
against a random attack as most of the protein knockouts will have negligible impact
on the global integrity of the network. This reliance on highly-connected nodes,
however, renders the network vulnerable to a directed attack. The most important
nodes are selectively targeted and the diameter of the p53 network rapidly
degenerates. A similar result was obtained on simulated attacks on the Internet, which
was found to be robust to random server failures, but vulnerable to the activities of
hackers deliberately targeting the hubs so as to wreak maximal havoc (Albert et al.,
2000). The question arises as to whether it is biologically possible to orchestrate a

directed attack against the p53 network.

Such a threat does in fact exist in nature, operating not at a genetic level, but against
the translated proteins. DNA tumour-inducing viruses (TIVs) increase their
replication rate and survival chances with an armoury of proteins that suppress the
normal apoptotic infection response, short-circuit the cell cycle into continually
synthesizing viral DNA, and force the cell into a stealth mode to evade immune
system surveillance. For example, DNA comprising the adenovirus is translated by
the host cell into a variety of proteins (Burgert et al., 2002). Ela reprograms the cell
for continuous DNA synthesis, E1b/55Kd interrupts the induced intrinsic apoptotic
response to viral infection by inhibiting p53, and E3 prevents apoptosis through the

extrinsic pathway by interfering with the death receptors. Other viral proteins prevent
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antigen presentation from the infected cell by inhibiting MHC molecules. Table 3.4
summarises the oncoproteins produced by adenoviruses, and the effect of their
inhibition of target cellular proteins (data from Levine, 1992; Burgert et al., 2002;
Banks et al., 2003).

Table 3.4: Tumour inducing viruses, the nodes in the p53 network their oncoproteins target,

and the extent of damage inflicted on the network by those knockouts.

Diameter
TIV Viral protein Host protein Effect
after KO
Adenovirus  Ela pRb Apoptosis evasion
24.98
E1b/5S5Kd  p53 Apoptosis evasion
Coxsackie unknown  cyclin D1 Transcription/reactivation 5.00
HCMV* pp71 pRb, p107,p130  Transcription/reactivation 14.37
HPV®16/18 E6 p53 Apoptosis evasion
27.07
E7 pRb, p107, p130  Transcription/reactivation
HSV* ICPO“ DNA-PK Transcription/reactivation 3.12
SV40° LgTAg’ pRb,p53 Apoptosis evasion 24.98
“human cytomegalovirus
® human papillomavirus

“herpes simplex virus
“infected cell protein
¢ simian virus 40

/large T antigen

The two most common targets, p53 and pRb, are also two of the most central proteins
in the network, with APLs of 1.9 and 2.3, respectively. Targeting these proteins
allows the infected cell to escape apoptosis or halting of cell division. Knocking out
multiple downstream effector proteins would have the same effect, but as this study
suggests it is much more efficient to selectively remove the hubs. This is especially
important for viruses, as their genome is often optimised for rapid replication and
cannot afford the information cost of coding many oncoproteins. It is not

advantageous for the TIVs to completely destroy the p53 network either (as then no
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DNA replication or cell division would occur); they need only disable regions that
halt cell cycle progression or trigger apoptosis. It is conceivably for this reason that
not all of the target proteins are hubs (although none have an APL greater than 3.2),
but their removal disables specific functions of the p53 network.

The final column in Table 3.4 shows the calculated diameter after the targeted
proteins of the third column have been knocked out using the LP algorithm. The TIV
directed strikes are effective at disrupting communication within the p53 network, but
do not increase the diameter so much that the network shatters and function fails
completely. TIVs thus behave like biological hackers, targeting their attack against

some of the p53 network hubs and so exploiting the weakness in its architecture.

The attack pattem of tumour inducing viruses might be expected to exert a selective
evolutionary pressure on the p53 network, pushing evolution towards architectures
less vulnerable to this type of directed attack. The p53 network, as previously
explained, is particularly crucial for multicellular animals, and so it might be
interesting to speculate as to whether the network has developed through evolution
ways to counteract the threat presented by TIVs. One possible way to protect the
network from the ill effects of the deactivation or inhibition of its hubs is network

redundancy.

Redundancy can exist on two levels in biological networks: backup links along
crucial routes, such as the p19ARF-MDM2-p53 pathway (edge redundancy); or
proteins with overlapping functions (node redundancy). Intriguingly, this later form
of redundancy has recently been observed: p53 was originally assumed to be a unique
gene, but two analogous genes, p63 and p73, have now been discovered (Irwin and
Kaelin, 2001). They are more closely related to each other than either to p53, but they
do share significant sequence homology in three domains, including activation and
DNA binding. Although neither appear to be crucial tumour-suppressor genes (they
are rarely mutated in cancer tissue and null mutants are not tumour-prone) they can
perform many of p53’s functions, including activating transcription of p53-responsive
genes and inducing apoptosis. None of the viral oncoproteins. listed in Table 3.4 can
bind to and inactivate p63 or p73. This evidence supports the hypothesis that ancient

gene duplications yielded backup copies of p53-like genes, which were selected due
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to the extra robustness they imparted on this crucial network against random or even

directed attacks.

3.8. Conclusions

The p53 cell cycle and apoptosis control network is inherently robust to random
knockouts of its proteins, which signifies resilience against mutational perturbation
provided by the structure of the network itself. This robustness against mutations,
however, gives the network an Achilles Heel, as the reliance on highly-connected
nodes makes it vulnerable to the loss of its hubs. Evolution has produced organisms
that exploit this very weakness in order to disrupt the cell cycle and apoptosis system
for their own ends: tumour inducing viruses target specific proteins to disrupt the p53
network, and this study has identified these same proteins as the network hubs.
Although TIVs have previously been likened to ‘biological hackers’, here we show
why the TIV attack is so effective — TIVs target a specific vulnerability of the
network that can be explained in terms of network architecture. A Z-score analysis of
the results has demonstrated that our findings differ considerably from random and

cannot be attributed to chance.

From the computational perspective, we display the effectiveness of the algorithm in
analysing the properties of a large protein interaction signalling network. Thus, the
applicability of mathematical programming techniques in the analysis of biochemical
networks is demonstrated. The algorithm has already been applied in the previous
chapter in the study of the correlations between minimal pathway distances of the E.
coli SMM enzymes and genome distance, and between E. coli minimal pathway
distances and enzyme function. Here it is proven to be a valuable analysis tool for

complex biological networks.

The connectionist network presented is a first-level model of the p53 cell cycle and
apoptotic control network with a specific and clearly-defined function. The fact that
we can represent and test the p53 network offers the future possibility to attach

directions and strength values to the connections as more biological data become
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available, in order to make accurate predictions about the importance of individual
nodes and edges. This will allow frameworks like the one presented to be used in
comparative analyses of how and why the variable dynamic network components

operate under different evolutionary and cell type conditions.

The application of the LP algorithm has provided insight into the mode of attack
utilised by tumour-inducing viruses upon the p53 apoptotic control network. As the
p53 network is vital for multicellular animals, it might be possible that the prevalence
of hubs or specific interactions has been adaptively tweaked by the evolutionary
pressures caused from viral attacks to render the p53 network even more ‘hardened’

than other analogous networks.
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Chapter 4

Protein folding using lattice

models

11 proteins are composed of the same building blocks; the 20 known
amino acids (Table 4.1). Amino acids have the capacity to form long
chains that fold into a unique three-dimensional structure. This structure
is extremely important, since it allows the protein to perform its biochemical
function. All the information required for the folding of a protein into its functional
native conformation is contained in its amino acid sequence. Despite the fact that the
number of conformations of an amino acid chain is too large to sample, peptide
chains are able to fold extremely rapidly to the native state (Levinthal paradox;
Levinthal, 1969). Yet, it is still an extremely complex task to extract this information

in order to predict the 3D structure, especially for large proteins.

Anfinsen (1973) showed that protein folding is a process governed by physical
constraints only, i.e. it only depends on the specific amino acids that comprise the
sequence. Anfinsen’s hypothesis suggests that we can theoretically predict the three-
dimensional structure of a protein by minimising a model of its free energy. This is

the basis of the protein folding problem; nevertheless the prediction of protein
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structure remains extremely difficult, due to the very large number of possible
conformations available to one amino acid sequence. Protein structure prediction is

one of the most important unsolved problems of computational biology today.

Table 4.1: The 20 amino acids and their abbreviations.

Names Abbreviations
Alanine ala A
Arginine arg R
Asparagine asn N
Aspartic acid asp D
Cysteine cys C
Glutamine gln Q
Glutamic acid glu E
Glycine gly G
Histidine his - H
Isoleucine ile I
Leucine leu L
Lysine lys K
Methionine met M
Phenylalanine phe F
Proline pro P
Serine ser S
Threonine thr T
Tryptophan trp w
Tyrosine tyr Y
Valine val Vv

4.1. Protein structure prediction

Over the years, a large number of techniques that attempt to predict the structure of
proteins from their amino acid sequence have been developed. Comparative
modelling methods (Altschul et al., 1997; Karplus et al., 1999; Notredame, 2002;
Tramontano and Morea, 2003) predict the structure of a protein by comparing its
amino acid sequence to other proteins, for which the 3D structure is known. The

efficiency of these methods depends on the level of similarity between the two
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sequences; if they share a large percentage of their sequence the prediction is likely
to be of high quality (Kopp and Schwede, 2004). One advantage of comparative
modelling is that its importance will continue to grow as more and more protein

structures are identified, and therefore become available for comparison.

A second class of methods rely on fold recognition to predict the native structure of a
protein. The basic idea behind this methodology is the fact that the number of
different folds that exist in nature is extremely smaller than the number of different
sequences. Fold recognition methods select a model fold for a given sequence among
the known folds in protein databases, even when no sequence similarity is detected.
Approaches of fold recognition include secondary structure prediction (Jones, 1999a;
An and Friesner, 2002; Przybylski and Rost, 2004) and threading (Jones, 1999b; Xu
and Xu, 2000; Kim et al., 2003, Skolnick et al., 2004).

Fragment based methods (Aloy et al., 2003; Bradley et al., 2003; Jones and Guffin,
2003; Zhang et al., 2003; Lee et al., 2004; Rohl et al., 2004) compare short amino
acid subsequences of the target protein to fragments of known proteins. When
suitable fragments are identified, they are randomly put together to form a structure.
The final conformation is selected with the use of scoring functions and optimisation

algorithms.

First principles methods base predictions on physical models of the mechanisms and
driving forces of protein folding (Pillardy et al., 2001; Lee et al., 2001; Liwo et al.,
2002; Czaplewski et al., 2004a). Techniques Belonging in this category attempt to
identify the minimum of a free energy function for the structure of the protein. Such
methods are computationally demanding, but they remain important approaches for
prediction of protein folding, because in many cases even remotely related structural
homologues for. the knowledge-based methods are not available. Floudas and
coworkers (Klepeis and Floudas, 2003a) introduced a first principles method that
identifies helical regions through detailed free energy calculations and the
application of global optimisation methodologies (Klepeis and Floudas, 2002). S-
strands are solved using an MILP formulation to maximise hydrophobic interactions
(Klepeis and Floudas, 2003b). Finally, tertiary structure is identified through hybrid
global optimisation algorithms (Klepeis et al., 2003a; Klepeis et al., 2003b).

-77-



Chapter 4. Protein folding using lattice models

4.1.1. Lattice models

The protein folding problem is NP-hard (Berger and Leighton, 1998). This fact,
combined with the ability of amino acids, as components of a protein, to actually fold
to a virtually countless number of .conformations, even further complicates the
development of an efficient algorithm for the solution of the problem. Therefore,
theoretical inter\;ention is required through the use of simplified models for protein
folding. Only some aspects of protein structure are modelled; for this reason these

models are also known as low-resolution models.

Lattice models constitute the most important category of simplified models. Proteins
are represented as self-avoiding random walks on a lattice where vertices indicate the
possible positions of the amino acids. Lattice models lack atomic detail, but contain
the fundamental microscopic attributes of proteins, like linear connectivity, excluded
volume, chain flexibility and sequence dependent intra-chain interactions. The most
stable structure is usually the one with the minimum energy (thus the scope for
application of optimisation techniques). The apparent limitations of lattice proteins

are the artificial discrete degrees of freedom and the short range of the interactions.

A general discussion of lattice models can be found in Dill et al. (1995). The
following assumptions (Backofen and Will, 2003) are made in a lattice model: i)
amino acids all have the same size; ii) bonds all have the same length; iii) the
positions of the amino acids are restricted to lattice positions; and iv) a simplified
energy function is applied. A number of lattice model methodologies have been
suggested in the literature, with varying characteristics. Important aspects of lattice
model methods are the kind of lattice that they employ to approximate real protein
conformations, the energy function that is used to discriminate native from non-
native structures, and the methodology for searching the space of possible
configurations for identifying the minimal energy conformation (Backofen and Will,

2003). Examples for each of these three aspects are given below.

The first important decision is the kind of lattice that is going to be used. Two-
dimensional approaches use a square lattice (Crippen, 1991; Fast and Istrail, 1996;

Cui et al., 2002). In 3D space, most commonly used is the cubic lattice (Shakhnovich
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et al., 1990; Sali et al., 1994a; Dinner et al., 1996; Kussell et al., 2003; Broglia et al.,
2004; Tiana et al., 2004), but other, more complex lattice models have been
proposed, e.g. the face-centred-cubic (FCC) lattice (Park and Levitt, 1995; Backofen
and Will, 2003). While highly complex lattices can be used to closely approximate
real proteins, square and cubic lattices are typically preferred to study basic

principles of protein structure. An example of a cubic lattice is presented in Figure
4.1.
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Figure 4.1: Example of a 3x3x3 cubic lattice.

The selection of an energy function is an equally important aspect. One of the most
important representatives is the HP model (Yue and Dill, 1995; Backofen et al.,
1999, Cui et al., 2002; Backofen and Will, 2003), first introduced by Lau and Dill
(1989). The 20 amino acids are reduced to a two letter alphabet: H, representing
hydrophobic amino acids and P, representing polar (hydrophilic) amino acids. The
contribution of a contact to the energy function is -1 if both amino acids are

hydrophobic and 0 otherwise. In order for a contact to be formed, two amino acids
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have to be in neighbouring positions in the lattice and they must not be connected
through a bond (i.e. they are not sequential in the amino acid sequence). The HP
model has the problem that its degeneracy is large. For this reason, extended models,
such as the HPNX-model’ (Bornberg-Bauer, 1997) and the Go model (Ueda et al.,
1975; Dill and Chan, 1997; Du et al., 1998) have been introduced. Other models use
energy parameters derived from the random energy model (Kussell ez al., 2003) or
from experimentally determined potentials, such as the 'Miyazawa-Jemigan (1985)
potential. The results of these models are energetically comparable to real proteins
and display a more realistic folding behaviour (Sali et al., 1994a; Sali et al., 1994b;
Abkevich et al., 1995; Dinner et al., 1996; Unger and Moult, 1996; Govindarajan
and Goldstein, 1997; Broglia and Tiana, 2001a; Broglia et al., 2004).

Finally, a choice is needed for a technique that searches for the minimal energy
conformation. Most examples from the literature use heuristic methods, ranging from
Monte Carlo simulations (Dinner et al., 1996; Broglia et al., 1998), to Simulated
Annealing (Kirkpatrick et al., 1983; Brower et al., 1993; MacDonald et al., 2000), to
genetic algorithms (Unger and Moult, 1996), purely heuristic methods (Dill et al.,
1993; Bornberg-Bauer, 1997), and even complete enumeration (Sali et al., 1994a;
Xia et al., 2000).

Optimisation techniques are not yet widely employed for the identification of the
structure with the minimum free energy, but have been applied before in the field of
protein folding (Klepeis and Floudas, 2003a; Wagner et al., 2004). Also, constraint
programming has been employed for the solution of the protein structure prediction
problem (Backofen, 1998; Backofen et al., 1999; Krippahl and Barahona, 1999;
Backofen and Will, 2003; Palu et al., 2004) by applying a global search technique
with an HP model.

In this chapter, a lattice model approach is presented that utilises a cubic lattice and
an energy function based on a 20x20 energy matrix of experimentally determined
potentials (in dimensionless RT units) for each pair of amino acids (i.e. a 20-letter

alphabet of amino acids, compared to the 2-letter one applied in the HP model). The

* HPNX: Hydrophobic, Positive, Negative, Neutral
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problem is formulated as an MILP model and, using the proposed model, a three-step
solution strategy (Broglia et al., 2004) is applied, which reads the 3D configuration
(i;é. specifies the coordinates of all monomers in the native conformation) of lattice
rhodel—designed proteins from only the knowledge of their amino acid sequence and
of the contact energies (Miyazawa and Jernigan, 1985; see Table 4.2) among the
amino acids. In all following discussions, energies are represented in dimensionless

RT units, where R is the gas constant and T is the absolute temperature.

Table 4.2: Contact energies among amino acids in RT units (from Mivazawa and Jernigan, 1985).

cys
cys -1.06 met
met 0.19 0.04 phe
phe -0.23 -042 -044 ile
ile 0.16 -0.28 -0.19 -0.22 leu
leu -0.08 -0.20 -0.30 -0.41 -0.27 val
val  0.06 -0.14 -0.22 -0.25 -0.29 -0.29 trp
trp 0.08 -0.67 -0.16 0.02 -0.09 -0.07 -0.12 tyr
tyr 0.04-0.13 000 0.11 0.24 0.02 -0.04 -0.06 ala
ala 0.00 025 0.03 -0.22 -0.01 -0.10 -0.09 0.09 -0.13 gly
gly -0.08 0.19 038 025 0.23 0.16 0.18 0.14 -0.07 -0.38 thr
thr 0.19 0.19 0.31 0.14 0.20 025 022 0.13 -0.09 -0.26 0.03 ser
ser -0.02 0.14 029 021 0.25 0.18 0.34 0.09 -0.06 -0.16 -0.08 -0.20 gin
gin  0.05 046 049 036 026 024 0.08 -0.20 0.08 -0.06 -0.14 -0.14 029 asn
asn  0.13 0.08 0.18 0.53 0.30 0.50 0.06 -0.20 0.28 -0.14 -0.11 -0.14 -0.25 -0.53 glu
glu 069 044 027 035 043 034 0.29 -0.10 0.26 0.25 0.00 -0.26 -0.17 -0.32 -0.03 asp
asp 0.03 0.65 0.39 0.59 0.67 0.58 024 0.00 0.12 -0.22 -0.29 -0.31 -0.17 -0.30 -0.15 0.04 his
his -0.19 0.99 -0.16 049 0.16 0.19 -0.12 -0.34 0.34 0.20 -0.19 -0.05 -0.02 -0.24 -0.45 -0.39 -0.29 arg
arg 024 031 0.41 042 035 0.30-0.16 -0.25 0.43 -0.04 -0.35 0.17 -0.52 -0.14 -0.74 -0.72 -0.12 0.11 lys
lys 0.71 000 044 036 0.19 044 022 -0.21 0.14 0.11 -0.09 -0.13 -0.38 -0.33 -0.97 -0.76 0.22 0.75 0.25 pro
pro 0.00 -0.34 0.20 0.25 0.42 0.09 -0.28 -0.33 0.10 -0.11 -0.07 0.01 -0.42 -0.18 -0.10 0.04 -0.21 -0.38 0.11 0.26

4.2. Problem statement

The folding of a protein is determined by the native conformation being at an energy
minimum (Shakhnovich and Gutin, 1993). Studies of protein aggregation suggest
that proteins fold by forming partially folded intermediates (elementary structures),

-81-



Chapter 4. Protein folding using lattice models

which are controlled by local contacts among the most strongly interacting amino
acids (Broglia et al., 1998). These structures are formed early in the process, and
determine the final folding conformation of the protein (Tiana and Broglia, 2001).
Local contacts that are generally characterised as elementary structures are fast
forming and stable bonds built by the most strongly interacting amino acids, while
the structure of the rest of the amino acids in the sequence is formed later in the
folding process. Elementary structures form a nucleus around which the protein’s

final structure is based.

Based on the above analysis of the way proteins fold, a three-step strategy (Broglia et
al., 2004) is adopted for the solution of the problem of protein structure prediction.

The problem can be stated as follows:
Given:
e the amino acid sequence of a protein;

e the 20x20 contact energy matrix describing the interaction among the amino
acids (Table 4.2);

¢ afinite cubic lattice.
Determine:
1.the possible elementary structures;

2.the possible folding nucleus, by allowing the elementary structures to interact

amongst them;
3.the position s of the remaining amino acids in the sequence.

