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Abstract

Statistical language modelling may not only be used to uncover the patterns which 
underlie the composition of utterances and texts, but also to build practical language 
processing technology. Contemporary language applications in automatic speech 
recognition, sentence interpretation and even machine translation exploit statistical 
models o f language. Spoken dialogue systems, where a human user interacts with a 
machine via a speech interface in order to get information, make bookings, 
complaints, etc., are example o f such systems which are now technologically feasible.

The majority o f statistical language modelling studies to date have concentrated on 
written text material (or read versions thereof). However, it is well-known that 
dialogue is significantly different from written text in its lexical content and sentence 
structure. Furthermore, there are expected to be significant logical, thematic and 
lexical connections between successive turns within a dialogue, but “turns” are not 
generally meaningful in written text. There is therefore a need for statistical language 
modeling studies to be performed on dialogue, particularly with a longer-term aim to 
using such models in human-machine dialogue interfaces.

In this thesis, I describe the studies I have carried out on statistically modelling the 
dialogue material within the British National Corpus (BNC) -  a very large corpus o f 
modem British English compiled during the 1990s.

This thesis presents a general introductory survey o f the field o f automatic speech 
recognition. This is followed by a general introduction to some standard techniques of 
statistical language modelling which will be employed later in the thesis. The 
structure o f dialogue is discussed using some perspectives from linguistic theory, and 
reviews some previous approaches (not necessarily statistical) to modelling dialogue. 
Then a qualitative description is given of the BNC and the dialogue data within it, 
together with some descriptive statistics relating to it and results from constructing 
simple trigram language models for both dialogue and text data.

The main part o f the thesis describes experiments on the application of statistical 
language models based on word caches, word “trigger” pairs, and turn clustering to 
the dialogue data. Several different approaches are used for each type o f model. An 
analysis o f the strengths and weaknesses of these techniques is then presented.

The results o f the experiments lead to a better understanding o f how statistical 
language modelling might be applied to dialogue for the benefit o f future language 
technologies.

2



Acknowledgements

I would like to thank the many staff and students of the Department o f Phonetics and 

Linguistics for making me feel so welcome in the Department over the course o f my 

time working there. Particular thanks should go to my friends and office-mates Abbas 

Haydari, Hyunsong Chung, Bronwen Evans, Catherine Siciliano & M att Smith, and to 

Alex Fang for helpful advice on the use o f the British National Corpus.

M y supervisor, Dr. Mark Huckvale, has been a great source o f inspiration and helpful 

advice over the period of this work, for which I am extremely grateful.

M y work has been financially supported by the EPSRC of the UK, through the award 

o f  a postgraduate research studentship.

Many friends, too numerous to mention individually, have been a source o f great 

encouragement to me over the period o f this work.

Finally, I would like to thank my parents for their patience over the years I have been 

studying.

3



Table of Contents

Title Page 1

Abstract 2

Acknowledgements 3

Table of Contents 4

List o f Figures 7

List of Tables 8

Main Body o f Thesis 12

Chapter 1 Motivation for this study 12
1.1 Automatic Speech Recognition - Background and Current Status 12
1.2 Language Modelling 21
1.3 Measures o f Performance 22
1.4 Aims o f this Study 23
1.5 Types o f  Dialogue and Sources of Data 27

Chapter 2 Language Modelling and Related Work 30
2.1 Statistical Language Models and N-grams 30
2.2 Adaptive (Dynamic) Models 33

2.2.1 Trigger Pair Models 34
2.2.2 Cache Models 38
2.3.3 Cluster-Based Methods 39

2.2.3.1 Linguistically (Lexically)-Motivated 40 
Clustering Methods

2.2.3.2 Clustering Methods based on Perplexity 44
2.3 Combining Information from Several Sources 46

2.3.1 Introduction 46
2.3.2 Linear Interpolation 47

2.4 The Maximum Entropy Method 49
2.4.1 Introduction 49
2.4.2 Mathematical Framework : 51

Feature-Based Models and Maximum Entropy

Chapter 3 Dialogue & Discourse 57
3.1 Motivation : W hat’s special about dialogue ? 57
3.2 Dialogue & Discourse : 60

some perspectives from linguistic theory and psycholinguistics
3.3 Previous work on modelling dialogue 69
3.4 Aims and Hypotheses for the Remainder o f this Study 76

4



Chapter 4 Dialogue Data in the British National Corpus (BNC) 77
4.1 The British National Corpus (BNC) 77
4.2 Spoken Material (including Dialogue) within the BNC 78
4.3 Descriptive Statistics 79
4.4 Lexical Distribution 81
4.5 Dialogue Reduced-Tums (DRT) Dataset 82
4.6 Simple Statistical Language Models 83

4.6.1 Trigram Models for Ordinary Dialogue Data 83
4.6.2 Trigram Models for DRT Data 8 6

Chapter 5 Experiments Using Cache-Based Language Models 88
5.1 Overview 8 8

5.2 Cache Experiments on Ordinary Dialogue Data from the BNC 89
5.2.1 Comparison o f Fixed-Size, Turn-Based and Sentence-Based 89 

Caches
5.2.2 Variation o f the Cache Size 92

5.3 Cache Experiments on DRT Data 95
5.4 Qualitative Observations on Results from Cache-Based Models 97
5.5 Summary 103

Chapter 6 Experiments Using Language Models Based on Trigger Pairs 106
6.1 Motivation and Overview 106
6.2 Trigger Model Experiments on Ordinary Dialogue Data from the BNC 109

6.2 . 1  Experiments where the number of triggers per 109 
target word was restricted

6.2.2 Controlled Experiments Using a Fixed Number o f Triggers 115
6.3 Trigger Model Experiments on DRT Data 119
6.4 Comparison o f “Best” Trigger Pairs for Dialogue, Text & DRT Data 122
6.5 What Kind o f Turn Pairs Benefit Most 131 

from the Use o f a Trigger Model
6 . 6  Summary 135

Chapter 7 : Experiments Using Language Models based on Clusters 138
7.1 Overview 138
7.2 Clustering Experiments on Ordinary Dialogue Data 139

-  Using Whole Dialogues and a “Mixture o f Clusters” Model
7.3 Clustering Experiments on DRT Dialogue Data Using a 141 

Lexically-Motivated Similarity Metric
7.3.1 Dependency o f Model Perplexity on Number 144 

of Clusters Used
7.3.2 Dependency o f Model Perplexity on Size of Lexicon Used 149

7.4 Experiments Using an Entropy-Based Clustering Metric 152
7.5 Comparison o f Entropy-Based and Lexically-Based 155 

Clustering Methods
7.6 Qualitative Discussion on the Content o f Individual Clusters 157
7.7 What types o f turn benefit most from cluster-based modelling ? 159
7.8 Summary 171

5



Chapter 8 : Discussion, Conclusions and Suggestions for Further Work 173
8.1 Discussion and Conclusions 173
8.2 Suggestions for Further Work 179

References 182

Appendices

Appendix A : Some Further Examples o f Turn Pairs Showing Large 198
Increases in Probability Through Use o f a Cache

Appendix B : "Learning on the Job : The Application o f Machine Learning 205 
within the Speech Recognition Decoder"

(Paper presented at 2001 Workshop on Innovation in Speech Processing - WISP 2001 
and published in Proceedings of the Institute o f Acoustics, Vol. 23 (3), pp 71-79.)

6



List of Figures

Figure

1.1

1.2

4.1

4.2

4.3

5.1

7.1

7.2

A schematic representation o f a typical 
speech recognition system

A schematic representation o f an automated 
dialogue system

Graph contrasting coverage o f material by 
lexica o f various sizes for BNC text and 
dialogue data

Variation of perplexity o f trigram language models 
(with respect to excluded data) with size o f training 
corpus for text data with corresponding values for 
models trained on dialogue

Comparison of trigram models for DRT data

Relative perplexity improvement o f an interpolated 
trigram-cache model over a trigram model

Production o f clusters and "shadow clusters" for first 
and second turns o f pairs in a "T"-type experiment.

Production of clusters and "shadow clusters" for first 
and second turns o f pairs in an "R"-type experiment.

Page number

20

26

82

85

87

95

142

143

7



List of Tables

Table

1.1

3.1

4.1

5.1

5.2

5.3

5.4

6.1

6.2

6.3

6.4

6.5

Page number

Standard speed recognition tasks, listed in
increasing order of their difficulty 18

Some corpora o f transcribed dialogues
in English 57

Some summary descriptive statistics for the 80
BNC dialogue material

Summary o f results from experiments using 91
cache models.

Comparision o f perplexities and interpolation 93
parameters of interpolated trigram-cache models 
trained and tested on dialogue material from the 
BNC

Comparison o f perplexities and interpolation 94
parameters o f interpolated trigram-cache models 
trained and tested on “TEQ” material from the BNC

Summary comparison of perplexity scores for trigram 97
only (baseline) and interpolated trigram-cache models 
for DRT data.

Summary o f results from experiments using trigger models 112

Summary results for interpolated trigram-trigger models
using a fixed-size window of 500 words. 113

Summary results for interpolated trigram-trigger models 114
using the current and previous dialogue turn as the window

Summary results for interpolated trigram-trigger models 115
using the current and previous sentence as the window

Variation o f perplexities of interpolated trigram-trigger 116
models for dialogue and TEQ data with the number of 
trigger pairs incorporated into the model. Current and 
previous sentence used as the window

8



List o f Tables (continued)

Table

6.6

6.7

6.8

6.9

6 . 1 0  

6 .1 1 a

6 .1 1 b

6 .1 2 a

6 .1 2 b

6.13

Page number

Improvement o f perplexities and variation o f interpolation 
of interpolation weights o f interpolated trigram-trigger 116
models for dialogue and TEQ data with the number of 
trigger pairs incorporated into the model. Current and 
previous sentence used as the window.

Variation of perplexities and interpolation weights of 117
interpolated trigram-trigger models for dialogue data 
with the number o f trigger pairs used in the model.
Current and previous turn used as the window.

Variation of perplexities o f interpolated trigram-trigger 118
models for dialogue and TEQ data with the number of 
trigger pairs incorporated into the model. Fixed window 
of previous 500 words

Improvement o f perplexities and variation o f interpolation 118
weights o f interpolated trigram-trigger models for dialogue 
and TEQ data with the number o f trigger pairs incorporated 
into the model. Fixed window of previous 500 words.

Summary comparison o f perplexity scores for trigram only 121
and interpolated trigram-trigger models for DRT data

The 28 “best” trigger pairs for text data in the BNC obtained 124
using the top 50000 words in the text vocabulary and a fixed 
window of 500 words.

The 28 “best” trigger pairs for text data in the BNC obtained 125
using a restricted text vocabulary o f 1 0 0 0 0  words and a fixed 
window of 500 words.

The 28 “best” trigger pairs for ordinary dialogue data in the 127
BNC obtained using the full 50000 word dialogue vocabulary 
and a fixed window of 500 words.

The 28 “best” trigger pairs for ordinary dialogue data in the 128 
BNC obtained using a restricted dialogue vocabulary o f 10000 
words and a fixed window of 500 words.

The 28 “best” trigger pairs for DRT data in the BNC 130
obtained using the full 50000 word in dialogue vocabulary, 
strictly using the previous turn as window.

9



List o f Tables (continued)

Table

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Page number

Comparison of weighted average perplexities 146
o f cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different numbers of clusters. “F”-type 
experiment.

Comparison o f weighted average perplexities 147
o f cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different numbers o f clusters. “T”-type 
experiment.

Comparison of weighted average perplexities 148
o f cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different numbers o f clusters. “R”-type 
experiment.

Comparison o f weighted average perplexities 149
o f cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different numbers o f clusters. “0 ”-type 
experiment.

Comparison of weighted average perplexities 150
of cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different sizes of lexicon. “F”-type experiment.

Comparison o f weighted average perplexities 151
o f cluster-based, simple trigram and interpolated 
cluster-trigram language models for DRT data 
using different sizes of lexicon. “0 ”-type 
experiment.

Weighted average perplexities o f cluster-based, 153
simple trigram and interpolated cluster-trigram 
language models for DRT data, where clustering 
was done using the entropy-based metric.
“0 ”-type experiment.

Summary o f cluster sizes and perplexities o f 154
cluster-based models, “O” type experiment 
using the entropy-based metric.

10



List o f Tables (continued)

Table

7.9

7.10

7.11

Page number

Summary o f range o f perplexities found across clusters : 154
simple trigram models and interpolated trigram-cluster 
models. “0 ”-type experiments using the entropy-based 
clustereing metric.

Average relative reduction in perplexity (with respect to 155
baseline o f simple trigram model) o f interpolated trigram- 
cluster model using different numbers of clusters and the 
two different clustering metrics. “0 ”-type experiments.

CPU time required per cross-validation rotation on a 156
2.0 GHz Pentium 4 PC with 512 Mbytes RAM for 
cluster model experiments with the entropy-based 
clustering metric.

11



Chapter 1 M otivation for this Study

1.1 Automatic Speech Recognition - 
Background and Current Status

Speech recognition technology has featured prominently in science fiction stories for 

many years - from the "speakwrite" machines in George Orwell's Nineteen Eighty- 

Four (1948) to the conversing computers in Star Trek and "HAL" in 2001 - A Space 

Odyssey.

The principle aim of automatic speech recognition is to develop methods and 

technology through which instructions and information (data) can be given to 

machines (including computers), through the medium of speech, in a way which is as 

robust to adverse conditions and as simple, flexible and natural to human users as is 

possible. The closer we get to achieving this aim, the simpler human-computer (or, 

more generally, human-machine) interaction should become (Allen et al, 2001). Users 

should be able to communicate with devices in a way which will require little 

specialised training or adaptation o f behaviour (see, e.g. Lea, 1980). Automatic 

speech recognition could provide assistance for deaf or blind people, and for the 

general public in complete darkness (perhaps removing problems such as finding the 

right key and getting it in the lock in the dark). They could also facilitate interaction 

with computers for the very young and the illiterate. Already, speech recognition 

systems are being used in "speech-to-text" dictation machines and for voice activated 

dialling in mobile telephones, reducing the need for users to remember and dial so 

many numbers, and facilitating hands-free operation. Prototypes o f systems such as 

speech to speech language translation machines are also now being made. In many 

other potential applications, freeing-up the user's hands and eyes to perform other 

tasks could be greatly beneficial, particularly in situations such as driving a car, flying 

an aeroplane or performing medical operations. In such situations, the "core task" 

makes large demands on the user's hand-eye co-ordination and it is desirable that 

auxiliary tasks cause the minimum distraction from the core.

However, in order to achieve this goal, the speech recognition system will have to 

become very robust and flexible - able to cope with both a very large vocabulary and
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a wide range of speakers, adapt to the different emotional states or health conditions 

o f the speaker, noisy environments, hesitations, false starts and non-words on the part 

o f the speaker. Even the best modem systems fall short o f these targets. For example, 

a system which achieves a high recognition performance once trained to the normal 

speaking voice of a particular user may show a greatly inferior performance if  that 

same user develops a cold. It is widely considered that the practical application of 

automatic speech recognition will only become very widespread once their 

performance becomes comparable with that of humans under ordinary listening 

environments (Lippmann, 1997)

In fact, scientists and engineers have been attempting to develop speech recognisers 

since at least 1930, when the Hungarian Tihamer Nemes unsuccessfully applied for a 

patent for an automatic speech transcription system making use o f the soundtrack on a 

cine film (Kohonen, 1988). Speech recognition has been a topic o f serious research 

since the 1950's, when simple recognisers were constructed which showed some 

success over restricted domains, such as recognition o f spoken words for single digits 

(Waibel & Lee, 1990). Indeed, experiments in this field were first carried out at UCL 

during the mid 1950's (Fry & Denes, 1955, Fry 1959, Denes, 1959). However, only 

limited progress was made, despite substantial investment o f time, resources and 

money during the 1960's, leading to many becoming highly cynical regarding the 

future of automatic speech recognition (see, e.g. Peirce, 1969).

Computer technology advanced rapidly (and became much cheaper) during the 1970's 

and '80's, and together with improved knowledge o f speech science, innovations in 

speech processing algorithms and language modelling, significant advances were 

made in speech recognition over that period. The first large vocabulary continuous 

speech recognition system to achieve a reasonable recognition performance was the 

Harpy system, developed in the mid to late 1970's (Klatt 1977 , Lowerre & Reddy 

1980).

Currently, as noted above, speech recognition technology is finding practical 

commercial applications in areas which are familiar to the general public. However, 

this does not mean that all problems of speech recognition have already been solved. 

These modem applications tend to be restricted to the most straightforward
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conditions, where high recognition performance is simplest - limited vocabularies, 

often conditioned to just a single speaker, for speech read slowly and clearly from a 

text, or dictated carefully, in a quiet, noise-free environment. Even state-of-the-art 

research systems tend to show much poorer performance if  required to deal with 

many different speakers, spontaneous speech with near unlimited vocabulary, 

hesitations and false starts, perhaps a degraded-quality speech signal (e.g. received 

over a telephone - often called "telephone speech") and possibly in noisy conditions.

Although many o f the problems they highlighted have subsequently to a large extent 

been overcome, Waibel & Lee (1990) noted that the following aspects o f a speech 

recognition problem would affect the likely success of a recognition system applied to 

i t :

•  whether the speech consists o f isolated word or is connected or continuous.

• how large the potential vocabulary is.

• task & linguistic constraints on the input speech - will it necessarily consist o f

syntactically well-formed, semantically meaningful, statistically plausible 

sentences ?

• whether the system is designed to be used with a single speaker, can adapt to new 

speakers, or is to perform independent o f the speaker.

• potential for acoustic confusability or ambiguity amongst words in the 

vocabulary.

• variability o f conditions, including noise.

A more modem list o f factors should include considerations of the quality o f 

articulation, the consistency and prosody o f the speech, the coherence o f the topic of 

the speech and how well the speech input matches the assumptions made by the 

system (for example, strong regional accents and dialects, or input o f non-British 

varieties o f English will tends to cause problems for a system expecting speech in 

standard British English with a "neutral" accent).

Continuous speech recognition (CSR) is normally much more difficult than the 

recognition o f isolated words - to the extent that the main problems o f recognising

14



isolated words are now generally  considered to have been solved. Two key problems 

which occur in the form er but not the latter are the determ ination o f  word boundaries 

(for example, a speech signal for "youth in Asia" may be very m uch like one for 

"euthenasia", or one for "antelope" like one for "ant elope" - see Calvin & Hobbes 

cartoon below) and the fact that words in spontaneous connected speech often have 

poorer articulation and stronger co-articulation than is the case for the same words 

spoken separately (e.g. "did you" becom es "didya").

n a s l o p e 7' ^rtcf TO8FS, WAKm m /XKTELOPE?
bet.
THELvXSR lOUER 

CAR:

IT'S SC
tcukS scr
LAUcWKG

Typically, the perform ance o f  a speech recognition system  - in term s o f  both accuracy 

and efficiency - deteriorates as the size o f  the perm itted vocabulary increases. W ith 

very large vocabularies, i f  the system  is based on tem plates o f  com plete words rather 

than sm aller units such as phonem es, it becom es im practicable to perform  exhaustive 

searches for candidate words, or even to acquire enough data to train the system  

adequately.

Furtherm ore, in continuous speech, m any word sequences which a system  might 

otherwise propose can be ruled out on the basis o f  syntactic or sem antic im plausibility 

(e.g. The fam ous pair o f  sentences proposed by Chom sky (1957) "Furiously sleep 

ideas green colourless" is syntactically bad, w hilst "Colourless green ideas sleep 

furiously" is syntactically w ell-form ed, but sem antically im plausible), or on the basis 

o f statistical im probability ("This is quite a typical sentence" is m ore likely to occur 

than "Utterances com prised o f  a m ultiplicity  o f  individually im probable lexem es are 

consequentially proportionately uncom m on"). Pereira (2000) has recently evaluated 

the relative probabilities o f  C hom sky’s sentences using a statistical language model, 

finding that the w ell-form ed sentence -  despite being im plausible -  is m any tim es 

m ore likely than the ill-form ed example.



Even a single speaker can say a given word in many different ways, according to the 

word's role in a sentence, desired emphasis, the speaker's emotional state and 

condition o f health (as noted previously, the same speaker can sound quite different - 

both to other people and to a automatic speech recognition system - with a cold). The 

problem becomes compounded when a system has to be able to cope with several (or 

even many) different speakers. A distinction is made between a speaker dependent 

system and a speaker independent one. In the former case, the system undergoes some 

additional training to become accustomed to each new speaker it is exposed to. In 

contrast, a speaker independent system will only be trained once - with speech data 

from a variety o f speakers. However, such training cannot possibly represent all the 

variability which occurs amongst all the speakers to which the system may be 

exposed during use, so a speaker independent system tends to have an inferior 

performance to an otherwise similar speaker dependent one. However, most modem 

systems tend to be designed with the ability to adapt to a new speaker not encountered 

in the original training.

Even systems designed for the recognition o f a limited vocabulary may be prone to 

errors if  there is the potential for acoustic confusability or ambiguity between the 

words which the system is designed to recognise. This is unlikely to be a serious 

problem if  the words are all quite distinct -for example, a recognition system designed 

to speed-up the process o f a user inputting a utility-meter reading over the telephone 

primarily has to recognise the digits "zero" (and its alternative names) to "nine", 

which all sound quite different. However, this is not always the case. For example 

(Waibel & Lee, 1990), the names for the letters "B", "P", "D", "G", "C" , "Z" (in 

American English), "V", "T" and "E" are all quite similar phonetically (several of 

these only differing from one another by a single phonetic feature such as voicing, 

place or manner o f articulation).

At the risk o f stating what may appear obvious, automatic speech recognition systems 

tend not to perform as well in noisy environments as they do in quiet situations. In 

fact, any factor which degrades the quality of the input speech signal is likely to have 

an adverse effect on the system's performance. More than one person speaking at a 

time, the reduction in bandwidth due to transmission over a telephone system or use

16



o f a poor quality microphone may all reduce the performance o f a recogniser. (Some 

authors - e.g. Lowerre & Reddy (1980) - have suggested that the degradation o f the 

signal due to telephone transmission can lead to an increase in the error rate by a 

factor of 3 to 4.) Both a poor signal-to-noise ratio and mismatches between the data 

used for training the system and that on which it is used are likely to reduce the 

system's performance. In fact, if  a system is trained on speech obtained using poor 

quality equipment, the use of higher quality microphones, etc. during its application 

may even reduce the success of the system's attempts at recognition ! Variability, 

rather than just lack o f quality, can cause problems.

Summary details o f various "standard" speech recognition tasks, listed in increasing 

order o f difficulty, are shown in table 1.1 overleaf. The problems associated with 

many o f these have by now essentially been overcome, and vocabularies o f 65000 

words or more are now quite common. The "speech understanding" tasks require that 

the essential meaning o f an utterance be identified correctly - perhaps for an 

application such as controlling a mechanical device - whereas the "speech 

recognition" tasks require the correct identification o f the actual words spoken 

without necessarily interpreting what they mean. The two types o f task are therefore 

somewhat different.
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Task Style of 
speech

Vocabulary 
size (words)

Restrictions 
on usage

Language Speaker Environment

Recognition of 
isolated words

Isolated
words 10-300

Very
limited

Very
restricted
vocabulary

Cooperative Any

Restricted
connected
speech
recognition

Connected
speech

30-500 Rather
limited

Restricted 
language o f 
"commands"

Cooperative Quiet room 
required

Restricted
speech
understanding

Connected
speech

1 0 0 - 2 0 0 0 Full usage English-like Not un
cooperative

Any

Restricted
dictation
machine

Connected 
speech ?

1 0 0 0 - 1 0 0 0 0 Limited English-like Cooperative Quiet room

Unrestricted
speech
understanding*

Connected
speech

Unlimited Unlimited Normal
English

Not un
cooperative

Any

Unrestricted
connected
speech
recognition

Connected
speech

Unlimited Unlimited Normal
English

Not un
cooperative

Quiet room ?

Table 1.1
Standard speech recognition tasks, listed in increasing order o f  their difficulty.

