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Abstract 

 

 

Mitochondrial dysfunction has been implicated in the early pathogenesis of 

Type 2 Diabetes.   The uncoupling proteins 2 and 3 are mitochondrial proteins 

found in man that have been implicated in protecting mammals from the effects 

of over-nutrition.  Examination of the effect of genetic variation in the UCP2-

UCP3 genetic cluster has so far been inconclusive.  The aim of this thesis was 

to examine, using a genetic strategy, the hypothesis that the role of the 

uncoupling proteins 2 and 3 in the pathogenesis of Type 2 Diabetes is via 

modification of oxidative stress.   

 

In a prospective study of nearly 3000 men the risk of type 2 diabetes at 10 

years was increased for both the UCP2-866AA (1.94 [1.18-3.19]: p=0.009) and 

the UCP3-55TT (2.06 [1.06-3.99]: p=0.03) homozygotes.  This increased risk 

was not explained by the association with any measured conventional risk 

factors. Paradoxically, in a Europe-wide cross-sectional study of 598 subjects 

the UCP2-866A variant was associated with lower waist-hip ratio (GX v AA,1.00 

[0.06] v 0.98 [0.07]; p=0.003), although also associated with lower insulin 

secretion (42.6 [24.6] v 35.6 [18.6]; p=0.03). The UCP3 variant was not 

significantly associated with any metabolic trait. 

 

The significant heritability of plasma markers of oxidative stress (TAS 0.54, 

TOAS 0.49) suggests anti-oxidant function is a plausible mechanism to 

determine Type 2 Diabetes risk.  The predictors of anti-oxidant stress in a family 

study were examined, as was the impact of UCP2-UCP3 gene cluster variation. 

Genetic variation in the UCP2-UCP3 was found to increase the risk of the Type 

2 diabetes.   While UCP2 may modify insulin secretion directly, the mechanism 

of action for UCP3 is likely to involve novel risk factors for Type 2 Diabetes such 

as modification of mitochondrial oxidative stress.   Finally, the development of a 

human model is described to examine genetic influences on oxidative stress 

burden using a meal rich in used cooking oil. 

 

 

 3



         

Acknowledgments  

 

I wish to acknowledge my sincere thanks to my supervisors, Prof Steve 

Humphries and Dr Steven Hurel for their help and encouragement throughout 

this project.  I also wish to thank the members of the British Heart Foundation 

Cardiovascular Genetics group for the guidance in the laboratory and for two 

enjoyable years. 

 

I wish to thank the British Heart Foundation for their generous financial support 

of this project.   

 

The project would also not have been possible without the help of Professor 

Melissa Austin and Brandon Pierce, University of Washington and Dr Jeffery 

Stephens, University of Wales, Swansea who collaborated with the clinical 

studies and my colleagues who volunteered for the glucose tolerance test.  I 

would also like to thank Brandon Pierce for performing the hereditability 

calculations in chapter 5. 

 

Special Thanks go to Prof V Rao and Dr S Rao for their continued support and 

motivation and who have had to translate the first draft of this thesis into 

English!      

 

 

 

 

 

 

 

 

 

 

 

 

 4



 

 

Publications Arising from Work in this Thesis 

 

David R Gable, Jeffrey W. Stephens, Jackie A. Cooper, George J. Miller, Steve 
E Humphries.Variation in the UCP2-UCP3 gene cluster predicts the 
development of type 2 diabetes in healthy middle-aged men  
Diabetes ;55:1504-11. 2006 
 
David R Gable, Jeffrey W Stephens, Sukhbir S Dhamrait, Emma Hawe, Steve 
E Humphries on behalf of the HIFMECH Study Group. European differences in 
the association between the UCP2 -866G>A common gene variant and markers 
of body mass and fasting plasma insulin. 
Diabetes, Obesity and Metabolism,9:130-131:2007 
 

David R Gable, Jeffrey W. Stephens, Jackie A. Cooper, George J. Miller, Steve 
E Humphries.  Variation in the UCP2-UCP3 gene cluster predicts the 
development of type 2 diabetes in healthy middle-aged men. Atherosclerosis 
supplements 7:3:312:2007 
 
Gable DR, Stephens JW, Cooper JA, Miller GE, Humphries SE. The 
Association of UCP2-866G>A with Prospective Risk of Type 2 Diabetes is due 
to reduced insulin secretion from the Pancreas. Atherosclerosis; 186:S6.2006 
  

Gable D, Stephens J, Hurel S. The 75g oral glucose load does not induce an 
increase in markers of oxidative stress markers in healthy volunteers.  
Diabetic Medicine;23:S2:P76.2006  
 
Gable DR, Hurel SJ, Humphries SE. Adiponectin and its gene variants as Risk 
Factors for Insulin Resistance, The Metabolic syndrome and Cardiovascular 
Disease.  Atherosclerosis 468:231-244 2006 
 
Jeffrey W. Stephens, David R. Gable, Steven J. Hurel, George J. Miller , Jackie 
A. Cooper, Steve E. Humphries. Increased Plasma Markers of Oxidative Stress 
Are Associated with Coronary Heart Disease in Males with Diabetes Mellitus 
and with 10-Year Risk in a Prospective Sample of Males Clinical 
Chemistry;52:446-52. 2006 
 
D.R. Gable, R. Whittall, Ka Wah Li, J. Cooper, S.E. Humphries.  Identified 
Variants in the adiponectin gene act as markers for the metabolic syndrome in 
southern Europe but not the north. Atherosclerosis supplements 7:3:368:2006 
 
Gable D, Stephens J, Humphries S, Hurel S.  +276G>T adiponectin gene SNP 
is associated with cardiovascular disease in patients with type 2 diabetes 
mellitus. Diabetologica 48 (Suppl1) A131 349: 2005 
 

 

 5



 

 

Table of Contents 
 
Declaration         2 

Abstract         3 

Acknowledgments        4  

Publications Arising from Work in this Thesis    5 

Table of Contents        6 

List of Figures        9 

List of Tables         13 

Abbreviations        16 

 

Chapter 1 Introduction 
 

1.1 Type 2 diabetes       20 

1.2  Pathogenesis of type 2 diabetes    24 

1.3 Type 2 diabetes and oxidative stress    46 

1.4 Uncoupling Proteins 2 and 3     67 

1.5  Study aims       97 

 

Chapter 2 Materials and methods 
 
 2.1 Study Samples       100 

 2.2 Genotype determination     103 

 2.3 Biochemical Assays      115 

 2.4 Clinical Protocols      126 

 2.5 Statistical Analysis      128 

 2.6 Reagents and common stock solutions    129 

 2.7 Declaration of activity      132 

 
 
 
 

 6



 
 
Chapter 3 Prospective risk of type 2 diabetes in the Northwick Park Heart 

Study. Association of risk with the UCP2-866G>A and UCP3-

55C>T variants. 
  

 3.1 Prospective risk of type 2 diabetes in NPHSII  136 

 3.2 Baseline characteristics Predicting development  

of type 2 diabetes       137 

3.3 UCP2-866G>A and prospective risk of type 2 diabetes 140 

3.4 UCP3-55C>T and prospective risk of type 2 diabetes 143 

3.5 Combined Genotypes and Risk of type 2 Diabetes  148 

3.6 Discussion       153 

 

Chapter 4 The UCP2-866G>A and UCP3-55C>T variants in the 
Hypercoagulability and Impaired Fibrinolytic Function 
Mechanisms study 

 
 4.1 The Hypercoagulability and Impaired Fibrinolytic  

Function Mechanisms study     159 

4.2 Baseline Characteristics     160 

4.3 UCP2-866G>A       162 

4.4 UCP3-55C>T       165 

4.5 Discussion       167 

  

Chapter 5 Plasma Markers of Oxidative stress in the Japanese American 
Family Study 

 
 5.1 Introduction       173 

 5.2 Aims        174 

5.3 The assessment of different methods to measure plasma 

markers of oxidative stress burden    174 

5.4  Plasma Oxidative stress markers in the  

Japanese American Family Study     179 

 7



5.5 Discussion       189 

 
 
Chapter 6 Future Work- Developing a model to study genetic influences 

on the modification of oxidative stress 

 

 6.1 The study of genetic influences on the modification of  

oxidative stress       195 

6.2 Oral Glucose Tolerance Test     196 

6.3 Meal rich in used cooking oil     199 

 

Chapter 7 Discussion 
 
 7.1 Summary of Data      207 

 7.2 Conclusions       209 

 7.3 Limitations of Study      213 

7.4 Future work       214 

 

 

References         217 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 8



List of Figures 
 

Chapter 1 
 
Fig. 1.1. Global diabetes prevalence by age and sex for 2000   22 

Fig. 1.2. Relation between age and rates of AMI by diabetes status and sex. 23 

Fig. 1.3. A summary of the pathogenesis of type 2 diabetes   24 

Fig 1.4.  Signal transduction in insulin action      33 

Fig 1.5.  Inflammation in obese adipose tissue     38 

Fig 1.6.  Normal Insulin secretion       41 

Fig. 1.7. Representation of the Biphasic insulin secretion    41 

Fig 1.8. Relationship between insulin sensitivity and β-cell function in 93  

  healthy individuals        42 

Fig. 1.9. Relationship between insulin sensitivity and β-cell function in groups 

   at high risk of type 2 diabetes      43 

Fig 1.10. Biological anti-oxidant systems      48 

Fig 1.11  The use of lag phase to calculate TRAP result    54 

Fig 1.12  The difference in the proportion of TAC due to individual antioxidants  

    in different TAC methods       57 

Fig.1.13  A representation of the electron transport chain for the production of  

energy in the form of ATP from NADPH and FADH generated during        

substrate oxidation        60 

Fig 1.14 The pathways leading to the generation of ROS during Hyperglycemia 64 

Fig 1.15. The stimulation of pathological pathways by Hyperglycemia-induced  

    ROS generation        65 

Fig 1.16 The dissipation of the mitochondrial proton gradient to provide ATP  

   synthesis (coupled) or with energy wasting (uncoupled)   67 

Fig 1.17 Hypothesized mechanisms by which UCP3 may protect from fatty  

   acid accumulation and peroxidation     83 
Fig 1.18 The structure of the UCP2 and UCP3 gene on chromosome 11  86 

 

Chapter 2 
 

Fig. 2.1 Schematic representation of the polymerase chain reaction (PCR) 104 

Fig. 2.2 Perspex former (A) and visualised MADGE gel (B)    109 

Fig. 2.3 Schematic of the Taqman® assay system     111 

Fig. 2.4 Screen shot of a typical allelic discrimination plot    112 

 9



Fig 2.5 Measurement of plasma TAOS      116 

Fig 2.6 The creation of the ABTS radical in the Plasma TAS kit    117 

Fig 2.7 The calculation of TAS       118 

Fig 2.8 A typical standard curve for the AOP-490 TM assay    120 

Fig 2.9 The measurement of GSH/GSSG      121 

 

Chapter 3 
 
Fig.3.1: Kaplan-Meier plot for the development of type 2 diabetes by the  

presence or absence of obesity.      139 
Fig 3.2: Kaplan-Meier plot for the development of T2DM by UCP2-866G>A  

genotype.         141 

Fig.3.3: Kaplan-Meier plot for the development T2DM by UCP2AA genotype  

based on a recessive model       142 

Fig 3.4:  The Hazard ratio for the development of type 2 diabetes by UCP2-866 

genotype stratified by the presence or absence of obesity    143 

Fig 3.5: Kaplan-Meier plot for the development of T2DM by UCP3-55C>T  

genotype.         145 

Fig.3.6: Kaplan-Meier plot for the development T2DM by UCP3TT genotype  

based on a recessive model       145 

Fig.3.7 The absolute and percentage change in weight by UCP2 and UCP 3   

genotype in the NPHSII study at five years.     146 

Fig 3.8:  The Harzard ratio for the development of type 2 diabetes by  

UCP3-55C>T genotype stratified by the presence or absence of obesity. 147 

Fig 3.9: Hazard ratios for the development of type 2 diabetes by combined  

UCP2-UCP3 group genotype at A) 10 years and B) 15 years of follow up. 150 

Fig.3.10: The hazard ratio for the development of type 2 diabetes at 15 years  

of follow  up by combined UCP2-UCP3 genotype in those above with 

and without obesity.        151 

Fig.3.11: Population attributable risk for combined genotype groups 2,3 and 4.  

A)  10 years B) 15 years       152 
 
Chapter 4 
 
Fig 4.1:  The association  of the UCP-886AA genotype with a) lower waist  

hip ratio b) lower insulin secretion (unadjusted) and lower insulin  

secretion adjusted for BMI       163 

 10



Fig 4.2:  The Odds ratio for cardiovascular disease associated with the 

UCP2-886G>A genotype in the HIFMECH study    164 

Fig 4.3:  The Odds ratio for cardiovascular disease associated with the  

UCP3-55C>T  genotype in the HIFMECH study.    166 

 

Chapter 5 
 
Fig 5.1: Comparison of the 96 well plate modified method (n=20) of using the  

TAS reagents with the manufacturers recommended  cuvette  

method (n=8).         176 

Fig 5.2: The relationship between plasma TAS and TOAS in the Japanese 

American Family Study       181 

Fig 5.3:  The mean of two markers of oxidative stress by Gender in the  

Japanese American Family Study      182 

Fig 5.4:   The heritability of two plasma markers of oxidative stress in the  

Japanese American Family Study      185 

 

Chapter 6 
 
Fig 6.1: Mean glucose in healthy volunteers over 3 hours following a 75 g oral  

glucose load          196 

Fig. 6.2: Plasma TAOS over 3 hours after a 75g oral glucose load in healthy  

volunteers.         197 

Fig. 6.3: Plasma F2-isoprostanes at baseline and after SIN-1 exposure at 20  

minute intervals over 3 hours after 75g oral glucose load in healthy  

volunteers.         198 

Fig. 6.4: Mean (+ \SEM) plasma glucose in subjects with type 2 diabetes after  

a meal rich in used cooking oil (N=9)      201 

Fig 6.5: Mean (+ \SEM) plasma Non-esterified fatty acids in subjects with type 2 

diabetes after a meal rich in used cooking oil (N=9)    201 

Fig 6.6: Mean (+ SEM) TOAS in subjects with type 2 diabetes after a meal rich  

in used cooking oil.        202 

Fig 6.7: Mean (+ SEM) TAS in subjects with type 2 diabetes after a meal rich  

in used cooking oil.        202 

 

 
 

 11



Chapter 7 
 
Fig 7.1 Mechanism of action the UCP2-866A variant associated with higher 

  transcription in the β-cell.         209 

Fig 7.2  A model of tissue specific regulation of UCP2     210 

Fig 7.3  Suggested mechanism of action the UCP3-55T variant associated with lower  

  Transcription.        212 

 

 
 
 

 

 

 
 
 
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 12



 
List of Tables 
 
Chapter 1 
 
Table 1.1  The diagnosis of diabetes mellitus and pre-diabetes states  20 

Table 1.2. The classification of diabetes mellitus according to aetiology  

(World Health Organisation [1998])      21 

Table 1.3  The ranking by antioxidant capacity of different drinks using 5 different  

TAC methods         58 

Table 1.4a The associations of the A55V variant in the UCP2 gene and  

obesity and diabetes markers.      89 

Table 1.4b The associations of the 45bp 3UTR insertion/deletion [I/D] in  

the UCP2 gene with mRNA levels and obesity and diabetes markers 90 

Table 1.4c The association the -866 variant in the UCP2 gene with mRNA  

levels and obesity and diabetes markers.     91 

Table 1.5  A summary of association studies for variants within UCP3  

excluding the -55C>T polymorphism      94 

Table 1.6  The association of the -55C>T variant in UCP3 with Obesity and  

Diabetes phenotypes.        96 

 

Chapter 2 
 

Table 2.1a PCR conditions for genotyping by RFLP     114 

Table 2.1b The digest conditions for genotyping by RFLP    114 

Table 2.2   Taqman assays by design for all variants    115 

 

Chapter 3 
 
Table 3.1a Baseline characteristics and their association with the development  

of T2DM-including baseline subjects with T2DM    138 

Table 3.1b Baseline characteristics and their association with the development  

of T2DM-excluding baseline subjects with T2DM    138 

Table 3.2 Baseline Characteristics with an independent association with the risk  

of development of type 2 diabetes (stepwise model)    139 

Table 3.3. Baseline characteristics by UCP2 -866 genotype   140 

Table 3.4: Baseline characteristics by UCP3 -55 genotype    144 

 13



Table 3.5: UCP2/UCP3 haplotypes and risk of type 2 diabetes at 10 and 15 yrs 148 
Table 3.6: Combined UCP2-UCP3 genotypes and risk of type 2 diabetes at  

10 and 15 years        149 

 

Chapter 4 

 
Table 4.1. The baseline characteristics of the subjects determined by  

case/control and North/South status.       161 

Table 4.2: The differences between lipid profiles in healthy subjects for the  

UCP2-866G>A variant in the HIFMECH study.    162 

Table 4.3: The association of the UCP2-866G>A genotype and metabolic markers 

 in cases in the HIFMECH study.      164 

Table 4.4: The association of the UCP3-55C>T genotype and metabolic markers  

in controls in the HIFMECH study.      165 

Table 4.5  The association of the UCP3-55C>T  genotype with metabolic markers  

in cases in the HIFMECH study.      167 

 

Chapter 5 
 
Table 5.1: The interassay CV for the oxidative stress assays.   177 

Table 5.2: The relationship between different methods of measuring  

plasma markers of oxidative stress in 10 volunteers.   177 

Table 5.3: Baseline characteristics of the Japanese American Family Study 180 
Table 5.4: The comparison of mean TOAS and TAS by baseline characteristics  

in the Japanese American Family Study.     182 

Table 5.5: Correlation between oxidative stress markers and metabolic markers 

in the Japanese American Family Study.     183 
Table 5.6:   The best multiple regression model for both TOAS and TAS as 

identified by best subsets regression [Minitab v14] in the Japanese  

American Family Study       184 

Table 5.7: Familial correlations for two plasma markers of oxidative stress  

in the Japanese American Family Study.     184 

Table 5.8: UCP2 -866G>A and UCP3-55C>T genotype frequencies in the  

Japanese American Family study.        186 

Table 5.9:  Baseline characteristics by genotype in the Japanese American  

Family Study.         186 

 

 14



Table 5.10:  Multiple regression models and determinants of plasma  

markers of oxidative stress in the Japanese American Family Study. 188 

 

 
Chapter 6 
 
Table 6.1: Baseline characteristics of the subjects in the fatty meal pilot study  200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 15



 Abbreviations 
  

GLUT   Glucose transporters  

GSK-3  Glycogen synthase kinase 3 
NEFA  Non-Esterified Fatty Acids 

UCP-2  Uncoupling Protein 2 

UCP-3  Uncoupling Protein 3 

IRS-  Insulin receptor substrate 

AMPK  AMP-activated protein kinase 

SOCS  Suppressor of cytokine signalling 

NF-Κβ  Nuclear factor kappa β 

IKK   I-Kappa-B Kinase 

IMCL  Intra myocellular lipid 

MODY  Maturity onset diabetes in the young 

ATP  Adenosine Triphosphate 

ROS  Reactive Oxygen species 

RNS  Reactive Nitrogen species 

MDA  Malondialdehyde   
HNE  4-Hydroxynonenal 
LDL  Low density Lipoprotein 

HDL  High density Lipoprotein 

DNA  Deoxyribonucleic acid 

TBARS Thiobarbituric AcidReactive Substances 

HPLC  High Performance Liquid Chromatography 

ELISA  Enzyme-Linked ImmunoSorbent Assay 

GCMS  Gas chromatography-mass spectrometry 

GSH  Glutathione 

GSSG  Oxidised glutathione 

M2VP  1-methyl-2-vinylpyridinium trifluoromethanesulfonate 
NADPH β-nicotinamide adenine dinucleotide phosphate 

FADH  Flavin adenine dinucleotide-Hydrogen 
mRNA  Messenger Ribonucleic Acid 
PPAR  Peroxisome proliferator-activated receptors 

UTR  Untranslated region 
LD Linkage disequilibrium 

  

 16



 17 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER  ONE 

 

INTRODUCTION



 18 

CONTENTS OF CHAPTER ONE 

 

1.1 Type 2 Diabetes Mellitus 

 

1.1.1. Definition        20 

1.1.2  Demographics       21 

 

1.2 Pathogenesis of type 2 diabetes      24 

 

 1.2.1 Genetic predisposition to type 2 diabetes    

  a. Evidence for a genetic basis for type 2 diabetes  25 

  b. The Role of Insulin Resistance     26 

  c. Using Genetics in the study of type 2 diabetes   27 

 

 1.2.2 Molecular Mechanisms in type 2 diabetes gene-lifestyle  

interaction        30 

   a. The development of insulin resistance   31 

   b. The development of Pancreatic failure   40 

 

1.3  Type 2 Diabetes and Oxidative Stress     46

      

 1.3.1  Sources and effects of oxidative stress    46 

 1.3.2  Anti-oxidant systems      48 

1.3.3  Measuring Oxidative stress burden.    49 

a. Oxidation of macromolecules     50  

b. Anti-oxidant concentrations     52 

c. Total anti-oxidant capacity assays     52  

d. Which biomarker of oxidative stress ?    56  

 1.3.4 Role of oxidative stress in type 2 Diabetes   58

  

 

 

 

 



 19 

1.4 Mitochondrial Uncoupling Proteins     67 

   

1.4.1. Physiology of Uncoupling Protein 2    68  

  1.4.1a  UCP2 and Metabolism.      69

  1.4.1b  UCP2 and islet cell function    72

  1.4.1c  UCP2 and oxidative stress    74 

 

1.4.2  Physiology of Uncoupling Protein 3    77 

1.4.2a UCP3 thermogenesis and uncoupling   77 

1.4.2b UCP3 and fatty acid metabolism    79 

1.4.2c UCP3 and fatty acid transport    80 

1.4.2d UCP3 and type 2 diabetes     84 

 

1.5 Variation in the Uncoupling Protein Genes 2 and 3   85 

  

1.5.1 Uncoupling Protein 2       86 

 1.5.2 Uncoupling Protein 3       92 

 

1.6 Study Aims         97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

1.1 Type 2 Diabetes Mellitus 

 

1.1.1 Definition  

 

Diabetes Mellitus is a disorder characterised by hyperglycaemia.  Diabetes is 

diagnosed on the basis of World Health Organisation (WHO) recommendations 

(Table 1.1) which also defines the pre-diabetic states of impaired glucose 

tolerance and Impaired fasting glucose.   

 

Table 1.1  The diagnosis of diabetes mellitus and pre-diabetes states from the 

Expert Committee on the Diagnosis and classification of diabetes mellitus 

(Diabetes Care: 20: 1183-1197:1997) 

 

 
Glucose concentration in venous plasma 
(mmol/L) 

Diabetes mellitus 
Fasting ≥ 7·0 or 2-h post-glucose load ≥11·1 
 

Impaired glucose tolerance 
Fasting (if measured) <7·0 and  
2-h post-glucose load ≥ 7·8 and <11·1 

Impaired fasting glucose 
Fasting ≥ 6·1 and <7·0 and  
2 h post-glucose load (if measured) <7·8 

 

Glycaemia is regulated by a number of hormones but the key hormone is insulin.  

Failure to maintain normal glucose homeostasis is due to the inability of the 

organism to maintain normal insulin secretion from the β-cells of the pancreas 

or to maintain normal insulin action, a state defined as insulin resistance.   

Insulin resistance is present when the biological effects of insulin are less than 

expected for both glucose disposal in skeletal muscle and suppression of 

endogenous glucose production, primarily in the liver (Dineen S,1992).  The 

WHO criteria for the classification of diabetes are based on current 

understanding of the aetiology of the disease.  Type 1 diabetes results from a 

cell-mediated autoimmune attack on β cells [reviewed by Daneman D, 2006].  In 

summary, a genetic susceptibility to type 1 diabetes is inherited, mainly in the 

HLA-genotype, and the condition is triggered by an as yet unidentified, probably 
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infective, environmental trigger.  The abnormal activation of the T-cell-mediated 

immune system in susceptible individuals leads to an inflammatory response 

within the islets (insulitis) as well as to a humoral (B cell) response with 

production of antibodies to β-cell antigens.  Continuing destruction of β cells 

leads to progressive loss of insulin-secretory reserve and, when insulin 

secretion falls below a critical amount to a state of absolute insulin deficiency 

(Daneman D,2006). 

 

Type 2 diabetes is by far the most common form of diabetes, it is a 

heterogeneous condition, diagnosed empirically by the absence of features of a 

secondary cause or features suggesting type 1 diabetes. 

 

Table 1.2. Classification of diabetes mellitus according to aetiology (World 

Health Organization (1998) 

 

Type 1  β-Cell destruction, usually 
leading to absolute insulin 
deficiency  

15–20% of cases in Europe and 
the United States 

Type 2  Some degree of insulin 
resistance, with relative insulin 
deficiency  

75–80% of cases in Europe and 
the United States 

Other  Other types with specific causes  5% of cases in Europe and the 
United States 

 

 

1.1.2 Demographics 

 

Diabetes Mellitus is now considered as one of the main threats to human health 

in the 21st Century (Zimmet P,2000).  Changes in the human environment, 

behaviour and lifestyle have resulted in escalating rates of both obesity and 

diabetes and the number of people with diabetes is expected to double between 

2000 and 2030 (Wild S,2004).  The diabetes epidemic relates mainly to type 2 

diabetes which accounts for over 90% of cases globally (Zimmet P,2004) which 

explains the increase in the older population (Fig1.1).  Estimates suggest that 
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5.2% of World all cause mortality is attributable to diabetes (2.9 million deaths in 

2000), which is equivalent to one in ten deaths in economically productive 

individuals aged 35-64 years in most developing countries.(Roglic G,2005). 

 

Fig. 1.1. Global diabetes prevalence by age and sex for 2000.(Wild S,2004) 

 

 

The increase in mortality is in part due to a significant increase in the risk of 

coronary artery disease, where men with type 2 diabetes have the same risk of 

myocardial infarction as men without type 2 diabetes who have already had a 

myocardial infarction (Fig.1.2).  This is equivalent to the increased risk of 

myocardial infarction associated with an increase in age of 15 years (Booth 

GL,2006).  

 

The link between type 2 diabetes and cardiovascular disease is partly explained 

by a cluster of adverse changes to lipid profiles and blood pressure.  This 

cluster has been termed the metabolic syndrome. An attempt to define this 

syndrome was first made by the WHO in 1998, of which abnormal glucose 

tolerance was a key factor.  A clinical definition of metabolic syndrome was 

produced by the National Cholesterol Education Program- Adult treatment 

program III in 2001, which includes abdominal obesity, dyslipidaemia, 

hypertension, insulin resistance and prothrombotic and inflammatory states 

(Expert Panel on Detection EaToHBCiA,2001).  There is, however, much 
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debate as to whether current definitions identify an entity that adds any 

cardiovascular disease risk above the individual components in the definition or 

other primary risk factors not included in the definition, such as smoking and 

LDL cholesterol, which also tends to cluster with hypertension etc. (Alberti 

KGMM,2005; Kahn R,2005). 

 

Fig. 1.2.  Relation between age and rates of AMI by diabetes status and sex [All 

lines fitted according to a polynomial equation, R >0·99 for each fitted line 

(Booth GL,2006)] 
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1.2 Pathogenesis of type 2 diabetes 

 

 

The core elements involved in the pathogenesis of type 2 diabetes are  

impaired insulin action, known as insulin resistance, and impaired insulin 

secretion leading to a relative insulin deficiency. The core elements can be 

influenced both genetically and environmentally.  Longitudinal studies suggest 

that a defect in insulin action precedes the development of type 2 diabetes, and 

the pre diabetic states, with the disease only becoming evident when β-cell 

failure  means that insulin secretion is unable to compensate for the increased 

requirements (Weyer C,1999).  Adiposity, especially central adiposity leads to 

increased release and circulating levels of non-esterified fatty acids [NEFA] 

which aggravates insulin resistance in liver and muscle (Boden G,1997).  The 

excess lipid is also stored in ectopic sites, such as skeletal muscle, where it 

further impairs insulin action (Pan DA,1997).   

 

Fig. 1.3.  A summary of the pathogenesis of type 2 diabetes 
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1.2.1 Genetic predisposition to Type 2 Diabetes 

 

1.2.1a  Evidence for a genetic basis for type 2 diabetes 

 

The recent epidemic of type 2 diabetes is a clear indication of the importance of 

environmental factors in type 2 diabetes onset.   However, there is also an 

abundance of evidence concerning the presence of a genetic component. 

 

Ethnic Differences 

 

There is wide variation in the prevalence of type 2 diabetes by ethnic group, 

with very low levels in some, such as rural Chinese, to extremely high rates 

found in the Pima Indians in Arizona (WHO Ad Hoc Diabetes Reporting 

Group,1993).  However, this could be due to non-genetic cultural and 

environmental factors, but as the prevalence of type 2 diabetes reduces with the 

extent of Pima/European American interbreeding (Williams RC,2000) this is less 

likely.  The prevalence of type 2 diabetes also differs between ethnic groups 

that share similar environments, such as the United Kingdom where the 

prevalence of type 2 diabetes in Caucasians is 2.4% but prevalence is 3-6 fold 

higher in individuals of South Asian descent (Simmons D,1991). 

 

Family Studies 

 

A higher prevalence in family members is thought to be because of an 

increased number of shared genes, including those that play a role in disease 

predisposition shared between family members.  Such a relationship has been 

described a number of times, most recently in the Framingham Offspring study 

where risk of type 2 diabetes increased by 3.5 times with one affected parent 

and to 6.1 with both parents affected (Meigs J,2000).  However, there is still the 

possibility of these results being confounded by shared culture, environment 

and habits.   This can be addressed by twin studies.  Several twin studies have 

been carried out and although concordance rates vary they are higher in 
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monozygotic twins than dizygotic twins (Barroso I,2005).  The fact that 

concordance in monozygotic twins may be as high as 80% (Ghosh S,1996), 

together with the other studies, suggest that type 2 diabetes has a substantial 

genetic component. 

 

1.2.1b  The role of insulin resistance 

 

The requirement for over fifty essential nutrients in modern man to achieve 

maximum health and longevity means that a diverse diet has been linked to 

health and that this relationship developed early in hominid pre-history (Hockett 

B,2003).   The survival of the genes predisposing to type 2 diabetes, not only in 

man but in other species, such as Free-Ranging Baboons (Kemnitz JW,2002) 

would imply that they may have been selected for in the past.   Pre-human 

ancestors (2-4 million years) consumed a significant proportion of carbohydrate 

in their diet (Colagiuri S,2002), as a result the brain developed a specific 

requirement of glucose  as a source of fuel.    Brain stores of glycogen are 

sufficient for only a few minutes survival without blood flow, so systems had to 

develop to ensure a robust supply of glucose (Kitano H,2004).  These systems 

evolved in past environments far different to those found today and our genome 

remains largely adapted to our Palaeolithic existence (Johanson D,1998).  This 

pre-agricultural age diet overlaps little with current foods and was based mainly 

on meat protein (Hunter) and protein from nuts and shellfish, with little 

carbohydrate from fruits and vegetables (Gatherer)(Colagiuri S,2002).   To 

maintain blood glucose for the brain the organism would develop reduced 

peripheral blood glucose utilisation and increased hepatic glucose production 

i.e., insulin resistance (Rossetti L,1989), a state that is also a feature of periodic 

starvation (Newman WP,1983).  At the end of the last Ice Age the population 

was insulin resistant.  The advent of agriculture increased the amount of 

carbohydrate in the human diet (Eaton SB,1985), although it was not until the 

industrial revolution that highly processed carbohydrate was widely available, 

which, coupled with the lack of energy (activity) spent in food procurement 

(Eaton SB,2002), and high calorie diet, produced an environment where this 

adaptation started to become deleterious.  This then confers higher 

susceptibility to a number of chronic degenerative diseases.   
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1.2.1c   Using Genetics in the study of type 2 Diabetes 

 

Epidemiology is “the study of distribution determinants [and control] of health 

related states and events in populations”.  The concept of “genetic 

epidemiology” is less well defined but regarded as the study of the genetic 

determinants of disease, and also the joint effect of genes and non-genetic 

determinants (Burton PR,2005).  The disease-exposure association of 

traditional epidemiology is essentially replaced with the genetic variation-

exposure association.  There are a number of methods available to locate and 

identify causative genes.     

 

Learning from Monogenic Disorders 

 

A small proportion of diabetes cases are due to mutation in a single gene.  

There are three main groups of disorders, MODY [maturity onset diabetes of the 

young], neonatal diabetes and Mitochondrial diabetes.  The understanding of 

the genetic basis for these conditions has improved understanding of the 

physiology of metabolism and energy balance and the pathophysiology of 

polygenic diabetes (McCarthy MI, 2008).      

 

Although 10% of cases MODY do not have a cause identified the remaining 

cases fall into two types  (Vaxillaire M, 2006).  Glucokinase mutations account 

for 14% and give rise to a non-progressive mild impairment of glucose sensing 

in the pancreatic β-cell (Hattersley AT, 1993).  The remaining cases are due to 

mutations in the genes for a number of transcription factors that are thought to 

play key roles in pancreatic development and function, including TCF-1,TCF-2, 

IDF-1, Nuerod 1 and CEL (McCarthy MI, 2008).      

 

Neonatal diabetes presents in the first six months of life.  The genes identified 

all code for proteins that form an ATP dependant potassium channel 

[KCNJII/ABCC8].  Identification of the underlying genetic aetiology has enabled 

an effective and tailored treatment strategy to be developed for these` patients 
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using the sulponylurea group.  Mitochondrial diabetes is discussed in a 

following section on insulin resistance. 

 

Unravelling the genetic variation –exposure in polygenic disease 

 

One option is to move straight to the obvious candidate genes, however, in 

complex diseases such as type 2 diabetes there are a very large number of 

plausible candidate genes.  Linkage analysis can be used to identify broad 

genomic regions that might contain a disease gene, even without a plausible 

candidate being present in that area (Teare MD,2005).   Two genetic loci are 

linked if they are transmitted together from parent to offspring more often than 

expected under independent inheritance (c.f. Linkage disequilibrium, which 

refers to loci found together on haplotypes in the population at a frequency 

greater than expected).  Linkage analysis identifies markers that are passed 

down through a family, that consistently accompany the disease of interest. 

They have been more successfully used for monogenic conditions than 

complex polygenic conditions (Botstein D,2003).  To date, over 50 type 2 

diabetes linkage studies  have been conducted in a variety of populations, in 

which some chromosomal regions have now been replicated in multiple studies 

(Barroso I,2005).   This is in part due to the intrinsic limitations of linkage 

analysis studies due to low statistical power, which can also be reduced by 

missing pedigree information, genetic differences between populations and 

genotype errors, such that the sample size to detect genetic linkage of the 

modest size expected in complex traits may be unobtainable (Risch N,2000).    

The power of linkage analysis in type 2 diabetes is also reduced by difficulty 

defining the phenotype, with the possibility that early onset type 2 diabetes may 

have different genetic determinants, and the difficulty in identifying subjects who 

may have latent autoimmune diabetes.  The power of the study will be diluted 

further by the possibility of genetic heterogeneity within families, where a 

different combination of genes may determine a complex trait within a family 

(Teare MD,2005). However, despite these difficulties, a number of regions have 

now been replicated (reviewed by (Florez JC,2003), and at least two important 

genes have been identified by this approach namely, calpain 10 (Horikawa 
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Y,2000) and TCF7L2 (Grant SFA,2006), neither of which were plausible 

candidate genes. 

 

Association studies have more in common with traditional epidemiology, where 

the risk is a particular allele, genotype or haplotype of a genetic marker.  Most 

performed so far employ a case-control design, and have been of the candidate 

gene type.  They have also not been well replicated, because of poor matching 

of cases and controls, use of convenient samples, small study size, limited 

number of markers per gene and failure to take into account environmental 

interaction (Barroso I,2005) although, these can somewhat be overcome if a 

prospective sample is used (Humphries SE,2003).  The presence of an 

association does not always imply causation, but may reflect an association 

with a nearby causal variant (i.e. in strong linkage disequilibrium with the variant 

studied) or be due to some underlying stratification or admixture of the 

population (Cordell HJ,2005).  Genetic association studies have identified a 

number of polymorphisms reproducibly associated with type 2 diabetes, 

including Pro12Ala in PPAR-gamma (Altshuler D,2000).  A review of the 

published candidate gene polymorphism association studies can be found in 

Barroso I(2005). 

 

New techniques in genetic epidemiology 

 

The Genome Wide Association study 

 

The development of high performance genotyping (Fan JB, 2006) coupled with 

the identification of most known patterns of common variation by the HapMap 

consortium (The International HapMap Conssortium, 2003)  have enabled 

researchers who have either through collaboration or design amassed more 

suitable sample sizes to perform  genome wide association studies (McCarthy 

MI, 2008).  This approach is not based on any plausible biological basis but 

aims to capture most of the common variation in the whole genome in one study.   

This approach .has led to a recent increase in the number of replicated gene-

type 2 diabetes association studies.  The following have been identified as 
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important genes by genome wide association studies, HHEX/IDE, SLC30A8, 

FTO, CDKAL1, CDKN2A and IGF2BP2 (McCarthy MI, 2008).      

 

Mendelian Randomisation 

 

When a robust finding from observational studies [vitamin C and CHD (Khaw 

KT, 2001)] is not backed up by interventional studies (Heart Protection Study 

Collaborative group, 2002) one of the likely causes is the presence of 

confounding variables.   Mendelian randomisation overcomes some of problems 

as the association can be tested on the basis of random genetic variation.  A 

genetic variant that alters a biological exposure eg CRP should increase the 

prevalence of the related disease as predicted by its effect on the risk factor 

(Smith GD, 2007).  If this is not the case then the disease-risk factor relationship 

observed is likely to be due to confounding factors.   

 

  

1.2.2 Molecular Mechanisms in type 2 diabetes- gene-lifestyle interaction 

 

 

The cardinal features of type 2 diabetes are the development of insulin 

resistance and the failure of insulin secretion.  Both of these develop from a 

combination of genetic predisposition and environmental influences.  There is 

continued debate about which is the initial abnormality.  Early studies suggested 

that insulin resistance was the strongest predictor of type 2 diabetes in Pima 

Indians (Lillioja S,1993) and that insulin resistance was present at least ten 

years before development of the disease, whilst reduction in insulin secretion 

occurred only a few years prior to development of type 2 diabetes (Warram 

JH,1990).  However, recently this data has been questioned, with evidence that 

β-cell dysfunction is present in normal glucose tolerant individuals predisposed 

to type 2 diabetes (van Haeften TW,1998), and that people with type 2 diabetes 

may not be more insulin resistant than appropriate obese controls (Weyer 

C,1999).  Certainly both are present at time of hyperglycaemia (Chiasson 

JL,2004), and it may be the relationship between them that is more important 

than each individually (see 1.2.2b).   
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1.2.2a The development of insulin resistance 

 

 

Insulin is a peptide hormone secreted from the β-cells of the islets of 

Langerhans, in the pancreas.   The actions of insulin include increased glucose 

uptake into muscle and fat, decreased hepatic glucose production, and 

increased protein, glycogen and lipid synthesis with concurrent reductions in 

breakdown and cell growth and differentiation (Saltiel AR,2001).  Sensitivity to 

insulin action is influenced by age, genetics, exercise and fitness, diet, 

medication and obesity (Kahn SE.,2003).  Insulin resistance is strongly 

associated with “over-nutrition” driving obesity, although, the over-nutrition may 

not be all dietary, as defects in mitochondrial fat oxidation have also been 

described in type 2 diabetes.   The consequences of obesity and insulin 

resistance include impaired glucose tolerance, hypertension and dyslipidemia 

(low High Density Lipoprotein [HDL], high Very Low Density Lipoprotein [VLDL] 

and a preponderance of small dense Low Density Lipoprotein [LDL]) and can 

even be detected in obese children (Weiss R,2004).  The metabolic changes all 

promote vascular damage, and cardiovascular disease and mortality and 

morbidity is increased in the presence of insulin resistance (Laasko M,1996). 