So as to identify the compact structure that displays the minimum energy, as defined
by the summation of all the contact energies of the amino acids that are “in contact”.
A contact between two amino acids is considered to exist when they rest on vertices

that are connected by a single lattice edge. Contacts are not considered for amino
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acids that are sequential. The structure with the minimum energy must be the native

conformation.

4.3. Mathematical formulation

The MILP model presented herein can be used to determine the 3D structure of a
protein, by fixing its amino acids in a predetermined cubical lattice. Amino acids are
viewed as spheres that assume rigid positions on the vertices of the lattice. First, the

indices and parameters associated with the problem are listed.

4.3.1. Nomenclature

Indices
ij amino acids
k position in lattice (vertex)
Sets
Ipxea initially fixed amino acid
pxea identified pairs of amino acids (i) that are in contact
Kfixea lattice position where amino acids belonging to Zs.q are fixed
Parameters
CE; contact energy between amino acids / and j
EA',.]. 1 if the pair of amino acids 7 and j belongs to L/sx.q; 0 otherwise
M large number
N total number of amino acids i in the sequence
X i };,, s V4 . coordinates of vertex k

Positive continuous variables
X, Y, Z; coordinates of amino acid i
Ly relative distance in x direction from amino acid i to j, if i is left of j

R relative distance in x direction from amino acid i to Jj, if i is right of j

-83-



Chapter 4. Protein folding using lattice models

B; relative distance in y direction from amino acid i to j, if i is below j
Ay relative distance in y direction from amino acid 7 to j, if i is above j
Uy relative distance in z direction from amino acid i toj, if i is higher than j
Dy relative distance in z direction from amino acid i toj, if i is lower than j

Binary variables
Ej; 1 if amino acid i is in contact with amino acid j; 0 otherwise

Wik 1 if amino acid i is assigned to vertex k; 0 otherwise

4.3.2. Model constraints

4.3.2.1. Allocation constraints

Each amino acid has to be assigned to one unique position in the lattice. This is
accomplished with equations (4.1)-(4.5). Sets Ieq and Kpeq are used for excluding
any amino acids for which their position in the lattice is fixed beforehand; usually
this is one amino acid that is arbitrarily placed at a certain point in the lattice, so as to

exclude symmetries in the search for the optimal conformation.

X, =YX W, Viel,, (4.1
kK g
L= YV, Vigl, 4.2)
ReK frea
Z,= Y27, W, Vigl,, (4.3)
keK g
YW, =1 Vigl,, 4.4)
keK poes
YW, <1 VkeK,., 4.5)
T

Binary variable W decides whether amino acid i is allocated to position k. The
coordinates (X' k,fk,i'k) of vertex k are assigned to variables X;, Y;, Z; with

constraints (4.1), (4.2), (4.3), respectively. Equation (4.4) specifies that each amino
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acid i must be assigned to exactiy one position on the lattice. Equation (4.5) indicates
that each position £ must either be left empty or be occupied from at most one amino

acid.

4.3.2.2. Continuity constraints

When j=i+1, the two amino acids i and j are next to each other in the sequence.
The amino acid chain (and therefore the identity) of the protein must be maintained;
to this end relative distances are considered for sequential amino acids. Relative
distance constraints are written for pairs of amino acids (i,j) and calculate their

relative distance in each of the three dimensions.

L-R=X,-X, Vi jij=i+l 4.6)
B,-4,=Y-Y, Vi, jij=i+l 4.7)
D,-U,=2-2, Vi jij=i+l (4.8)

The total rectilinear distance between two sequential amino acids on the chain must

be equal to one; this is accomplished with the following constraint:

L,+R +B;+4,+D,+U, =1 Viji(j=i+) v, (4.9)

Set LJyeq incorporates pairs of amino acids for which we already know that they are
in contact; ie. pairs of amino acids that have been identified as being in

neighbouring positions in a previous step of the analysis.

4.3.2.3. Contact constraints

Relative distance constraints are also conditionally written for the rest of the amino

acids in the sequence:
L-R=X-X, Vi, j:j2i+3;j—i=0dd;CE, <0 (4.10)

B,-4,=Y,-Y, Vi, j:j2i+3;j—i=0dd;CE, <0 @.11)

y i J
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D,-U,=2,-Z, Vijjij2i+3;j—i=o0dd;CE; <0 4.12)

We need to take a moment and explain the conditions imposed on these equations, as

they appear in many of the constraints of this chapter. First, condition j>i+3

accomplishes two objectives: it guarantees that amino acid pairs appear only once
(e.g. 1-4, but not 4-1); and additionally, it eliminates unnecessary variables, for

example when j=i+2 there is no possible way for the two amino acids to fall in

neighbouring positions in the lattice.

The second condition ( j —i=o0dd) is imposed because only when it holds true is it

physically possible for two amino acids to fall in neighbouring positions in the
lattice, e.g. the first amino acid in the sequence can be in contact with the fourth,

sixth, eighth, etc. amino acids, but not with the fifth, seventh, ninth, etc.

Condition CE; < 0 is imposed in order to reduce the size of the model. Contact
energies CE; are used for the calculation of the objective function. Because the
energy function (4.17) is minimised, when CEj; < 0 only one variable at most in each
couple (L; and R; ; By and 4; ; Uy and Dy) is guaranteed to be non-zero at the
optimal solution. If we also considered contacts with CE; > 0, additional constraints
would be required to guarantee the correct estimation of the relative distances.
Theoretically, contacts between amino acids with positive contact energy (CE; > 0)
are possible, but in practice these contacts are so rare that the predicted structure of

the protein is not influenced in the final result if we do not consider them.

Contact constraints identify which amino acids are in contact with each other. Only
amino acids that are separated by an odd number of steps on the chain are
considered, as explained above. Binary variable E; must be equal to 1 if amino acids

i andj are in contact and 0 otherwise.

L,+R,+B,+4;,+D,+U, <1+ M-(1-E))
Vi, jel ,,:j2i+3;j—i=0dd;CE; <0 (4.13)

L,+R,+B;+4;+D,+U; 22-E,

Vi, je ], j2i+3;j-i=o0dd;CE, <0 4.14)
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Amino acids 7 and j are in contact when the sum of the relative distances in all
directions is equal to 1. Constraint (4.13) forces E;; to 0 when the sum of rectilinear
distances is greater than 1, because the objective function is minimised. If the sum is

equal to 1, constraint (4.14) forces E; to the value of 1.

4.3.2.4. Logical constraints

The nature of the lattice model only allows up to 6 neighbouring positions for each
vertex and, because two of those positions have to be occupied by the next and the
previous amino acid in the sequence, at most 4 contacts in total per amino acid are
possible. The 1% and the N" amino acids in the chain constitute an obvious

exception; for them 5 contacts are possible.

Y E,+ YE <4 Vi=2,.,N-1 (4.15)
JR ey JE poeq

i2j+3 J2i+3
i-j=odd J—i=odd

CE;<0 CE;<0

DY E,+ Y E, <5 i=lvi=N (4.16)
Jel g JEU prpa

i2j43 J2i+3
i~j=odd J—i=odd

CEq-<0 CE,:,.<0

4.3.3. Model summary

The overall objective function used is the sum of all the contact energies of the pairs
of amino acids that are in contact with each other. Note that the second term of the
objective function is fixed and representes the energy contributions from the pairs of
amino acids belonging to set IJs.s. The entire model formulation described in

section 4.3.2 can be summarised as the following MILP problem (problem S):

Problem S
minimise Y. > CE,-E,+Y. Y CE,-E, 4.17)
i Jel g i Jel o
J2i+3
J—i=odd
CE;<0
subject to:

-87-



Chapter 4. Protein folding using lattice models

allocation constraints (4.1), (4.2), (4.3),(4 .4) and (4.5);
continuity constraints (4.6), (4.7), (4.8) and (4.9);

contact const}aints (4.10), (4.11), (4.12), (4.13) and (4.14);
logical constraints (4.15) and (4.16);

E, W, {0} Viel,,, (4.18)

X,,Y,,Z,,RU,LU,A’],B U D] 20 Vi,j (4.19)

> o

4.4. Solution procedure

A three-step solution strategy for reading the 3D structure of lattice-designed
proteins from the knowledge of only their amino acid sequence and the contact
energy matrix among the amino acids (Table 4.2) is implemented (Broglia et al.,
2004). The proposed methodology first looks for small elementary structures in the
amino acid sequence and then creates a folding core from combining these structures.
The final 3D conformation of the protein is identified by positioning the remaining
amino acids around the nucleus. Each step of the solution strategy is presented in

detail below.

4.4.1. Step 1: Search for elementary structures

The folding process has been found to follow a hierarchical sequence of events
(Tiana and Broglia, 2001). The first stage of the procedure is to identify possible
elementary structures, which are formed by a small number of residues relatively
close to each otheralong the chain (2 to 10 monomers apart); these structures are
created very quickly and are remarkably stable. The probability, Py, that the residue
couple between the i and the /™ amino acid of the chain will bind together, depends
essentially only on their distance and the contact energy of the pair, CEj;, and can be

fitted by the following function (Tiana and Broglia, 2001):
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CEy

P=(-D)"®e™ Vi, jii+3<j<i+9;(j—i)=odd (4.20)

)

where 7.7 is an effective temperature set equal to the standard deviation of the
interaction matrix. For the case of the contact energy matrix used here (Table 4.2;
Miyazawa and Jernigan, 1985) the standard deviation o is equal to 0.305. The
elementary structures are selected among those pairs that display the highest values
of probability,rP,-,-. Pairs of amino acids that must be in contact in order for the
identified elementary structures to form properly are added to set [Ja:eq, Which will

be used in the next step of the process.

4.4.2. Step 2: Search for the folding core

We search for a folding nucleus that results from the docking of the elementary
structures identified in the previous step. A cubic lattice is used, the size of which
depends on the size of the protein under investigation, but its dimensions are selected
to be as close to a cubic lattice as possible. For instance, for the two examples that
are presented later in this chapter, a 3x3x3 cubic lattice is applied for a 27mer
protein (see section 4.5), and in the case of a 36mer protein a 4x3x3 lattice is used.
The three-dimensional conformation of the structural nucleus is identified by
implementing problem S in order to optimally position the elementary structures

relative to each other.

Only the amino acids belonging to the elementary structures are considered. One
amino acid (usually an amino acid belonging to the pair with the highest binding
probability (P;) from the previous step) is fixed to a randomly selected position (for
practical reasons, the centre of the lattice, or a position as close to the centre as
possible is selected). The fixing of the position of one amino acid drastically
improves the performance of the model, because it eliminates some of the very large
number of symmetrical solutions that exist. The fixed amino acid is the only one that
belongs to set s and the lattice position where it is fixed belongs to set Kpxea. Set
IJpseq incorporates pairs of amino acids that are known to be in contact, as identified
in step 1. The rest of the amino acids in the elementary structures are allowed to take

positions with the condition that the elementary structures stay intact. The potential
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folding core is selected as the one that minimises the total energy of the structure. All
pairs of amino acids that are in contact in the folding core are added to set LJsyeq for

step 3.

4.4.3. Step 3: Position remaining amino acids

To determine the final structure with the minimum energy, as with the folding core
before, problem S is applied. Using the nucleus as a basis, the rest of the amino acids
are placed around it in search of a conformation of the system that minimises its
energy. Again, only one amino acid is fixed, selected from those belonging to the
core. For reasons of eliminating symmetrical solutions from the search space, we
pick the amino acid with the most identified contacts in the nucleus (i.e. amino acid i
that is in contact with the most amino acids j, where (i) € LJseq). If there is more
than one amino acid with the same number of identified contacts, then we pick the
amino acid with the lowest sum of contact energies CEj;, where (i) fJﬁ,ed. This is
the only amino acid belonging to set I..qs. The selected amino acid has to be fixed to
an appropriate position in the lattice (the same lattice as the one used in step 2),
which belongs to set Kz.s. A small subset of the available lattice positions need to be
tested, because most positions are symmetrical. The rest of the amino acids that
belong to the folding core are not fixed to a position, but they are forced to maintain
the contacts that they are given by the solution of step 2. These constitute the pairs of

amino acids belonging to set Ijxeq.

4.5. Computational results

The applicability of the procedure presented in the previous section is demonstrated
here with the help of two proteins: a 27mer and a 36mer peptide. Their sequences are
presented in Table 4.3, using abbreviations for the names of amino acids (the full
names can be found in Table 4.1). The two illustrative examples will serve to

demonstrate and clarify the three-step solution strategy presented in section 4.4. The
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sequences of Table 4.3 have been designed to fold fast into a unique 3D

conformation.
Table 4.3: Peptide sequences of the two examples.
Protein Lattice Amino acid sequence
27mer Cubic, 3x3x3 QFPHLKAPLVAILGMVCWANGIYTSRD?

36mer  Cubic, 4x3x3 SQKWLERGATRIADGDLPVNGTYFSCKIMENVHPLA *

9 Abkevich et al., 1994; Sali et al., 1994a and 1994b
® Abkevich et al., 1994; Klimov and Thirumalai, 1996

Both examples were implemented in GAMS (Brooke ef al., 1998), using the CPLEX
6.5 LP solver with a 5% margin of optimality. Solutions were obtained by running
the models on an IBM RS6000 workstation with a maximum computational time

limit of 10,000 seconds.

4.5.1. Example 1

4.5.1.1. Step 1: Elementary structures

The methodology is first applied to the 27mer sequence. The values of probability P;
are calculated in order to predict the formation of possible elementary structures. It
should be noted that the numbers in the figures and anywhere else below this point
refer to the order in which an amino acid appears in the sequence of the protein under
examination, for example 2 corresponds to Phenylalanine (F) and S corresponds to

Leucine (L) for the 27mer sequence (Table 4.3).

Figure 4.2 displays the results of P; calculations using equation (4.20), associated
with each couple of monomers. Two bonds have a value of P; much larger than all
the other values and thus qualify as good candidates for elementary structures.
Therefore, the elementary structures are selected with the condition that monomers

2-5 and 15-18 form the contacts of Figure 4.3 and the two pairs are added to set

Hpixea.
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JF 15-18

1.2 4

0.9 -

Figure 4.2: Binding probability for the 27mer. Pairs that demonstrate high binding
probability form between amino acids 2-5 and 15-18.

Figure 4.3: Elementary structures for 27mer sequence.

4.5.1.2. Step 2: Folding nucleus

The elementary structures of the 27mer protein are combined in a conformation that
displays the minimum possible energy. Amino acid 15 (selected because it belongs to
the pair with the highest binding probability, but similar results are produced with
amino acid 18) is fixed to the centre of the lattice. The minimum energy
conformation of the folding nucleus is E, = -2.15. The result, generated by solving
problem S for the amino acids belonging to the elementary structures only, is

presented in Figure 4.4.
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Figure 4.4: Folding core for 27mer sequence.

All the contacts of the amino acids of the nucleus are maintained by incorporating
pairs 2-15, 3-18, 4-17 and 5-16 in set IJs.qs (Which already included pairs 2-5 and
15-18 from step 1) for the next step of the procedure.

4.5.1.3. Step 3: Native structure

In a cubic lattice, a large number of the available positions are symmetrical,
increasing in this way the search space for the native conformation of a protein. To
overcome part of this problem, one amino acid needs to be fixed at a vertex of the
lattice. Figure 4.5 shows the four different vertices (3 black and one grey) we need to
test as possible positions for the fixed amino acid; all other vertices in the lattice are

symmetrical to these.

Figure 4.5: Eliminating symmetry in a 3x3x3 cubic lattice. All white vertices are
symmetrical to the 4 highlighted ones. The grey vertex only has 3 neighbouring positions

available, and is therefore unsuitable for fixing amino acid 15.
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We select to fix the amino acid with the most contacts identified in the nucleus,
because this tactic even further reduces the search space of the problem. The amino
acids in the nucleus with the most identified contacts are 2, 5, 15 and 18 (two
contacts each). From these, 15 has the contacts with the lowest sum of contact
energies and is therefore selected. Amino acid 15 has two identified contacts in the
nucleus, and also has two more adjacent amino acids (14 and 16). For this reason, it
cannot be placed at the grey vertex of Figure 4.5, leaving only three candidate

positions for amino acid 15.

After solving problem S for all three positions, the structure with the minimum
possible energy (E. = -8.8) is identified. Solution statistics are presented in Table 4.4.
The 27mer lattice-designed protein (see Table 4.3) folds into the native conformation
presented in Figure 4.6. The grey vertices in the figure specify where the folding
nucleus lies. The predicted structure is identical to the one presented in the literature
for this 27mer protein (Abkevich et al., 1994; Sali et al., 1994a and 1994b).

Figure 4.6: Native folding conformation for 27mer lattice-designed sequence. The folding
core is highlighted in grey.
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4.5.2. Example 2

4.5.2.1. Step 1: Elementary structures

Next, we apply the three-step strategy to a larger protein with 36 amino acids. Figure
4.7 displays the results of P; calculations using equation (4.20), associated with each
couple of monomers to predict the formation of possible elementary structures. The
following bonds have a value of P; much larger than all the other values and thus
qualify as good candidates for elementary structures: 3—6, 11-14 and 27-30. The
elementary structures are selected with the condition that these monomers form the

contacts of Figure 4.8 and pairs 3—6, 11-14 and 27-30 are added to set [/sxcq.

45 -

P, 27-30
4.0 -
3.5 1
3.0 4
2.5 1
2.0 4
1o 4

1.0

0.5 -

0.0 ==

Figure 4.7: Binding probability for the 36mer. Pairs that demonstrate high binding
probability form between amino acids 3-6, 11-14 and 27-30.

Figure 4.8: Elementary structures for 36mer sequence.

-95.



Chapter 4. Protein folding using lattice models

4.5.2.2. Step 2: Folding nucleus

The elementary structures of Figure 4.8 are combined in a conformation that displays
the minimum possible energy to form the core of the folding procedure. Amino acid
3 is arbitrarily selected as the one that will be fixed to a position as close to the centre
of the lattice as possible. Similar results can be produced with the selection of amino
acids 6, 27 or 30, as all of these have the same binding probability. The minimum
energy conformation of the folding nucleus for the 36mer protein is E. = -7.81.
Figure 4.9 presents the suggested core from the solution of problem S. The result is
generated by only considering the identified elementary structures. Pairs 3—6, 3-30,
4-29, 5-12, 5-28, 6-11, 6-27, 11-14, 13-28, 14-27 and 27-30 are included in set
1jxea for step 3.

Figure 4.9: Folding core for 36mer sequence.

4.5.2.3. Step 3: Native structure

The amino acids of the nucleus with the most identified contacts are 6 and 27. From
these, amino acid 6 has the contacts with the lowest sum of contact energies and is
therefore selected as the initially fixed amino acid for the third step of the strategy. In
a 4x3x3 cubic lattice, there are six different positions (3 black and 3 grey) we need to
examine for fixing an amino acid; all other vertices in the lattice are symmetrical to
these. Because amino acid 6 already has three contacts from the nucleus, and also has
two more adjacent amino acids (5 and 7) it is only possible to place it at the three

black vertices of Figure 4.10.
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Figure 4.10: Eliminating symmetry in a 4x3x3 cubic lattice. All white vertices are
symmetrical to the 6 highlighted ones. The grey vertices all have less than 5 neighbouring

positions available, and are therefore unsuitable for fixing amino acid 6.

The structure with the minimum possible energy (E. = -15.74) is identified after
solving problem S for all three available positions of amino acid 6. The optimal

solution is presented in Figure 4.11.

Figure 4.11: Native folding conformation for 36mer lattice-designed sequence. The folding
core is highlighted in grey.
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The grey vertices in Figure 4.11 specify the position of the folding nucleus. The
predicted structure is identical to the one presented in the literature for the 36mer
protein (Abkevich et al., 1994;‘ Klimov and Thirumalai, 1996; Broglia and Tiana,
2001a).

Table 4.4 presents compufational statistics for the optimisation of the two presented
examples. Model sizes in terms of discrete and continuous variables and constraints
are given. Also shown are CPU times and objective values. Notice that the optimal
solution for the 36mer sequence has an objective value of -16.12, which is different
from the minimum energy of the native conformation reported above (E. = -15.74).
This is because the MILP model does not consider pairs with positive contact
energies in order to reduce the size of the problem. In the final predicted structure of
the protein, one such pair exists (CE;s24 = 0.38) and a correction of the minimum
energy is required, which however does not influence the accuracy of the predicted
structure. Also, for the last computation, the solution after 10,000 seconds is
presented. The model does in fact identify an optimal solution if it is allowed to run
for longer (E. = -13.52 after 91,700 seconds), but the energy is still higher than the
first attempt for the 36mer protein (amino acid 6 fixed at k).