Adapted from Reddy (1976).
(A "not un-cooperative" speaker will not try to confuse the system, but will not try too 
hard to help it either. In contrast, a cooperative speaker will speak slowly & clearly 
and will be willing to repeat or spell out words causing problems.
*The "unrestricted speech understanding" task allows use to be made o f task-specific 
information, unlike the unrestricted speech recognition problem).

Although it is still true that Large Vocabulary Continuous Speech Recognition 

(corresponding to the "Unrestricted connected speech recognition" task in the table 

above) is the most difficult problem, much progress has been made in this field over 

recent years. Average word error rates below 10 % for speaker independent systems 

are now obtainable, and below 5% for speaker-dependent systems, even if  the system 

is just exposed to around 3 minutes o f speech from each new speaker (Young, 1996).
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Most modem Large Vocabulary Speech Recognition systems work using statistical 

pattern recognition techniques. These techniques were first applied to speech 

recognition by Baker (1975) and Jelinek (1976), and developed by Bahl, Jelinek & 

Mercer (1983). These articles revolutionised automatic speech recognition and the 

principles they pioneered - to be discussed in Chapter 2 - are still at the core of 

recognition systems today.

A schematic diagram of a typical speech recognition system is shown in Figure 1.1 

overleaf. The speech is input to the system via the microphone on the far left. (In 

practice, the speech can be pre-recorded.) The pre-processing system includes analog 

to digital (A to D) conversion, sampling and Fourier and "cepstral" analysis o f the 

speech signal. A more complete discussion o f the front-end processing is given in 

Young (1996). The language model, based on statistical analysis o f transcriptions of 

spoken English, is used to predict the a priori probability o f any specified word 

sequence. The acoustic model is based on a pronunciation dictionary o f English, and 

is used to predict what the speech signal for that word sequence should be like. The 

role o f the decoder is to propose possible word sequences which would be compatible 

with the input speech signal and, based on information from the language model and 

acoustic model, decide how probable it is that this proposed word sequence is the 

correct interpretation o f the speech signal, and assess the relative merits o f the various 

sequences proposed. In the terminology o f probability theory, the language model 

gives a prior probability P(w) for a proposed word sequence w. The acoustic model 

then calculates the likelihood or conditional probability for the given acoustic signal a 

having been generated given the particular word sequence w. This is carried out using 

composite Hidden Markov Models (HMMs) (Bahl, Jelinek & Mercer 1983) based on 

simple HMMs for phonemes and information in the pronunciation dictionary (Young 

1996).
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Figure 1.1
A Schematic Representation of a Typical Speech Recognition System.



1.2 Language Modelling

The language model is clearly a key part of a speech recognition system (or 

"recogniser"). The purpose o f a language model is to estimate the overall probability 

o f an utterance and thence, by decomposing the utterance into its composite words, 

enable the system to predict the next word. wn, in the utterance on the basis o f 

probabilities, given the sequence of words W i,n-i = {wj, W2 , W3 , . wn_i} preceding it. 

The majority o f systems do this probabilistically : estimating the probability that the 

next word is wn given the preceding sequence W i>n- i , i.e they estimate P(wn | Wj, n.i ) 

(Note that this notation allows more flexibility than the simpler w , which represents 

the complete sequence {wi, W2 , W3 , ... , wn_i} = W i>n-i. We can use Wr,s= { wr, wr+], 

Wr+2 , ... , ws_i, ws } to denote any part of the sequence.)

A commonly-used, simple but effective method for estimating this probability is the 

use o f an N-gram model (Young, 1996). In such a model, it is assumed that the new 

word only depends on the (N -l) words which immediately precede it, so that 

P(wn I Wi.n-l ) = P(wn I Wn-N.n-1 )> where Wn-N.n-1 = { Wn.N, Wn-N+1 , •••, Wn-l}. In 

practice, since the complete set o f possible N word sequences (even restricting the 

permitted vocabulary to common words) grows very rapidly with N, most language 

models used in practice are based on trigrams (N=3) and/or bigrams (N=2). Although 

the principle o f N-gram models appears rather crude and they do suffer from several 

drawbacks - such as failure to take any account o f longer-range syntactic or semantic 

dependencies between words (Bod, 2000, Brill et al, 1998)- they have probably been 

the most successful single type o f language model used in the history o f automatic 

speech recognition. This is particularly true for languages with a strict word order, 

such as English, since an N-gram will encode syntactic, semantic and pragmatic 

information relating to a word's nearest neighbours - in the absence o f more detailed 

information, the words most strongly-connected with the word currently o f interest - 

without requiring detailed linguistic rules of the language, such as a grammar, 

explicitly incorporated into the model (Young, 1996). Indeed, despite their 

drawbacks, an N-gram model is at the core o f most practical speech recognition 

systems. Despite many attempts to better-use linguistic information in language 

models, these attempts have made limited improvements over N-gram models (Brill et 

al, 1998). A more detailed discussion of N-gram models and their strengths and 

weaknesses, and of other statistical language models, will be made in Chapter 2.
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Thus, in summary it can be said that most modem successful automatic speech 

recognition systems use statistical language models, usually based on word N-gram 

statistics. This emphasises a "speech and language engineering" approach, where good 

performance is the most important issue, rather than taking an approach which makes 

good use o f linguistic knowledge or tries to model human speech recognition 

realistically (Huckvale, 1998).

1.3 Measures of Performance

One measure o f the difficulty o f a speech recognition task on a sequence o f n words 

w = (wj, w2, W3 , ... , wn) is the LogProb (or Entropy): LP(w) = (-1/n) log2 ( P(w) ) 

(Kuhn & De Mori 1990).

However, Bahl et al (1983) have suggested that the perplexity, S(w) or P P (w ):

S(w) = 2H(is) = 2U>(JS> = PP(w)

is a better measure of difficulty, which correlates well with error rate. Using 

Information Theory, Shannon (1951) showed that the maximum entropy possible for a 

task for which there are N possible sentences o f average length L is (1/L) log2 (N). 

Hence, in this situation, the maximum possible perplexity is N(1/L) and so the 

perplexity can be regarded as the average number of words possible at any given 

point, i.e. the difficulty o f the speech recognition task is equivalent to one where the 

language has S equally probable words. Alternatively, the perplexity S can be 

interpreted as the reciprocal o f the average probability (as calculated by a language 

model) per word for a given correct word sequence. The better the language model, 

the stronger its predictive power, and hence the higher the probability assigned to a 

"good" or "correct" word sequence. Thus, good language models would be expected 

to give lower perplexities than bad language models (Kuhn & De Mori 1990).

An alternative way of evaluating the performance of a recognition system is to find its 

Word Error Rate (WER) - the proportion o f words it identifies incorrectly - when 

performing some standard recognition task on some standard data.
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1.4 Aims of this Study

Although attempts to improve language models by making use o f more detailed 

linguistic information have to date met with limited success compared with the cruder 

N-gram models (Brill et al 1998), intuitively it would seem that a successful, 

comprehensive model o f natural human language should contain a lot o f linguistic 

knowledge - both syntactic and semantic - and knowledge about the world. A native 

speaker o f English will normally find it straightforward to distinguish between a 

sentence which is (a) syntactically badly-formed (e.g. "Furiously sleep ideas green 

colourless"), (b) one which is syntactically valid but semantically meaningless (e.g. 

"Colourless green ideas sleep furiously"), (c) one which is O.K. both syntactically and 

semantically, but is unusual (e.g. "Utterances comprised of a multiplicity o f 

individually improbable lexemes are consequentially proportionately uncommon" ) 

and (d) a "normal" sentence (e.g. "This is quite a typical sentence" ). However, an 

automatic speech recognition system might have trouble distinguishing between these 

- particularly between cases (a) and (b) if  the individual words are not too obscure, 

and between (a), (b) and (c) if  the words are less common. As an illustration, the 

following are examples o f an actual recognition system ("ABBOT', Hochberg et al, 

1995, combined with a decoder developed at UCL) listing what it believes are its 

"best guesses" (or "hypotheses") at recognising an utterance which is actually "We are 

going to Paris.". The first column is a marker indicating whether the "guess" is correct 

as far as it goes (based on knowledge o f the correct answer), the second is the name of 

the file where the "word lattice" for that hypothesis is stored, the third field is a "node 

number" which can broadly be interpreted as a discrete time counter (how far through 

the utterance the recogniser has progressed). The fourth field represents an overall 

log-probability score for the hypothesis (the less negative, the more likely). The 

numbers in brackets after each word of the hypothesis are normalised log-probability 

scores for that word.
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At a relatively early point (time step 15) in the utterance :

0 sentOlO.lat. 15-3.139
0 sentOlO.lat. 15-3.171
0 sentOlO.lat. 15-3.219
0 sentOlO.lat. 15 -3.865
0 sentOlO.lat. 15-4.163
1 sentOlO.lat. 15-4.291
0 sentOlO.lat. 15-4.432
0 sentOlO.lat. 15 -4.460
0 sentOlO.lat. 15 -4.508
0 sentOlO.lat. 15-4.586
0 sentOlO.lat. 15-4.700
0 sentOlO.lat. 15-4.753
0 sentOlO.lat. 15-4.842
0 sentOlO.lat. 15-5.000
0 sentOlO.lat. 15 -5.063
0 sentOlO.lat. 15 -5.074
0 sentOlO.lat. 15-5.083
0 sentOlO.lat. 15-5.126
0 sentOlO.lat. 15 -5.201
0 sentOlO.lat. 15 -5.250

WE(1.500) GO( 1.962) TO(-0.466)
WE( 1.500) GOING(1.939) TO(-0.466)
WE( 1.500) GO( 1.962) THE(0.370)
WE( 1.500) BOTH(0.858) THE(0.342)
WE( 1.500) GOENG(1.939) THE(0.370)
WE(2.110) ARE(-1.671) GOING(1.939) TO(-0.466) 
WE'LL(0.875) GOING(1.939) TO(-0.466)
WE(1.830) DON’T(-2.173)
WE(1.830) DON'T(0.236) THE(0.342)
WE( 1.830) DON'T(-0.569) A(0.208)
WE'VE(0.991) GOING(1.966) TO(-0.466) 
WE'RE(0.991) GOING(1.966) TO(-0.466)
WE( 1.500) GO( 1.962) TO(-0.674) A(0.208)
WE(2.110) HAVE(-1.697) GOING(1.966) TO(-0.466) 
WE'D( 1.698) GOING( 1.966) TO(-0.466)
WE(2.279) A(-0.060) BOTH(0.858) THE(0.342)
WE( 1.500) GOING( 1.939) TO(-0.674) A(0.208) 
WE'LL(0.875) BOTH(0.858) THE(0.342)
WE(2.110) ARE(-1.671) BOTH(0.858) THE(0.342) 
WE(2.279) A(-0.060) GOING(1.939) TO(-0.466)

and later on (time step 18) ...

0 sentOlO.lat.l 18-5.804
0 sentOlO.lat.l 18-6.201
0 sentOlO.lat.l 18-6.213
0 sentOlO.lat.l 18-6.246
0 sentOlO.lat.l 18-6.321
0 sentOlO.lat.l 18-6.419
0 sentOlO.lat.l 18-6.468
0 sentOlO.lat.l 18-6.616
0 sentOlO.lat.l 18-6.696
0 sentOlO.lat.l 18-6.714
0 sentOlO.lat.l 18-6.846
0 sentOlO.lat.l 18 -7.094
0 sentOlO.lat.l 18-7.145
0 sentOlO.lat.l 18-7.301
1 sentOlO.lat.l 18-7.365
PARIS(2.987)
0 sentOlO.lat.l 18-7.484
0 sentOlO.lat.l 18 -7.490
0 sentOlO.lat.l 18-7.507
0 sentOlO.lat.l 18-7.538
PRESS(0.565)
0 sentOlO.lat.l 18-7.601

WE(1.500) GO(1.962) THE(0.370) PRESS(0.565)
WE(1.500) GO( 1.962) THE(0.370) PARIS(2.987)
WE( 1.500) GO(1.962) TO(-0.466) PARIS(2.987)
WE( 1.500) GOING(1.939) TO(-0.466) PARIS(2.987) 
WE( 1.500) GO( 1.962) TO(-0.466) PRESS(0.565)
WE( 1.500) GOING(1.939) TO(-0.466) PRESS(0.565) 
WE(1.500) BOTH(0.858) THE(0.342) PRESS(0.565) 
WE( 1.500) GO(1.962) TO(-0.466) PRINT(-0.432)
WE( 1.500) GOING(1.939) THE(0.370) PRESS(0.565) 
WE( 1.500) GOING( 1.939) TO(-0.466) PRINT(-0.432) 
WE( 1.500) BOTH(0.858) THE(0.342) PARIS(2.987) 
WE( 1.830) DONT(0.236) THE(0.342) PRESS(0.565) 
WE(1.500) GOING(1.939) THE(0.370) PARIS(2.987) 
WE( 1.500) GO(1.962) THE(0.370) PRINT(-0.432) 
WE(2.110) ARE(-1.671) GOING(1.939) TO(-0.466)

WE( 1.830) DON'T(-2.173) PARIS(2.987)
WE( 1.830) DON'T(0.236) THE(0.342) PARIS(2.987) 
WE'LL(0.875) GOING(1.939) TO(-0.466) PARIS(2.987) 
WE(2.110) ARE(-1.671) GOING(1.939) TO(-0.466)

WE(1.830) DON'T(-0.569) A(0.208) PARIS(2.987)

These examples show that a relatively modem recogniser with a trained language 

model - in this case based on utterances totalling 80 million words from the British
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National Corpus (Bumard, 1995) - can propose syntactically ill-formed sentence 

fragments as interpretations of a syntactically well-formed, meaningful utterance, 

despite getting many individual words either correct or nearly correct.

It would therefore seem desirable to devise a recognition system which takes the best 

from both approaches - capitalising on the successes of N-gram based models, whilst 

trying to make better use o f linguistic and contextual information. There have been 

several attempts at this already (e.g. Brill et al. 1998, Rosenfeld 1996, 2000a), which 

will be discussed in more detail in Chapter 2. The initial phase o f the present study 

tried to do this by using machine learning principles within the decoder - to 

investigate how features based on co-occurrences of certain word classes (based on 

parts o f speech) within a hypothesis correlated with whether the hypothesis was or 

was not "correct so far" (Huckvale & Hunter, 2001, see Appendix B). This showed 

some improvement in performance over more conventional methods.

There is some evidence which supports the intuitively plausible view that information 

from earlier sentences should reduce uncertainty over the next word (Zhang, Black & 

Finch 1999). This could be particularly useful in a practical application to situations 

such as "dialogue systems" - where a dialogue takes place between a human and a 

machine (computer) (Allen et al, 2001). An example of a situation where this could be 

useful is in automated enquiry systems - for instance, an automated telephone 

"receptionist", such as the "How may I help you ?" system being trialled by AT&T in 

the USA (Gorin et al, 1997, 2001). This system is an attempt to reduce the frustration 

caused to customers by the familiar automated "push-button" menu-based call 

reception systems in common use today ("To make a payment press 1, for bill 

enquiries press 2, . . . ,  for other options press 0"). Such systems are a cause of much 

annoyance to customers and frequently result in the customer hanging-up rather than 

persevering with the call. A dialogue system such as "How may I help you ?" attempts 

to reduce the irritation caused to customers, whilst still avoiding the expense of 

having a human operator as the initial point o f response, by replacing the "push-button 

menu" with a speech recognition system. This responds to keywords and phrases in 

the customer's utterances, making decisions about what question to ask the customer 

next, or where to re-direct the customer's call. The aim of this system is to provide 

automated services using a natural spoken dialogue system - where the use of natural
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indicates that the system has to respond to what the human user actually says, rather 

than what the system would like the user to say (Gorin et al, 1997). In this situation, it 

can no longer assume that the user is cooperative or even "not uncooperative". Further 

possible applications of dialogue systems include transcription o f business or political 

meetings (e.g. “Hansard”), or o f legal court proceedings -  where a verbatim record of 

what has been said by several speakers is required -  and real-time (or near-real-time) 

translation systems (such as VERBMOBIL (Wahlster 1993, 2000)) to facilitate 

spoken communication between two people who have different first languages.

A schematic representation o f a typical dialogue system is shown in figure 1.2 below.

Recogniser

Synthesiser Dialogue
Manager

Response Generator

Interpreter

Parser

Human

User

Dialogue System

Figure 1.2 A schematic representation o f an automated dialogue system.

The language model forms part of the unit described as the “recogniser”

(After Young, 2000)

The majority o f earlier work on spoken dialogue systems have concentrated on either 

developing a system which performs well if  tailored to carrying out simple tasks in a 

specific, restricted area, or on developing strategies for specific tasks such as 

requesting clarification (Chu-Carroll, 1999). Many such systems depend heavily on 

the spotting of keywords or other lexical relations, "semantic parsing" (rule-based 

mapping from the recogniser output to semantic labels) and "context-dependent 

semantic decoding" (mapping from these semantic labels to actions) (Potamianos, 

Riccardi & Narayanan, 1999). These are believed to be appropriate for tasks where
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there are few possible actions for the system to take, and most key instructions are 

likely to be expressed (by the user) using one o f a small set o f short phrases (or phrase 

fragments) of low perplexity (Potamianos et al 1999). An example o f such a situation 

is a system for making travel reservations. However, in many other situations, such as 

an automated telephone receptionist (e.g. "How may I help you ?"), there are many 

possible actions for the system to take, but the user may not be very co-operative and 

information given by the user may consist o f high perplexity phrases (or phrase 

fragments). In such cases, it is important to study the mapping from the user’s speech 

input to the machine's identification of the correct task statistically.

Broadly speaking, there have been two quite different approaches to dialogue systems 

for human-computer interaction - one attempting to develop general computational 

models for all types o f dialogues, the other concentrating on developing systems for 

specific applications in limited area, using "domain knowledge" related to the precise 

tasks for that problem. The former approach has the disadvantages o f being 

extremely computationally intensive and possibly "too general" - it may over

emphasise flexibility and so incorporate features not required in the application to 

which it is being put. The latter approach, on the other hand, may show impressive 

performance within its limited domain, but may not be easy to generalise or change to 

deal with different situations (Dahlback & Jonsson, 1999).

The focus o f the remainder o f this study is the investigation o f statistical relationships 

between consecutive dialogue turns and to study how such knowledge can affect the 

estimated probabilities o f proposed word sequences and the performance o f language 

models. The success o f the models developed for dialogue will, where possible, be 

compared with the closest possible corresponding models for written text.

1.5 Types of Dialogue and Sources of Data

The types o f dialogue which are most likely to be o f interest in Human-Computer 

Interaction fall into two categories. So-called "task oriented dialogues" (Dahlback & 

Jonsson, 1999, Grosz 1977) relate to situations where both parties (two people or one 

person and the machine) are trying to cooperate in order for one o f them to complete a 

task. For example, one party may be trying to explain to the other how to do
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something, where the "explainer" is initially unsure how much the "explainee" already 

knows or needs to know. It may be necessary to break the overall task (and associated 

goal) into sub-tasks and sub-goals. An example of this is the so-called "Map task" 

(Anderson et al, 1991, Carletta et al 1997), where one party is trying to explain to the 

other how to get from one place (A) on a map to another (B). The problem can be 

made more difficult if  the two parties do not have identical maps - they will have to 

negotiate over landmarks which are marked on both maps.

E.g. (Fictious)

(Director)"Turn left at the post office."

(Directee) "I don't know where the post office is."

(Director) "If you continue down the main road for about 200 metres after the church, 

it should be on the left hand side."

(Directee) "O.K. I know where the church is."

A rather different type o f dialogue is a "question answering" dialogue (Dahlback & 

Jonsson, 1999), where the responder cannot be assumed to have the same goal as the 

questioner, but just has the job of responding to the questioner's questions. An 

example o f this would be a travel enquiry helpline,

e.g. (Fictious)

(Questioner) "What time is the last train from London to Birmingham on Saturday
2 3 r d

(Responder) "From Euston, 23:20, or from Marylebone 22:55"

(Questioner) "What time does each of these arrive in Birmingham ?"

(Responder) "The Euston train reaches Birmingham New Street at 01:15, the 

Marylebone train reaches Birmingham Midland Road at 01:36."
th(Questioner) "How much is the return fare, to come back on Sunday 24 ?" 

(Responder) "18.50 going from Marylebone and returning there, 26 pounds from 

Euston."

(Questioner) "Why the difference ?"

(Responder)"The cheaper fare is only valid on Chiltem Railways, going from 

Marylebone. The other fare gives you a choice of routes."
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There are several corpora of transcribed speech (some also include the actual speech 

recordings) which could be used as data for such an investigation as this. The British 

National Corpus (Bumard, 1995) contains a section o f transcribed speech, including 

672 dialogue files totalling 7760753 words. The Map Task Corpus (HCRC 2001) 

contains 128 dialogues, all involving one speaker trying to direct the other to a 

specific destination with reference to a map. The Bramshill corpus (LDC 2001) 

consists o f approximately 600 000 words from a series o f 10 minutes conversations, 

in each of which British Police Officers are describing a series of photographs to each 

other and discussing them. Clearly, the latter two corpora relate to rather restricted 

topic domains. There are other large corpora of transcribed dialogue each on a variety 

o f topics - for example, the Switchboard (Godfrey & Holliman 1997), CallHome 

(Kingsbury et al. 1999) and CallFriend (Canavan & Zipperlen 1997) corpora - but 

most o f  these are o f American rather than British English which, to be used in the 

training o f a dialogue system for British English, would require different language and 

acoustic models (different training corpus, pronunciation dictionary, etc.). The British 

National Corpus has the additional advantage of containing a large body o f text 

material in modem British English, enabling comparisons to be made between textual 

and dialogue data and between language models for each. Thus, the British National 

Corpus will be used as the source o f data for the remainder o f this study.
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Chapter 2 Language Modelling and Related Work

2.1 Statistical Language Models and N-grams

Acoustic modelling and processing of speech signals are in themselves not sufficient 

for achieving satisfactory performance from an automatic speech recognition system 

applied to large vocabulary problems. Humans rely on many cues and pieces of 

information which are not purely acoustic when processing speech - syntactic, 

semantic, pragmatic, dialogue information and (frequently) knowledge about the 

speaker (Waibel & Lee, 1990, Chapter 8). With the probable exception o f "knowledge 

about the speaker", the process o f modelling (or attempting to model) these aspects of 

the speech recognition process - whether in humans or machines - is called language 

modelling. O f course, some o f these fields, such as pragmatics - which require a 

higher-level understanding of the language - are harder to model than others. As noted 

in the previous chapter, the majority o f successful automatic speech recognition 

systems use statistical language models - where the syntactic, semantic and pragmatic 

information is implicitly encoded in statistics relating to the occurrences o f word 

sequences - based on N-grams.

A statistical language model is essentially a probability distribution, P(s), over the set 

S of all possible sentences, utterances or word sequences, s e S  (Rosenfeld, 2000b ) . 

Typically, a statistical language model is constructed from data, such as a text corpus 

- e.g. the British National Corpus (Bumard, 1995) - then used as a "prior" in a system 

such as a Bayesian classifier to predict the probability o f various word sequences
i

given other information, such as an acoustic signal and/or a "dialogue history" in the 

context o f automatic speech recognition.

Given some additional information a , such as an acoustic signal, we want to find the 

word sequence, s*, which maximises P( s | a). By Bayes' theorem,

P( s | a) = ( P ( a | s ) . P ( s ) ) /  P( a )
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Thus, i f  a is known, s* = arg max ( P( s | a) ) = arg max (P( a | s ) . P( s ) ) , where 

arg max denotes locating the value (of s in this case) which maximises the expression 

in brackets. P( a | s) is computed by the acoustic model and is the (estimated) 

probability o f a being the acoustic signal if  s is known to be the word sequence.

However, the process of constructing and using the language model in an optimal way 

is far from trivial. The model would ideally encapsulate sufficient information to 

enable s to be determined from a with complete certainty (no errors). Unfortunately, 

the number o f theoretically possible sentences is infinite and any model is going to 

contain simplifications and approximations. Successful attempts at language 

modelling are always going to involve some compromise between simplicity (and 

computational convenience) and better representation o f linguistic phenomena. 

Generally speaking, a more complex model should be better able to account for 

dependencies between words - particularly words which are further apart in an 

utterance - but will be less convenient both computationally and from the point of 

view o f obtaining sufficient training data.