 

 

Normal Insulin Action (Fig.1.4) 

 

The insulin receptor consists of two α and two β subunits. The α units make up 

the extracellular ligand binding domain and normally inhibit the action of the 

intracellular tyrosine kinases domain (β subunits).  When insulin binds to the 

receptor this inhibition of tyrosine kinase activity is reduced, and conformational 

changes occur in the β subunits which enhance tyrosine kinase activity (Patti 

MR,1998).   The β-subunits activate, by phosphorylation, a cascade of insulin-

receptor substrate proteins (IRS), which act as docking proteins for and activate 

phosphatidylinositol-3 kinase [PI(3)K] (Kahn BB,1996).  The IRS cascade also 
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activates Mitogen-Activated Kinase [MAP-Kinase], which is responsible for 

some of the cell growth and proliferation effects and is not down-regulated in 

insulin resistance (Cusi K,2000).  PI(3)K activates a number of pathways related 

to glucose metabolism, through activation of protein kinase B/Akt and protein 

kinase C (Schinner S,2005).  These include transposition of GLUT-4 glucose 

uptake proteins to the cell membrane, and the reduction of glycogen synthase 

kinase 3 activity which allows glycogen synthesis to occur (Shulman GI,2000).  

The activation of a number of forkhead transcription factors (FkHR/FOXO) 

inhibits the key enzymes of glycogenolysis, phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase (Schmoll D,2000), whilst 

activation of the mTOR pathway can control the translation of a number of 

proteins with metabolic actions, either directly or through P70rsk activation 

(Saltiel AR,2001).  There is also a second pathway of GLUT-4 activation, the 

Cbl/CAP pathway.  On binding of insulin to the insulin receptor Casitas B-

lineage lymphoma protein (Cbl) is activated, which then forms a complex with 

Cbl associated protein (CAP).  This complex locates the G-protein TC10 in 

membrane rafts and  activates it, which then provides a signal for GLUT-4 

activation (Chiang SH,2001) . 
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Fig 1.4. Signal transduction in insulin action (Saltiel AR,2001). 

 

Insulin receptor pathways are terminated by protein tyrosine-phosphatase 1B which 

dephosphorylates the signal pathways.  The insulin signal can also be inhibited by 

serine/threonine phosphorylation (Zick Y,2001) by atypical Protein Kinase C isoforms 

or the C-Jun Pathway (White MF,2002) or by enhanced degradation of the IRS proteins 

as occurs in SOCS signalling (Rui L,2002). 

 

Consequences of Obesity 

 

Adipose tissue is an important determinant of whole body insulin sensitivity.  

The distribution of the excess body fat is also important, with central fat being 

more important in driving insulin resistance than peripheral fat (Fujimoto 

WY,1994).  Central fat is intra-abdominal visceral fat which tends to collect 

around the waist, which is itself a strong predictor of type 2 diabetes 

(Wahrenberg H,2005).   Visceral fat has a different phenotype, with increased 

lipolysis compared to subcutaneous fat (Abate N,1995).   The important role of 

adipose tissue in whole body insulin sensitivity is indicated by animal models.  

The GLUT-4 adipose tissue specific mouse is severely insulin resistant (Abel 

ED,2001) while the skeletal muscle tissue specific GLUT-4 knockout has mild 

diabetes only (Zisman A,2000).   This may be because Insulin Growth factor 
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signalling can compensate in skeletal muscle (Shefi-Friedman L,2001) but the 

adipose tissue GLUT-4 over-expression model is also more insulin sensitive 

despite being more obese (Shepherd PR,1993).  Adipose tissue specific GLUT-

4 over-expression also corrects the mild insulin resistance seen in the muscle 

specific knockout, without any direct effect on skeletal muscle but by increasing 

the number of small adipocytes (Carvalho E,2005).  In man, GLUT-4 expression 

is reduced in adipose tissue and not skeletal muscle in those with obesity or 

type 2 diabetes (Carvalho E,2001). 

 

Expanded adipose tissue can promote the development of type 2 diabetes by a 

number of mechanisms.  These are triggered by a change in adipocyte size. 

Large adipocytes, that occur in obesity, undergo changes in gene expression 

such as reduced adiponectin, and tend to promote insulin resistance (Yang 

X,2004) with increased intracellular lipid in non adipose tissue.  The presence of 

large adipocytes is also a predictor of type 2 diabetes and numbers inversely 

correlate with insulin sensitivity (Weyer C,2000), whilst in patients with type 2 

diabetes adipogenesis is impaired, decreasing the availability of new adipose 

cells and increasing average cell size (Yang X,2004). Large adipocytes have 

diverse functional abnormalities (Le Lay S,2001) with impairment of proliferation 

pathways (β-catenin), insulin signalling pathways (GSK-3) and reduced 

adiponectin secretion (Yang X,2004). 

 

There are a number of candidates for the signal from adipose tissue that 

induces insulin resistance in liver and muscle.  Non-Esterified Fatty Acids 

[NEFA] are released in larger quantities by expanded adipose tissue (Ravussin 

E,2002) and are increased in the offspring of patients with type 2 diabetes even 

if glucose tolerance is normal (Perseghin G,1997).  Circulating levels of NEFA 

are inversely correlated with net glucose disposal (Baldeweg SE,2000).  The 

infusion of NEFA inhibits glucose uptake after 3-4 hours (Fig 1.4), (Boden 

G,1997) which with decreased glycogen synthesis (Krebs M,2001) means that 

there is a reduction in the effectiveness of insulin-driven pathways.  NEFAs 

reduce PI(3)K activity (Dresner A,1999) possibly through activation of atypical 

PKC isoforms and Serine/Threonine phosphorylation of IRS proteins (Shulman 

GI,2000).   Increased delivery of NEFA alters membrane composition (Borkman 
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M,1993) and has a direct effect on glucose transporters (Long SD,1996), which 

also contributes to other mechanisms driving insulin resistance, including 

intracellular lipid stores and inflammation. 

 

Adipose tissue forms over 10% of total body weight, but it is now clear that 

adipocytes have functions other than simple storage cells (Shimada K,2004).  

The most significant of these appears to be the secretory capacity of the 

adipocyte.  The adipocyte secretes a number of peptides that have been 

labelled adipocytokines or adipokines (Kadowaki T,2005).  Adipokines identified 

to date seem to function as modulators of metabolism, such as Leptin and 

Resistin, or of inflammation, such as Tumour Necrosis Factor-α (TNF-α), 

Interleukin 6 [IL-6], adipsin (also known as complement factor D), acetylation-

stimulating protein, visfatin (also known as B-cell colony-enhancing factor), 

plasminogen-activator inhibitor type 1, as well as other complement 

components and interleukins (Hug C,2005; Rajala MW,2003).   

 

The most abundantly secreted adipokine is adiponectin, making up 0.01% of 

circulating protein, with serum concentration a thousand times greater than 

other hormones and 106 times greater than other inflammatory cytokines 

(Shimada K,2004). Studies from animal models and human subjects confirm 

that adiponectin is an insulin-sensitising hormone, that is negatively regulated 

by obesity [Reviewed in Gable D, 2006a].    A significant number of the 

metabolic actions of adiponectin are dependent on the activation of AMP-

dependent kinase (AMPK) (Tomas E,2002; Wong GW,2004; Yamauchi T,2002; 

Yamauchi T,2003), a fuel-sensing enzyme (Wong GW,2004).  AMPK 

dependent fuel-sensing systems have been identified in myocytes, hepatocytes, 

skeletal muscle and parts of the central nervous system (Wong GW,2004).  

AMPK is activated when ATP is required, and one of its main stimulators is the 

AMP/ATP ratio.  Activation increases glucose transport, glycogen accumulation 

and fatty acid oxidation, with the aim of increasing ATP production.  Adiponectin 

also has anti-inflammatory actions.  The increase in insulin sensitivity 

associated with Leptin secretion is also through AMPK activation, although the 

secretion of anorexigenic peptides also contributes to reduced over-nutrition 

(Minokoshi Y,2002).   
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Leptin is described as a “starvation signal” as its levels decline during fasting, 

but in obese individuals levels are often higher.  The mechanism of this Leptin 

resistance has yet to be elucidated (Ahima RS,1999).  TNF-α is also produced 

by adipose tissue and acts in an autocrine and paracrine way, increasing NEFA 

release (Itani SI,2002), reducing adiponectin release (Ruan H,2002) and 

reducing insulin signalling efficiency in adipocytes (Saltiel AR,2001).   

 

The possibility that inflammation was important in the development of insulin 

resistance was first suggested when it was noted that the lipid abnormalities in 

type 2 diabetes were similar to those seen in the acute phase response 

(Blackman JD,1993).  Further evidence of the link between inflammation and 

insulin resistance is suggested by an increase in levels of pro-inflammatory 

cytokines in the post prandial period (Carroll MF,2003), and the relationship of 

type 2 diabetes and obesity with low grade inflammation.  Low grade 

inflammation precedes and predicts the development of insulin resistance.   

Insulin resistance is associated with higher levels of C-Reactive Protein (CRP), 

and levels of this acute phase protein, as well as others such as IL-6, 

orosmuoid and sialic acid are associated with risk of type 2 diabetes  (Duncan 

BB,2003).    Obesity is also associated with non-specific markers of activation of 

the immune system including temperature, white cell count and total γ-globulin 

(Tataranni PA,2005). The acute phase response is part of the innate immune 

system and IL-6, of which up to 30% of the circulating levels are produced by 

adipose tissue (Mohamed-Ali V,1997), is one of the prime stimulators of acute 

phase proteins (Gabay C,1999).  IL-6 levels correlate with obesity and insulin 

resistance and predict the onset of type 2 diabetes (Bastard JP,2000).   Infusion 

of IL-6 induces insulin resistance (Tsigos C,1997), with IL-6 having a direct 

effect on inactivating IRS function  via SOCS (Rui L,2002).  One of the key 

transcription factors involved in the innate immune system activation is NF-κβ, 

which is maintained in its inactive state by binding with Iκβ.  NF-κβ is activated 

after Iκβ is released by the action of the kinase IKK.   Lipid infusion, which is 

associated with increased insulin resistance activates NF-κβ (Tripathy D,2003), 

while  blockade of IKK activity lowers blood glucose in rodents (Kim JK,2001) 

and in man (Hundal RS,2002).   The inflammatory response in obesity may be 

driven by changes in adipose tissue (Fig. 1.5), as a response to being unable to 
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store all the energy delivered (Wellen KE,2003).  Adipose tissue and the 

immune system are similar, with both functions performed by the fat body in 

Drosophila (Xu H,2003).  There are many shared pathways between T-cells, 

macrophages and adipocytes, with the peroxisome proliferator-activated 

receptors [PPAR] transcription factors, now known to regulate a large repertoire 

of inflammatory genes as well as their well known metabolic function (Way 

JM,2001).  A number of macrophage and inflammatory genes are also 

upregulated in obesity (Xu H,2003). 

 

Skeletal muscle is responsible for 75% of post-prandial glucose disposal (Klip 

A,1990), and a defect in removal of glucose and glycogen by skeletal muscle is 

found in all insulin-resistant subjects (Shulman GI,1990).  Early investigations 

demonstrated increased lipid in the skeletal muscle of subjects with type 2 

diabetes (Dagenais GR,1976) and although the early studies required prior 

removal of all extracellular lipid and were prone to error, they suggested that 

intramyocellular lipid (IMCL) was a good predictor of insulin resistance 

(Machann J,2004).  Advanced imaging techniques (Simoneau JA,1995), and 

more recently the use of magnetic resonance spectroscopy, has confirmed this 

association  (Thamer C,2003).   However, endurance athletes also have 

elevated levels of IMCL but are very insulin sensitive (Goodpasture BH,2001).  

Fatty acid metabolites, such as long chain acyl-CoA (Ellis BA,2000), are 

correlated with level of insulin resistance and diacylglycerol, and can increase 

serine/threonine phosphorylation of the insulin signaling cascade, possibly by 

activating atypical PKC isoforms or through pro-inflammatory pathways (Itani 

SI,2002).  However this relationship can be modified by the oxidative capacity of 

skeletal muscle (Thamer C,2003). 

 

 

 

 

 

 

 

 



 38 

Fig 1.5. Inflammation in obese adipose issue 

 

Obese adipose tissue is characterized by inflammation and progressive infiltration by 

macrophages as obesity develops. Changes in adipocyte and fat pad size lead to physical 

changes in the surrounding area and modifications of the paracrine function of the adipocyte.  

For example, in obesity, adipocytes begin to secrete TNF- , which can stimulate preadipocytes 

to produce monocyte chemoattractant protein-1 (MCP-1). Increased secretion of leptin (and/or 

decreased production of adiponectin) by adipocytes may also contribute to macrophage 

accumulation by stimulating transport of macrophages to adipose tissue and promoting 

adhesion of macrophages to endothelial cells, respectively. Whatever the initial stimulus to 

recruit macrophages into adipose tissue, once these cells are present and active, they, along 

with adipocytes and other cell types, can perpetuate a vicious cycle of macrophage recruitment, 

production of inflammatory cytokines, and impairment of adipocyte function. (Wellen KE,2003). 

   

 

Mitochondria and insulin resistance 

 

Oxidative capacity is determined by mitochondrial function and there is 

evidence of mitochondrial dysfunction in insulin resistance and type 2 diabetes.  

Mitochondria are also an important source of oxidative stress [see 1.3.4]. 

 

Mitochondria have their own genome, and mutations in the mitochondrial 

genome are associated with diabetes.  The mitochondrial genome is maternally 

inherited, consists of 16.6kB and codes for 13 proteins that form part of the 

electron transport chain.  Mutations have been associated with neurological   

disease and diabetes, and for the tRNA and rRNA involved in ribosomal protein 

synthesis within mitochondria (Wallace DC, 1999).  The most common causes 
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of mitochondrial diabetes are the 3243A>G variant in the Leu,URR gene, a DNA 

encoded tRNA that is associated with low BMI, lipomas and hepatic fat 

infiltration suggesting the underlying problem is aberrant fat storage.  The 

diabetes tends to occur around age 40 and is associated with significant β-cell 

damage.  A second gene [LARS2] has also been implicated in mitochondrial 

diabetes (Maassen JA, 2007). 

 

In mouse models there is reduced biogenesis of mitochondria (Choo HJ,2006) 

disease, while mitochondria in subjects with type 2 diabetes are smaller and 

have reduced activity of the electron transport chain (Kelley DE,2002).   In 

subjects with type 2 diabetes or insulin resistance, gene expression profiling 

shows reduced electron transport chain genes, especially in visceral fat 

(Dahlman I,2006), and also reduced copies of oxidative phosphorylation protein 

encoded in mitochondrial DNA (Bogacka I,2005a).  PPAR-γ co-activator 1 

(PGC-1α) is a transcription factor that drives mitochondrial biogenesis (Wu 

Z,1999) and has a role in gluconeogenesis and fatty acid oxidation (Bogacka 

I,2005b).  PGC-1α expression is reduced in type 2 diabetes (Mootha VK,2003) 

and also in insulin resistant offspring of subjects with type 2 diabetes (Patti 

ME,2003).  The deterioration in mitochondria function that occurs with age leads 

to reduced oxidative phosphorylation in the elderly which correlates with the 

increase in insulin resistance seen with age (Petersen KF,2003) and the 

reduced utilization of fatty acids in those with insulin resistance (Kelley 

DE,2000).  Total fasting fat oxidation is correlated with insulin sensitivity 

(Wahrenberg H,2005).  Insulin sensitivity is also correlated with post-prandial 

thermogenesis (Robinson S,1992).  Women predisposed to obesity have lower 

24hr fat oxidation compared to controls (Raben A,1994), whilst in obese women 

relative post prandial fat oxidation is reduced (Blaak EE,2006).  The mechanism 

linking fat oxidation and insulin resistance is unclear.   ICML is important, as 

blocking fatty acid uptake molecules, such as CD36 (Hajri T,2002) and Fatty 

acid transporter-1, (Kim JK,2004) protects from insulin resistance.  In insulin-

sensitive individuals, insulin increases ATP synthesis and Respiratory Quotient, 

which does not occur in insulin-resistant states (Brehm A,2006).  Fat oxidation 

only adapts slowly to intake (Raben A,1994) and, combined with a diminished 
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capacity to use fat as a fuel, it may be that mitochondrial dysfunction potentiates 

the problems of over-nutrition and abnormal adipose tissue biology. 

 

 

1.2.2b The development of pancreatic failure  

 

Although insulin secretion in type 2 diabetes is abnormal in response to a 

number of stimuli, including intravenous and oral glucose, arginine, β-agonists 

(isoproteronol), and sulphonylureas (Kahn SE,2003), it was not thought that 

poor insulin secretion contributed to the early aetiology of type 2 diabetes.  

Initial investigations demonstrating that subjects with type 2 diabetes continue 

to secrete insulin (Yalow RS,1960), and this taken with the evidence that insulin 

resistance appeared to be the first factor to appear, suggested that abnormal 

insulin secretion was a late event in the pathogenesis of type 2 diabetes.   

However, these studies did not take into account that  insulin secretion is 

modified by insulin resistance (Kahn SE,1993) and recent data suggests that β-

cell dysfunction occurs early, and is important in the pathogenesis of type 2 

diabetes as does data from the understanding of MODY [discussed below].    

Recently, genome wide association studies have also suggested an important 

role for insulin secretion as, to date, most of the replicated identified associated 

genetic variants seem to have more of a role in modulating pancreatic function 

rather than insulin resistance. 

 

 

Normal Insulin secretion (Fig 1.6) 

 

Insulin secretion occurs as the result of uptake of glucose into the β-cell by 

GLUT-2, a low affinity, high capacity glucose transporter. Glucose is 

“trapped“ in the cell by the action of glucokinase converting the glucose to 

glucose-6-phosphate.   Further transformation to pyruvate via the tricarboxylic 

acid cycle and the mitochondrial electron transport chain to ATP follows.   

Alteration of the intracellular ADP:ATP ratio leads to closure of ATP-sensitive 

potassium channels.  These channels include in their structure the 

sulphonylurea receptors (SUR1/SUR2) and the subunits Kir6.1, Kir6.2 which 
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have been implicated in the aetiology of neonatal diabetes and are closed in the 

presence of glucose.  This leads to a change in membrane electrical energy 

potential and opening of voltage-gated calcium channels (MacDonald PE,2005).  

 

Fig 1.6.  Normal Insulin secretion 

 

IAPP=islet amyloid polypeptide. G-6-P=glucose-6-phosphate. CoA=coenzyme A. 

GLUT2=glucose transporter 2.(MacDonald PE,2005). 

 

Initially, there is release of docked and readily available vesicles and then 

vesicle mobilization is stimulated.  Therefore, insulin release is biphasic (Del 

Prato S,2002) with an early peak (acute phase) followed by a more sustained 

plateau or second phase (Fig 1.7). 

 

Fig. 1.7.  Representation of the Biphasic insulin secretion 
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β-cell function in subjects at high risk of diabetes  

 

As described earlier, the presence of insulin resistance in those at risk of type 2 

diabetes will modify insulin secretion, which is often used as a marker of β-cell 

function.  This relationship is shown in Fig 1.8.   

 

Fig 1.8. Relationship between insulin sensitivity and β-cell function in 93 healthy 

individuals  (Kahn SE,1993). 

 

 

 

 

 

 

 

 

 

 

 

 

AIRglucose = acute insulin response to glucose.  Insulin sensitivity Index is derived from minimal 

model analysis of frequently sampled intravenous glucose tolerance testing.  5
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percentiles shown.
 

  

 

The development of insulin resistance must be associated with an increase in 

insulin secretion for normal glucose homeostasis to be maintained, a move to 

the right along the same centile.   When groups at increased risk of type 2 

diabetes are examined (Fig.1.9) they are indeed found to be insulin resistant but 

in addition β-cell dysfunction is also present as indicated by insulin secretion 

falling into the lower centiles (Kahn SE,1996). 
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Fig. 1.9.  Relationship between insulin sensitivity and β-cell function in groups 

at high risk of type 2 diabetes 
 

  
PCO= women with polycystic ovary syndrome 
GDM= Gestational Diabetes Mellitus   (Kahn SE,1996) 

 
The first defect in β-cell function that occurs, even in those with normal glucose 

tolerance, is the loss of the acute phase response (Del Prato S,2002), even 

though the relationship between second phase and insulin sensitivity is 

maintained.  During the development of worsening glucose tolerance the acute 

phase insulin release progressively worsens (Weiss R,2005).   There is also 

evidence of abnormal insulin processing with increased release of pro-insulin, 

again even in those at high risk of type 2 diabetes but with normal glucose 

tolerance (Saad MF,1990).  The proportion of pro-insulin released is a predictor 

of future development of type 2 diabetes (Kahn SE,1995).  Insulin is co-

secreted with a 37 amino acid polypeptide, islet amyloid polypeptide (Cooper 

GJS,1987) which is also found to be secreted in lower amounts in type 2 

diabetes (Kahn SE,2003). 
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Mechanisms of β-cell dysfunction 

 
 

The investigation of monogenic Maturity Onset Diabetes Mellitus of the Young 

[MODY] identified the causal genes as a number of transcription factors 

(Barroso I,2005).  Mutations in transcription factors have a different clinical 

phenotype of progressive beta-cell failure resulting in increasing 

hyperglycaemia and requirement for treatment 

(www.projects.ex.ac.uk/diabetesgenes/index). Knockout mouse models 

generally have a reduced β-cell mass which can be compensated for in early 

life, but normal glucose levels cannot be maintained (Hattersley AT,2004).  In 

autopsy series, β-cell mass is reduced by 20-50%, however, this occurs many 

years after diagnosis and is consistent with the finding of increased apoptotic 

events in subjects with type 2 diabetes (Butler AE,2003).  The study of the 

pancreas in individuals at high risk of diabetes is difficult, but differences in 

insulin secretion suggest the problem is not simply reduced β-cell mass.  In 

dogs with 65% of their pancreas removed, acute phase insulin secretion is 

maintained, in part, by increasing the sensitivity of the existing β-cell mass to 

glucose (Ward WK,1988).  A similar compensation occurs early in Type1 

diabetes as β-cells are destroyed by the autoimmune process (Johnston 

C,1987), but this compensation is not seen in type 2 diabetes suggesting other 

processes are also underway. 

 
There is a possibility that the increased circulating NEFA can also directly affect 

β-cell function.  NEFA increase insulin secretion for the first 24 hours but after 

this inhibit β-cell function, and long term exposure is associated with β-cell 

dysfunction, as indicated by reduced insulin release as well as reduced pro-

insulin processing (Zhou YP,1996).  NEFA are converted to long chain acyl-

CoA in the cell, which can counteract ATP-induced closure of potassium 

channels (Bränström R,2004).  They can also modulate intracellullar calcium 

through the orphan G-protein coupled receptor GPR40 (Itoh Y,2003) and induce 

β-cell apoptosis through increased nitric oxide production (McLean N,1955).  

However, circulating fatty acids are essential for glucose-stimulated insulin 

secretion after prolonged fasting (Dobbins RL,1998), and long chain acyl CoA 
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facilitates the fusion of secretory granules to the cell membrane (Deeney 

JT,2000).  The factors modulating the complex relationship between circulating 

fatty acids and insulin secretion are not fully understood.  The composition of 

free fatty acids can have different effects, with polyunsaturated fatty acids 

stimulating insulin secretion and short chain and saturated fatty acids inhibiting 

secretion (Haber EP,2002).  Glucose-stimulated insulin secretion depends on 

glucose oxidation, and there is a reciprocal relationship between glucose and 

fatty acid oxidation (Zhou YP,1996).  NEFA reduce glucose uptake and 

oxidation, which is more pronounced in insulin resistant states (Zhou YP,1995), 

and feeding rats with a high fat diet reduces the rate of glucose oxidation 

(Carpinelli AR,1992).   Complex changes in the ratio of fat to glucose oxidation 

may explain the effects of NEFA on insulin secretion. 

 

The β-cell dysfunction progresses as glucose tolerance worsens, and the most 

severe insulin deficiency is seen after 10 years of type 2 diabetes (Wallace 

TM,2002).  Glucose toxicity contributes to this failure, probably through a 

mechanism involving oxidative stress (see 1.3), increasing cytokine production  

(Maechler P,1999) and accelerating apoptosis (Butler AE,2003). 

 

Autopsy of subjects with type 2 diabetes reveals another potential mechanism 

of β-cell dysfunction.  Up to 90%, of subjects with type 2 diabetes have deposits 

of amyloid in the pancreas (Knowles NG,2002).  The protein is based on the 

islet amyloid polypeptide, which is co-secreted with insulin and could 

accumulate with increased insulin demand.  These aggregates are toxic to islets 

in culture and increase β-cell apoptosis (Lorenzo A,1994).  The degree of 

amyloid replacement predicts the need for insulin therapy (Kahn SE,1998).  

Overexpression of islet amyloid protein in animal models fed a high fat diet 

leads to higher glucose levels,  (Verchere CB,1996) which suggests that islet 

amyloid has a role in type 2 diabetes.  However, the fact there is no  increase in 

amyloid in impaired glucose tolerance states (Butler AE,2003) and that it is not 

present in all subjects with type 2 diabetes, means that its role has yet to be 

defined.  It may be a response to the underlying processes of β-cell dysfunction 

rather than driving it. 
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1.3 Type 2 Diabetes and Oxidative Stress 

 

Redox reactions include all chemical processes in which atoms have their 

oxidation number (the charge that it would bear if all the ligands were removed 

along with the electron pairs that were shared with the central atom) changed. 

Oxidation is defined as an increase in oxidation number, and reduction as a 

decrease in oxidation number.  In most cases oxidation occurs when a molecule 

transfers electrons to another molecule, but dehydrogenation is also an 

alternative method of oxidation.  Substances that have the ability to oxidize 

(remove electrons from) other substances are known as oxidizing agents, 

oxidants or oxidizers, and are themselves reduced in the reaction. In biological 

systems normal metabolism results in the generation of a number of oxidants 

known as reactive oxygen species [ROS] if based on oxygen, or reactive 

nitrogen species [RNS] if nitrogen based, although they are often described 

together as ROS.  These are generally very small molecules and are highly 

reactive due to the presence of unpaired valence shell electrons. To protect the 

structure of the organism from oxidation a number of cellular defences have 

developed.  Oxidative stress occurs when cellular anti-oxidant defences are 

inadequate to inactivate generated ROS, and they are free to react with other 

cellular components (Stocker R,2004). 

 

 

1.3.1 Sources and effects of oxidative stress 

 

Oxidative stress can result from exogenous processes such as radiation, 

pollution, smoking (Ghiselli A,2000) and toxins.  ROS generation is thought to 

be responsible for the cardiac side effects of anthracylines (Keizer HG,1990) 

and the hepatic toxicity of some antibiotics (Orrenius S,1985) or from 

endogenous metabolism.  ROS are continuously generated by the organism as 

a by-product of oxidative metabolism (Gate L,1999) described in more detail 

later (1.3.3c).  The six main ROS are superoxide [O2-], hydrogen peroxide 

[H2O2], peroxyl radical ROO-, Hydoxyl radical [OH-], singlet oxygen [O2] and 

peroxynitrite [NO-] (Huang D,2005).  Cellular damage from ROS has been 

implicated in a number of pathological conditions including atheroma (Heinecke 
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JW,2003), Alzhiemer’s disease (Pratico D,2004), Parkinson’s disease (Giasson 

BI,2000), Rheumatoid arthritis (Baskol G,2005), inflammatory bowel disease 

(Kruidenier L,2002), cancer (Brown NS,2001) and may even be responsible for 

the deterioration in function associated with ageing (Finkel T,2000).   ROS could 

be involved in pathology either through direct oxidative damage to biomolecules 

or through the cellular response such as apoptosis (Harrison DG,1997).    

 

Lipids are oxidised by ROS to aldehydes, of which the two most studied are 

malondialdehyde (MDA) and 4-hydroxyl-2-nonenal (HNE).  Oxidised lipid 

changes the biological properties of cell membranes, inactivating membrane-

bound receptors and enzymes, and reducing cell junction communication 

(Dalle-Donne I,2006).  In endothelial cells, oxidation of lipid increases 

expression of cell adhesion molecules, activates matrix metallproteinases and 

induces proliferation of underlying vascular smooth muscle (Suzuki YJ,1997).  

These  induce thrombosis and endothelial dysfunction (Calingasan NY,1998), 

all changes associated with atheroma. A key part in the pathological process of 

atheroma involves oxidation of circulating LDL particles (Ceconi C,2003).  

These changes in function can lead to cell death, with evidence that MDA is 

cytotoxic (Uchida K,2003) and HNE can induce apoptosis (Esterbauer H,1991). 

 

Oxidation of protein can alter its structure and function, and for example 

cataract is a consequence of photo-oxidation of the lens proteins (Taylor 

A,1993).  Modification of proteins  can generate new antigens and an immune 

response (Rosen A,1997), and inhibit enzyme function (Dalle-Donne I,2006) 

which can cause secondary damage if repair mechanisms are affected 

(Wiseman H,1996).  The oxidised protein is often poorly degraded, and can 

form aggregates within the cell that can cause metabolic dysfunction and initiate 

apoptotic processes (Dean RT,1997).   

 

DNA modification will have a broad range of effects on cellular function.  

Modified DNA contributes to risk of cancer (Block G,2006) and may contribute 

to ageing and reduced lifespan (Hart RW,1974) as urinary excretion of 

damaged DNA correlates with lifespan across a broad range of mammals 

(Foksinski M,2004). 
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1.3.2 Anti-oxidant systems 

 

Anti-oxidants are substances that oppose oxidation or inhibit reactions 

promoted by oxygen or peroxides.  Living organisms have developed a complex 

anti-oxidant network to protect themselves from the damaging effects of ROS 

(Prior RL,1999).  There are essentially two main groups, the enzymatic anti-

oxidants and the non-enzymatic scavengers that break down radical chain 

reactions and are in the process sacrificed and need to be regenerated (see 

Fig.1.10) (Huang D,2005).  The most significant circulating anti-oxidant is 

probably uric acid which is metabolised to allantoin (Grootveld M,1987). Anti-

oxidants can also be classified by their lipid solubility, with the lipophilic 

carotenoids important in the protection of lipoproteins, while vitamin C is much 

more hydrophilic (Gate L,1999) and may have different roles. 

 

 

Fig 1.10.  Biological anti-oxidant systems 

•Enzymatic

Superoxide Dismutase

Catalase

Glutathione 

Peroxidase
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Autooxidation factors [Se, Coenzyme 
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Transition Metal chelators [EDTA]

Radical Scavengers [Vitamin C & E]

 

(Huang D,2005) 

 

The function of intra-cellular anti-oxidants is supported by the enzymatic anti-

oxidants superoxide dismutase, which detoxifies superoxide, and catalase,  

which breaks down hydrogen peroxide.   Anti-oxidant defences also depend on 

the action of glutathione, a low molecular weight thiol made from glutamate, 

cysteine, and glycine.  Glutathione acts as a scavenger of ROS, and is oxidised 

to glutathione disulfide which protects the rest of the cell.  The glutathione is 

replenished by the action of glutathione reductase on glutathione disulfide (Wu 

G,2004).  Anti-oxidants that can be obtained from the diet include vitamin C and 

E (Ames BN,1995) and the carotenoids eg lycopene in tomatoes (Stahl 

W,1992).  Long-term anti-oxidant supplementation intervention trials have so far 
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been disappointing in the prevention of cancer or heart disease (2002; Beta 

Carotene Cancer Prevention Study Group The Alpha-Tocopherol,1994; 

Hennekens CH,1996; Omenn GS,1996) despite epidemiological evidence that 

high vitamin C and E intake protects against degenerative disease (Enstrom 

JE,1992; Rimm EB,1993).  This may in part be due to the fact that life long 

exposure or genetic influences are more important and overwhelm the effect of 

short time (relative to total lifespan) supplementation.  Single nucleotide 

polymorphisms in catalase and superoxide dismutase genes have been 

associated with differences in oxidative stress pathophysiology (Kohno S,1999; 

Liao F,1994; Sandstrom J,1992).  When a measure of total anti-oxidant status 

(see 1.3 for explanation) was examined in a family study, 37.8% of the variance 

was thought to be genetic.  The proportion increased when other factors such 

as smoking were taken into consideration so that in smokers 42% of the 

variation was genetic in nature whilst in non-smokers it was only 26%.  This 

study also found that diet had little effect on total anti-oxidant status (Wang 

XL,2001). 

 

 

1.3.3 Measuring the Oxidative Stress Burden 

 

The measurement of ROS is possible, but requires electron spin resonance or 

chemi-luminescence.  The first method is non-invasive but is expensive and as 

ROS are unstable, do not accumulate and are unsuitable for routine use (Dalle-

Donne I,2006).  Hydrogen peroxide is stable in body fluids and can be 

measured in urine (Varma SD,1990) and breath (Jobsis RQ,2001), but there are 

insufficient data at present to support its widespread use.  The accuracy of the 

electron spin resonance  method can be improved with the use of ROS “traps” 

such as 1,1,3-trimethylisinordole-N-oxide (Bottle SE,2003), but their safety in 

man has yet to be proved and they may also only “trap” a small proportion of 

ROS produced so their validity is also not yet certain (Halliwell B,2004).  The 

“trap” concept can also be applied to molecules for which an assay already 

exists, this includes using salicylate which is non-enzymatically modified to 2-3 

dihydroxybenzoate (Ingelman-Sundberg M,1991) or endogenous uric acid 

excreted as allantoin (Grootveld M,1987).  These will suffer from the same 
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problems as the other “trap” methods, in so far as it is not possible to determine 

the percentage of generated ROS that is “trapped”. 

 

Due to the difficulties of measuring ROS directly, oxidative stress burden is 

most commonly assessed through biomarkers.   A biomarker is used to assess 

the generation of ROS indirectly.  To reflect ROS generation accurately a  

biomarker of oxidative stress must be 

 

 stable, as further oxidation products are often generated during sample 

handling  (Firuzi O,2006).   

 must accumulate to detectable concentrations.  

 be non-invasive and represent specific oxidative pathways [ROS 

generation].    

 must correlate with disease severity (Dalle-Donne I,2006).   

 

The biomarkers of oxidative stress fall into three groups.   These are either the 

measurement of the oxidation of macromolecules, anti-oxidant concentration or 

the capacity of body fluids or tissue to interfere with in vitro redox reactions. 

 

1.3.3a Oxidation of Macromolecules 

 

Malondialdehyde [MDA] is one of the most stable of the lipid peroxidation 

products. It can be detected in plasma by the Thiobarbituric acid reactive 

substances assay [TBARS] (Buege JA,1978).  This is relatively non-specific and 

has now been replaced with a method using high performance liquid 

chromatography [HPLC] (Wong SH,1987).   However, MDA is only one of a 

number of products, and can be absorbed through the gut (Nelson GJ,1993).  

The oxidative modification of fatty acids to pentane and ethane gives products 

which can be detected in breath, but this method is problematic because of the 

difficulty in preventing contamination by airbourne sources (Knutson MD,2000).  

The most accurate method of measuring lipid peroxidation products is the assay 

of F2-isoprostanes.  These are derived from the non-enzymatic oxidation of 

arachidonic acid (Morrow JD,1990).  They can be measured in plasma using 
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gas chromatography-mass spectroscopy [GCMS].  This method has high 

sensitivity and specificity and is not affected by passage across the gut (Blaak 

EE,2006).  However, F2 isoprostanes are only a minor end product (Lawson 

JA,1999) and this method is very labour intensive and requires expensive 

equipment (Milne GL,2005).  An immunoassay is now available (Morrow 

JD,2005) but there is limited information available regarding accuracy (Dalle-

Donne I,2006), and GCMS remains the most common method used. 

 
The most useful assay of modified proteins is also a mass spectroscopy assay 

of nitro-chloro-orthtyrosine, however, this can be generated in sample handling 

(Halliwell B,2004).  An attempt to design simpler methods has not so far led to 

the development of an improved technique.  Antibodies to tyrosine derivatives 

have not been specific enough (Duncan MW,2003) and also suffer from the 

same problems of generation during sample handling.  A calorimetric assay 

using dinitrophenylhydrazine has been developed to detect the more stable 

carbonylated proteins that result from oxidation of side chains (Levine RL,1990).  

These are stable, even when stored frozen (Stadtman ER,2003) but the assay 

is not specific and is confounded by glycated proteins and protein oxidation that 

occurs during cooking (Halliwell B,2004). 

 

A huge range of base and sugar modification products are generated during 

DNA oxidation (Dizdaroglu M,2002).  The most widely measured is 8-oxo,7,8-

dihydro-2-deoxyguanasine [8-OHdG] which can be measured by HPLC or 

Enzyme Linked Immunosorbent Assay [ELISA] (Cooke MS,2000).  The assay is 

limited by low availability of tissue, as DNA is intracellular, and leucocytes are 

often used as a surrogate.  When 8-OHdG is measured in the urine as a marker 

it can be confounded by variation in the efficiency of the DNA repair 

mechanisms (Halliwell B,2002).   
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1.3.3b Anti-oxidant concentrations 

 

The concentration of a number of anti-oxidants is decreased by ROS attack, 

and therefore, may function as a marker of oxidative stress (Rossi R,2006).  

Vitamin C, carotenoids and glutathione/glutathione disulfide [GSH/GSSG] can 

all be measured by HPLC (Craft NE,1992; Margolis SA,1996; Paolisso G,1992).  

These methods are time consuming, expensive, yield little information about 

combined effectiveness, and do not account for those that are undiscovered or 

difficult to measure (Maxwell SR,2006).  The measurement of lipid-soluble anti-

oxidants in plasma could also be misleading, and it has been reported that the 

risk of myocardial infarction correlates with adipose tissue levels of carotenoids 

but not plasma levels (Kohlmeier L,1997; Su LC,1998).  The measurement of 

anti-oxidants is further confounded by degradation during sample handling 

(Rossi R,2002). GSH/GSSG can be stabilised by the addition of Methyl-2-vinyl-

pyridium trifluoromethane sulfonate [M2VP] to the sample when it is taken.  The 

development of a colorimetric assay which is as accurate as the HPLC method 

(Floreani M,1997) has helped to allow the simple measurement of the 

GSH:GSSG ratio as a marker of intracellular redox status (Schafer FQ,2001).    

 

 

1.3.3c  Total anti-oxidant capacity assays 

 

 

The anti-oxidant function of plasma is a result of the interaction  between many 

different compounds, and often co-operation provides greater protection than 

each one alone,  as they regenerate and recycle each other (Packer JE,1979). 

Total anti-oxidant capacity assays [TAC] test all the multifunctional anti-oxidants 

present in the sample (Frankel EN,2000).  Although, this concept is attractive 

there are a number of disadvantages to the methods developed.  The redox 

reactions do not occur in a biological system, and the chain propagation that 

follows lipid peroxidation in vivo does not occur (Antunes F,1999).  The assays 

will all detect the anti-oxidant effect of uric acid, but this can be increased as a 

consequence of conditions where oxidative stress is higher, such as renal 

failure (MacKinnon KL,1999). These assays are also only able to detect 
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scavenger anti-oxidants (Huang D,2005), and can only look at either the 

hydrophilic or hydrophobic phase at one time.  In vitro TAC depends on the 

distribution and interaction of anti-oxidants in the two phases (Huang SW,1996).  

The results also need to be interpreted with caution, as increased anti-oxidant 

levels may reflect an adaptive response to increased ROS generation, and low 

levels may just reflect low background ROS generation eg in low calorie feeding 

(Prior RL,1999). There are many versions of this assay but they can be divided 

into two main groups.  Firstly, where plasma is used to interfere with an 

oxidation reaction, this requires an oxidant and a marker that undergoes 

oxidation.  Secondly, to drive a reducing reaction, which requires an oxidized 

marker that undergoes a reduction.   

 

Total Radical Trapping Anti-oxidant Parameter [TRAP] 

 

Method:  Inhibition of oxidation 

Oxidant:  2,2’-azobis(2-amidinopropane) [AAPH]  

Marker: O2 production (oxygen electrode) (Wayner DD,1985) 

  Luminol (Alho H,1999) 

  Fluoroscein (Valkonen M,1997) 

Result:  Lag phase 

 

The result is calculated on the basis of the delay in the reaction seen as the 

anti-oxidants in the serum are consumed, and this is compared to the lag phase 

seen with the addition of a standard amount of the anti-oxidant Trolox (Fig 1.11).  

The initial method was modified because of difficulties in maintaining the 

oxygen electrode (Ghiselli A,2000).   
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Fig. 1.11  The use of lag phase to calculate TRAP result 

 

The kinetics of oxidation reaction in the presence of plasma after the addition of AAPH 

and trolox.  The result is calculated by comparing the two lag phases obtained. 