Table 4.4: Summary of computational statistics.

protein step fixed lattice discrete/continuous constraints nodes CPUtime obj. value

aa  position variables (s) (RT units)
27mer 2 15 ks 148/109 144 419 43 -2.15
27mer 3 15 k, 324/682 626 - 0.2 infeasible
27mer 3 15 ks 341/682 626 8325 1801.1  -8.80¢
27mer 3 15 Kya 374/682 626 - 0.1 infeasible
36mer 2 6 ks 291/187 229 11318 191.9 -8.20
36mer 3 6 ks 596/1201 1076 4558 1423.7 -16.12°
36mer 3 6 k7 564/1201 1076 10622 24719 -12.10
36mer 3 6 ks 648/1201 1076 15510 10000 -12.43°

“Minimum energy

b Terminated after 10,000 seconds
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4.6. Conclusions

Protein folding is an area of Biology that concentrates a lot of interest, but the size of
the problem makes predictions extremely difficult. Despite the large number of
research groups that work -on the subject, no overwhelmingly successful prediction
method has been created as of yet. Lattice models offer a simplification of the

complexity of the problem.

Here, an optimisation-based framework for positioning amino acids in unique
positions of a three-dimensional cubical lattice has been presented. The framework
utilises only the knowledge of the amino acid sequence and contact energies among
amino acids, and can easily be extended to consider larger or different kinds of 2D or
3D lattices, and a different set of interactions (e.g. the HP model instead of contact
energies between all 20 amino acids). Nevertheless, the application of a 20-letter
amino acid alphabet considerably reduces problems with solution degeneracy, which
is a common problem of other lattice-based prediction methods (especially the HP
model). The overall problem was formulated as an MILP model and a three-step
solution procedure has been proposed to identify small elementary structures, then a
folding core and finally, the 3D structure of a small protein, in order to further

simplify the task at hand.

An advantage of the presented methodology is that it utilises optimisation techniques
and can predict optimal energy conformations for each step of the strategy. The
approach was successfully applied to the two examples of section 4.5 to demonstrate
its applicability. It was shown that lattice-designed proteins with sizes of up to 36
monomers can be solved with the proposed solution procedure. In both examples, the

predicted conformation was identical to the native structure described in literature.
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Chapter 5

MINLP models for the synthesis
of optimal peptide tags and

downstream protein processing

he development of systematic methods for the synthesis of downstream

protein processing operations has seen growing interest in recent years, as

purification is often the most complex and costly stage in biochemical
production plants. The objective of the work presented here is to develop a
mathematical model based on mixed integer optimisation techniques, which
integrates the selection of optimal peptide purification tags into an established
framework for the synthesis of protein purification processes. Peptide tags are
comparatively short sequences of amino acids fused onto the protein product,
capable of reducing the required purification steps. The methodology is illustrated
through its application on two example protein mixtures involving up to 13
contaminants and a set of 11 candidate chromatographic steps. The results are

indicative of the benefits resulting from the appropriate use of peptide tags in
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purification processes and provide a guideline for both optimal tag design and

downstream process synthesis.

5.1. Protein purification

Recent advances in biotechnology have given immense impetus to the introduction
of biopharmaceutical and biotechnological products, which usually require special
techniques and equipment for their production. After fermentation or extraction, a
multi-step protocol has to be followed in order to achieve the specified product
purity. Downstream processing of proteins is typically a major component of the
manufacturing and investment costs in a biochemical production plant (Datar, 1986).
The quality of the product is predominantly determined at the purification level,

which is therefore regarded as the most significant production stage.

Of all separation methods during the downstream process, chromatographic
operations are of major interest in the production of high-value biomolecules. A
specified purity level of the target protein product is usually achieved by applying
several chromatographic steps. In each of these steps, the protein mixture is split into
two streams, one containing the product and one that is discarded. Such flowsheets
are usually optimised on a unit per unit basis, thus creating the need for a more
systematic synthesis and design procedure for purification steps, which considers the

entire process instead of each unit individually.

A number of systematic bioprocess synthesis and design methods have been reported
in the literature. Petrides (1994) developed a synthesis procedure, which uses expert
knowledge to select unit operations in order to synthesise economically favourable
processes. Lienqueo et al. (1996) also presented a knowledge based expert system
for the selection of separation and purification steps for protein mixtures. The
technique was then validated experimentally by its application with model protein

mixtures (Lienqueo et al., 1999).
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Recently, methodologies based on optimisation techniques have been presented. An
implicit enumeration algorithm developed for chemical processes (Fraga, 1998) was
extended in order to synthesise optimal bioprocesses in a system-wide sense
(Steffens et al., 2000a). The techniqﬁe incorporated heuristics based on physical
property information in an implicit enumeration algorithm to solve the synthesis
problem, thus reducing the search space. Evaluation of the technique was performed

with two case studies.

An MILP framework using established criteria for modelling chromatographic
techniques was presented (Vasquez-Alvarez et al., 2001), in which mathematical
models for each technique rely on physicochemical data on the protein mixture that
contains the desired product, and provide information on its potential purification.
The latter formulation was further improved by exploiting the advantages of convex
hull representations (Vasquez-Alvarez and Pinto, 2001; Vasquez-Alvarez and Pinto,
2004) and by also considering the incorporation of product losses and the calculation

of the amount of product recovered (Vasquez-Alvarez and Pinto, 2003).

The above methodologies can improve the production of a biotechnological product
by optimising the purification sequence on the basis of physicochemical data for the
product and the contaminant proteins. However, they do not consider whether any
benefit is conferred by modifying these physicochemical properties of the product to
enhance the separation, and thereby reduce the number of required downstream

purification steps.

S.1.1. Purification tags

Such physicochemical properties modifications can be accomplished through the use
of purification peptide tags. Purification tags are short sequences of amino acids that
can be fused genetically onto the product protein in order to modify its
physicochemical properties, in a way that will eventually enhance its separation from
other contaminant proteins. It has recently been demonstrated that considerable
improvements in yields and costs of downstream purification processes can be

achieved with the use of such tags (Steffens et al., 2000b).
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The advantages of purifications tags are well-recognised; nevertheless it is difficult
to select the right tag for a specific product protein. Each tag utilises a specific
stfuctural protein property to facilitate purification: affinity, charge, attraction to
metal chelates, solubility or hydrophobicity. The performance of any péu’ticular
fusion will depend on the physical properties of the product and contaminant
proteins. For example, if thé bulk of contaminant proteins have a negative charge it
may be beneficial to fuse a series of positively charged amino acids onto the product

protein and use cation exchange to purify the mixture.

The size of the purification tag is an important issue to consider. Purification tags
range from full enzymes, such as Bgalactosidase, which can be fused onto protein
products and can be usually purified using a specific affinity interaction, to very
short amino acid sequences (e.g. poly-his tag), for which a particular

physicochemical property is exploited to accomplish separation.

The latter case of small peptide tags presents numerous advantages (Terpe, 2003); for
example the need of only minor genetic modifications to the protein product, as these
are small molecules. They are assumed to have a minimal effect on tertiary structure
and biological activity and may not require cleavage for many applications due to
their small size. The most commonly used small peptide tags are the polyarginine-tag
or arg-tag (5 amino acids), for purification with cation exchange (Sassenfeld, 1984);
the polyhistidine-tag or his-tag (6 amino acids), for immobilised metal affinity
chromatography, a widely used tagging technique (Hochuli et al., 1987); the FLAG-
tag, a small (8 amino acids) hydrophilic tag (Hopp et al., 1988); the Strep-tag (8
amino acids) (Schmidt and Skerra, 1993); the c-myc-tag (11 amino acids), a tag
commonly used as a detection system, but rarely applied for purification purposes
(Evan et al., 1985); and the S-tag (15 amino acids) (Karpeisky et al., 1994).

5.1.2. Tag design and synthesis of downstream processing

Selecting a purification tag that is optimal in a generic sense is a challenging task.
Although there is a relative abundance of previous research in the use of recombinant

technology to improve separation characteristics of protein products (Terpe, 2003;
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Uhlen and Moks, 1990; Sassenfeld, 1990; Nygren et al., 1994), this has mainly
focused on specific tags, which have advantages in certain situations, but are not
necessarily optimal. One study examines the development of a framework for
selecting peptide tags in protein purification (Steffens et al., 2000b), however
predictions are based on a single physicochemical property (charge). The same is
true with a recent study that only examines the behaviour of hydrophobic peptide
tags (Fexby and Bulow, 2004). The need arises for a systematic methodology, which
selects the most advantageous peptide tag and the appropriate steps to achieve the
required purity, while taking into accouﬁt a multitude of protein product

physicochemical properties.

The aim of this chapter is to develop an MINLP framework that considers
simultaneously the design of optimal peptide tags for each particular protein product
and the synthesis of downstream protein processing. The systematic framework
presented herein exploits the advantages of integer optimisation, considers the
manipulation of two protein properties and can be expanded to more than two
physicochemical features given that these are available. Physicochemical property
data are used to specify the amino acid composition of the most advantageous and
shortest tag, and concurrently select operations among a set of candidate
chromatographic techniques that must achieve a specified purity level, while

optimising a suitable performance criterion (e.g. minimisation of purification steps).

Next, the problem of optimal peptide tag design and synthesis of downstream
processing is defined and a mathematical programming formulation is presented. The
applicability of the resulting MINLP models is demonstrated through two illustrative

examples.

5.2. Problem statement

Overall, the problem of simultaneous optimal tag design and synthesis of

downstream protein processing can be stated as follows:
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Given:
e amixture of proteins (p: 1,...,P) with known physicochemical properties;

e a set of available chromatographic techniques (i: 1,...,]) each performing a
separation by exploiting a specific physicochemical property (charge or

hydrophobicity);
o the properties of the twenty amino acids (k: 1,...,20); and

o a specification for the desired product (dp) in terms of a minimum purity

level.
Determine:

e the amino acid composition of the shortest and most advantageous peptide

tag;

e the physicochemical properties of the tagged protein (desired product + tag);

and
o the flowsheet of the high-resolution purification process.
So as to optimise a suitable performance criterion.

To solve the problem, a few assumptions need to be made. Physicochemical
properties of the tagged protein are assumed to be calculated by adding the properties
of the tag to the ones of the original protein. The amino acids that comprise the fused
tags are assumed to have a fully exposed surface. The possibility of the tag burying
itself into the protein is avoided by imposing an upper bound to the number of
hydrophobic residues that may be included in the tag. An upper bound is imposed on
the number of amino acids that can be present in the peptide tag, so as to avoid
interference with the tertiary structure of the protein. At the same time, the formation
of a secondary structure (e.g. an alpha-helix or a beta-sheet) from the tag itself
should also be avoided; therefore the number of amino acids in the tag should not be

larger than 6 or 7 (Creighton, 1993). The overall molecular weight of the protein
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product is assumed to remain constant after the addition of the tag, as the combined
molecular weight of a few amino acids is negligible compared to the one of the
protein product. The methodologies used herein for the prediction of the
physicochemical properties of the fused protein are theoretical estimations,
nevertheless they are considered to be sufficiently adequate indications of the

alteration of the property in question.

For process synthesis, it is assumed that the protein product is separated completely
without any product loss; i.e. no product is left over in the discarded stream after
each chromatographic step. Protein-protein interactions in chromatographic steps are
assumed to be negligible. Finally, it is usually necessary to introduce membrane
steps for buffer exchange and/or protein concentration between chromatographic
steps, which could lead to some loss of protein product; however, for the needs of
this study these losses are considered insignificant. Additional assumptions for
process synthesis, such as the formulation of the models being based solely on
physicochemical data and the approximation of the chromatographic peaks by
isosceles triangles, can be found in Visquez-Alvarez et al. (2001), Vasquez-Alvarez
and Pinto (2001), Véasquez-Alvarez and Pinto (2003) or Vasquez-Alvarez and Pinto
(2004).

5.3. Mathematical formulation

The proposed MINLP representations are based on a previously developed MILP
formulation (Véasquez-Alvarez and Pinto, 2001) for the synthesis of purification
bioprocesses. The optimisation framework selects a tag that modifies the properties
of the protein product in the most beneficial way and concurrently minimises the
number of chromatographic steps in the purification process. Next, the notation of

the model is provided and the mathematical models are described in detail.
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5.3.1. Nomenclature

The indices, sets and parameters associated with the problem are listed below:

Indices
dp desired protein product
i chromatographic techniques
amino acids _
P proteins in the mixture
Sets
AE anion exchange chromatography
CE cation exchange chromatography
IE ion exchange chromatography
AA acidic amino acid group
BA basic amino acid group
HA hydrophobic amino acid group
Parameters
H 0 initial product hydrophobicity
hy hydrophobicity of amino acid &
K ionisation constants
KDy, retention time of protein p in chromatographic technique i
M large positive number
mop initial mass of protein p
MWy, molecular weight of product
N maximum number of amino acids in tag (~ 6 or 7)
QL W initial product charge for chromatographic technique i
S 0 initial total surface area of product
Sk total exposed area for amino acid &
SP specified product purity
£ small number
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The formulation is based on the following key variables:

Integer variables

M number of occurrences of amino acid £ in the tag

Binary variables
Xidp 1 if product charge is greater than zero; 0 otherwise

w; 1 if chromatographic technique 7 is selected; 0 otherwise

Continuous variables

Qidp product charge for chromatographic technique i

Positive continuous variables

CFp concentration factor of protein p after chromatographic technique i
DFy, deviation factor of protein p after chromatographic technique 7

Hyp product hydrophobicity

hy hydrophobicity of amino acid k&

KD, 4, product retention time in chromatographic technique i

Mmip mass of protein p after chromatographic technique i

Tk relative surface area for amino acid £

5.3.2. Model constraints

5.3.2.1. Peptide tag size constraints

An upper bound is imposed on the number of amino acids in each tag.

Sn <N 5.1)

As already discussed, smaller peptide tags have several practical advantages,
including minimal effect on the protein structure, easier separation upon cleavage
and, in many cases, no need for cleavage at all (Terpe, 2003). Therefore, in this study
the bound is usually set to six, which will also help to eliminate the possibility of

formation of a helix or a beta-hairpin from the tag.
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A constraint imposed on the amino acid composition of the peptide tag is that at most
half of the fused amino acids are permitted to have a hydrophobic nature.
Y1, <05-> n, | : (5.2)
keHA k
This ensures that the tag will not bury itself within the attached protein or form
undesirable structures. It is difficult to specifically define the maximum fraction of

hydrophobic amino acids in the peptide tag; nevertheless hydrophobic amino acids

should be balanced by polar residues in the composition of the tag.

5.3.2.2. Physicochemical property constraints

The net charge (Qiqy) of the tagged protein is predicted based on the formula
suggested by Mosher et al. (1993):

b a
Q = k - +k +2z (5'3)
2P 4 b1 K ] "
[H"], K,

where a; and by are the number of acidic and basic amino acids respectively, K is
the ionisation constant, [/H"] is the concentration of hydrogen cations, and z; is the

total charge of ligands bound to the protein (typically metal ions).

According to equation (5.3), the net charge of a protein is approximated by
considering the contribution of amino acids belonging to the basic group, minus the
contribution of amino acids belonging to the acidic group. For this study, in order to
estimate the charge 0,4, of the tagged protein dp in ion exchange operation i, the

charge contributions of any basic amino acids that exist in the tag are added to the
initial charge of the desired product (Q.,dp) and, respectively, the charge

contributions of any acidic amino acids are subtracted:

0.0 =00+ - 5 VielE (5.4)

[H ]i K/,
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Values for the ionisation constants K (Mosher et al., 1993; Devereux et al., 1984)
are presented in Table 5.1. When proteins with complex structures are encountered,
the interactions between various groups may be strong and some charged groups may
not be exposed on the protein surface. For these reasons, the method described above
may not always be accurate for large moleculeé, but is still usefui as an indication of
how much and in what way the addition of a peptide tag will modify the net charge
of the desired product. '

Table 5.1: Ionisation constants for the two amino acid groups (from Mosher et al., 1993)

Residue pK

Basic group

Arg 12.50

His 6.50

Lys 10.79
Acidic group

Asp 3.91

Cys 8.30

Glu 4.25

Tyr 10.95

Many methods that predict the hydropathic character of different regions of a
protein’s amino acid chain based on well-established molecular thermodynamic
theories exist (Hopp and Woods, 1981; Kyte and Doolittle, 1982); however,
interaction parameters must be determined experimentally for each polymer system
and protein. Generally, significant experimental work is required before a prediction
method can be developed. The protein’s hydrophobicity (H,) is estimated here using
a method developed by Lienqueo et al. (2002). An updated version of the method has
also been published (Lienqueo et al., 2003).

Hy =3l 1oy (5.5)
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ro= ua - Vaa (5.6)

where h,, is the value of the hydrophobicity assigned to each amino acid aa (aa =
1,...,20), ra, is the relative surface area exposed for each amino acid aqg, and s, is the
total exposed area of amino acid aa. The denominator in equation (5.6) represents the

total surface of the protein.

According to equations (5.5) and (5.6), the calculation of hydrophobicity is
performed by considering the 3-dimensional structure of a protein molecule and the
relative contribution of each amino acid on the surface of the protein to its properties
(Berggren et al., 2002). There are more than 40 hydrophobicity scales for amino
acids in the literature (Lienqueo et al., 2002), but for this study the normalised values
of the scale proposed by Miyazawa and Jernigan (1985) are used (presented in Table
5.2).

The contribution of the original protein molecule to the hydrophobicity of the tagged
product is considered to remain constant, therefore only the contributions of the

amino acids in the tag need to be estimated and then added to the initial

hydrophobicity of the protein product, H 0
Hy,=H,+Yh-r (5.7)
k

The relative surface area, 7, for each kind of amino acid % in the tag is given by:

S, -n,

e Vk (5.8)
A +;sk.~nk.

L1

where the total surface of the tagged protein is estimated from the exposed surface of

the protein product, S‘dp (considered to remain unchanged), plus the exposed surface

of the amino acids in the tag, Zsk' -n,. . These amino acids are assumed to have a
m

fully exposed surface. In cases where this is not true, selecting to place the peptide
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tag on the other terminus (i.e. the N-tchninus instead of the C-terminus of the protein
product dp, or vice versa) can solve this problem (Terpe, 2003). Values for the
surface areas of fully exposed amino acids (Chothia, 1975) are presented in Table
5.2.

Table 5.2: Normalised hydrophobicity and exposea surface area for the 20 amino acids.

Residue Y Sk’

Phe ° 1.000 210
Met 0.987 185
Ile € 0.967 175
Leu® 0.908 170
Cys® 0.819 135
Trp© 0.775 255
Val© o 0.770 155
Tyr 0.484 230
Ala 0.391 115
His 0354 - 195
Thr 0.253 140
Gly 0.252 75
Arg 0.202 225
Ser ' 0.188 115
Gln 0.151 180
Pro 0.151 145
Asn 0.125 160
Glu 0.115 190
Asp 0.105 150
Lys 0.000 200

“Lienqueo et al., 2002

® Chothia, 1975

¢ Hydrophobic group
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5.3.2.3. Dimensionless retention time constraints

For the modelling of various chromatographic techniques, established critéria based
on the retention time and on the width of the chromatographic peak were used. The
necessary parameters have been determined experimentally using pure proteins, in
order to predict chromatographic behaviour (Lienqueo et al., 2002). Retention times
are defined as a function of a physicochemical property and can be calculated using
developed correlations, which relate retention times of each particular
chromatographic technique to the appropriate physicochemical property (e.g.
anion/cation exchange chromatography (4E/CE) and charge (Q;qy); hydrophobic
interaction (HI) and hydrophobicity (Hg,), see Figure 5.1). The graphs of Figure 5.1
were produced from extensive experimentation (Lienqueo, 1999; Lienqueo ef al.,

2002) and are expressed in mathematical relationships (5.9), (5.10) and (5.16).

10
KD Hi.dp

08 -
06
|

04 -

02 -

| om 022 027 032 ‘
\ H oo J

Figure 5.1: Correlation between retention times (KD) and appropriate protein property.