N-gram models (Bahl et al 1983, Jelinek 1990) - where it is assumed that the 

probability o f the current word only depends on the immediately preceding (N -l) 

words - are amongst the simplest and most commonly-used language models. 

However, for N small (in practice, often N=2 or N=3 are used), the model is very 

crude and fails to take account o f longer-range dependencies between words. 

Furthermore, such a model may assign relatively high probabilities to word sequences 

which are nonsensical or ungrammatical, provided that such a sequence does not 

violate any short-range restriction (Rosenfeld 1996). They also only take account o f a 

word’s position in a sequence (sentence or utterance) rather than its linguistic function. 

In contrast, if  a larger value o f N is used, the problem of an excessively large number 

o f possible sequences arises. If our model uses a vocabulary o f V distinct words, then 

there are VN N-gram sequences which, in the absence o f additional information, are in 

principle possible. If  V is of the order o f several thousand, the number o f possible N- 

grams grows extremely quickly with N. Acquiring and processing sufficient data to 

obtain reliable estimates o f sequence probabilities will be a very serious problem 

(Bellegarda, 2000). It is generally believed that empirical estimates o f probabilities 

based on 5 or more observations o f the occurrence o f a particular word sequence
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within a training corpus are likely to be reasonably reliable. However, many possible 

sequences (particularly if  N is large and the training corpus is relatively small) will 

occur fewer than 5 times in the training corpus. Some sequences, despite being 

plausible English word sequences, may not occur at all (Witten & Bell, 1991) - even 

for small values o f N. Estimates of the probabilities o f such sequences calculated 

directly by counting their occurrences within the training corpus will therefore not be 

reliable. Special estimation techniques, sometimes called "smoothing", are required to 

deal with this problem. Smoothed models may be interpolated (where the probability 

estimate for a given N-gram depends on those for the corresponding (N-l)-grams) or 

backed-off (where the estimates for N-grams which occur at least once in the training 

data are determined whilst ignoring details o f lower order (N-i)-gram statistics). 

Alternatively, they may use different forms of discounting (to adjust the probability 

estimates for N-grams which occurred fewer than (say) 5 times in the training data) 

and have different ways o f estimating the probabilities o f lower order M-grams (for 

M<N). A detailed discussion o f such methods as linear interpolation between N- 

grams, smoothing methods, simulation o f "unseen" events and use o f "equivalence 

classes" can be found in Ney, Essen & Kneser (1994), Chen & Goodman (1999), 

Chen & Rosenfeld (2000) and Katz (1987).

Variants on the N-gram theme, such as variable sized N-grams (Siu & Ostendorf 

2000), class-based N-grams (where classes of words - such as synonyms or parts o f 

speech - are used instead o f individual words in the N-grams) (Niesler & Woodland 

1996) and "long distance" N-grams (where the next word is again predicted on the 

basis o f (N -l) previous words, but where these words may be some distance back in 

the "history") (Rosenfeld 1996), have been tried by various authors. These have 

shown some improvement over simpler N-gram models, but still have major 

deficiencies.

Nevertheless, although there have been many attempts to improve on trigrams - and 

although such improvement is theoretically possible (Jelinek 1991) - most such 

attempts have met with very limited success (Jelinek 1991, Rosenfeld 1996, Brill et al 

1998). The great success of trigram models is due to the facts that they are usually 

well-trained on the available data and that most modem European languages (which 

have been the focus o f  the majority of research on automatic speech recognition to
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date) have a relatively strict word order and hence tend to have strong local 

dependencies between words (Jelinek 1991).

How can we improve on the performance o f trigram models ? The following sub

sections review some o f the methods which have been tried.

2.2 Adaptive (Dynamic) Models

The N-gram models (for N small) described previously are often considered as static 

models since they cannot use any information except the immediate history of the 

word sequence and are hence unable to adapt to the style or topic o f the utterance. A 

logical way o f improving on this would appear to be to allow a dynamic (or adaptive) 

model which can modify its probability estimates as a consequence o f knowledge of 

the current conversation or monologue in order to improve its performance (Lau, 

Rosenfeld & Roukos, 1993). This should show benefits in two key areas : (1) if  the 

overall conversation is quite diverse (or "heterogeneous"), but is made up o f coherent 

("homogeneous") chunks, each with a more consistent style, topic or vocabulary than 

the overall conversation. In this situation, an adaptive model should be able to focus 

on the properties o f each homogeneous chunk and adjust its probability estimates 

accordingly. (2) It is not feasible to train a language model in a way which will be 

entirely suitable for every domain to which it could be applied. For example, a model 

trained on news stories would not be appropriate for use in a technical field or in an 

automated telephone switchboard. However, an adaptive model should be able to 

adjust to the language appropriate to the new application to which it is being applied 

(Lau et al 1993). Examples o f adaptive language models are cache models (see 

below) and trigger based models. Whilst it is not claimed that either o f these types of 

model actually reflects how speech recognition is carried out in the human brain, it is 

interesting to note that both of these have analogues in psycholinguistic models of 

human speech recognition : trigger models are somewhat like the psycholinguistic 

phenomenon called "priming" (Tillmann & Bigand 2003, Fischler & Bloom 1980, 

Meyer & Scvaneveldt 1971), whilst cache models have also been used in 

psycholinguistics (Walker 1998). Such analogies and relations will be further 

discussed below.
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2.2.1 Trigger Pair Models

The concept o f a trigger pair is in principle very simple. In a coherent document or 

conversation, certain words tend to be correlated with certain other words. For 

example, in a conversation or article about business and finance, the word "stocks" 

will often occur near the word "shares", as will various other words such as "price", 

"investment", "markets", "rose" and "fell". If the presence o f one word (or sequence of 

words) A is strongly correlated with another word (or sequence) B, in the sense that 

the presence o f A seems to raise the probability of also finding B present, then we say 

that "A triggers B" (A —► B), with A being the "trigger" and B the "triggered word or 

sequence" (or “target”). In a similar manner, the fact that a word - particularly a 

relatively uncommon word - occurs once in a document or conversation frequently 

raises the probability o f finding that word again later in the same text. For example, 

the presence o f the word "investment" tends to suggest the current topic o f interest is 

related to finance, and so there is a relatively high chance of finding the same word - 

which would normally be relatively uncommon - again. Such a situation, where A 

triggers itself (A —> A), is called a "self-trigger" (Lau et al 1993, Rosenfeld, 1996).

As noted above, this statistical observation is analogous to the psycholinguistic 

phenomenon known as "priming" - where a person's "recognition performance" (in 

terms o f response time, or success rate in a recognition or naming task) is found to be 

enhanced when the person has been primed by exposure to other words related to the 

target in meaning and/or sound (Bodner & Masson 2003, Meyer & Schvaneveldt 

1971). Similarly, "inhibitory priming", where priming words are deliberately chosen 

to be unrelated to the target word, is generally found to degrade recognition 

performance.

Trigger pairs can be used in conjunction with a conventional model such as an N- 

gram by allowing the hybrid model to adapt probability estimates for proposed new 

words according to whether or not the new word has been "triggered" by an earlier 

part o f the sequence - the probabilities o f triggered words are increased, whereas those 

o f non-triggered works are diminished. Trigger pairs provide a way o f incorporating 

long-range relations between words into a language model.
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In principle, even if  the trigger and triggered objects are restricted to being single 

words, a system with a vocabulary of V distinct words will have V2 theoretically- 

possible trigger pairs. However, the higher the number of trigger pairs used in the 

system, the more complex it becomes and it is therefore not feasible to incorporate all 

possible trigger pairs into the adaptive model - a choice must be made so that only the 

"most useful" triggers are used. Clearly, although the occurrence o f one very common 

word may frequently be linked with another common word later in the text, this may 

not be very useful - for example "and" may often be followed at some later stage by 

"but" (although the actual correlation coefficient between these words may not be 

high). However, evidence based on a study (Rosenfeld 1996) o f the Wall Street 

Journal corpus (Paul & Baker 1992) suggests that strongly-correlated pairs which 

occur very infrequently are also o f limited value. For example, the presence o f the 

proper noun "Brest" may be strongly correlated with the presence immediately 

afterwards o f the proper noun "Litovsk", but such a link is unlikely to be a useful 

trigger pair - except in the contexts of discussions about World War I or Belorussian 

geography - since both words are very uncommon. On the other hand, a less-strongly 

correlated pair such as "stocks" and "shares" may be sufficiently common but yet 

sufficiently rare for ("stocks" —> "shares") to be a worthwhile trigger to include 

(Rosenfeld 1996). A useful way to assess the likely utility o f a trigger pair (A —> B) as 

a means o f using A to predict B is the pair's mutual information, I(A,B) :

I(A,B) = P(A,B) log( P(B|A) / P (B )) + P(A,B') log( P(B'|A) / P(B') )

+ P(A',B) log( P(B|A') / P (B )) + P(A',B') log( P(B'|A') / P(B') )

where, if  A indicates that the appropriate word or sequence is present, then A' 

represents that it is absent, and the probabilities are estimated from statistics obtained 

from a large training corpus. Only those trigger pairs showing the highest mutual 

information should be included in the model.

Rosenfeld (1996) investigated a variety of trigger-type models : simple word triggers 

and "class based" triggers (i.e. based on groups o f words which are related in some 

way, such as by meaning or by function), both binary triggers ("on" if  the trigger is 

present in the "history" o f the document or conversation, "off' if  it is absent) and
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frequency-dependent (based on how many times the trigger has occurred in the 

history) and distance-dependent triggers (taking account o f how far back in the history 

the trigger last occurred). His general conclusions were :

(i) Different trigger pairs behave quite differently, and hence need to be 

modelled differently. The modelling should be more detailed when the 

expected benefits are greater.

(ii) Self-triggers are particularly powerful, to the extent that for over two-thirds of 

the words studied, the word itself was the trigger with the highest mutual 

information, and was one of the top 6 triggers for some 90% of words studied.

(iii) Triggers of the same linguistic root (e.g. "govern", "governor" and 

"government") are also generally powerful.

(iv) The majority o f  the best trigger pairs are associated with relatively common 

words, rather than word pairs which are strongly correlated but uncommon - 

see the "Brest" —► "Litovsk" example above.

(v) Negative triggers - where the trigger and triggered word are from different 

topic areas (for example, the trigger being financial and the triggered word 

relating to agriculture), and hence likely to reduce the probability o f the 

triggered word - can be o f some, if  limited value.

Rosenfeld (1996) did not make extensive use o f the distance dependent triggers. In 

simple trigger models (in contrast to cache models - see below), the recent history o f 

the document or conversation is treated as just a "bag o f words" (Beeferman, Berger 

& Lafferty 1997). A word that appears just a few steps back in the history is regarded 

in exactly the same way as a word several hundred steps back. This does not seem 

entirely satisfactory. Some types of trigger (such as the "Brest" —> "Litovsk" 

example) will be of most value at very short range (one step in this case), whereas 

others - often relating to the topic of discussion - will be o f considerable value at 

greater distances. Some syntactic or stylistic-based triggers may also be useful at a 

longer range, due to the presence of embedded clauses, etc.. Beeferman et al (1997) 

have suggested that "attraction" (i.e. positive triggering) between words decays 

exponentially with distance, whereas stylistic and semantic constraints create a 

"repulsion" (negative triggering or inhibition) between closely-related words that 

discourages them occurring too close together. (The behaviour o f self-triggers was 

found to differ slightly from that of other triggers - the probability o f a given word
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occurring was found to peak around 25 steps after the last occurrence o f the same 

word.). They produced a three-parameter exponential model using a two-stage 

queuing process which incorporated both these phenomena, and found that a system 

incorporating this model showed improvement in performance over one using a 

simple trigger model in its place.

However, the assumption that only a relatively recent part o f the history needs to be 

taken into consideration is not without justification. There is evidence from 

psycholinguistic studies of conversation that some information (particularly "surface" 

features such as syntax) is only retained in the short term by the participants (see 

Fletcher 1994 for a review o f such work).

One drawback o f trigger-based models is that they tend to be highly domain or topic 

sensitive. Furthermore, training such a model on a large amount o f data from a corpus 

not in the area o f its direct application (where perhaps only a very limited amount of 

data is available) may not be o f much benefit (Rosenfeld 2000b). For example, use of 

the entire Wall Street Journal corpus (40 million words) or the entire Broadcast News 

Corpus (140 million words) gave little improvement to a system otherwise trained on 

a mere 2.5 million words o f the Switchboard corpus (Godfrey, Holliman & McDaniel, 

1992) - the system being intended for use with the type o f conversational speech that 

the Switchboard corpus was based on - suggesting that current adaptation techniques 

are not sufficiently sophisticated (Rosenfeld 2000b).

A trigger-based model can be integrated with another model, such as an N-gram 

m odel, using an interpolation method or using the maximum entropy method 

(described in section 2.4 below) (Lau et al 1993).



2.2.2 Cache Models

Cache models (Kuhn & De Mori, 1990, Jelinek et al 1991, Clarkson & Robinson 

1997, Iyer & Ostendorf 1999) have certain things in common with trigger models - 

they both use the history o f the document or conversation to modify the probabilities 

o f the candidates for the next word in the sequence. However, unlike trigger models, 

cache models tend to only consider a relatively small part o f the most recent history 

(say the last 1000 words encountered). The simplest cache models, working on a 

"least recently used - out" principle - words which were included in the cache but 

have not occurred in the very recent history will eventually be replaced by others 

which have. The term cache is used by analogy with the concept o f cache memory 

used in computer architecture and hardware. The cache is used to modify probabilities 

o f the words it contains - based on their frequency o f occurrence in the recent history 

rather than relying on the language model alone. However, although this simple form 

of cache can allow adaptation over a time period (measured in words) comparable to 

the size of the cache, it is unable to account for dependencies on a shorter scale such 

as those within a sentence (Iyer & Ostendorf 1999). Clarkson & Robinson (1997) 

have employed an exponentially decaying cache in an attempt to redress this, studying 

the hypothesis that even within the cache, the most recent words are those most likely 

to re-occur. Thus, their cache model assumes that a word’s recurrence probability 

includes a contribution which decays exponentially with the distance between its last 

occurrence and the word o f current interest. They compared the performance of 

simple caches o f various sizes with those o f caches with different "rates o f decay" on 

data (both text and spoken) taken from the British National Corpus, finding that, at the 

optimal decay rate, their novel cache outperformed the best o f the simple caches, 

which in turn performed significantly better than a basic trigram model. Some 

evidence from corpus studies (e.g. Purver, Ginzburg & Healey 2002) suggests that 

responses to utterances such as clarification requests in dialogue are much more likely 

to occur promptly after the request than some time later. Such findings would provide 

some justification for the use of decaying caches.

Walker (1996,1998) has used a cache model (or “linear recency” model) to explain 

certain psycholinguistic phenomena relating to humans having limited attention whilst 

participating in discourse : utterances which are “informationally redundant,
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difficulties in processing or recalling entities relevant to the discourse which are not 

“linearly recent” and experimental evidence that humans have limited attentional 

capacity (e.g. Miller 1956, Baddeley 1986, Fletcher 1994).

2.2.3 Cluster-Based Models

An alternative approach is to those discussed above is to create a separate language 

model for each class o f a set of “characteristic classes” or “clusters” o f texts. The 

motivation behind this type of approach is that it might be expected that texts might 

naturally be grouped in some manner (topic, word content, etc.) in such a way that the 

probability distributions o f words varied significantly between the different groups. 

Thus, if  it were possible to know, or decide in a reliable manner, which group, or 

cluster, a particular text belonged to, better results should be obtained using a 

language model constructed specially for that cluster than if  an otherwise similar 

“general purpose” language model, derived from the contents o f all the clusters, were 

used.

Note that in the context o f the discussion here, we are primarily concerned with the 

clustering o f sentences or dialogue turns. Other authors (e.g. Ney, Essen & Kneser 

1994) have taken the approach of using clusters o f individual words in order to tackle 

the problem o f estimating probabilities o f words which occur only rarely, or not at all, 

in the training data. This is to some extent similar to the approach used in our earliest 

experiments (Huckvale & Hunter 2001), but is not the issue of this present section.

According to Carter (1994a,b), use o f clusters should enable a language model to 

encapsulate important contextual effects within sentences irrespective o f how 

complex the probabilistic relationship between the relevant objects (words, word 

pairs, parts o f speech, etc.) is. Furthermore, the clustering approach -  unlike, say the 

use o f N-grams for large values o f N -  does not make excessive new demands for 

training data. An additional benefit is that the clustering methodology can be applied 

in a standard way across different knowledge sources and for different kinds of 

documents. I f  the language models based on clusters do turn out to be better than the 

corresponding models not using clusters, then there is good evidence that there are 

connections between the objects comprising the clusters which the original (not 

cluster-based) model fails to exploit.
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Presented with a new document or utterance, an assessment could be made as to 

which class this document should be assigned, then the language model for that class 

applied to it. O f course, the initial judgement of class for the new document may not 

be correct, particularly if  (as is likely to be the case in practice) the decision is made 

on the basis o f incomplete information about the new document. However, this 

decision need not be a permanent one, or different strategies for selecting the most 

appropriate cluster can be investigated. Alternatively, the new document could be 

specified as being “quite a lot like cluster A, a bit like cluster B, but not so much like 

cluster C” -  a weighted mixture o f clusters. In principle, the clusters could be 

assigned by human decision (e.g. manually “marking-up” or “tagging” the training 

data), but this is highly labour-intensive. Thus, it is commonly preferred to assign 

documents to clusters by an automatic process. The criteria used for initially 

identifying clusters could be topic-based, or based on similarities (in terms of their 

lexical content) between the documents comprising each cluster (Sekine 1994, 

Robertson & Sparck Jones 1997, Iyer & Ostendorf 1999). Such methods have some 

appeal from a linguistic perspective. Alternatively, “engineering” approaches have 

been developed which construct clusters iteratively in a manner which will optimise 

the perplexity (as defined in section 1.3) of a language model based on the current 

cluster with respect to the current text (Carter 1994 a, b, Clarkson & Robinson 1997). 

Such approaches lack the linguistic motivation of those mentioned above, but may 

result in equally good, or even better, performance.

2.2.3.1 Linguistically (Lexically)-Motivated Clustering Methods

Such methods cluster sentences o f dialogue turns according to their lexical content. 

Broadly speaking, sentences (or turns) containing largely the same distinct words will 

be put in the same cluster. This approach is based on how “characteristic” of, or 

“distinctive” to, each cluster o f documents any particular word is. This is essentially 

the approach employed by Sekine (1994) and Iyer & Ostendorf (1999), who define a 

similarity metric Sjj between documents (or clusters) i and j by
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where A,- is the set of distinct words in document i (and hence | Aj | is the size of that

with N, being the number of documents in cluster i. The normalising factor was 

introduced in order that, when applying the metric to construct clusters, the clustering 

process countered the tendency for small clusters to join large clusters, rather than 

several small clusters joining together (Iyer & Ostendorf 1999). This type of metric is 

called a “combination o f inverse document frequencies” and one o f its positive 

features is that words which are generally very common (i.e. common in very many 

documents) -  such as function words -  have little effect on the clustering process. 

Note that this metric gives a larger result when the two clusters are very similar 

( Sii = V (2 / N i) / 1 A,-1 if  each word in Aj only occurs in Aj and no other cluster), but 

Sjj is zero if  clusters A, and Aj contain no words in common.

Robertson & Sparck Jones (1997) have proposed and used a rather more sophisticated 

metric, but with a similar motivation. Their metric has three components :

(i) “collection frequency weights” (similar to the “inverse document frequencies” of 

Sekine (1994) and Iyer & Ostendorf (1999)), which note that words which only occur 

in a relatively small number of documents are usually more valuable in judging 

document similarity than words which occur in very many documents. Thus, the 

appearance o f the word “Litovsk” in two distinct documents would suggest that those 

documents have a high chance of being about a similar theme, or at least have several 

other words in common.

(ii) “term frequencies”, the frequency o f a word’s occurrence within a given document 

-  the more frequently a word (or at least a word which is not normally very common) 

occurs in a given document, the more relevant it is likely to be for that particular

set), B(w) is the set o f documents which contain the word labelled w and Njj is a 

normalising fac to r:



document. For example, if  the word “shares” occurs in a document much more often 

than we would routinely expect, then it is quite likely that the document has a 

financial theme and we might expect other documents with this theme to appear in the 

same cluster.

(iii) document length -  a given word is more likely to occur several times in a long 

document than in a short document (all other factors, such as document topic, being 

equal). Thus, a word which occurs a large number o f times in a relatively short 

document is more likely to be important in categorising that document than if  the 

same word had occurred the same number o f time in a longer document.

Robertson & Spark Jones (1997) combine these factors in various ways to give 

several measures for a word (or “term”) t(i) labelled i in a document d(j) labelled j. If 

n; is the number o f documents in which the term t(i) appears, and N is the total 

number of documents which we are considering, then the “collection frequency 

weight” for that term is :

CFW(i) = log(N) -  log(ni) = log(N / n j)

The “term frequency”, TF(i,j), is simply the number o f times term t(i) occurs in 

document d(j), and the “document length”, DL(j), is just the total number o f term 

(word) occurrences in document d(j).. However, it is often more practical to work 

with the “normalised document length”, NDL(j), found simply by dividing DL(j) by 

the mean value o f DL across all documents being considered.

They propose the “Combined Weight” for term (word) t(i) and document d(j) as :

c w ( i  n  = CFW(i) ,TF(i,j) .(1 + K,) 
[TF(i,j) + K , .((1 - 6 )  + b.NDL(j) )]

where Ki and b are adjustable parameters. Ki adjusts the influence o f the turn 

frequency -  setting Kj to zero removes any influence o f TF on CW, whereas the 

higher the value o f K], the stronger the influence of TF. Robertson & Sparck Jones 

(1997) reported that use o f K] = 2 had proved to be effective in tests on text 

documents such as news items and government reports. The parameter b, restricted to 

values between 0 and 1, adjusts the influence of both document length and term 

frequency on CW. If b = 0, then it is being assumed that documents tend to be long if
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they contain many distinct topics, whereas if  b =1, the length of documents is 

assumed to be due to repetitiveness and verbosity. Robertson & Sparck Jones (1997) 

suggested that values o f b around 0.75 had been found to work well in their studies.

Robertson & Sparck Jones (1997) propose for further developments to this similarity 

measure, particularly for use in iterative schemes where, following some initial 

assessment, documents can be marked as “relevant” or “irrelevant” and the (term, 

document) weights re-evaluated. One such approach is the use o f “relevance 

weights”. These take note of the observation that a word may be present in many 

relevant documents just because it is present in a lot o f documents -  relevant or not. 

Essentially, the relevance weight is a modified form of the collection frequency 

weight described above. If  q is the number of documents marked as “relevant” which 

contain the term (word) t(i) and R is the total number of documents marked as 

“relevant”, then an estimate o f the relevance weight is given b y :

where N and nj have the same meaning as before. This is only an estimate o f the true 

relevance weight, since we should not assume that a term will never be found in any 

relevant document just because, on the basis of a relatively small sample, it has not 

been seen in any relevant documents to date (Robertson & Sparck Jones 1997). This 

observation, and the need to avoid "singular" arguments for the logarithm function 

which would occur if  either numerator or denominator were to become zero, explains 

the use o f the 0.5 added in each term of the formula above as a correction to remove 

bias due to a finite sample size.

The relevance weight can then be incorporated into a revised form of the combined 

weight, called the “ combined iterative weight”, CIW :

R W (i) = log
r(r: + 0.5) . ( N - n, - R  + r,. + 0.5) N 
,  ( n ,- r ,  + 0 .5 ) . ( * - r ,  + 0.5) ,

CIW(i,j) = RW(i) .TF(i,j).Q. + Kl)
[TF(iJ) + K, .(  ( l - b )  + b.NDL(j) )]

The metric chosen for use can be applied in conjunction with a k-means clustering 

algorithm to form clusters :
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Suppose we have N documents to be grouped in k clusters, where N »  k :

(1) Randomise the order of the documents.

(2) Assign the first k documents in the randomised list to clusters 1 to k 

respectively, i.e. if  1< i < k, then document i is put in cluster i.

(3) For each document, using the chosen metric, check whether there is any 

cluster which has a mean point closer to the current document than the mean 

point of the cluster to which that document is currently assigned.