 

The method is more time-consuming than others because of the method of 

calculating the result, and the method is also susceptible to error if the plasma 

is diluted, as this leads to significantly different values (DeLange RJ,1989).  

 

Oxygen Radical Absorbance Capacity [ORAC] 

 

Method:  Inhibition of oxidation 

Oxidant:  AAPH  

Marker: Phycoerythin (Cao G,1998) 

  Fluoroscein (Naguib YM,2000) 

Result: Area under the curve method 

 

This method is similar to the TRAP method but the result is calculated 

differently.  The oxidation reaction is allowed to proceed to completion and the 

result is calculated from the area under the curve in comparison to trolox 

standards (Prior RL,1999).  This method will not be able to detect slowly-

reacting anti-oxidants such as plasma proteins, which may react with ROS 

generated at a rate slower than the marker (DeLange RJ,1989).  This will 

change the slope of the oxidation curve and can alter the area under the curve 

(Cao G,1993). 
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Trolox Equivalent Anti-oxidant Capacity [TEAC] 

 

Method:  Inhibition of oxidation   Reduction 

Oxidant: Ferrylmyoglobin*    persulphate used to generate  

  Hydrogen peroxide/   preformed ABTS+ 

  Horseradish peroxidase^ 

Marker: ABTS+ Generation (Green)  ABTS Generation (Clear) 

Result: Endpoint    Endpoint (Re R,1999) 

 

* Commercialised by Randox Laboratories and known as Total anti-oxidant 

status  [TAS] (Miller NJ,1993). 

^ Known as Total anti-oxidant status [TAOS] (Sampson MJ,2002).  This 

combination has also been used in a chemilumenescence assay with luminol as 

the marker (Maxwell SR,2006) 

ABTS= 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) 

 

ABTS forms a clear solution, that when oxidised to ABTS+ , undergoes a colour 

change which can be detected in a plate reader.  The assay is quick because of 

the use of an endpoint method to calculate the results.  The assay has also 

undergone significant commercial development, which enables it to be run at 

high speed on multiple samples on a number of automatic multi-channel 

analysis machines. 

 

Ferric ion Reducing Anti-oxidant Parameter [FRAP] 

 

Method: Reduction 

Oxidant: Fe3+ 

Marker: Fe2+ generation 

Result: Endpoint (Benzie IF,1996) 

 

The main disadvantage of this assay is that it is confounded by elevations in 

serum bilirubin (Huang D,2005), and, as with other reduction methods the anti-

oxidants present may not be able to reduce Fe3+  with the same efficiency that 

they would achieve with ROS, especially as in vivo transition metal pro-oxidant 
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states tend to be limited by chelators not scavenging anti-oxidants (Prior 

RL,1999).  A similar assay has been developed using copper instead of iron, 

total anti-oxidant potential (Zaporozhets OA,2004) or using the Folin-Ciocalteu 

regent which is misleading known as total phenol assay (Singleton VL,1999). 

 

Crocin Bleaching Assay 

 

Method: Inhibition of oxidation 

Oxidant: AAPH 

Marker: Bleaching of crocin 

Result: rate of bleaching 

 

Crocin is a natural pigment extracted from saffron and is subject to significant 

lot-to-lot variability.  The reaction rate of some anti-oxidants is very similar to 

blank controls, so the assay is prone to inaccuracy, and as the colour of crocin 

is very similar to some of the samples in which it is used to measure, this assay 

has found only limited applications (Huang D,2005).   

 

1.3.3d  Which Biomarker of oxidative stress? 

 

No biomarker has yet fulfilled all the criteria set out in 1.3.3 (Dalle-Donne 

I,2006).  This explains why the evidence for oxidative stress being involved in 

disease in humans in vivo is not definitive (Halliwell B,2004).   The poor 

correlation between the different methods is an indication of the high level of 

confounding that occurs when attempts are made to estimate oxidative stress 

burden.  Prior to assay, different biomarkers will appear under different time 

courses, so that at any one time, after an oxidative stress insult, products of 

lipid oxidation and DNA oxidation will correlate poorly (England T,2000).  

Variation in sample handling is also a source of error, as anti-oxidants are 

unstable and degrade when exposed to air and light (Ghiselli A,2000), while any 

clotting that occurs during sampling will lead to the release of ROS from 

platelets (Leo R,1997).  DNA oxidation assays are more variable if performed 

on isolated DNA than on urine, suggesting that the additional handling 

introduces error, to the extent that there is currently no agreement on basal 
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levels (Collins AR,2004).  When considering the TAC assays, they measure the 

chemical activity of the plasma anti-oxidants under very specific conditions.  

The affinity of different anti-oxidants with the radicals generated will differ 

between assays, so that the anti-oxidant activity of vitamin C is low in TRAP 

[AAPH] but high in TAS [Ferrylmyoglobin] (Schlesier K,2002).  When different 

methods have been compared the correlation has been poor.  When FRAP was 

compared to markers of lipid and protein oxidation, although correlation was 

described, it was found to be weak (r<0.5) (Firuzi O,2006).   

 

Three studies have compared TAC methods, no correlation was found between 

ORAC and TEAC, or FRAP and TEAC in one, with a weak correlation between 

ORAC and FRAP(r=0.35,p=0.019) only.  When the proportion of the TAC due to 

individual anti-oxidants was calculated the proportions were significantly 

different, indicating that the assays have different affinities for the variety of anti-

oxidants found in plasma (Fig1.12) (Cao G,1998). A similar weak correlation 

was found when a luminol method was used comparing ABTS and AAPH 

(r=0.37,p=0.03) (Waring WS,2003).   

 

Fig 1.12  The difference in the proportion of TAC due to individual anti-oxidants 

in different TAC methods (Cao G,1998) 
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When the anti-oxidant capacity of ten drinks was compared using five different 

methods the absolute values were different, although the drinks that ranked 

higher tended to be the same regardless of the method used (table 1.3) 

(Schlesier K,2002).  This has led to the suggestion that investigators should 

report two replicate biomarkers when reporting associations with oxidative 

stress burden (Block G,2006; Schlesier K,2002).  This would overcome the two 

main confounding issues, firstly, the variability of the baseline between studies 

reflecting sampling artefact, and secondly, the variability in the substrate/ROS 

interaction, where different ROS have different affinity for different substrates 

(Mayne ST,2003). 

 

 

Table 1.3  The ranking by anti-oxidant capacity of different drinks using five 

different TAC methods.  See paper for details of methods used. (Schlesier 

K,2002) 

 

  TEAC DPPH DMPD FRAP PCL 

Blackcurrant juice 1 1 1 2 1 

Blackcurrant Nectar 2 2 2 1 6 

Green Assam Tea 3 6 6 4 5 

Black Assam Tea 4 4 4 7 3 

Green Darjeeling Tea 5 3 3 6 4 

Black Darjeeling Tea 6 5 5 5 2 

Apple Juice 1 7 8 8 3 7 

Apple Juice 2 8 7 7 8 10 

Tomato Juice 1 9 10 10 10 9 

Tomato Juice 2 10 9 9 9 8 

 

 

1.3.4 Role of oxidative stress in type 2 diabetes 

 

There are a number of steps in the natural history of type 2 diabetes where 

oxidative stress may play a role.  These include the development of insulin 

resistance, β-cell failure and end organ damage secondary to hyperglycaemia.   

States that predispose to the development of type 2 diabetes appear to be 
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associated with increased oxidative stress.  ROS production increases with fat 

accumulation in humans, with higher levels of both TBARS (Furukawa S,2004) 

and isoprostanes (Keaney JF,2003) in obese subjects compared to controls.   

Reduced anti-oxidant expression has also been demonstrated in obese mice 

compared to controls (Furukawa S,2004).  Oxidative stress is also increased in 

the metabolic syndrome, with 3.7 times greater levels of isoprostanes and a 

41% reduction in the anti-oxidant activity of HDL in a AAPH system compared 

to controls (Hansel B,2004).  Diabetogenic cytokines such as TNFα are also 

associated with higher levels of oxidative stress (Qi C,2000).  If ROS are 

important in the development of type 2 diabetes then they should be associated 

with over-nutrition.  Post-prandial increases in lipid and carbohydrate levels 

increase oxidative stress (Tsai WC,2004), in part, driven by increased rates of 

non-enzymatic glycation (Dandona P,1996) and glucose auto-oxidation 

(Mullarkey CJ,1990) seen after a meal, but also by the presence, in the 

circulation, of oxidized lipids, from a processed diet (Blaak EE,2006).  This may 

be more important in western societies where a significant part of the day is 

spent in the post-prandial state (Sies H,2005).    

 

This increase in ROS may act as a sensor of the nutrient environment (Nemoto 

S,2000).  This is because increased nutrient delivery will increase mitochondrial 

activity, and ROS generation is an obligatory consequence of aerobic 

metabolism (Bloch-Damti A,2005).  Mitochondria are the principle source of 

ROS in cells (Zhou YP,1995), and the primary factor determining the rate of 

production is the redox state of the electron transport chain (Skulachev 

VP,1996).   Glycolysis and the citric acid cycle generate NADPH and FADH, 

which donate electrons to the electron transport chain.  As electrons are moved 

along the four complexes, hydrogen ions are pumped out of the mitochondria 

and an electrochemical gradient is established (Nishikawa T,2000a).  This 

gradient is dissipated through the ATP synthase complex, converting ADP to 

ATP  for use as an energy source in the cell (Fig 1.13).   
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Fig.1.13 A representation of the electron transport chain for the production of 

energy in the form of ATP from NADPH and FADH generated during oxidation 

 

(http://www.biologycorner.com/resources/electrontransport.jpg) 

The amplitude of this gradient regulates chain activity and increased nutrient 

delivery will increase this gradient (Maddux BA,2001), which reduces activity 

and leads to the partial reduction of oxygen and the generation of ROS, whilst 

electrons are “held up” in the chain (Nishikawa T,2000b).   Reducing the 

membrane potential, such as for ATP production, reduces ROS generation 

(Fridlyand LE,2006). 

 

Mitochondrial DNA is in close proximity to the electron transport chain, and it is 

possible that mitochondrial DNA damage is the cause of the small dysfunctional 

mitochondria found in type 2 diabetes (Maassen JA,2004).  Significant oxidative 

stress leads to programmed death of mitochondria, reducing oxidative capacity 

further (Watson RT,2004).  Reducing the delivery of electrons to the electron 

transport chain would reduce oxidative stress.  The best way to achieve this is 

to prevent nutrient entrance into cells i.e. insulin resistance.  It may be that 

insulin resistance is a protective mechanism when large amounts of ROS are 

being generated by the electron transport chain (Fridlyand LE,2006). 
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The generation of ROS has a number of deleterious effects on insulin secretion 

and sensitivity.   A transient increase in ROS enhances insulin signalling 

(Keaney JF,2003), possibly because insulin signalling itself may require ROS as 

a second messenger (Kaneto H,1999).  A burst of ROS is triggered with a 

variety of ligands including Platelet Derived Growth Factor (Sundaresan 

M,1995), Epidermal Growth Factor (Bae YS,1997) and Angiotensin II 

(Griendling KK,2000) and ROS is becoming increasingly recognised as an  

important intracellular signal (Goldstein BJ,2005).  However, chronic oxidative 

stress is damaging to insulin action (Furukawa S,2004) and may precede the 

development of type 2 diabetes (Salonen JT,1995).  Hydrogen peroxide impairs 

insulin signalling in 3T3-L1 adipocytes, increases serine/threonine 

phosphorylation of IRS (Potashnik R,2003), reduces PI3 kinase and Akt 

activation (Furukawa S,2004; Tirosh A,1999) and GLUT 4 translocation (Pessler 

D,2001; Rudich A,1998).  Hydrogen peroxide can also alter gene expression, 

reducing the expression of the insulin sensitisers adiponectin and leptin 

(Kamigaki M,2006) 

 

ROS also stimulates intracellular processes that will lead to secondary 

increases in insulin resistance.  These stimulate a number of transcription 

factors such as Mitogen Activated Protein Kinase, p38 kinase, protein kinase C 

isoforms and c-Jun kinases (Kaneto H,2005) and, hence, activate inflammatory 

pathways which regulate gene expression, promoting insulin resistance as 

described earlier.  Exposure to oxidative stress therefore promotes insulin 

resistance by, firstly, impairment of insulin signalling and secondly, activation of 

cellular stress kinases (Pessler D,2001).   

 

The important role of oxidative stress is further supported by the effect of anti-

oxidants on insulin sensitivity.  In either cell (Benhamou PY,1998) or animal 

(Kubisch HM,1997)  models of diabetes, genetic modifications of the oxidative 

stress load maintain insulin sensitivity, and the anti-oxidant α-lipoic acid 

improves glucose utilisation in cell culture (Maddux BA,2001) and when given 

orally (Konrad T,1999).   Insulin sensitivity is also improved by the 

administration of the anti-oxidants vitamin C, E, N-Actylcysteine and Glutathione 

(Fridlyand LE,2006; Hildebrandt W,2004). 
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Β-cell function and insulin secretion are also similarly affected by ROS.  ROS 

lowers glucose-induced insulin secretion as early as 30 minutes after exposure 

(Maechler P,1999), and in keeping with the functional abnormalities described 

in type 2 diabetes, hydrogen peroxide can suppress first phase insulin secretion 

(Sakai K,2003), while glucokinase, a crucial part of the glucose sensor, can be 

inactivated by ROS (Lenzen S,1988).  The pancreas is particularly vulnerable to 

oxidative stress as it has the lowest intrinsic anti-oxidant capacity (Grankvist 

K,1981), and does not activate anti-oxidant enzymes during times of cellular 

stress (Maechler P,1999). Β-cells are also susceptible to overfeeding as they 

are not dependant on insulin for glucose uptake (Ceriello A,2004).  Activation of 

stress signalling pathways is associated with reduced insulin gene expression 

and cell apoptosis (Kaneto H,2005), which may explain why the pancreas is 

unable to compensate for increased insulin resistance and type 2 diabetes 

develops (Pick A,1998).   These defects in β-cell function can also be reversed 

by anti-oxidant strategies, such as over-expression models of glutathione (Tran 

PO,2004) or C-Jun inhibitors (Duval A,2000) or by the administration of N-

acetylcysteine (Tanaka Y,2002). 

 

Oxidative stress may also play a role in the progression of β-cell dysfunction, 

glucose intolerance and development of the complications of type 2 diabetes 

(Maritim AC,2003).  Development of hyperglycaemia in rats is associated with 

more severe defects in insulin secretion and sensitivity (Tanaka Y,1999).  The 

effect on β-cells is known as glucose toxicity (Robertson RP,2006).  In cultured 

human islet cells high levels of glucose switch on expression of apoptosis 

genes Bad, Bid and Bik, while reducing expression of the anti-apoptosis gene 

Bcl-x1 (Federici M,2001).  This may explain the failure of β-cell mass to expand 

in order to counteract the effect of early glucose intolerance (Pick A,1998). 

 

Hyperglycaemia also appears to increase the oxidative stress burden.  TRAP is 

lower (higher oxidative stress) in both type 1 (Tsai EC,1994) and type 2 

diabetes (Ceriello A,1997).  Markers of oxidative stress, including salicylate 

hydroxylation (Ghiselli A,1992), F2-isprostanes (Gopaul NK,1995) and oxidised 

DNA (Rehman A,1999), are consistently elevated in type 2 diabetes, and this 
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seems to be related to blood glucose levels as  F2-isprostane levels fall with 

improvements in diabetes control (Davi G,1999).  Acute rises  in plasma 

glucose (after a glucose tolerance test) have been demonstrated to be 

associated with increased F2-isoprostanes (Sampson MJ,2002), reduced anti-

oxidant vitamins, uric acid and TRAP in subjects with type 2 diabetes (Ceriello 

A,1998), although similar findings in healthy volunteers were not replicated in a 

separate study measuring anti-oxidant vitamins, FRAP and allantoin (Ma 

SW,2005).  This may be because a higher blood glucose is needed as during a 

clamp study a serum glucose of 15mmol/l increased nitrotyrosine levels in 

healthy volunteers (Marfella R,2001).  The role of oxidative stress in glucose 

toxicity is further supported by the reduction of severity of insulin resistance and 

β-cell dysfunction by the use of anti-oxidants in animal models, using the zucker 

diabetic rat (Tanaka Y,1999)and db/db mouse (Kaneto H,1999).    

 

The potential mechanisms by which high glucose levels could increase ROS 

generation are shown in Fig 1.14.  Glucose can generate ROS through non-

enzymatic pathways, including the generation of ketoaldehydes (Maritim 

AC,2003) and the formation of Advanced Glycation End products [AGE].  

Glycation of proteins produces a Schiff base, which undergoes rearrangement 

to form amadori products, which after further auto-oxidation of glucose form 

AGE.  AGE can bind to specific receptors, triggering stress signalling through 

NF-κβ activation, as well as generating ROS (Yan SD,1994).  The upregulation 

of alternative metabolic pathways also increases ROS generation and stress 

signalling, and is responsible for the development of a number of complications 

of type 2 diabetes (Brownlee M,2001).   

 

The sorbitol pathway leads to the accumulation of fructose, which consumes 

intracellular anti-oxidants and promotes stress signalling (Brownlee M,2001; 

Evans JL,2002).  The hexosamine pathway is also upregulated, and the end 

product of this pathway, UDP-N-acetylglucosamine, is the substrate for the 

glycosylation of important intracellular factors including transcription factors, 

particularily those involved in stress signalling  (Rolo AP,2006).   
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Fig1.14 The pathways leading to the generation of ROS during hyperglycemia.   

 

 

 

 

Six biochemical pathways along which glucose metabolism can form reactive oxygen 

species (ROS). Under physiological conditions, glucose primarily undergoes glycolysis 

and oxidative phosphorylation (6). Under pathological conditions of hyperglycemia, 

excessive glucose levels can overwhelm the glycolytic process and inhibit 

glyceraldehyde catabolism, which causes glucose, fructose 1:6-bis-P, and 

glyceraldehyde 3-P to be shunted to other pathways: (1) enolization and α-

ketoaldehyde formation, (2) PKC activation, (3) dicarbonyl formation and glycation, (4) 

sorbitol metabolism, and (5) hexosamine metabolism (Robertson RP,2006). 

 

 

In hyperglycaemia, increased synthesis of diacylglycerol [DAG] activates up to 9 

isoforms of PKC, which can also activate stress signalling and lead to the 

generation of ROS (Brownlee M,2001).  The deleterious effects of these 

pathways are not all dependent on ROS, but oxidative stress from 

hyperglycemia-induced overproduction of superoxide by mitochondria is the 

trigger that drives each of these pathways (Rolo AP,2006) (Fig1.15).   
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Fig 1.15.  The stimulation of pathological pathways by hyperglycemia-induced 

ROS generation 

 

 

(___, direct role; -----, indirect role). GlcNac, O-linked N-acetylglucosamine; PAI, 

plasminogen activator inhibitor; TGF-β, transforming growth factor-β. (Rolo AP,2006) 

 

 

 

The effect of NEFA on the induction of insulin resistance and β-cell function 

may also in part be modified by generation of ROS.  In healthy volunteers 

infusion of NEFA increases levels of MDA, reduces intracellular GSH (Paolisso 

G,1996) and activates NF-κβ (Evans JL,2003).  The long chain fatty acid 

sodium palmitate increases ROS generation in isolated rat β-cells, in parallel 

with decreases in glucose-stimulated insulin secretion, indicating ROS may also 

play a part in NEFA-induced β-cell dysfunction. 
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Therefore, despite significant difficulties in the assessment of oxidative stress 

there is considerable evidence that the development of insulin resistance and β-

cell dysfunction are driven by oxidative stress-dependent mechanisms and that 

once established, glucose tolerance is perpetuated by increased generation of 

ROS.  The mitochondria, and more specifically the rate of mitochondrial 

oxidation and the mitochondrial membrane, appear to be key components of 

this process. 
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1.4   Mitochondrial Uncoupling Proteins 

 

The uncoupling proteins 2 and 3 (UCP2/UCP3) are part of a mitochondrial 

carrier superfamily that are membrane proteins of around 300 amino acids with 

six transmembrane domains (Bross O,2000).   Their description as uncoupling 

proteins is based on their homology to uncoupling protein 1 (UCP1), the first of 

the family to be described.   

 

The generation of a proton gradient across the mitochondrial membrane during 

fuel substrate oxidation is described earlier in this chapter.  However, isolated 

mitochondria can continue to respire in the absence of ATP (Brand MD,1994).  

This is due to leak of the protons back across the membrane rather than 

through ATP synthase.  The stored energy is released as heat, and fuel 

substrate metabolism is said to be “uncoupled” from ATP production (Fig. 1.16).  

Proton leaks are a feature of all living cells (Schrauwen P,2002a) but the 

mechanism of these leaks was not previously understood.   

 

Fig 1.16 The dissipation of the mitochondrial proton gradient to provide ATP 

synthesis (coupled) or with energy wasting (uncoupled) (Schrauwen P,2002a) 

 

 

 

 

In rodents, body temperature is maintained by uncoupling (Nicholls DG,1999), 

and is mediated primarily by brown adipose tissue (BAT) (Rothwell NJ,1979).  
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This led to the identification of a uniquely expressed protein, UCP 1 (Lin 

CS,1980) which was responsible for the thermogenic proton leak.  UCP 1 

expression increases with cold stress (Silva JE,1997), and the UCP1 knockout 

mice were more likely to develop hypothermia in cold conditions than wild-type  

mice (Enerback S,1997). 

 

However, uncoupling was not unique to BAT (Rolfe DF,1996) with proton leaks  

responsible for 26-50% of resting energy expenditure (Rolfe DF,1996).  This led 

to the identification of UCP2 and UCP3,  which show 55% and 57% homology 

with UCP1 respectively and 71% homology with each other (Vidal-Puig A,1997).  

These two UCPs are both located in a gene cluster on chromosome 11q13, 

within 8kb of each other, and share similar genomic structures (Pecqueur 

C,1999).  Two central nervous system UCPs have also been identified, known 

as UCP4 (Mao W,1999) and UCP5 or Brain Mitochondrial carrier protein-1 

(Sanchis D,1998), although the homology of these two proteins with UCP1 is 

low (<40%) (Dalgaard LT,2001a).  UCP-like proteins have also been identified 

in plants and birds, indicating that they are an ancient, well-conserved family 

likely to be important physiologically (Rousset S,2004). 

 

 

1.4.1. Physiology of Uncoupling Protein 2 

 

UCP 2 was discovered in 1997 (Fleury C,1997; Gimeno RE,1997).  The protein 

is expressed widely in spleen, lung, stomach, skeletal muscle, pancreas, heart, 

liver, kidney and macrophages (Fleury C,1997; Gimeno RE,1997; Millet L,1997; 

Pecqueur C,2001),with high homology among species e.g. 95% between rat 

and human (Matsuda J,1997).   The ability of UCP1 to dissipate the proton 

gradient without the generation of ATP (Nicholls DG,1984) identifies its function 

as an uncoupler of metabolism, although the exact mechanism of proton 

transfer is still unclear (Esteves TC,2005).  The similarity in structure suggests 

that UCP2 should also function as an uncoupling protein.  A number of 

experimental systems suggest UCP2 does possess uncoupling properties, 

including E. coli inclusion bodies (Jaburek M,1999) or liposomes (Echtay 

KS,2001), overexpression in yeast systems (Fleury C,1997; Gimeno RE,1997; 
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Rial E,1999), and cell culture systems [Hela cells (Mills EH,2002), INSE-1 cells 

(Hong Y,2001), Human thymus (Krauss S,2002), Ob/Ob mice hepatocytes 

(Chavin KD,1999)and Zucker diabetic rat islet cells (Cortez-Pinto H,1999)].  

However, there is not a close link between tissue proton leak and UCP2 levels 

(Dalgaard LT,2001a), and some of these systems such as liver cells and yeast 

mitochondria can exhibit a proton leak in the absence of UCPs (Porter RK,1995; 

Stuart JA,1999a).  The yeast system also has other potential confounding 

features that may apply to the other systems.  When UCP2 is expressed in 

yeast it is misfolded and only poorly incorporated into the membrane.  

Replication at low levels of expression did not demonstrate a proton leak, and it 

is thought that the earlier results could be due to an over-expression artefact 

(Stuart JA,2001). The structure of UCP2 also lacks a histidine pair thought to be 

essential for UCP1 function (Masaki T,1997).  Therefore, the evidence that 

UCP2 functions as an uncoupler of mitochondrial metabolism is not conclusive.  

There is no change in proton conductance in the UCP2 mouse under basal 

conditions, although this does change under certain conditions such as 

activation by ROS or free fatty acids (Esteves TC,2005).   These results 

suggest that UCP2 has a novel function that may be dependent on conventional 

uncoupling, or may act through a non-uncoupling mechanism. 

 

1.4.1a UCP2 and Metabolism 

 

Despite there being little BAT in adult humans (Garruti G,1992) there is no 

evidence to suggest that UCP2 has a role in thermogenesis.  The UCP1 

knockout mouse remains cold-sensitive despite increased expression of UCP2 

(Enerback S,1997), while the UCP2 knockout mouse is not cold sensitive 

(Arsenijevic D,2003).  The expression of UCP2 in ectothermic fish, which 

remain the temperature of the surrounding water, also suggests that UCP2 has 

no role in the regulation of body temperature (Stuart JA,1999b).   

 

The ability to waste energy derived from substrate utilisation would make UCP2 

an attractive molecule for a role in the adaptive response to over-nutrition.   

Resting metabolic rate is dependent on thyroid and steroid hormone levels, 

sympathetic nervous system activity and ratio of fat to fat-free mass (Toubro 
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S,1996).   Energy expenditure over 24hrs is in part genetic, with a heritability of 

between 0.26-0.70 (Dalgaard LT,2001a), and lower expenditure is more 

predictive of future weight gain than increased nutrient intake (Roberts SB,1988) 

with only very small differences increasing the risk of obesity significantly 

(Leibel RL,1997).  UCP2 expression is increased in obese mouse models, the 

Ob/Ob  and db/db mouse (Chavin KD,1999; Gimeno RE,1997), and the obesity 

prone C57b/6 mouse fails to upregulate UCP2 when fed a high fat diet (Fleury 

C,1997).  In man, abdominal muscle tissue mRNA was 28% lower in obese 

subjects compared to those without obesity (Nordfors L,1998) and muscle 

mRNA levels correlated with percentage body fat and BMI (Bao S,1998).  Low 

expression was also found in intraperitoneal fat tissue taken at surgery, which 

persisted even when the subjects lost weight (Oberkofler H,1998).   However, 

most of this evidence is circumstantial, and UCP2 expression could be following 

other obesity-induced metabolic changes.  The UCP2 knockout mouse does not 

gain weight on a high fat diet (Arsenijevic D,2003), UCP2 levels do not change 

after weight loss in man (Vidal-Puig A,1999) and groups with lower UCP2 

expression, such as first degree relatives of those with type 2 diabetes, do not 

have lower energy expenditure.  This suggests either that UCP2 does not have 

a major role in energy balance, or that there is significant overlap in energy 

control mechanisms (Erlanson-Albertsson C,2003).  The data, so far, does not 

support a critical role for UCP2 in energy balance.  This is confirmed by the 

upregulation of UCP2 by fasting, a state of reduced energy expenditure and 

reduction in body temperature.   

 

The upregulation of UCP2 by fasting has been consistently demonstrated in rats 

(Boss O,1997a; Cadenas S,1999; Memon RA,2000; Samec S,1998a; Samec 

S,1998b; Teshima Y,2003; Xiao H,2004), mice (Kersten S,1999; Samec 

S,1999a) and humans (Millet L,1997).  Interestingly, these studies 

demonstrated a reduction in mRNA expression with re-feeding, although not if 

re-fed with a high fat diet (Samec S,1999a; Teshima Y,2003; Xiao H,2004).   

The fasting state and the re-fed high fat diet state are both associated with 

elevations in free fatty acids, and abolishing this increase with intervention 

prevents the induction of UCP2 expression (Dulloo AG,2001).  The observation 

that free fatty acids uncouple mitochondrial metabolism (Challoner DR,1966) 
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raises the possibility that this is due to UCP2, which has a function in fuel 

substrate switching or protection of the high rate of oxidation associated with 

fatty acid delivery.  The changes seen with fasting were more pronounced in 

muscle that is usually glucose dependent (fast twitch-gastrocnemius) than 

muscle groups with high rates of basal fat oxidation (slow twitch-soleus) (Samec 

S,1998a).  Free fatty acids appear to be key regulators of UCP2 mRNA 

expression.  The higher fatty acid levels associated with a high fat diet (Aubert 

J,1997; Chan CB,2001; Fleury C,1997; Gong DW,1999; Joseph JW,2002; 

Matsuda J,1997; Surwit RS,1998; Tsuboyama-Kasaoka N,1999), chemically 

induced diabetes (Hidaka S,2000; Kageyama H,1998) and acute exercise 

(Thompson MP,2004)  all increase UCP2 mRNA levels in a number of rodent 

models and tissues, including in hepatocytes which do not normally express 

UCP2 (Cortez-Pinto H,1999).  The transition from glucose to free fatty acid 

metabolism in cardiomyocytes at birth is associated with a five times increase in 

levels of UCP2 mRNA in rats (Van Dere Lee KAJM,2000).  Interventions such 

as fibrates (Tsuboyama-Kasaoka N,1999) and nicotinic acid (Samec S,1998a), 

which lower free fatty acid levels, also lower UCP2 mRNA in rodents.  In 

humans, lipid infusion increased mRNA expression in subcutaneous fat (Nisoli 

E,2000) although no change was found in skeletal muscle in another study 

(Khalfallah Y,2000).  Cell culture experiments confirm these studies with 

palmitate, α-bromopalmitate, oleic acid and linoleic acid all increasing UCP2 

mRNA in a variety of cell lines, including rat cardiomyocytes and hepatocytes, 

3T3-L1, INS-1, H9c2 and L6-myotubules (Armstrong MB,2001; Aubert J,1997; 

Camirand A,1998; Lameloise N,2001; Medvedev AV,2002; Reilly JM,2000; Van 

Dere Lee KAJM,2000; Viguerie-Bascands N,1999).   In rat islet cells the 

increase in mRNA expression paralleled the increase in fat oxidation and was 

inhibited by high glucose levels, which lowers fat oxidation (Medvedev AV,2002).   

 

A role in fatty acid metabolism is also suggested by the regulation of the gene 

by the key metabolic transcription factors of the PPAR group (Masaki T,1997), 

as well as other regulators that modify fatty acid metabolism, including thyroid 

hormones (Nagase I,2001), catecholamines (Masaki T,1997) and the sterol 

regulatory element binding protein-1 (Medvedev AV,2002).  The result of this is 

that changes in UCP2 mRNA parallel changes in other genes in fat oxidation 
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such as carnitine palmitoyltransferase, acylcoA dehydrogenase and long chain 

CoA dehydrogenase (Samec S,2001). 

 

Overexpression of uncoupling proteins in mice induced resistance to weight 

gain, even on a high fat diet with higher oxygen metabolism (Li B,2000).  The 

widespread expression would make UCP2 an attractive candidate for energy 

balance control.  The expression of UCP2 suggests an important role in fatty 

acid metabolism but does not support the hypothesis that this role is in energy 

balance.  The ability of fatty acids to uncouple is probably not dependent on 

UCP2 (Hirabara SM,2006), and may just be a reflection of the fatty acid content 

of cell membranes (Porter RK,2001).  Therefore, despite a large body of 

evidence that UCP2 is an important component of fatty acid metabolism its 

physiological role is unclear.  From an evolutionary standpoint the development 

of a mechanism to waste energy, when food seeking and energy conservation 

is given high priority, is surprising (Erlanson-Albertsson C,2003).  The earlier 

sections of this chapter describe an important difference between glucose and 

fat oxidation, documenting the higher levels of ROS production by the electron 

transport chain during fat metabolism.   Non-thermogenic uncoupling does, 

however, reduce ROS generation (Vidal-Puig AJ,2000).  The possibility that 

UCP2 is a modulator of ROS production is examined in more detail in 1.4.1c, 

but if this is the case then the involvement in fatty acid metabolism may be 

purely a feature of the higher levels of ROS generated therein.  

 

 

1.4.1b UCP2 and Islet Cell Function 

 

The dependence of insulin secretion on ATP production makes it likely that 

expression of UCP2 in the pancreas will have a modifying effect on β-cell 

function.  A small study described 80% higher skeletal muscle UCP2 mRNA 

levels in type 2 diabetes, although the small number of subjects in the study 

meant that this difference was not statistically significant (p=0.09)(Bao S,1998).  

However,  UCP2 mRNA levels in skeletal muscle correlate with fasting blood 

glucose in subjects with obesity/type 2 diabetes (Bao S,1998).  The UCP2 

knockout mouse has increased β-cell ATP levels, and higher glucose-stimulated 
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insulin secretion, leading to 18% lower blood glucose levels (Zhang C-Y,2001), 

as well as higher β-cell mass and insulin content even on a high fat diet (Joseph 

JW,2002).  If UCP2 is knocked out in the Ob/Ob mouse, then first phase insulin 

secretion is restored and higher insulin levels and lower blood glucose levels 

are observed, with no changes to insulin sensitivity (Zhang C-Y,2001) Although 

one early dissenting report suggested the opposite (Wang MY,1999), UCP2 

over-expression models have now shown consistently lower insulin secretion in 

rat islet cells (Chan CB,1999), human insulinoma cells (Hong Y,2001) and 

mouse and human islet cells.  The defect in insulin secretion is isolated to 

glucose, with no difference in response to direct stimulators of ATP-dependent 

K channels (Chan CB,2001) .  

 

Studies on the UCP2 knockout mouse have suggested UCP2 may be an 

important modulator of insulin secretion.   The reduction of β-cell function, and 

increase in UCP2 mRNA, seen with free fatty acids, may in part explain their 

diabetogenic effect.  The exposure of the UCP2 knockout mouse to palmitate 

does not cause the lower glucose-stimulated insulin secretion that is normally 

seen in response to free fatty acids.  Isolated islet cells have higher ATP levels, 

and the mitochondrial membrane is hyperpolarized faster and to a greater 

extent (Joseph JW,2004).  Superoxide can also have a negative effect on β-cell 

function, which is absent in the UCP2 knockout mouse (Krauss S,2003).   

 

Thus UCP2 appears to be a critical modulator of insulin secretion, but once 

again it is not clear if that is the primary function of the protein, or if it is simply a 

side effect of UCP2 being activated by fatty acid-derived ROS.  This means that 

potentially enhanced UCP2 function would be associated with protection from 

obesity but increased risk of type 2 diabetes, an “Adiposity Angel and Diabetes 

Devil” (O'Rahilly S,2001).  This effect also raises the possibility that UCP2 could 

be a therapeutic target for the treatment of type 2 diabetes.  In mice, a 

pharmacological inhibitor of UCP2-determined proton leak did reverse obesity-

induced β-cell dysfunction through higher levels of ATP production, although it 

is not clear how long this effect persists (Zhang CY,2006). 
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1.4.1c  UCP2 and oxidative stress. 

 

In most cells the majority of ROS is generated by the electron transport chain, 

so that a protein that can modulate mitochondrial function would be a good 

candidate for being part of the cellular defense against ROS (Skulachev 

VP,1996).   Mitochondrial production of superoxide is inversely correlated with 

the amount of uncoupling (Gimeno RE,1997), and mitochondrial ROS 

generation can be modulated by UCP2 activation (Negre-Salvayre A,1997), 

whilst inactivation using an antisense RNA method increases ROS generation 

in a mouse endothelial cell line (Duval C,2002).  The immune system is also a 

high producer of ROS, and oxidative stress. The regulation of UCP2 with 

immune function further suggests that it may have a role in the modulation of 

oxidative stress.  UCP2 mRNA expression is activated by superoxide (Echtay 

KS,2001; Echtay KS,2002a), hydroxynonenal (Echtay KS,2003), AAPH (Murphy 

MP,2003), lipopolysaccharide [LPS] (Faggioni R,1998; Viguerie-Bascands 

N,1999) and TNF α (Cortez-Pinto H,1998; Viguerie-Bascands N,1999) and 

levels become high in macrophages as they differentiate into functioning 

phagocytes (Nishio K,2005).   The induction of UCP2 expression by LPS can be 

blocked by the administration of the anti-oxidant n-acetylcysteine, indicating the 

role of ROS generation in UCP2 expression regulation (Alves-Guerra MC,2003).  

UCP2 expression is also increased in pathological situations where ROS is 

thought to be important, such as ischaemia (de Bilbao F,2004), ischaemic pre-

conditioning (McLeod CJ,2005), irradiation (Voehringer DW,2000), left 

ventricular dilatation and failure (Guo P,2005) and inflammatory conditions 

(Rousset S,2004).  The findings of increased ROS in UCP2 knockout models 

(Bai Y,2005; Joseph JW,2004), and decreased ROS in over-expression models 

(Kizaki T,2003), confirms the finding that ROS is a modulator of UCP2 function, 

and that changes to UCP2 function can modulate ROS production. 

 

The first study to demonstrate that this may be of physiological importance was 

a study on the immune function of the UCP2 knockout mouse.  Pathogen killing 

is dependent on the generation of superoxide by  macrophages (Babior 
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BM,2000).  The UCP2 knockout mouse had a higher bactericidal activity against 

Salmonella typhimurium, and was able to clear Toxoplasma gondii infection, 

which remains a chronic infection in wildtype mice (Arsenijevic D,2003).   The 

activation of the immune system by LPS is also higher with higher levels of 

inflammatory cytokines, NF-κβ activation and hydrogen peroxide generation 

during bacterial killing compared to wildtype mice (Bai Y,2005).  The role of 

UCP2 modulation of ROS has also been studied in a number of models of 

neuroprotection.  UCP2 over-expression reduces the toxicity of 1,2,3,6-methyl-

phenyl-tetrahydropyridine [a toxin used to induce an animal model of 

Parkinsons disease] on isolated neurones (Conti B,2005), and injury size in 

stroke and traumatic brain injury models (Mattiasson G,2003).   In a mouse 

model of Multiple Sclerosis the knock out of UCP2 led to higher disease scores 

and increased T-cell activity and cytokine production (Vogler S,2006).  The 

response to toxins that induce ROS-dependent disease is also higher in UCP2 

knockout mice, including tumour development to azooxymethane (Derdak 

Z,2006) and cell damage to mendione in hepatocytes (Collins P,2005), while 

hepatic regeneration after injury is also delayed as ROS interferes with the cell 

cycle (Horimoto M,2004) . 

 

ROS are thought to play an important part in the generation of cardiovascular 

disease.   LDL oxidation is one of the first steps of atheroma.  The LDL-receptor 

knockout mouse is a model of cardiovascular disease, and when the UCP2 

gene was also knocked out in this mouse the plaque area was increased by 

42% compared to the LDL-receptor knock out “wildtype” (Blanc J,2003).  The 

plaques in the UCP2/LDL receptor knockout mouse were strongly positive for 

nitrotyrosine staining [a marker of peroxynitrite generation form superoxide and, 

thus, oxidative damage] while the UCP2 wildtype/LDL receptor knockout mouse 

nitrotyrosine staining was barely detectable (Blanc J,2003). In  human vascular 

smooth muscle cells overexpression of UCP2 lowered the toxic effects of 

glucose and angiotensin II (Park JY,2005) .   

 

Cell death pathways including apoptosis can be stimulated by ROS or 

mitochondrial dysfunction.  The early steps often include changes to 

mitochondrial membrane potential, mitochondrial calcium entry and ROS 
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generation.    UCP2 can protect mitochondrial function by modulating 

membrane potential.  Cell survival after exposure to hydrogen peroxide is 

higher with UCP2 over-expression in β-cell (Li LX,2001), cardiomyocytes 

(Teshima Y,2003; Zackova M,2003) and endocrine cell models (Diano S,2003).  

In human aortic endothelial cells UCP2 over expression inhibited all the steps of 

mitochondrial dysfunction and cell death that occurred with administration of 

lysophophatidylcholine [LPC].  This effect appears to be physiologically relevant 

as LPC induces impaired endothelial function, an effect not seen in isolated rat 

aorta infected with an UCP2 over-expression vector (Lee KU,2005). 

 

Summary 

 

The function of UCP2 is still not fully understood.  The protein may be a 

conventional uncoupler, but there is no evidence of a role in thermogenesis or 

obesity/energy balance.  Expression studies indicate a potential role in fatty acid 

metabolism, or protection from the redox pressure on the electron transport 

chain from the higher ATP production associated with fatty acid metabolism.  