In ion exchange chromatography, proteins adsorb either to exchangers that bind
negatively charged molecules (anion exchange) or to exchangers that bind positively
charged molecules (cation exchange). Retention times are a function of charge
density (Qi/MW,), determined by electrophoretic titration curves (Watanabe et al.,
1994). The dimensionless retention times (KD;) are estimated based on
mathematical expressions and on property data for the protein product and the
contaminants (Lienqueo, 1999). The proposed correlations for ion exchange
chromatography were obtained using bind-and-elution conditions; the elution was

obtained with an increasing NaCl gradient between 0.0-2.0 M NaCl.

-114-



Chapter 5. MINLP models for the synthesis of optimal peptide tags and downstream protein processing

For anion exchange:

Ifo,=0, KD, =0 _ _
- 8826- Oy :

o 'MW, Vie AE (5.9)

IfQ, <0, KD, = 0/ .
-1+1§845- %/IWP '
For cation exchange:
f0,<0, KD,=0
7424 2 '
MW, VieCE (5.10)

Ifo,>0, KD, =
1+20231-

Vi

It should be noted that expressions (5.9) and (5.10) only need to be modelled where

they refer to dp; dimensionless retention times for the contaminant proteins (KD;y)
remain constant and are used as parameters in the model. The modelling is

performed using constraints (5.11) to (5.15).

0l -0 =0 | VielE (5.11)
Olp<M-x,, . . VielE (5.12)
p SM-(1-x,,) VielE (5.13)

where M is an appropriate upper bound. Binary variables x;4, express whether the

charge of the protein is positive or negative. The absolute value of Q, 4, is assigned to
either 9, or O, with constraint (5.11), because either Q,, or Q;,, always has to

be equal to zero due to constraints (5.12) and (5.13). For anion exchange

chromatography:

s526- 0z, /17,

s Vie AE 5.14
T 1+18845-(-0,, /MW,,) '€ (5.14)
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If the protein charge is negative, it has to follow that Xidp = 0, and the retention time

is given by constraint (5.14); otherwise, when the protein charge is positive, the

retention time for anion exchange is zero, as x4, is forced to one and Q;, =0.

Similarly, in the case of cation exchange chromatography:

__1424-(or, /pw,,)
T 1+20231-(0,, /MW, )

VieCE (5.15)

For a positive protein charge, x;4, = 1 and the retention time is given by constraint

(5.15); otherwise, the retention time for cation exchange is zero.

Hydrophobic interaction chromatography utilises the hydrophobic character of the
proteins to separate the mixture according to their relative hydrophobicity. Most
hydrophobic amino acids are located near the core of the protein structure and away
from the surface, but there usually are hydrophobic residues on the protein surface as
well. A formula developed by Lienqueo et al. (2002) by evaluating a series of
experimental and computational data is used here to estimate the dimensionless
retention times for hydrophobic interaction (KDpj4). Elution for hydrophobic
interaction chromatography was obtained with a decreasing ammonium sulphate
gradient between 2.0-0.0 M ammonium sulphate. Retention times are a function of
hydrophobicity; the function in this case (on phenyl sepharose) is a quadratic

equation.
KDy, =-12.14-H2, +12.07-H,, - 1.74 (5.16)

As with jon exchange chromatography, dimensionless retention times for
hydrophobic interaction in the case of the contaminant proteins (KDpjp) remain

constant.

5.3.2.4. Concentration factor constraints

The concentration factor, CFj,, represents the ratio between the mass of contaminant
p after and before chromatographic step i. It can be calculated through a set of

equations that describe the chromatographic peaks of the desired product and one of
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the contaminants (Lienqueo er al, 1996). The chromatographic peaks are
approximated by two triangles (chromatograms), one referring to the product and the

other to the contaminant protein (Figure 5.2).

0100, <=t

Figure 5.2: Representation of chromatographic peaks. The first triangle represents the

protein product and the second contaminant p (from Vdsquez-Alvarez et al., 2001).

In Figure 5.2, the left peak refers to the product and the one on the right to the
contaminant protein. Assuming that the peaks have constant form, the area of the
figure formed by the intersection of the two triangles (shaded areas) represents the
amount of contaminant p that remains in the mixture after applying chromatographic
technique 7 (Lienqueo ef al., 1996). Note that 100% of the product protein is assumed

to be recovered.

The chromatograms are approximated with equations (5.19) presented below. In this
set of equations, o; is the peak width parameter, which depends only on the type of
chromatographic operations and is calculated by averaging over several proteins. For

ion exchange, the value for the peak width is a; = 0.15; for hydrophobic interaction o;
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= (.22. Parameter 4 is a pércentage of error, for which an expierimentally determined
value of 0.02 is used. De_viatio___n factors, DFp, indicate the distance between the
desired product’s chromatographic péak and the chromatographic peak of one of the
contaminants. Deviation factors expfess -the driving force of the separation process;
they are defined as the difference Be'tween'the retention times of the product (KD; 45)

and the contaminant in question (KDy) f_é)t each,particular chromatographic step.
DF,=|kD,,-kD,| Vi,p=dp (5.17)

For the estimation of the deviation factor in this work the non-differential

relationship (5.17) is modelled-with the following constraint:
oF, =[(kD, , - kD, } +¢?}* - Vi,p#dp (5.18)

The relationships (Lienqueo ef al., 1996) that describe the concentration factor, CFp,

for protein p in chromatographic technique i are:

CF, =1 - if 0< DF, <‘1’—6 (5.19a)
o}-2:DF} O o
CF, =(1+A)-(-—a?——f—J f ZLSDF, <2t (5.19)
(o,-DF, )} LC
CF,=2-(1+4). if 2-<DF, <o, (5.19¢)
, v
CF,=4 | if DF, > o, (5.19d)

Here, concentration factors for the various chromatographic steps are modelled with
sigmoid functions. Because the peak width parameter, o;, is the same for both anion
and cation exchange, there is only need for one equation for all ion exchange steps,
but a separate one is required for hydrophobic interaction. Figure 5.3 demonstrates
the sigmoid functions used, it can be observed that the sigmoid approximation (red
dots) provide a satisfactéry accurate approximation for CFj, as calculated from

equations (5.19).
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. sigmoid épproxiﬁation | e CF for HI = sign';oid abproximation

1
09
08 |
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06 |
|CF, 051
‘ 041
03 |

03 04 0 0.1 02 03 04 |
DF,.p ‘

Figure 5.3: Sigmoid approximations of concentration factors (CF) for ion exchange (IE) and
hydrophobic interaction (HI).

3722
o = 372740579

+0.019 VielE,p#dp (5.20)

_ 3.937
~3.93340.105 . g0 D, 02%9)

Fup +0.018 Vp#dp (5.21)
In the case of the desired product (dp), the concentration factor CF; 4, is always equal

to one, since the assumption of no product loss has been made. Therefore:

CF, 4, =1 Vi (5.22)

These concentration factors are introduced in the process synthesis constraints

(section 5.3.2.5) that address the synthesis problem.

5.3.2.5. Process synthesis constraints

The convex hull representation applied for contaminant separation is presented in
Viésquez-Alvarez and Pinto (2001); the formulation for the selection of appropriate
chromatographic steps and the indication of the remaining amount of protein after
each step i is also applied here. The contaminant constraints in consecutive
chromatographic steps can be represented by the following disjunction, which relates

the mass values of each protein in subsequent steps:
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" N O » Vi p (5.23)
m, =CEy-m_, | |m,=m_, ‘

T

Disjunction (5.23) generat'es':the following convex hull constraints on mixed integer

representation:
my, =CE,,-w,-my +m, -(=w) | Vp (5.24)
m, =CF,-m., , +m" ,,; Vpi=2..1 (525)
My, =mby, +mt, Vpi=2..,1 (526)
0< m,.l_l_p <mg, W, o Vpi=2,..,1 (5.27)
0<m?,, <m,,-(1-w,) Vpi=2..,1 (528)

The mass of protein that is left after the first chromatographic step is given by
constraint (5.24). In the following steps, constraints (5.25) to (5.28) hold. When
chromatographic step i is selected (i.e. w; = 1) the mass of contaminants is reduced
), Wher‘eas when step 7/ is not selected the mass remains

(ie. m,=CF,-m_,

constant (i.e. m, =m,_, ,).

The mass of the desired protein product must meet the purity demand after the last

chromatographic step I.

my g, 2 SP-Zm,YP (5.29)
I4

3.3.3. Solution Approach

Typical performance criteria to be optimised in the problem defined above are the
number of purification steps and/or the size of the tag. The overall problem is non-
convex; non-linearities arise in constraint (5.8), for the estimation of the relative
surface area of amino acids in the tag; constraints (5.14) — (5.16), for the evaluation

of retention times from the values of the protein product’s properties; constraint
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(5.18), for the calculation of the deviétion factor; sigmoid constraints (5.20) and
(5.21), for the computation of the concentration factor; and constraints (5.24) and
(5.25), for estimating the mass of proteins after each chromatographic step. The
presented models constitute MINLP fonﬁulations. A two-stage solution procedure is
proposed, in order to identify the shortest amino acid sequence that can produce the

optimal flowsheet for the purification process.

5.3.3.1. Stage I

Designing flowsheets with fewer pufiﬁcatioﬁ steps can significantly reduce costs
(Atkinson and Mavituna, 1991). The overall objective is to minimise the total
number of selected chromatographic steps in the purification process, subject to the
constraints described above (problem P1). A tag is also selected in this stage, but the
selection is further improved at stage 2.

Problem P1

minimise Zw,. (5.30)

subject to:
peptide tag size constraints (5.1) and (5.2);
physicochemical property constraints (5.4), (5.7) and (5.8);

dimensionless retention time constraints (5.11), (5.12), (5.13), (5.14), (5.15) and
(5.16);

concentration factor constraints (5.18), (5.20),( 5.21) and (5.22);
process synthesis constraints (5.24), (5.25), (5.26),( 5.27), (5.28) and (5.29);

X, oW € {01} VielE (5.31)

n ez Vk (5.32)
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CF,

ip,

DF,

ip?

H,,,KD, 4,1, 0} 4> Orgpoti 20 Vi,p,k (5.33)

5.3.3.2. Stage 2

The objective here (problem P2) is to minimise the number of amino acids in the tag,
subject to the same constraints as before, plus an additional constraint that fixes the
number of chromatographic steps as identified in stage 1. Then, the smallest tag that

can produce the optimal flowsheet is finally determined.

Problem P2

minimise an (5.34)
k

subject to:

constraints (5.1), (5.2), (5.4), (5.7), (5.8), (5.11) - (5.16), (5.18), (5.20) - (5.29),
(5.31) - (5.33), and

>ow, i (5.35)

where i* is the number of steps identified in stage 1.

3.5. Computational results

The proposed formulation is applied to two example mixtures. Solutions were
obtained with the network-enabled, problem-solving environment NEOS Server 4.0
(http://www-neos.mcs.anl.gov/; Gropp and Moré, 1997; Czyzyk et al., 1998; Dolan,
2001) using the SBB solver for the solution of the MINLP models and CONOPT3 as
the NLP solver.
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5.5.1. Example 1

The first example is based on experimental data (Lienqueo et al., 2002; Lienqueo,
1999) for a mixture .of four proteins: thaumatin (dp), conalbumin (p;),
chymotripsinogen A (p;) and ovalbumin (ps). The physicochemical properties of the
mixture are presented in Table 53 The purity level requirement for the desired
product (dp) is 98%. Overall, there are 11 candidate chromatographic techniques:
anion exchange chromatography (AE) at pH 4, AE at pH 5, AE at pH 6, AE at pH 7,
AE at pH 8, cation exchange chromatography (CE) at pH 4, CE at pH 5, CE at pH 6,
CE at pH 7, CE at pH 8 and hydrophobic interaction (HI).

Table 5.3: Physicochemical properties of protein mixture in first example.

mepy MW, H, S Qi x 1077 (C/molecule)
proteins (mg/mL) (Da) pH4 pHS5 pH6 pH7 pHS
dp 2 22200 027 - 9573.15 160 1.57 1.64 155 0.75
Di 2 77000 0.23 29287.60 093 033 -0.12 -0.34 -0.50
D2 2 23600 0.31 1091080 2.15 146 117 0.780.38
D3 2 43800 0.28 15880.90_ 1.16 -0.63 -1.36 -1.82 -1.95

In order to acquire a point of reference, the example was first solved without any tag
fused to the protein product, i.e. using the formulation of problem P1, with an upper
bound of zero imposed on the number of amino acids in the tag (i.e. N = 0). The
resulting mathematical model involves 317 constraints, 41 discrete variables and 275
continuous variables and was solved in 4.14 seconds. The optimal solution is
presented in Figure 5.4. The model was able to identify a solution that achieves a
purity of 98.1% for the desired product, for which four chromatographic steps are
needed: cation exchange chromatography at pH 6, cation exchange chromatography
at pH 7, cation exchange chromatography at pH 8 and hydrophobic interaction. Note
that the product mass remains constant, but its purity increases after each step: From
25.0% in the original mixture, to 51.4% after the first chromatographic step (CE pH
6); 64.6% after CE pH 7; 71.9% after CE pH 8; and finally 98.1% (above the
required purity level) after the final chromatographic operation (HI).
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‘ 25.0% pH 6 51.4"(0 pH7 54‘6?0 pH 8 71.9°(o HI 98.1“{0 Product
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Figure 5.4: Optimal flowsheet for purification of protein mixture in example 1 without tag.

An improved solution was suggested when using a peptide tag. The minimum
number of steps is identified by solving problem P1 with an upper bound of 6 amino
acids per tag (stage 1). The model was solved in 8.49 seconds. Only three separation
steps are needed: cation exchange chromatography at pH 7, cation exchange
chromatography at pH 8 and hydrophobic interaction. Next, the number of
purification steps was fixed (" = 3) and the model was solved again using the
formulation of problem P2 (stage 2). The CPU time was 20.57 seconds. The solution
is a tag of 2 lysine residues; the purity demand was achieved (98.0%) and the process
included the same three purification techniques (CE pH 7, CE pH 8, HI) as in the

solution of problem P1. The results are presented in Figure 5.5 and in Table 5.4.

s 2m i

Protein CE

CE
iy | 618% | XS | 720% | HI | 98.0% | progua

Mixture

Figure 5.5: Optimal flowsheet for purification of protein mixture in example 1 with a tag of 2

lysines.

The selection of a tag exclusively with lysine amino acids suggests that the optimal
solution to the problem at hand is to increase the charge of the desired protein. The
use of other basic amino acids would have a stronger effect on the charge than lysine,

but their presence would also increase hydrophobicity, which remains unchanged
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with lysine (hx = 0, Table 5.2). The observation implies that an increase in

hydrophobicity is not beneficial. This was tested by forcing the inclusion of

hydrophobic amino acids in the tag (e.g. phenylalanines); the experiments showed

that a purity of 98% (as required here) is not achievable when hydrophobicity is

increased even by a small amount.

Table 5.4: Values of retention times, deviation factors and concentration factors as

estimated for the solution of example 1 (98% purity, 3 steps, 2-lys tag).

dp D1 2] D3
sttp KD DF CF KD® DF CF KD® DF CF KD" DF CF
AE4 0000 0000 1.000 0.000 0000 1.000 . 0.000 0000 1.000 0.000 0.000 1.000
AES 0000 0.000 1.000 0.000 0000 1.000 0.000 0000 1.000 0.100 0100 0216
AE6 0000 0000 1.000 0.013 0013 0983 0.000 0.000 1.000 0.173 0173 0.024
AE7 0000 0000 1.000 0.036 0.036 0.907 0.000 0000 1.000 0206 0206 0.020
AES8 0000 0000 1.000 0.051 0051 0.797 0.000 0000 1.000 0214 0214 0.019
CE4 0219 0000 1.000 0.072 0.147 0.037 0238 0.019 0972 0.128 0.091 0.300
CE5 0218 0000 1.000 0.029 0.189 -0.021 0.204 0014 0982 0.000 0218 0.019
CE6 0222 0000 1.000 0.000 0222 0.019 0.184 0.038 0.898 0.000 0222 0.019
CE7 0217 0000 1.000 ‘ 0.000 0217 0.019 0.147 0070 0.580 0.000 0217 0019
CE8 0153 0000 1.000 0.000 0153 0.033 0.090 0063 0670 0.000 0.153 0.033
HI 0.629 0.000 1.000 0413 0216 0.039 0.832 0.203 0.051 0.701 0072 0.809

“ AE4: anion exchange at pH 4; etc.
® The values of KD for p,, p; and p; (denoted in italics) are calculated before the computational

experiments and are used as parameters in the model

Table 5.4 presents the dimensionless retention times, deviation factors and

concentration factors for each protein in each chromatographic step for the solution

of example 1 with the formulation of problem P2 (as shown in Figure 5.5). All values

-125-



Chapter 5. MINLP models for the $ynthesis of optimal peptide tags and downstream protein processing

are calculated from the mathematical model, as they depend on the physicochemical
properties of the protein product, which are liable to change. It should be noted that
contaminant retention times remain constant and are therefore used as parameters for

the mathematical model.

5.5.2. Example 2

For the purpose of further testing the models, a larger and more challenging example
was created. The physicochemical properties of this second mixture of 13 proteins

are presented in Table 5.5.

Table 5.5: Physicochemical properties of protein mixture in second example.

mgp Mw, H, Qp x 1077 (C/molecule)
proteins (mg/mL) (Da) pH4 pHS pH6 pH7 pHS
dp 2 77000 0.28 204 1.06 -037 -0.81 -1.13
D 2 22200 0.27 1.60 157 1.56 1.55 0.75
D2 2 23600 0.31 215 146 1.17 0.78 0.38
D3 2 13500 0.23 1.83 065 026 . -020 -0.33
D4 2 43800 0.28 1.16 -0.63 -136 -1.82 -1.95
Ds 2 15900 0.27. 289 281 280 2.64 2.07
Ds 2 14400 0.32 -0.46 -0.47 -0.63 -1.21 -1.25
D7 2 17500 0.21 045 -0.62 -0.79 -1.26  -1.70
Ds 2 50000 0.27 -0.12 -032 -0.76 -091 -1.04
Do 2 12100 0.18 146 0.62 -1.02 -133  -1.52
Dio 2 25500 0.30 1.01 -0.63 -1.27 -1.59 -1.76
pu 2 26000 0.28 296 126 092 0.54 0.01
P 2 19900 0.25 093 033 -0.12 -0.34  -0.50

The properties for the proteins of example 2 were determined using a random
number generator to produce values within certain parameters, for example the
charge of each protein was allowed to range between -3 x 1077 and 3 x 10

Coulomb per molecule. A similar procedure was followed for the random assignment
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of hydrophobicities and molecular weights. The exposed surface of the protein
product was considered to be proportional to the molecular weight (i.e. the larger the

molecular weight, the larger the exposed surface of the molecule), and was set to

~

S, =29287.6 (see constrajnt (5.8)). The purity level requirement for protein dp was

set to 95%. The same 11 candidate chromatographic steps as for example 1 are
available: anion exchange chromatography at pH 4, AE pH 5, AE pH 6, AE pH 7,
AE pH 8, cation exchange chromatography at pH 4, CE pH 5, CE pH 6, CE pH 7,
CE pH 8 and hydrophobic interaction.

Example 2 was first solved without tags (i.e. N = 0). The formulation of problem P1
was applied; the resulting mathematical model involves 884 constraints, 41 discrete
variables and 752 continuous variables. The optimal solution was identified in 71.78
seconds and is presented in Figure 5.6. The product is recovered with 95.3% purity
and six chromatographic steps are needed: anion exchange chromatography at pH 6,
AE pH 7, AE pH 8, cation exchange chromatography at pH 4, CE pH 5, and

hydrophobic interaction.

s A

Protein AE AE AE CE CE
- T1%, (ol 138% |7 | 200% [R5 | 303% |BF | 585% (S| 621% | HI | 953% | prgua
I re

] [ ] [ ] L ]

Figure 5.6: Optimal flowsheet for purification of protein mixture in example 2 without tag.