(4) Repeat (3) until fewer than a specified number, T, o f documents change 

clusters during one iteration.

2.2.3.2 Clustering Methods Based on Perplexity (or Entropy)

Carter (1994) and Clarkson & Robinson (1997) instead chose to base their similarity 

measure on the quantity which, for the language model whose construction was the 

eventual aim, they were trying to optimise : the perplexity o f a language model with 

respect to text from the domain(s) o f interest. In the ideal case, the measure would be 

the perplexity of the language model, preferably a trigram (or equally sophisticated) 

model, which would result if  a specified cluster (in its current state) were used for 

training data and the document o f current interest as test data. However, this would 

require an infeasibily high amount o f computation to be carried out at each step of the 

iterative clustering process. Instead, the metric used is the perplexity o f a unigram 

language m odel: the “distance” between a given test document and a cluster is the 

perplexity of the unigram model trained on all the text in that cluster with respect to 

the text in the test document (Clarkson 1999, p52). If  Nc and No are the total number 

o f words in the current cluster C and the test document D respectively, N c(w ) and 

N d (w ) are respectively the number o f time that the word w occurs in the cluster and 

the test document, and w(D) = (wj, W2 , ..., wnc) is the test document written as a word 

string, then from the definition of perplexity, the required unigram model perplexity 

can be calculated as :
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by the assumed independence o f unigram probabilities.

Naively, we could estimate P( w; | C ) by (Nc(wj) / N c ), but this would assign a zero 

probability to all words which had not already been observed in the cluster C. Instead, 

a “floor value”, 5, can be added to the counts to ensure that ensure non-zero counts in 

the cluster for each word present in the text (whether or not it is genuinely present in 

the cluster), and hence guarantee finite perplexity values :

pp.
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Note that, unlike the lexically-motivated metrics discussed in the previous section, 

this perplexity metric has a relatively low value for similar documents or clusters and 

higher values for dissimilar ones. Although this metric is less explicitly based on the 

particular words within a document cluster, it is still implicitly highly dependent on 

them -  since the relevant entropy or perplexity values are dependent on word 

probabilities given by the language models for these clusters.

Once the metric has been defined, clusters can be constructed using a k-means 

algorithm, as described in section 2.2.3.1 above. Once the contents o f all the clusters 

have been finally decided upon, a separate trigram language model can be constructed 

for the documents in each cluster. In application, some criterion must be used to 

decide which cluster-based model (or combination o f models) would be most 

appropriate for use with the utterance or document currently under consideration -  

this will be discussed in more detail in Chapter 7, where the cluster-based experiments 

will be described.
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2.3 Combining Information from Several Sources

2.3.1 Introduction

When we wish to combine probabilistic information from several sources -  for 

example, acoustic information from an acoustic model and linguistic information from 

a language model, or from several different types of language model (e.g. a trigram 

model and a cache model), we require a methodology for combining probabilities 

from the different sources in order to obtain a valid probability as the result. There 

may also be good reason to give more “weight” to values from certain sources than 

others.

There are two obvious approaches to combine probabilities from distinct sources 

(sometimes called different “probability streams”) : in a multiplicative manner or in a 

weighted averaging manner.

Consider a relatively general case where we are trying to predict the probability o f an 

event x  based on probabilistic information from M distinct sources (streams), which 

we assume to be independent. Let P(x) be our overall estimate o f the probability o f x 

occurring and pj(x) be the probability o f x occurring according to stream i (for 

1 < i < M). In most cases of interest here, the probabilities will all be conditional on 

some specified history or events having occurred.

In the multiplicative approach,

M
p(x) = n ^ f e w ) "

i=i

where Kj is a normalising factor (introduced to ensure ^  P(x) = 1 ) and aj is an
all x

exponent to account for the relative importance o f the different information sources. 

This will require selection of appropriate values o f the Kj and a*. The maximum 

entropy approach (see section 2.4 below) is a suitable method for selecting these 

parameters in a way which is consistent with a body o f training data.
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The weighted-averaging approach is normally known as linear interpolation, and is 

described in section 2.3.2 below.

2.3.2 L inear Interpolation

Linear interpolation is an “additive” or “weighted averaging” approach to conbining 

information from several sources. Using the same notation as in section 2.3.1 above, 

the overall estimate o f the probability o f event x occurring, based on the M 

information sources is given by :

M
P ( x ) =  E  Pi Pi(x) > where the pi are weighting factors, to be determined, showing

#=i

the relative importance o f the information sources, such that 0 < /?/ < 1 for each i and
M
^  = 1. There are therefore (M -l) parameters to be selected (the final one is then
/= ]

determined by the others). In the context o f statistical language modelling, a method 

commonly used for selecting these weights is to use the “Expectation-Maximisation” 

(EM) algorithm (Dempster et al 1977, Jelinek 1990) which chooses the weights in a 

way which optimises the perplexity o f the resultant interpolated model with respect to 

the data used for the purpose. More explicitly, the EM algorithm is a method 

originally intended for estimating the optimal set of parameters { pi } which maximise 

a likelihood function g ( y | { P i }  ) for a given set o f observable data y dependent on 

non-observable values x which are distributed with probability density f  ( x I {P i} )• 

The EM algorithm is a two-phase iterative process for estimating these optimal 

parameters :

Phase 1 (E Phase):

Find the Expectation E( log ( f( x | { a,-}) | y, { Pi } )) = Q({ a t- } | {p i } ), say, 

where there are the same number o f parameters { a , } as {P i} . We assume that this 

function exists for all possible pairs ({ a,- } ,{#■} ) and that f( x | { / ? / } )>  0 "almost 

everywhere" in the space o f all possible { p i } .
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Phase 2 (M Phase): "Maximise" (optimise) Q({ a z} | {/?/} ) over the possible values 

o f { a, }. Choose {aj* }, the set o f values o f the { a , } which give this maximum in 

Q, to be the new values o f the {pi } .

Repeat phases 1 and 2 in turn until some convergence criterion is met.

Ideally, it would be preferable to maximise log (f ( x | {/?,■} ) ) ,  but this quantityis not 

known explicitly, so we have to use the best estimate of it currently available : its 

expectation given the data y and the current best estimates o f the parameters {p i } 

(Dempster, Laird & Rubin 1977).

This algorithm will eventually converge to the values of the parameters which are 

optimal with respect to the data used for their calculation. If  this data set is 

sufficiently large and is representative o f the test data (to which the resulting model is 

to be applied), then the parameters should also be close to optimal with respect to the 

test data (Rosenfeld 1994).

The advantages and disadvantages of using linear interpolation as a means of 

combining information from different statistical language models have been discussed 

by Rosenfeld (1994). To summarise his findings :

Advantages:

(i) Linear interpolation is very general, and can be used with all kinds o f language 

models. In fact, only the probability streams, not the models themselves, are needed in 

the actual interpolation process.

(ii) Linear interpolation is simple to implement, experiment with and analyse. 

Packages, such as the Cambridge-Camegie Mellon University Language Modelling 

Toolkit (Clarkson & Rosenfeld 1997), often include programs to perform linear 

interpolation o f models. (Indeed, it is the interp program from this package which has 

been used for this purpose in the experiments described later in this thesis.) The 

weights do not normally need to be specified very precisely (changes o f up to about 

5% make little difference to the perplexity o f the interpolated model) and relatively 

little data (several thousand words per parameter) needs to be held back for training 

the weights.
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(iii) A linearly interpolated model cannot be worse than any o f its individual 

components, at least with respect to the data on which is weights are trained. 

Normally, if  an additional source of information is of little or no use to a composite 

language model, the EM algorithm will result in that component having a very small 

weight in the interpolated model.

Disadvantages :

(i) Linear interpolation does not always make optimal use o f the available information 

sources. The different components are consulted “blindly” without regard to their 

individual strengths and weaknesses, which may be context-dependent, and the 

weights are optimised globally (over all the data reserved for that purpose), rather 

than with respect to data o f current interest. This will make the resulting model less 

adaptable. Furthermore, the interpolated model is a weighted arithmetic average, 

whereas perplexity, the commonly-used measure o f language model “quality”, is a 

geometric average, so small-weighted contributions to linearly interpolated models 

can make large reductions in perplexity compared with the original language models.

(ii) Linearly interpolated models can be statistically inconsistent with their individual 

components. The different component models will probably partition the data space in 

different ways, and an interpolated model (with weights computed globally over all 

the data reserved for that purpose) will not be able to produce probabilities which are 

entirely consistent with counts of observations for any one such partition.

Nevertheless, in spite o f its disadvantages, linear interpolation is still the most 

commonly used means o f combining information from distinct sources in statistical 

language modelling, and will be extensively used for this purpose in the remainder of 

this study.

2.4 The Maximum Entropy Method

2.4.1 Introduction

The idea of maximum entropy inference has its origins in the work o f Boltzmann (c. 

1870) and Gibbs (c. 1900) in statistical physics and thermodynamics (Jaynes, 1988). 

However, in some way it has similarities with Occam's Razor - the principle due to

49



the Medieval philosopher William of Occam, which suggested that in situations where 

two explanations were offered for a phenomenon, in the absence o f additional 

information, the simpler explanation should be preferred (Berger at al 1996, Gull 

1988) - and Laplace's "Principle of Insufficient Reason" (1843) (Jaynes 1988).

An informal statement o f the principle o f maximum entropy can be stated as : "In 

order to produce a model which is statistically consistent with the observed results, 

model all that is known and assume nothing about that which is unknown. Given a 

collection of facts or observations, choose a model which is consistent with all these 

facts and observations, but otherwise make the model as 'uniform' as possible." 

(Berger et al, 1996).

As an example o f this, consider the problem of reducing the task of translating from 

English into French to a set o f statistical rules which could be implemented on a 

computer (Berger et al 1996). There are several French words and phrases which may 

be considered as translations o f the English word "in" - "dans", "en", "a", "au cours 

de" and "pendant" are probably the most common. According to the principle o f 

maximum entropy, in the absence o f  further information, we should choose a model 

which makes a uniform choice between these whenever the English word "in" is 

encountered, i.e. p(dans) = p(en) = p(a) = p(au cours de) = p(pendant) = 1/5 . Clearly, 

this model does not include any sophisticated knowledge about the French language, 

but is purely the most uniform model in the absence o f further information - as 

directed by the principle o f maximum entropy.

Now suppose that, on consulting an expert, we found that 30% of the time the 

appropriate translation for "in" was either "dans" or "en". We can now revise our 

model in the light o f this observation. Given this, the five options above, but no extra 

information, the "most uniform model" we can choose would be : 

p(dans) = p(en) = 3/20 but p(a) = p(au cours de) = p(pendant) = 7/30 

We have chosen the "most uniform" probability distribution consistent with the 

observation that p(dans) + p(en) = 3/10 (since "dans" and "en" account for 30% of the 

occurrences of "in"), and for the remaining options we have chosen the most uniform 

distribution consistent with the requirement that
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p(dans) + p(en) + p(a) + p(au cours de) + p(pendant) = 1.

I f  we had further observations, such as 'The expert translates "in" as either "dans" or 

"a" 50% of the time', then it may become less obvious how to modify the model 

whilst maintaining consistency with the data and keeping the model "as uniform as 

possible". The maximum entropy method provides a framework for achieving these 

objectives.

This still contains very little knowledge of the French language. Further refinements 

could be made by adding context-sensitive data, for example 'If "in" follows the word 

"April", in 90% of cases, the French translation is given as "en" by our expert.' The 

probabilities in our model now become conditional probabilities.

2.4.2 M athem atical F ram ew ork : Feature-Based Models and M axim um  Entropy

The analysis below follows that o f Berger et al (1996).

Consider a set of data, in which the response of the system in which we are interested 

is observed as y under conditions (or context) x. In the translation example above, y 

would be the French translation and x would be the context o f the English word being 

translated - including the word itself, the remainder o f the sentence in which it appears 

and possibly additional information such as the topic o f the text or speech. We can 

then collect a set o f data where we have translations {yj} corresponding to contexts 

{Xi}, giving a set o f ordered pairs {( Xi, yi)} = {( xi , yi)} , ( ,  y2) , . . . ,

( xN, yN)}. In our translation example, these would be the translations, y\ , o f "in" 

offered by a expert for various English sentences, x,-. Within a statistical model we 

can use P(y | x ) to denote the probability that y is the output given input context x, or 

the conditional probability o f y occurring given x.

Given a sample of N items o f training data (data to be used to train the model), we can 

denote the empirical bivariate probability distribution o f x and y co-occuring by

P(5 . y ) :

p(x , y) = (Number o f times that (x , y) occurs in the training data) / N
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Note, however, that there is only likely to be a few occurrences o f any given (x , y) 

pair in the training data set, and many possible pairs may not occur at all. This can 

make reliable estimation of probabilities from limited data quite difficult. (Note that 

throughout the discussion below, the symbol p will refer to an empirically-estimated 

probability distribution, whereas p will refer to the true underlying distribution.)

We now wish to construct a statistical model which will enable us to predict the most 

appropriate y for a given context x , whilst being consistent with the training data. We 

will make use o f Bayes1 Theorem of Conditional Probability :

P( A, B) = P(A|B).P(B) = P(B|A).P(A)

and hence inference techniques o f this type are sometimes known as Bayesian 

methods.

We can reduce each the context-outcome pair (x , y) to a vector o f binary features 

{fi}. Each feature is "on" or "off' (1 or 0) depending on the (x , y) pair currently under 

consideration. For example, in the English to French translation problem, fi could be 

set to 1 if  and only if  y is "en" and the English context x has "in" followed by "April".

Noting that p(fi) = p(fj =1), the expected value o f a feature fj with respect to the 

empirical (observed) probability distribution of contexts and outcomes is given b y :

Ee(fi) = p(fi) = Z p t e , y ) f i ( i , y )
£ , y

whereas the expected value of fj with respect to the conditional probability model we 

are constructing is :

Em(fi) = p(fi) = Z pGD p( y I * )  ? ( s . y) 
s . y

where p(x) is the observed probability distribution of contexts x in the training data.

We require that the model is consistent with the training data, and thus that 

p(fj) = p (fj). Hence, we obtain :
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X p ( i ) p ( y | x )  f i te .y)  = X p(2>y)fi(2>y) 
s . y  2 , y

as a constraint on our conditional probability model p( y | x ).

We now wish to make our model as "uniform" as possible, but how do we quantify 

"uniformity" ? The measure generally used is the entropy, H(p), o f the probability 

distribution p :

H(P) = - X Pi l°g(Pi) 
i

where the summation runs over all possible states in which the system may be found, 

and p, represents the probability o f the system being found in that state. Strictly 

speaking, the logarithm should be taken to base 2, but consistent use o f a logarithm to 

any other base will just result in a scaling of the entropy by a constant factor.

In the context o f the conditional probability distributions o f interest here, we have :

h (p)=  - X p(i>y)log(p(*>y» = - X p(s)p(y |x) i°g(p(y lx))
2 .y * .y

where the summations run over the complete set o f possibilities for x and y.

A probability model with no uncertainty at all ( p( y | x) = 1 for all x and y) would 

give an entropy o f zero, which is the lowest possible value of H(p). ( 0 < p < 1 , so 

log(p) is always non-positive.) Similarly, a completely uniform model where 

p(y | x ) = 1 /|7 |, with \ Y\ the number o f different possible values for y, independent of 

the context x , will have entropy log(|y|), which is an upper bound for H(p). Thus, the 

"more uniform" the model, the larger the value o f H(p). This leads us to a more 

formal, mathematical statement of the principle o f maximum entropy :

"In order to choose a probability model p from a set o f permitted models, choose 

whichever model is which is consistent with the given data whilst maximising the 

entropy, H(p), o f the model."
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Thus, the problem of finding the "best" probability model p becomes a problem of 

optimisation under constraints :

Maximise H(p) with respect to p, whilst satisfying the constraints : 

p(fi) = p(fj) fo ri = 1,2, 3, ...

This can be tackled using the method of Lagrange multipliers. We convert the 

problem into one o f unconstrained maximisation of the Lagrangian function :

L ( P . i ) =  H(p) + Z X i(p (fi)-p (fi))  
i

When the constraints o f the original problem are satisfied, p(fj) - p>(fj) = 0 and so 

L(p, X) = H(p).

We then find the maximum (with respect to varying p) o f L(p, X ) whilst holding X 

fixed. Use px to denote the value o f p which achieves this for the current X and T(X) 

for the value o f L(p, X ) there.

Defining Zx(x) = £  exp ( I  X\ fj(x , y ) ) 
y i

it can be shown using multivariate calculus that the optimal values, for a given X are :

P* (y I x ) = ( exp ( £  Xi fj(x , y ) ) )  / Zx(20
i

T(L) = - £  p (x ) log(Zx(x)) +
x_ i

We then find the optimal value o f X , X*, which maximises T(L). Substituting this 

into the expression for px (y | x ) above will yield the most uniform model, or "model 

with maximum entropy", consistent with the data. It can be shown that, under 

appropriate (Kuhn-Tucker) conditions (Greig, 1980) , any algorithm which finds the 

value X* which maximises T ( y  will find the correct value of px (y | x ) which 

maximises H(p). In the earliest experiments we performed (Huckvale & Hunter 2001), 

we chose to use the "downhill simplex method" (Nelder & Meade 1965, Press et al.
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1992) because o f its simplicity and reliability. However, this method proved to be 

somewhat inefficient in the number o f steps -  and hence the computational time -  it 

took to find the optimum set X* where the set possible features is large. In more 

recent experiments, we have employed the “generalised (or improved) iterative 

scaling method” (Darroch & Ratcliffe 1972, Rosenfeld 1994, Berger et al 1996) 

which, although somewhat more complicated, proves to more efficient.

It can also be shown that the constrained optimisation problem of finding o f finding 

the probability distribution with maximum entropy from the family of distributions 

px(y | x) is the dual problem to the unconstrained optimisation task o f using maximum 

likelihood to find the set o f parameters X which maximises TQl) (Berger et al 1996).

The above analysis does not explain how the features to be incorporated into the 

model should be chosen, or how many features should be incorporated into the model. 

Strictly speaking, these are not the concerns o f the maximum entropy method. 

However, they are o f great practical importance when solving real problems. It is best 

to start with a large selection o f possible "candidate" features which can be any 

parameters which help describe the context. Features can then be added to the model 

in an iterative manner - adding the features one at a time, according to which feature 

seems to make the best improvement to the model at that stage and continuing until 

adding further features seems to make negligible improvement to the model.

However, constructing models incorporating a large number o f features from an even 

larger set o f candidate features using maximum entropy is highly computationally 

intensive. It may be wiser to reduce the size o f the set o f candidate features by initially 

pre-selecting or "winnowing" using some measure o f "probable usefulness" o f each 

feature, such as mutual information between the feature and output value y 

(Rosenfeld, 1996).

The iterative process of feature selection is carried out by initially choosing a model 

containing no features. Some feature is then temporarily added to the model, and the 

resulting improvement to the model (in terms o f gain in likelihood with respect to the 

training data), if  any, measured. The feature is then removed from the model and 

another tried instead. This is repeated until all features have been tried, and the one 

which improves the model the most added permanently. The process is repeated
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trying all candidates for a second included feature, then for a third, and so on. The 

process is terminated when the addition of further features makes negligible 

improvement to the model, or when the process becomes computationally infeasible. 

(The computational time required to construct a model containing N features from a 

fixed set o f M candidates, with M significantly greater than N, seems to grow 

approximately exponentially with N.)

This process does not specify what sort of features are likely to be useful. Indeed, this 

will depend heavily on the precise nature o f the problem being studied. In an area 

such as statistical language modelling, features could be any one o f a wide range of 

things - lexical or topic information, pragmatic information, grammatical information 

to name but a few. The best policy is probably to err on the side o f  allowing a large 

number o f possible features initially, then reduce the number being considered using a 

"winnowing" process, as described above.

One o f the first major applications o f the maximum entropy method was in astronomy 

for the purpose o f reconstructing images from noisy data (see, e.g. Burch et al, 1983, 

Gull & Skilling 1984). However, the first applications o f it to statistical language 

modelling seem to have been during the mid-1990's (Berger et al 1996, Rosenfeld

1996).

For an example o f an experiment using Maximum Entropy to train an exponential 

probability model (using sequences o f “word classes” based on parts o f speech) which 

is then applied to a language modelling problem , see Huckvale & Hunter (2001) -  in 

Appendix B o f this thesis.

Experiments using models based on word trigger pairs, trained using Maximum 

Entropy, will be described in chapter 6.\
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Chapter 3 Dialogue and Discourse

3.1 Motivation : What’s Special About Dialogue ?

The main focus o f this thesis is the application of statistical language modelling 

techniques to dialogue situations -  in particular, the large body o f transcribed British 

English dialogue material within the British National Corpus (see chapter 4). As will 

be discussed below, dialogue differs significantly from written text material both in its 

structure and lexical content. As noted by Taylor et al (1998), most automatic speech 

recognition systems have been designed to deal with read speech or isolated 

utterances and few systems have been adapted to take account of the differences 

between these types o f speech and spontaneous conversational speech. From the 

perspective o f speech technology, the study o f dialogue is important for at least three 

reasons. Firstly, it would be hoped that incorporating features taking account o f the 

nature of dialogue into automated spoken dialogue systems would lead to better word 

recognition (or utterance comprehension) performance. Secondly, such features could 

also aid more natural human-machine interaction. Thirdly, evidence from a large 

corpus o f dialogue data could lead to a better theoretical understanding of, and 

empirical justification for, linguistic theories o f dialogue, some o f which will be 

briefly discussed below.

Thus, I believe that taking account o f its special nature, rather than treating it in 

exactly the same way as ordinary text, will be beneficial in statistical language 

modelling. Previous authors (e.g. Rosenfeld 2000b) have noted that the success of 

statistical language models is very sensitive to the nature of the material on which 

they are trained and to which they are applied. However, to date, the majority of 

language models are based on either ordinary text or transcribed broadcast news 

(largely monologue) data. In recent years, relatively large corpora o f transcribed 

dialogues have become available (see examples in table 3.1 below), which make 

serious statistical language modelling o f dialogue data feasible.
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Corpus English Signal Speakers Size Style

SWITCHBOARD (1.2) American Telephone 543 -  3 million words 
(~ 240 hours)

Given topic

CALLHOME-English North American Telephone 120 230 000 words Conversation

CALLFRIEND-English American Telephone 60 -  1200 minutes Conversation

BRAMSHILL British Microphone -200 600 000 words Given topic

HCRC Map Task British Microphone 64 -  18 hours 
(-1080 minutes)

Given topic

DCIEM Map Task* Canadian Microphone -40 175 000 words 
(216 dialogues)

Given topic

British National Corpus 
(BNC)

British N/A > 124 7.7 million words Conversation

Table 3.1: Some corpora o f transcribed dialogues in English

Although several statistical studies have been carried out on some o f the corpora listed 

in table 3.1, such as the SWITCHBOARD corpus (Godfrey et al 1992, Godfrey & 

Holliman 1997, Chelba & Jelinek 1999, Jurafsky et al 1998), most o f these have either 

been in American English or contain only dialogues relating to a specific task, such as 

the HCRC Map Task corpus (Anderson et al 1991, Carletta et al 1997, HCRC 2001)*. 

Clarkson & Robinson (1997) and Clarkson (1999) have performed statistical language 

modelling studies on British English data, but using the entire BNC, without 

distinguishing between text, spoken monologue and spoken dialogue material. There 

would therefore appear to be scope for a study on statistical language modelling of 

British English dialogue data, such as that within the BNC, and that is the focus of 

this thesis.

*Most o f the statistical modelling (Taylor et al 1998, King 1998, Wright et al 1999, 

Wright 2000) carried out on the Map Task was actually performed using the DCIEM 

Canadian English Map Task Corpus (Bard et al 1995,1996) rather than the HCRC 

British English version. Note that much of the DCIEM corpus was acquired whilst 

the participants were suffering from some degree o f sleep deprivation.
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One o f the aims o f the project which resulted in the BNC was that it should be a large 

corpus, representative o f modem British English -  including examples of material 

from different regions o f the UK, from speakers o f a variety o f ages and o f different 

social groups. This would appear to make the dialogue material in the BNC 

particularly suitable for training a language model which could be applicable for use 

in a general dialogue system usable by any speaker o f modem British English.