The modulation of ATP production means that UCP2 clearly modulates insulin 

secretion, although it is not clear if this is a primary function.  The immune 

system is a large generator of ROS and patterns of expression, such as in the 

liver where it is located in the phagocytic Kuppfer cells only (Larrouy D,1997), 

suggests that protection from immune system ROS is a potential function, while 

a modulator of immune function or even inflammation-induced pyrexia (Faggioni 

R,1998) are potential functions.   The possibility that the mRNA expression 

observed in other tissues is due to the presence of entrapped circulating or 

tissue immune cells has yet to be examined.  However, expression studies 

need to be interpreted with caution, as UCP2 mRNA undergoes significant 

translational modification and regulation, and a number of tissues may have 

mRNA identified in them but not UCP2 protein (Pecqueur C,2001).  The 

absence of a specific antibody further impedes the understanding of the role of 

UCP2. 
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1.4.2 Physiology of Uncoupling Protein 3 

 

UCP3 was also identified by cDNA library screening (Boss O,1997b; Vidal-Puig 

A,1997) and mapped to chromosome 11q13 in man, adjacent to UCP2 

(Solanes G,1997).  UCP3 mRNA was identified in two forms, UCP3L and 

UCP3S, the second form lacking the sixth transmembrane domain and the 

nucleotide binding site (Boss O,1997b).  However, levels of the two forms are 

highly correlated, indicating regulation by a common mechanism (Bao S,1998).   

UCP3 also shows high homology between species, mouse UCP3 is 88% 

identical and rat 86% to humans, and both also express a UCP3S mRNA also 

lacking a transmembrane domain (Solanes G,1997) and a purine binding site 

(Bouillaud F,1994).   The tissue distribution of UCP2 and UCP3 are very 

different, with UCP3 being located predominantly in skeletal muscle, with weak 

signals seen in the heart, thyroid and bone marrow, and in rodents, in brown 

adipose tissue (Boss O,1997b; Vidal-Puig A,1997). 

 

1.4.2a UCP3 thermogenesis and uncoupling 

 

The tissue-specific distribution in skeletal muscle makes UCP3 an attractive 

candidate for a role in energy balance in man.  Skeletal muscle is responsible 

for roughly 80% of resting energy expenditure (Ravussin E,1992) and 40% of 

adrenaline-induced thermogenesis (Simonsen L,1993). Skeletal muscle 

metabolism is also uncoupled, with up to 50% of resting metabolic rate due to 

proton leaks (Rolfe DF,1996).   UCP3 uncouples metabolism in yeast over-

expression systems (Gong DW,1997; Hagen T,1999; Hinz W,1999; Zhang 

CY,1999), insulinoma cells (Hong Y,2001), MCF7 cells (Stock MJ,1999), 293T 

cells (Mao W,1999), E. Coli (Echtay KS,2001; Jaburek M,1999), C2C12 

myoblasts (Boss O,1998a) and L6 myocytes (Guerini D,2002).  However, most 

of these systems are susceptible to overexpression artefact, and the proton leak 

is not regulated by purine nucleotides in a physiological manner (Schrauwen 

P,2006a).  Like UCP2, UCP3 lacks the histidine pair thought to be required for 

conventional uncoupling activity (Masaki T,1997).   
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Evidence from whole organisms is also unclear.  Mice UCP-3 over-expression 

models have smaller adipose tissue depots, are resistant to obesity and do 

demonstrate increased energy expenditure, fat oxidation, oxygen consumption 

and a decline in mitochondrial membrane potential (Clapham JC,2000), but the 

proton leak is again not regulated in a physiological manner, indicating that this 

may be an artefact (Cadenas S,2002).  The UCP3 knockout mouse is not obese 

and has normal energy expenditure even though the mitochondria are more 

coupled.   There appears to be no effect on bodyweight or temperature 

regulation phenotype (Cline GW,2001; Gong DW,2000; Vidal-Puig AJ,2000).   

Temperature maintenance in hibernating squirrels is not dependent on UCP3 

even at temperatures as low as -10C (Barger JL,2006). In Pima Indians mRNA 

levels are associated with 24hr energy expenditure and adjusted metabolic 

rates and inversely correlated with BMI and percentage body fat (Schrauwen 

P,1999).  Women who successfully lost weight were more uncoupled and had 

higher UCP3 mRNA levels than women who were unable to lose weight in a 

simple trial of dietary advice (Harper ME,2002).   When UCP3 protein is 

measured directly no such relationship with BMI (Schrauwen P,2001a), sleeping 

metabolic rate or 24 hour energy expenditure (Schrauwen P,2002a) could be 

detected.  In rodents, although free fatty acids uncouple mitochondrial 

metabolism, this does not occur in conjunction with changes in UCP3 mRNA 

levels (Hirabara SM,2006).  Acute exposure to cold does upregulate UCP3, 

mRNA which later falls on chronic exposure (Lin B,1998), but again this does 

not correspond to the time course of non-shivering heat production (Schrauwen 

P,2002a), while in humans mild cold exposure has no effect on UCP3 mRNA or 

protein levels (Schrauwen P,2002b).   Although UCP3 expression is regulated 

by thyroid hormone, and in pathological thyroid states changes in energy 

metabolism may be in part due to altered UCP3 levels (Hesselink MK,2005), 

there is no evidence that the primary role of UCP3 is mitochondrial uncoupling 

and regulation of energy expenditure. This data, combined with similar evidence 

reviewed later, shows that UCP3 is regulated by skeletal muscle fatty acid 

tissue delivery regardless of body temperature or energy balance, which makes 

it unlikely that the primary function of UCP3 is the regulation of either of these 

parameters. 
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1.4.2b UCP3 and fatty acid metabolism 

 

The paradoxical increase in UCP3 mRNA with fasting again led to a number of 

studies that suggest that UCP3 has an important role in fatty acid metabolism.   

UCP3 mRNA levels correlate with free fatty acids (Boss O,1998a; Vidal H,1999) 

and in most cases, physiological or pharmacological increases in free fatty 

acids and their metabolism increase UCP3 mRNA levels or protein.  This 

includes in the rat, fasting (Boss O,1998c; Cadenas S,1999; Gong DW,1997; 

Samec S,1999b; Samec S,1998b; Weigle DS,1998), sepsis (Sun X,2003), 

acute exercise (Cortright RN,1999), high fat feeding and lipid infusion (Weigle 

DS,1998) in skeletal muscle; fasting (Gong DW,1997; Samec S,1998b; Sivitz 

WI,1999), high fat feeding  (Matsuda J,1997) in brown and white adipose tissue 

and fasting in the heart (Hidaka S,1999).  In mice, fasting, high fat feeding , and 

acute exercise have similar effects in both adipose tissue and skeletal muscle  

(Gong DW,1999; Hwang CS,1999; Schrauwen P,2003; Tsuboyama-Kasaoka 

N,1998; Tsuboyama-Kasaoka N,1999).  At the beginning of suckling, levels of 

free fatty acids rise over a couple of weeks in mice, and this is accompanied by 

a rise in UCP3 mRNA over the exact same time course (Brun S,1999).  In 

humans, UCP3 is upregulated by fasting (Millet L,1997; Vidal H,1999), lipid 

infusion (Khalfallah Y,2000; Nisoli E,2000), acute exercise (Noland RC,2003; 

Schrauwen P,2002a) and by a high fat diet (Hesselink MKC,2003).  The switch 

to fat metabolism in the failing heart is also associated with higher UCP3 mRNA 

levels (Murray AJ,2004).  The effect of fatty acids persists at thermoneutrality 

(Boss O,1998a) and is more pronounced in glycolytic muscle fibres (Samec 

S,1998a).  It does not occur if levels of free fatty acids are suppressed (Samec 

S,1998a) or if fatty acid oxidation is suppressed (Schrauwen P,2002a).  The 

reversal of these changes, such as by refeeding, also reverses the effect on 

UCP3.   Cell systems also demonstrate increased UCP3 mRNA levels, with free 

fatty acids in C2C12 cells (Cabrero A,2000; Hwang CS,1999), human myocytes 

(Sbraccia P,2002), L6 myocytes (Costello A,2003; Nagase I,1999; Son C,2001) 

and rat myocytes (Hoeks J,2003). 

 

Fasting is not accompanied by a change in proton conductance (Cadenas 

S,1999), and changes in proton gradient with any of these stimuli follow a 
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different time course to the changes in UCP3 (Bevilacqua L,2005), so it is likely 

that the role of UCP3 is related to fatty acid oxidation rather than energy 

balance or conventional uncoupling.   A number of studies support this 

hypothesis;  during lipid infusion in humans the lipid oxidation rates correlate 

with UCP3 mRNA and free fatty acid levels (Khalfallah Y,2000), and the 

regulation of UCP3 expression occurs in parallel to other fatty acid oxidation 

genes (Samec S,2001).  The PPAR family are also important regulators of 

UCP3 expression  (Cabrero A,2000; Nagase I,1999; Son C,2001) and both 

PPAR α (Silvestri E,2006) and γ (Brunmair B,2004; Hwang CS,1999) agonists 

increase UCP3 mRNA, while levels are lower in the PPARγ knockout mouse 

(Murray AJ,2005).  However there are a number of situations when fatty acid 

metabolism is not associated with an increase in UCP3 mRNA or protein levels.   

UCP3 mRNA levels are higher in muscle groups with a higher proportion of fast 

twitch glycolytic fibres and lower fat oxidation (Schrauwen P,2001b).  Exercise 

training (Boss O,1998b; Russell AP,2003; Schrauwen P,2005; Tsuboyama-

Kasaoka N,1998) and weight reduction (Esterbauer H,1999; Schrauwen 

P.,2000; Vidal-Puig A,1999), which increase fat oxidation capacity, are also 

associated with lower levels of UCP3 mRNA or protein.  The pharmacological 

inhibition of fatty acid oxidation is also associated with an increase in UCP3 

mRNA (Cabrero A,2001; Samec S,1999b).  In all these conditions UCP3 levels 

do not appear to correlate with the rate of fat oxidation, however, the muscles 

with low oxidative capacity tend to accumulate excess free fatty acids 

(Schrauwen P,2004), and it appears that UCP3 expression may be regulated by 

intracellular  fatty acid surplus, which has led to the hypothesis that UCP3 

functions in mitochondrial fatty acid transport.  

 

1.4.2c UCP3 and fatty acid transport 

 

Although thought to be the classical uncoupling protein the actual mechanism of 

mitochondrial uncoupling by UCP1 is unclear and it is possible that rather than 

directly transporting protons the protein transports fatty acid anions (Schrauwen 

P,2002a).  The function of UCP3 is dependent on the availability of free fatty 

acids, and the mRNA is specifically upregulated by the oversupply of long chain 

but not medium chain fatty acids (Schrauwen P,2003).  There is an important 
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difference in the handling of these two types of fatty acid by mitochondria.  Fatty 

acids are taken up into the mitochondrial matrix by CPT1, with carnitine as a co-

factor, where they are converted to fatty acylCoA.  The inner mitochondrial 

membrane is impermeable to fatty acylCoA, so fatty acids are transported by 

conversion to fatty acyl carnitine by CPT1 and then back to fatty acylCoA in the 

inner mitochondrial matrix by CPT2.  This is then available for oxidation 

(Schrauwen P,2006a).  Fatty acids can accumulate within the matrix by either 

removal of the acylCoA by thioesterases, releasing the CoA for immediate 

oxidation in the citric acid cycle, or by passive transport of neutral fatty acids, 

when fatty acid supply overwhelms the ability to incorporate them into fatty acid 

acylCoA.  Within the inner mitochondrial matrix medium chain fatty acids can be 

readily oxidised without modification, whilst this is not the case for long chain 

fatty acids.  These are deprotonated into fatty acid anions (Hamilton JA,1999), 

which become trapped within the mitochondria, as the membrane is 

impermeable to fatty acid anions (Ho JK,2002).   The accumulation of fatty acid 

anions near the respiratory chain are prone to oxidation by lipid peroxides, 

which are highly reactive (Yagi K,1987), and will have the capacity to further 

damage important metabolic enzymes as well as mitochondrial DNA (Goglia 

F,2003).   The impairment of mitochondrial function has been linked to insulin 

resistance and ageing as described earlier.   

 

Thus there are a number of potential mechanisms by which UCP3 may protect 

the mitochondria from fatty acid anion and lipid peroxide accumulation (see Fig 

1.18) and there are a number of studies supporting this as the primary function 

of UCP3.  Medium chain fatty acids are less susceptible to oxidative damage, 

and, as discussed above, are not linked to regulation of UCP3 expression.  In 

mouse models UCP3 mRNA is regulated in parallel with mRNA levels of 

thioesterases (Moore GBT,2001).  UCP3 over-expression increases fatty acid 

oxidation, CPT1 levels, and reduces lipid accumulation in skeletal muscle 

(Bezaire V,2005), without any effect on glucose oxidation or convention 

uncoupling (MacLellan JD,2005). Fat oxidation is reduced in the UCP3 

knockout mouse (Bezaire V,2001), which also demonstrates higher levels of 

ROS production (Vidal-Puig AJ,2000), intramuscular lipid peroxides (Hoeks 

J,2006) and oxidative damage to protein lipids and DNA (Brand MD,2002; 
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Echtay KS,2003).  Aconitase function, inactivated by superoxide, is reduced 

both by purine inhibition of UCP3 function and in the UCP3 knockout mouse 

(Talbot DA,2005).  The effects in the knockout mouse are influenced by diet, 

with a decrease in lipid peroxide formation on a high fat diet, because of a 

decrease in intracellular fat storage by a mechanism as yet unknown (Echtay 

KS,2003).  Therefore, these results must be interpreted with caution, in case 

they are confounded by a compensatory mechanism. 
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Fig 1.17 Hypothesized mechanisms by which UCP3 may protect from fatty acid accumulation and peroxidation (MacLellan JD,2005) 

 

1)UCP3 removes long-chain fatty acids (LCFA) 
produced by MTE1; the latter liberates mitochondrial 
matrix CoASH, a rate-limiting coenzyme for ß-oxidation 
and the Krebs cycle. Long-chain fatty acids are exported 
from the matrix by UCP3 for reactivation by acyl-CoA 
synthase in the intermembrane space. Thus, MTE1 and 
UCP3 are proposed to function in tandem to facilitate 
fatty acid oxidation (Himms-Hagen J,1990).  

2) UCP3 removes excess long-chain fatty acids that 

have entered the mitochondrial matrix independently of 
the CPT system. This would serve to remove potentially 
damaging fatty acid anions from the matrix (Schrauwen 
P,2003). 

 3) UCP3 translocates lipid peroxide anions, generated 
from the interaction of matrix ROS with unsaturated fatty 
acids of the inner leaflet, from the inner to the outer 
leaflets of the mitochondrial inner membrane (Goglia 
FERN,2003). This would remove fatty acid peroxides 
and prevent damage of mitochondrial DNA, aconitase, 
and other matrix components.  

4) 4-hydroxynonenal (HNE), a lipid by-product of 

mitochondrial superoxide (SOD) production, is proposed 
to activate a UCP3-mediated proton leak (Echtay 
KS,2003). It is proposed that this   decreases 
mitochondrial membrane potential and hence decreases 
ROS production.  
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If the function of UCP3 is to control lipid accumulation and peroxidation then 

UCP3 expression should be induced by ROS or oxidative damage.  Muscle 

contraction releases ROS and increases UCP3 mRNA, which is blocked by the 

administration of anti-oxidants (Silveira LR,2006), as does ROS induced by 

hypoxia in C2C12 cells (Flandin P,2005) and in peri-infarct cardiomyocytes 

(Almsherqi ZA,2006).   The increase in mitochondrial proton conductance seen 

with the administration of hydrogen peroxide is dependent on free fatty acids 

and is not seen in the UCP3 knockout mouse, indicating the role of UCP3 in 

protection from ROS (Echtay KS,2002b).  Interestingly, superoxide does not 

appear to regulate UCP3 expression  directly (Mozo J,2006) but 4-hydroxy-2-

nonenol one of the major products of lipid peroxidation does have this function 

(Echtay KS,2003).  Where higher UCP3 mRNA levels have been attributed to 

higher ROS generation, such as the models above, it may be the higher 

generation of mitochondrial peroxides by the generated ROS that increases 

UCP3 mRNA levels.   However, ROS generation per se does not seem to be 

the main stimulus of UCP3  expression.  Metabolic changes in ischaemic pre-

conditioning are only partly dependent on UCP3 (McLeod CJ,2005) and 

although UCP3 levels increase after administration of LPS this is thought to be 

due to fatty acid changes rather than higher levels of ROS (Yu XX,2000).  

UCP3 function will, as an added feature of its suggested function, lower the 

mitochondrial membrane potential and reduce metabolic ROS generation, so 

protecting the cells where it is found (Vincent AM,2004). 

 

In summary, the putative function of UCP3 is, firstly, the protection of 

mitochondria from fatty acid anion accumulation and peroxidation.  Secondly, it 

also has a role in the protection of mitochondrial function against further 

oxidative damage from these lipid oxidation products. 

 

1.4.2d UCP3 and type 2 diabetes 

 

The possibility that insulin resistance is a disorder of fat oxidation or 

mitochondrial function, as discussed earlier, suggests that UCP3 may have an 

important role in protection from the development of insulin resistance, and that 

aberrant UCP3 function might be associated with type 2 diabetes.  UCP3 
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mRNA  levels are correlated with glucose tolerance (Samec S,1999b).  Studies 

of UCP3 mRNA in subjects with type 2 diabetes have had differing results, with 

studies showing higher (Bao S,1998; Vidal H,1999) and lower levels (Krook 

A,1998) associated with disease.  Lower levels were also reported in rats with 

diabetes (Vincent AM,2004).  The level in subjects at risk of type 2 diabetes is 

also variable, with no difference reported in those with first degree relatives 

(Pedersen SB,2005), but lower levels seen in subjects with impaired glucose 

tolerance which were corrected by treatment with the insulin sensitizer 

rosiglitazone  (Schrauwen P,2006b).   UCP3 protein was 50% lower in subjects 

with type 2 diabetes (Schrauwen P,2001a), and UCP3 gene expression is not 

upregulated in fasting subjects with type 2 diabetes (Vidal H,1999).  

Experimental models also support a role for aberrant UCP3 function in insulin 

resistance.  UCP3 over-expression in mice is associated with improved glucose 

tolerance (Clapham JC,2000; Vincent AM,2004; Wang S,2003), while over 

expression in L6 myocytes increases GLUT4 levels, glucose uptake and insulin 

signalling (Huppertz C,2001; Hwang CS,1999).  The increase in UCP3 mRNA 

levels after acute exercise is mirrored by an increase in GLUT4 mRNA 

(Tsuboyama-Kasaoka N,1998) leading to increased glucose uptake.  The UCP3 

knockout mouse is not diabetic (Brand MD,2002), but this may be because 

other compensatory mechanisms are limiting the delivery of free fatty acids to 

mitochondria (Schrauwen P,2006a).   Lipid peroxidation and mitochondrial 

dysfunction are features of type 2 diabetes, and, through its effects on lipid 

oxidation, UCP3 appears to play a protective role against insulin resistance.   

 

1.5 Variation in the uncoupling Protein Genes 2 and 3 

 

The genes for UCP2 and UCP3 are, as described earlier, located on 

chromosome 11q13 within 8Kb of each other (Pecqueur C,1999).   UCP2 

consists of eight exons while UCP3 consists of seven.  The gene structures are 

represented in Fig 1.17. The region including these two genes or their 

equivalent has been associated, by linkage analysis, with obesity and diabetes 

in the mouse (Seldin MF,1994; Taylor BA,1996; Warden CH,1995).  In man 

11q13 has been linked to resting metabolic rate and percentage fat mass 

(Bouchard C,1997), type 1 (Hashimoto L,1994) and type 2 diabetes (Ghosh 



 86 

S,1996; Watanabe RM,2000), all in caucasian samples.  However, replication 

has been poor, with a number of studies failing to find linkage with obesity or 

type 2 diabetes in Caucasians or Mexican Americans (Comuzzie AG,2000; 

Elbein SC,1997; Hager J,1998; Lee JH,1999).  However, this does suggest that 

this area of the genome may be important in determining risk of obesity and 

diabetes.  

 

Fig 1.18. The structure of the UCP2 and UCP3 gene on chromosome 11 

 

 

 

1.5.1 Uncoupling Protein 2 

 

The human UCP2 gene consists of 8 exons, of which exons 1 and 2 are non-

coding (Pecqueur et al. 2001).  Exon 2 contains a short open reading fragment 

that is, like the protein amino acid sequence, highly conserved among species 

(Jastroch M,2004), and seems to act as an inhibitor of translation although the 

functional significance of this is unclear at present (Pecqueur C,2001).  The 

transcription site is preceded by a region that contains a strong cis-acting 

positive regulatory element (-141 to -65) which may underlie the ubiquitous 

expression of UCP2.  In keeping with the changes in expression described, 

several consensus sequences exist for transcription control elements, such as 

C/EBP- , CREB-1 (cAMP response binding protein 1), two PPAR  responsive 

elements, two TREs (thyroid hormone response elements), and NF -B. 

 

The first UCP2 variants to be identified were in exon 4, a +164C>T variant 

which results in an amino acid change of alanine to valine (A55V) and a 45bp 
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insertion/ deletion in exon 8 (3‟UTR).  Although the +164C>T variant was not 

associated with obesity or diabetes markers in a Danish population (Urhammer 

SA,1997), in Pima Indians these two variants were associated with either 

sleeping metabolic rate (+164C>T) or 24 hour energy expenditure (45bp I/D).  

The 3‟UTR variant had no effect on mRNA levels in this study (Walder K,1998).   

The 3‟UTR was associated with BMI in South Indian women living in the UK but 

not in a Caucasian sample, and was not associated with type 2 diabetes in 

either a family study or a case control study (Cassell PC,1999).  Thus early 

studies suggested that UCP2 was not important in the susceptibility to either 

obesity or type 2 diabetes. 

 

Interest in UCP2 as a candidate gene for type 2 diabetes and obesity was 

renewed by the discovery of five new variants, -2723T>A, -1957G>A,-866G>A, 

-371G>C and a 13bp insertion deletion in exon 1.  Esterbauer et al showed two 

of these were associated with mRNA levels in intraperitoneal fat tissue, the        

-2723T>A and -866G>A.  The UCP2 promoter consists of two main blocks, with 

most of the activity in the first 1200bp with a second inhibitory block from -1200 

to -1600bp (Dalgaard LT,2003). The -866G>A variant is at a junction between a 

negative and positive cis-acting DNA region, and within a region that contains 

binding sites for hypoxia, aromatic hydrocarbons, inflammatory cytokines and 

the important β-cell transcription factor PAX-6.  This variant is in 100% LD with 

the -2723T>A promoter variant, strong LD (97%) with the A55V and moderate 

(75%) LD with the 3‟UTR.  The -866G>A variant has been reported to account 

for 71% of the variation in mRNA transcript ratio of the 3‟UTR variant, 

regardless of the nucleotide at -2723 indicating that the -866G>A may be more 

important in the LD block.  The higher activity of the variant promoter, confirmed 

in expression studies in Paz-6 cells (derived from brown fat cells), was 

associated with a lower risk of obesity in two separate case-control studies in 

Caucasians from the Salzburg area of Austria.  In the second cohort the 

population attributable fraction associated with this variant for obesity was 

14.7% (Esterbauer H,2001).  In a similar case-control study from Austria the -

866A was associated with risk of type 2 diabetes.  The over activity of the -866A 

promoter was confirmed in INSE-1 cells (a β-cell line) when stimulated with 

PAX-6.  Interestingly, the same stimulus was associated with lower activity from 
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the -866A promoter in COS-7, cells suggesting that regulation of UCP2 is tissue 

specific (Krempler F,2002).  This was confirmed using electromobility shift 

assays which showed that different complex patterns formed with THP-1 

(macrophages)  and HUVEC (endothelium) cells compared to INSE-1 and Paz-

6 cells, indicating differences in transcription factor binding.  Baseline mRNA 

levels in THP-1 and HUVECS are higher for the wildtype promoter and these 

differences in activity appeared to be in response to an aryl hydrocarbon 

receptor/ nuclear translocator [AhR/ARNT], and Hypoxia inducible factor-

1α/ARNT complex binding (Oberkofler H,2005).   These transcription factors are 

involved in cell stress responses to either environmental pollution (Park H,1999) 

or hypoxia (Semenza GL,2001), and could explain why the -866A variant is 

associated with higher F2-isoprostanes, lower TOAS, higher prospective risk of 

coronary artery disease in Caucasian men (Dhamrait SS,2004) and more 

extensive carotid atheroma in women (Oberkofler H,2005), all of which are 

associated with increased oxidative stress,  and would be expected if UCP2 

function (i.e. mRNA and protein levels) were lower in carriers of -866A. 

 

Overall, cross-sectional studies have been consistent in demonstrating 

associations between UCP2-866G>A and markers of obesity, oxidative stress-

related disease and type 2 diabetes.  In other ethnic groups the relationship has 

been less consistent, with the -866G associated with type 2 diabetes in a mixed 

race sample from the USA (Wang H,2004), and the -866AA genotype 

associated with higher waist hip ratio and risk of metabolic syndrome in Chinese 

and South Asians (Shen H,2006).  This indicates that the effect may be race-

specific or that UCP2 variation has only a modest effect, confounded by 

environmental differences, such as diet, between ethnic groups.  The gene 

association studies for UCP2 are summarized in table 1.4.   
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Table 1.4a The associations of the A55V variant in the UCP2 gene and obesity 

and diabetes markers. 

 

Phenotype Population Assoc^n Risk 
Allele 

Reference 
 

 
Obesity 
 

    

Sleeping MR Pima Indians Y AV↑ (Walder K,1998) 
Exercise Eff↑ Denmark Y V (Buemann B,2001) 
24hrEE ↓ Denmark Y V (Astrup A,1999) 
↓Fat Oxid Denmark Y V (Astrup A,1999) 
Weight loss ↓ USA –overfed* Y V (Ukkola O,2001) 
Morbid Obesity Taiwan Y V (Chen HH, 2007) 
Weight Loss post 
Surgery 

Taiwan Y V (Chen HH, 2007) 

Obesity Taiwan Y V (Wang TN, 2007) 
Weight Loss Korea Y A (Yoon, Y,2007) 
24hr EE Pima Indians N  (Walder K,1998) 
Juvenile cc Denmark N  (Urhammer SA,1997) 
BMI Utah N  (Wang H,2004) 
Obesity cc Italy N  (Mancini FP,2003) 
Obesity cc Japan N  (Kubota T,1998) 
Juvenile cc USA-mixed N  (Yanovski JA,2000) 
Resting MR USA- 

baseline/overfed* 
N  (Ukkola O,2001) 

Weight gain USA-
baseline/overfed* 

N  (Ukkola O,2001) 

BMI,%Fat Korea N  (Yoon, Y,2007) 

 
Diabetes 
 

    

Type 2 Pima Indians Y V (Walder K,1998) 
Type 2 Utah Y V (Wang H,2004) 
Type 2 USA-Mixed 

[obese] 
Y V (Yu X,2005) 

Type 2 Pima Indians N  (Walder K,1998) 
Type 2 Denmark N  (Urhammer SA,1997) 
Glucose/Insulin Italy N  (Mancini FP,2003) 
Type 2 Pima Indians N  (Kovacs P,2005) 
Type 2 Japan N  (Kubota T,1998) 
 
Other 
 

    

Multiple Sclerosis Basque Y A (Otaegui D,2007) 
HDL Cholesterol Korea Y V (Cha MH, 2007) 
Plasma Leptin Scotland Y V (Rance KA,2007) 
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Key for Table 1.4a-c 

*Volunteers partook in an controlled overfeeding protocol 

[ ] indicated in this sub group only (F= female), EE= energy expenditure, MR= 

metabolic rate, cc=case control study. 

 

Table 1.4b The associations of the 45bp 3UTR insertion/deletion [I/D] in the 

UCP2 gene with mRNA levels and obesity and diabetes markers. 

 

Phenotype Population Associ^n Risk 
Allele 

Reference 
 

 
mRNA 
 

    

Half life Paz-6 cells Y D (Esterbauer H,2001) 
Levels Muscle biopsy N  (Walder K,1998) 

 
Obesity 
 

    

Sleeping MR Pima Indians Y I/D ↑ (Walder K,1998) 
24hr EE Pima Indians Y D (Walder K,1998) 
BMI South Indian [F] Y D (Cassell PC,1999) 
BMI Utah Y D (Wang H,2004) 
24hr EE Pima Indians Y D↓ (Kovacs P,2005) 
Obesity Germany Y D (Evans D,2001) 
Juvenile Obesity USA-Mixed Y D (Yanovski JA,2000) 
Fat Mass [Dialysis] Sweden Y D (Wang X, 2006) 
Obesity Spain Y D (Ochoa MC,2007) 
Weight gain USA-

baseline/overfed* 
N  (Ukkola O,2001) 

Obesity cc Denmark N  (Dalgaard LT,1999) 
BMI England N  (Cassell PC,1999) 
24hr EE Pima Indians N  (Kovacs P,2005) 
10 yr wt gain Denmark N  (Berentzen T,2005) 
Adiposity [Dexa] Scotland N  (Rance KA,2007) 
Plasma Leptin Scotland N  (Rance KA,2007) 
Weight Loss Korea N  (Yoon, Y,2007) 
BMI,%Fat Korea N  (Yoon, Y,2007) 

 
Diabetes 
 

    

Type 2 Pima Indians Y D (Walder K,1998) 
Type 2 Utah Y D (Wang H,2004) 
Insulin Resistance Spain Y D (Ochoa MC,2007) 
Type 2 Pima Indians N  (Walder K,1998) 
Type 2 South Indians N  (Cassell PC,1999) 
Type 2 Pima Indians N  (Kovacs P,2005) 
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Table 1.4c The association the -866 variant in the UCP2 gene with mRNA 

levels and obesity and diabetes markers. 

Phenotype Population Assoc^n Ris
k  

Reference 
 

mRNA 

(Low activity) 
    

Promoter activity Paz-6 cells Y G (Esterbauer H,2001) 
Promoter activity INSE-1 cells Y G (Krempler F,2002) 
Promoter activity COS-7 cells Y A (Krempler F,2002) 
Promoter activity THP/HUVEC cells  Y A (Oberkofler H,2005) 
Levels SC Fat (mixed) Y A (Wang H,2004) 
Promoter Activity INSE-1 cells Y G (Sasahara M,2004) 
Levels Blood (cauc) Y G (Vogler S,2005) 
Promoter activity Jukhat (T-cell) 

U9377 (Mphage) 
Y G (Vogler S,2005) 

Obesity     
BMI Austria Y G (Esterbauer H,2001) 
Fat:Glc OX Europe Y G (Le Fur S,2004) 
24hr EE Pima Indians Y G (Kovacs P,2005) 
WHR Indian/Chinese Y A (Shen H,2006) 
Weight Loss Korea Y A (Yoon, Y,2007) 
Obesity Spain Y G (Ochoa MC,2007) 
BMI,%Fat Korea N  (Yoon, Y,2007) 
BMI,%FAT Denmark N  (Dalgaard LT,2003) 
Juvenile onset Europe N  (Le Fur S,2004) 
Obesity cc Japan T2 N  (Sasahara M,2004) 
BMI France T2 N  (Reis AF,2004) 
BMI Japan N  (Ji Q,2004) 

Morbid Obesity Taiwan N  (Chen HH, 2007) 

Weight Loss post 
Surgery 

Taiwan N  (Chen HH, 2007) 

Obesity Taiwan N  (Wang TN, 2007) 

Body Adiposity 
[Dexa] 

Scotland N  (Rance KA,2007) 

Diabetes     
Type 2 Austria Y A (Krempler F,2002) 
GSIS Italy Y A (Sesti G,2003) 
Type 2 Utah Y G (Wang H,2004) 
Type 2  Italy [F] Y A (D'Adamo M,2004) 
Insulin therapy Japan Y A (Sasahara M,2004) 
Type 2  Italy Y G (Bulotta A,2005) 
Glucose/Insulin Italy N  (Mancini FP,2003) 
NEFA/Insulin 
Relationship 

Hungary Y Lost 
in A 

(Bokor S, 2007) 

Type 2 Diabetes North India Y G (Rai E, 2007) 
Insulin Resistance Spain Y G (Ochoa MC,2007) 
Glucose/Insulin Denmark N  (Dalgaard LT,2003) 
Glucose/Insulin France N  (Reis AF,2004) 
HOMA-R Japan N  (Ji Q,2004) 
Type 2 Pima Indians N  (Kovacs P,2005) 
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Oxidative Stress 

 
    

Multiple Sclerosis Germany Y G (Vogler S,2005) 
TOAS England Y A (Dhamrait SS,2004) 
CAD England Y A (Dhamrait SS,2004) 
Carotid Atheroma Austria [F] Y A (Oberkofler H,2005) 
Neuropathy Japan Type 2 Y A (Yamasaki H,2006) 
Neuropathy USA- Europe/Type  Y G (Rudofsky G,2006) 
TOAS [Smokers] England Y A (Stephens J, 2007) 

Other 
 

    

Triglycerides France T2 Y A (Reis AF,2004) 
Hypertension Japan Y A (Ji Q,2004) 
Triglycerides Indian/Chinese Y A (Shen H,2006) 
Long Chain FA Hungary Y A (Bokor S, 2007) 
HDL Cholesterol Iran Y A (Akrami SM, 2007) 
HDL Cholesterol Korea Y A (Cha MH, 2007) 
Plasma Leptin Scotland N  (Rance KA,2007) 
 

1.5.2 Uncoupling Protein 3   

 

The UCP3 gene has 7 exons and the presence of binding sites for muscle 

dependent transcription factors CCAC and E box, Mefz and MyoD explains how 

UCP3 expression is targeted to skeletal muscle cells (Acin A,1999).  The 

promoter has several other binding sites, and is regulated by other important 

metabolic signals including retinoic acid (Solanes G,2000), PPAR, thyroid 

hormone (Acin A,1999), leptin, steroids and β3 (Gong DW,1997) and β2 

receptors (Masaki T,1997).  The activity of the metabolic response elements in 

most cases is also dependent on activation of muscle-dependent transcription 

factors ensuring metabolic response is  also targeted to skeletal muscle cells 

(Solanes G,2000) 

 

Sequencing and gene association studies involving UCP3 have been less 

successful in identifying important variants with consistent effects.  The 

discovery of significant mutations in obese African Americans with type 2 

diabetes suggested that UCP3 may be important.  One of these sites, a 

mutation at the splice site of exon 6, was associated with a significant 50% 

reduction in fat oxidation (Argyropoulos G,1998).    
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A number of variants have been identified throughout the gene (see table 1.5) 

but only one of these has been associated with differences in mRNA levels.  

The -55C>T was originally located near a TATA box (6bp) although a recent 

report (Acin A,1999) places the variant in the „5UTR near (4bp) a PPAR 

responsive element, which also suggests it could modify regulation of UCP3 

expression.  The variant allele was associated with higher levels of mRNA but 

not with obesity (Schrauwen P,1999). This variant is also near a DR1 retinoic 

acid response element (6bp) and an area responsible for MyoD activity (61bp) 

(Solanes G,2000), so may affect the action of other important factors as well. 

 

Phenotype association studies have been very inconsistent, and often in conflict 

with the association with mRNA levels.  The T allele was associated with higher 

BMI or WHR, consistent with decreased function, in French and German 

Caucasians, South Asian Indian parent-offspring trios, South Asian Indians and 

the British Diabetic Association Warren 2 trios collection (Cassell PG,2000; 

Halsall DJ,2001; Herrmann SM,2003; Otabe S,2000).  However, one study 

showed a lower BMI in TT subjects in a United Kingdom sample (Halsall 

DJ,2001), and increased function is also suggested with the association of 

protection from diabetic neuropathy (Rudofsky G,2006).  In these studies 

association with T2DM was examined only once and a relationship not found.  

The variant allele was found to be protective against T2DM in two French 

cohorts, suggesting increased function, although also associated with an 

atherogenic lipid profile (Meirhaeghe A,2000).  These studies are summarized 

in table 1.6.  The results in both tables are not well replicated.  The frequency of 

a number of the variants is different across ethnic groups (Kimm SY,2002; Liu 

YJ,2005), so differences could be seen depending on the origin of the sample.  

The effect of variation in UCP3 on obesity is likely to be small, estimated at 2-

3% of total variation in one study (Liu YJ,2005), which means that not all the 

studies will be adequately powered to detect a difference.  There is strong LD 

between the variants in both genes (Walder K,1998) and some signal from a 

functional variant is likely to be detected in studies of several “non-functional” 

variants across the cluster. 
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Table 1.5  A summary of association studies for variants within  UCP3 

excluding the -55C>T polymorphism. [The variants are described as the appear 

most commonly in the literature.] 

Variant Phenotype population Risk  Reference 

Promoter     
-155C>T Obesity France No (Otabe S,2000) 

-439Del A Obesity France No “ 

Exon 1     
+5 G>A Obesity France No (Otabe S,2000) 

Exon 2     
Val9Met Obesity France No (Otabe S,1999) 
 Growth/O2 use Yeast No (Hagen T,1999) 

Intron 2     
+521G>C BMI/Weight loss Korea No (Cha MH,2006) 

Exon 3      
Arg70Trp Growth/O2 use Yeast Variant 

↓  

(Brown AM,1999) 

Ala83Ala Obesity/DM France No (Otabe S,1999) 

Gly84Ser Juvenile Obesity Denmark No (Urhammer 
SA,1998) 

Tyr99Tyr Obesity/DM France CC ↑BMI (Otabe S,1999) 
 Juvenile Obesity Denmark No (Urhammer 

SA,1998) 
 Weight Loss Canada [F] No (Harper ME,2002) 
 Resting EE USA-mixed No (Kimm SY,2002) 
 BMI USA- Cauc No (Liu YJ,2005) 
 Met R./Obesity Pima No (Walder K,1998) 
 TSH r TRH USA ↓ CC (Ukkola O,2001) 

 Weight loss after 
overfeeding 

USA  ↓ CC (Ukkola O,2001) 

 RQ Baseline + 
after overfeeding 

USA ↓ CC (Ukkola O,2001) 

 BMI/Weight loss Korea No (Cha MH,2006) 
 BMI/Weight loss Korea No (Yoon Y, 2007) 

Val109Ile Resting EE USA-mixed No (Cha MH,2006) 
 Growth/O2 use Yeast No (Brown AM,1999; 

Hagen T,1999) 
 Obesity Tiawan No (Wang TN, 2007) 

Intron 3     
-46A>T Juvenile Obesity Denmark No (Urhammer 

SA,1998) 

-47A>G Juvenile  Obesity Denmark No “ 
 BMI/Weight loss Korea No (Cha MH,2006) 

-96C>T Juvenile Obesity Denmark No “ 

-143A>G Juvenile Obesity Denmark No “ 

Intron 4     

+36C>T Obesity/DM France TT↑DM (Otabe S,1999) 

+1811C>T BMI/Weight loss Korea No (Cha MH,2006) 
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EE = Energy Expenditure, RQ = Respiratory Quotient, DM = Diabetes Mellitus, Met R 

=Metabolic rate, [ ] = in this subgroup only, F= females.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Variant Phenotype population Risk  Reference 

Exon 5      
Tyr210Tyr Obesity/DM France TT↑DM (Otabe S,1999) 
 Juvenile Obesity Denmark No (Urhammer SA,1998) 
 Fat/Lean mass USA women TT↑  

(↓intake) 

(Damcott CM,2004) 

 BMI/fat mass Canada-
mixed 

↑ T (Lanouette CM,2002) 

 BMI USA No (Liu YJ,2005) 
 Weight loss Canada [F] No (Harper ME,2002) 
 Resting EE USA- mixed ↑ T 

[Black] 

(Kimm SY,2002) 

 BMI/Weight loss Korea No (Cha MH,2006) 

 HDL Cholesterol Korea Y (Cha MH, 2007) 

 BMI/Weight loss Korea No (Yoon Y, 2007) 

Exon 6     
Splice site 
Mutation 

Fat oxidation Black USA Yes (Argyropoulos 
G,1998) 

 Growth/ O2 use YEAST No (Brown AM,1999) 
 BMI/Fat mass USA Black No (Chung WK,1999) 
 UCP3mRNA USA Black UCP3S 

only 
(Chung WK,1999) 

Intron 6     
GAIVS6 
(microsatellite) 

BMI/skin fold Canada 
[Cauc] 

↑

wildtype 

(Lanouette CM,2002) 

Exon 7     
Arg308Trp Obesity DM France No (Otabe S,1999) 
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Table 1.6  The association of the -55C>T variant in UCP3 with Obesity and 

Diabetes phenotypes.  