Using model P1, an improved solution with only 4 chromatographic steps (AE pH 6,
AE pH 8, CE pH 4, HI) is suggested. The results were produced with an upper bound
of 6 amino acids per tag (i.e. N = 6). In order to test whether this solution can be
achieved with a smaller tag, model P2 was applied to identify solutions with the
smallest possible number of amino acids in the tag. Using the minimum number of
steps for 95% purity (i.e. i* = 4), a minimum number of amino acids in the tag was
specified. The results are presented in Figure 5.7. The suggested tag consists of 1

phenylalanine, 1 methionine and 2 tyrosine amino acids; the process has 4
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chromatographic steps (AE pH 7, AE pH 8, CE pH 4, HI) and a purity of 95.4%.
Note that this solution is different from the one produced with model P1; a different

set of chromatographic steps was selected for the purification process.

znd 3I’d 4lh

Protein AE

CE
17.3% oHB 26.7% pH 4 57.0% | HI 954% | product

Mixture

L ] L J [ L ]

Figure 5.7: Optimal flowsheet for purification of protein mixture in example 2 with a
minimised tag of 1 phenylalanine, 1 methionine and 2 tyrosine amino acids (purity

requirement.: 95%,).

Next, a higher level of purity for the protein product was tested. Example 2 was
solved again with a higher demand of 98% for product purity, which leads to an
infeasible solution when the model is solved without tags. With an upper bound of 6
amino acids per tag, an improved solution with a purity of 98.4% and 5
chromatographic steps (AE pH 6, AE pH 8, CE pH 4, CE pH 5, HI) was suggested.
The problem was solved again using the formulation of model P2 and an upper
bound of 5 for the number of chromatographic steps (i.e. i* = 5). The results are
presented in Figure 5.8. The selected tag consists of 1 phenylalanine, 1 tryptophan
and 2 tyrosines. The process has 5 chromatographic steps (AE pH 7, AE pH 8, CE
pH 4, CE pH 5, HI) and a purity of 98.1%.

Protein AE AE CE CE
TT1% |pu7| 173% |ong| 267% || ST.0% |G| 614% | HI | 98A% | ooy

( ] [ ] [ =1 [ ] [ ]

Figure 5.8: Optimal flowsheet for purification of protein mixture in example 2 with a tag of 1

phenylalanine, 1 tryptophan and 2 tyrosine molecules (increased purity requirement: 98%).
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Table 5.6 presents computational statistics for the optimisation of the two presented
examples with models P1 and P2. Model sizes in terms of discrete and continuous
variables and constraints are given. Also shown are CPU times, nodes enumerated

and objective values.

Table 5.6: Summary of computational statistics.

example model max max discrete/continuous constraints nodes  CPU objective

aas  steps variables ) _ time (s) value
1 PI <0 - 41275 317 114 414 4°
1 PI <6 - 41275 317 192 8.49 3
1 P2 <6 <3 41275 318 636  20.57 2t
2 P1I <0 - 41/752 884 363 7178 6°
2 PI <6 - 41/752 884 346 68.84 4°
2 P2 <6 <4 " 411752 885 1777  175.61 4°
2°¢ Pl <0 - 41/752 884 340  53.62 infeasible”
2°¢ PI <6 - 41/752 884 514  94.50 5°
2°¢ P2 <6 <5 41/752 885 2881  320.67 4*

“ Number of chromatographic steps
® Number of amino acids in the tag

€98% purity demand

5.6. Conclusions

An optimisation framework for the simultaneous selection of optimal peptide tags
and the synthesis of chromatographic steps for the purification of protein mixtures in
downstream processing has been presented. The framework utilises the advantages of
integer optimisation and mathematical programming techniques, incorporates recent
developments in the synthesis and optimisation of downstream purification processes
and can be extended to consider application to larger examples, use of additional

chromatographic techniques, or manipulation of other physicochemical properties.
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The overall problem has been formulated as an MINLP model and a two-stage

solution procedure has béen proposed.

Two examples of protein mixtures were tested to demonstrate the efficiency of the
optimisation based methodology. In both examples, small peptide tags were used
(from two to four residues), and only specific physicochemical properties were
modified, especially hydrophobicity and charge, without significant conformational
changes or bio-activity. These smaller changes have allowed an important decrease
in the number of purification steps. In the first example, only the modification of
charge benefited the purification, while hydrophobicity was the most influential
property in the second example. Results were indicative of the benefits of the
application of optimisation-based techniques in the use of purification tags in
biotechnological production plants, and have provided a useful guideline for both
downstream process synthesis and optimal tag design. However, itwill be
interesting to validate the generated hypotheses by evaluating experimentally the

chromatographic behaviour of the proteins together with the peptide tags.

Testing the mathematical framework with larger examples and investigating
altemative solution strategies is a possible extension to this work. Consideration of
additional types of chromatographic steps would also be very interesting, provided
that the appropriate correlations become available. For example, ion exchange
chromatography with pH gradient could be considered, which would potentially
provide the same degree of purification but using a smaller number of steps. Finally,
the modelling of the purification can be extended to incorporate a number of issues,
including sequencing of the purification steps, product loss, protein-protein
interactions, use of membrane steps between chromatographic steps and/or

application of alternative objective functions.

In the next chapter, the MINLP framework presented here and applied for the
simultaneous selection of optimal peptide tags and the synthesis of chromatographic
steps for the purification of protein mixtures in downstream processing is linearised,

in order to develop an MILP formulation.
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An MILP model for optimal
peptide tag design and synthesis

of downstream processing

s seen in chapter 5, downstream protein processing in biochemical
production plants is typically among the most difficult and complex
stages and the source of a large portion of the manufacturing and
investment costs in a biochemical production plant. Early systematic methods for the
synthesis of downstream protein processing made use of expert knowledge systems
for selecting operations (Lienqueo et al., 1996). Vasquez-Alvarez and Pinto (2004)
presented an MILP framework, in which mathematical models for each
chromatographic technique rely on physicochemical data on the protein mixture that

contains the desired product, and provide information on its potential purification.

A two-step MINLP framework for the optimal design of case-specific peptide tags
that alter the properties of a particular protein product in the most beneficial way, and

the concurrent synthesis of downstream protein processing was presented in the
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previous chapter. It was demonstrated that considerable improvement of downstream
protein purification processes can be achiieved with the use of comparatively short
sequences of amino acids (purification tags), genetically fused on the protein
product, which modify the physicochemical properties of the protein in a way that

enhances the separation, thus simplifying the purification flowsheet.

The above framework is non-convex; non-linearities arise in the estimation of the
relative surface area of amino acids in the tag; in the evaluation of retention times
from the values of the protein product’s properties; in the calculation of the deviation
factor; in the computation of the concentration factor; and in estimating the mass of
proteins after each chromatographic step. The resulting MINLP formulation may
provide modelling ﬂexibility, but in some cases feasible solutions cannot be
identified. In order to improve solution quality, non-convexities are avoided by
reformulating the framework as an MILP model through piecewise linear
approximations of the non-linear functions. The new MILP model, derived from the
previous MINLP, utilises physicochemical property data to specify the amino acid
composition of the shortest and most advantageous peptide tag configuration, and
concurrently select operations among a set of candidéte chromatographic techniques
in order to achieve a specified purity level. The applicability of the MILP framework

is demonstrated by an example that relies on experimental data.

6.1. Problem statement

The problem in hand is identical to the one in chapter 5, but the models used for its
solution differ (MILP formulation instead of MINLP). Overall, the problem of
simultaneous optimal tag design and synthesis of downstream protein processing can

be stated as follows:
Given:

e amixture of proteins with known physicochemical properties;
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e aset of available chromatographic techniques;
e the properties of the twenty amino acids; and
e aminimum purity level for the product protein.
Determine:
¢ the amino acid composition of the shortest and most advantageous tag;
o the physicochemical properties of the tagged protein; and
o the flowsheet of the purification process.

So as to minimise the number of chromatographic steps chosen and the number of
amino acids present in the selected tag. All the assumptions presented in section 5.2
hold; any new assumptions will be discussed as the new MILP formulation is

presented in section 6.2.

6.2. Mathematical formulation

Most of the notation of this chapter is identical to the one presented in chapter 5

(section 5.3.1). Only the additional symbols required are provided next.

6.2.1. Nomenclature

The additional indices, sets and parameters associated with the problem are listed

below:

Parameters
c penalty for selection of amino acids
€ small number

Binary variables

Yip 1 if (KD, 4, — KDyy) is positive; 0 otherwise
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Continuous variables

sl; slack variables

Positive continuous variables

CFp CFj, if chromatographic technique i is selected; 1 otherwise
DF,;,DF,; auxiliary variables for absolute value of DF,

Negative continuous variables

¢ InCF,, if chromatographic technique i is selected; 0 otherwise (i.e.

$p =(InCF,)-w,)

6.2.2. An alternative MINLP model

First, an alternative version of the MINLP formulation is presented, in order to

facilitate the application of the piecewise linear approximations.

6.2.2.1. Problem P1

The MINLP model presented in section 5.3.7 (Problem P1) is summarised below.

minimise Zwi 6.1)

I
subject to:

Peptide tag size constraints

> m SN (6.2)

> 1, <05 n, (6.3)

keHA

Physicochemical property constraints

0w :Qi,dp + Z Knk - fk VielE (6.4)
keBA "k kess [H ]1 +1
[H"], K,
Hy=Hy+ Y by or, (6.5)
k
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S, o1y
rk = ~
Sdp+2sk.-nk,
=

Dimensionless retention time constraints
. ] .
Qi,dp - Qi,dp = Qi,dp
+
Q' <M- X, i

i,dp
OrpSM-(1-x,,)
_ 8826-(0;, /MW,
i 1+18845-(-0,, /MW,,)

__1424-(0y, /M7,
" 1+20231-(Q,,, /MW,,)

KDy, =-12.14-H2 +12.07-H,, -1.74

Concentration factor constraints

DF, =[kD,, - KD, } +£*}*
3.722

CF;P = 3.727+0'579'e(54.410-DF,.,-2.176) +0.019
3.937

Fiup = 39334 0.105 . * 50,9y + 0018

CF ., =1

idp —

Process synthesis constraints
my, =CF,,-w,-my, +m,,-(1-w,)

1

— 2
mip - CF;p : ml-l,p + ml—l, ¥4

1 2
M p =M, + m_,

1
0<m_ ,<my, w,

2
O<m_,,

m g 2 SP-ZmLP
p

< mOp (l_wl)
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VielE
VielE

VielE

Vie AE

VieCE

Vi,p#dp

VielE,p#dp

Vp#dp

Vi

V p,i=2,..
V p,i=2,.
V p,i=2,..

V p,i=2,..

(6.6)

6.7)
(6.8)
(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
(6.18)
(6.19)
(6.20)
(6.21)

(6.22)
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Additional constraints

%,.0W, € {01} VielE (6.23)
n eZ* vk (6.24)
CFyps DFy, H KD, gy 1,5, 000y Oy T 2 0 Vi,p.k (625)

6.2.2.2. Process synthesis constraints revisited

Process synthesis constraints (6.17) - (6.22) are used to calculate mass m;, of protein
p after each chromatographic step i. Constraint (6.18) in particular, presents a serious

difficulty in the effort of linearising the model, because of the multiplication of CFj,

and m_, , which are both positive continuous variables. But in practice, because the

i-1,p *
various chromatographic steps are treated as “black-boxes”, there is no direct need to
calculate all intermediate masses after each chromatographic step as constraints
(6.17) - (6.22) do; the only one that we are interested in is the final mass of protein p
after the last chromatographic technique (m;p). A transformation of the process

synthesis constraints can be applied to alleviate the problem.

Mass my 4, of protein product dp after the last chromatographic step / must meet a
specified purity level, SP. Since it is assumed that the separation is performed
without product. loss (see section 5.2), the final product mass m; 4, is constant and

equal to the initial mass myp g,. From constraint (6.22), we have:

my 4 28P-Y m; , = (1-SP)-mg, 2SP- Z;‘,,m"” (6.26)
r p*

The mass, my, of each contaminant protein p remaining after the final

chromatographic technique 7 can be calculated from the initial contaminant mass m,

of each contaminant by:
I
m,,=m,, [[CF» Vp#dp (6.27)
i=1
CFy,=CF,, if w=1
where ___ Vi,p#dp
CFp =1, if , =0
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Variables CF;, can be expressed as an exponential function of concentration factors

CFjpand decision variables w;:
CFyp =e"“™ or CF, =€® Vi,p#dp (6.28)

where &, =(InCF,)-w,. Therefore, using expressions (6.27) and (6.28), purity

constraint (6.26) can now be exprésséd as:

>,
(1-SP)-my,, 2SP- D m, , € (6.29)
p*dp )

&, =(nCF,)-w, Vi,p=#dp (6.30)

6.2.2.3. New MINLP formulations

Constraints (6.29) and (6.30) substitute constraints (6.17) - (6.22) in the new MINLP
models that are now formulated. Problem P3 is the equivalent of Problem P1 from
chapter 5, and Problem P4 is the equivalent of Problem P2. The two problems
constitute a two-stage solution procedure to identify the shortest amino acid sequence

that can produce the optimal flowsheet for a purification process.

Problem P3

minimise Z w, (6.31)

subject to:

constraints (6.2)-(6.16),(6.23)-(6.25),(6 .29) and (6.30)

Problem P4

minimise an (6.32)
k

subject to:

constraints (6.2)-(6.16),(6.23)-(6.25),(6 .29), (6.30) and
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dw <i (6.33)
where i* is the identified minimum required number of chromatographic techniques.

6.2.2.4. Solution of problems P3 and P4

Problems P3 and P4 were solved - with NEOS Server 4.0 (http:/www-
neos.mcs.anl.gov/; Gropp and Moré, 1997; Czyzyk et al., 1998; Dolan, 2001) using
the SBB solver and CONOPTS3 as the NLP solver for the solution of Examples 1 and
2 from chapter 5. The results produced were identical to the ones from the previous
chapter (problems P1 and P2). All results are presented in Table 6.1, which should be

read in comparison with Table 5.6.

Table 6.1: Summary of computational statistics for Problems P3 and P4.

example model max max discrete/continuous constraints CPU objective

aas  steps variables time (s) value
1 P3 <0 - 41/162 175 10.87 44
1 P3 <6 - 41/162 175 16.21 3
1 P4 <6 <3 41/162 176 20.37 2°
2 P3 <0 - 41/459 472 34.44 6°
2 P3 <6 - 41/459 472 39.72 41
2 P4 <6 <4 41/459 473 30.42 4°

? Number of chromatographic steps

5 Number of amino acids in the tag

The problem size was reduced considerably, and in many cases, in particular for the
larger example, there was a decrease in CPU time as well. This improvement may
not be enough to justify the transformation, but this was not the motivation behind
the new formulations; the goal as explained in section 6.2.2.2 was to overcome a
major difficulty in the linearisation of the models, before we apply the piecewise

* linear approximations to the non-convex functions.
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6.2.3. An MILP approach

Next, the proposed MILP representation, designed for the synthesis of purification
bioprocesses so as to consider the optimal design of purification tags, is described in
detail. The proposed representation extends the formulation of Problem Pl from

section 5.3.7.

6.2.3.1. Peptide tag size constraints

Constraints (6.2) and (6.3) are linear and can be used here unchanged. A maximum
number of 6 is imposed on the number of amino acids that can be present in the
peptide tag, so as to avoid structural interference. At the same time, hydrophobic
amino acids should be balanced by polar residues so that the tag is soluble and does

not bury itself within the protein.

6.2.3.2. Physicochemical property constraints

The tagged protein’s net charge (Qg) is predicted based on the methodology
suggested by Mosher et al. (1993). In order to avoid the calculation of the charge of
the tagged protein product for all chromatographic steps irrespective of whether they
are selected in the final flowsheet or not (as is the case in the formulation of
Problems P3 and P4 above), a slack variable is introduced to constraint (6.4). The
slack variable is forced to zero when the corresponding chromatographic step i is
selected (w; = 1), allowing the proper estimation of the property. When step i is not

selected, constraint (6.34) is relaxed.

Oy =0+ 2, ——- [Hf’]k +l, VielE (6.34)
keBA k_ 41 keas i

[H"], K,

—M-(-w)<sl <M-1-w) VielE (6.35)

where M is an appropriate large positive number. Values for the ionisation constants
Ki (Mosher et al., 1993) are presented in Table 5.1.
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The tagged protein’s hydrophobicity (Hgp) is estimated using the work by Lienqueo
et al. (2002). Values for the normalised hydrophobicity and the surface areas of fully
exposed amino acids (Lienqueo et al., 2002) are presented in Table 5.2. Constraint
(6.5) remains unchanged. Additionally, an extra assumption is made for the product
surface of the tagged product protein. It is the same assumption as the one made in
chapter 5 about the molecular weight, i.e. that the total surface does not change

significantly from the addition of a very small number of amino acids to the chain of

the protein, i.e. .S}, + Zsk. ‘N = S - Constraint (6.6) changes accordingly:
o

S, -n SN
ke = =kt

hE——— Vk (6.36)
Se +Zsk, -ny, S
g

6.2.3.3. Dimensionless retention time constraints

Dimensionless retention times (KDj,) are defined as a function of a physicochemical
property of the product protein, P; g, (cither net charge, Q; 4, or hydrophobicity, Hy).
For ion exchange chromatography, retention times for the tagged protein product are
estimated based on approximations of the chromatograms by isosceles triangles and
on physicochemical property data for the product and contaminants (Vasquez-
Alvarez et al., 2001). The methodology presented by Lienqueo et al. (2002) is used
to estimate the dimensionless retention times for hydrophobic interaction (KDpjp).
Both relationships between retention time and physicochemical property are non-
linear; so a piecewise linear approximation is used for their linearisation, as
described by constraints (6.37)-(6.40):

KD, =Y a, 4 Vi (6.37)
J
Py=2.B2 Vi (6.38)
J
A =w Vi (6.39)
J
4, €S082 Vi, j (6.40)
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where j is a special set used for the piecewise linear approximation of KD, 4, a; and
By are appropriate parameters that help the calculation of KD, 4, for anion exchange
chromatography, cation exchange chromatography and hydrophobic interaction, and
i is a Special Order Set of type 2 variable (SOS2 variable) for the piecewise linear
approximation of KD; 4,. At most two variables within a SOS2 set can have non-zero

values and they have to be adjacent.

Notice that in constraint (6.39), the summation is equal to decision variable w;,
instead of being equal to 1. This is to prevent the calculation of retention times

whenever chromatographic step i is not selected (i.e. w; = 0 = KD, 4, = 0).

For anion and cation exchange chromatography, the piecewise linear approximations
are presented in Figure 6.1. For hydrophobic interaction, the piecewise linear

approximation is described by Figure 6.2.

KD qp

3

0
Qidp

Figure 6.1: Piecewise linear approximations of retention times for ion exchange

chromatography (AE: anion exchange; CE: cation exchange).
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KD py,gp

0.17 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.33 0.35

Figure 6.2: Piecewise linear approximation of retention time for hydrophobic interaction (HI).

6.2.3.4. Deviation factor constraints

Deviation factors, DFj,, indicate the distance between the protein product’s
chromatographic peak and a contaminant’s chromatographic peak. In particular, they
are defined as the difference between the dimensionless retention times of the
product and each contaminant p for each particular chromatographic step i. A new
approach to the calculation of DF;, is needed, to avoid the non-linearities of

constraint (6.13):

DF, - DF, =KD, ,, - KD, Vi,p#dp (6.41)
DF; <M,-y, Vi,p #dp (6.42)
DF; s M, -(1-¥,) Vi,p#dp (6.43)
DF, = DF; + DF; KD, -(1-w,) Vi, p # dp (6.44)
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H

Vp W, Vi,p#dp (6.45)

where M, is an appropriate large positive number. Binary variables y;, express

whether the difference KD, ,, — KD,, is positive or negative. The absolute value of
the difference is assigned to either D, ,; or DF, with constraint (6.41), because
either DF,; or DF, always has to be equal to zero due to constraints (6.42) and
(6.43). When w; = 1, DF), is assigned the correct value (either DF,; or DF,) with
equation (6.44). When w; = 0, constraint (6.45) forces y;, (and therefore DE; ) to
zero and, because of constraint (6.41), DF, =KD, (KD,qp is equal to zero when

w, =0). Therefore, from equation (6.44), we have DF,, = KD,,— KD, =0.

6.2.3.5. Concentration factor constraints

Deviation factors are used to calculate concentration factors, CFj,, which represent
the ratio of the mass of contaminant p after chromatographic step i to the mass of
contaminant p before step i. The relationship between deviation factors and
concentration factors is also non-linear (see section 5.3.2.4), so another piecewise
linear approximation is needed, as presented in Figure 6.3 and described by
constraints (6.46)-(6.49). Deviation factors (DF;;) are correlated directly with the
logarithm of concentration factors CFj, (In CF,,), which in constraint (6.47) has been

substituted with new variable &, in order to maintain the linearity of the model.