Spontaneous speech -  even once transcribed - is rather different to written text. 

Disfluencies and speech repairs will tend to be common. In informal situations, 

colloquial expressions and slang are more common than in text, whereas complex 

words -  technical words and “sophisticated” words o f Latin or Greek origin -  may 

tend to be more infrequent in speech than in text. Transcribed dialogue differs even 

further than transcribed monologue does from ordinary written text. The observation 

that the participants tend to take turns to speak, with the speaker normally changing at 

particularly appropriate points in the conversation, is unique to dialogue (and the 

multi-speaker equivalent, “polylogue”). Furthermore, there are issues o f what 

knowledge, both explicitly related to the topic o f the conversation and to more 

linguistic issues such as the referents o f pronouns and other anaphora, is already 

shared between the participants and what needs to be negotiated between them. Co

operation between the speakers is clearly a requirement for a “successful” dialogue. 

Greetings and other phatic utterances have a definite role in dialogue, but are largely 

irrelevant in written text, if  they occur at all. Structures between turns, such as 

question/answer pairs or question/clarification request/clarification/answer, can be 

important, and the way in which topics are introduced, developed and changed may be 

very different in dialogue from text or spoken monologue.

It would therefore be expected that incorporating some of these distinctive features of 

dialogue into automatic dialogue system -  either within the language model, or as a 

separate module -  should be beneficial to the performance o f the system. Some 

previous approaches at attempting this will be discussed in the remainder of this 

chapter, whilst my own experiments applying statistical language modelling
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techniques to the dialogue material within the British National Corpus (BNC) forms 

the theme for the remainder o f the thesis.

3.2“Dialogue” and “Conversation” 

-  Some Perspectives from Linguistic Theory and Psycholinguistics

Prior to discussing approaches to modelling dialogue (particularly from a 

computational or statistical perspective), it may be instructive to consider some 

concepts from linguistic theory relating to “conversation”, “discourse” and 

“dialogue”, and their implications for the computational modelling o f dialogue. Some 

o f these concepts can be incorporated into a computational or statistical model in a 

very straightforward way, whereas other features may be very difficult, or even 

impossible, to model.

Cameron (2001, pp 7-18) has discussed the distinctions between “conversation”, 

“talk” and “spoken discourse” in some detail. Some of the material below follows the 

argument o f her analysis.

“Conversation” is normally taken to mean spoken (as opposed to written) language. 

However, some would question whether the situation is that simple. Is monologue 

(speech by a single person) really “conversation” ? Are the utterances o f a school or 

college class lesson, or those o f an interview or a medical consultation, really 

“conversation” ? Perhaps “interactivity” (the speaker changing frequently, i.e. the 

majority o f the individual speaker turns being relatively short) and spontaneity (the 

contributions o f each participant are not the result o f significant planning, unlike the 

case of, say, the teacher’s role in the verbal exchanges in a school lesson) are 

necessary features of “true conversation” (Nofsinger 1991, pp3-4) ? Perhaps 

“conversation” is closer in meaning to “chat” or “gossip” than it is to just “spoken 

language” ?

More general, but more precisely-defined, terms for “spoken interaction”, are “talk” 

and “spoken discourse”. Discourse can be defined as “a linguistic structure at the level 

above that of the sentence” (Harris, 1952), and so “discourse analysis” studies 

linguistic structures longer than single sentences, and their interaction and
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organisation. Features o f such structures include anaphors (such as pronouns referring 

back to something or someone already mentioned) and narrative cohesion and 

coherence. However, this is not without controversy. The above definition can 

broadly be described as a “formalist” or “structuralist” approach to discourse 

(Schiffrin 1994). Others would prefer a more “functionalist” definition, relating to 

what the discourse is being used for. For example, a single word such as “Stop !” or 

“Gentlemen” (whether spoken, or on a sign) could be considered as a “discourse” in 

its own right, even though they have no “structure at a level above a single sentence”. 

An alternative definition of “discourse” which follows this perspective would be 

“language in use -  used to do something and mean something, language produced and 

interpreted in a real-world context” (Cameron 2001, p i 3). O f course, there are 

several other possible definitions of “discourse” as well.

Hymes (1972a,b) proposed a scheme based on the idea o f “communicative 

competence” (combining Chomsky’s ideas o f linguistic “competence” and 

“performance”) to investigate “rules o f speaking”. Within Hymes’ scheme, there are 

three levels o f “speech unit”. At the top level, the “speech situation” is the social 

context within which the speech o f current interest occurs, but includes things other 

than the speech alone. For example, a school lesson may include writing on the part of 

various people, gestures, facial expressions and other activities in addition to the 

actual spoken utterances. At the intermediate level is the “speech event”, which is the 

actual speech (or collection o f utterances, dialogue turns, etc.) o f interest, within a 

single speech situation. At the bottom level is the “speech act”, which can refer to a 

single utterance or short set o f utterances by a single speaker. “Greeting”, “asking a 

question”, “answering a question”, “insulting”, “apologising” are examples of “speech 

acts” in the sense that Hymes uses the term. Thus, a “speech event” can be considered 

as a sequence o f speech acts, together with certain additional information. Hierarchies 

o f this nature have been used in some computational models (e.g. Jurafsky et al

1997). Hymes proposed a structure, sometimes called the SPEAKING grid (since the 

word SPEAKING can be used as a mnemonic for the components o f the structure) to 

describe the content and context o f a speech ev en t:
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S : setting, where the speech event occurred (time and location)

P : participants who took part in the speech event, and what part each one played in 

it (e.g. speaker, person being addressed, eavesdropper, ...)

E : ends -  the purpose and intended outcome of the speech event.

A : act sequence -  the sequence o f the speech acts making up the speech event 

K : key -  the tone or manner o f the execution of the event (e.g. serious or joking, 

sincere or ironic, . . . )

I : instrumentalities - the medium of communication (speech, sign 

language, w riting, ...) and language or variety from the participants’ 

repertoires.

N : norms o f interaction : the rules for producing and interpreting speech acts within 

the current framework.

G : genres -  the “type” or “class” which the speech act belongs to, and other relevant 

features o f the current act (e.g. is the speaker quoting poetry, or from a standard 

religious text).

(After Cameron, 2001, p 56)

Schriffrin (1994) and Cameron (2001) have suggested that Hymes’ scheme should be 

used as a “heuristic” for the analysis o f speech events, rather than an algorithm for 

processing them. However, it does provide one possible framework for the systematic 

description o f a conversation in its context.

From a more "sociological" perspective, the important issue is understanding the 

“orderliness o f social interaction” -  how the order o f such social interactions is 

produced and how it can be reproduced. This approach to spoken discourse is known 

as “Conversation Analysis”, pioneered by Harvey Sacks. The viewpoint o f 

Conversation Analysis (or C.A.) is that the participants in a conversation are not just 

automata following external rules but create a “social order” actively and 

continuously through their own behaviour. Thus, in contrast to the theory o f speech 

acts (see below) which might define a given speech act as a “question” because it 

meets a specified set o f criteria, conversation analysis would be concerned about 

whether the question was followed by an answer (Cameron 2001). However, it does 

not assume that there are no rules or procedures for the participants to follow -  if  

there were not, the result would be expected to be a chaotic random collection of
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utterances. Rather, it is primarily interested in what procedures participants in 

conversation follow in order to produce normal, “orderly”, structured conversations. 

Some computational approaches make use of the concept of "dialogue moves" or 

“move-game” theory (Power 1979, Carletta et al 1997) which can be related to these 

procedures.

One of the key observations o f C.A. is the nature o f turn taking in dialogue -  or, more 

generally, in “polylogue” conversation. Conversation requires the participants to take 

turns at speaking. At the risk o f stating the obvious, most o f the time in any 

conversation, a single participant is speaking at a time. Although there may be 

occasions when more than one participant attempts to speak at the same time, such 

occurrences will normally be treated as a problem -  an anomalous, awkward situation 

or error which needs to be rectified - by all concerned and “speech repairs” will take 

place -  typically, possibly after some apologies and negotiation, one speaker will be 

allowed to continue whilst the others become silent. Similarly, conversations do not 

normally include lengthy periods when no participant speaks -  in such a case, the 

conversation will tend to “die”. Furthermore, it is not normally the case that a single 

speaker continues indefinitely -  “speaker change recurs”. However, neither is it the 

normally the case that the order o f people speaking, or the time for which they speak, 

is pre-planned. Instead, with the exception of “controlled” situations such as chaired 

meetings where the chairperson controls who is to speak, the process through which 

the person speaking changes from time to time is one of continual negotiation 

between the speakers. Sachs et al (1974), quoted in Cameron (2001), proposed a 

simple scheme by which turn-taking in a multi-person conversation (or “polylogue”) 

could be governed:

(1) Normally, the current speaker selects the next speaker (e.g. “Would you agree, 

John ?”),

or, if  that does not apply,

(2) The new speaker self-selects (e.g. “If I could just make a comment regarding 

th a t . . .”), or, if  that does not apply,

(3) The current speaker may (but does not have to) continue.
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When working with a dataset which has been transcribed and marked-up in an 

appropriate way, o f which the British National Corpus is an example, the concept of 

speaker turns is a natural idea to incorporate into a model o f dialogue. Extensive use 

o f data partitioned into turns is made (although primarily in the context o f 

conversations involving just two participants) in the models used in the remainder of 

this study.

An approach based in the part o f linguistic theory known as pragmatics, which has 

strong connections to philosophy, is concerned with how language acquires meaning 

as it is used. There is a distinct contrast here between a purely “formal” or “symbolic” 

language (such as is used for formal logic, computer programming or for 

mathematical equations) and “ordinary” natural language which we use for speech. 

What we say may mean more (or less) than, or something rather different to, the “face 

value” meaning o f the sequence o f words used. For example, if  one person says to 

another, “It’s cold in here !”, the speaker may really mean “You shouldn’t have left 

the door open !”. Contextual factors are clearly o f great importance to such situations. 

This field was largely developed by J.L. Austin, John Searle and H.P. Grice and 

includes the theory o f “speech acts” (Austin 1962, Searle 1969) -  a topic o f relevance 

to some approaches to modelling dialogue (e.g. Stolke et al 2000). The theory o f 

speech acts and, more generally, how pragmatics relates to discourse, are described in 

Schiffrin (1994, Chapter 3 pp 49-96 and Chapter 6 pp 190-231) and Cameron (2001, 

Chapter 6, pp 68-86). Cohen & Perrault (1979) made an attempt to incorporate a 

speaker's intentions and plans into a computational model o f speech acts, which was 

further developed by Allen & Perrault (1980) (see also Perrault & Allen 1980), 

eventually leading to the "joint activity" model of Cohen et al (1990).

Even theoretical approaches which can be said to have their primary origins in 

linguistics have very significant differences.

The “structuralist” approach, following Harris’ (1952) definition o f  “discourse” as 

“structure within language at levels above the sentence”, concentrates on looking for 

formal regularities and patterns, which can be described as general (or reasonably 

general) rules. However, there may need to be different rules for “controlled 

situations” such as a question/answer session in a classroom (e.g. the teacher asks a
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question, a pupil responds, then the teacher gives an indication o f whether or not the 

answer was satisfactory, before asking another question, ...)  from those relating to 

situations where the conversation is spontaneous. Labov (1972a) and Labov & 

Fanshel (1977) examined the “structure o f spoken narrative” in detail within the 

“discourse o f therapy” -  the type of conversation which arises when a patient is 

consulting a doctor -  in an attempt to discover regularities behind the often higglety- 

pigglety “surface” appearance of such conversations. E.g. (fictious):

Patien t: “I’ve been suffering from headaches for several days.”

Doctor : “Have you also been experiencing indigestion, or other stomach problems ?”

These two utterances may appear rather unrelated, but the doctor may have an insight 

that problems with digestion often lead to headaches. To quote Labov, “The 

fundamental problem of discourse analysis is to show how one utterance follows from 

another in a rational rule-governed way. Within this type o f framework, the use o f 

anaphors (e.g. pronouns) and resolution o f what they refer to, is an important topic. 

For example (adapted from Sacks, 1972), in the context, “The baby cried. The mother 

picked it up.”, the use o f “it” refers to the same baby and most probably “the mother” 

is that baby’s mother. The resolution o f anaphors has also been studied from the 

perspective o f computational syntax (Lappin & Leass 1994, Mitkov, Lappin & 

Boguraev 2001).

However, many o f the more “social” and “contextual” aspects o f some o f the 

theoretical approaches to discourse analysis pose much greater problems from the 

point of view o f computational modelling. Although it is clear that such factors do 

have a major influence over the meaning o f utterances in dialogue and how a dialogue 

or other conversation develops, incorporation o f such features into a computational 

model or system would require a much higher level o f linguistic comprehension than 

is currently possible by a computer. For example, how could a computer be expected 

to interpret an utterance incorporating irony (e.g. “Well, that was a sensible thing to 

do !”), or making use o f “hidden” knowledge (as in the doctor and patient example 

above) ? Although their incorporation could potentially lead to a highly sophisticated 

automatic language understanding system, and to much greater adaptability of such a 

system to the situation in which it is currently being used, such features are at present
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considered not suitable to be included in mainstream computational models o f 

dialogue or used in automatic interfaces.

It may not just be computers or other automated systems which fail to understand or 

take account o f "hidden" or "implicit" knowledge required to correctly interpret the 

meaning o f utterances within a conversation. In many instances, this may also apply 

to humans ! Clark (1994, 1996) has argued that language use is fundamentally a 

collaborative activity between participants, and that a crucial issue for the success o f a 

conversation is that the participants understand all the utterances to an extent which is 

sufficient for the current purposes. A crucial concept for this is one o f "grounding" 

(Clark & Marshall 1981, Clark & Brennan 1991) the conversation - the participants 

need to be able to agree on a certain minimum amount o f shared knowledge and will 

need to request and give clarifications and explanations until this has been achieved. 

O f course, such a process requires continuous updating - just because a conversation 

has been successfully grounded at an early stage does not mean that it will necessarily 

remain grounded for the remainder o f its duration. Subsequent utterances by one or 

more parties may rely on knowledge not shared by the other participants and so 

further "grounding negotiations" will be required. Ginzburg (1998, 2001b) has 

discussed the "unique content assumption" - that individual conversational 

participants each believe that all the participants have resolved this "grounding 

knowledge" identically - and to what extent this assumption is valid. Clark & 

Schraefer (1987, 1989) proposed a "contribution model" for conversations. In this 

approach, a conversation is composed of contributions, each having two phases : 

"presentation", where the speaker presents an utterance to the listener, followed by the 

"acceptance" phase, in which the participants try to verify whether mutual 

comprehension, i.e. grounding, has been achieved. Cahn & Brennan (1999) noted that, 

similar to Ginzburg's questioning o f the "unique content assumption", even in a 

"grounded" conversation each participant can only estimate how the other parties 

understand the context. They went on to apply the model they developed to the 

human-computer interactions involved in querying a database. Traum (1994) and 

collaborators (Traum & Allen 1992, Traum & Hinkleman 1992) developed a 

computational approach to grounding in conversation, using "grounding acts" - 

special cases o f speech acts - and a "grounding grammar" to specify what sort of 

sequence o f such acts will result in a successfully grounded context. Traum &
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Dillenbourg (1996) produced a theoretical model of miscommunication - where 

problems arise from the conversation not being grounded initially - and applied their 

model to cases o f task-oriented dialogues (of the type found in the Map Task corpora). 

Cohen et al (1990) also modelled task-oriented dialogues - using the concepts o f 

"joint intentions" and "joint commitments" shared between the participants in such 

dialogues within a "joint activity" model.

Although, as can be seen from the above descriptions, the distinct theoretical 

approaches to dialogue and discourse may overlap to some extent, in many cases they 

differ in the “scale” on which they focus as well as in their philosophy o f approach. 

Pragmatics works on a large scale -  the context o f the conversation -  whereas the 

more “structural” approaches tend to focus-in on the rules governing the relationships 

between successive utterance or dialogue turns at a much more local level. 

Computational approaches to modelling dialogue can also work at different levels. 

Alexandersson et al (Alexandersson & Reithinger 1997, Alexandersson et al 1998) 

identify four different levels within negotiation dialogues : (1) the whole dialogue; (2) 

dialogue phases, with each dialogue potentially having a greeting phase, a negotiation 

phase and a closing phase; (3) individual turns within a single phase; (4) “dialogue 

acts”, such as requests, statements, acknowledgements, back-channels, within each 

turn. This has been applied within the context o f the Verbmobil project (see section 

3.3 below).

As noted in chapter 2, some approaches from psycholinguistics include concepts 

which can readily be incorporated into a computational or statistical model. For 

example, Walker (1996, 1998) proposed the use o f a cache model (introduced in 

section 2.2.2 and further discussed in chapter 5 ) o f approximately the most recent 3 

sentences, to explain certain psycholinguistic phenomena relating to humans having 

limited attention whilst participating in discourse This is proposed as an alternative to 

the “stack model” (again, by analogy with a “stack” in computer architecture) o f 

Grosz & Sidner (1986, 1998) and Grosz et al (1995). The cache model assumes that 

the “attentional window” of a participant in a dialogue is largely restricted to the 

words and utterances most recently spoken (an assumption backed-up by several 

experimental studies, see e.g. Fletcher 1994, Baddeley 1986), whereas the stack 

model assumes that the attentional memory is arranged hierarchically, in (say) a tree
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structure, so that items and entities dealt with in asides, etc. are erased from the 

attentional memory once the aside is complete, and attention returns, without 

difficulty, to the items and entities previously under discussion. The issue “without 

difficulty” is a key point disputed by Walker (1996, 1998). The prevalence of 

redundancy in dialogue, where information which had apparently already been agreed 

between the participants is repeated or “refreshed” (Walker 1992, 1993), is central to 

her arguments in favour o f the cache model. The prevalence of "reprise utterances" 

(Ginzburg & Sag, 2001) - where the last utterance o f the previous speaker is repeated 

(possibly with different intonation or emphasis) by the current speaker - and 

clarification requests (Purver, Ginzburg & Healey, 2002) in dialogue, plus the fact 

that such requests are normally clarified very promptly, are features which provide 

evidence that a participant holds only the most recent part o f the history o f the 

conversation in reliable short-term memory (i.e. a cache). Furthermore, such 

clarification requests (and the subsequent responses) provide one means for the 

participants to "ground" the conversation (Purver, Ginzburg & Healey, 2002). 

Ginzburg (1998) also discussed the use of "clarification utterances" (whether 

specifically requested or not) in dialogue from the perspective o f formal semantics. 

Cohen et al (1990) found that amongst the natural outcomes o f their "joint activity" 

model for task-oriented dialogues were the kind o f "discourse intentions" (Grosz & 

Sidner 1986, Litman & Allen 1990) which underlie the "discourse markers" - signals 

such as backchannels, clarifications, elaborations and confirmations - which are so 

common in dialogue (Oviatt & Cohen 1991).

Similarly, the psycholinguistic concept of "priming" (Bodner & Masson, 2003, Meyer 

& Schvaneveldt, 1971) - where recent occurrence o f a word related in meaning or 

sound to the current "target" word improves a listener's recognition accuracy or speed 

o f response for that target - is analogous to the trigger pair models discussed in section 

2 .2 . 1.
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3.3 Previous Approaches to the Modelling of Dialogue 

in Speech Technology

Most early research on the statistical modelling o f dialogue tended to relate to the 

relatively controlled situations of task-oriented dialogue, such as the Map Task 

(Anderson et al 1991, Taylor et al 1998, Wright 1998), the content o f the 

VERBMOBIL corpus (Mast et al 1996, Wamke et al 1997, Reithinger et al 1996, 

Reithinger & Klesen 1997, Samuel et al 1998) and of the ATR Conference corpus 

(Nagata 1992, Nagata & Morimoto 1993, 1994, Kita et al 1996), which is a subset of 

the ATR Dialogue Database (Ehara, Ogura & Morimoto 1990).

As noted in section 1.5, the Map Task is one where one participant is trying to direct 

the other from some specified starting point (A) to a specified destination (B). Each 

participant has a map, but these two maps are not identical. The starting and end 

points are common to both maps, as are some other landmarks. However, each map 

will also contain some landmarks not marked on the other. The task requires 

negotiation between the two participants so that the “director” eventually describes a 

route from A to B which is comprehensible to the “directee”. The Map Task corpora 

(Anderson et al 1991, Carletta et al 1997) are therefore clearly examples o f collections 

o f task-oriented dialogues. The Canadian English version of this -  the DCIEM Map 

Task corpus (Bard et al 1995) has been modelled (Taylor et al 1998, Wright et al

1999) using a scheme employing Power’s “move-game” theory (Power 1979, Carletta 

et al 1997). The entire conversation is divided into “games”, each o f which has a 

specific goal. Individual “dialogue moves” are classified as one o f 12 categories, and 

o f these 6 types are also used to specify distinct classes of games, according to the 

first significant move within that game. These categories are “instruct”, “check”, 

“yes/no query”, “wh- query”, “explain” and “align”. The other types o f  move are 

“acknowledge”, “clarify”, “reply yes”, “reply no”, “reply w (other reply)”and “ready” 

(used to indicate that the previous game has been completed and that the current 

participant is ready to commence the next game). They developed a “4-gram” 

dialogue model (Taylor et al 1998) which made use of the role of the current speaker 

(“director” or “directee”), the type o f the dialogue move last made by the other 

speaker and the role (“director” or “directee”) o f the speaker who made the last 

dialogue move (which could be the current speaker) to predict the dialogue move to
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be made next. Just as several sources o f information (e.g. predictions from an acoustic 

model and from a language model) may be combined in an standard automatic speech 

recognition situation, the predictions o f their dialogue model were combined with 

information from an intonation model and from an “ordinary” speech recogniser in 

order to obtain a “best” prediction o f the next dialogue move. A separate language 

model was used for each type o f dialogue act, so that (for example) yes/no questions 

were modelled separately from acknowledgements (Taylor et al 1998). Their work 

also made use of prosodic information in the speech signal to constrain the models 

being applied to each utterance (Taylor et al 1996, 1998, King 1998, Wright et al 

1999, Wright 2000).

The VERBMOBIL corpus (Wahlster 1993, 2000) is based on over 1000 spoken 

dialogues, o f which approximately 300 were manually tagged for the appropriate 

dialogue acts. The aim of this project was to facilitate communication between two 

human users, who are native speakers o f different languages, by translating parts o f 

their speech on request. The corpus used in the later stages o f the project 

(Alexandersson et al 1998, 2000) was comprised of dialogues relating to the 

negotiation o f the date for a business meeting and making plans for travel, 

accommodation and entertainment. Their approach to modelling the dialogues is 

based on a hierarchy of dialogue act types, with a decision tree structure used to 

determine which type and sub-type any given dialogue turn should belong to. The 

system used 18 primary types, with a total o f 42 sub-types, o f dialogue act (Jekat et al 

1995, Alexandersson et al 1998). Multi-layer perceptron neural networks were trained 

to recognise the boundaries between dialogue acts in utterances and N-gram models 

o f sequences o f dialogue acts, trained on the manually-tagged dialogues, used to 

predict the next dialogue act (Reithinger 1994, Alexandersson et al 1995, Reithinger 

et al 1996, Wamke et al 1997). In parts o f their studies, a stochastic context-free 

grammar was used as a means o f  recognising the plan within a dialogue 

(Alexandersson & Reithinger 1997). Their work showed considerable success in 

predicting the next dialogue act in a sequence. One of their aims was to use this to 

reduce the search space o f the word recogniser (Alexandersson et al 1995), although 

the extent to which this was successful does not seem to have been made clear in the 

published reports.
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In the work on the ATR Corpus (Nagata 1992, Nagata & Morimoto 1993,1994, Kita 

et al 1996), simulated dialogues between a secretary and a questioner at an 

international conference were modelled using an ergodic Hidden Markov Model. This 

included a model based on “trigrams of speech acts” (rather than trigrams o f words).