 

EE= Energy Expenditure, DM = Subjects with diabetes mellitus, [ ] = in this subgroup 
only, F= females 

 

Phenotype  Population Association Risk  Reference 

mRNA     
Decreased PIMA Y C (Schrauwen P,1999) 

Obesity     
WHR Germany Y TT↑ (Herrmann SM,2003) 
Obesity Spain Y T (Ochoa MC,2007) 
WHR South 

Indian[F] 
Y T↑ (Cassell PG,2000) 

WHR UK White[F] Y T↑ “ 
Obesity France  Y TT ↑BMI (Otabe S,2000) 
BMI USA 

Caucasians 
Y C ↑ (Liu YJ,2005) 

Juvenile 
Obesity 

UK Y C ↑ BMI (Halsall DJ,2001) 

% Fat/VO max UK N  “ 

Obesity/ 
weight gain 

Denmark N  (Dalgaard LT,2001b) 

Weight loss Canada [F] N  (Harper ME,2002) 
Resting EE USA mixed N  (Kimm SY,2002) 
BMI France DM N  (Meirhaeghe A,2000) 
Weight Gain Denmark  N  (Berentzen T,2005) 
Obesity Korea N  (Cha MH,2006) 
Obesity Taiwan N  (Wang TN, 2007) 
Obesity PIMA N  (Schrauwen P,1999) 

T2DM     
Family study South Indian N  (Cassell PG,2000) 
Case-control South Indian N  “ 
Family study UK N  “ 
Case-control France Y C↑DM (Meirhaeghe A,2000) 
Insulin 
resistance 

Spain Y T (Ochoa MC,2007) 

Misc     
Cholesterol France DM Y ↑TT (Meirhaeghe A,2000) 

Neuropathy Germany DM Y ↑ CC (Rudofsky G,2006) 
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1.6 Study Aims 

 

The aim of this study was to use a genetic approach to determine the role of the 

Uncoupling Proteins 2 and 3 in the development of type 2 diabetes mellitus.    

 

 

Hypothesis: 

 

Uncoupling Proteins 2 and 3 influence the risk of development of type 2 

diabetes through the modulation of oxidative stress. 

 

 

Specific Aims 

 

1) Confirmation that identified genetic variants in the UCP2-UCP3 gene 

cluster are associated with type 2 diabetes using a prospective study 

design. 

 

 

2) Examining the association of common variants in the UCP2-UCP3 gene 

cluster traits with markers of oxidative stress. 

 



 98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER TWO 

 

MATERIALS AND METHODS 



 99 

CONTENTS OF CHAPTER TWO 

 

2.1 Study samples 

a. Japanese American Family Study (JAM)    100 

b. The Second Northwick Park Heart Study II Cohort (NPHS) 101 

c. Hypercoagulability and Impaired Fibrinolytic Function  

Mechanisms Study(HIFMECH)     102 

d. University College Diabetes and Cardiovascular Disease 

Study (UDACS)       102 

 

2.2 Genotype Determination       103 

 a. Polymerase chain reaction & Restriction Digest   104 

 b. Taqman® Genotyping      110 

 c. Specific Gene Variants      113 

 

2.3 Biochemical Assays        115 

a. In house Total Antioxidant Status (TAOS)   115 

b. Total Antioxidant Status (Randox, Ireland)(TAS)  117 

c. Bioxytech® AOP490 TM       119 

d. Glutathione/ Reduced Glutathione Ratio    120 

e.  Plasma F2 Isoprostanes      123 

f. Plasma Non-Esterified Fatty Acids    125 

 

2.4 Clinical Protocols         126 

 a. Oral Glucose Tolerance Test      127 

 b. Meal rich in used cooking oil with endothelial function  127 

 

2.5 Statistical Analysis        128 

 

2.6  Reagents and commonly used stock solutions and equipment 129 

2.7  Declaration of Activity       132 



 100 

2.1 Study Samples 

 

2.1a Japanese American Family Study (JAM) 

The JAM Study was organised by the Department of Epidemiology, University of 

Washington.  The study was designed to investigate risk factors for coronary heart 

disease, diabetes, and the insulin resistance syndrome in Japanese American 

families (Austin MA,2004a).  The study had full Institutional Review Board approval 

from The University of Washington.  

Probands were Nisei (2nd generation) participants in the Japanese American 

Community Diabetes Study (JACDS) who had a spouse of Japanese descent and 

children, and who were non-diabetic at the time of the first community-wide survey 

conducted in 1983. Members of the Nisei generation now range in age from 

approximately 65 to 75 years. Because most Nisei married other Japanese 

Americans, the Sansei (3rd generation) is predominately of Japanese descent, with 

ages now ranging from about 30 to 55 years.  Probands were contacted by letter 

and those interested were asked to give permission to contact family members. 

Eligible family members included parents, spouses and offspring of the proband, 

siblings, spouses of siblings, and nieces and nephews of the proband, age 18 

years and over, residing anywhere in the United States, who were not pregnant 

and not too ill to participate.   Thus, the study sample consists primarily of two-

generation extended Nisei and Sansei kindreds. Each proband and relative was 

contacted individually by letter and phone, and asked to participate by providing a 

fasting blood sample and medical history questionnaire. For relatives living outside 

of the Seattle metropolitan area, blood samples were shipped by overnight mail to 

the University of Washington.   Type 2 diabetes was defined as fasting glucose 

>125 mg/dl, taking known medication for diabetes, self-reported diabetes, and self-

report of taking insulin or oral antidiabetic pills by questionnaire (Austin MA,2004a) 

The study participants all provided written, informed consent.  I would like to thank 

Mellissa Austin, principal Investigator, for the use of JAM samples. 
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2.1b The Second Northwick Park Heart Study Cohort (NPHSII) 

 

The Second Northwick Park Heart Study (NPHSII) was recruited by the Medical 

Research Council Cardiovascular group at The Wolfson centre for Preventative 

Medicine.  In brief, 3012 unrelated healthy Caucasian middle-aged male subjects 

(mean age 56.1+3.5 years) recruited from nine UK general practices, detailed 

elsewhere were prospectively followed for up to 15 years (Gable DR,2006b).  The 

study was approved by the institutional ethics committees and performed in 

accordance with the declaration of Helsinki.  All subjects gave written informed 

consent. 

 

Baseline characteristics were ascertained by means of a questionnaire at entry into 

the study.  Exclusion criteria at baseline were a history of myocardial infarction, 

cerebrovascular disease, life-threatening malignancy or regular medication with 

aspirin or anticoagulants.  At entry, a 5ml EDTA blood sample was obtained, from 

which genomic leukocyte DNA was extracted. Time to first CHD event (defined as 

sudden cardiac death, symptomatic/silent MI (the appearance of a new major Q 

wave on the follow up ECG, using Minnesota codes 11,12.1 to 12.7, 12.8 plus 51 or 52, 

or coronary revascularisation) was recorded, yielding only one event/subject.  

Cases of Type 2 Diabetes at baseline were identified by self report.  Exclusion 

criteria precluded subjects requiring insulin or oral hypoglycaemics from entry into 

NPHS II.  New cases were identified by practice note search for physician 

diagnosed and treated T2DM according to current national guidelines.  To date, 

288 coronary heart disease events have occurred in 2775 of the subjects with DNA 

available for analysis.  There were 76 cases of Type 2 Diabetes at baseline and by 

15 years a further 169 cases had been identified.  
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2.1c Hypercoagulability and Impaired Fibrinolytic Function Mechanisms Study 

(HIFMECH) 

 

The HIFMECH study was designed to study genetic and environmental 

mechanisms contributing to the higher cardiovascular risk in Northern compared to 

southern Europe (Juhan-Vague I,2002).  The study samples of Caucasian male 

first myocardial infarction survivors below 60 years of age were recruited from four 

European centres (Northern European-Stockholm, London; Southern European-

Marseille, San Giovani Rotondo) (n=598). Subjects with familial 

hypercholesterolemia and insulin-dependent diabetes mellitus were excluded.  A 

selection of randomly-selected age-matched healthy controls were also recruited 

from each catchment area (n=653).  The study was performed in accordance with 

the guidelines in The Declaration of Helsinki and approved by local ethics 

committees. Written informed consent was obtained from all subjects.  The patients 

and control subjects were examined in parallel in the early morning after an 

overnight fast, and a blood sample was also obtained.  Post-infarction patients 

were investigated 3 to 6 months after the acute event.  

 

2.1d UCL Diabetes and Cardiovascular Disease Study (UDACS) 

 

The UDACS is a cross-sectional sample of subjects designed to study the 

association between common variants in inflammatory/metabolic genes and 

biochemical risk factors implicated in CHD in patients with diabetes.  The subjects 

were recruited by Dr Jeffrey Stephens (Cardiovascular Genetics, UCL and 

Diabetes and Endocrinology, University College London Hospitals NHS Foundation 

Trust) between December 2001 and January 2003 from the diabetes clinic at 

University College London Hospitals NHS Trust (UCLH).  Clinical information was 

gathered from the computerised clinic database, which was first established in 

1983. The database contains demographic and clinical information on patients 

attending the diabetes clinic and clinic measurements of blood pressure (supine 

and lying), weight and height were measured on all subjects and routine clinic 
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biochemistry was also recorded.  All patients had diabetes according to WHO 

criteria current at the time of diagnosis.  Patients were categorised by the 

presence/absence of clinically manifest CHD.  The presence of CHD was recorded 

if any patient had positive coronary angiography/angioplasty, coronary artery 

bypass, cardiac thallium scan, exercise tolerance test, myocardial infarction or 

symptomatic/treated angina. Any individual who was asymptomatic or had negative 

investigations was categorised as „no CHD‟.   Ethical approval was obtained from 

UCL/UCLH Ethics Committee and the project was registered with the Department 

of Research and Development at UCLH.  All subjects completed a self-assessment 

questionnaire and gave written consent before being recruited in the study.  All 

subjects were free from acute illnesses at the time of recruitment. 

 

2.2 Genotype Determination  

 

 

Leukocyte DNA for genotyping had previously been extracted for all studies from 

whole blood using the “salting out” method (Miller SA,1988). Briefly, the cell lysis  is 

achieved with a sugar lysis buffer followed by nuclear lysis using the defined 

nuclear lysis buffer.  De-proteinisation is performed with sodium perchlorate.  The 

DNA was extracted using chloroform and then precipitated from the aqueous 

phase using ethanol.  The extracted DNA was dissolved and stored in TE Buffer.    

All samples were carefully logged and entered into a database with a unique 

identifier in order to preserve the anonymity of individuals in the study. This stock 

DNA is used to prepare working 96 well arrays for genotyping. 

 

Working DNA was standardized to a concentration of 15ng/ l.  This was achieved 

by calculating the volume of DNA required to be added to 750 l of dH2O to achieve 

this concentration on the basis of the absorbance of a 10 l sample of stock DNA.  

Stock arrays were created in labelled 96-well Beckman‟s array.  These were stored 

at -20oC. To create working arrays, 100 l of each sample was removed from the 

stock array, and transferred to another labelled 96-well array. 
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2.2a Polymerase chain reaction & Restriction Digest (RFLP) 

 

The technique of Polymerase chain reaction (PCR) relies on double stranded DNA 

being denatured into single strands by heat, consequently annealing with 

oligonucleotides, and with the addition of DNA polymerase and nucleotide bases, 

the synthesis of a double strand on cooling. This process leads to binary 

replication, generating large quantities of DNA in a short period of time. The first 

step is therefore a short period of high temperature to denature or „melt‟ the DNA. 

This is followed by cooling in the presence of oligonucleotides that are 

complementary to the DNA either side of the sequence to be studied. These 

oligonucleotides anneal, and a DNA polymerase adds nucleotides base by base, 

thus replicating the DNA (Fig. 2.2). The polymerase used is derived from the 

bacterium Thermus aquaticus (Taq) and is heat stable. Therefore, it does not need 

to be replenished after each cycle of heating and cooling.  

 

Fig. 2.1: Schematic representation of the polymerase chain reaction (PCR). Denaturation 

of double stranded DNA occurs at 95°c (melting). Annealing of oligonucleotides varies 

according to the relative amounts of the four bases present. Polymerisation with Taq 

usually occurs at 72°c (polymerisation). 
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Sample Preparation for Polymerase Chain Reaction  

 

The DNA samples were prepared for PCR by centrifuging the DNA working-array 

at 200g for one minute to ensure that all the DNA dilutions were at the bottom of 

their respective wells, reducing the possibility of cross-well contamination when the 

array lid was removed. The appropriate amount of DNA (see 2.2c) was then 

removed from each array and transferred into a standard 96-well PCR plate from 

Corning Inc. (Hemel Hempstead, UK) using a multichannel dispenser.  Life Positive 

and negative controls were utilised to ensure accuracy. Extreme care was taken to 

ensure that samples were placed in the identical orientation as in the original 

arrays.  

 

A bulk mix of reagents was made up for each PCR, allowing adequate volume for 

the planned number of reactions, with an additional 10% added to ensure that the 

mix would not run short. PCR oligonucleotides and Taq polymerase were kept on 

ice and added just before the commencement of the reaction. PCRs were 

performed in a total volume of 20 l made up with distilled water. Each reaction 

contained 1x concentration of appropriate polmix, MgCl2, 8pmol of each 

oligonucleotide and 0.4U of Taq polymerase. 

 

The PCR mix was added to each well of the PCR plate using an automatic 

repeating dispenser. Each sample was overlaid with 20 l of mineral oil to prevent 

evaporation. The microtitre plate was then sealed with a clear sticky plastic lid and 

carefully labelled. Plates were centrifuged at 200g for thirty seconds to ensure 

good mixing of the reaction components in each well. PCR amplification was 

performed on an MJ Tetrad DNA Engine Thermocycler.   A description of the 

individual primers and conditions for each variant can be found in section 2.2c. 
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Detection of DNA (Agarose gels) 

 

In order to check the successful amplification and size of PCR products, agarose 

gels were utilised.  For a 2% gel, 2 grams of agarose  was mixed with 100ml of 

1×TBE solution containing 10µL of Ethidium bromide (10µg/µL). A microwave oven 

was used to heat the mixture and dissolve the agarose. The melted agarose was 

poured into a plastic gel tray (10 × 14cm) and a comb inserted. Solid gels were 

placed into an electrophoresis tank containing 750ml of 1xTBE buffer solution. 2 l 

of MADGE loading dye was added to 5µL PCR product and the entire volume was 

mixed thoroughly and placed in the separate, submerged wells of the gel. 2µl of a 

1Kb ladder (Invitrogen, Paisley UK) was pipetted into the central well in order to 

size relevant products. All agarose gels were run at 100 volts (v) for a minimum of 

30 minutes. 

 

Restriction digestion 

 

Restriction enzymes are derived from bacteria, and cleave double stranded DNA at 

a particular sequence. The enzyme translocates along the DNA until a particular 

recognition site is reached, where the DNA is cut. The restriction enzyme is 

sensitive even to a single base change in the recognition sequence, and thus can 

be used to detect point mutations and single base polymorphisms. A single base 

change can either eliminate or create a cutting site for a particular enzyme. 

 

A restriction enzyme digest mix with the recommended buffer system was made up 

in a 1ml Eppendorf tube on each occasion, containing sufficient enzyme to digest 

the PCR products in each well of the PCR plate.  5 l of digestion mix was then 

added to 8 l of each reaction product using a repeater pipette as for the PCR mix. 

Each omniplate was then centrifuged at 200g for thirty seconds to ensure that the 

PCR product and restriction enzyme were mixed well. The PCR/digestion mix was 

then incubated overnight at the recommended temperature. The specific conditions 

and possible product sizes for each genotyping assay are detailed in section 2.2c. 
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Microtitre Array Diagonal Gel Electrophoresis (MADGE) 

 

The DNA fragments produced by restriction enzyme digest were separated by 

electrophoresis on a non-denaturing polyacrylamide gel, using Microtitre Array 

Diagonal Gel Electrophoresis (MADGE)(Day IN,1995). This technique makes it 

possible to electrophorese all the 96 wells of a standard PCR plate on a single gel, 

by allowing the samples to run diagonally. Use of MADGE allowed the 96 well DNA 

array format to be retained throughout the screening process.  

 

MADGE consists of an open arrangement of 8x12 wells each 2mm deep. The wells 

are arranged at an angle of 71.2o to the short axis of the array, but perpendicular to 

the long-axis of the Perspex formers used (Fig. 2.2A).   Before making the mix, 

glass plates of appropriate size (160 x 100 x 2mm) were rigorously cleaned and 

hand dried. 5 drops of -methacryloxypropyltrimethoxysilane („sticky‟ silane) were 

spread across the plates and left to air-dry. Polymerisation of the MADGE mix was 

initiated by the addition of ammonium persulphate and the solution was mixed and 

quickly poured into the three-dimensional former. A glass plate was then gently 

placed over the mould (silane side facing downwards) taking care not to trap any 

air bubbles. This was then left for fifteen minutes to set, using a small weight to 

ensure that the glass did not slip whilst the gel was setting. Excess gel was 

trimmed from the edges of the MADGE former before the glass plate and attached 

gel were then prised away from the plastic former.  

 

Gel staining and loading 

 

Prior to loading a gel with digested PCR product, each gel was stained with 

Ethidium Bromide (EtBr). This was achieved by placing them individually in a 

Stuart box, shielded from direct light, containing 100ml of 1x TBE and 10 l EtBr for 

20 minutes.   MADGE loading dye (2 l) was added to each well of a new, round-

bottomed, loading tray, followed by 5 l of each digested sample, using a multi-

channel pipette to pick up the samples from under the oil in the plates. The 
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digested samples were gently mixed, by aspirating the formamide dye–digest 

mixture up and down several times into the pipette, before dispensing them on the 

digest plate.  

 

After placing the stained MADGE gel into an electrophoresis tank containing 750ml 

of 1xTBE buffer solution, a multi-channel pipette was used to transfer 5 l of this 

digest/dye mixture to the wells of the gel. At all times the samples were kept in the 

same layout as on the PCR tray, allowing each sample to be easily identified 

without being re-labelled. The gel was electrophoresed at 150v for a minimum of 

30 minutes. 

 

Following electrophoresis, the gel was viewed and photographed under ultraviolet 

light using the UVP Gel Documentation System. Care was once more taken to 

ensure the correct orientation of the MADGE under UV.  Figure 2.2B illustrates a  

typical pattern obtained for the polymorphisms genotyped. 

 

All genotyping was performed in a double blind fashion using both positive and 

negative controls. The results were rechecked by two individuals at the time of 

MADGE imaging and during data entry into the computer database. Any apparent 

genotype differences were resolved by repeat PCR. Overall there was excellent 

reproducibility with >95% consistency between observers. 
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Fig. 2.2: Perspex former (A) and visualised MADGE gel (B) for the UCP2-866G>A and 

UCP3 -55C>T gene variants.  

 

   

 

Perspex former is used to create angled Indentations in 

the gel.  
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2.2b Taqman® genotyping 

 

The principle behind the Taqman® reaction is described in Fig. 2.4. The method 

involves the inclusion of two fluorescent, dye-labelled probes for each allele of a 

specific variant.  The allele specific probes each contain a short sequence of DNA, 

a reporter dye (Labelled VIC™ or FAM™ depending upon the allele) at the 5‟ end, 

and a non-fluorescent quencher (NFQ) dye at the 3‟ end. During the PCR process, 

forward/reverse oligonucleotides as well as the labelled probes, anneal to the DNA 

of interest (Fig. 2.4.A). Amplitaq Gold® DNA polymerase is able to replicate the 

single strand of DNA until it reaches the labelled probe. Any non-specific binding 

results in a weakened interaction of the labelled probe with the DNA and 

displacement of the intact probe (no cleavage of the dye from the quencher) 

(Fig.2.4.B). If the probe is entirely complementary (hence allele specific probes) to 

the annealed DNA sequence, the 5‟ to 3‟ exonuclease activity of the enzyme 

results in the cleavage of the 5‟ dye from the rest of the probe (Fig. 2.4.C). The 

close proximity of the dye to the quencher usually prevents any significant 

fluorescent emission. However, once the dye is cleaved, fluorescence increases 

with each round of DNA replication (Fig.2.4.D). A 7900HT Sequence Detection 

machine (Applied Biosystems, California USA) is then able to determine the 

relative levels of either the VIC or FAM dyes, thereby determining the specific 

genotype. 

 

Preparing the DNA 

 

In contrast to traditional PCR and MADGE based technology, the Taqman® 

system enables high throughput genotyping in a 384 well format. In order to use 

this system, DNA was first standardised to an optimal concentration of 1.25ng/µL 

using the same methodology described in section 2.2. A Biomek 2000 robot 

(Beckman-Coulter, High Wycombe UK) was used to aliquot 4µL of standardised 

DNA from a 96 well stock array into a 384 well plate (5ng total) with 16 wells left 

blank to act as negative controls. A data sheet was also compiled in order to 
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identify each well to patient ID number. The plates were dried out overnight at 

room temperature in sterile paper bags and stored until use.  

 

 

Fig. 2.3: Schematic of the Taqman® assay system. A. represents the annealing of the 

fluorescent probes and oligonucleotides. B. If the fluorescent probe is not identical to the 

DNA sequence, the probe is displaced by the Taq. C. Successful annealing leads to 5‟-3‟ 

exonuclease of the probe. D. The VIC™ and FAM™ labels fluoresce and are picked up by 

the Taqman® machine.  
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Taqman master mix  

 

Forward/reverse oligonucleotides and labelled probes were ordered using the 

„Assay by demand‟ service available on the Applied Biosystems website 

(www.appliedbiosystems.com).  Section 2.2c lists all the assays successfully 

designed by Applied Biosystems for this thesis.  For each 384 well plate, a master 

mix was made of the ABgene QPCR Rox mix, the individual assay mix, and 

distilled sigma water.  4µL of mix was then applied to each well of the 384 plate 

using a manual Eppendorf 300, 8 channel multi-dispensing pipette and centrifuged 

(Sigma 4-15) at 200g for thirty seconds. A clear plastic lid (ABgene, Surrey UK) 

was applied to seal the plate. 

 

Fig. 2.4: Screen shot of a typical allelic discrimination plot. The three different coloured dots 

represent each individual genotype: Blue and red represent homozygotes with the green 

dots representing heterozygotes. Light blue crosses show the negative controls. Those 

dots which were not tightly clustered (circled in the figure) to a particular group were re-

genotyped. 
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Reading and entering of genotypes 

 

A standard two step heat cycle program on a Thermohybaid (Basingstoke, UK) 384 

well, heated block was used to initiate the PCR reaction (95°C for ten minutes, 

followed by 40 cycles of 95°C for 15s and 60°C for 1min), and all plates were then 

read on a 7900HT Sequence Detection machine (Applied Biosystems). The 

7900HT Taqman® machine uses SDS software 2.1 (Applied Biosystems) in order 

to differentiate the different genotypes (Fig. 2.6). SDS 2.1 produces an allelic 

discrimination plot as well as assigning genotypes automatically to an excel file 

containing patient ID numbers according to array position. To ensure no incorrect 

inputting of data, a second researcher validated all the genotypes before the data 

was finally entered into the analysis database.  

 

 

2.2c Specific Gene variants 

 

UCP2 -866G>A; rs659366 and UCP3 -55C>T; rs1800849 

 

 

These variants were genotyped in NPHSII using the RFLP method with the help of 

Dr Jeff Stephens and by using Taqman® genotyping in HIFMECH and JAM with 

the help of Kah Wah Li.  Dr Jeff Stephens kindly provided the RFLP conditions.  

The details of the Oligonucleotides and PCR and digest conditions can be found in 

table 2.1a and 2.1b repectively.  The Taqman oligonucleotides and probes can be 

found in table 2.1c. 
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Table 2.1a PCR conditions for genotyping by RFLP 

Variant  Oligonulceotides 

DNA ( l) 

POLMIX 

BSA 

MG(mmol) 

Conditions 

(OC) 

Fragment 

Length 

(bp) 

UCP2 -866 
CACGCTGCTTCTGCCAGGAC 

AGGCGTCAGGAGATGGACCG 

1.5 

NH4 

YES 

1.5 

4 MINS @ 95 

45s @ 90 

30s @ 60  

60s @ 72 

(30 CYCLES) 

5 MINS @ 72 

360 

UCP3 -55 
GGATAAGGTTTCAGGTCAGGC 

AAGGGATGAGGGAGGAGAAA 

1.5 

NH4 

YES 

1.5 

4 MINS „ 95 

40s @ 95 

55s @ 30 

60s @ 72 

(30 CYCLES) 

5 MINS @ 72 

194 

 

 

 

Table 2.1b The digest conditions for genotyping by RFLP 

 

Variant  Allele Enzyme  

Buffer 

BSA 

Incubation 

(OC)  

Fragment 

Length (bp) 

UCP2 
G 

A 
Mlu1 

NEB Buffer 2 

NO 

37 

290 + 70 

360 

UCP3 
C 

T 
HaeII 

NEB Buffer 2 

NO 

37 

110 + 64 + 20 

110 + 84  

All enzymes and buffers were supplied by New England Biolabs. 
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Table 2.2 Taqman assays design for all variants  

 

Variant 

 

Primers 

 

Probes 

 

 

UCP 2 

 

GCCAGAGGGCCCAATTGTT 

GGGCCTGGTTCGCTTTAATT 

 

 

VIC-CACGCGTCAGTTAC-NFQ 

FAM-TTCACGCATCAGTTAC-NFQ 

 

UCP3 

 

GCTGTCAACCAACTTCTCTAGGATA 

ACTGTTGTCTCTGCTGCTTCTG 

 

VIC-TCTTATACACACGGGCTGA-NFQ 

FAM-TCTTATACACACAGGCTGA-NFQ 

 

 

 

2.3 Biochemical assays 

For all biochemical assays blood was collected in EDTA-containing tubes and 

centrifuged immediately (unless specified).   The plasma was aliquoted into 

microtubes and placed into dry ice.  The samples were stored at -800C until use.  

All assays were performed on plasma not previously thawed.  All the assays were 

performed by myself with the help of Jasmin Matin in the JAM study.  The Plasma 

F2-isoprostanes were measured by myself in the laboratories of Professor Kevin 

Moore in the Centre for Hepatology at the Royal Free campus of UCL. 

2.3a Total Antioxidant Status (in House) (TAOS) 

Plasma TAOS was measured by a photometric microassay previously described 

by Sampson et al (Sampson MJ,2002). The TAOS of plasma was determined by 

its capacity to inhibit the peroxidase-mediated formation of the 2,2-azino-bis-3-

ethylbensthiazoline-6-sulfonic acid (ABTS+) radical. In the assay, the relative 

inhibition of ABTS+ formation in the presence of plasma is proportional to the 

antioxidant capacity of the sample.  There are two arms to the assay (Figure 2.5), 
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the test arm and a control arm with phosphate buffered saline (PBS) instead of 

plasma.   Plasma TAOS is therefore inversely proportional to the degree of 

oxidative stress in the sample.  

 

Fig 2.5 Measurement of plasma TAOS 

ABTS

ABTS+

Fluorescence at 405nm

H2O2

+ve

ABTS

ABTS+

H2O2

Fluorescence at 405nm

Plasma
+ve-ve

PBS

% Inhibition of  reaction (TAOS) = Control Abs-Test Abs x 100%

Control Abs

Control Arm Test Arm

 

Method 

 

Plasma (2.5 l) was placed in duplicate into 90 wells of a 96 well Nunc Immuno 

Maxisorp 96 well-plate.  2.5 l of PBS was added to 2 wells, an internal control 

sample to 2 wells and 2 wells were also left empty (as blank controls). The 

following solutions were subsequently added to each well:- 

 

-20 l of ABTS (20mmol/l). 

-20 l of HRP (30mU/ml). 

-40 l PBS (pH 7.4). 

 

The reaction was then initiated by the addition of 20 l of H2O2 (final concentration 

0.1 mmol/l). At the end of ten minutes the absorbance due to the accumulation of 

ABTS+ in the test sample was read, along with the control (containing 2.5 l of PBS 

instead of plasma).  This was performed using a Tecan GENios plate reader 

(TGPR) utilising the Magellan 3 software package. The difference in absorbance 
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(control absorbance minus test absorbance) divided by the control absorbance 

(expressed as a percentage) was used to represent the percentage inhibition of the 

reaction.  

 

2.2b Total Antioxidant Status (Randox, Ireland) (TAS) 

 

Plasma TAS is based on a similar principle to TOAS, in that the sample anti-

oxidant capacity is derived from the ability of the sample to inhibit the peroxidase-

mediated formation of the ABTS+radical.  The TAS kit uses the peroxidase 

metmyoglobin rather than horseradish peroxidase which gives a radical cation that 

is measured by the measurement of absorbance at 600nm (Fig 2.6).   The assay is 

calibrated using a 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid 

standard (Randox Ireland) and a PBS blank.  Quality control is possible by the 

inclusion of a control human serum sample of known TAS.   

 

 

 

Fig 2.6 The creation of the ABTS radical in the Plasma TAS kit  

HX-Fe+++  + H2O2 X-[Fe++++ =0] +  H2O

ABTS® + X-[Fe++++ =0] ABTS®+  + HX-Fe+++

HX + Fe +++  = Metmyoglobin

X-[Fe++++ =0] = Ferrylmyoglobin

ABTS® = 2,2‟-Azino-di-[3-ethylbenzthiazoline sulphonate]

ABTS® is a registered trademark of Boehringer Mannheim
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Method. 

 

1. Cuvette method 

 

20 l of sample, standard or control is added to the cuvette followed by 1ml of 

“chromagen”.  The absorbance is read at 600nm (A1) and 200 l of “substrate” was 

added and incubated at 370C for 3 minutes.  Absorbance was read a second time 

(A2). All experiments were completed in duplicate. 

 

2. Microplate Method  

 

2.0 l of sample standard or control was placed in duplicate into 90 wells of a 96 

well Nunc Immuno Maxisorp 96 well-plate.  Using an automatic Biohit repeating 

dispenser, 100 l of “chromagen was added to each well.  The TGPR was used to 

read absorbance (A1) and then 20 l of “substrate” was added and the plate 

maintained at 370C for 3 minutes within the TGPR.  After 3 minutes the 

absorbance was read again (A2). 

 

The results were exported to an Excel spreadsheet.  Sample Absorbance (ΔA) was 

calculated A2-A1.  For each set of solutions a factor was derived from which the 

TAS could be calculated (Fig 2.7) 

 

 

Fig 2.7 The calculation of TAS 

Total Antioxidant Status:

Factor =       conc of standard   

[ΔA blank – ΔA Standard]

mmol/l = Factor x [ΔA blank – ΔA Sample]
 



 119 

2.3c Bioxytech® AOP-490TM (Oxis International Inc, USA) 

 

The AOP-490TM assay measures the combined antioxidant action of the sample by 

assaying its ability to reduce the Cu++ to Cu+.  The chromogenic reagent (2,9-

dimethyl-4,7-diphenyl-1,10-phenanthroline) forms a 2:1 complex with Cu+ which 

has a maximum absorbance at 490nm.   The assay is calibrated using a standard 

curve derived from 5 uric acid standards and a deionized water control. 

 

Method 

 

The standard was prepared by adding 1.5ml of water to the “standard vial” and 

then performing four further dilutions of 500 l of standard to 500 l of water.  The 

samples or standard were diluted by adding 15 l to 585 l “R1” which contained the 

chromagen.  200 l of this solution was then added, in duplicate, to a well in the 

provided microplate.  The absorbance was measured at 490nm in the TGPR (A1) 

and 50 l of “R2” (containing the copper ions) was added to each well using an 

automatic Biohit repeating dispenser.  The plate was incubated at room 

temperature for 3 minutes and the 50 l of stop solution was added to each well 

and repeat absorbance measured (A2).  The absorbance of the sample was 

calculated as A2-A1.  The absorbance of a sample was derived from a standard 

curve and the calculation of a linear regression equation (SPSS 12.0) and the anti-

oxidant action reported as mM uric acid equivalents (Fig 2.8). 
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Fig 2.8 A typical standard curve for the AOP-490
 TM assay 

 

Determine the Uric acid equivalents for each sample from the curve and sample net absorbance by 

solving for “x”. 

[Example provide in technical specifications AOP-490
 TM 

] 

 

2.3d Glutathione/ Reduced Glutathione Ratio (Calbiochem,UK) 

 

Reduced glutathione (GSH) is a major antioxidant in human tissues, becoming 

oxidized (GSSG) during the conversion of hydrogen peroxide or lipid 

hydroperoxides to water and the respective alcohol.  When exposed to oxidative 

stress the ratio of GSH/GSSG will decrease as a consequence of GSSG 

accumulation, which makes this a useful indicator of oxidative stress.  Accurate 

measurement of GSSG requires the prevention of further oxidation of GSH.  This is 

achieved by the addition to the sample, before storage, of 1-methyl-2-vinylpyridium 

trifluoromethane-sulfonate (M2VP), a thiol scavenger reagent that leaves only 

GSSG.  A second sample is stored  without M2VP to assay GSH + GSSG.  The 

detectable product is derived from the reaction of Ellman‟s reagent (5,5‟-dithiobis-

2-nitrobenzoic acid [DTNB]) with GSH (Fig 2.9).  The GSSG in the sample is 

converted to GSH by the action of Nicotinamide adenine dinucleotide phosphate 

(NADPH) catalyzed by Glutathione reductase (GR). 

 

 



 121 

Fig 2.9 The measurement of GSH/GSSG (see text for explanation of abbreviations) 

A) GSSG     B) Total GSH 

 

Each GSSG molecule is equivalent to 2 GSH molecules. 

 

Method  

 

The samples and reagents were prepared as follows 

 

1. Blood for GSH - 50 l of whole blood collected in an EDTA containing tube 

was placed in a microtube in dry ice and then stored at -800C until use. 

2. Blood for GSSG - 100 l of whole blood collected in an EDTA containing 

tube was placed in a microtube containing 10 l of provided M2VP and 

frozen in dry ice and then stored at -800C until use. 

3. GSH buffer – The provided vial was reconstituted in 650mls of deionized 

water. 

4. NADPH – The provided vial was reconstituted in 7.5mls of assay buffer on 

the day of use and discarded after 24 hours 

5. 5% Metaphosphoric acid (MPA) was prepared daily. 
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1. GSSG assay 

 

The sample was prepared by mixing the thawed sample with 290 l of ice cold MPA 

followed by centrifuge at 1000x g for 10 minutes.  The extract was diluted in the 

GSSG assay buffer provided (50 l extract + 700 l buffer) and stored on ice until 

use.  The low concentration standards were used for GSSG measurement 

(0,0.1,0.25,0.50 M GSH). 

 

2. GSH assay 

 

The sample was prepared by mixing the thawed sample with 350 l of ice cold MPA 

followed by centrifuge at 1000x g for 10 minutes.  The extract was diluted in the 

GSH assay buffer as above (50 l extract + 3ml buffer) and stored on ice until use.  

The high concentration standards were used for GSH measurement (0,0, 1.5,3.0 

M GSH). 

 

The reagents were then added, in duplicate, to the Nunc Immuno Maxisorp 96 

well-plate in an identical method for both the GSH and the GSSG assay. 

 

1. 50 l of sample, standard or blank 

2. 50 l of chromagen (Ellaman‟s reagent) 

3. 50 l of Enzyme (GR) 

4. Mix and incubate at room temperature for 5 minutes 

5. 50 l of NADPH 

6. Record the change of absorbance at 412nm for 3 mins 

 

Calculation 

 

The TGPR automatically calculated the gradient of the accumulation of chromagen 

based on 5 absorbance readings over the 3 minutes.   Standard curves were 
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generated for the standards based on these reaction rates in a similar way to the 

AOP-490TM kit (Fig 2.8).  The actual concentrations were calculated allowing for 

dilution by multiplying the total GSH by a dilution factor of 488 and the GSSG by a 

factor of 30.  Once the calculations of the concentration of total GSH and GSSG 

are made the ratio can be calculated.  GSH is calculated by total GSH – GSSG(x2) 

and the ratio GSH/GSSG can then be calculated. 

 

2.3e  Plasma F2-isoprostanes 

 

Measurement of isoprostane was performed by Gas Chromatography Mass 

Spectroscopy (GC-MS) after extraction, purification and derivitisation.  The ability 

of the sample to withstand oxidative stress was also assessed by the 

measurement of isoprostanes in a 200 l sample of plasma incubated with 3-

Morpolinosyndomimime chloride (SIN-1) at 370C for six hours (Ferraro B,2003).  

SIN-1 is a peroxynitrate releasing compound generating superoxide and nitric 

oxide.     The final concentration of SIN-1 was 11mmol (100 l of 2.2mg/ml added). 

 

Extraction  

 

Prior to extraction the phospholipids underwent alkaline hydrolysis.  To either 800 l 

of sample or the 200 l SIN-1 sample 10 l of 10mg BHT in 1ml methanol and 40 l  

of 8.8mg Trolox in 1 ml methanol was added.  An equal volume of 25% Potassium 

hydroxide was then added with D4-PGF2   standard.  This was then incubated at 

370C for 45 minutes.  The sample was adjusted to pH 3 using 1M HCL. 

 

Initial extraction of the prostaglandin-like compound was performed using tC18 

columns. Solid phase cartridges were used to remove water soluble and 

uncharged organic components, taking advantage of the lipid nature of the 

molecule combined with the polar –OH and –COOH groups.  These samples were 

prepared by washing with 6ml methanol, followed by 6ml of pH 3.0 water. The 

sample was then loaded onto the column using a pastette and washed with 6ml of 
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pH 3.0 water to remove water soluble compounds. At this pH, isoprostanes remain 

relatively uncharged and are bound to the solid phase. The column was then 

washed with 6ml of heptane to elute completely hydrophobic lipids. Isoprostane 

was then eluted into polypropylene tubes with 6ml of heptane, ethyl acetate and 

methanol (40:50:10), and dried under nitrogen. 

 

Derivatization- Step 1. Preparation of pentaflourbenzyl ester  

 

The pentafourobenzyl ester was prepared by the addition of 20 l 10% DIPEA (N,N-

di-isopropylethylamine in acetonitile (AcN) and 40 l 10% PFBR 

(pentaflourobenzylbromide) in AcN to each sample in the fume hood. This was left 

at room temperature for thirty minutes and dried under nitrogen. 

 

Purification 

 

The samples then underwent an additional purification with thin layer 

chromatography (TLC). TLC plates (Whatman 60A, Linear K6D, 5x20cm, 250 m 

thick) were pre-run in 100ml methanol for sixty minutes and subsequently dried. A 

TLC tank was prepared with 100ml of chloroform and ethanol (93ml: 7ml) and 

allowed to equilibrate for sixty minutes. Samples were resuspended in 40 l of 

methanol and chloroform (1:2), loaded onto the plates and run along with a 

separate plate loaded with 5ng of the methyl ester of PGF2 , which was run as a 

standard. The solvent front was run to 13cm above the application zone. The 

plates were then dried and the position of the standard visualised with 2% 

phosphomolybolic acid. The sample plates were then scraped 1.5cm above and 

1.2cm below the solvent front of the standard, and the PFBR esters extracted in 

1ml of ethyl acetate and methanol (1:1). The samples were then vortexed for two 

minutes and centrifuged for two minutes. The supernatant was then removed and 

dried under nitrogen.  
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Derivatization-Step 2. trimethylsilyl derivative 

 

Final esterification was achieved by adding 10 l of anhydrous DMF 

(dimethylformamide) and 20 l BSTFA (bis-siylyltrimethylfluoroacetamide) for thirty 

minutes. Samples were dried under nitrogen and subsequently resuspended in 

20 l of undecane, transferred to a conical autosampler vial using a Hamilton 

syringe and sealed. 

 

 Gas Chromatography-Mass Spectroscopy 

 

Four microlitres of each sample was then delivered to the GC-MS apparatus 

(Fissons GC 8000 series coupled to a Fissons Trio 1000 MS). After injection the 

isomers were separated by gas chromatography with the 8-iso-PGF2  appearing 

first. 