DF, = Z‘ Vot * Hipi Vi,p#dp (6.46)

&, = 2115,.},, . Vi,p#dp (6.47)

> =W, Vi,p#dp (6.48)
7

K, €SOS2 Vi,i,p#dp (6.49)
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where / is a special set used for the piecewise linear approximation of DFjp, y;, and
Oipi are appropriate parameters that help in the calculation of DFj,, and u;, is a SOS2
variable for the piecewise linear approximation of DFj,. Notice that when DFj, = 0, it

follows that In CF,= 0 and therefore CFj, = 1, and that is what we want to

accomplish when chromatographic step i is not selected.

0.2 0.25 0.3

é

Figure 6.3: Piecewise linear approximation for concentration factors CF,.

6.2.3.6. Process synthesis constraints

Constraint (6.29) is used in place of the old purity constraint. Expression (6.29)

ziip
incorporates the non-linear term e ' , which also needs to be linearised with a

P
piecewise linear approximation (Figure 6.4). To accomplish this, factor e’ is
g e 2ép
substituted with a new variable, ES , (ES,=e’ ).
265 =2.60 " Vom Vp #dp (6.50)
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E:fp:Ze{'" i 8 Vp #dp (6.51)
> Vo =1 Vp #dp (6.52)
V,m € SOS2 YYm,p #dp (6.53)

where m is a special set used for the piecewise linear approximation of E& > Cmis an
appropriate parameter for the calculation of E& »» and vpy, is a SOS2 variable for the

piecewise linear approximation of ES .

08

- 06
exp(z §ip)

L 04

L 4

8
2} fip

Figure 6.4: Piecewise linear approximation for exp(&y,).

The approximation of Figure 6.4 begins with a very crude linear piece, because there

are no observed occurrences of Zln CF, with a value higher than -4. After that
point the approximation becomes much more detailed, because a very high accuracy

hI

is required in order to correctly approximate the values of e '

-145-



Chapter 6. An MILP model for optimal peptide tag design and synthesis of downstream processing

Finally, equation (6.29) is re-written using new variable E » in place of the non-linear

2

term e’

(1-SP)-m, , 2 SP- Y (m, ,-EE,) (6.54)
p#dp

6.2.3.7. Objective function

The overall problem is formulated as an MILP model in order to identify the
chromatographic techniques and the shortest amino acid sequence that can produce
the optimal flowsheet of the purification process. The objective is to minimise the
total number of selected chromatographic steps i in the purification process and,
using the penalty parameter c, to force the model to select the minimum number of

amino acids » in the tag.

Problem P5

minimise Zw,. +c-an : (6.55)
i k

subject to:
peptide tag size constraints (6.2) and (6.3);
physicochemical property constraints (6.5), (6.34)-(6.36);
dimensionless retention time constraints (6.37)-(6.40);
deviation factor constraints (6.41)-(6.45);
concentration factor constraints (6.46)-(6.49);
process synthesis constraints (6.50)-(6.54); and

Vo, € {01} Vi, p#dp (6.56)

n eZt Vk (6.57)
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D'F;P’DF;;’DF;;’—E‘—;p’H KDi,dp’rk 20 Vi’P,k (6.58)

dp?
&p <0 Vi, p (6.59)

To reduce the combinatorial nature of the problem, Problem PS5 is solved using a 2-
step procedure. First, the MILP fnodel is solved without the use of a peptide tag for
the purification of protein dp (ie. N = 0 in constraint (6.2)), and a set of
chromatographic techniques is obtained. Then, the MILP is solved again with a tag
fused to the product protein; but this time the candidate chromatographic techniques i

are chosen only among those selected in the first step of the solution procedure.

6.3. Computational results

Solutions were obtained with GAMS (Brooke et al., 1998), using the CPLEX 6.5
solver. All computational experiments were performed on an IBM RS6000
workstation. The methodology was tested with a four-protein mixture: thaumatin
(dp), conalbumin (pl), chymotripsinogen A (p2) and ovalbumin (p3). The

physicochemical properties of the mixture are presented in Table 6.2.

Table 6.2: Physicochemical properties of protein mixture.

Protein  mg, MW, H, Qi x 1077 (C/molecule)

(mg/mL) (Da) pH4.0 pHS5.0 pH6.0 pH7.0 pHS.0
dp 2 22200 0.27 1.60 157 164 155 0.5
pl 2 77000 0.23 0.93 033 -0.12 -034 -0.50
p2 2 23600 0.31 2.15 146 117 0.78 0.38
2 43800 0.28 1.16 -0.63 -136 -1.82 -195

p3

The purity level required for the desired product (dp) is 98%. There are 11 available
chromatographic steps: anion exchange chromatography (AE) at pH 4, pH 5, pH 6,
pH 7, pH 8, cation exchange chromatography (CE) at pH 4, pH 5, pH 6, pH 7, pH 8
and hydrophobic interaction (HI). From these, CE pH 6, CE pH 7, CE pH 8 and HI
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are needed for the purification without the use of a peptide tag fused to protein dp,
which achieves a product purity of 98.1%. The solution is significantly improved
with a tag of 3 lysine residues; a purity of 98.1% can be achieved with only three
separation steps: CE pH 7, CE pH 8 and HI. The resulting mathematical model
involves 151 constraints, 36 discrete variables and 211 continuous variables and was

solved in 5.92 seconds. The results are illustrated in Figure 6.5.

Protein CE CE CE
25.0% pH 6 51.4% pH7 64.6% pH 8 71.9% HI 98.1% Product

Mixture

Protein CE CE
0 0, 0, 0,
| et 25.0_/0 pH7 61.9 (o pH8 74.0 (o HI 98.1 (o Prodact

\

[ ] [ [ ]

Figure 6.5: Optimal result for protein mixture with no tag and with a tag of 3 lysines.

The MILP solution is almost identical to the one provided by the MINLP model
presented in chapter 5, which selected the same 3 chromatographic steps and also a
tag with lysines only. The selection of a peptide tag that only contains lysine amino
acids implies that the increase of the product charge benefits the purification and that
a hydrophobicity increase would be detrimental. Even though there are amino acids
with a stronger effect on charge than lysine, they would increase hydrophobicity as

well, which remains unchanged when lysine is used.

The disparity in the results produced from the MILP and MINLP models (3-lysine-
tag and 2-lysine-tag respectively) can be considered of no serious consequence and
attributed to small differences in the approximations of the two models. In the

MINLP solution, 2 lysine amino acids are just enough to get the purity of the protein
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product to exactly 98% (the speciﬁed purity); in the MILP solution, 2 lysines fall just
short of that (97.95%), so a third one is necessary to “push” the protein’s charge
enough in order for the required purity is achieved. That is also the reason why the
MILP solution produces a slightly higher level of purity (98.1%) than the MINLP
solution. The salient conclusions of the two studies though remain the same:
significant improvements in the purification of proteins can be achieved with the use
of very short peptide tags, the flowsheet of the example process was reduced by one
chromatographic step, and the purification was shown to benefit by the modification
of the charge of the product protein only, as any alteration of hydrophobicity was

proven detrimental to the result.

6.4. Conclusions

An optimisation framework for the simultaneous selection of optimal peptide tags
and the synthesis of chromatographic steps for the purification of protein mixtures in
downstream protein processing has been presented. The framework was formulated
as an MILP mathematical model, developed from a previous MINLP model,
presented in chapter 5, through piecewise linear approximations of non-linear
functions. The methodology was validated through its application to an example
protein mixture involving 3 contaminants and a set of 11 candidate chromatographic

steps. Results were indicative of the benefits of peptide tags in purification processes.

The results and conclusions produced from the application of the MILP formulation
were the same as the ones of the previous chapter. In that respect, this study did not
offer any new insight, but helped to confirm the lessons learned from the application
of the MINLP formulation. Nevertheless, the main benefits of this work are the
mathematical improvements that were integrated in the model. Three significant
enhancements were incorporated: i) the transformation of the process synthesis
constraints with a logarithmic function, which helped avoid the unnecessary
estimation of the mass of contaminant proteins in all intermediate stages of the

purification; ii) the prevention of the estimation of all relevant variables when a

-149-



Chapter 6. An MILP model for optimal peptide tag design and synthesis of downstream processing

chromatographic technique is not selected for the purification; and iii) the
linearisation of the non-linear functions of the model with piecewise linear

approximations.
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Chapter 7

Conclusions and future directions

he aim of this thesis was to facilitate biological studies by applying
mathematical programming techniques to problems of biochemical
nature. Towards that goal, a number of mathematical models and solution
algorithms have been developed in order to assist biologists in the analysis and
quantification of some distinctive problems that biology is faced with. The key
contributions of the thesis are summarised in the next section, while section 7.2

suggests promising new directions for future research work.

7.1. Contributions of the thesis

7.1.1. Analysis of biological networks

Part I of the thesis was concerned with the study of biological networks. A single-
source, shortest path algorithm formulated as an LP model was presented, capable of
calculating the shortest path from one node in a network to every other. The

algorithm is characterised by its simplicity and deals efficiently with network
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circularity. A literature survey was conducted in order to familiarise the reader with
the current status of research and highlight recent academic contributions in the area.
We focused on two specific biochemical networks: the metabolic network of E. coli

and the p53 apoptotic control protein network.

In order to contribute to the search for evolutionary relationships among the E. coli
enzymes, the correlations between pathway distance and genome distance and also
between pathway distance and enzyme function for the SMM pathways of E. coli
were investigated. A demonstrable relationship between pathway distance and
genome distance was observed, with genes nearby in the genome far more likely to
encode nearby enzymes in a metabolic pathway. No clear trend was observed when
examining the relationship between pathway distance and conservation of function.
This lack of obvious correlation, along with evidence from other metabolic studies
concerning sequence and structural similarity of SMM enzymes, supports the theory
of a patchwork model of pathway evolution: enzymes were almost randomly

recruited on a need-only basis within the metabolic network of an organism.

The second biochemical network that has been investigated was the p53 cell cycle
and apoptosis control network. The diameter of the network, which was used as a
proxy of network navigability, was calculated using the LP shortest path algorithm.
Two modes of attack (one random and one directed) were inflicted on the network, to
study the response of its diameter. The p53 network was observed to be inherently
robust to random knockouts of its proteins, which equates to resilience against
mutational perturbation. This robustness was found to be a result of the structure of
the network itself, however, the reliance on highly-connected nodes also makes the
network vulnerable to the loss of its hubs. Tumour inducing viruses exploit this very
weakness in order to disrupt the p53 network by targeting specific proteins. This
study has identified the same proteins as the network hubs, which explains why

tumour inducing viruses are so effective.

The applicability of the presented LP technique was illustrated by its application to
the two aforementioned case studies. The LP algorithm is a fast and effective method
of analysing certain properties of biochemical networks and was proven to be a

valuable analysis tool for such complex systems.
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7.1.2. Protein structure prediction

The prediction of the way proteins fold was the object of the second part of the
thesis. An extensive literature survey was performed in order to give the reader an
idea of the research in an area of biology that accumulates a huge amount of interest.
An optimisation framework for positioning amino acids in unique positions of a three
dimensional cubical lattice was then developed. The framework utilises only the

knowledge of the amino acid sequence and the contact energies among amino acids.

The overall problem was formulated as an MILP model and a three-step solution
procedure was proposed in order to simplify the extremely complex task of protein
structure prediction. The three steps of the proposed methodology were: first,
identify small elementary structures, which are created from a small number of
residues close-by on the amino acid chain and are remarkably stable; then, using the
developed MILP model, we optimally position the elementary structures relatively to
each other to form a folding core; and finally, the 3D structure of the small protein is
predicted by optimally placing the rest of the residues of the amino acid chain around
the folding nucleus, again by applying the developed MILP model. The applicability
of the optimisation-based framework was successfully demonstrated with two
illustrative examples: a lattice-designed protein with 27 residues and a second, larger
protein with 36 residues in its amino acid chain. Therefore, the proposed strategy can
efficiently identify the native conformation of proteins with sizes of at least up to 36

monomers.

7.1.3. Chromatographic purification of proteins using
peptide tags

Part III of the thesis was concerned with the purification of proteins during
downstream processing in biochemical plants, and the optimisation of the flowsheet
of the process through manipulation of the properties of the product protein with the
use of peptide tags. Initially, current approaches in the area of downstream
biotechnology were highlighted. Based on a recently developed MILP framework
(Vasquez-Alvarez and Pinto, 2001) for the synthesis of purification bioprocesses, we

then presented a systematic MINLP approach, which selects a tag that modifies the
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properties of the protein product in the most beneficial way and concurrently
minimises the number of chromatographic steps in the purification process. The
framework employed a two-stage procedure that can be extended to consider
application to larger examples, use of additional chromatographic techniques, or
manipulation of other physicochemical properties. Two illustrative examples were
solved so as to validate the efﬁciéncy of the proposed methodology. Small peptide
tags were selected, which allowed an 'im‘portant decrease in the number of
purification steps required for the purification. Results were indicative of the benefits
of the application of optimisation-based techniques for the use of purification tags in
biotechnological production plants, and have provided a useful guideline for both

downstream process synthesis and optimal tag design.

An MILP mathematical model for the simultaneous selection of optimal peptide tags
and the synthesis of chromatographic steps for the purification of protein mixtures in
downstream protein processing was also developed. The framework was formulated
based on the previously presented MINLP model and the main benefits of this work
were the mathematical improvements that were integrated in the MILP model. The
process synthesis constraints were transformed with a logarithmic function, which
considerably reduced the size of the problem by avoiding the estimation of the mass
of contaminant proteins in intermediate stages of the purification. Appropriate
constraints also helped avoid the estimation of all relevant variables when a
chromatographic step is not selected for the purification. Finally, the non-linear
functions of the MINLP model were linearised with piecewise linear approximations.
The methodology was validated through its application to an example protein

mixture involving 3 contaminants and a set of 11 candidate chromatographic steps.

7.2. Recommendations for future work

A number of promising future research directions related to the application of
mathematical programming to biochemical systems are presented in this section. The

aim is to provide the reader with some future insight in the area as well as highlight a
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number of emerging research issues that could benefit from the developed
mathematical modelling frameworks presented in the thesis. Next, we consider those

future research issues in detail.

7.2.1. Biological networks

Chapters 2 and 3 present the application of an LP shortest path algorithm to the
analysis of two biological networks. The algorithm is thus proven to be a valuable
analytical tool for the examination of the structure of biological networks and can be

easily applied in the future to the study of other networks.

7.2.1.1. Network directionality

The biological networks studied in this thesis were both considered to be
undirectional to simplify the process, but also because consideration of direction was
not applicable in the case studies: for the study of E. coli metabolism we were
measuring proximity, whereas for the p53 network only 5% of the interactions were
directed. Nevertheless, the LP algorithm is fully capable of dealing with network
directionality: it would be very interesting to apply the algorithm to the analysis of

systems such as gene regulatory networks, where directionality plays a crucial part.

7.2.1.2. Metabolic pathways

In the case of the study of metabolic networks, conclusions regarding the evolution
of metabolism were drawn. A stronger case would require the study of sequence,
structural similarity and homology of SMM enzymes, similar to the work of other
researchers in the field (Tsoka and Ouzounis, 2001; Teichmann et al., 2002; Rison et
al.; 2002). Such investigations go beyond the scope of this thesis, but would provide
fertile ground for future research. The LP algorithm can also be applied to the
analysis of metabolic networks of organisms other than E. coli, provided of course

that reliable metabolic data are available.
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7.2.1.3. p53 network

In the case of the p53 cell cycle and apoptotic control network, the application of the
LP algorithm has provided insight into the mode of attack utilised by tumour-
ihducing viruses upon the apoptotic control system. We have used a connectionist
model of the network with a concentrated focus on signalling networks and a specific
and well—u_ndefstood function. As more data regarding the pS3 network become
available in the future, it will be possible to extend the network model in order to
attach directions and strength values to the Vconnections, to make accurate predictions
about the importance of individual nodes and edges. This will allow comparative
analyses of how and why the variable dynamic network components operate under
different evolutionary strains and cell type conditions. The LP framework presented

here represents the first step in this exciting process.

7.2.2. Protein folding

Chapter 4 presents a mathematical programming framework for the prediction of
protein structure. The developed MILP formulation is flexible and can easily be
extended to consider larger examples, different kinds of lattices, and different sets of

interactions (i.e. different energy functions from the 20-letter one used here).

7.2.2.1. Face-centred-cubic lattice

A promising direction is the application of the MILP model to different lattice
configurations. The methodology can be adjusted to work with other kinds of
lattices, such as the face-centred-cubic (FCC) lattice, which present certain
advantages over the simple cubic lattice. The FCC lattice in particular can model real
protein conformations with good quality (Park and Levitt, 1995). It was shown
(Bagci et al., 2002) that the FCC lattice closely approximates the positions of amino
acids in the folded conformation of real proteins, making the FCC very suitable for

modelling proteins.
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7.2.2.2. De novo protein design

The application of our MILP model to the engineering of proteins with specific
properties can be considered. In the so-called “inverse protein folding problem” or de
novo protein design (Drexler, 1981; Pabo, 1983), the goal is to determine an amino
acid sequence that folds into a given three-dimensional structure. As structure is
typically equated to function, the design of a protein that would fold to a pre-
specified conformation would mean that we would be able to design a protein with

the exact desired attributes.

7.2.3. Purification tags in downstream protein processing

Chapters 5 and 6 present mathematical programming frameworks for the concurrent
design of optimal peptide tags and the synthesis of downstream protein processing in
biochemical production plants. Testing the mathematical framework with larger
examples and investigating additional examples of protein purification is a possible
extension to this work. Alsc, it would be very interesting to be able to validate the
generated hypotheses by evaluating experimentally the chromatographic behaviour

of the product proteins with the fused peptide tags.

7.2.3.1. Additional chromatographic techniques

Another possible research direction would be the consideration of additional types of
chromatographic steps, such as gel filtration, ion exchange chromatography with pH
gradient, or affinity chromatography, which would potentially provide the same
degree of purification but using a smaller number of steps. The main constraint for
the extension of the methodology in order to consider other chromatographic
techniques is the availability of the appropriate correlations and the lack of reliable

prediction methods for the physicochemical properties of the proteins.

7.2.3.2. Model enhancements

The modelling of the purificatior: can be extended to incorporate a number of further
issues, including sequencing of the purification steps (Véasquez-Alvarez and Pinto,

2001), product loss (Véasquez-Alvarez and Pinto, 2003) and/or application of
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alternative performance criteria. In particular, the application of a financial objective
function could benefit the optimisation, by improving the accuracy of the results.
From a mathematical programming point of view, the aforementioned modification

to the proposed model would also help reduce degeneracy of the solutions.

The possibility of product loss due to protein-protein interactions in any of the
chromatographic steps and due to membrane steps for buffer exchange and/or protein
concentration could also be considered, for example protein-protein interactions
could cause the formation of aggregates or product-impurity binding, both of which
would significantly reduce the purification achieved by the chromatography. A
percentage of loss of protein product because of these effects can be introduced or
more sophisticated representations of the chromatographic techniques that would

account for the product loss could be developed.

7.3. Epilogue

In this thesis, we have presented some examples of mathematical programming
applications to problems concerning biochemical systems. These paradigms illustrate
the importance of integer optimisation as a solution tool for many problems related to

systems biology and bioinformatics.

The implementation of process systems methodologies to biological problems is not
always a straightforward procedure. Apart from the possible complexity of the
mathematical formulations, detailed biological knowledge of the intricacies of the
problem is also required. Furthermore, it is often the case that the available data are
incomplete, or inconsistent, or plainly erroneous. Even though in recent years there
has been an explosive increase in the availability of biological information, thanks to
the development of new technologies, one should not forget that this information is
still frequently amended and modified: metabolic reactions are often corrected or
removed from/included in metabolic networks, new amino acid sequences and

protein structures are continuously being added to databases, new genes are being
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discovered, and an ever-expanding number of complete DNAs of organisms are

being transcribed.

All the above obstacles demonstrate the need for further and continuous research in
the application of mathematical programming to computational and systems biology.
There remain many open questions about the problems discussed here, which could
be an excellent starting point for future studies. Nevertheless, their number pales in
comparison with the vast number of existing biological problems which could benefit
greatly from efficient optimisation models  and mathematical programming
techniques. There is a world of opportunity out there that will surely remain a big

challenge for researchers of the area for years to come.