Stolke et al (Stolke et al 2000, Jurafsky et al 1997, 1998) have modelled “dialog acts” 

-  such as statements, questions, backchannels, agreements, disagreements and 

apologies ; roughly equivalent to the “speech acts” defined by Searle (1969), the 

“conversational move” defined by Power (1979) or the “adjacency pair part” used by 

Schegloff (1968) and Sacks, Schegloff & Jefferson (1974) -  o f 1155 conversations, 

(approximately 1.4 million words in 200000 utterances) within the SWITCHBOARD 

corpus (Godfrey, Holliman & McDaniel 1992) statistically, regarding the “discourse 

structure” o f the conversation as a Hidden Markov Model (Rabiner & Juang 1986) 

and each “dialog act” as “observations” resulting from the states o f the model. Their 

model uses lexical, collocational and prosodic cues to detect and predict dialog acts. 

They used a database o f conversations, hand-labelled for dialog acts, to train and 

evaluate the models, in order to combine speech recognition and dialogue modelling 

probabilistically with the aim o f improving the accuracy rate o f both. Their system 

performed quite well at automatically labelling dialog acts, achieving 71% accuracy 

when working with word transcripts o f the conversations, compared with human 

performance o f 84% accuracy and a chance baseline o f 35%. When combined with an 

automatic speech recognition system, it gave a dialog act recognition rate o f 65% 

accuracy, and a small reduction in word error rate over the baseline of the speech 

recognition system alone. When using an “Oracle” for selecting the dialog act, they 

obtained a 13.0% reduction in perplexity and a 2.2% reduction in word error rate over 

the baseline. Their model allowed for 42 distinct categories of dialog act considered 

appropriate for the content o f the Switchboard corpus. They also attempted to use a 

cache model of dialog acts and a maximum entropy model based on constraints on 

dialog act sequences, but the results they obtained were disappointing (Stolcke et al 

2000).

The TRINDI (Task oRiented INstructional Dialogue) Project (Larsson & Traum

2000) modelled route planning dialogues, considering both human-human and 

human-machine dialogues. The computational model used was based on the concepts
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of "information state" (the information needed to distinguish a given dialogue from 

others - sometimes called "mental state" - at a particular time) and "dialogue moves" 

which update the current information state. The project produced a toolkit for 

developing the "dialogue manager" component o f an automatic spoken dialogue 

system.

Young (2000, 2002) has modelled a spoken dialogue system as a Partially Observable 

Markov Decision Process (POMDP), so that the model has minimal dependence on 

explicit rules being programmed or “hard-wired” into it, but can readily leam from 

observation o f data via a reinforcement learning strategy. Each dialogue act required 

incurs a small penalty (or “negative reward”) - on the basis that, in a spoken dialogue 

system, longer dialogues are likely to cause more frustration to the human user and 

higher costs to the provider of the system. However, successful completion o f the 

dialogue, to the user’s satisfaction, results in a large positive “reward”. The sequence 

o f interactions between the user and the system from initialising the dialogue to its 

termination is known as a “dialogue transaction”. The learning strategy is such that, 

based on experience from training examples, the system modifies a “policy matrix” 

giving probabilities that the current input is u given that the system is currently in 

state i -  and a “transition function” -  giving probabilities of going to any new state j 

given that the system is currently in state i and that the current input to the system 

from the user is u -  in order to maximise the expected total net reward for the 

complete dialogue transaction. (However, unless we are at the end o f the dialogue 

transaction, we cannot know the total net reward, only estimate it.) Approaches to 

performing the required optimisation, either by dynamic programming or by sampling 

methods such as Monte Carlo techniques, are discussed in Young (2000), who notes 

that the dynamic programming approach has the drawback that it requires complete 

knowledge o f the systems’ transition function beforehand, whilst using a sampling 

approach to leam from examples on-line as they occur has the disadvantage that many 

such training cases will be necessary to obtain a near-optimal policy. With this in 

mind, Scheffler and Young (1999, 2000, 2002) employed a model to simulate users’ 

behaviour. Walker and Young (2003) have followed a different approach -  using 

“Wizard o f Oz” examples (where the user is led to believe that he/she is 

communicating with a computer when, in reality, it is another person) with 

reinforcement learning to train a dialogue management system.
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Recently, He & Young (2003) have developed a generalization o f Hidden Markov 

Models (called “Hidden Vector State Models”) which accommodates an efficient 

representation of hierarchical structure in such a way that long-range dependencies 

can be learnt from unannotated training data. This in turn allows semantic ambiguities 

to be resolved in parsing. The results o f their experiments using the ATIS-3 1993 and 

1994 Air Travel databases have been encouraging, with their system giving fewer 

errors in “goal detection” tasks and better accuracy in source and destination “slots” 

than a general finite state tagger.

Halliday & Hasan (1976) and Clark & Haviland (1977) proposed that sentences or 

utterances in dialogue have an “informational structure”, separate from the syntactic 

structure. Part o f the utterance deals with “given” information -  information which is 

already shared or agreed between the participants -  and “new” information, being 

imparted for the first time by the current speaker to the current listener. “Given” 

information tends to occur near the start o f the utterance, whereas “new” information 

tends to occur later. A preliminary attempt to exploit this within dialogue modelling 

was made by Mateer & Iyer (1996). They applied a rule of thumb -  that the part o f a 

sentence before the main verb is “given” information, whilst the part after the verb is 

“new” - to data from the Switchboard corpus, finding that the vocabulary and lexical 

distribution were significantly different between the two parts. However, this could, in 

part, be due to the syntactic structure o f English -  particularly in cleft sentences - 

rather than necessarily being due to the informational structure. Nevertheless, the 

distribution of certain types o f words would be expected to be different between the 

two parts o f an utterance. Pronouns (and other anaphora) requiring a prior reference 

would be expected to mainly occur in the “given” portion o f the utterance, whereas 

verb forms relating to the semantic content will tend to be found in the “new” section. 

Broadly speaking, this was what was found by Mateer & Iyer (1996). They went on to 

develop, train and test separate bigram language models on the full sentences, on the 

parts o f the sentences which came before the main verb and on those parts of the 

sentences which came after the main verb, finding major differences in perplexity 

according to which material each model had been trained and tested on. The ideas of 

“given” and “new” (or “topic” and “focus”) information within dialogue utterances 

have also used within a statistical framework, using a “self-organising map” type
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neural network (Kohonen 1982, 2001), by Lagus & Kuusisto (2002), applied to a 

corpus o f Finnish dialogues.

This work has been generalized in the Interact project for Finnish dialogues, where 

Jokinen et al (2002) have employed a hybrid approach using an architecture based on 

“agents”, incorporating a self-organising map neural network for dialogue topic 

recognition (Lagus & Kuusisto 2002) and a “constructive dialogue model” (Jokinen et 

al 2001) for modelling sequences o f dialogue acts. Targeting a language model to the 

current topic is particularly important for a strongly inflected language with a highly 

flexible word order, o f which Finnish is an example. For such languages, short-range 

models such as trigrams will be o f much less value than for languages with a much 

stricter word order, such as English. However, it might be expected that an approach 

making use o f topic identification might also be o f value, if  less crucial, if  applied to 

strict word-order languages like English. Kurimo & Lagus (2002) carried out a 

comparative study, applying this type o f approach to data in both Finnish and English, 

finding an improvement in perplexity in the models over a trigram baseline for both 

languages. However, the datasets were news-text in Finnish and patent abstracts in 

English, so it is not possible to judge the benefit o f such an approach for English 

dialogue from that study.

O f course, not all computational approaches to modelling dialogue are statistically- 

based. For example, the ROSSInl -  Role Of Surface Structural Information In 

dialogue -  project (Ginzburg 2001a, Purver et al 2001, Purver 2002) takes a 

perspective based in semantics, using the framework o f Head-Driven Phrase Structure 

Grammar (HPSG) (Ginzburg & Sag 2001). This HPSG approach has been applied to 

several aspects o f dialogue -  in some cases using dialogue data from the BNC. It has 

been applied to resolving fragments in dialogue (Ginsburg et al 2001) and the 

resolution o f ellipsis and anaphora (Lappin & Gregory 1997, Ginzburg 1999). 

Subsequently, the work has been extended to deal with incomplete utterances which 

may not contain verbs -  so called “non-sentential utterances” (NSUs) -  in the projects 

“Phrasal Utterance Resolution in Dialogue” (Gregory 2001) and PROFILE : 

Processing and Resolution O f Fragments In dialogue (Ginzburg 2003, Fernandez & 

Ginzburg 2002). Such fragments are particularly common in dialogue, accounting for 

possibly as much as 11% of utterances in a sample from the dialogue material from
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the BNC (Ginzburg 2003, Fernandez & Ginzburg 2002) or even 30% o f utterances 

between members o f a single family (Van de Waijer 2001, quoted by Ginzburg 2003). 

Ebert et al (2001) used a “template-filler” approach within an HPSG framework, 

recycling syntactic and phonological information from parsing and interpretation, as 

an efficient means of generating full paraphrases for fragmentary utterances within 

dialogue. Ginzburg et al (2001b) have attempted to use HPSG to incorporate 

“conversational move types” into a grammatical analysis of conversation, whilst 

Purver et al (2001, 2002) have investigated clarification requests -  another very 

common feature o f human conversation - in dialogue within an HPSG analysis 

framework. This has been extended to the processing o f unknown words by a 

dialogue system, via requests for clarification, by Purver (2002). The problem with 

most techniques based on purely syntactic or semantic approaches to Natural 

Language Processing (NLP) is that they do not normally give quantitative predictions 

o f word probabilities which might be used to assist word recognition or choose 

between multiple interpretations. Nevertheless, some connections between the NLP 

and statistical approaches may come out of an analysis o f the results o f  statistical 

methods applied to dialogue, and consideration o f how and why these methods work 

as they do.
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3.4 Aims and Hypotheses for the Remainder of this Study

In this chapter, we have discussed ways in which dialogue is believed to be different 

to written text and to spoken monologue. Yet, as previously noted, most language 

models for automatic speech recognition or understanding systems are trained on text 

material, broadcast news transcripts and similar materials - and for that matter, most 

acoustic models are trained on read speech from similar types of sources to these. 

However, if  normal conversational speech -  and dialogue in particular -  really is quite 

different from such source data, it would seem far more appropriate that language and 

acoustic models be trained on the same sort o f material to which it is intended that 

they will be applied. This issue has been discussed by Rosenfeld (2000b).

In the remainder o f this study, the aim is to study, from the point o f view o f statistical 

language modelling, just how dialogue material -  or that least the sample o f modem 

British English dialogue contained within the BNC -  differs from text. How does the 

vocabulary variation and distribution differ between similar amounts o f text and 

dialogue ? How well do various techniques regularly used in statistical language 

modelling -  in particular, the types o f model described in chapter 2 -  work for 

dialogue material in comparison to text material ? Can we give any linguistic 

interpretation o f some o f the results from statistical language modelling experiments 

on dialogue and text material respectively ? Can any o f these experiments shed any 

light on structural aspects (as opposed to purely lexical and/or topic based properties) 

o f dialogue. Such questions will be addressed in the next four chapters o f this thesis.
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Chapter 4 Dialogue Material in the British National Corpus

4.1 The British National Corpus (BNC)

The British National Corpus (Bumard 1995, BNC 2001), henceforth referred to as the 

BNC, is a large database of modem British English, compiled between 1991 and 

1994. The project was a collaboration between several academic institutions, 

commercial publishers and the British Library, funded by the UK Department o f 

Trade & Industry (DTI), Science & Engineering Research Council (SERC), the 

British Library and the British Academy.

The BNC is composed o f both written material (totalling around 90 million words), 

transcriptions of spoken monologue (around 1.9 million words) and transcriptions of 

spoken dialogue (around 7.7 million words). It was designed with a view to represent 

as wide a range as possible o f modem British English. With this in mind, the written 

component includes a diverse variety o f text, including letters (both published and 

unpublished), essays by both school and university students and extracts from both 

national and regional newspapers and specialist periodicals, in addition to material 

from novels and academic books. Similarly, the spoken material was collected from 

various different sources. Some were “context governed” situations, such as business 

meetings, medical consultations, school lessons and interviews, whilst others were 

taken from recordings o f spontaneous informal conversations. This latter material was 

recorded by volunteers who were selected in a way intended to be representative of 

the population of modem Britain in terms of age, region and social class in a 

demographically balanced way and is therefore referred to as “demographically 

sampled” material.
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4.2 Spoken Material (including Dialogue) within the BNC

The spoken component o f the BNC (about 10% of the whole coipus) consists o f data 

from 863 sources, o f which 153 (approximately 4.2 million words) are “demographic 

material” (spontaneous everyday speech) and the remaining 762 (approximately 6.15 

million words) from “context governed sources” (such as business meetings). The 

audio recordings have been deposited at the National Sound Archives o f the British 

Library.

O f the 863 spoken data files, 672 are listed as being “dialogue” (although many of 

these contain conversations where there are more than two speakers, and many have a 

single speaker doing the majority o f the talking). These “dialogue” files occupy 

144666 kBytes (transcribed, in SGML marked-up format) and contain a total o f 

7760753 words in 888535 sentences.

To quote Bumard (1995), “The importance o f conversational dialogue to linguistic 

study is unquestionable : it is the dominant component o f general language both in 

terms o f language reception and language production.”

The “demographic” part o f the spoken corpus was collected using a “demographic 

sampling” o f the population of British English speakers in the UK -  designed to 

contain data from 124 speakers representative o f the UK population in terms of age, 

gender, social group and region. The selected individuals recorded all their 

conversations over a period o f two or three days, recording details o f these 

conversations in a notebook. Other participants in these conversations gave their 

permission for the data to be used prior to its inclusion in the corpus.

The “context-governed” part of the spoken corpus recorded speech from four broad 

categories o f sources in approximately equal amounts : (i) educational and 

informative situations, such as news broadcasts, classroom discussions and tutorials; 

(ii) business events, such as sales demonstrations, meetings, consultations and 

interviews; (iii) institutional and public events such as council meetings and 

parliamentary proceedings; (iv) leisure events, such as sports commentaries, club 

meetings and radio phone-ins.
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As part o f the original BNC project, the original speech recordings were 

orthographically transcribed, word-tagged (for parts of speech, etc.) using an 

automatic system and “marked-up” using SGML (Standardised General Mark-up 

Language). The SGML mark-up not only indicates which speakers are involved in a 

conversation, but also their social relationship and the place and context in which the 

conversation occurred. The mark-up also indicates disfluencies and occasions where 

the speech o f the two current participants overlapped. However, in the studies 

described in this thesis, the transcriptions were pre-processed, removing the SGML 

tags and only looking at sections of transcription involving a single pair o f speakers. 

We have chosen to define a “dialogue” strictly as comprising a sequence o f 

consecutive utterances from exactly two speakers, so a new logical dialogue 

commences whenever a new speaker joins (or a previous speaker, not one o f the 

current pair, rejoins) the conversation. In this study, all the portions o f overlapping 

speech have been made to appear sequential, all non-transcribed disfluencies have 

been removed and any turns which became empty as a consequence o f these changes 

deleted. The word-tag information has not been used.

4.3 Descriptive Statistics

As noted above, many o f the “dialogue” files in the BNC contain contributions from 

more than two speakers and thus a single file may contain several logical “dialogues” 

(as defined in section 4.2 above). In fact, the length of the files varied extensively -  

ranging from very short exchanges between two speakers to long debates involving 

many speakers -  in a highly skewed manner. Some summary descriptive statistics 

relating to the content o f the BNC dialogue data -  in terms of files, dialogues, turns 

and words -  are shown in Table 4.1 below.

Despite the modal number of “dialogues” (according to the above definition) per file
. I -  . L

being 1, the median number was 20.5 and the 70 and 80 percentiles were 66.1 and 

154.4 respectively. One file contained over 3100 distinct dialogues ! Such unusually 

high values are, in part, due to the way in which a “dialogue” has been defined- 

which was largely for simplicity and computational convenience - in this study. A
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consequence o f this definition is that a conversation involving (say) just 3 speakers 

could end up consisting o f a very large number of individual dialogues, according to 

this definition. Each time there is a change to the “current pair o f speakers” (e.g. 

speaker B is replaced by speaker C, whilst speaker A continues), a new dialogue 

results. In all, the 672 BNC “dialogue” files contained a total o f 91650 dialogues 

according to our definition.

Minimum Mode Median Mean Maximum
Dialogues in a file 
Turns in a dialogue 
Words in a dialogue 
Words in a turn
Proportion o f words in a dialogue 
by first speaker

1
1*
1*
1

0.00*

1
2
9
1

0.500

20.5 
2
19
5.5 

0.500

136.4
6.19

79.36
13.0

0.499

3115
2326

21123
18575
1.00*

Table 4.1 : Some summary descriptive statistics for the BNC dialogue material.
* These "dialogues" are clearly not true dialogues. Such "pseudo-dialogues" are probably due to 
an error in the transcription or mark-up within the BNC material, or to the deletion o f turns which 
have become “empty” during the removal o f disfluences in pre-processing.

Similarly, although less directly affected by the way in which we defined a dialogue, 

the number o f turns within a single dialogue, the number o f words in a dialogue and 

the number o f words in a turn all showed wide variation in a highly non-normal, 

skewed manner. The modal number o f turns in a dialogue was just 2, as was the 

median. The mean number was 6.2 turns per dialogue and the 90th percentile 8.

However, one dialogue contained as many as 2326 turns. The number o f words in 

individual dialogues showed even greater extremes. The modal number was just 9 and
t l ithe median 19, but the mean was 79.4 (larger than the 80 percentile, which was 55) 

and one dialogue contained 21123 words ! Thus, although most dialogues in this 

corpus are quite short, the distributions o f words and turns have very long “tails”.

The dialogues also varied considerably in their “balance” - the proportion o f the 

words spoken by each o f the participants. However, on the whole, there was no 

evidence that either the first or second speaker to enter that dialogue tended to 

dominate it. The mean, mode and median proportion of words spoken by the first 

speaker were all 0.50. 80% of the dialogues had the first speaker contributing between
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11.7% and 88.9% o f the total words o f that dialogue and such cases were deemed to 

be “reasonably well-balanced”.

4.4 Lexical Distribution

The dialogue material within the BNC v/as found to contain 49 989 distinct word 

types (i.e. words with distinct orthographies). This contrasts with the figure for an 

equivalently-sized sample (of 7 million words) o f data from the written text material 

in the BNC, which was found to contain 104 827 distinct word types. A larger sample 

(80 million words) o f written text contained a total o f 352 860 distinct types. Thus, it 

can be seen that the dialogue material uses a considerably smaller vocabulary than the 

written portion o f the BNC. As might be expected, there is also a marked difference in 

the increase in coverage o f material with increasing lexical size (i.e. investigation of 

what proportion o f the material is accounted for by use o f a lexicon o f the N most 

common distinct words) between the written text and dialogue datasets. This is 

illustrated in Figure 4.1 below. For extremely small lexica (less than 9 distinct words), 

a slightly higher proportion o f text material is covered than dialogue material -  this 

may be due to the prevalence of very common articles (“a”, “the”) and conjunctions 

(“and”) in text, which are less common in dialogue -  in the latter case partly due to 

sentences typically being shorter in dialogue than in text. However, at larger lexical 

sizes, a higher proportion o f the dialogue material is covered by the appropriate 

lexicon o f any specified size. This finding is not so surprising, since it would 

generally be expected that simpler words are particularly common in dialogue 

whereas relatively rare, esoteric words are more likely to appear in written material 

than in speech.
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Figure 4.1 : Graph contrasting coverage o f  m aterial by lexica o f  various sizes for 

BNC text & dialogue m aterial

The sm aller lexicon (few er than 50 000 distinct words) relevant to the dialogue 

m aterial is small enough to be considered as a “closed system ” and hence provides 

two advantages w ith regard to perform ing statistical language m odelling : firstly, 

there are no significant issues about how to deal w ith out-of-vocabulary  words, and 

secondly there should be few er problem s in sm oothing n-gram  language m odels since 

there are few er words w hich occur very few tim es (particularly  in the case o f  w ords 

w hich occur only once in the available data -  so-called “hapax legom ena”).

4.5 Dialogue Reduced-Turns (DRT) Dataset

Som e o f  our prelim inary investigations (as described in section 4.3 above) indicated 

that, although identified in the file descriptions as “dialogue m aterial” , a considerable 

portion o f  the spoken com ponent o f  the BNC consisted o f  very  long speaker turns -  in 

effect, to a close approxim ation, m onologue, possibly interspersed w ith  occasional 

com m ents or questions. Such m aterial is not w hat we are prim arily  interested in 

studying -  this project aim s to investigate what is particularly  distinctive about highly 

interactive dialogue. It m ight be expected that long dialogue turns have some 

properties w hich are not so different from ordinary text m aterial -  in particular, a long 

turn gives opportunity  for any single topic to becom e firm ly established. In such
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cases, it would be expected that topic-related content words would be quite significant 

-  both as a fraction o f the total words in a turn or dialogue, and in terms o f relations 

between words o f the type exploited by cache a trigger models. Whilst this is 

interesting in its own right, it is also important to study word dependencies which are 

consequences o f the dialogue structure rather than of the content or topic. Thus, it 

was decided that, in addition to studying the properties of, and word dependencies 

within, the “ordinary” (i.e. unfiltered) dialogue material in the BNC, to focus 

specifically on pairs o f relatively short successive turns from within the same 

dialogue. Such pairs were believed to be more typical o f the type o f turns likely to 

occur in highly interactive dialogues, o f the kind appropriate to both human-human 

and human-machine interactions. Furthermore, these short pairs o f turns are expected 

to have relations between words which are much less dependent on the topic and 

content than those within very long turns.

The set o f files in the BNC listed as “dialogue material” were removed o f their SGML 

mark-up and divided into pairs of successive speaker turns -  effectively restricting 

each “dialogue” or “document” to consist o f just two turns. Only pairs totalling fewer 

than 200 words were retained, yielding a set o f approximately 470000 pairs. The 

resulting data was called the Dialogue Reduced Turns (DRT) dataset, to distinguish it 

from the full set o f ordinary “dialogue” material in the BNC.

4.6 Simple Statistical Language Models

4.6.1 Trigram Models for Ordinary Dialogue Data

Simple trigram language models were constructed for the dialogue data from the BNC 

using the CMU-Cambridge Language Modelling Toolkit (Clarkson & Rosenfeld 

1997). The complete dialogue dataset was divided into 10 sets each o f training data 

(approximately 7 million words each), evaluation data (approximately 380 000 words 

each) and test data (approximately 380 000 words each) for use in a 10-fold cross- 

validation procedure. Cross-validation is a method which attempts to make the best 

possible use o f the available data for both training and testing whilst keeping the 

training and test material used in any one training-test pair (“rotation”) totally 

separate. For each experiment, a 10-fold (i.e. using 10 rotations) cross-validation
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procedure was employed such that, in each rotation, 10% o f the available data 

(approximately 770 000 words) was held back for evaluation and testing, with the 

remainder being used for training the model(s). A different 10% portion was used for 

evaluation & testing for each of the rotations.

For comparison, trigram language models were also constructed from samples of 

randomly-selected text data from the BNC o f sizes 5,10, 20, 40 and 80 million words 

respectively. The 50 000 word lexicon covering the dialogue material was used 

throughout. Good-Turing smoothing (Katz, 1987) was applied in each case in order to 

allocate small non-zero probabilities to possible trigrams which were not found in the 

training data, with singleton cut-off being used for computational convenience.

Across the ten cross-validation rotations, the mean perplexity for the trigram models 

trained on the 7 million words of dialogue data was found to be 186 (with a variation 

o f + 12 across the ten rotations). The trigram models trained on text data showed 

significantly higher perplexities (see figure 4.2). For example, a model trained on 10 

million words o f text gave a perplexity o f 389 (with a variation o f + 17 across the 

rotations). (Although this perplexity value may appear high in comparison to 

published values for other corpora, it is consistent with the values obtained by 

Clarkson & Robinson (1998) and Clarkson (1999) for a trigram model trained on 105 

million words -  as quoted by Clarkson (1999) -  from the BNC, without distinction 

between text and spoken material.) As expected, the mean perplexity o f a text-trained 

model was lower the larger the set used for training was. The variation o f perplexity 

(with respect to held-back data) with the size of the training set is shown in figure 4.2. 