 

Negative ion chemical ionization with ammonia was used to determine the mass 

spectrum. Selective ion monitoring at 569m/z and 573m/z was performed, as these 

were the masses of the predominant fragments of the undeuterated and 

deuterated forms of the isomers respectively. The concentration of F2-isoprostane 

in the sample was then calculated by dividing the measure from the unknown 

sample by the standard and multiplying by concentration of the standard. Plasma 

F2-isoprostane results were expressed as pg/ml. The inter assay CV is 7% 

(Personal Communication, Dr Ali Reza, Department of Hepatology, UCL). 

 

2.3f  Plasma Non-Esterified Fatty Acids 

 

Plasma Non-esterified fatty acids (NEFA) were measured by an in vitro enzymatic 

colormetric assay (Wako Chemicals GmBH, Neuss, Germany).   The test utilizes 

three steps.  Firstly, the generation of Acyl-Coa from NEFA using the enzymre 

Acyl-CoA Synthase.  Secondly the generation of Hydrogen peroxide by the 

addition of Acyl-CoA oxidase.  Thirdly, the generation of colour from the reaction 
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between 4-aminophanazone and the hydrogen peroxide.  Oleic acid (282mol/L) 

was used as the standard and distilled water as negative control. 

 

Method 

 

The assay was performed, in duplicate, in a Nunc Immuno Maxisorp 96 well-plate 

as follows. 

 

1. 5µl sample, standard or control 

2. 100µl Reagent A (dissolved in solvent A) 

3. Mix well and leave for 10 minutes @ 37oC 

4. 200µl Reagent B (dissolved in solvent B) 

5. Mix well and leave for 10 minutes @ 37oC 

6. Read in the Tecan Plate reader @ 550nm. 

 

The result is calculated as follows 

 

         Concentration of  

         standard (mg/dL)* 

Free fatty acids (mg/dL*) = Absorbance of sample x --------------------------------------

         Absorbance of  

         Standard 

*concersion factor: mg/dL x0.035=mmol/L 

 

 

2.4 Clinical Protocols 

 

The clinical protocols were all recruited and performed by myself.   All the studies 

have been approved by committee alpha, Combined UCL/UCLH local ethics 

committee and for the fatty meal a site-specific assessment was also approved for 

the Institute of Child Health, UCL.   Healthy subjects were recruited from laboratory 
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and clinic staff while subjects with diabetes were recruited from the UDACS study. 

Excluded were those with clinically manifest CVD, smokers, those with connective 

tissue or other inflammatory disease and those with malignancy or other terminal 

illness.  Those on anti-inflammatory medications such as steroids or NSAID‟s were 

also excluded. Medication was omitted on the day of the study but patients were 

encouraged to take any medication after the study was completed. Written consent 

was obtained and all subjects were  given an information leaflet regarding the 

study.  A letter was sent to the General Practitioner of each consenting patient to 

inform them of the patient‟s participation in the study.  A small snack was provided 

for all patients before they left. 

 

2.4a Oral Glucose tolerance test 

 

The subjects attended after an overnight fast.  Blood was drawn from a cannula 

placed in the left ante-cubital vein and collected at ten minute intervals in relation to 

the ingestion of a standard 75g oral glucose load (394ml Original Lucozade, 

Glaxosmithkline (GlaxoSmithKline,2005)). Glucose was collected in oxalate tubes 

(grey top) and assayed on a YSI 2000 glucose analyzer (CV 0.9%).   Blood was 

also collected into EDTA-containing tubes and prepared for the measurement of 

TAOS.  

 

2.5b Meal rich in used cooking oil  

 

The subjects attended after an overnight fast.  Blood was drawn from a cannula 

placed in the left ante-cubital vein for assessment of lipid profile, renal function and 

glycated haemoglobin, and analysed using routine methods by Chemical 

Pathology Department, Middlesex Hospital.  Blood was also taken for glucose and 

oxidative stress markers as above. The subject was then given a prepared meal 

rich in used cooking oil.  Blood was taken for glucose and oxidative stress markers 

every hour for four hours. 
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Used cooking oil meal 

The meal consisted of 100g of vanilla ice cream (Tesco value soft serve), 200ml of 

skimmed milk, 50ml evaporated milk, 10g Yoghurt (Onken Natural), 50g of tinned 

apricots (no syrup), one egg and 46g of used cooking oil obtained from a local 

commercial restaurant (Potion Bar and Restaurant). The cooking oil was always 

obtained at the same time every week, on a Friday afternoon.  The oil was 

changed by the restaurant on Saturday morning so had been used for one week. 

The fat was stored at -200C and protected from light until use. The meal was 

blended and presented as a milkshake with chocolate syrup added as flavour if 

required.  This provided 64.4g of fat of which 30g was saturated.  The meal also 

contained 62.5g of carbohydrate and 20.5 g of protein (Williams MJA,1999).  The 

subjects were requested to drink the meal over a period of 15 minutes and the 

meal was well tolerated. 

2.5 Statistical Analysis 

Statistical analysis was performed using SPSS (version 12.1, SPSS Inc., Chicago) 

or  „Intercooled STATA‟ package (version 7.0, STATA Corporation, Texas).  The 

analysis was performed by Jackie Cooper, Fotios Drenios and myself.  For gene 

association analysis, data are reported for those individuals amongst whom high-

throughput genotyping was successful. 

Deviations from Hardy-Weinberg equilibrium were considered using chi-squared 

tests. Hardy-Weinberg equilibrium gives the expected genotype distribution based 

on the observed frequency of the rare allele (q) and common allele (p) as 

p2+2pq+q2, where p2 is the predicted frequency for homozygosity of the common 

allele, q2 is the predicted frequency for homozygosity of the rare allele and 2pq, the 

heterozygotes. These frequencies are expected provided the sample is drawn from 

a population with random mating and no strong selection. 

Specific details are include in the relevant section but in general, allele frequencies 

are shown with the 95% confidence interval.  Analysis of variance (ANOVA) was 
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used to assess the association between genotypes and baseline characteristics on 

normally distributed data, or on other data after appropriate transformation.  Chi-

squared tests were used to compare differences in categorical variables by 

genotype. 

No adjustment was made for multiplicity of testing.  However, analysis always 

followed an a-priori hypothesis or design.  In all cases a P value of less than 0.05 

was considered statistically significant.   

 

In NPHSII, survival analysis with respect to the prospective risk of cardiovascular 

disease or type 2 diabetes was carried out using Cox proportional hazards model, 

„failure‟ being the first CHD event or diagnosis of type 2 diabetes.  Results are 

presented as hazard ratios (HR) with their corresponding 95% confidence interval 

(CI).  To allow for differences in baseline data according to age and practice, age 

was included as a covariate in the model and data stratified by practice.   

 

2.6  Reagents and commonly used stock solutions and equipment 

 

Reagents 

 

Plasma Total antioxidant status: 2,2-azino-bis-3-ethylbensthiazoline-6-sulfonic acid 

(ABTS),  Horseradish Peroxidase (HRP) and Hydrogen Peroxide (H2O2). All supplied by 

Sigma (Poole, UK).  

 

Plasma F2-isoprostane: D4-PGF2  standards supplied by Cayman Chemical (MI, USA). 

tC18 (-Si-C18-H37: tc18 Sep-Pak) columns (Waters, MA, USA). N,N-di-isopropylethylamine 

Pentaflourobenzylbromide, dimethylformamide (DMF) and bis-

siylyltrimethylfluoroacetamide (BSFTA) and TLC plates (Whatman 60A, Linear K6D, 

5x20cm, 250 m thick). All other reagents were supplied by Sigma-Aldrich (Poole, UK).  

 

DNA Extraction: All reagents were supplied by Sigma (Poole, UK).  
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Polymerase chain reaction (PCR): PCR oligonucleotides and Taq polymerase were 

supplied by Invitrogen Ltd (Paisley, UK). 50mM MgCl2 supplied by Bioline (London, UK). 

All necessary restriction enzymes were supplied by New England Biolabs Inc 

(Hertfordshire, UK) or Roche Diagnostics (Lewes, UK). dNTPs were supplied by 

Pharmacia Biosystems Ltd (Milton Keynes, UK). 96 well PCR plates were obtained from 

Corning Inc. (Hemel Hempstead, UK). All other reagents supplied by Sigma-Aldrich Ltd. 

(Poole, UK).  

 

Gels: 19:1 30% acrylamide:N,N‟-methylenebenebisacrylamide was supplied by Protogel, 

National Diagnostics (Hull, UK). TEMED (NNN‟,N‟-tertramethylethylethylenediamine and 

Ammonium persulphate (APS) were supplied by BDH (Leicestershire, UK). Agarose was 

supplied by Helena Biosciences (Sunderland, UK) and 10× Tris Borate EDTA (TBE) was 

supplied by Severn Biotech Ltd (Worcestershire, UK). 1kb ladder was supplied by 

Invitrogen Ltd (Paisley, UK). 

 

Taqman assays: All Taqman assays were obtained from Applied Biosystems (California, 

USA). Taqman Absolute QPCR Rox mix and 384 well plates were supplied by ABgene 

(Surrey, UK).  

 

 

Commonly used stock solutions 

 

Ammonium persulphate solution (APS): 0.25g APS dissolved in 1ml distilled water.  

MADGE Loading Dye: 0.0015% bromophenol blue; 0.015% xylene cyanol; 10% glycerol; 

10mM EDTA 

 

NH4 polmix buffer: 16mM [NH4]2 SO4; 67mM Tris-HCL pH8.4; 0.01% Tween 20; 2mM 

dATP; 2mM dTTP; 2mM dGTP; 2mM dCTP 

 

Sticky Silane: 0.5% v/v glacial acetic acid; 0.5% v/v γ methacryloxy-propyl-trimethoxy-

silane 

 

TBE buffer: 0.04M Tris-borate; 1mM EDTA pH7.4 
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Reagent A (sucrose lysis buffer): 0.32M sucrose; 5mM MgCl2; 10mM Tris-HCl ph7.5; 1% 

Triton-X-100 

 

Reagent B (nuclei lysis buffer): 10mM Tris-HCl pH8.2; 0.4M NaCl; 2mM Na2EDTA pH 8.0 

TE Buffer: 10mM Tris-HCl; 1mM EDTA pH 7.6 

 

Equipment 

 

Automatic pipettes 

 

Manual Eppendorf 300, 8 channel pipette (Eppendorf, Hamburg, Germany). 

Eppendorf multipette Pro repeating dispenser (Eppendorf, Hamburg, Germany). 

Finnipipette multichannel dispenser (Life Sciences, Basingstoke, Hants, UK). 

Automatic Biohit repeating dispenser (Alpha Laboratories, UK) 

 

Plate Reader 

Tecan GENios (Tecan Group Ltd, Switzerland) 
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2.7 Declaration of activity 
 

Chapter 3 NPHSII 

 

Standardised DNA was available to me.  Genotyping was performed by a mixture 

of RFLP and Taqman.  I performed this with the help of Dr J. Stephens, Miss J. 

Matin and Ka-Wah Li.  Statistical analysis was directed by me with the help of Ms 

J. Cooper. 

 

Chapter 4 HIFMECH 

 

Standardised DNA was available to me.   I performed genotyping by Taqman with 

the help of Miss Ka-Wah Li.  Statistical analysis was directed by me with the help 

of Ms J Cooper and Ms E. Dawe. 

 

 

Chapter 5 

 

Markers of Oxidative stress in JAM 

 

I performed the selection and assessment of different assays to measure plasma 

markers of oxidative stress.  I performed the assays on the samples from the JAM 

study with the help of Miss J. Matin.  I directed the statistical analysis with the help 

of Dr Brendan Pearce (University of Washington). 

  

JAM 

 

Standardised DNA was available to me.  I performed genotyping using Taqman 

with the help of Miss Ka-Wah Li.  Statistical analysis was directed by me with the 
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help of Dr Brendan Pearce (University of Washington) who performed the 

hereditability calculations. 

 

Chapter 7 Clinical Studies 

 

The patients and normal volunteers were recruited by me.  I prepared and 

administered the glucose drink and test meal.  Venous sampling, plasma glucose 

assay, oxidative stress marker and NEFA assays were performed by me.  I 

measured plasma F2-isoprostanes in the Department of Hepatology, UCL 

[Professor K. Moore] with the help of Dr Ali Reza.  Statistical analysis was 

performed by me with the help of Dr F. Drenos. 
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CHAPTER THREE 

 

PROSPECTIVE RISK OF TYPE 2 DIABETES IN THE NORTHWICK PARK 

HEART STUDY II. 

Association of risk with the UCP2-866G>A and UCP3-55C>T Variants 
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3.1 Prospective Risk of Type 2 Diabetes in NPHSII 

 

3.1.1 Introduction 

 

As described in chapter 1, the rate of mitochondrial oxidative metabolism appears 

to be important in the development of T2DM.  UCP2 and UCP3, as part of the 

mitochondrial carrier protein superfamily are, therefore, good candidates for having 

a role in the pathogenesis of T2DM.  The UCP2 and UCP3 genes are located in a 

cluster within 8kb of each other on chromosome 11q13.  A variant associated with 

altered mRNA levels has been identified in both these genes (UCP2-866G>A; 

UCP3-55C>T).   

 

As seen in chapter 1, these variants have been associated with both obesity and 

T2DM traits which suggest that they are important in their pathogenesis (Table 

1.4c and 1.6).  The UCP2-866A is associated with higher mRNA levels and was 

associated with reduced insulin secretion or T2DM in Austrian (Krempler F,2002), 

Italian (D'Adamom M,2004) and Japanese samples (Sasahara M,2004), however, 

the -866A allele was also associated with lower subcutaneous adipose tissue 

mRNA, but not with T2DM in a mixed race sample from the USA (Wang MY,1999).   

Although 50% lower UCP3 protein has been described in subjects with T2DM 

(Schrauwen P,2001a), the UCP3-55C>T variant, which is associated with altered 

UCP3 mRNA levels (Schrauwen P,1999), has not consistently been associated 

with T2DM.  The UCP3-55T allele was associated with reduced risk of T2DM 

(Meirhaeghe A,2000), but this was not replicated in other studies (Cassell 

PG,2000; Halsall DJ,2001) . 

  

3.1.2 Aims 

 

The purpose of this research was to clarify the inconsistencies identified in cross- 

sectional gene association studies, and to further elucidate the role of identified 

genetic variation in the UCP2-UCP3 gene cluster in the development of T2DM. 
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3.1.3 Methods 

 

The Second Northwick Park Heart Study is a prospective study of over three 

thousand men who have now been followed for 15 years.  The men were healthy 

at recruitment, based on a definition that excluded men with cardiovascular 

disease, malignancy or taking regular medication.   Therefore, men with diet 

controlled T2DM, were not excluded from the study.  Analysis excludes these men 

unless stated otherwise.  New cases were identified by practice note search for 

physician diagnosed and treated T2DM according to current national guidelines.   

Obesity was defined as BMI over 30kg/m2.  Population attributable fraction (PAF) 

represents the impact of the variant on the sample in question, and is a composite 

of the exposure to the risk and the magnitude of the risk and is estimated as pd * 

(Hazard ratio -1/ Hazard ratio), where pd is the proportion of cases exposed to the 

risk factor (Greenland S,1993). 

 

3.2. Baseline Characteristics Predicting the Development of Type 2 

Diabetes 

 

The NPHSII contains a total of 3012 eligible men.  There were a total of 76 (2.5%) 

of men with T2DM at baseline.  At 10 years 86 (2.9%) new cases had been 

recorded and at 15 years 169 (5.6%) new cases were recorded.  The total 

incidence at ten years was 5.4% and 8.1% at 15 years. 

 

The baseline characteristics associated with the development of T2DM are shown 

in table 3.1a including baseline subjects with diabetes, and in table 3.1b excluding 

baseline subjects with diabetes.  The factors associated with diabetes are similar in 

both analyses [blood pressure, lipid parameters and CRP], with age being only 

significantly associated with diabetes if baseline subjects with T2DM are included. 
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Table 3.1a Baseline characteristics and their association with the development of 
T2DM over 15 years-including baseline subjects with T2DM 
 
 

 

 

No diabetes 

N=2767 

With 

diabetes  

N=245 

HR* (95% CI) P value 

Age (years) 56.0 (3.5) 56.7 (3.4) 1.31 (1.08-1.58) .005 

SBP†(mmHG) 136.3 (18.7) 142.3 (18.8) 1.32 (1.16-1.51) <0.0001 

DBP(mmHG) 84.4 (11.4) 85.6 (11.1) 1.08 (0.94-1.23) 0.26 

BMI†(kg/m2) 26.0 (3.3) 28.5 (4.0) 1.95 (1.71 – 2.22) <0.0001 

Smoking 791 (28.6%) 68 (27.8%) 0.96 (0.72-1.29) 0.80 

Cholesterol(mmol/L) 5.72 (1.01) 5.85 (1.09) 1.15 (1.01-1.31) 0.04 

Triglyceride†(mmol/L) 1.75 (0.92) 2.31 (1.2) 1.69 (1.48-1.93) <0.0001 

Fibrinogen†(g/l) 2.71 (0.52) 2.76 (0.51) 1.06 (0.93-1.21) 0.37 

CRP†(mg/l) 2.92 (3.44) 3.96 (4.32) 1.27 (1.10-1.46) 0.001 

See Table 3.1b for key 

 

Table 3.1b Baseline characteristics and their association with the development of 
T2DM-excluding baseline subjects with T2DM 
 
 No diabetes 

N=2767 

With 

diabetes  

N=169 

HR* (95% CI) P value 

Age (years) 56.0 (3.5) 56.3 (3.0) 1.16 (0.93-1.46) 0.19 

SBP†(mmHG) 136.3 (18.7) 141.3 (19.3) 1.30 (1.11-1.52) 0.001 

DBP(mmHG) 84.4 (11.4) 86.2 (11.3) 1.14 (0.98-1.34) 0.09 

BMI†(kg/m2) 26.0 (3.3) 28.6 (3.7) 1.86 (1.65 – 2.10) <0.0001 

Smoking 791 (28.6%) 54 (32.0%) 1.29 (0.93-1.79) 0.13 

Cholesterol(mmol/L) 5.72 (1.01) 5.90 (0.98) 1.20 (1.03-1.39) 0.03 

Triglyceride†(mmol/L) 1.75 (0.92) 2.27 (1.7) 1.55 (1.34-1.80) <0.0001 

Fibrinogen†(g/l) 2.71 (0.52) 2.78 (0.53) 1.17 (1.00-1.36) 0.11 

CRP†(mg/l) 2.92 (3.44) 4.05 (4.36) 1.37 (1.16-1.61) <0.001 

†geometric mean (approx sd) 
CRP measurements made after diabetes was recorded are excluded from the analysis (n=2) 
 +age and practice adjusted hazard ratio for 1 sd increase in all variables except smoking 
(current:non), obesity (>30:<30)  and age (5 year increase). 
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Excluding the subjects with T2DM at baseline, BMI, C-reactive protein (CRP), 

triglyceride, cholesterol and blood pressure were all associated with increased risk 

of development of T2DM, with BMI conferring the highest risk (HR 1.86 [1.65-

2.10:p=<0.0001 per increase of 1 SD]. A stepwise model was used to determine 

which of these variables were independently associated with T2DM (table 3.2) 

Cholesterol and blood pressure were no longer associated with T2DM, and BMI 

remained the most significant predictor.  

 

Table 3.2 Baseline Characteristics with an independent association with the risk of 
development of type 2 diabetes (stepwise model) 
  

 
HR+ (95% CI) P value 

BMI (kg/m2) 1.72 (1.49-1.99) <0.0001 

Triglycerides(mmol/L) 1.27 (1.08-1.49) 0.004 

CRP (mg/l) 1.21 (1.01-1.46) 0.04 

+age and practice adjusted hazard ratio for 1 sd increase. 

 

 When the men were divided between those whose BMI at baseline was high 

enough to warrant a diagnosis of obesity (>30kg/m2), the rates of T2DM were 

much higher than in the non-obese men (Fig. 3.1).  Obese men were 3.96 [2.87-

5.47] times more likely to go on to develop T2DM (p<0.0001) than non-obese men. 

 

Fig.3.1: Kaplan-Meier plot for the development of type 2 diabetes by the presence 

or absence of obesity.  
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3.3 UCP2-866G>A and prospective risk of Type 2 Diabetes 

 

3.3.1 Genotype Characteristics 

 

DNA was available for 2775 [92%] of men, and genotype was obtained in 2695 

[97%] of men and the frequencies were in Hardy Weinberg Equilibrium (p=0.85).  

The allele frequency for the -866A allele were 0.365 (0.35-0.38).   There was no 

difference in BMI, Systolic blood pressure, triglycerides or CRP between genotypes 

(Table 3.3). 

 

Table 3.3. Baseline characteristics by UCP2 -866 genotype 

 

  UCP2 Genotype  

 GG 

N=1088 

GA 

N=1245 

AA 

N=362 
P value 

BMI (kg/m2) 26.3 (3.4) 26.2 (3.4) 26.5 (3.5) 0.26 

Blood Pressure 

(mmHg) 

 

137.2 (18.9) 136.8 (18.5) 138.2 (19.8) 0.45 

Cholesterol (mmol/L) 5.71 (1.02) 5.73 (1.00) 5.78 (1.01) 0.59 

Triglycerides (mmol/L) 1.78 (0.94) 1.78 (0.93) 1.88 (1.03) 0.20 

CRP (mg/L) 3.04 (3.56) 2.91 (3.42) 3.31 (3.82) 0.20 

All Geometric means (approximate sds) except Cholesterol. 

  

3.3.2 Risk of Type 2 Diabetes 

 

The genotype frequency did not differ significantly between those who developed 

diabetes and those who did not (no diabetes v diabetes [GG/GA/AA%]: 40/47/13 v 

42/40/18:p=0.16) but a trend to a higher frequency of the AA genotype was seen 

when the baseline subjects with T2DM were included (40/47/13 v 42/40/18: 

p=0.06).  The Kaplan-Meier plot (Fig. 3.2) indicates that the UCP-2 AA genotype 
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only appears to be associated with the development of diabetes about 5-10 years 

earlier but there is a “catch up” in incidence in the GG+GA men by 15 years. 

   

Fig 3.2: Kaplan-Meier plot for the development of T2DM by UCP2-866G>A 

genotype. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

When 15 year risk of T2DM was examined using this recessive model the AA 

genotype was associated with an increased risk of 1.47 (0.97-2.23:p=0.07) 

excluding baseline cases, and 1.49 (1.03-2.14:p=0.03) including baseline cases, 

compared to the GG+GA men adjusted for age and recruitment site.  This risk 

effect was maintained after adjustment for BMI, blood pressure, cholesterol, 

triglycerides and CRP, with an increased 15 year risk of T2DM of 1.59 times (1.03-

2.45:p=0.04) in AA homozygotes.  The acceleration of onset of T2DM associated 

was also seen in this recessive model (Fig 3.3).  This was confirmed by examining 

the risk of diabetes at 10 years. The genotype difference for risk of diabetes at 10 

years was highly significant (HR [AA v GG/GA] 1.94[1.18-3.19]: p=0.009).   

 

 

 



 142 

0
.8

0
0

.9
0

1
.0

0

p
ro

p
o
rt

io
n
 w

ith
o
u

t 
d
ia

b
e
te

s

0 5 10 15
time(years)

GG/GA AA

Fig.3.3: Kaplan-Meier plot for the development T2DM by UCP2AA genotype based 

on a recessive model 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Interaction with Obesity 

 

As obesity was such a significant risk factor for T2DM the influence of obesity on 

the UCP2-866G>A variant was examined.  The risk of diabetes at 15 years 

associated with the AA genotype increased from 1.35 [0.79-2.32; p=0.34] to 5.55 

[2.95-10.45; p=<0.0001] in obese AA men (Fig. 4.4).  There was no evidence of 

interaction, with the effect being purely additive (p=0.85).  This remained the case 

if BMI tertiles were used instead of obesity (p=0.80) or as a continuous variable  

(p=0.26).  There was no difference in absolute (GG+GA v AA Median [IQR]: 0.20[-

0.34 to 0.72] v 0.20 [-0.3 to 0.88]: p=0.60) or percentage change in weight by 

genotype (0.25 [-0.42 to 0.91] v 0.23 [-0.38 to 1.09]:p=0.63) [Fig 3.7]. 
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Fig 3.4:  The Hazard ratio for the development of type 2 diabetes by UCP2-866 
genotype stratified by the presence or absence of obesity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.4 UCP3-55C>T and prospective risk of Type 2 Diabetes 

 

3.4.1 Genotype Characteristics 

 

Genotype was available as for UCP2.  The genotype frequencies were also in 

Hardy Weinberg equilibrium (p=0.16) with the frequency of the rare UCP3-55T 

allele being 0.23 [0.21-0.24].   The baseline characteristics by genotype are shown 

in table 3.3 with no significant difference for any variable. 
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Table 3.4: Baseline characteristics by UCP3 -55 genotype 

 

 UCP3 Genotype  

 CC 

N=1634 

CT 

N=905  

TT 

N=155 
P value 

BMI (kg/m2) 26.3 (3.4) 26.2 (3.4) 25.9 (3.3) 0.38 

Blood Pressure 

(sys) (mmHg) 
137.1 (18.8) 136.9 (18.8) 138.0 (19.0) 0.78 

Cholesterol (mmol/L) 5.70 (1.0) 5.77 (1.0) 5.79 (1.0) 0.22 

Triglycerides (mmol/L) 1.79 (0.95) 1.81 (0.94) 1.77 (0.96) 0.90 

CRP (mg/L) 3.02 (3.56) 3.09 (3.60) 2.67 (2.80) 0.37 

All Geometric means (approximate sds) except Cholesterol 
 

 
 
 
3.4.2. Risk of Type 2 Diabetes 
 
There was no difference in genotype frequencies between those with and those 

without type 2 diabetes at 15 years (% with genotype CC/CT/TT without diabetes v 

diabetes; 60.5/33.9/3.6 v 63.0/28.6/8.4:p=0.16), with no difference if the subjects 

with diabetes at baseline were included (60.6/33.9/5.5 v 61.8/27.0/11.2:p=0.19).  

However, the Kaplan-Meier plots for development of diabetes by genotype (Fig 

4.5) and  using a recessive model (Fig 3.6) indicate that UCP3 genotype also 

appears to accelerate date of onset of diabetes.   As seen for UCP2, the TT 

genotype was associated with a significant hazard ratio [95%CI] for the 

development of type 2 diabetes at 10 years (HR[95%CI]; 2.06 [1.06-3.99]: p=0.03) 

but not at 15 years (1.50 [0.85-2.66], p=0.16). 
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Fig 3.5: Kaplan-Meier plot for the development of T2DM by UCP3-55C>T 

genotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.6: Kaplan-Meier plot for the development T2DM by UCP3TT genotype based 

on a recessive model 
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3.4.3.Interaction with Obesity 

 

Risk of T2DM was again exacerbated by obesity, with the risk associated with 

UCP3TT genotype increasing to 5.65 ([2.07-15.46]: p<0.001) at 15 years in the 

obese men (Fig.3.8).  The differences were again purely additive, with no evidence 

of interaction if this was considered as BMI tertile, obesity present or not, or BMI as 

a continuous variable (p=0.91, 0.38 and 0.76 respectively).  The increase in risk of 

diabetes could again not be explained by weight gain with no difference between 

genotypes in absolute (CC+CT v TT Median [IQR]: 0.20[-0.34 to 0.74] v 0.13 [-0.32 

to 0.80]: p=0.38) or percentage weight change (0.25[-0.42 to 0.91] v 0.16[-0.42 to 

0.80]: p=0.45)[Fig. 3.7]. 

 

Fig.3.7 The absolute and percentage change in weight by UCP2 and UCP3  

genotype in the NPHSII study at five years. 
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Fig 3.8:  The Hazard ratio for the development of type 2 diabetes by UCP3-55C>T 
genotype stratified by the presence or absence of obesity. 
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3.5 Combined Genotypes and Risk of type 2 Diabetes 

 

 

3.5.1. UCP2-UCP3 Haplotypes 

 

The two variants showed weak but significant positive linkage disequilibrium 

(D‟=0.28, p<0.001). As shown in Table 3.5 all four haplotypes were present in this 

sample. As would be predicted by the single SNP analysis, only the -866A/-55T 

combination was associated with increased risk of diabetes at 10 years (AT v GC 

1.63[1.12-2.36]: p=0.01), and this effect was no longer statistically significant at 15 

years (1.27[0.93-1.73]: p=0.13).   The relatively low frequency of this haplotype 

(9%), and the recessive nature of their effect precluded a robust estimate of the 

additive effect with obesity. 

 

Table 3.5:  UCP2/UCP3 haplotypes and risk of type 2 diabetes at 10 and 15 years 

 

Haplotype Frequency in 

those without 

diabetes 

Frequency in 

those with 

diabetes 

Hazard Ratio 

[95%CI] 

P value 

10 YEARS     

GC 0.50 0.47 1.00  

GT 0.14 0.10 0.74 [0.47-1.17] 0.19 

AC 0.28 0.28 1.09 [0.76-1.55] 0.64 

AT 0.09 0.15 1.63 [1.12-2.36] 0.01 

15 YEARS     

GC 0.51 0.53 1.00  

GT 0.13 0.10 0.73 [0.50-1.05] 0.09 

AC 0.27 0.25 0.94 [0.72-1.22] 0.64 

AT 0.10 0.13 1.27 [0.93-1.73] 0.13 
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3.5.2 UCP2-UCP3 combined genotypes and Type 2 Diabetes Risk 

 

The percentage of men developing T2DM by combined UCP2-UCP3 genotype is 

shown in Table 3.6.   After adjustment for age and place of recruitment, men 

homozygous for both rare alleles (the  AA-TT genotype) were the only group 

showing a significant increased risk of T2DM at ten years (HR 4.20[1.70-

10.37]:p=0.002) or at 15 years (2.37[1.07-5.2]:p=0.03 

 

Table 3.6: Combined UCP2-UCP3 genotypes and risk of type 2 diabetes at 10 and 
15 years 
 
UCP2 UCP3 10 YEARS 15 YEARS 

% with 

diabetes 

(number) 

HR(95% CI)* % with 

diabetes 

(number) 

HR(95% CI)* 

GG CC 3.2 (24/741) 1.00 6.8% (50/741) 1.00 

CT 2.3 (6/265) 0.59 (0.24-1.44) 4.5% (12/265) 0.54 (0.28-1.03) 

TT 9.4 (3/32) 3.00 (0.89-10.04) 9.4% (3/32) 1.36 (0.42-4.37) 

GA CC 3.8 (25/663) 1.09 (0.62-1.91) 5.4% (36/663) 0.77 (0.50-1.18) 

CT 2.2 (10/461) 0.63 (0.30-1.31) 5.0% (23/461) 0.69 (0.42-1.14) 

TT 1.4 (1/71) 0.38 (0.05-2.81) 4.2% (3/71) 0.56 (0.17-1.81) 

AA CC 3.7 (6/161) 1.14 (0.46-2.79) 6.8% (11/161) 1.05 (0.54-2.02) 

CT 5.7 (8/141) 1.64 (0.73-3.67) 6.4% (9/141) 0.93 (0.45-1.89) 

TT 13.6 (6/44) 4.20 (1.70-10.37) 15.9% (7/44) 2.37 (1.07-5.25) 

*age and practice adjusted 

 

In order to obtain a more robust estimate of the effect of the combined genotypes, 

the subjects were combined into four groups on the basis of homozygosity for the 

variant alleles (UCP2-UCP3:1= GG+CC, 2= GG+GA-TT, 3= AA-CC+CT, 4= AA-

TT).  Risk of T2DM increased across the groups with increasing numbers of rare 
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alleles, progressing from no variant homozygotes to 2 variant homozygotes (1.5% 

of men) at 10 years (p=0.002) and 15 years (p=0.04)(Fig.3.9). 

 

Fig 3.9: Hazard ratios for the development of type 2 diabetes by combined UCP2-
UCP3 group genotype at A) 10 years and B) 15 years of follow up. 
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 3.5.3. Interaction with Obesity 

 

When the effect of the combined UCP2-UCP3 genotype was combined with 

obesity, non-obese AA-TT men showed an increased risk of T2DM of 2.50(0.91-

6.86: p=0.08) (Figure 3.10) while obese AA-TT men had an increased risk of 19.23 

(5.83-63.39: p<0.001). The effects of the individual genotypes were additive with 

no evidence of an interaction between the effect of UCP2 and UCP3 genotype (p= 

0.15).  There was also no significant evidence of interaction between the effect of 

combined genotype group and obesity (p=0.83) or with BMI as a continuous 

variable (p=0.54).  A Cox regression model with the two genotypes and BMI (as 

tertiles) showed hazard ratios [95%CI] of approximately similar magnitude for the 

two genotypes although the UCP3 risk estimate just crossed one (UCP2 1.74[1.05-

2.88]:p=0.03; UCP3 1.92[0.98-3.76]: p=0.06).  These are slightly lower than the 

single genotype unadjusted hazard ratios and are lower than the risk of developing 
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type 2 diabetes associated with the middle or upper tertile of BMI (4.13[1.70-10.05] 

and 9.61[4.14-22.32] respectively: p<0.0001 for both).   

 

Fig.3.10: The hazard ratio for the development of type 2 diabetes at 15 years of 

follow  up by combined UCP2-UCP3 genotype in those above with and without 

obesity. 
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3.5.4   Population attributable Fraction 

 

To determine the impact of genotype on the population using the Population 

attributable fraction (PAF) was calculated.  The PAF [95% CI] after 15 years of 

follow up for variation in the UCP2-UCP3 gene cluster was 5.3% [-1.1 to 11.4].    

When obesity was added to this model the PAF was similar at 4.7% [-1.6 to 10.7].  

Obesity had a much larger influence, with a PAF of 21.2% [14 to 57].  The 

influence of variation in the gene cluster as a whole was examined using the 

individual genes (Fig. 3.11A).   Variation in UCP2 genotype explained 6 (PAF 3.8% 

[-2 to 9]) cases, variation in UCP3 3 and 8 (1.9% [-1 to 5]) if adjusted for BMI which 
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is much lower than the 36 (21 [14 to 28]) cases of type 2 diabetes that would be 

explained by obesity. 

 

If PAF is examined at 10 years, then as expected, the influence of genotype is 

higher (11.6% [0 to 21.7]).  The influence of obesity is similar (25.6% [13 to 36]).  

However, as there are fewer cases of new onset Type 2 Diabetes at this time the 

number of cases due to obesity is lower [22].  The extra cases present due to 

genotype was 8 and 4 for UCP2 variation and UCP3 variation respectively (PAF 

8.5% [-2 to 18] and 5.5%[-1 to 12] respectively [Fig: 3.11]). 

 

 

 

Fig.3.11: Population attributable risk for UCP2-866G>A, UCP3-55C>T and obesity 

at  A) 15 years B) 10 years.  
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3.6 Discussion 

 

This 15 year study of the prospective risk of T2DM in healthy middle aged 

Caucasian men confirmed the significance of obesity as a major risk factor for 

diabetes, and also found a significant impact on risk of developing T2DM 

associated with variants in the genes for UCP2 (-866A) and UCP3 (-55T).  

Subjects who developed T2DM also had higher blood pressure, triglycerides, 

cholesterol and C-reactive protein (CRP) at baseline, although only BMI, 

triglycerides and CRP were associated independently with increased risk.   The 

association with CRP and triglycerides may have arisen because subjects going on 

to develop T2DM were already more insulin resistant at baseline (Duncan 

BB,2003) but this could not be confirmed as other measures of insulin resistance 

such as HOMA were not collected at recruitment.  The risk associated with BMI 

was over a third higher than any other metabolic parameter and the size of the risk 

associated with obesity, defined here as BMI>30kg/m2, was approximately four 

times that associated with the genetic variants.  In effect, after 10 years of follow 

up,1 out of 4 cases of T2DM would have been prevented if there were no obesity, 

BMI being the best marker of adiposity in the group as waist circumference was not 

collected at baseline, present in the sample, while 1 out of 10 cases would be 

prevented if there were no genetic variation at UCP2-866 or UCP3-55.  The 

additive effect of the combination of obesity and the presence of the gene variants 

increased the risk to extremely high levels, although such subjects were rare in the 

sample.  In obese subjects homozygous for either variant the risk of T2DM 

increased to over 5 times that of non-obese subjects, non-homozygous for either 

variant.   Homozygotes for both variant alleles had a risk of diabetes from 2.5 times 

higher in the non-obese, to nearly 20 times higher in obese subjects.   

 

 

The UCP2-866A allele has consistently been associated with risk of T2DM in 

cross-sectional studies in European subjects, and the mechanism of this appears 

likely to be due to increased UCP2 expression in the pancreas.  The location of the 
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-866G>A variant, within a multifunctional cis regulatory site involving putative 

binding sites for pancreatic and hypoxia-induced transcription factors, suggests 

that it is likely to be functional (Esterbauer H,2003).  Consistent with this, a 

promoter construct of the -866A allele  was associated with 1.2 fold higher 

expression vs. -866G in INSE-1 cells, derived from rat β-cells (Krempler F,2002).   

Putative mechanisms are examined in later chapters but it is likely that UCP2 

expression uncouples ATP production from glucose metabolism, reducing ATP 

production, and since insulin secretion depends on the ATP/ADP ratio as a marker 

of glucose metabolism in the pancreatic β-cell (Erecinska M,1992), secretion is 

reduced as a result.  The higher risk of developing T2DM associated with variation 

in the UCP2 gene is thus likely to be due to a pancreatic effect on insulin secretion.  

Risk is exacerbated by obesity, as obese subjects are already likely to be insulin 

resistant and will require higher insulin secretion to maintain normal glucose 

homeostasis.   

 

A different mechanism appears likely for the UCP3 risk effect.  As discussed in 

chapter 1 although UCP3 expression has been associated with higher uncoupling 

in vitro (Jaburek M,1999),  UCP3 expression is increased both by fasting and by an 

iso-caloric high fat diet, neither of which increases metabolic rate nor uncoupling.  

Also, an increase in expression does not change mitochondrial membrane 

potential.  These findings suggest that UCP3  does not have a conventional 

uncoupling function in man (Schrauwen P,2004).  Overexpression of UCP3 in mice 

which protects them from diabetes, with a 68% increase in mitochondrial palmitate 

oxidation.  This effect is specific to UCP3, as there is no increase in glucose 

oxidation, change in oxygen consumption or mitochondrial membrane potential, 

which is seen with increased uncoupling per se (MacLellan JD,2005).  UCP3 

expression will thus protect the mitochondria, by exporting the fatty acid anions and 

peroxides from the mitochondrial matrix, protecting mitochondrial function and 

preventing the development of T2DM (Schrauwen P,2003). 
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Since the UCP3-55T variant is associated with risk of diabetes in the men studied 

here, a decrease in function would be predicted for the T allele.  The variant was 

originally mapped near a TATA box (6bp) (Schrauwen P,1999) where it may affect 

transcription, but a recent report (Acin A,1999) places the variant in the „5UTR near 

a PPAR responsive element (4bp) which also suggests it could modify regulation of 

UCP3 expression.  A reduction in UCP3 function in -55T carriers has been seen in 

some but not all previous cross sectional studies.  UCP3 mRNA expression was 

higher in CT/TT male non-diabetic Pima Indians, but this study included only 24 

subjects and was based on only seven copies of the T variant from 48 alleles 

(Schrauwen P,1999).  The T allele was associated with higher BMI or WHI ratio, 

consistent with decreased function, in French and German Caucasians, South 

Asian Indian parent-offspring trios, South Asian Indians and the British Diabetic 

Association Warren 2 trios collection (Cassell PG,2000; Halsall DJ,2001; Herrmann 

SM,2003; Otabe S,2000).  However, one study showed a lower BMI in TT subjects 

in a United Kingdom sample (Halsall DJ,2001) and increased function is also 

suggested with the association of protection from diabetic neuropathy (Rudofsky 

G,2006).  In these studies, association with T2DM was examined only once and a 

relationship not found.  The variant allele was found to be protective against T2DM 

in two French cohorts although also associated with an atherogenic lipid profile 

(Meirhaeghe A,2000).  The reason for this difference is not clear; the French 

sample does not appear to be very different to the NPHSII sample although the 

NPHSII sample is nearly three times larger, which may be important when the 

impact of an individual variant is small. 