-159-



Bibliography

Abkevich, V.1, Gutin, A.M. and Shakhnovich, E.I. (1994) Free energy landscape for
protein folding kinetics: Intermediates, traps, and multiple pathways in theory
and lattice model simulations. J. Chem. Phys. 101, 6052-6062.

Abkevich, V.I., Gutin, A.M. and Shakhnovich, E.I. (1995) Impact of local and non-
local interactions on thermodynamics and kinetics of protein folding. J. Mol
Biol. 252, 460-471.

Albert, R., Jeong, H. and Barabasi, A.L. (1999) The diameter of the World Wide
Web. Nature, 401, 130-131.

Albert, R., Jeong, H. and Barabasi, A.L. (2000) Error and attack tolerance of
complex networks. Nature,406 , 378-382.

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. and Barabasi, A.L. (2004) Global
organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427,
839-843.

Aloy, P., Stark, A., Hadley, C. and Russell, R.B. (2003) Predictions without templates:
New folds, secondary structure, and contacts in CASPS. Proteins 53, 436-456.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and
Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Res. 25, 3389-3402.

-160-



Bibliography

Alves R., Chaleil, R.A., and Sternberg, M.J.E. (2002) Evolution of enzymes in
metabolism: A network perspective. J. Mol. Biol. 310, 311-325.

An, Y. and Friesner, R.A. (2002) A novel fold recognition method using composite
predicted secondary structures. Proteins 48, 352-366.

Androulakis, I.P. (2005) Selecting maximally informative genes. Comput. Chem.
Eng. 29, 535-546.

Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science
181, 223-230.

Antonov, A.V., Tetko, I.V., Mader, M.T., Budczies, J. and Mewes, H.W. (2004)
Optimization models for cancer classification: Extracting gene interaction

information from microarray expression data. Bioinformatics 20, 644-U145.

Arita, M. (2000) Metabolic reconstruction using shortest paths. Simulat. Pract. and
Theory 8, 109-125.

Arita, M. (2004) The metabolic world of Escherichia coli is not small. Proc. Natl.
Acad. Sci. USA 101, 1543-1547.

Atkinson, B. and Mavituna, F. (1991) Biochemical engineering and biotechnology
handbook, Macmillan Press, New York, USA.

Backofen, R. (1998) Using constraint programming for lattice protein folding. In
Proc. Pacific Symposium on Biocomputing, pp. 389-400.

Backofen, R., Will S. and Bornberg-Bauer E. (1999) Application of constraint
programming techniques for structure prediction of lattice proteins with extended
alphabets. Bioinformatics 15, 234-242.

Backofen, R. and Will S. (2003) A constraint-based approach to structure prediction
for simplified protein models that outperforms other existing methods. Lect.
Notes Comput Sc. 2916, 49-71.

Bagci, Z., Jernigan, R.L. and Bahar, 1. (2002) Residue packing in proteins: Uniform
distribution on a coarse-grained scale. J. Chem. Phys. 116, 2269-2276.

-161-



Bibliography

Banks, L., Pim, D. and Thomas, M. (2003) Viruses and the 26S proteasome: Hacking
into destruction. Trends Biochem. Sci. 28, 452-459.

Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: Understanding the cell's
functional organisation. Nat. Rev. Genet., 5, 101-113.

Bellman, R.E. (1958) On a routing problem. Quart. Appl. Math. 16, 87-90.

Berger, B. and Leighton, T. (1998) Protein folding in the hydrophobic-hydrophilic
(HP) model is NP-complete. In Proc. of the RECOMB 98, 30-39.

Berggren, K., Wolf, A., Asenjo, J.A., Andrews, B.A. and Tjerneld, F. (2002) The
surface exposed amino acid residues of monomeric proteins determine the

partitioning in aqueous two-phase systems. BBA-Protein Struct. M. 1596, 253-268.

Blattner, F.R., Plunkett, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M.,
Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis,
N.W,, Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. and Shao, Y. (1997)
The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474.

Bornberg-Bauer, E. (1997) Chain growth algorithms for HP-type lattice models. In
Proc. I Annual International Conference on Computational Molecular Biology,

ACP Press, pp. 47-55.

Bowie, J., Luthy, R. and Eisenberg, D. (1991) A method to identify protein sequences
that fold into a known three-dimensional structure. Science 253, 164-170.

Bradley, P., Chivian, D., Meiler, J., Misura, K.M.S., Rohl, C.A., Schief, W.R,,
Wedemeyer, W.J., Schueler-Furman, O., Murphy, P., Schonbrun, J., Strauss,
C.E.M. and Baker, D. (2003) Rosetta predictions in CASPS: Successes, failures,

and prospects for complete automation. Proteins 53, 457-468.

Broglia, R.A., Tiana, G., Pasquali, S., Roman, H.E. and Vigezzi, E. (1998) Folding and
aggregation of designed protein chains. Proc. Natl. Acad. Sci. USA 95, 12930-12933.

Broglia, R.A. and Tiana, G. (2001a) Reading the three-dimensional structure of lattice

model-designed proteins from their amino acid sequence. Proteins 45, 421-427.

~162-



Bibliography

Broglia, R.A. and Tiana, G. (2001b) Hierarchy of events in the folding of model
proteins. J. Chem. Phys.114 , 7267-7273.

Broglia, R.A., Tiana, G. and Provasi, D. (2004) Simple models of protein folding and
of non-conventional drug design. J. Phys. 16, R111-R144,

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R. (1998) GAMS: A user's guide.
GAMS Development Corporation, Washington, USA.

Brower, R.C., Vasmatzis, G., Silverman, M. and Delisi, C. (1993) Exhaustive
conformational search and simulated annealing for models of lattice peptides.
Biopolymers 33, 329-334.

Burgard, A.P. and Maranas, C.D. (2001) Probing the performance limits of the
Escherichia coli metabolic network subject to gene additions or deletions.
Biotechnol. Bioeng. 74, 364-375.

Burgard, A P. and Maranas, C.D. (2003) Optimization-based framework for inferring and
testing hypothesized metabolic objective functions. Biotechnol. Bioeng. 82, 670-677.

Burgard, A.P., Nikolaev, E.V., Schilling, C.H. and Maranas, C.D. (2004) Flux
coupling analysis of genome-scale metabolic network reconstructions. Genome
Res. 14, 301-312.

Burgard, A.P., Pharkya, P. and Maranas, C.D. (2003) OptKnock: A bilevel programming
framework for identifying gene knockout strategies for microbial strain optimization.
Biotechnol. Bioeng. 84, 647-657.

Burgert, H.G., Ruzsics, Z., Obermeier, S., Hilgendorf, A., Windheim, M. and Elsing, A.
(2002) Subversion of host defence mechanisms by adenoviruses. Curr. Top. Microbiol.
Immunol. 269, 273-318.

Casjens, S. (1998) The diverse and dynamic structure of bacterial genomes. Annu.
Rev. Genet. 32, 339-77.

Chang, Y. and Sahinidis, N.V. (2005) Optimization of metabolic pathways under
stability considerations. Comput. Chem. Eng. , 29, 467-479.

-163-



Bibliography

Chothia, C. (1975) The nature of the accessible and buried surfaces in proteins. J.
Mol. Biol. 105, 1-14.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and. Stein C. (2001) Introduction to
algorithms. The MIT Press, Cambridge, MA, USA.

Creighton, T.E. (1993) Proteins: Structures and molecular properties. W.H.
Freeman, New York, USA.

Crippen, G.M. (1991) Prediction of protein folding from amino acid sequence over

discrete conformation spaces. Biochemistry 30, 4232-4237.

Cui, Y., Wong, W.H., Bornberg-Bauer, E. and Chan, H.S. (2002) Recombinatoric
exploration of novel folded structures: A heteropolymer-based model of protein
evolutionary landscapes. Proc. Natl. Acad. Sci. USA 99, 809-814.

Czaplewski, C., Liwo, A., Pillardy, J., Oldziej, S. and Scheraga, H.A. (2004)
Improved conformational space annealing method to treat beta-structure with the
UNRES force-field and to enhance scalability of parallel implementation.
Polymer 45, 677-686.

Czyzyk, J., Mesnier, M.P. and Moré J.J. (1998) The NEOS server. IEEE Comput.
Sci. Eng.5 , 68-75.

Dasika, M.S., Gupta, A. and Maranas, C.D. (2004) A mixed integer linear
programming (MILP) framework for inferring time delay in gene regulatory

networks. Pac. Symp. Biocomput. 9, 474-485.

Datar, R. (1986) Economics of primary separation steps in relation to fermentation

and genetic engineering. Process Biochem. 21, 19-26.

Devereux, J., Haeberli, P. and Smithies, O. (1984) A comprehensive set of sequence
analysis programs for the VAX. Nucleic Acids Res. 12, 387-395.

Dill, K.A., Bromberg, K., Yue, KM., Yee, D.P., Thomas, P.D. and Chan, H.S.
(1995) Principles of protein folding — A perspective of simple exact models.
Protein Science 4, 561-602.

-164-



Bibliography

Dill, K.A. and Chan, H.S. (1997) From Levinthal to pathways to funnels. Nature
Struct. Biol. 4, 10-19.

Dill, K.A., Fiebig, KM. and Chan, H.S. (1993) Cooperativity in protein-folding
~ Kkinetics. Proc. Natl. Acad. Sci. USA 90, 1942-1946.

Dinner, A.R., Sali, A. and Karplus, M. (1996) The folding mechanism of larger model
proteins: Role of native structure. Proc. Natl. Acad, Sci. USA 93, 8356-8361.

Dolan, E. (2001) The NEOS server 4.0 administrative guide. In Technical
Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division,
Argonne National Laboratory, USA.

Drexler, K.E. (1981) Molecular engineering: An approach to the development of
general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA
78, 5275-5278.

Du, R., Pande, V.S., Grosberg, A.Y., Tanaka, T. and Shakhnovich, E.S. (1998) On
the transition coordinate for protein folding. J. Chem. Phys. 108, 334-350.

Edwards, J.S., Ibarra, R.U. and Palsson, B.O. (2001) In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data.
Nat. Biotecnol. 19, 125-130.

Edwards, J.S. and Palsson, B.O. (2000a) The Escherichia coli MG1655 in silico
metabolic genotype: Its definition, characteristics, and capabilities. Proc. Natl.
Acad. Sci. USA 97, 5528-5533.

Edwards, J.S. and Palsson, B.O. (2000b) Robustness analysis of the Escherichia coli
metabolic network. Biotechnol. Prog. 16, 927-939.

Enzyme Nomenclature (1992) Recommendations of the nomenclature committee of the

international union of biochemistry (NC-IUB). Academic Press, San Diego, USA.

Evan, G.I, Lewis, G.K., Ramsay, G. and Bishop, J.M. (1985) Isolation of
~ monoclonal antibodies specific for human c-myc proto-oncogene product. Mol.
Cell. Biol.5,3610-3616.

-165-



Bibliography

Fell, D.A. and Wagner, A. (2000) The small world of metabolism. Nature
Biotechnol. 18, 1121-1122.

Fexby, S. and Bulow, L. (2004) Hydrophobic peptide tags as tools in bioseparation.
Trends Biotechnol. 22, 511-516.

Fong, S.S. and Palsson, B.O. (2004) Metabolic gene-deletion strains of Escherichia coli
evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056-1058.

Forster, J., Famili, I., Fu, P., Palsson, B.O. an_d Nielsen, J. (2003) Genome-scale
reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res.

13, 244-253.

Fraga, E.S. (1998) The generation and use of partial solutions in process synthesis.
Chem. Eng. Res. Des. 76, 45-54.

Gerrard, J.A., Sparrow, A.D. and Wells, J.A. (2001) Metabolic databases — What
next? Trends. Biochem. Sci. 26, 137-140.

Ghosh, S., Zhu, T., Grossmann, L.E., Ataai, M.M. and Domach, M.M. (2005) Closing
the loop between feasible flux scenario identification for construct evaluation and
resolution of realized fluxes via NMR. Comput. Chem. Eng. 29, 459-466.

Govindarajan, S. and Goldstein, R.A. (1997) Evolution of model proteins on a
foldability landscape. Proteins 29, 461-466.

Greenberg, H.J., Hart, W.E. and Lancia, G. (2004) Opportunities for combinatorial
optimization in computational biology. INFORMS J. Comput. 16, 211-231.

Gropp, W. and Moré, J. (1997) Optimization environments and the NEOS server. In
Approximation Theory and Optimization, Buhmann, M.D. and Iserles, A. (eds.),
Cambridge University Press, Cambridge, UK, pp. 167-182.

Gupta, A., Varner, J.D. and Maranas, C.D. (2005) Large-scale inference of the
transcriptional regulation of Bacillus subtilis. Comput. Chem. Eng. 29, 565-576.

Hart, W.E. and Istrail, S.C. (1996) Fast protein folding in the hydrophobic-
hydrophilic model within three-eighths of optimal.J. Comput. Biol. 3, 53-96.

-166-



Bibliography

Hatzimanikatis, V. and Bailey, J.E. (1997) Effects of spatiotemporal variations on
metabolic control: Approcimate analysis usig (log)linear kinetic models.
Biotechnol. Bioeng. 54, 91-104.

Hatzimanikatis, V., Emmerling, M., Sauer, U. and and Bailey, J.E. (1998)
Application of mathematical tools for metabolic design of microbial ethanol

production. Biotechnol. Bioeng. 58, 154-161.

Hatzimanikatis, V., Floudas, C.A. and Bailey, J.E. (1996) Optimization of regulatory
architectures in metabolic reaction networks. Biotechnol. Bioeng. 52, 485-500.

Hatzimanikatis, V., Lee, K.H. and Bailey J.E. (1999) A mathematical description of
regulation of the GI1-S transition of the mammalian cell cycle. Biotechnol.
Bioeng. 65, 631-637.

Haupt, S., Berger, M., Goldberg, Z. and Haupt, Y. (2003) Apoptosis - The p53
network, J. Cell Sci. 116, 4077-4085.

Hochuli, E., Dobeli, H. and Schacher, A. (1987) New metal chelate adsorbent
selective for proteins and peptides containing neighboring histidine-residues. J.
Chromatogr. 411, 177-184.

Hopp, T.P., Pricket, K.S., Price, V.L., Libby, R.T., March, C.J., Cerretti, D.P., Urdal,
D.L. and Conlon, P.J. (1988) A short polypeptide marker sequence useful for

recombinant protein identification and purification. Bio-Technol. 6, 1204-1210.

Hopp, T.P. and Woods, K.R. (1981) Prediction of protein antigenic determinants
from amino-acid sequences. Proc. Natl. Acad. Sci. Biol. 78, 3824-3828.

Horowitz, N. H. (1945) On the Evolution of Biochemical Syntheses. Proc. Natl.
Acad. Sci. USA 31, 153-157.

Ingraham, J.L., Maaloe, O. and Neidhardt, F.C. (1983) Growth of the bacterial cell.
Sinauer Asocciates Inc., Sunderland, MA, USA.

Irwin, M.S. and Kaelin, W.G. (2001) p53 family update: p73 and p63 develop their
own identities. Cell Growth Differ. 12, 337-349.

-167-



Bibliography

Jensen, R.A. (1976) Enzyme recruitment in the evolution of new function. Annu.
Rev. Microbiol. 30, 409-425.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) The large-
scale organization of metabolic networks. Nature 407, 651-654.

Jeong, H., Mason, S.P., Barabdsi, A.L. and Oltvai, Z.N. (2001) Lethality and
centrality in protein networks. Nature 411, 41-42.

Jones, D.T. (1999a) Protein secondary structure prediction based on position specific
scoring matrices. J. Mol. Biol. 292, 195-202.

Jones, D.T. (1999b) GenTHREADER: An efficient and reliable protein fold
recognition method for genomic sequences. J. Mol. Biol. 287, 797-815.

Jones, D.T. and Guffin, L.J. (2003) Assembling novel protein folds from super-
secondary structural fragments. Proteins 53, 480—485.

Kanehisa M., Goto S., Kawashima S. and Nakaya A. (2002) The KEGG databases at
GenomeNet. Nucleic Acids Res. 30, 42-46.

Karp, P.D., Riley, M., Saier, M., Paulsen, L.T., Collado-Vides, J., Paley, S.M.,
Pellegrini-Toole, A., Bonavides, C. and Gama-Castro, S. (2002) The EcoCyc
database. Nucleic Acids Res. 30, 56-58.

Karpeisky, M.Y., Senchenko, V.N., Dianova, M.V. and Kanevsky, V.Y. (1994)
Formation and properties of S-protein complex with S-peptide-containing fusion
protein. FEBS Lett. 339, 209-212.

Karplus, K., Barret, C., Cline, M., Diekhans, M., Grate, L. and Hughey, R. (1999)

Predicting protein structure using only sequence information. Proteins S3, 121-125.

Kim, D., Xu, D., Guo, J., Ellrott, K. and Xu, Y. (2003) PROSPECT II: Protein structure
prediction program for genome-scale applications. Protein Eng. 16, 641-650.

Kingsford, C.L., Chazelle, B. and Singh, M. (2005) Solving and analyzing side-chain
positioning problems using linear and integer programming. Bioinformatics 21,
1028-1036.

-168-



Bibliography

Kirkpatrick, S., Gelatt C.D. and Vecchi, M.P. (1983) Optimization by simulated
annealing. Science 220, 671-680.

Klepeis, J.L. and Floudas, C.A. (2002) Ab initio prediction of helical segments in
polypeptides. J. Comput. Chem. 23, 245-266.

Klepeis, J.L. and Floudas, C.A. (2003a) ASTRO-FOLD: A combinatorial and global
optimization framework for ab initio prediction of three-dimensional structures of

proteins from the amino acid sequence. Biophys. J. 85,2119-2 146.

Klepeis, J.L. and Floudas, C.A. (2003b) Prediction of beta-sheet topology and
disulfide bridges in polypeptides. J. Comput. Chem. 24, 191-208.

Klepeis, J.L., Pieja, M.T. and Floudas, C.A. (2003a) A new class of hybrid global
optimization algorithms for peptide structure prediction: Integrated hybrids.
Comput. Phys. Commun. 151, 121-140.

Klepeis, J.L., Pieja, M.T. and Floudas, C.A. (2003b) Hybrid global optimization
algorithms for protein structure prediction: Alternating hybrids. Biophys. J. 84,
869-882.

Klimov, D. and Thirumalai, D. (1996) Criterion that determines the foldability of
proteins. Phys. Rev. Lett. 76, 4070-4073.

Kohn, K.W. (1999) Molecular interaction map of the mammalian cell cycle control
and DNA repair systems. Mol. Biol. Cell, 10, 2703-2734.

Kolesov, G., Mewes, H.W. and Frishman, D. (2001) SNAPing up functionally
related genes based on context information: A colinearity-free approach. J. Mol.
Biol. 311, 639-656.

Kopp, J. and Schwede, T. (2004) Automated protein structure homology modeling:
A progress report. Pharmacogenomics S, 405-416.

Krippahl, L. and Barahona, P. (1999) Applying constraint programming to protein
structure determination. Lect. Notes Comput Sc. 1713, 289-302.

-169-



Bibliography

Kussell, E., Shimada, J. and Shakhnovich, E.I. (2003) Side-chain dynamics and
protein folding. Proteins 52, 303-321.

Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic
character of a protein. J. Mol. Biol. 157, 105-132.

Lau, K.F. and Dill, K.A. (1989) A lattice statistical-mechanics model of the

conformational and sequence-spaces of proteins. Macromolecules 22, 3986-3997.

Lawler, E.L. (1976) Combinatorial optimization: Networks and matroids. Holt,
Rinehart and Winston, New York, USA.

Lee, J., Kim, S.Y., Joo, K., Kim, I. and Lee, J. (2004) Prediction of protein tertiary
strucure using PROFESY, a novel method based on fragment assembly and

conformational space annealing. Proteins 56, 704-714.

Lee, S., Phalakornkule, C., Domach, M.M. and Grossmann, LE. (2000) Recursive
MILP model for finding all the alternate optima in LP models for metabolic
networks. Comput. Chem. Eng. 24, 711-716.

Lee, J., Ripoll, D.R., Czaplewski, C., Pillardy, J., Wedemeyer, W.J. and Scheraga,
H.A. (2001) Optimization of parameters in macromolecular potential energy

functions by conformational space annealing. J. Phys. Chem. B 105, 7291-7298.
Levine, A.J. (1992) Viruses. Scientific American Library, New York, USA.

Levinthal, C. (1969) How to fold graciously. In Mossbauer Spectroscopy in
Biological Systems. Debrunner, P., Tsibris, JCM. and Miinck, E. (eds.),
University of Illinois Press, Urbana, USA, pp. 22-24.