I f  the trend shown continues, it would appear that over 500 million words o f plain text 

training material would be needed to approach the perplexity obtained from using just 

7 million words o f dialogue training material. Results o f this type, where the 

perplexity o f a model is particularly sensitive to both the nature o f the material on 

which it is trained and on which it is tested, have been noted by Rosenfeld (1996, 

2000b). For modelling casual telephone conversations, Rosenfeld (2000b) stated that 

using 2 million words o f transcripts from appropriate telephone calls as training 

material would be better than use of 140 million words from transcripts o f TV or radio 

news broadcasts. Even changing the material within what at first sight might appear to 

be the same domain can make a big difference : an experiment showed that a language
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m odel trained on m aterial from text from the D ow -Jones new sw ire had its perplexity 

alm ost doubled i f  tested on m aterial from the A ssociated Press new sw ire, com pared 

w ith D ow -Jones text from the same tim e (Rosenfeld 1996), despite these two sources 

generally being considered to be very sim ilar ! Both the text and spoken portions o f  

the BNC contain m aterial from a very w ide range o f  sources and on a large variety  o f  

topics. This at least partly explains w hy the perplexity  figures for text language 

m odels trained on BNC data are so high. Clarkson and Robinson (1998) found that a 

trigram  m odel trained on about 100 m illion w ords o f  BNC data (m ixed text and 

spoken) had a perplexity  o f  277.5, com pared w ith the corresponding figure o f  134.4 

for a m odel trained on 130 m illion words from the m uch m ore hom ogeneous 

B roadcast N ew s Corpus.
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Figure 4.2 V ariation o f  perplexity  o f  trigram  language m odels (w ith respect to 

excluded data) w ith size o f  training corpus for text data, with corresponding values for 

m odels trained on dialogue. The m ultiple points for m odels trained on the same size 

o f  training corpus represent results from  the 10 distinct cross-validation rotations for 

training corpora o f  that size.

The variation o f  trigram  m odel perplexity  with the size o f  the corpus used to train the 

m odel for BNC text data prom pted the creation o f  the TEQ (or “Text Equivalent”)

Comparison of Language Models

»  I

♦  LMs trained on text 
a LMs trained on dialogues
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dataset -  a subset o f the BNC text material of equivalent size (approximately 7 

million words) to the BNC dialogue dataset used to train the dialogue language 

models. Using this TEQ dataset, rather then the whole written text portion o f the 

BNC, to train language models for text enables a more direct comparison to be made 

between models trained on dialogue and those trained on text -  differences (in model 

perplexity, etc) between similar models trained and tested on the two different types 

o f material should then primarily be due to the nature o f the material rather than the 

size o f the datasets used for training.

4.6.2 Trigram Models for DRT Data

In a similar manner to that used for modelling the ordinary dialogue data (see section

4.6.1 above), trigram language models were constructed for the contents o f the DRT 

dataset using the Cambridge-CMU Language Modelling Toolkit. Once again, 10 sets 

each o f training (approximately 423000 turn pairs in each set), development 

(approximately 23500 turn pairs) and evaluation (approximately 23500 turn pairs) 

were created for use in a 10-fold cross validation procedure. In every case, the 

dialogue lexicon o f approximately 50000 words was used, and Good-Turning 

smoothing with singleton cut-off applied.

For purposes of comparison, three separate sets o f trigram models were constructed : 

one only for first turns o f pairs, one only for second turns of pairs, and one for both 

turns together, and the perplexity o f each model with respect to held-back data 

computed. Averaged across ten cross-validation rotations, the results for the models 

constructed from single turns were almost identical: 187.61 for the first turns o f pairs 

and 187.69 for the second turns o f pairs. These contrasted with the substantially 

higher figure o f 289.61 obtained for the model trained on both turns o f the pairs -  

treating the dialogue material very much as though it were ordinary text. The 

variability of perplexity across the 10 cross-validation rotations was also rather higher 

for the case where both turns of each pair were considered together (maximum 

477.15, minimum 150.76) compared with the models for first turns only (maximum 

265.62, minimum 145.81) or for second turns only (maximum 261.75, minimum 

145.58). These very variable, often higher, figures are probably due to probabilities
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given by  the m odel being distorted because o f  replication o f  turns betw een successive 

pairs.

Trigram models of "Dialogue Reduced Turn" (DRT) data
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>* 400-
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200 -

♦
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♦ Ordinary trigram model, both turns 
of pair

■ Trigram model based on first turns 
of pairs only

a Trigram model based on second 
turns of pairs only

Type of model

Figure 4.3 Com parison o f  trigram  m odels for DRT data, m odelling first turns o f  pairs 

only, second turns o f  pairs only, and both turns o f  pairs together respectively.

The concept o f  a “turn pair” is not m eaningful for ordinary text data, so no 

com parison could really  be m ade betw een perplexities o f  DRT data and o f  ordinary 

text data. How ever, the perplexities o f  the trigram  m odels for single turns o f  pairs are 

com parable to those for ordinary dialogue data (see section 4.6.1 above).

For an autom ated spoken dialogue system , the m achine w ill be required to predict the 

content o f  the second turn o f  a pair (i.e. the user’s turn) based on know ledge o f  the 

first turn o f  that pair (i.e. the m ach ine’s own turn). H ence, m odelling the second turns 

o f  pairs is o f  particular interest and so the trigram  m odel for second turns o f  pairs was 

used both  as the baseline for com parison and for purposes o f  interpolation w ith other 

m odels in later experim ents (see subsequent chapters).
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Chapter 5 Experiments Using Cache-Based Language Models

5.1 Overview

As discussed in section 2.2.2, the results of previous modelling experiments with text 

data have shown that cache models are a simple but effective means o f tracking how 

lexical likelihoods of words vary with the topic of the current document (Kuhn & De 

Mori 1990, Iyer & Ostendorf 1999), thus allowing a form o f adaptation within a 

language model. A typical cache model maintains a history o f recent words used in 

the current document, and estimates a dynamic unigram language model using solely 

those words. This is then interpolated with a static trigram model built from a much 

more topic-independent text. Experimenting with various cache sizes, Clarkson & 

Robinson (1997) found that a cache o f 500 words performed better than any other.

It might be expected that statistical modelling o f the BNC dialogue material would 

also benefit from a similar approach: that the likelihood o f words used in a dialogue 

would be affected by which words had been used earlier in the same dialogue. In 

particular, it would seem likely that the content o f the second of a pair o f consecutive 

dialogue turns would be closely related to that o f the first turn of the same pair.

To evaluate the utility o f cache models in the context o f dialogue, we constructed a set 

o f cache models. In one set o f experiments, we used either a fixed size-cache (“F”- 

type experiments) o f 500 words, or a cache consisting o f the current and the previous 

dialogue turn (”T”-type experiments), or a cache consisting o f the current and the 

previous sentence (“S”-type experiments) applied to dialogue data from the BNC, 

otherwise treating the dialogue material as though it were ordinary text. In each case, 

the cache was “flushed” (reset) at the start o f each new dialogue -  i.e. each dialogue 

was treated as a completely distinct source o f data. Each cache model was based on 

unigram statistics (i.e. word counts) within the cache. For purposes o f comparison, 

we also did parallel experiments for cases “F” and “S” on an equivalent-sized sample 

o f ordinary text material from the BNC. The effect o f varying the cache size for “F” 

type experiments was also investigated.
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In another set o f experiments, a cache model applied to pairs o f dialogue turns (from 

the DRT data set), with a sliding window of at most 500 words was used to construct 

two caches : one for the first turn o f the pair, the other for that portion o f the current 

(second) turn which had already been encountered. The caches were reset at the start 

o f each document (namely each new pair o f turns). The resulting cache models were 

interpolated with a trigram model trained on the content o f second turns o f pairs. 

Optimal interpolation parameters were learned using the interp program in the CMU 

Language Modelling Toolkit, which performs Expectation-Maximisation (EM) 

training (Dempster, Laird & Rubin 1977, Jelinek 1990) on matched probability 

streams. The interpolation parameters were trained on the Development test sets of 

the dialogue data and applied to the Evaluation sets using a 10-fold cross-validation 

procedure.

5.2 Cache Experiments on Ordinary Dialogue Data from the BNC

5.2.1 Com parison of Fixed Size, Turn-Based and Sentence-Based Caches

As described above, in a first attempt to investigate the utility o f cache-based models 

in modelling the dialogue material within the BNC, the three different types o f cache 

(“F”, “T” and “S”) were applied to the BNC dialogue data -  a fixed cache (“F”-type 

experiments), a cache o f the current and the previous turn in the dialogue (“T”-type 

experiments) and a cache consisting o f the current and the previous sentence (“S”- 

type experiments).

In each experiment, a unigram language model was constructed for the cache, and 

this interpolated with a simple trigram model, also trained on BNC dialogue material. 

For each experiment, a 10-fold cross-validation procedure (as described in section 

4.6) was employed such that, in each rotation, 10% of the available data 

(approximately 770 000 words) was held back for testing. O f the remaining 90%, 

300000 words were reserved for calculating the interpolation parameters and the 

remainder o f the data (approximately 6 930 000 words) used for training the models. 

The optimal interpolation parameters for each case were computed as described in 

section 5.1 above. The average values of the parameters across the 10 rotations were 

calculated and the interpolated models re-applied to the 10 test datasets using these
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weightings. Perplexity scores were computed for each o f the resulting interpolated 

models. (It was not anticipated that the individual cache models would produce very 

meaningful perplexity scores in their own right, since they were typically constructed 

using rather small -  and, in some cases, variable - amounts of data and were only 

based on unigram statistics.)

The perplexity scores obtained for these interpolated trigram-cache models were 

compared with perplexities both for the simple trigram model trained on dialogue, and 

for an “equivalent text” (TEQ) model trained on approximately the same amount of 

ordinary text material from the BNC. The “F” and “S” type cache experiments were 

also applied to the text-trained language models. The “T” type experiment is clearly 

not appropriate to ordinary text data where the concept o f “dialogue turn” is not 

generally meaningful.

The “baseline” perplexity figures for the ordinary trigram models (averaged over 10 

cross-validation rotations) were 185.97 for the dialogue-trained model and 532.94 for 

the TEQ model trained on the same amount o f BNC text.

The summary results for these experiments are shown in table 5.1 below.

The results o f these experiments are quite encouraging -  with perplexity reductions of 

up to approximately 14% for dialogue and 27% for text data obtained -  despite the 

cache model being very simple both conceptually and in its implementation. The 

interpolation weights for the cache components, whilst much smaller than 0.5 

(implying that the hybrid model still relies more on information from its trigram 

component than from the cache model), are considerably larger than zero, showing 

that the cache is making a useful contribution.

90



Model Aspect Model Trained & 

Tested on Dialogue

“TEQ” Model 

Trained & Tested 

on Text

Simple trigram 

model only 

(baseline)

Average Perplexity 

(Perplexity Range)

186.0 

(168.3 to 202.3)

532.9 

(451.4 to 597.9)

Interpolated 

trigram & fixed- 

size (500 word) 

cache 

(“F” type 

experiment)

Average Perplexity 

(Perplexity Range)

160.4 

(148.7 to 173.7)

389.0 

(322.7 to 447.1)

Perplexity 

Reduction w.r.t. 

Baseline

13.8% 27.0 %

Interpolation 

weight for cache 0.114 0.167

Interpolated 

trigram & 

previous turn 

as cache 

(“T” type 

experiment)

Average Perplexity 

(Perplexity Range)

165.9 

(153.7 to 180.6) Not Applicable

Perplexity 

Reduction w.r.t. 

Baseline

10.8 % Not Applicable

Interpolation 

weight for cache 0.077 Not Applicable

Interpolated 

trigram & 

previous sentence 

as cache

Average Perplexity 

(Perplexity Range)

169.5 

(156.0 to 184.9)

475.8 

(397.2 to 535.9)

Perplexity 

Reduction w.r.t. 

Baseline

8.9 % 10.7%

Interpolation 

weight for cache 0.060 0.057

Table 5.1 : Summary o f results from experiments using cache models. The quoted 

perplexity values are across 10 cross-validation rotations, with the “average” values 

based on logprob scores weighted by dataset size.
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It can be seen that, within this set o f experiments, the fixed 500 word cache gives the 

best improvement over the baseline (trigram only ) perplexity figure for both dialogue 

and text. It should be noted that the mean number of words per turn in the BNC 

dialogue material is 13 (the median number is just 5.5). This suggests that, even in 

dialogue material, there are significant re-uses of words at distances beyond just the 

most recent sentence or turn. However, bearing in mind that 80% o f the dialogues 

(according to the definition we adopted in chapter 4) contain 55 words or less and 

90% contain at most 112 words, use o f a cache as big as 500 words may be 

unnecessary. This is investigated in some further experiments described below.

5.2.2 Variation of the Cache Size

Bearing in mind the above comment regarding the size o f the fixed cache relative to 

typical lengths o f turns and dialogues, a series o f “F”-type experiments was carried 

out to investigate the effect of changing the size of a fixed cache on optimally 

interpolated trigram-cache models for “TEQ” and ordinary dialogue material 

respectively.

Summaries o f the results obtained are shown in tables 5.2 and 5.3 below. As can be 

seen from these results, incorporating any cache-based component into the language 

models makes an improvement for both text and dialogue material from the BNC. 

Even a cache as small as 10 words makes a clear improvement to the perplexity in 

both situations when the resulting cache model interpolated with the ordinary trigram 

model. However, whereas increasing the size o f the cache to as much as 1000 words 

continues to improve the perplexity o f the models trained on tested on text material, in 

the case o f the models trained and tested on dialogue data, the perplexity o f the 

interpolated model is lowest for a cache size of around 300 words and very little 

improvement is obtained by increasing the cache size beyond 100 words. This may in 

part be due to the relatively short length, as noted above, o f many o f the BNC 

dialogues. Indeed, noting that Clarkson and Robinson (1997) used a mixture of text 

and spoken material from the BNC in their experiments may explain why they found
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that a cache size o f 500 words was optimal whereas this present experiment suggests 

that caches larger than that may give better perplexities for BNC text data.

Cache size 

(words)

Perplexity o f Interpolated Model Interpolation Parameters

Maximum Minimum Average Trigram Cache

0 (baseline) 202.3 168.3 186.0 1.000 0.000

10 190.2 159.3 174.6 0.961 0.039

20 183.7 154.0 168.5 0.939 0.061

50 177.5 149.8 163.1 0.914 0.086

100 175.1 148.5 161.1 0.901 0.099

200 174.1 148.3 160.3 0.892 0.108

300 173.8 148.3 160.3 0.889 0.111

400 173.7 148.6 160.3 0.887 0.113

500 173.7 148.7 160.4 0.886 0.114

1000 173.8 149.3 160.7 0.884 0.116

Table 5.2 : Comparison o f perplexities and interpolation parameters o f interpolated 

trigram-cache models trained and tested on dialogue material from the BNC for 

various different cache sizes. The Maximum, Minimum and Average perplexity 

values quoted are across 10 cross-validation rotations with the interpolation 

parameters fixed at the quoted values. Those quoted interpolation parameters are 

averages across 10 cross-validation rotations o f the optimal values obtained by the 

EM algorithm for individual rotations.

This trend is further investigated in terms of relative perplexity improvement over the 

baseline of the trigram model alone in figure 5.1 below. It can be seen that, in terms of 

relative perplexity improvement, small caches o f just a few words give a greater 

benefit for the case of dialogue data than for ordinary text. Although the relative 

improvement obtained initially increases with increasing cache size for both dialogue 

and text, for dialogue it quickly reaches a plateau, whereas for text it continues to 

increase. Again, this may partly be due to the nature of the data in the BNC -  some 

text samples contained therein are very long compared with the majority o f the
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dialogues. However, it may also be true that word repetitions -  the feature essentially 

being exploited by cache models -  are more significant at longer distances in text 

material than they are in dialogue, with the reverse being true for short-range 

repetitions.

Cache size 

(words)

Perplexity o f Interpolated Model Interpolation Parameters

Maximum Minimum Average Trigram Cache

0 (baseline) 597.1 487.1 532.9 1.000 0.000

10 583.2 441.1 519.6 0.988 0.012

20 560.6 422.7 498.2 0.969 0.031

50 515.7 386.6 457.0 0.930 0.070

100 485.3 360.1 427.8 0.897 0.103

200 462.6 339.1 406.5 0.867 0.133

300 453.7 330.3 397.4 0.851 0.149

400 449.4 326.0 391.6 0.841 0.159

500 447.1 322.7 389.0 0.833 0.167

1000 444.7 315.1 383.6 0.811 0.189

Table 5.3 : Comparison o f perplexities and interpolation parameters o f interpolated 

trigram-cache models trained and tested on “TEQ” material (a text sub-corpus of 

equivalent size to the dialogue data) from the BNC for various different cache sizes. 

The Maximum, Minimum and Average perplexity values quoted are across 10 cross- 

validation rotations with the interpolation parameters fixed at the quoted values. 

Those quoted interpolation parameters are averages across 10 cross-validation 

rotations o f the optimal values obtained by the EM algorithm for individual rotations.
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Figure 5.1 : Relative perplexity improvement 
of an interpolated trigram-cache model 

over a trigram model
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For the interpolated trigram -cache m odels for dialogue, it w as found that a fixed-size 

cache o f  ju s t 20 w ords perform ed better (in term s o f  perplexity  during testing) than 

the cache based on the current and previous sentence (experim ent “S”) and a fixed- 

size cache o f  50 w ords or m ore out-perform ed the cache based on the current and 

previous turn (experim ent “T ”). This confirm s that w ord repetitions (the basis o f  

cache m odels) m ay be a significant factor in dialogue over a distance-scale longer 

than ju st successive turns. The continued im provem ent in perplexity  up to cache sizes 

o f  around 100 w ords -  com parable to the 90th percentile (112) for BN C dialogue 

length - suggests that such repetitions are relatively com m onplace over the entire span 

o f  a dialogue.

5.3 Cache Experiments on DRT Data

As noted in section 5.1, it w ould be expected that particularly  strong connections 

w ould hold betw een successive speaker turns o f  a dialogue. H ow ever, it is less clear 

w hether it w ould be expected that the same w ords w ould necessarily  be present w ith
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high probability in consecutive speaker turns. To investigate this, and whether a cache 

model could be o f significant value in a tum-prediction situation, e.g. for a spoken 

dialogue system, experiments were carried out where cache models were constructed 

separately : one for the first turns of pairs, the other for that part o f the second turn 

which had already been processed. Although the cache window was limited to a 

maximum o f 500 words, in practice this should not have imposed any restriction, due 

to the relatively short nature of the DRT turn pairs. Both caches were reset at the start 

o f each new pair o f turns.

The language models were trained on 90% of the available DRT material (423 000 

turn pairs), with 5% (235 000 pairs) retained for each o f development (computation of 

interpolation parameters) and evaluation (testing). A 10-fold cross-validation 

procedure was used, so that in each rotation a different 10% of the data was reserved 

for development and testing and the trigram and cache models trained on the other 

90%.

As for the cache experiments on the ordinary dialogue material, the cache models 

were based on unigram statistics and were not considered o f particular interest in their 

own right. However, the cache models for the second turns o f the pairs were 

interpolated with the corresponding trigram model (trained on the same dataset) for 

second turns and a comparison of perplexity scores made with the baseline o f the 

trigram model alone. Optimal interpolation parameters for each rotation were found 

using the EM algorithm, the average values o f them calculated across the 10 rotations, 

the models re-applied to the separate datasets using these average values o f the 

weightings and the revised perplexities evaluated. Average perplexity scores, based 

on logprob values weighted according to the exact sizes o f the datasets used in each 

rotation, were calculated across the 10 rotations.

The results across the 10 rotations are summarised in table 5.4 below. In this case, 

unlike for the experiments on the ordinary dialogue material, no “equivalent text” 

experiment can be carried out since there is no natural equivalent o f turn pairs in 

ordinary text.
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Trigram model for 

second turns alone

Interpolated trigram-cache 

model for second turns

Maximum perplexity for 

any one rotation 261.75 223.83

Minimum perplexity for 

any one rotation 145.58 134.19

Average perplexity 

(based on logprob scores) 

across 10 rotations

187.69 166.64

Table 5.4 : Summary comparison o f perplexity scores across 10 cross-validation 

rotations for trigram only (baseline) and interpolated trigram-cache models. In both 

cases, these are for the second turns of pairs only. The optimal interpolation 

parameters were found to be 0.93387 for the trigram model and 0.06613 for the cache 

model. The interpolated model with these parameters gives an improvement in 

perplexity o f  11.22% over the baseline of the trigram model alone.

The reduction in average perplexity obtained by including the cache component 

represents an improvement o f 11.2% over the baseline figure, showing that 

incorporating this type o f cache model into a language model for dialogue turn pairs 

can be useful. This is despite the DRT turn pairs being relatively short -  a feature 

which might be expected to reduce the utility o f a cache model. Intuitively, it might be 

expected that it would be difficult to obtain sufficiently reliable cache statistics for 

very short documents for the cache model to be o f much use. On the other hand, 

however, the highly-varied nature o f the BNC material might make it particularly 

suitable to benefit from short-term adaptability (Clarkson 1999, p 63), such as is 

offered by a cache model applied to short dialogue turns.

5.4 Qualitative Observations on Results from Cache-Based Models

In order to investigate the effect o f using a cache model on individual turn pairs, a 

program was constructed to compare the probabilities given to individual dialogue 

turns according to a simple trigram model and according to a cache model alone. The 

turns showing the greatest ratio o f cache model probability to trigram model
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probability were output, and their content (together with the content of the 

immediately preceding turn) studied.

Many o f the turns showing the greatest ratio o f these model probabilities contained 

whole phrases “echoed” (or repeated) from the previous dialogue turn -  probably to 

indicate agreement with the previous speaker, obtain clarification or indicate surprise 

in many cases. Some examples of such turn pairs are given in the table below, where 

the number preceding the text is the logarithm to base ten o f the ratio o f cache model 

probability to trigram model probability for the second turn of the pair. The text in 

square brackets is the preceding dialogue turn, whilst the turn of current interest 

follows. The + and - signs indicate that the word preceding it had probability at least 

10% greater (or less, respectively) according to the cache model than to the trigram 

model.