 

The overall prevalence of T2DM in this sample is 2.5% at baseline and 8.1% after 

15 years of follow up.  This is lower than that reported by the Joint Health Surveys 

Unit (Health Survey for England 2003,2004), however, the increase in prevalence 

of both diagnosed and undiagnosed diabetes between the age range 55-64 years 

and 65-74 years is similar, from 10.4%, to 18.8%.  The lower prevalence is in part 

due to the exclusion of those with diabetes on treatment at the beginning of the 

study.   Although a small number of subjects with diabetes managed by dietary 
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modification alone were included in the study the findings were consistent if they 

were included in the analysis. The method of identification of the men with T2DM, 

by the medical record search, is unlikely to include any false positive diagnosis, but 

in the absence of a full recall for fasting glucose testing some affected subjects 

may be missed. This would then result in a small underestimate of the 15 year 

incidence of T2DM, but would not confound the genetic association observed.  This 

is the first prospective study to look at risk of T2DM and, overall prospective gene-

association studies are more powerful than the case-control design (Humphries 

SE,2003) but further replication is required to resolve these apparent 

discrepancies.  
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CHAPTER FOUR 

 

THE UCP2-866G>A AND UCP3-55C>T VARIANTS IN THE 

HYPERCOAGULABILITY AND IMPAIRED FIBRINOLYTIC FUNCTION 

MECHANISMS STUDY (HIFMECH) 
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4.1 Hypercoagulability and Impaired Fibrinolytic Function Mechanisms Study 

(HIFMECH) 

 

4.1.1 Introduction 

 

The previous chapter demonstrated the association of variants in the uncoupling 

proteins 2 and 3 with prospective risk of type 2 diabetes.  The study, however, did 

not address the potential mechanisms that underlie this association.  The 

HIFMECH study is described in detail in chapter 2.  The measurement of a number 

of metabolic markers gives the opportunity to investigate the mechanism by which 

these gene variants influence risk of type 2 diabetes.  Chapter 1 describes how 

there may be an overlap in the underlying pathophysiology driving cardiovascular 

disease and type 2 diabetes.  The case-control nature of this study allows for the 

association of these variants with myocardial infarction to be studied, determining if 

the pathway of increased risk of type 2 diabetes is likely to be shared with 

cardiovascular disease, or is independent of it.     

 

4.1.2 Aims 

 

To examine the UCP2-866G>A and UCP3-55C>T  variants in the HIFMECH study 

to determine if the increase in prospective risk of type 2 diabetes is due to an 

association with adverse metabolic markers. 

 

To estimate the effect of the UCP2-866G>A and UCP3-55C>T variants on risk of 

myocardial infarction. 

 

4.1.3 Methods 

 

The HIFMECH study was designed to study genetic and environmental 

mechanisms contributing to the higher cardiovascular risk in Northern compared to 

Southern Europe (Juhan-Vague I,2002).  The study sample of Caucasian male first 
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myocardial infarction survivors below 60 years of age were recruited from four 

European centres (Northern European-Stockholm, London; Southern European-

Marseille, San Giovani Rotondo) (n=598).  A selection of randomly-selected age 

matched healthy controls was also recruited from each catchment area (n=653).   

To reduce the risk of error due to multiple testing statistical analysis followed the a-

priori design, to study the association of risk factors associated with cardiovascular 

risk in relation to the North and South of Europe, combining data from the two 

North and two Southern centres for a more statistically robust comparison.  There 

was no difference between common allele homozygotes and heterozygotes for 

prospective risk of type 2 diabetes so a recessive model was used for both 

genotypes.  The metabolic markers were studied in controls, as they are most 

similar to the participants of NPHSII.  In keeping with the original design, risk of 

myocardial infarction associated with genotype was also estimated.  Associations 

were estimated in cases only for the purpose of assessing confounding of any 

differences detected in cardiovascular risk associated with genotype.   

 

 

 

4.2. Baseline Characteristics  

 

The baseline characteristics of the HIFMECH study are shown in table 1.  There 

are significant differences between both cases and controls and between subjects 

in the North and South of Europe.  Those in the South had a better lipid profile but 

were more likely to smoke.  There was no difference between BMI between the 

North and South but waist:Hip ratio (WHR) was higher in the North than in the 

South (Controls 1 v 0.95,p<0.001; Cases 0.98 v 0.93, p<0.001). As expected, 

cases had higher rates of smoking and type 2 diabetes, whilst although 

triglycerides were higher in cases there was no clear difference in blood pressure 

and lipids. This is likely to be due to post-infarct treatments.   The frequencies of 

the UCP2-866 and UCP3-55 genotype were as expected from Hardy-Weinburg 

proportions in both the North and South sample (UCP2-866: North p=0.72, South 
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p=0.96. UCP3-55: North p=0.49, South p=0.45).  The frequency of the rare UCP2-

866A was 0.34[0.32-0.37], with no difference between the North and South 

(p=0.95).  By contrast, there was a difference between the frequency of the rare 

UCP3-55T between the North (0.28[0.25-0.31]) and the South (0.18[0.15-

0.20];p=0.001).   

 

 

Table 4.1. The baseline characteristics of the subjects determined by case/control 

and North/South status.   

 
 

NORTH SOUTH North 
V 

Cases 
V 

 
 

Cases Controls Cases Controls South Controls 

Mean SD Mean SD Mean SD Mean SD 

Age 
(yrs) 

53.0 5.1 52.7 5.1 51.0 5.6 50.5 5.6 <0.01 0.17 

BMI 
(Kg/m2) 

27.2 3.4 
 

25.8 3.1 
 

27.0 3.3 
 

26.4 3.3 0.20 <0.01 

Blood 
Pressure 
(mmHg) 
- Systolic 

 
- Diastolic 

 
 

129.3 
 

82.3 

 
 

17.7 
 

9.8 

 
 

130.4 
 

84.0 

 
 

15.8 
 

8.5 

 
 

126.9 
 

81.5 

 
 

16.2 
 

10.6 

 
 

126.4 
 

84.4 

 
 

13.3 
 

8.7 

 
 

<0.01 
 

0.82 

 
 

0.87 
 

<0.01 

 
Smoking- 

Current/Ex 
(%) 

 
 

76.8 

 
 

2.0 

 
 

61.9 

 
 

2.3 

 
 

86.9 

 
 

1.4 

 
 

61.2 

 
 

2.0 

 
 

<0.01 

 
 

<0.01 

Diabetes- 
Type 2 (%) 

 
11.6 

 
1.5 

 
0 

 
- 

 
11.5 

 
1.4 

 
0 
 

 
- 

 
0.67 

 
<0.01 

Cholesterol 
(mmol/L) 

5.65 1.22 5.68 
 

0.96 5.18 1.11 
 

5.39 0.93 <0.01 0.06 

Triglyceride 
(mmol/L) 

 

1.99 0.83 1.52 0.58 1.79 0.72 1.39 
 

0.60 <0.01 <0.01 

The blood pressure and lipid parameters include those on anti-hypertensive and lipid 
lowering agents respectively 
 

There was no difference in the characteristics of those with and without genotype in any of 

the four groups (data not shown). 
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4.3 UCP2-866G>A  

 

4.3.1 Metabolic Markers by Genotype in controls 

 

There was no difference between genotype (Analysis followed recessive effect 

identified in NPHS; AA v GX) for any of the lipid parameters (cholesterol, 

triglycerides, or apoB) (Table 4.2) in either the North, the South or with both 

samples combined.   

 

Table 4.2: The differences between lipid profiles in healthy subjects for the UCP2-

866G>A variant in the HIFMECH study. 

*adjusted for centre 
1
log transformed 

2
square root transformed 

 

Although BMI (Kg/m2) was lower in AA subjects in the North (GX v AA 26.0 [3.1] v 

24.9 [3.2]; p=0.06) there was no difference in the South (26.4[3.2] v 27.0[3.0]; 

p=0.25).  However, as shown in Fig 4.1a, WHR was lower in AA homozygotes 

compared to G carriers in both the North, South and all controls combined (North: 

1.00[0.06] v 0.98[0.07]; p=0.03: South 0.95 [0.05] v 0.93 [0.07]; p=0.04: combined 

1.00[0.06] v 0.98[0.07]; p=0.003).  There were also significant differences in fasting 

insulin between genotypes with the previously identified genotype for prospective 

risk of type 2 diabetes (UCP2-866AA) associated with significantly lower insulin 

levels (pmol/l) in the North and in all controls combined but not significant in the 

South although the same trend was seen (North: 40.4[26.5] v 30.2[13.8]; p=0.02: 

South 37.4[23.5] v 32.9[23.0]; p=0.37: combined 40.3[24.6] v 32.3[18.6]; 

p=0.02)(Fig 4.1b).  This difference was no longer significant in the North or South 

 UCP2-866 North South Combined* 

Cholesterol 
(mmol/l) 

GG/GA 
AA 
P value 

5.67 (0.98) 182 
5.69 (0.85) 31 

0.93 

5.40 (0.92) 265 
5.34 (1.00) 36 

0.70 

5.70 (0.95) 447 
5.67 (0.93) 67 

0.81 

Triglycerides 
(mmol/l) 

GG/GA 
AA 
P value 

1.53 (0.58) 182 
1.49 (0.63) 31 

0.74 

1.38 (0.59) 265 
1.41 (0.67) 36 

0.76 

1.52 (0.62) 447 
1.52 (0.68) 67 

0.97 

apoB 
(mmol/l) 

GG/GA 
AA 
P value 

97.8 (23.2) 182 
92.8 (20.0) 31 

0.25 

94.1 (20.2) 265 
93.1 (20.3) 36 

0.79 

98.1 (21.7) 447 
95.2 (20.4) 67 

0.30 
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once adjusted for BMI, but remained so in all the controls combined (North: 

42.6[25.6] v 36.1[13.8]; p=0.15: South 39.1[21.7] v 32.2[22.1]; p=0.14: combined 

42.6[24.6] v 35.6[18.6]; p=0.03)(Fig 4.1b). 

 

 

Fig 4.1:  The association of the UCP-886AA genotype with a) lower waist hip ratio 

b) lower insulin secretion (unadjusted) and lower insulin secretion  adjusted for BMI 

 

4.3.2. Risk of cardiovascular disease and genotype association in cases 

 

The odds of being a case by UCP2-8AA, compared to GG+GA, using a conditional 

logistic regression model were a modestly higher odds ratio for Myocardial 

Infarction in the North of 1.30 [95%CI 0.76-2.23] but not in the South 1.00 [0.60-

1.68].   The risk for North and South combined was 1.19 [0.81-1.75]; p=0.38(Fig 

4.2).   In cases, the AA genotype was associated with significantly lower than  

cholesterol in the South [p=0.04] and higher in the North [p=0.05] but in the 

combined group no significant difference was seen.  Triglycerides were lower in AA 

subjects in both North and South and in the combined group the difference was 

statistically significant [p=0.05]. These differences may have occurred by chance 

but would be likely to weaken any association between the AA genotype and 

cardiovascular disease.  There were no other statistically significant associations in 

cases between metabolic markers and genotype [p=0.17-0.78]. (Table 4.3) 
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Fig 4.2:  The Odds ratio for Myocardial Infarction associated with the UCP2-

886G>A genotype in HIFMECH 
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Table 4.3: The association of the UCP2-866G>A genotype and metabolic markers 

in cases in the HIFMECH study. 

*adjusted for centre,
1
log transformed,

2
square root transformed 

 

 UCP2 North South Combined* 

BMI1  

(Kg/m2) 
GG/GA 
AA 
P value 

27.3 (3.4) 182 
26.8 (3.0) 39 

0.36 

27.1 (3.4) 249 
26.5 (3.0) 33 

0.31 

27.3 (3.4) 431 
26.8 (3.0) 72 

0.17 

WHR GG/GA 
AA 
P value 

0.98 (0.06) 182 
0.99 (0.05) 39 

0.19 

0.95 (0.06) 232 
0.95 (0.07) 31 

0.87 

0.98 (0.06) 414 
0.98 (0.06) 70 

0.40 

Cholesterol 
(mmol/L) 

GG/GA 
AA 
P value 

5.58 (1.21) 170 
6.00 (1.24) 37 

0.05 

5.23 (1.12) 237 
4.81 (0.91) 32 

0.04 

5.65 (1.16) 407 
5.67 (1.15) 69 

0.90 
(N/S Interaction 

p=0.005) 
Triglycerides1 
(mmol/L) 

GG/GA 
AA 
P value 

2.02 (0.83) 170 
1.87 (0.86) 37 

0.31 

1.82 (0.72) 237 
1.59 (0.70) 32 

0.08 

2.02 (0.81) 407 
1.82 (0.81) 69 

0.05 

apoB2 

(mmol/L) 
GG/GA 
AA 
P value 

106.3 (28.9) 
170 

111.8 (25.0) 37 
0.29 

97.3 (22.3) 237 
90.1 (20.9) 32 

0.08 

107.6 (25.9) 407 
106.7 (24.1) 69 

0.78 

Insulin1 

(pmol/L) 
GG/GA 
AA 
P value 

45.8 (30.7) 169 
38.1 (25.2) 36 

0.14 

57.8 (40.6) 145 
56.3 (45.9) 17 

0.88 

45.9 (31.4) 314 
40.1 (28.5) 53 

0.19 

Insulin1 (BMI 
adjusted) 

GG/GA 
AA 
P value 

42.0 (23.8) 166 
37.2 (21.0) 36 

0.24 

56.6 (37.7) 145 
57.7 (45.7) 17 

0.91 

42.0 (25.8) 311 
38.9 (25.0) 53 

0.41 
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4.4 UCP3-55C>T 

 

4.4.1  Metabolic Markers by Genotype in controls 

 

UCP3-55C>T genotype was not associated with differences in waist hip ratio, BMI 

or insulin.   The lipid parameters were unremarkable except the TT genotype was 

associated with higher apoB in the South (Table 4.4). 

 

 

Table 4.4: The association of the UCP3-55C>T genotype and metabolic markers in 

controls in the HIFMECH study.  

 

 UCP3 North South Combined* 

BMI1  

(Kg/m2) 
CC/CT 
TT 
P value 

25.8 (3.1) 221 
25.4 (3.5) 22 

P=0.51 

26.4 (3.2) 309 
26.2 (2.3) 11 

P=0.81 

25.8 (3.1) 530 
25.4 (3.1) 33 

P=0.49 

WHR CC/CT 
TT 
P value 

1.00 (0.06) 220 
1.01 (0.06) 21 

P=0.54 

0.95 (0.06) 200 
0.94 (0.09) 6 

P=0.65 

1.00 (0.06) 420  
1.00 (0.06) 27 

P=0.71 
Cholesterol 
(mmol/L) 

CC/CT 
TT 
P value 

5.74 (0.99) 204 
5.44 (0.96) 20 

P=0.19 

5.37 (0.93) 308 
5.84 (1.01) 11 

P=0.10 

5.71 (0.95) 512 
5.70 (1.03) 31 

P=0.92 

Triglycerides1 
(mmol/L) 

CC/CT 
TT 
P value 

1.51 (0.58) 204 
1.63 (0.78) 20 

P=0.40 

1.39 (0.62) 308 
1.42 (0.51) 11 

P=0.85 

1.52 (0.64) 512 
1.61 (0.70) 31 

P=0.46 

apoB2 

(mmol/L) 
CC/CT 
TT 
P value 

98.3 (23.1) 204 
95.8 (21.5) 20 

P=0.51 

93.9 (20.1) 308 
102.8 (23.6) 11 

P=0.03 

98.1 (21.6) 512 
99.8 (22.7) 31 

P=0.68 

Insulin1 

(pmol/L) 
CC/CT 
TT 
P value 

39.9 (25.5) 205 
37.3 (26.5) 20 

P=0.65 

36.1 (22.6) 202 
42.4 (27.3) 9 

P=0.45 

39.3 (24.9) 407 
39.7 (27.2) 29 

P=0.94 

Insulin1 (BMI 
adjusted) 

CC/CT 
TT 
P value 

43.0 (24.6) 205 
41.2 (21.8) 20 

P=0.75 

37.6 (21.2) 202 
45.3 (27.1) 9 

P=0.33 

42.0 (23.8) 407 
43.4 (24.0) 29 

P=0.76 
*adjusted for centre,

1
log transformed,

2
square root transformed 
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5.4.2  Risk of Cardiovascular disease and genotype association in cases 

 

There was a lower odds ratio for myocardial infarction associated with TT 

homozygotes of borderline significance in the North (OR[95%CI] 0.45[0.2-1.05]: 

p=0.06) but not so in the South (0.51[0.18-1.48]: p=0.22).  The odds ratio for 

myocardial infarction in the study combined was lower in those with the TT 

genotype (0.47[0.25-0.92]: p=0.03 

 

Fig 4.3:  The Odds ratio for cardiovascular disease associated with the UCP3-

55C>T  genotype in the HIFMECH study. 
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The UCP3-55TT homozygotes had lower mean cholesterol in the North and South, 

although the result was of borderline significance in the North (Cholesterol 

(mmol/L) CC +CT v TT: North 5.7[1.2] v 5.1[0.9], p=0.09; South 5.2[1.1] v 4.2[1.1], 

p=0.04; combined 5.7[1.2] v 4.9[1.0], p=0.01).  A similar association was seen with 

apoB but in the North the differences were not significant (p=0.22) (Table 4.5). 
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Table 4.5  The association of the UCP3-55C>T  genotype with metabolic markers 

in cases in the HIFMECH study. 

 

 UCP3 North South Combined* 

BMI1  

(Kg/m2) 
CC/CT 
TT 
P value 

27.2 (3.2) 209 
27.7 (5.0) 13 

P=0.57 

27.0 (3.3) 292 
25.3 (3.4) 5 

P=0.24 

27.2 (3.2) 501 
27.1 (4.6) 18 

P=0.87 

WHR CC/CT 
TT 
P value 

0.98 (0.06) 210 
0.98 (0.07) 12 

P=0.82 

0.95 (0.06) 272 
0.95 (0.08) 5 

P=0.95 

0.98 (0.06) 482 
0.98 (0.07) 17 

P=0.82 

Cholesterol 
(mmol/L) 

CC/CT 
TT 
P value 

5.70 (1.23) 198 
5.08 (0.90) 12 

P=0.09 

5.20 (1.11) 279 
4.15 (1.08) 5 

P=0.04 

5.68 (1.16) 477 
4.94 (0.95) 17 

P=0.01 

Triglycerides1 
(mmol/L) 

CC/CT 
TT 
P value 

1.99 (0.85) 198 
2.17 (0.64) 12 

P=0.49 

1.79 (0.72) 279 
1.61 (0.45) 5 

P=0.56 

1.99 (0.82) 477 
2.05 (0.60) 17 

P=0.76 

apoB2 

(mmol/L) 
CC/CT 
TT 
P value 

108.1 (28.5) 198 
98.0 (24.4) 12 

P=0.22 

96.8 (22.2) 279 
76.3 (20.3) 5 

P=0.03 

108.0 (25.6) 477 
94.4 (23.5) 17 

P=0.03 
Insulin1 

(pmol/L) 
CC/CT 
TT 
P value 

44.1 (29.6) 198 
50.3 (33.7) 11 

P=0.52 

56.0 (38.8) 170 
73.8 (66.1) 3 

P=0.50 

44.3 (30.1) 368 
52.0 (35.7) 14 

P=0.39 

Insulin1 (BMI 
adjusted) 

CC/CT 
TT 
P value 

41.5 (23.7) 194 
42.1 (22.2) 11 

P=0.93 

55.3 (36.8) 170 
76.9 (36.4) 3 

P=0.40 

41.3 (25.5) 364 
44.8 (23.1) 14 

P=0.63 
*adjusted for centre,

1
log transformed,

2
square root transformed 

 

.  

 

4.5 Discussion 

 

Analysis of the UCP2-866 variant in the HIFMECH study provides two important 

observations.  Firstly, these data confirm the previous studies in Europe [see table 

1.4c] showing that AA subjects are leaner [2% lower WHR] in both the North and 

the South, and secondly that AA subjects have lower fasting plasma insulin levels.   

In the healthy subjects the difference in fasting insulin levels persisted when 

adjusted for body mass index.  There was no other relationship between genotype 

and any of the adverse metabolic markers, suggesting that the effect of genotype 

variation is not through conventional risk factors for type 2 diabetes.   This 

association with β-cell dysfunction could have been replicated if the variant was 



 168 

also associated with pro-insulin or insulin split products which are associated with 

early β-cell dysfunction but these were not available for this study sample. 

 

This study was underpowered to detect an association between genotype and 

cardiovascular risk.  The UCP2-866AA was associated with a modestly higher 

odds ratio for myocardial infarction in the North but not in the South.  This is in 

keeping with other data suggesting that the A allele is associated with risk of 

cardiovascular disease in healthy men (Dhamrait SS,2004) and carotid 

atherosclerosis in women (Oberkofler H,2005).  The A allele is also associated with 

higher markers of oxidative stress in men with type 2 diabetes (Dhamrait SS,2004).  

Why this association is seen more strongly in the North is not clear.   The mean 

WHR [%] was higher in the North [Controls 100 v 95 p<0.001; Cases 98 v 93, 

p,0.001] and this and other environmental factors such as diet could alter oxidative 

stress load.  The UCP2 gene promoter is induced by oxidative stress through both 

hypoxic and toxic pathways, and differences in oxidative stress load could alter the 

influence of UCP-2 promoter variants on transcription function (Krempler F,2002; 

Oberkofler H,2005). 

 

The association of the A allele with higher oxidative stress suggests that this allele 

is associated with lower “uncoupling”.  This is in contrast to the obesity and insulin 

data where the A allele is “protective” and associated with higher uncoupling.  This 

could be explained if the different alleles behave in different ways at baseline and 

under oxidative stress loads, such as that from cardiovascular risk factors. This is 

supported by the findings that THP-1 (macrophages)  and HUVEC (endothelium) 

cells (Oberkofler H,2005), compared to INSE-1 (Krempler F,2002) and Paz-6 cells 

(Esterbauer H,2001) show differences in transcription factor binding.     Different 

effects in different disease processes could also be explained by differential 

regulation of UCP2 in different tissues.  Indeed, in pancreatic cells [INSE-1] the 

effect of the UCP2A promoter construct is enhanced transcription under PAX6 

stimulation [which would be associated with diabetes], but  lower transcription in 
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COS-7 cells, which would be associated with higher oxidative stress [see Fig 7.2, 

page 210].   

 

The association of the UCP3TT genotype with type 2 diabetes does not seem to be 

explained by differences in conventional risk factors for type 2 diabetes or by 

markers of insulin resistance.  In healthy controls the only association of an 

adverse metabolic marker with UCP3 genotype was an association with higher 

ApoB in the South. The significance of this finding is uncertain given the number of 

comparisons performed.  The association of the UCP3 TT genotype with type 2 

diabetes must be explained through a mechanism not measured in the HIFMECH 

study.   

 

The association of the TT genotype with protection from myocardial infarction is a 

novel finding.  How the genotype associated with type 2 diabetes is also 

associated with cardiovascular disease is unclear and the association could be a 

chance finding.  The putative role of UCP3 in mitochondrial metabolism, protection 

from oxidative stress from over-nutrition, would also be expected to protect from 

cardiovascular disease.  This genotype was associated with increased prospective 

risk of diabetes in NPHSII (see chapter 4) The HIFMECH study is cross sectional 

in nature, this design is more susceptible to confounding than prospective studies.  

The association may have occurred as a result of a confounding factor, such as the 

association of lower cholesterol of 0.75mmol/l with the TT genotype in cases.  This 

association was seen both in the North and the South although was based on only 

17 TT homozygotes and was not seen in the NPHSII study.  The reduction of 

cholesterol from 5.68 to 4.94mmol/l (assuming a HDL of 1.0mmol/l) in a 65 year old 

normotensive, non-smoker reduces the 10 year risk of cardiovascular disease by 

13% (http://cvrisk.mvm.ed.ac.uk/calculator/framingham.htm) which would explain, 

at least in part, some of the lower risk observed.   The expression of UCP3 may 

also be stimuli or organ specific, as is the case with UCP2.  There is currently little 

information on the effect of UCP3 variants on UCP3 transcription and is based on 

small numbers (Schrauwen P,1999) or very rare variants (Chung WK,1999) and do 

http://cvrisk.mvm.ed.ac.uk/calculator/framingham.htm
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not provide much evidence of control of UCP3 expression.  If the association of the 

-55UCP3TT variant with risk of type 2 diabetes and protection from cardiovascular 

disease is replicated, then further work will be required to understand the 

mechanisms underlying these data. 
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5.1 Assays of Plasma Markers of Oxidative Stress in The Japanese 

American Family Study 

 

5.1  Introduction 
 

The association of risk of type 2 Diabetes associated with variation in UCP2 and 

UCP3 has been examined in chapters 3 and 4.  The UCP2  variant is 

associated with lower insulin secretion but the mechanism for this, and the 

mechanism for the risk associated with UCP3-55TT is as yet unclear.  It is 

possible that these genetic variants are associated with differences in non-

classical risk factors for type 2 Diabetes, more specifically the modification of 

oxidative stress.  

 

As described in chapter 1, living organisms have developed a wide range of 

complex anti-oxidant systems to counteract the damaging effects of reactive 

oxygen species.  The oxidative stress balance within an organism can be 

determined by several different methods.  A component of one of the anti-

oxidant systems can be measured directly or a component of the cell damaged 

by reactive oxygen species can be assayed.  Other methods rely on the 

concept of anti-oxidant capacity, which is estimated as the capacity of the 

sample to scavenge free radicals in a test solution, and represents the sum of 

the anti-oxidant systems. There are two main methods to determine anti-oxidant 

capacity, based on the ability of the sample to inhibit an oxidizing reaction or to 

drive a reducing reaction. 

 

The Japanese American Family (JAM) study is a family study to investigate risk 

factors for coronary heart disease and type 2 diabetes.  The Principal 

investigator of the study is Prof. Melissa Austin and the subjects were recruited 

in the United States of America, from in or around Washington, and were of 

Japanese descent (Austin MA,2004a).  The subjects are well characterised, and 

stored unthawed frozen plasma samples were available. The plasma markers of 

oxidative stress give an indication of the amount of free radical mediated 

damage present, and enable the examination of the factors that determine 

oxidative stress burden in this population.   The genetic component of type 2 
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Diabetes may in part be through modification of the body’s ability to generate or 

protect itself from oxidative stress. 

 

5.2 Aims 

 

1. To compare different methods of measuring anti-oxidant capacity with the 

aim of developing a method of measuring oxidative stress markers that was 

accurate and capable of handling a large number of samples.  

 

2. To measure markers of oxidative stress in plasma samples of subjects from 

the Japanese American Family Study. 

i) Examine the factors that predict levels of plasma markers of 

oxidative stress.  

ii) Determine the genetic contribution to plasma markers of oxidative 

stress by calculating heritability. 

iii) Examine if genetic variation in the UCP2-UCP3 gene cluster is 

associated with variation in levels of oxidative stress markers. 

 

 

5.3 The assessment of different methods to measure plasma markers 

of oxidative stress burden 

 

5.3.1 Methods 

 

Once the different types of method had been identified, a kit was selected for 

each method on the basis of practicality, cost and technical specifications.  

Products were compared from the major suppliers to this laboratory. 1) A 

glutathione/ reduced glutathione (Calbiochem;354103) assay was chosen as an 

assay of a single component of the anti-oxidant systems; 2) Total anti-oxidant  

Status (TAS- Randox; NX2332) as an oxidation reaction based on ABTS, 

Metmyoglobin and Hydrogen peroxide and 3) AOP-490® (Oxis; 21052) as a 

reducing reaction based on copper ions.  Detailed methods for each kit are 

illustrated in chapter 2.  These methods were also compared to the Total Anti-

oxidant Status (TOAS) method, based on ABTS, Horseradish peroxidase and 
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hydrogen peroxide, which was developed within this group from the method of 

Sampson et al.  

 

The plasma used for these studies was provided by members of the group.  

Blood was collected into EDTA-containing tubes and centrifuged at 3500g for 8 

minutes.  The plasma was separated and stored at -800C in microtubes until 

use.  The samples were stored by sample number only, no record was kept that 

would enable later identification of the sample. The inter-assay coefficient of 

variation (CV) was calculated by dividing the standard deviation by the mean 

and is expressed as a percentage.  Inter-assay variability was calculated on the 

basis of one of these samples repeated in the plate up to 40 times.  The 

correlation between the assays was calculated by assaying the same ten 

samples with each kit.  A different aliquot was used for each kit and the assays 

were performed on the same day. 

 

5.3.2 Results 

 

5.3.2a Calculation of inter-assay variation. 

 

The methods were all performed in accordance with the manufacturers 

instructions.  However, for the TAS kit this required samples to be run 

individually in 1ml cuvettes.  The method was modified to enable the use of the 

kit in a 96 well plate format by reducing the volume of reagents by 100.  This 

method uses similar volumes to the TOAS assay.  The dilution was tested by 

comparing the values obtained for the TAS control serum by both methods.  

There was no difference between the two samples (Fig 5.1).  The expected 

value was 1.55 [1.16-1.94] mmol/L .The cuvette method assayed this sample as 

1.44 [1.23-1.97], whilst the 96 well plate dilution method assayed this sample as 

1.31 [1.25-1.37].  There was no significant difference between the two methods 

(p=0.86). 
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Fig 5.1: Comparison of the 96 well plate modified method (n=20) of using the 

TAS reagents with the manufacturers recommended cuvette method 

(n=8). 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

The inter-assay variation for the different methods is shown in Table 5.1.  The 

TAS CV was measured in plasma and for the control serum provided.   The 

Randox kit is supplied with more than one set of reagents.  Measurement of 

TAS for the control serum supplied was repeated alongside the measurement of 

TAS in the plasma sample.  The CV of the assay was lower when the second 

set of reagents was used (21% v 9%).  The time taken to assay 40 samples 

was also estimated (ie samples in duplicate in a 96 well plate, including 

controls, blanks, etc).  The CV for the TOAS was lower (4.1%) but the 

glutathione assay had the lowest (1.0%).  However, this method required the 

longest time and the samples needed pipetting and preparation at collection.   
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Table 5.1: The interassay CV for the oxidative stress assays. 

 

Assay Sample N Mean 
Std 

Deviation 
CV(%) 

Time for 

40 

samples 

TAS (mmol/l)  
Control 

1 
20 1.31 0.28 21.2 15 mins 

 
Control 

2 
20 1.77 0.16 9.0  

 Plasma 14 1.04 0.09 9.5  

TOAS(%) Plasma 14 53.3 2.20 4.1 25 mins 

AOP-490 

(mmol/L) 
Plasma 8 0.16 0.03 21.1 35 mins 

Glutathione 

Ratio 

EDTA 

Blood 
20 21.25 0.22 1.0 60 mins 

 

 

5.3.2b Relationship between different methods 

 

A total of 10 volunteers had plasma taken on the same day and stored in 

separate aliquots for assay with each method.  The samples were defrosted at 

the same time and run on the same plate.  Linear regression was used to 

determine the relationship of the methods.  There was no significant correlation 

between any of the methods (Table 5.2) with the highest value seen being 

between TAOS and the GSH/GSSG method (r=0.32, p=0.37).   

 

Table 5.2: The relationship between different methods of measuring plasma 

markers of oxidative stress in 10 volunteers. (Pearson correlation)  
 

 AOP-490 [p] TAOS [p] TAS [p] GSH:GSSG 

GSH:GSSG 0.12 [0.7] -0.32 [0.4] 0.11 [0.8] 1 

TAS 0.25 [0.5] -0.79 [0.8] 1   

TAOS 0.16 [0.7] 1     

AOP-490 1       
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5.3.3 Discussion 

 

The assays available for the determination of oxidative stress vary in their cost 

and ease of use.  The difference in oxidative stress levels between subjects 

with different genotypes is likely to be small, and therefore the chosen method 

needs to be simple enough to perform on a large number of samples.  The ‘in-

house’ TOAS assay showed the least variability, but is the most familiar, and 

the effect of familiarity is likely to explain the significant improvement in TAS 

variability between the initial assay and the repeat assay of the provided control 

serum performed with the assay of the plasma sample. The glutathione assay 

requires pre-preparation of samples at the sampling site and this makes it 

unsuitable for large scale studies.  The lack of variability may also reflect the 

fact that oxidized GSH in healthy volunteers is found at the lower level of 

detection for the kit, and this may reflect lack of ability to discriminate between 

samples rather than laboratory precision. The AOP-490® test would also be 

suitable, as the CV is likely to improve with increased familiarity.  However, the 

much higher cost of nearly £1.65 per sample, compared with 22p for TAS and 

5p for TOAS, made this impractical to perform in large scale genetic association 

studies.                  

 

 

 The use of any combination of these methods would be desirable as they are 

detecting different spectrums of anti-oxidant activity, as indicated by the low 

correlation between them.    Therefore, the combination of TOAS and TAS was 

chosen, even though the only difference in the two tests is the catalytic enzyme.  

The correlation of value in 10 healthy subjects was essentially negligeable (-

0.08)  and the spectrum of the anti-oxidant system that each is measuring 

appears likely to be  sufficiently different for them to independently validate 

findings.    
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5.4 Plasma Oxidative stress markers in the Japanese American Family 

Study 

 

5.4.1 Methods 

 

A previously unthawed plasma sample was used for the plasma markers of 

oxidative stress.  The assays were selected on the basis of the previous work in 

this chapter.  Variables were transformed to normal where appropriate.  

Heritability was calculated using The Statistical Analysis for Genetic 

Epidemiology (SAGE) program and was carried out by Brendan Pierce in 

Washington, using an analytical strategy suggested by myself.  Genotype was 

determined using Taqman© Technology as previously described in chapter 2.   

 

 

5.4.2 Results 

 

Serum was available for 490 subjects.  TOAS was successfully measured in 

476 subjects and TAS in 490, the discrepancy arises mainly due to the rejection 

of samples with significant haemolysis which TAS can correct for but TOAS 

cannot.   The analysis was limited to the Nissei and Sansei generations due to 

the very small numbers in other generations; in total this excluded only four 

subjects. The characteristics of the subjects are shown in table 5.3.  The Nissei 

generation was nearly thirty years older and as a result had higher blood 

pressure, lipids and rates of type 2 diabetes.  The heritability calculation was 

based on these subjects recruited from 68 separate Japanese-American 

families as defined on page 100.      

 

 

 

 

 

 

 

 



 180 

 

 

Table 5.3: Baseline characteristics of the Japanese American Family Study 

 

 Total Nissei Sansei 

 

N= 490 215 275 

Gender  

[M/F] 

215/275 [43.8%] 95/130 [42.2%] 120/141 [46%] 

Age  

[years] 

54.5       [16.5] 69.7     [8.8] 41.6       [7.9] 

LDL  

[mg/l] 

116.9     [31.2] 120.6   [32.8] 113.75   [29.6] 

HDL  

[mg/l] 

54.0       [14.9] 54.5     [15.5] 53.6       [14.6] 

Triglycerides 

[mg/l] 

136.4     [90.2] 151.0   [82.9] 123.6     [94.8] 

Systolic BP 

[mmHg] 

122.0     [19.1] 131.1   [20.7] 113.9     [12.9] 

Diastolic BP 

[mmHg] 

76.1       [10.2] 77.5     [9.9] 74.9      [10.3] 

BMI 

[kg/m
2
] 

24.5       [3.7] 24.7     [3.6] 24.3      [3.9] 

Smokers – 

Never/Ex 

Current 

 

276/153 

40 [8.5%] 

 

103/97 

14  [6.5%] 

 

170/56 

25 [9.9%] 

Diabetes Y/N 49/441[11%] 42/183 [18%] 7/254 [2.68%] 

Mean [SD] 

 

5.4.2a  Relationship between TAS and TOAS 

 

Mean TOAS [SD] was 53.34% [8.5] and mean TAS was 1.36mmol/L [0.22]. 

TOAS was transformed to the square to normalize the distribution. There was a 

weak but significant positive correlation between the two measures (r=0.076, 

p<0.001). Therefore, only 7.6% of the variability in either marker can be 

explained by a relationship with the other (Fig 5.2).  
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Fig 5.2: The relationship between plasma TAS and TOAS in the Japanese 

American Family Study  

 

 

sqtoasr= √ Plasma TOAS 

plasma randox = plasma TAS 

 

5.4.2b Oxidative stress markers and biochemical characteristics 

 

The mean TOAS (mean[SD] 54.6[30.8] v 53.3[28.2]: p=0.009) and TAS (1.41 

[0.2] v 1.31[0.2]:p= 0.0001) were both lower in women than in men  (Fig 5.3) 

and TAS but not TAOS was lower in the Sansei generation (6%).  There were 

no differences for mean TAS or TOAS by Diabetes or smoking status [Table 

5.4].   
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Fig 5.3:  The mean of two markers of oxidative stress by gender in the 

Japanese American Family Study. (Mean [SE]) 

TOAS TAS

P=0.009 P=0.0001

51
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1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

Male Female

 

 

Table 5.4:  The comparison of mean TOAS and TAS by baseline characteristics in the 

Japanese American Family Study. 

 

 TOAS [%] TAS [mmol/L] 

Diabetes Y  
                (n=49) 
               N  
                (n=441) 

52.81[29.96] 

 

54.15[32.61] 

0.35 1.37[.223] 

 

1.36[.217] 

0.70 

Generation: Nissei 
                    (n=215) 
                   Sansei       
                   (n=275 ) 

54.22[30.17] 

 

53.82[18.43] 

0.50 1.40[.211] 

 

1.32[.218] 

0.0013 

Smokers  Current 
                 (n=40 ) 
                 Ex 
                 (n=153 ) 
                 Never  
                 (n= 276) 

53.79[27.55] 

 

54.21[30.28] 

 

53.95[29.10] 

0.92 1.33[.235] 

 

1.38[.222] 

 

1.34[.214] 

0.29 

Mean [SD] 

 

 

Simple linear regression showed a statistically significant correlation between 

TAS and triglycerides [ln], HDL cholesterol [Square], LDL cholesterol [Square 

root], age, Systolic Blood pressure (SBP[reciprocal]) and BMI.  A significant 
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correlation with TOAS was only seen with triglycerides and systolic blood 

pressure.  The relationship in all cases was weak, with the largest R2 of 4% 

[Table 5.5].  Where a correlation was described with both TAS and TOAS, i.e. 

for triglycerides and SBP, this was in opposite directions, however, the 

correlation was weak in both cases and the line of best fit was close to 

horizontal.  

 

Table 5.5: Correlation between oxidative stress markers and metabolic markers in the 

Japanese American Family Study. 

 

 TOAS TAS TAS V 

TOAS 

 Β R
2 

p Β R
2
 p  

Triglycerides -0.11 0.03 0.0001 0.502 0.03 <0.00001 <0.00001 

HDL  0.007 0.001 0.16 -0.857 0.03 <0.00001 <0.00001 

LDL  0.13 0.004 0.08 0.45 0.002 0.005 0.11 

AGE 0.078 0.0004 0.37 14.81 0.04 <0.00001 0.0001 

SYS BP -0.010 0.007 0.04 0.274 0.003 0.005 0.01 

BMI 0.13 0.001 0.53 3.32 0.04 <0.00001 0.001 

 

 

The ability of the two assays to measure the same signal was examined by 

comparing the distribution of the residuals.  In all cases these were significantly 

different.  In total 10 variables were examined and the two markers of plasma 

oxidative stress gave the same answer in 3 only.  However, using best subsets 

regression [Minitab V14] to identify the best multiple regression model the same 

independent predictors were identified for both TAS and TAOS. The amount of 

variability in oxidative markers due to the five identified predictors [age, sex, 

Triglycerides, BMI and systolic blood pressure] was R2 =7.0% for TOAS and 

11.9% for TAS [Table 5.6]. 
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Table 5.6:   The best multiple regression model for both TOAS and TAS as identified 

by best subsets regression [Minitab v14] in the Japanese American Family Study 

 

 

 

5.4.2c Heritability 

 

The familial correlation coefficients for both measures of total anti-oxidant status 

are shown in table 5.7.  There was a significant correlation between parent-

offspring and sibling pairs, indicating that there is likely to be some genetic 

determinant of plasma markers of oxidative stress.  However, the highest 

correlations were between spouses [TAS 0.60 (0.39-0.81); TOAS 0.50 (0.25-

0.50)].     

 

Table 5.7:  Familial correlations for two plasma markers of oxidative stress in the 

Japanese American Family Study. 