Li, C., Henry, C.S., Jankowski, M.D., Ionita, J.A., Hatzimanikatis, V. and Broadbelt,
L.J. (2004) Computational discovery of biochemical routes to specialty
chemicals. Chem. Eng. Sci. 59, 5051-5060.

Lienqueo, M.E. (1999) Development of an Expert System for the Rational Selection
of Protein Purification Processes: Optimisation of Sequence Selection Criteria.

PhD Thesis (in Spanish), University of Chile, Santiago, Chile.

-170-



Bibliography

Lienqueo, M.E., Leser, E.-W. and Asenjo, J.A. (1996) An expert system for the
selection and synthesis of multistep protein separation processes. Comput. Chem.
Eng. 208, S189-S194.

Lienqueo, M.E., Mahn, A. and Asenjo, J.A. (2002) Mathematical correlations for
predicting protein retention times in hydrophobic interaction chromatography. J.
Chromatogr. A 978, 71-79.

Lienqueo, M.E., Mahn, A., Vasquez, L. and Asenjo, J.A. (2003) Methodology for
predicting the separation of proteins by hydrophobic interaction chromatography
and its application to a cell extract. J. Chromatogr. A 1009, 189-196.

Lienqueo, M.E., Salgado, J.C. and Asenjo, J.A. (1999) An expert system for
selection of protein purification processes: Experimental validation. J. Chem.
Technnol. Biot. 74, 293-299.

Light, S. and Kraulis, P. (2004) Network analysis of metabolic enzyme evolution in
Escherichia coli. BMC Bioinformatics 5, art. no. 15.

Lin, X.X., Floudas, C.A., Wang, Y. and Broach, J.R. (2003) Theoretical and
computational studies of the glucose signaling pathways in yeast using global

gene expression data. Biotechnol. Bioeng. 84, 864-886.

Liwo, A., Arlukowicz, P., Czaplewski, C., Oldziej, S., Pillardy, J. and Scheraga,
H.A. (2002) A method for optimizing potential-energy functions by hieracrchical
design of the potential-energy landscape: Application to the UNRES force field.
Proc. Natl. Acad. Sci. USA 99, 1937-1942.

MacDonald, D., Joseph, S., Hunter, D.L., Moseley, L.L., Jan, N. and Guttmann, A.J.
(2000) Self-avoiding walks on the simple cubic lattice. J. Phys. A 33, 5973-5983.

Madigan, M., Martinko, J. and Parker, J. (1997) Brock biology of microorganisms.
Prentice-Hill, Upper Saddle River, NJ, USA.

Mahadevan, R. and Palsson, B.O. (2005) Properties of metabolic networks: Structure
versus function. Biophys. J. 88, L7-L9.

-171-



Bibliography

Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeates, T.O. and Eisenberg, D.
(1999) A combined algorithm for genome-wide prediction of protein function.
Nature 402, 83-86.

Margulis, L. and Schwartz, K. (1998) Five kingdoms: An illustrated guide to the
phyla of life on earth. W.H. Freeman, New York, USA.

Martin, A.C., Orengo, C.A., Hufchihsbn, E.G., Jones, S., Karmirantzou, M.,
Laskowski, R.A., Mitchell, J.B., Taroni, C. and Thornton, J.M. (1998) Protein
folds and functions. Struct. Fold. Des. 6, 875-884.

Mavrovouniotis, M.L., Stephanopoulos, G. and Stephanopoulos G. (1990) Computer-
aided synthesis of biochemical pathways. Biotechnol. Bioeng. 36, 1119-1132.

Michal, G (1998) Biochemical pathways: An atlas of biochemistry and molecular
biology. John Wiley & Sons, London, UK.

Millgram, S. (1967) The small world problem. Psychol. Today 2, 60-67.

Miyazawa, S. and Jernigan, R.L. (1985) Estimation of effective interresidue contact
energies from protein crystal structures: Quasi-chemical approximation.
Macromolecules 18, 534-552.

Moore, G.L., Maranas, C.D., Gutshall, K.R. and Brenchley, J.E. (2000) Modeling
and optimization of DNA recombination. Comput. Chem. Eng. 24, 693-699.

Moore, G.L. and Maranas, C.D. (2002a) eCodonOpt: A systematic computational
framework for optimizing codon usage in directed evolution experiments.
Nucleic Acids Res. 30, 2407-2416.

Moore, G.L. and Maranas, C.D. (2002b) Predicting out-of-sequence reassembly in
DNA shuffling. J. Theor. Biol. 219, 9-17.

Mosher, R.A., Gebauer, P. and Thormann, W. (1993) Computer-simulation and
experimental validation of the electrophoretic behavior of proteins: III. Use of
titration data predicted by the protein’s amino acid composition. J. Chromatogr.

638, 155-164.

-172-



Bibliography

Nikolaev, E.V., Burgard, A.P. and Maranas, C.D. (2005) Elucidation and structural
analysis of conserved pools for genome-scale metabolic reconstructions. Biophys.
J. 88, 37-49.

Notredame, C. (2002) Recent progress in multiple sequence alignment: A survey.

Pharmacogenomics 3, 131-144.

Nygren, P.A., Stahl, S. and Uhlen, M. (1994) Engineering proteins to facilitate
bioprocessing. Trends Biotechnol. 12, 184-188.

Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D. and Maltsev, N. (1999) The
use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96,
2896-2901.

Pabo, C. (1983) Molecular technology - Designing proteins and peptides. Nature
301, 200.

Palu, A.D., Dovier, A. and Fogolari, F. (2004) Constraint logic programming
approach to protein structure prediction. BMC Bioinformatics S, art. no. 186.

Papin, J.A., Hunter, T., Palsson, B.O. and Subramaniam, S. (2005) Reconstruction of
cellular signalling networks and analysis of their properties. Nat. Rev. Mol. Cell.
Bio. 6,99-111.

Park, B.H. and Levitt, M. (1995) The complexity and accuracy of discrete state
models of protein structure. J. Mol. Biol. 249, 493-507.

Petkov, S.B. and Maranas, C.D. (1997) Quantitative assessment of uncertainty in the
- optimization of metabolic pathways. Biotechnol. Bioeng. 56, 145-161.

Petrides, D.P. (1994) BioPro designer — An advanced computing environment for
modeling and design of integrated biochemical processes. Comput. Chem. Eng.
188, S621-S625.

Pillardy, J., Czaplewski, C., Liwo, A. Wedemeyer, W.J., Lee, J., Ripoll, DR,
Arlukowicz, P., Oldziej, S., Amautova, E.A. and Scheraga, H.A. (2001) Development

-173-



Bibliography

of physics-based energy functions that predict medium resolution structure for proteins
of a, # and o/f structural classes. J. Phys. Chem. B 105, 7299-7311.

Phalakornkule, C., Lee, S., Zhu, T., Koepsel, R., Ataai, MM., Grossmann, LE. and
Domach, MM. (2001) A MILP-based flux alternative generation and NMR
experimental design strategy for metabolic engineering. Metab. Eng. 3, 124-137.

Pharkya, P., Burgard, A.P. and Maranas, C.D. (2003) Exploring the overproduction
of amino acids using the bilevel optimization framework OptKnock. Biotechnol.
Bioeng. 84, 887-899.

Pramanik, J. and Keasling, J.D. (1997) Stoichiometric model of Escherichia coli
metabolism: Incorporation of growth-rate dependant biomass composition and

mechanistic energy requirements. Biotechnol. Bioeng. 56, 398-421.

Przybylski, D. and Rost, B. (2004) Improving fold recognition without folds. J. Mol.
Biol. 341, 255-269.

Ramakrishna, R., Edwards, J.S., McCulloch, A. and Palsson, B.O. (2001) Flux-
balance analysis of mitochondrial energy metabolism: Consequences of systemic
stoichiometric constraints. Am. J. Physiol.-Reg. I. 280, R695-R704.

Reed, J.L. and Palsson, B.O. (2004) Genome-scale in silico models of E-coli have
multiple equivalent phenotypic states: Assessment of correlated reaction subsets

that comprise network states. Genome Res. 14, 1797-1805.

Regan, L., Bogle, I.D.L. and Dunnill, P. (1993) Simulation and optimization of
metabolic pathways. Comput. Chem. Eng. 17, 627-637.

Rieger, T.R., Morimoto, R.I. and Hatzimanikatis, V. (2005) Mathematical modeling
of the eukaryotic heat-shock response: Dynamics of the hsp70 promoter.
Biophys. J. 88, 1646-1658.

Riley, M (1998) Genes and proteins of Escherichia coli K-12. Nucleic Acids Res. 26, 54.

-174-



Bibliography

Rison, S.C.G. (2002) Of proteins and Pathways — Investigating protein functional
classifications and the small molecule metabolism of Escherichia coli. PhD

Thesis, UCL, London, UK.

Rison, S.C.G., Teichmann, S.A. and Thornton, J.M. (2002) Homology, pathway
distance and chromosomal localisation of Small Molecule Metabolism enzymes

in Escherichia coli. J. Mol. Biol. 318, 911-932.

Rison, S.C.G. and Thornton, J.M. (2002) Pathway evolution, structurally speaking.
Curr. Opin. Struct. Biol. 12, 374-382.

Robles, A.l, Linke, S.P. and Harris, C.C. (2002) The p53 network in lung
carcinogenesis. Oncogene 21, 6898-6907.

Rohl, C.A,, Strauss, C.E.M., Chivian, D. and Baker, D. (2004) Modeling structurally

variable regions in homologous proteins with Rosetta. Proteins 55, 656-677.

Salgado, H., Moreno-Hagelsieb, G., Smith, T.F. and Collado-Vides, J. (2000)
Operons in Escherichia coli: Genomic analyses and predictions. Proc. Natl.
Acad. Sci. USA 97, 6652-6657.

Sali, A., Shakhnovich, E.I. and Karplus M. (1994a) Kinetics of protein folding — A
lattice model study of the requirements for folding to the native-state. J. Mol.
Biol. 235, 1614-1636.

Sali, A., Shakhnovich, E.I. and Karplus, M. (1994b) How does a protein fold? Nature
369, 248-251.

Sargent, R.W.H. (1977) The decomposition of systems of procedures and algebraic
equations. In Proc. Biennial Conference on Numerical Mathematics, Watson,

G.A. (ed.), Spinger Verlag, Dundee.

Sassenfeld, H.M. (1990) Engineering proteins for purification. Trends Biotechnol. 8,
88-93.

Sassenfeld, H.M. and Brewer S.J. (1984) A polypeptide fusion designed for the

purification of recombinant proteins. Bio-Technol. 2, 76-81.

-175-



Bibliography

Savageau, M.A. (1969) Biochemical systems analysis. I. Some mathematical properties

of the rate law for the component enzymatic reactions. J. Theor. Biol. 25, 365-369.

Savageau, M.A. (1969) Biochemical systems analysis. II. The steady-state solutions for

an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370-379.

Savageau, M.A. (1970) Biochemical systems analysis. III. Dynamic solutions using a

power-law approximation. J. Theor. Biol. 26, 215-226.

Schilling, C.H., Covert, M.W., Famili, I. Church, G.M., Edwards, J.S. and Palsson,
B.O. (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J.
Bacteriol. 184, 4582-4593.

Schilling, C.H., Edwards, J.S. and Palsson, B.O. (1999) Toward metabolic phenomics:
Analysis of genomic data using flux balances. Biotechnol. Prog. 15, 288-295.

Schilling, C.H. and Palsson, B.O. (2000) Assessment of the metabolic capabilities of
Haemophilus influenzae Rd through a genome-scale pathway analysis. J. Theor.

Biol. 203, 249-283.

Schmidt, T.G.M. and Skerra, A. (1993) The random peptide library-assisted
engineering of a C-terminal affinity peptide, useful for the detection and

purification of a functional Ig Fv fragment. Protein Eng. 6, 109-122.

Schmidt, S., Sunyaeyv, S., Bork, P. and Dandekar, T. (2003) Metabolites: A helping
hand for pathway evolution? Trends Biochem. Sci. 28, 336-341.

Segre, D., Vitkup, D., Church, G.M. (2002) Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112-15117.

Shakhnovich, E.I. and Gutin, A.M. (1990) Kinetics of protein folding. J. Mol. Biol.
235, 1614-1636.

Shakhnovich, E.I. and Gutin, A.M. (1993) Engineering of stable and fast-folding
sequences of model proteins. Proc. Natl. Acad. Sci. USA 90, 7195-7199.

Skolnick, J., Kihara, D. and Zhang, Y. (2004) Development and large scale benchmark
testing of the PROSPECTOR 3 threading algorithm. Proteins 56, 502-518.

-176-



Bibliography

Steffens, M.A., Fraga, E.S. and Bogle, I.D.L. (2000a) Synthesis of bioprocesses
using physical properties data. Biotechnol. Bioeng. 68, 218-230.

Steffens, M.A., Fraga, E.S. and Bogle, I.D.L. (2000b) Synthesis of purification tags
for optimal downstream processing. Comput. Chem. Eng. 24, 717-720.

Strogatz, S.H. (2001) Exploring complex networks. Nature 410, 268-276.

Tamames, J., Casari, G., Ouzounis, C.A. and Valencia, A. (1997) Conserved clusters

of functionally related genes in two bacterial genomes. J. Mol. Evol. 44, 66-73.

Teichmann, S.A., Rison, S.C.G., Thomton, J.M., Riley, M., Gough, J. and Chotia, C.
(2001) The evolution and structural anatomy of the small molecule metabolic
pathways of Escherichia coli. J. Mol. Biol. 311, 693-708.

Terpe, K. (2003) Overview of tag protein fusions: From molecular and biochemical

fundamentals to commercial systems. Appl. Microbiol. Biot. 60, 523-533.

Thomas, R., Mehrotra, S., Papoutsakis, E.T. and Hatzimanikatis, V. (2004) A model-
based optimization framework for the inference on gene regulatory networks
from DNA array data. Bioinformatics 20, 3221-3235.

Tiana, G. and Broglia, R.A. (2001) Statistical analysis of native contact formation in
the folding of designed model proteins. J. Chem. Phys. 114, 2503-2510.

Tiana, G., Shakhnovich, B.E., Dokholyan, N.V. and Shakhnovich, E.I. (2004) Imprint
of evolution on protein structures. Proc. Natl. Acad. Sci. USA 101, 2846-2851.

Todd, A.E., Orengo, C.A. and Thornton, J.M. (2001) Evolution of function in protein
superfamilies, from a structural perspective. J. Mol. Biol. 307, 1113-1143.

Tramontano, A. and Morea, V. (2003) Assessment of homology-based predictions in
CASPS. Proteins 53, 352-368.

Tsoka, S. and Quzounis, C.A. (2001) Functional versatility and molecular diversity

of the metabolic map of Escherichia coli. Genome Res. 11, 1503-1510.

-177-



Bibliography

Ueda, Y., Taketomi, H. and Go, N. (1975) Studies on protein folding, unfolding, and
fluctuation by computer simulation. 1. Effect of Specific amino-acid sequence

represented by specific inter-unit interactions. Int. J. Pept. Prot. Res. 7, 445-459.

Uhlen, M. and Moks, T. (1990) Gene fusions for purpose of expression — An
introduction. Method. Enzymol. 185, 129-143.

Unger, R. and Moult, J. (1996) Local interactions dominate folding in a simple
protein model. J. Mol. Biol. 235, 1614-1636.

Varma, A. and Palsson, B.O. (1993) Metabolic capabilities of Escherichia coli: 1I.
Optimal growth patterns. J. Theor. Biol. 165, 503-522.

Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.P., Oltvai, Z.N. and Barabési, A.L. (2004)
The topological relationship between the large-scale attributes and local interaction
patterns of complex networks. Proc. Natl. Acad. Sci. USA 101, 17940-17945.

Vésquez-Alvarez, E., Lienqueo, M.E. and Pinto, J.M. (2001) Optimal synthesis of
protein purification processes. Biotechnol. Progr. 17, 685-696.

Vésquez-Alvarez, E. and Pinto, J.M. (2001) MILP models for the synthesis of
protein purification processes. In Proc. ESCAPE-11, pp. 579-584.

Viésquez-Alvarez, E. and Pinto, J.M. (2003) A mixed integer linear programming
model for the optimal synthesis of protein purification processes with product
loss. Chem. Biochem. Eng. Q. 17, 77-84.

Vésquez-Alvarez, E. and Pinto, J.M. (2004) Efficient MILP formulations for the
optimal synthesis of chromatographic protein purification processes. J.
Biotechnol. 110, 295-311.

Voet, D. and Voet, J.G. (1995) Biochemistry. John Wiley & Sons, New York, USA.

Vogelstein, B., Lane, D. and Levine, A.J. (2000) Surfing the p53 network. Nature
408, 307-310.

Voit, E.O. (1992) Optimization in integrated biochemical systems. Biotechnol.
Bioeng. 40, 572-582.

-178-



Bibliography

Wagner, M., Meller, J. and Elber R. (2004) Large-scale linear programming techniques
for the design of proteins folding potentials. Math. Program. 101, 301-318.

Watanabe, E., Tsoka, S. and Asenjo, J.A. (1994) Selection of chromatographic
protein purification operations based on physicochemical properties. Annals N.Y.
Acad. Sci. 721, 348-364.

Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of ‘small-world’
networks. Nature 393, 440-442.

Williams, H.P. (1999) Model building in mathematical programming. John Wiley,
New York, USA.

Wolkenhauer, O. (2002) Mathematical modelling in the post-genome era:
Understanding genome expression and regulation - A system theoretic approach.
Bio Systems 65, 1-18.

Woolston, P.W. (1994) 4 physicochemical database for an expert system for the
selection of recombinant protein purification processes. PhD Thesis, University
of Reading, Reading, UK.

Xia, Y., Huang, E.S., Levitt, M. and Samudrala, R. (2000) Ab initio construction of
protein tertiary structures using a hierarchical approach. J. Mol. Biol. 300, 171-185.

Xu, Y. and Xu, D. (2000) Protein threading using PROSPECT: Design and
evolution, Proteins 40, 343-354.

Xu, J.B., Li, M., Kim, D. and Xu, Y. (2003) RAPTOR: Optimal protein threading by
linear programming. J. Bioinf. Comp. Biol. 1, 95-117.

Xu, J.B,, Li, M. and Xu, Y. (2004) Protein threading by linear programming:

Theoretical analysis and computational results. J. comb. Optim. 8, 403-418.

Yue, K. and Dill K.A. (1995) Forces of tertiary structural organization in globular
proteins. Proc. Natl. Acad. Sci. USA 92, 146-150.

Zhang, Y., Kolinski, A. and Skolnick, J. (2003) TOUCHSTONE II: A new approach
to ab initio protein structure prediction. Biophys. J. 85, 1145-1164.

-179-



Bibliography

Refereed research articles from this thesis

Journal articles

Dartnell, L., Simeonidis, E., Hubank, M., Tsoka, S., Bogle, .D.L. and Papageorgiou,
L.G. (2005) Robustness of the p53 network and biological hackers. FEBS Lett.
579, 3037-3042.

Simeonidis, E., Lienqueo, M.E., Tsoka, S., Pinto, JM. and Papageorgiou, L.G.
(2005) MINLP models for the synthesis of optimal peptide tags and downstream
protein processing. Biotechnol. Prog. 21, 875-884.

Simeonidis, E., Rison, S.C.G., Thornton, J.M., Bogle, I.D.L. and Papageorgiou L.G.
(2003) Analysis of biochemical networks using a pathway distance metric
through linear programming. Metab. Eng. 5, 211-219.

Conference articles

Simeonidis, E., Pinto, J.M. and Papageorgiou, L.G. (2005) An MILP model for
optimal design of purification tags and synthesis of downstream processing. In
Proc. ESCAPE-15, L. Puigjaner and A. Espufia (eds.), Barcelona, Spain,
pp.1537-1542.

Simeonidis, E., Dartnell, L., Bogle, I.D.L. and Papageorgiou, L.G. (2005) Analysis
of biochemical networks using linear programming, In Proc. 7th World Congress

of Chemical Engineering, Glasgow, Scotland, UK, in press.

Simeonidis, E., Pinto, J.JM. and Papageorgiou, L.G. (2004) Optimal peptide tag
design and synthesis of downstream protein processing. In Proc. ESCAPE-14, A.
Barbosa-Povoa and H. Matos (eds.), Lisbon, Portugal, pp.289-294.

-180-