 

 TAS (RANDOX) TOAS (In-house) 

Pairs Correlation Coefficient 
(95% CI) 

Pairs Correlation Coefficient  
(95% CI) 

Unadjusted Adjusted Unadjusted Adjusted 
Spouse 
pairs 

41 0.60 
(0.39, 81) 

0.58 
(0.37,0.79) 

38 0.50 
(0.25,0.75) 

0.50 
(0.25,0.75) 

Parent : 
offspring 

287 0.28 
(0.11,0.45) 

0.29 
(0.13,0.45) 

266 0.26 
(0.09,0.43) 

0.27 
(0.10,0.44) 

Sibling 374 0.36 
(0.20, 52) 

0.32 
(0.16,0.48) 

337 0.30 
(0.14,0.46) 

0.29 
(0.13,0.45) 

 

The genetic variance component [SEM] for TAS was 0.03 [0.0045] and for 

TAOS was 31.41 [6.98].  After adjustment for age and gender the genetic 

variance component for TAS was 0.02 [0.004] and 33.35 [7.50] for TOAS.   The 

 TOAS TAS 

Β P Β p 

Trigs -332.8 <0.0001 0.05 0.009 

AGE 9.14 0.001 0.003 <0.0001 

SYS BP -149.4 0.008 -0.038 0.007 

BMI 21.25 0.061 0.007 0.008 

Gender -219.8 0.007 -0.091 <0.0001 

R2 =  0.0699  11.93 

P=  <0.0001  <0.0001 
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heritability estimates for the TAS kit and in-house TOAS were 0.56 [p<10-7] and 

0.48 [p<10-7] respectively.  When adjusted for age and gender these results 

were essentially unchanged [TAS= 0.54, [p<10-7] and TOAS = 0.49 [p<10-7]; Fig 

5.3].    There was also a significant variance component due to the marital 

relationship, although less than the genetic component [TAS 0.02 [0.003]; 

TOAS 27.23 [7.39] and TAS 0.02 [0.003]: TOAS 33.90 [7.76] adjusted for age 

and gender.   The lower heritability for TOAS may be in part due to estimation of 

a random variance component  for TOAS 7.25 [9.01] not seen for TAS although 

this was not significant [p>0.05] when adjusted for age and gender (0.18[9.44]). 

 

Fig 5.4:   The heritability of two plasma markers of oxidative stress in the 

Japanese American Family Study. 

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

TAS TOAS

  Unadjusted Adjusted [Age + gender]

All estimates p<10-6

 

5.4.2d UCP2-UCP3 genotype and markers of oxidative stress. 

 

UCP2-866G>A and UCP3-55C>T genotyping was restricted to these subjects in 

whom plasma was available.   Genotype was obtained in 94% and 95% of 

subjects for UCP2-866 and UCP3-55 respectively.  Genotype frequencies were 

as predicted from Hardy Weinberg proportions [Table 5.8].  There was no 

difference in genotype frequencies by generation [p>0.05].   
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Table 5.8: UCP2 -866G>A and UCP3-55C>T genotype frequencies in the Japanese 

American Family study.   

UCP2 GG GA AA Undetermined 

Total 142  224 102 12 

Ninsei 63 106 49 2 

Sansei 79 118 52 9 

UCP3 CC CT TT Undetermined 

Total 201 208 52 18 

Ninsei 93 93 26 8 

Sansei 108 115 26 9 

 

There were no significant differences in any of the baseline characteristics by 

either genotype [Table 5.9]. 

 

 

Table 5.9:  Baseline characteristics by genotype in the Japanese American Family 

Study. 

UCP2 GG GA AA  

Age  52.3  [16.2] 55.0 [16.1] 56.4 [16.7] 0.11 

Triglycerides 132.0[91.1] 142.48 [96.8] 136.0 [78.3] 0.40 

HDL 53.9 [14.6] 54.0 [15.0] 52.85 [15.6] 0.58 

LDL 113.1 [31.4] 117.3 [31.2] 121.1 [31.88] 0.07 

BMI 24.44 [3.75]  24.69 [3.87] 24.51 [3.46] 0.79 

SYS BP 120.7 [17.45] 123.6[20.2] 122.3 [19.0] 0.67 

Gender M:F 52/50 99/125 59/83 0.33 

Nissei/Sansei 49/52 106/118 63/79 0.52 

Diabetes N/Y 89/13 203/21 127/15 0.64 

SMOKING 

curr/Ex/Never 

3/39/54 25/67/123 9/44/84 0.07 

UCP3 CC CT TT  

Age  53.8  [16.1] 54.4 [16.8] 55.6 [14.8] 0.76 

Triglycerides 131.5[85.7] 142.54 [95.1] 147.1 [98.8] 0.53 

HDL 5.41 [15.2] 52.9 [15.0] 51.75 [13.6] 0.17 

LDL 115.9 [32.6] 116.8 [30.6] 121.5 [31.28] 0.56 

BMI 24.11 [3.54]  24.92 [4.01] 24.81 [3.29] 0.08 

SYS BP 122.2 [20.32] 121.2[18.1] 126.9 [17.8] 0.06 

Gender M:F 84/117 90/119 28/24 0.29 

Nissei/Sansei 93/108 93/115 26/26 0.81 

Diabetes N/Y 179/22 189/20 46/6 0.84 

SMOKING 

curr/Ex/Never 

18/53/121 15/73/110 4/21/26 0.24 

Mean [SD]: Units as in Table 5.3. 
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There was no relationship between UCP2-866 genotype and either TOAS 

[GGvGAvAA: %[SD] : 54.4[29.0] v 53.8[29.0] v 54.0 [30.6];p=0.40] or TAS 

[mmol/l [SD]: 1.35[.22] v 1.35[.21] v1.38[.22]; p=0.32].  There was also no 

relationship between UCP3-55 genotype [CCvCTvTT] and either marker of 

oxidative stress [TOAS. 54.0[29.6] v 53.8 [28.7] v 54.6 [30.5];p= 0.47: TAS 

1.35[.22] v 1.35 [0.21] v 1.40 [0.22]; p=0.24] [Fig 5.4]. 

  

Best subset regression analysis has previously identified the best predictive 

model for both the markers of oxidative stress contained the same five 

variables.  The addition of the genotype data to this model [Table 5.10] made no 

significant difference in the predictive value of the model if the genotype data 

was added separately [Model 2 = addition of UCP2 genotype; Model 3 = 

addition of UCP3 Genotype] or combined [Model 4 = Addition of both UCP2 and 

UCP3 genotype]. The largest effect seen was the inclusion of UCP2 genotype 

to the TAOS model increased the R2 from 6.99% to 7.5% (p=0.66)    There is no 

association with variants in the UCP2-UCP3 gene cluster with plasma markers 

of oxidative stress in the Japanese American Family study. 
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Table 5.10:  Multiple regression models and determinants of plasma markers of 

oxidative stress in the Japanese American Family Study.  

 

 

TOAS Model 1 Model 2 Model 3 Model 4 

Β p Β p Β P Β p 

Trigs -332.8 <0.0001 -345.4 <0.0001 -349.5 <0.0001 -380.7 <0.000
1 

AGE 9.14 0.001 9.77 0.01 9.58 0.001 9.07 0.002 

SYS BP -149.4 0.008 -148.6 0.03 -146.9 0.009 -133.4 0.021 

BMI 21.25 0.061 21.39 0.10 21.11 0.067 21.98 0.059 

Gender -219.8 0.007 -224.2 0.01 -221.4 0.008 -180.4 0.034 

UCP 2 
GA 
AA 

  
 

 
-61.9 
14.6 

 
0.54 
0.89 

   
-18.6 
106.7 

 
0.86 
0.42 

UCP 3 

CT 
TT 

    
. 

 
0.25 

119.4 

 
0.99 
0.37 

 
49.71 
178.4 

 
0.60 
0.23 

R2 = 0.0699  0.075  0.0697  0.0705  

P= <0.0001  <0.0001  <0.0001  <0.0001  

V Model 
1 

  0.66  0.64  0.67  

 

 

TAS Model 1 Model 2 Model 3 Model 4 
Β p Β p Β P Β p 

Trigs 0.05 0.009 0.46 0.19 0.05 0.011 0.45 0.023 

AGE 0.003 <0.0001 0.003 <0.0001 0.003 <0.0001 .0031 <0.000
1 

SYS BP -0.038 0.007 -0.332 0.19 -0.040 0.006 -0.368 0.012 

BMI 0.007 0.008 0.007 0.008 0.007 0.009 0.007 0.009 

Gender -0.091 <0.0001 -0.85 <0.0001 -0.081 <0.0001 -0.828 0.000 

UCP 2 

GA 
AA 

   
-0.26 

-0.003 

 
0.31 
0.89 

   
-0.02 
0.009 

 
0.45 
0.78 

UCP 3 

CT 
TT 

     
-0.0002 

0.32 

 
0.99 
0.35 

 
0.009 
0.38 

 
0.69 
0.32 

R2 = 11.93  11.12  10.79  10.59  

P= <0.0001  <0.0001  <0.0001  <0.0001  

V Model 
1 

  0.49  0.61  0.63  
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5.5  Discussion 

 

The examination of plasma markers of oxidative stress in the Japanese 

American Family study confirmed the observation in the kit comparison work 

that  the two methods show a low correlation even though they  use similar 

reactions.  This is likely to be due to differences in affinity of the components of 

the anti-oxidant system and the enzyme involved, in this case horseradish 

peroxidase and metmyloglobin peroxidase.   This difference has led some 

authors (Block G,2006: Schlesier K, 2002) to suggest that two markers should 

be reported to confirm the effect of a studied variable on plasma markers of 

oxidative stress.   

 

The use of this strategy in the Japanese American Family study was, in part, 

successful.  A high heritability was seen for both TAS and TOAS markers and 

familial correlations suggested that some of this may be in part due to similar 

diet and environment, as the highest familial correlation was seen in spouse 

pairs.  This high level of heritability is in keeping with a previous study using an 

ABTS and metmyoglobin based method (Wang XL,2001).  This study was also 

a family study with a Mexican American sample, although they had not yet 

developed cardiovascular disease.  In subjects with a higher environmental 

oxidative stress burden, a higher percentage of the unexplained variation in 

TAS was explained by genetic factors.    The slightly higher estimate of 

heritability for the Japanese American Family study may be in part due to the 

higher oxidative stress burden increasing the genetic influence.   

 

However, the comparison of correlation with metabolic parameters recorded 

was weak and not consistent between the two methods.   The failure to 

demonstrate likely associations with smoking and diabetes status may be due 

to study power or the use of therapy for primary or secondary prevention, which 

would be expected to lower oxidative stress burden.  Targets for blood pressure 

and lipid lowering therapy are more demanding in patients with type 2 diabetes, 

and a number of these drugs, including statins, aspirin and ace inhibitors have 

been shown to reduce the oxidative stress burden (Ceriello A, 2006).  The lack 

of association with oxidative stress markers and smoking is based on only forty 
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[8%] current smokers and no stratification of amount of smoking was included in 

the study or an assessment of how recently participants had become ex-

smokers.  These factors would weaken the strength of an association present 

and may explain why none was found.   There was also no stratification of 

severity of diabetes to indicate how much hyperglycaemia is present, as it is this 

that is likely to be associated with plasma markers of oxidative stress per se.  

The plasma marker of oxidative stress has been associated with diabetes 

medication but not the diagnosis of diabetes, suggesting that in this case that 

diabetes medication is acting as a surrogate for diabetes severity.   This is the 

fourth study across a variety of samples selected from Finland (Alho H,1999), 

China (Woo J, 1997) and Mexican Americans (Wang XL,2001) that describes 

lower plasma markers of oxidative stress in women despite lower risk of 

cardiovascular disease.  Lower levels of anti-oxidant capacity in women despite 

lower risks of coronary artery disease may be due to the protective effect of 

oestrogen being through anti-oxidant components of low affinity with the assays 

used, or through other mechanisms.  In men the anti-oxidant levels present may 

have been stimulated to higher levels given an increased burden of oxidative 

stress.  This paradoxical difference is worthy of further study.  

 

Multiple regression demonstrated the best model for predicting oxidative stress 

was based on the five variables of triglycerides, age, systolic blood pressure, 

BMI and female gender.  However, the variation in these factors only explained 

11.9% of the variation in TAS and 7.0 % of TAOS suggesting that other non-

measured factors are important. These are likely to be diet and exercise, 

alcohol consumption and use of medication.  

 

The addition of genotype data did not improve the model and mean TAS or 

TOAS did not differ by genotype, including with the use of a recessive model.  

There are a number of possible reasons for this.  

 

This is a family study and we have made no allowance for the fact that many of 

the subjects share a relationship with others as this would have also reduced 

the power of the study.  The UCP2 -866A variant is known to function differently 

under different conditions (Oberkofler H, 2005) and the effect on plasma 
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markers of oxidative stress is greater when there is a higher environmental load 

of oxidative stress production.  Forty three percent of the sample is from a 

younger generation with lower blood pressure and less adverse lipid profiles as 

well as low rates of diabetes.  Under this low burden the differences in function 

between the two alleles may be too small to detect.  We have used two different 

plasma markers of oxidative stress and they have correlated poorly with each 

other and with adverse metabolic markers.  These markers in effect measure 

what is left of the anti-oxidant systems in plasma as a surrogate for the 

production of ROS.  Uncoupling proteins are found in the mitochondrial 

membrane and changes in mitochondrial oxidative stress may have significant 

effects on mitochondrial function without detectable changes to other areas of 

the cell of the extracellular matrix.  This will make the differences between 

genotype undetectable using this method at early stages in the disease 

process, whilst it is possible to detect them later such as when cardiovascular 

disease has developed (Dhamrait, 2004).  The number of rare homozygotes is 

low, especially for the UCP3-55C>T variant with only 52 (10.6%) rare 

homozygotes in the study.  This current sample size gives only a 65% percent 

chance of detecting an association at 80% power [p=0.05] based on these 

means.   

There is also the possibility that these variants do not behave in the same way 

in subjects of Japanese descent.  Although, the frequency of the UCP2-866A 

allele is consistent across a number of European samples [0.30-0.40] as well as 

the Middle East [Iran (Akrami SM, 2007)], North India (Rai E, 2007) and Taiwan 

(Wang TN, 2007) the rare allele frequency in other ethnic groups including 

Korean (Yoon Y, 2007) and Japanese samples (Ji Q,2004)  has been 

consistently higher [0.45-0.50].   In these samples the -886A has not been 

associated with type 2 diabetes although it has been found in association with 

hypertension and triglycerides as well as lower weight loss on a low calorie diet.  

The frequency of the rare allele differs between the Northwick Park Heart Study 

and the Japanese American Family study [0.37 v 0.46;p<0.01].   The 

relationship between UCP2 genotype and plasma markers of oxidative stress 

was reported in a sample from the Northwick Park Heart study (Dhamrait S, 

2004) and such an association may not be present in Japanese Americans.    
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The UCP3-55T has been less widely studied in Japanese samples and there 

seems to be no difference in rare allele frequency between European and 

Korean samples.  However, the rare allele frequency in the Northwick Park 

Heart Study is lower than the Japanese American Family Study [0.22 v 0.34; 

p<0.05] suggesting that the populations are distinct at the UCP2-UCP3 gene 

cluster. Further work is required to determine which are the important variants in 

samples of Japanese ancestry are and to determine if variation at the UCP2-

UCP3 also is associated with type 2 diabetes. 

 

In summary, plasma markers of oxidative stress are highly influenced by 

genetic variation and this may explain the failure of anti-oxidant interventions in 

clinical settings.  Environmental influences on plasma markers of oxidative 

stress are poorly understood and expected factors, such as diagnosis of 

diabetes, are not always associated with changes in plasma markers of 

oxidative stress.  The finding of an association with variation in the UCP2-UCP3 

gene cluster was not replicated in a sample of Japanese descent. 
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FUTURE WORK – DEVELOPING A MODEL TO STUDY GENETIC INFLUENCES 

ON THE MODIFICATION OF OXIDATIVE STRESS 
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6.1 The study of genetic influences on the modification of oxidative stress 

 
6.1.1 Introduction 

 

Genes that modify oxidative stress, either through the augmentation of anti-oxidant 

defenses, or through promoting reactive species production, would be potential 

candidates for being important in the aetiology of type 2 diabetes or cardiovascular 

disease or both.  Gene association studies that identify such candidates do not 

give information on the direction of causality or on the potential mechanisms.  

Further investigation is required to demonstrate that the gene variant is associated 

with a change in gene function.  Investigation of the pathophysiological effect of 

this change in function can give insight into the mechanisms of these complex 

disorders and open up new therapeutic windows.  The evidence from previous 

chapters suggests the UCP2-866G>A and UCP3-55C>T variants are good 

examples of variants with an influence in gene function, and that both are 

associated with complex diseases and are associated with differences in markers 

of oxidative stress.  The investigation of how individuals with different variants 

handle an oxidative stress load would give us further understanding of their role in 

health and disease. 

 

6.1.2  Aims 

 

To develop an experimental model that will enable the study of the effect of genetic 

variation on oxidative stress burden.   The differences between genotype are 

expected to be small, therefore, the number of subjects required to demonstrate a 

difference between two genotypes would require a model that is easy to perform 

on a number of subjects.   
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6.2  Oral Glucose Tolerance Test 

 

6.2.1  Methods 

 

An oral challenge was thought to be the simplest and most practical way of 

inducing an oxidative stress burden.  Oxidative stress markers provide the most 

efficient way of assessing this.  A glucose load has previously been shown to 

induce an increase in markers of oxidative stress (Sampson MJ,2002).  Volunteers 

were recruited from the group and staff of the department of diabetes and 

endocrinology (UCLH).  A 75g oral glucose tolerance test was performed, with the 

glucose administered in the form of lucozade.  Plasma was sampled at 10 minute 

intervals for 3 hours to study the glucose and oxidative stress [ROS] response 

further, and identify an ideal time point for sampling when comparing genotypes. 

 

6.2.2 Results 

 

A total of 10 volunteers, age range 25-57 attended for the study.  Fasting glucose 

was 5.2 mmol/l (range 4.6-6.5mmol/l) and peaked at 20 minutes (8.4mmol/l[6.1-

12.6]) returning to baseline at 20 minutes (Fiq. 6.1).  

 
Fig 6.1: Mean glucose in healthy volunteers over 3 hours following a 75 g oral 

glucose load   
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There was no association between time and plasma TAOS (Kendalls Tau test 

p=0.82) (Figure 6.2)  

 

 
Fig. 6.2: Plasma TAOS over 3 hours after a 75g oral glucose load in healthy 

volunteers. 
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To determine if the failure to demonstrate a change in markers of oxidative stress 

was due to the marker being used, a subgroup of subjects (n=3) were used to 

measure F2-isoprostanes by gas chromatography-mass spectrometry before and 

after in-vitro stimulation with SIN-1.  This is a peroxynitrate releasing compound 

generating superoxide and nitric oxide which stresses the anti-oxidant components 

of the plasma and will generate further F2-isoprostanes, especially if the anti-

oxidant components have already been depleted by a recent challenge  

(Ferraro B,2003).  There was no change in F2-isoprostanes over time (Fig. 6.3) in 

the first three samples and no further subjects were assayed. 
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Fig. 6.3: Plasma F2-isoprostanes at baseline and after SIN-1 exposure at 20 

minute intervals over 3 hours after 75g oral glucose load in healthy volunteers. 
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6.2.3 Discussion 
 
 
The oral glucose tolerance test did not induce a measurable change in oxidative 

markers in healthy volunteers.  This challenge would, therefore, not be useful to 

study genetic differences.   There are a number of reasons why the oral glucose 

tolerance test failed to induce a change.   The age range of the volunteers was 

wide but the majority were young (mean 34.4) and a number undertake regular 

exercise (n=5[50%]).  Although, after exercise there are higher levels of oxidative 

stress, exercise also stimulates the expression of anti-oxidant defenses, and after 

repeated bouts of exercise the anti-oxidant systems adapt, with higher de novo 

synthesis of anti-oxidant defences, so these individuals may not show increased 

oxidative stress under this stimulus (Ji LL,2002). This also means that they are 

likely to be relatively insulin sensitive, and the peak glucose, and the area under 

the curve for the glucose excursion would be low, so that the impact of the 

challenge would be less.  The oral glucose tolerance test has induced a change in 

F2-isoprostanes in subjects with type 2 diabetes but the peak glucose in this study 

was 21.1mmol/L (Sampson MJ,2002). 
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The appearance of altered membrane components after oxidation takes about six 

hours.  The shorter time course may mean that the altered cellular anti-oxidant 

components has not yet had time to equilibrate with  plasma components and that 

this is why no difference was detected.   The use of SIN-1 to stress the plasma 

should overcome this but this still made no difference (Ferraro B,2003).   

 

 
6.3 Meal rich in used cooking oil 
 
6.3.1 Methods 

 

The failure to induce adequate oxidative stress with a glucose load led to the 

examination of a fat-based challenge.  Review of the literature led to the selection 

of a meal rich in used cooking oil, which when given to healthy volunteers induced 

endothelial dysfunction.  This was not induced when unmodified cooking oil was 

used, suggesting that used cooking oil provides the strongest challenge (Williams 

MJA,1999).  The failure to show a difference in healthy volunteers may have been 

in part due to the failure to induce significant metabolic abnormalities.  To 

overcome this, a sample of patients with type 2 diabetes was selected from the 

UDACS study.   Subjects attended fasting and were given the meal as detailed in 

chapter 2.  Blood was sampled every hour for four hours for glucose, NEFA and 

markers of oxidative stress.  To improve the characterization of changes in anti-

oxidant capacity it was decided to use more than one oxidative stress marker 

(Block G,2006). 

 

6.3.2 Results 

 

The baseline characteristics for the subjects that attended the fatty meal challenge 

are shown in table 6.1.  The subjects are older than the previous study and show a 

wide range of metabolic derangement.  They show a wide range of metabolic 
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control of both glucose and lipid parameters.  Baseline markers of oxidative stress 

also showed a wide range (TOAS 50%-70% and TAS 1.26-1.93 mmol/L). 

 

Table 6.1: Baseline characteristics of the subjects in the fatty meal pilot study 

 (n=9) 
  Mean    + Standard 

Deviation 
Range 

Age (years) 62.5 6.1 54-74 

BMI (kg/m2) 26.6 4.5 21.7-32.6 

Glucose (mmol/l) 10.3 5.3 7.2-24.1 

Hba1c (%) 8.1 1.5 6.3-11.3 

HDL cholesterol (mmol/L) 1.8 0.8 0.9-3.2 

LDL cholesterol (mmol/L) 2.1 1.0 0.3-3.8 

Triglycerides (mmol/L) 4.6 1.1 2.8-5.9 

NEFA (mmol/L) 0.46 0.26 0.07-0.99 

Creatinine (mmol/L) 100.7 60.4 61-258 

TAS (mmol/l) 1.5 0.2 1.3-1.9 

TOAS (%) 60.9 9.4 50.0-70.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The meal contained 68g of carbohydrate, and the change in plasma glucose over 

the four hours is shown in fig. 6.4.  Glucose increased from a baseline of 10.3 

mmol/l [SD 3.5] and peaked at 16.3mmol/l [5.5] at 3 hours.  The glucose was 

significantly higher than baseline throughout the study (p=0.05,0.006,0.004,0.02 at 

1,2,3 and 4 hours respectively).  The changes in NEFA are shown in fig 6.5.  NEFA 

levels were high at baseline, falling to significantly lower levels at t=60 and 

120mins, reaching a nadir at t=120, with no significant change to levels following 

this time.   
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Fig. 6.4: Mean (+ SEM) plasma glucose in subjects with type 2 diabetes after a 

meal rich in used cooking oil (N=9) 
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Fig 6.5: Mean (+ SEM) plasma Non-esterified fatty acids in subjects with type 2 

diabetes after a meal rich in used cooking oil 
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There was a small decrease [5.4%] in plasma TOAS (Fig. 6.6) across four hours 

from (mean [SD]) 60.6% [9.4] to 57.4% [8.4].  This was not statistically significant 

(p=0.31 at 240 mins).  TAS was also measured during the study (Fig.6.7).  There 
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was a significant reduction in plasma TAS of 13% at 2 hours (p=0.005) and 15% at 

3 hours (p=0.13) from (Mean[SD]) 1.50mmol/l[0.19]  to 1.30[0.14] and 1.27[0.15] 

respectively.  TAS had begun to recover at four hours increasing to 1.37[0.19] 

although this was just still significantly different to baseline (p= 0.054). 
 

Fig 6.6: Mean (+ SEM) TOAS in subjects with type 2 diabetes after a meal rich in 

used cooking oil. 
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Fig 6.7: Mean (+ SEM) TAS in subjects with type 2 diabetes after a meal rich in 

used cooking oil. 
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6.3.2 Discussion  

 

The meal rich in used cooking oil did have an effect on oxidative stress markers 

when given to subjects with type 2 diabetes.   There was a small reduction in 

plasma TOAS of 5% [p=0.31] and a statistically significant fall in TAS that was 

detectable at two hours and persisted for a further hour.  This was associated with 

an increase in plasma glucose and a fall in plasma NEFA. 

 

Plasma NEFA are known to fall immediately after a meal because insulin sensitive 

lipase activity is inhibited by post –prandial insulin secretion (Frayn KN,1994).   The 

levels return to pre-meal levels after approximately three hours (Austin MA,2004b).  

The NEFA response to an oral challenge may vary with the fat content of a test 

meal (Jackson KG,2005), although the results of studies has been variable 

(Burdge GC,2006).    This may have been because the early response does not 

differ between subjects and any differences are seen in the recovery phase 

(Burdge GC,2006).      

 

This model is more promising in delivering a method that is capable of being used 

to study oxidative stress generation.  The model is simple and could be limited to 

three hours for subject convenience.  The method requires the availability of a 

source of used oil that has been exposed to similar cooking and temperature wear. 

  This model could be used to study the influence of UCP2 and UCP3 variants on 

oxidative stress by comparing the magnitude of the change in oxidative stress 

markers between wildtype and variant homozygotes.  However, the study is time 

consuming and on the basis of a difference in TAS at three hours of 1.49 mmol/L 

[SD 1.93] with a 25% difference between AA and GG homozygotes (Dhamrait 

SS,2004) a total of 385 patients per genotype would have to be recruited to give 

the study 80% power at p<0.05 to detect a difference between genotypes 

[www.stat.ubc.ca/~rollins/stats/sssize/N2.html].  This number of subjects would 

raise a number of practical difficulties.  The number of patients to screen to identify 

the required number of rare homozygotes would be large.  There would also be 
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difficulties in procuring a large volume of standardized oil.  A commercial source 

would be inconsistent and the oil would have to be prepared in-house to a standard 

use protocol, and this prepared oil would also require further study to ensure it 

replicates the results obtained with this commercial oil preparation.  The practicality 

of this study is limited by the ability to accurately measure acute change in ROS 

production.  This type of study is only likely to become more practical once the 

measurement of oxidative stress improves. 

 

 

The two methods of oxidative stress used are both based on the inhibition of an 

oxidative reaction by the plasma sample.  The TAS assay is based in a commercial 

kit whilst the TOAS is based on in house reagents and this could produce 

differences in precision but the CV for both assays are similar [9.0 v 4.2 %]. The 

assays differ only in the enzyme used [Horseradish peroxidase in TOAS and 

peroxidase metmyoglobin in TAS].  This almost certainly explains that while both 

assays changed in the same direction only TAS reached statistical significance.  

There is no current data to suggest which components of the anti-oxidant defences 

show higher affinity with these enzymes but this does suggest that the used 

cooking oil does affect some components more than others and identification of 

these specific components could lead to a more specific assay of the change in 

oxidative stress burden with the used cooking oil and improve the power of the 

model to detect differences between genotype.  
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7.1 Summary of Data 

 

The role of modification of oxidative stress by uncoupling proteins 2 and 3 in the 

aetiology of type 2 diabetes was examined using variation in Uncoupling Protein 

2 and 3 Gene cluster.  A prospective study of over 3000 men confirmed the 

association of variants within the gene cluster with type 2 diabetes.  A second 

study demonstrated that uncoupling protein 2 may play a role in insulin 

secretion.  UCP2 and UCP3 gene variants were not associated with any 

conventional risk factors for type 2 diabetes in healthy subjects.  Markers of 

oxidative stress can be used to indicate levels of oxidative stress burden, not all 

methods are suitable for large scale genetic studies.  Two internally assessed 

methods were used to study heritability of oxidative stress burden in a family 

study and robust estimates of heritability were obtained.  However, in this study 

UCP2-UCP3 gene variants were not associated with levels of oxidative stress 

markers.  Finally, a model was developed that suggests that oxidative stress 

markers could be used to measure genetic influences on ROS production. 

 

7.1.1 Chapter 3, The Northwick Park Heart Study II  

 

Subjects who developed T2DM also had higher blood pressure, triglycerides, 

cholesterol and C-reactive protein (CRP) at baseline, although only BMI, 

triglycerides and CRP were associated independently with increased risk.  This 

study confirmed the significance of obesity as a major risk factor for diabetes, 

and also found a significant impact on risk of developing T2DM associated with 

variants in the genes for UCP2 (-866A) and UCP3 (-55T).   The population 

attrtibutable faction at 10 years was 25.6% for obesity and 11.6% for genetic 

variation in the UCP2-UCP3  gene cluster. 

 

7.1.2 Chapter 4 The Hypercoagulability and Impaired Fibrinolytic Function 

Mechanisms Study  

 

Data from this study confirmed previous studies in Europe showing that UCP2-

866 AA subjects are leaner.  Secondly that AA subjects have lower fasting 
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plasma insulin levels.   In the healthy subjects the difference in fasting insulin 

levels persisted when adjusted for body mass index.  There was no other 

relationship between genotype and any of the adverse metabolic markers for 

either genotype. 

 

7.1.3 Chapter 5 The Japanese American Family Study 

 

The assays available for the determination of oxidative stress vary in their cost 

and ease of use.  Methods of measuring plasma markers of oxidative stress 

with very small differences in the assay reaction correlate poorly suggesting 

they measure different spectrums of the anti-oxidant system.  A high heritability 

was seen for both TAS and TOAS markers and familial correlations suggested 

that some of this may be in part due to similar diet and environment as the 

highest familial correlation was seen in spouse pairs. The comparison of 

correlation with metabolic parameters recorded was weak and not consistent 

between the two methods with independent associated factors explaining a low 

proportion of the variation on plasma markers of oxidative stress in both cases. 

 

7.1.4  Chapter 6 The study of genetic influences on the modification of oxidative 

stress  

 

An oral glucose tolerance test did not induce a measurable change in oxidative 

markers in healthy volunteers.  A meal rich in used cooking oil did have an 

effect on oxidative stress markers when given to subjects with type 2 diabetes.  

This was associated with an increase in plasma glucose and a fall in plasma 

NEFA. 
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7.2 Conclusions 

 

7.2.1 Uncoupling Protein 2 

 

These data suggest the association of the UCP2-866 A variant with type 2 

diabetes in Caucasian men, in keeping with data from previous European 

samples.   This variant was also associated with a leaner phenotype in a 

number of previous studies and also in data from chapter 4.  The mechanism of 

action cannot, therefore, be through conventional risk factors for type 2 diabetes 

which are dominated by obesity (chapter 3).  Investigation of the UCP2 

knockout mouse suggests that the mechanism of action may be through a direct 

effect on glucose dependant ATP production in the pancreatic β-cell itself.  A 

defect in insulin secretion is associated with the UCP2-866A (chapter 4), even 

when corrected for BMI.   This paradox has led to the description UCP2 as a 

“diabetes devil and adiposity angel” and suggests that UCP2-886A is 

associated with higher transcription, more energy use and less insulin secretion 

[Fig 7.1].   

 

Fig 7.1 Mechanism of action the UCP2-866A variant associated with higher 

transcription in the β-cell. 
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However, UCP2-886A has also been associated with higher plasma markers of 

oxidative stress and cardiovascular disease, an association also suggested in 

chapter 4.   This would be in keeping with reduced transcription or at least 

reduced “uncoupling”.  This identifies a further paradox, where in certain 

conditions or organs the UCP2-866A variant behaves differently and supports 

the differences found in transcription factor binding.  The regulation of the UCP2 

promoter is certainly tissue specific, with PAX-6 associated with higher 

transcription from the variant promoter in INSE-1 cells and lower in COS-7 cells.   

A model of UCP2  regulation is shown in Fig 7.2.    

 

The failure to find an association with oxidative stress in a Japanese-American 

Family study is not consistent with other studies.   There are a number of 

reasons for this (Chapter 5).   

 

Fig 7.2  A model of tissue specific regulation of UCP2  
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In summary, these data suggest that UCP2-866AA gene variant is accelerating 

the onset of type 2 diabetes by a direct effect on reducing insulin secretion in 

the β-cell of the pancreas.  

  

7.2.2 Uncoupling Protein 3 

 

Overexpression of UCP3 in mice protects them from diabetes, with a 68% 

increase in mitochondrial palmitate oxidation.  Since, the UCP3-55T variant is 

associated with risk of diabetes in the men studied here (chapter 3) a decrease 

in function would be predicted for the T allele.  There is little data examining 

UCP3 mRNA expression from different alleles.  The only study in 24 subjects 

suggested higher levels in CT/TT male non-diabetic Pima Indians, but this was 

based on only seven copies of the T variant from the total 48 alleles.  Clinical 

studies have been more consistent, with the association of the -55T variant with 

higher BMI in most but not all previous studies.   The association with type 2 

diabetes of the UCP3-55TT has not previously been described although the 

variant has been described to be protective from type 2 diabetes in two French 

cohorts.  This could be because of sample size or timing.  The Kaplan-Meier 

plot suggests that the presence of the variant accelerated the onset of type 2 

diabetes rather than being associated with new cases of type 2 diabetes.  This 

observation is important as it would be necessary to include this information in 

any model that used this variant to predict onset of type 2 diabetes.  It would 

also explain why genetic prediction is as yet yielding only small improvements 

above conventional risk factors (Humphries SE. 2007).  

 

The association of the UCP3 TT genotype with type 2 diabetes must be 

explained through a mechanism not measured in the HIFMECH study (Chapter 

4).    This includes most conventional risk factors including BMI, lipids and 

insulin secretion.   The physiological role of UCP3 is poorly understood but 

these findings are consistent with our current understanding of pathophysiology 

of type 2 diabetes with lower fat oxidation and reduced UCP3 protein found in 

subjects in type 2 diabetes.  Variation in UCP3 was not found to be associated 

with two different plasma markers of oxidative stress (Chapter 5).  They are also 
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consistent with the UCP3-55T allele as the variant associated with reduced 

function. 

 

In summary,  these data suggest that the UCP3-55C>T variant accelerates the 

onset of type 2 diabetes by an as yet unidentified pathway that does not appear 

to affect other traditional risk factors for the development of type 2 diabetes.  

This is consistent with our current understanding of the role of UCP3 [Fig 7.2]. 

 

Fig 7.3 Suggested mechanism of action the UCP3-55T variant associated with 

lower transcription . 
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7.2.3 Oxidative Stress 

 

Measuring plasma markers of oxidative stress offers the promise of helping to 

understand the pathophysiology of a number of human diseases including type 

2 diabetes.  However, as demonstrated (Chapter 5) there is a significant 

difference in methods even when the difference in the assay reaction is small.   

The heritability of two plasma markers of oxidative stress was high but as 

correlation between spouses was the highest the conclusion that there is a 

significant genetic influence on oxidative stress burden cannot be made with 
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confidence.   The variability in oxidative stress burden does not, however, 

appear to be explained by variation in conventional adverse metabolic 

indicators, suggesting that the major determinants are either hereditary or 

environmental factors not measured such as diet. 

 

When using plasma markers of oxidative stress to study disease the difference 

between samples needs to be large to detect a difference as demonstrated by 

the failure to detect a difference in a small sample (chapter 5) or a weak 

stimulus (chapter 6).  Once, the stimulus is increased to an extent that 

significant metabolic excursions are seen then plasma markers of oxidative 

stress could be useful in identifying small genetic differences (Chapter 6).  

 

 

7.3 Limitations of Study      

 

The aims of this thesis were to use a genetic strategy to study the role of 

uncoupling proteins 2 and 3 in the pathogenesis of type 2 diabetes.  The 

demonstration of increased prospective risk of type 2 diabetes in association 

with the UCP2-UCP3 gene cluster variants studied was performed in Caucasian 

men recruited from nine General Practices throughout the UK.  A prospective 

study is a strong study design but the definition of type 2 diabetes has changed 

over time and the use of medical records to find cases may reduce the number 

of men identified but this is only likely to weaken the association found.  

   

The data from the HIFMECH study was collected from across Europe and the 

Japanese American family study from the United States.  The study of gene and 

gene-environment interactions is unlikely to be consistent across all these 

groups,  and even within the two distinct North and South Europe groups there 

were differences in the impact of the genotype on traits and possibly on 

cardiovascular heart disease risk.   The conclusions of the study are also based 

on the assumption that type 2 diabetes is a homogeneous disorder and that 

genetic causes across these populations are similar. 
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The baseline characteristics in each study were also different and not measured 

at a central laboratory.  The normal ranges in each study are likely to be slightly 

different.  The HIFMECH study had more information on metabolic markers but 

the population was less homogeneous.  The cross sectional nature means that 

it is not possible to draw causative conclusions about associations.  The 

Japanese American Family study was useful for investigating the heritability of 

plasma oxidative stress markers but had little environmental information on 

which to examine further the results identified.    This study was not designed to 

examine genotype association with baseline characteristics and is 

underpowered.  The power of the study is further weakened by the presence of 

related individuals.  

 

Plasma markers of oxidative stress still offer a very poor reflection of the 

underlying redox state of the cell, and probably more importantly the 

mitochondria.  The replication of findings using two different markers is a useful 

technique but also exposes the inadequacy of current assays.  These data all 

use a manual method to determine plasma markers of oxidative stress and, 

although the intra-assay CV did improve with time, it was still significantly higher 

than that quoted in the product literature using automated techniques. 

 

The UCP2-UCP3  gene cluster has not yet been identified as associated with 

type 2 diabetes in any of the Genome wide scans yet performed. The failure to 

replicate these findings could suggest that the standard of statistical proof 

applied is not sufficient for the association to be regarded as proven.  The 

association of the UCP2-886G>A variant with oxidative stress has recently been 

shown to exhibit a significant gene environment interaction [Stephens JW, 

2007].  These variants may not be acting across a whole population but only in 

sub groups such as smokers and these studies would then not have the power 

to detect the increased risk.  The failure to replicate these findings could also be 

based on population selection, as the UCP2-UCP3 gene variants accelerated 

onset of type 2 diabetes, so an appropriate time frame is required to identify the 

effect.   
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7.4 Future Work 

 

The structure and function of the UCP2-UCP3   gene cluster is still not well 

understood.  There are a number of paradoxes related to the function of UCP2 

and the rates of transcription of both mRNA in different organs and under 

different stimuli needs to be better understood.   UCP2 transcription should be 

studied at baseline and under oxidative stress in different cell types and under 

different transcription factors.  The possibility of such organ and transcription 

factor specific modification of UCP3 transcription should also be investigated.   

This will enable a better understanding of the function of these genes and add 

to the understanding of the role of mitochondrial dysfunction in type 2 diabetes. 

 

The gene variants could currently be used in a genetic testing model based on 

healthy middle aged white men. If genetic testing using these variants is to have 

a wider application, the role in women and in different ethnic groups also 

warrants further study to determine if is the same as healthy Caucasian men.   

The ability to predict development of type 2 diabetes at different ages, coupled 

with other variants also requires further study.   Genetic tests to predict type 2 

diabetes can only be useful if they give value above conventional risk factors.  

There is evidence that this can be the case for cardiovascular disease, another 

complex polygenic disease, although this required the use of 6 candidate genes 

(Humphries SE, 2007).  The use of genetic testing for prediction of type 2 

diabetes using three variants did improve prediction slightly [ROC 0.58] in a 

British Caucasian sample (Weedon MN, 2006).  The value of the addition of 

UCP2-UCP3 gene cluster variants to this group warrants further study. 

 

The rate of oxidative damage is likely to be as a result of interaction between 

genes and the environment.  The methods to assess oxidative stress burden 

such as plasma markers of oxidative stress require further study before being 

accepted as useful surrogate markers of risk of type 2 diabetes, including 

prospective predictive power.   A study which collects data on lifestyle is also 

required to see what in the environment predicts plasma markers of oxidative 

stress. 
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The model developed offers a promising method of investigating not only the 

role of uncoupling protein genes in modification of oxidative stress burden but 

also a number of other genes and also possible interventions. 

 

This study also raises the possibility that mild pharmacological uncoupling or  

potentiation  of UCP3 function  could act as drug targets for the prevention and 

development of type 2 diabetes. 
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