1 9 7 .8 7 8  [ THE RAIN CAME DOWN AND THE FLOODS CAME UP AND 
THE HOUSE ON THE ROCKS SL ID  DOWN BUT THE FOOLISH MAN 
BUILT H IS HOUSE UPON THE SAND THE FOOLISH MAN BUILT H IS  
HOUSE UPON THE SAND THE FOOLISH MAN BUILT H IS HOUSE UPON 
THE SAND AND THE RAIN CAME TUMBLING DOWN ] THE+ RAIN+ 
CAME+ DOWN+ AND THE+ FLOODS+ CAME+ U P - AND- THE+ HOUSE+ 
ON- THE- ROCKS+ SL ID + DOWN- BUT+ THE+ FOOLISH+ MAN+
BUILT+ H IS+  HOUSE+ UPON+ THE- SAND+ THE+ FOOLISH+ MAN+ 
BUILT+ H IS +  HOUSE+ UPON+ THE- SAND+ THE+ FOOLISH+ MAN+ 
B U IL T + H IS+  HOUSE+ UPON+ THE- SAND+ AND- THE+ RAIN+ CAME+ 
TUMBLING+ DOWN+

1 1 8 . 8 6 3  [ SP L ISH  SPLASH AND THE RAIN CAME DOWN AND 
FLOODS CAME UP THE RAIN CAME DOWN AND THE FLOODS CAME UP 
THE RAIN CAME DOWN AND THE FLOODS CAME UP AND THE HOUSE 
ON H IS  BAND FELL FLAT ] AND+ THE+ RAIN+ CAME+ DOWN+ AND+ 
FLOODS+ CAME+ U P - THE+ RAIN+ CAME+ DOWN+ AND+ THE+
FLOODS+ CAME+ UP THE+ RAIN+ CAME+ DOWN+ AND+ THE+ FLOODS+ 
CAME+ UP AND+ THE+ HOUSE+ ON- H I S -  BAND+ FELL+ FLAT+ 
1 0 1 . 6 0 0  [ THE ROAD WAS BENDY AND TWISTY WITH LARGE SHADY 
TREES ON EITHER SORRY I ' L L  START AGAIN THE ROAD WAS BENDY 
AND TWISTY WITH LARGE SHADY TREES ON EITHER SID E  FORMING 
A BEAUTIFUL AVENUE ] THE+ ROAD+ WAS+ BENDY+ AND+ TWISTY+ 
WITH+ SHADY+ TREES+ WITH+ LARGE+ SHADY+ TREES+ EITHER+ 
S I D E -  FORMING+ A - LARGE+

8 3 . 1 1 8  [ ALRIGHT YOU CAN GO LONGER TRULY S IR  ALL THAT I  
LIVE BY IS  WITH THE AWL HA HA HA I  MEDDLE WITH NO 
TRADESMEN'S MATTERS NOR WOMEN'S MATTERS BUT WITH THE AWL 
] TRULY+ S I R+  ALL+ THAT- 1+ LIVE+ BY+ IS +  WITH+ THE- AWL+ 
I -  MEDDLE+ WITH+ NO+ TRADESMEN' S+ MATTERS+
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7 0 . 7 1 2  [ NO LISTEN  I REALLY CAN'T MAKE THE APPOINTMENT
MY SECRETARY WILL PHONE ON TUESDAY TO REARRANGE ANOTHER 
APPOINTMENT ] 1+ REALLY + CAN'T MAKE+ THE- APPOINTMENT+
MY+ SECRETARY+ WILL+ MY+ SECRETARY+ WILL+ PHONE+ ON+ 
TUESDAY+ TO- REARRANGE+ ANOTHER+ APPOINTMENT+

6 3 . 4 4  5 [ YOU NOT GUESS WHAT A A HORSE'S FAVOURITE
TELEV ISIO N  PROGRAMME ARE I S  ] WHAT+ I S +  A+ HORSE' S +
FAVOURITE+ TELEVISION+ PROGRAMME+ WHAT+ I S +  A+ HORSE' S+  
FAVOURITE* TELEVISIO N * PROGRAMME*

5 4 . 3  66  [ OKAY ALLOTROPES OF CARBON A CARBONATE PLUS AN
ACID G IVES ] AN* ACID+ CARBONATE + PLUS* AN* A C ID *

4 5 . 3 7 2  [ I  LAID A PENNY NO I  SPENDED A BAKER SHOP AND
ONE TOOK AWAY FIVE CURRANT BUNS IN  A BAKER'S SHOP ONE 
WENT ] NO+ FIV E * CURRANT + BUNS+ IN+ A* BAKER' S+ SHOP* 

4 4 . 8 8 9  [ YES THANK YOU LISTEN  THE SHOES ARE NOW
REPAIRED ONE HEEL WAS WORN DOWN WHAT DID I JU ST SAY ]
THE+ SHOES+ ARE* NOW+ REPAIRED* ONE* HEEL+ WAS* WORN* 
DOWN+

4 2 . 8 6 3  [ I ' M  SO GLAD THAT S H E ' S  MY LITTLE GIRL SH E ' S  SO
GLAD S H E ' S  TELLING ALL THE WORLD THAT HER BABY BUYS HER 
THINGS YOU KNOW ] SO* GLAD+ THAT* SHE' S+ MY* LITTLE*
GIRL-  S H E ' S + SO+ GLAD+ SHE' S+ TELLING+ ALL+ THE- WORLD+ 

4 2 . 4 0 3  [ YEAH JUST ONE AND WE WANTED ONE PILAU AND ONE
MUSHROOM ONE PILAU AND ONE MUSHROOM AND ONE MUSHROOM RICE 
] ONE* PIL A U * RICE+ AND ONE* MUSHROOM+

3 9 . 3 2 8  [ ON WEDNESDAY I HAVE TO V I S I T  THE DENTIST I  DO
HOPE I  WILL NOT NEED TO HAVE ANY FILLING S WHAT D ID  I  JUST  
SAY ] ON+ WEDNESDAY+ 1+ HAVE* TO- V I S I T *  THE- DENTIST+ 1+  
DO+ HOPE* 1+  WILL+ NOT- NEED+ ANY* FIL L IN G S*

3 8 . 3  9 5  [ COME ON YOU REDS HA COME ON ] COME+ ON- YOU*
REDS + COME+ ON+ YOU* REDS*

3 6 . 4 8 9  [ ONE FROM ELIZABETH AND ONE FROM RON ] ONE+
FROM+ RON* AND+ ONE* FROM* ELIZABETH*

3 6 . 4 3 3  [ HARD RETURN AND SOFT RETURNS ] HARD+ RETURN+
SOFT+ RETURN+

3 5 . 8 1 2  [ TWO TWO AND ONE THAT WOULD MAKE FIV E  AND THEN
YOU NEED ANOTHER THREE WHY DON'T YOU HAVE THE LOOK FOR
THE THREE P FIR ST  AND TICK THAT OFF AND THEN LOOK FOR THE 
FIVE P NEXT AND TICK THAT OFF ] TICK+ FIV E+ P+ OFF+ TICK+ 
FIVE+ P+ OFF+

3 4 . 5 5 7  [ JUST STICK TO WHAT YOU KNOW THERE'S CHICKEN
SUPREME I  SHOULD HAVE YOUR CHOW MEIN THEN OR CHICKEN AND 
MUSHROOMS OH NO THAT'S POT RICE THAT'S NOT POT NOODLE ]
I -  KNOW- THERE' S+ POT+ RICE+ AND- POT+ NOODLE+ POT+

3 4 . 4 0 1  [ WHERE'S TAB OH ] TAB+ TAB+ TAB+
3 3 . 7 0  6 [ THAT'LL BE ANOTHER FAMILY SAYING WON'T IT

HAPPY BOILED EGG THAT WITH ALL THESE BOILED EGGS TO 
ROBERT ] HAPPY+ BOILED+ EGG- HAPPY+ BOILED+ EGG-

3 2 .  9 2 2  [ BUT THERE'S ONE SCORE WHICH UNAMBIGUOUSLY
CALLS IT  IN  C MINOR ON THE AND IT  STARTS IN  C MINOR SO ] 
IT +  IT +  STARTS+ IN+ C+ MINOR+ IT +  STARTS+
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3 1 . 7 8 6  [ SH IFT  F SEVEN ] SHIFT+ SH IFT + F+ SEVEN+
3 1 . 0 8 5  [ ONE ONE THIRD JUST WRITE DOWN ONE THIRD ADD

ONE SIXTH ] ONE+ THIRD+ ADD+ ONE+ SIXTH+
3 0 . 4  84  [ COME ON L E T ' S  HEAR DELLA SPEAK ] DELLA+ DELLA+
3 0 . 2 0 9  [ A THREE LEGGED CAT TIGER I T ' S  NAME'S TIGER IN

N IT  ] A+ THREE+ LEGGED+ TIGER+
3 0 . 0 7 7  [ YEAH IT  WAS BEFORE DEANA WAS BORN ] WAS+ I T -  

BEFORE + DEANA+ WAS+ BORN+
2 9 . 5 3  6 [ BEEN ON THE TRAIN TOOT TOOT BEEN ON THE TRAIN

WHAT' S THE TRAIN SAY TRAIN SAY ] TOOT+ TOOT+
2 8 . 6 4  8 [ TAKE AWAY ONE TWELFTH OKAY JU ST WRITE THAT

DOWN THAT YOU'VE GOT TO TAKE AWAY THE ONE TWELFTH ] ONE+ 
TWELFTH* ONE* TWELFTH*

2 8 . 4 8 0  [ AND YOU'D BE RIGHT OKAY THE AV AILABILITY
WE'VE LOOKED AT JO IN T LI F E JOINT L IF E  F IR ST  CLAIMS LI FE  
OF ANOTHERS SINGLE LIV ES WHAT SORT OF BENEFIT WOULD CLAIM 
BE WRITTEN ON ] SINGLE+ L IF E * SINGLE* L IF E +

2 7 . 4 4 7  [ EAST HERTS YEAH ] YEAH* EAST* HERTS+
2 7 . 4 2 6  [ CLUB BAR LICENCE ALAS ] CLUB+ BAR* LICENCE*
2 6 . 8 3  6 [ VERY WELL ON THAT NITRATES SULPHATES AND WHAT

ELSE ANY OTHER HATES THAT YOU'VE HEARD OF ] NITRATES + 
SULPHATES*

2 6 . 6 4 4  [ I  MEAN AND I ' D  WORKED IN  ONE IN  OLDHAM AND THE
DIFFERENCE BETWEEN THE ONE THAT WAS A FIFT Y  SHILLING  
TAILORS IN  OLDHAM AND ] FIFT Y * SH ILLIN G * TAILORS*

2 6 . 3  0 6  [ IT  WAS HER BROTHER WASN'T IT  YES THEY WAS ALL
BROTHERS WEREN'T THEY EDWARD AND THE KING AND THE DUKE OF
KENT THEY'RE ALL BROTHERS ] EDWARD + THE- DUKE+ O F- KENT+ 
AND* THE+ KING* THEY*

2 6 . 1 0 5  [ ONLY I  WANT ONLY JUST GET ME A T IN  OF HAIR 
LACQUER NORMAL HOLD FOR TINTED TH AT'S ALL I  WANT ]
NORMAL+ HOLD+ TINTED*

2 5 . 9 4 3  [ I T  WAS CREEPING SUBURBIA THEN IT  WASN'T ]
CREEPING+ SUBURBIA+

2 5 . 8 6 9  [ I T ' S  NATIONAL CROQUET DAY D ID  YOU REMEMBER 
THAT ] NATIONAL* CROQUET+ DAY*

2 5 . 0 1 8  [ I S N ' T  I T  I F  THAT'S FIVE OR MORE THEN YOU
INCREASE THAT BY ONE AND MAKE IT  FIV E SO THE JOURNEY TIME
I S  ABOUT FIV E  HOURS SO D FOUR WORK OUT THESE JOURNEY 
TIMES TO THE NEAREST HOUR BOMBAY TO PERTH AT ABOUT EIGHT 
HUNDRED AND FIFT Y  KILOMETRES AN HOUR ] BOMBAY + TO+ PERTH* 
EIGHT+

2 3 . 8 2  6 [ I T  MUST HAVE BEEN GOOD IT  MUST HAVE BEEN SOME 
SORT OF CARBONATE AND THE SALT THAT WAS FORMED WAS FROM 
THE HYDROCHLORIC ACID WAS CALCIUM CHLORIDE SO IT  MUST 
HAVE BEEN ] CALCIUM+ CARBONATE*

2 3 . 8 1 1  [ SO YOU'D NAME THIS AS BUTANE IN  OTHER WORDS 
YOU'RE SAYING I T ' S  A BUTANE CHAIN YOU TAKE OFF THE E YOU 
WILL ADD O L AND IF  THERE ARE POSITIONAL ISOMERS POSSIBLE  
YOU HAVE TO INDICATE THE POSITION ONE O L BUTANE ONE L 
ONE O L BUTANE ONE O L ] BUTANE + ONE* 0 +  L+
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2 3 . 1 1 0  [ I N FOURTEEN NINETY TWO YES BUT THAT'S BESIDE
THE POINT SO SHH PLEASE TANYA THE WATERS RETURNED FROM 
OFF THE EARTH SO I T ' S  SAYING THE WATERS RAN OFF THE EARTH 
SUBSIDED FROM ] WATERS+ SUBSIDED*

2 2 . 5 2 3  [ LITTLE BO PEEP HAS LOST HER SHEEP AND DOESN'T
KNOW WHERE TO FIND THEM LEAVE THEM ALONE ] SHEEP+
DOESN' T+ WHERE+ TO+ F IN D - THEM*

2 2 . 0 9 3  I WE'RE THE TRIGGER WE'VE GOT TO TRY AND 
SCHEDULE THREE PICKUPS THREE BAGGINGS A DAY ] THREE+ 
PIC K U PS* A+ DAY*

2 1 . 6 6 5  [ WELL PERSONALLY I MEAN MARGARET IMPRESSED ME
GREATLY BUT I THINK JOHN WAS INCLINED TO BE FULL OF H IS  
OWN IMPORTANCE FOR ONE THING HE WAS EXCEPTIONALLY 
DEMANDING AND MY FAIRLY LONG CONVERSATION WAS THAT HE 
ALMOST LEAD ME TO BELIEVE THAT HE HAD GOT THE JOB BECAUSE 
WHEN HE STARTED MAKING COMMENTS ABOUT PUTTING H IS  
GRANDFATHER CLOCKS IN  THE CHURCH THIRTY OF THEM AND 
BUILDING  A ] THIRTY* GRANDFATHER* CLOCKS*

2 1 . 7 4 8  [ THERE'S ACTUAL STRAWBERRIES THERE ] ACTUAL*
STRAWBERRIES+

2 1 . 6 1 1  [ BAR NINE I S  BAR ONE AN OCTAVE LOWER HERE'S THE
B I T  TH A T'S IMPORTANT TH IS I S  BAR NINE AN OCTAVE LOWER 
OKAY NOW THEN WILL YOU PLEASE COPY PRECISELY WHAT I S  
THERE AT BAR TEN THE MUSIC YOU NEED ONE BAR OF MUSIC LINE  
WITH THOSE BLOBS WHICH ARE THE NOTE HEADS IN  EXACTLY THE 
RIGHT PLACES JUST COPY WHAT'S IN  THE BOOK ] COPY+ WHAT+ 
BAR* TEN*

2 1 . 4 2 9  [ CAN'T DO ANY MORE THAN THAT SO FRACTION OF A
CIRCLE FRACTION OF A CIRCLE TH IS I S  GOING TO BE ONE THIRD 
TIMES THREE SIXTY OR WE COULD SAY NUMBER OF DEGREES HERE 
FRACTION OF A CIRCLE AS NUMBER OF DEGREES SO THAT'S A 
THIRD OF THREE SIXTY DEGREES AND TH AT'S A THIRD OF THREE 
SIXTY OKAY GOING TO BE A FIFTH OF THREE SIXTY AND TWO 
FIFTEENTHS ] FIFTEENTHS+ OF+ THREE+ SIX T Y +

2 1 . 3 5 8  [ YEAH YEAH BILKO WAS IN  IT  WEREN'T HE OLD PHIL
SILVERS WAS IN  IT  ] YEAH- PHIL+ SILV ER S*

2 0 . 5 1 7  [ O H  SHOULD OF GOT YOU SOME MORE FROMAGE FRAIS  
MICHAEL OH I  WAS LOOKING AT THEM AS WELL WASN'T I  AND I  
D I D N ' T  GET THEM YOU'LL HAVE TO HAVE A A WOBBLY A 
STRAWBERRY WOBBLER ] 1+  HAVE* A - STRAWBERRY + WOBBLER* AS +
WELL-

2 0 . 4 6 1  [ BUY A BOTTLE OF WHISKY AND ORDER UP A HAGGIS ]
WHISKY+ AND- HAGGIS+

Table 5.5 : Examples o f turns much more probable according to cache model than to 

trigram model, with the previous turn shown in brackets. The initial number is the 

logarithm to base ten of the ratio o f probabilities o f the turn according to the cache 

model relative to that given by the trigram model.
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It is difficult to say anything very specific about the content of these turn pairs -  

which clearly come from very varied sources. Some seem to be from recitations of 

biblical stories and nursery rhymes, others from what appears to be a drama workshop 

(on Shakespeare’s “Julius Caesar”) whilst others are extracts from pop songs 

(possibly where two singers have similar parts, but not synchronised). Some are from 

conservational sources, some from interaction between an adult (e.g. a parent) an a 

young child, others from instructional sources (chemistry lessons and IT tutorials) and 

others from situations where food is being ordered. However, the common feature is 

that one or more words (in many cases, relatively uncommon words) from the first 

turn o f the pair appear again in the second turn of the pair. Although this may appear 

obvious, considering the nature o f the cache model, we can note that what we might 

expect on the basis o f such intuition does seem to be observed in practice. The 

probabilities o f normally uncommon words which occur in the cache are enhanced. 

The probabilities o f utterances o f which many o f the constituent words are in the 

cache are greatly enhanced -  more so than if  just one or two words from a long phrase 

appear in the cache. This suggests that a cache model could be highly beneficial in 

modelling dialogue -  particularly in situations where words or phrases said by one 

speaker are immediately repeated by the other speaker -  perhaps to indicate surprise, 

request clarification or just to allow the speaker some thinking time.

Some examples o f repetitions o f “phatic” utterances used for greetings or farewells 

were observed -  although relatively few o f these are highly ranked by ratio of cache 

probability to baseline model, presumably because such sequences are relatively 

common in dialogue and hence use o f the cache does little to enhance their 

probability, e.g.

[ BUBYE DADDY ] BUB YE + DADDY + (test dataset 4)

[ ALRIGHT CYNTH ] ALRIGHT+ CYNTH+ (test dataset 4)

[ BYE MAGS ] BYE+ MAGS + (test dataset 3)

In these cases, it would appear to be the repetition o f the more unusual proper name 

(or the unusual spelling “bubye” rather than “bye-bye” or “bye bye”) which causes the 

large probability enhancement.
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There are also several instances o f a student or pupil repeating part or all o f a 

teacher’s utterance, again probably for emphasis or requesting clarification or 

confirmation, as part o f his/her reply. E.g. :

[ RIGHT AND THAT'S A GENERAL REACTION THAT HAPPENS WITH 

VIRTUALLY ANY ACID AND ANY ALKALI ] ACID+ AND+ ANY+ 

ALKALI+

[ ONE ONE THIRD JUST WRITE DOWN ONE THIRD ADD ONE SIXTH ] 

ONE+ THIRD+ ADD+ ONE+ SIXTH +

[ THE CURRENT IN  THAT RESISTOR ] THE+ CURRENT+ IN + THAT+ 

RESISTOR+

[ EXACTLY I T ' L L  BE COS WE LOOKED AT THIS LAST WEEK AS 

YOU SAID AT THE END WHAT HAPPENS DRIPPING  ACID ONTO ONTO 

CHIPS NOW THE THINGS TO KNOW ABOUT ACIDS BASES AND SALTS 

A METAL PLUS AN ACID WHAT HAPPENS ] A+ METAL+ AND- PLUS+ 

AN+ ACID+

[ CAN'T DO ANY MORE THAN THAT SO FRACTION OF A CIRCLE 

FRACTION OF A CIRCLE TH IS I S  GOING TO BE ONE THIRD TIMES 

THREE SIXTY OR WE COULD SAY NUMBER OF DEGREES HERE 

FRACTION OF A CIRCLE AS NUMBER OF DEGREES SO TH AT'S A 

THIRD OF THREE SIXTY DEGREES AND THAT'S A THIRD OF THREE 

SIXTY OKAY GOING TO BE A FIFTH OF THREE SIXTY AND TWO 

FIFTEENTHS ] FIFTEENTHS+ OF+ THREE+ SIXTY+

5.5 Summary

The results presented and discussed in this chapter have shown that cache-based 

models have a useful role in supplementing trigram language models for both text and 

dialogue material -  perhaps to a surprisingly good extent (giving perplexity reductions 

o f up to about 14% for dialogue and 27% for text over a baseline o f a trigram model 

alone) bearing in mind the simplicity o f the model. For the data (from the BNC) used
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in this study, it has been found that very small caches give a better relative 

improvement for dialogue data than for text data, but that the reverse is true for larger 

cache sizes. That may at least in part be due to the nature o f the material o f each type 

in the BNC -  most dialogues in it are relatively short, whereas some texts are very 

long, which would account for significant re-occurrences o f words at longer ranges in 

the text than in the dialogue data. However, there is insufficient evidence at present to 

say whether this would or would not generalise to cases where both longer texts and 

dialogues could be studied.

The relative success o f models employing very small-sized caches (of just 30 or even 

10 words) for dialogue material is probably due to repetitions o f words -  and even 

entire phrases -  being common over a short scale in dialogue. This is particularly true 

across consecutive speaker turns, where a repetition of something said by the first 

speaker will often be used by the second speaker to obtain clarification or indicate 

surprise, or to confirm that an instruction has been understood correctly, e.g. :

[ ONE FROM ELIZABETH AND ONE FROM RON ] ONE+ FROM+ RON+ 

AND+ ONE+ FROM+ ELIZABETH+ (Confirmation)

[ SH IFT F SEVEN ] SH IFT+ SHIFT+ F+ SEVEN+ (Confirmation)

[ A THREE LEGGED CAT TIGER I T ' S  NAME'S TIGER IN  N IT  ] A+

THREE+ LEGGED+ TIGER+ (Surprise ?)

[ YEAH IT  WAS BEFORE DEANA WAS BORN ] WAS + I T -  BEFORE+

DEANA+ WAS+ BORN+ (Query for clarification)

[ ONLY I  WANT ONLY JUST GET ME A T IN  OF HAIR LACQUER 

NORMAL HOLD FOR TINTED THAT'S ALL I WANT ] NORMAL+ HOLD+ 

TINTED+ (Confirmation)

[ I T ' S  NATIONAL CROQUET DAY DID YOU REMEMBER THAT ] 

NATIONAL+ CROQUET + DAY+ (Surprise?)

It was notable that the majority o f turns showing the largest relative increases in 

probability due to use o f the turn-based cache model over the probability given by the
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simple trigram model were relatively short -  or at least contained few words which 

did not appear in the previous (cached) turn. An explanation o f this is that only the 

words within the turn which were held in the cache contribute to the enhancement of 

the turn’s probability. Hence, the probabilities o f turns containing a high proportion of 

cached words are going be enhanced more (in relative terms) than those o f turns 

containing a small proportion of words from the cache.

Although it was found that use o f a cache gave worthwhile improvements for cache 

sizes at the level o f sentences or dialogue turns, the best performance for dialogue was 

obtained for a fixed-cache o f about 300 words. However, on the evidence o f the 

results in this chapter, it would appear that larger cache sizes could give better results 

for text material, indicating that word repetitions tend to occur at quite long distance 

scales in text material. This is not entirely surprising if individual text documents tend 

to have a particular theme so that words characteristic to that topic will re-occur, in 

addition to words which are generally very common being repeated. Although the 

same principle would be expected to be partly true for dialogue, themes and topics 

within the conversation may evolve in a way which makes such repetitions less 

common at longer distances. This is consistent with the findings o f Purver, Ginzburg 

& Healey (2002), who found that requests for clarifications in dialogue tended to be 

separated from their source by just one speaker turn. (A separation o f one turn 

accounted for 85% of such clarification requests, whilst 95% were separated from 

their source by 3 turns or less. A similar pattern was observed when the separations 

were measured in sentences.) Likewise, repetitions of words which occurred very 

recently in the conversation are very likely to occur in attempts to "ground" the 

situation in the sense discussed in chapter 3 (Traum & Allen 1992). Oviatt & Cohen 

(1991) and Cohen et al (1990) also found that clarifications, and requests for them, 

occurred very frequently in task-oriented dialogues, and accounted for a relatively 

high proportion o f the verbal interaction in such conversations.
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Chapter 6 Experiments Using Language Models

Based on Trigger Pairs

6.1 Motivation & Overview

As noted in the previous chapter, and in chapter 2, the theme o f a document or 

conversation may evolve gradually and some method of allowing the language model 

to adapt to the current theme is therefore desirable in speech technology applications. 

Trigger models -  where pairs o f words which are commonly found to occur near each 

other are employed to modify “baseline” probabilities based on N-gram models -  are 

an alternative to cache models as a means o f doing this. Trigger models are in a sense 

a generalisation o f cache models -  instead o f just looking for repetitions o f words in 

the recent history o f the document or utterance, trigger models look for words which 

are known to tend to occur in close proximity to each other. It would seem likely that 

trigger models should prove useful in the statistical modelling o f dialogue -  we would 

expect there to be strong correlations -  of the kind which trigger models should be 

able to exploit -  between the lexical content of neighbouring sentences and turns of a 

dialogue. We would expect that such correlations might be particularly strong 

between successive dialogue turns and hence trigger models might be o f great benefit 

in the modelling o f the DRT data. Furthermore, as noted in chapter 4, the DRT dataset 

was constructed with the aim o f investigating “structural” as opposed to “topic- 

dependent” features o f dialogue. Would any evidence o f such features, such as 

common referents for pronouns, be apparent from a trigger-based model trained and 

tested on DRT data ? In this section, practical aspects o f the implementation of this 

trigger-based model, trained by the maximum entropy method, are discussed.

In order to construct a practical trigger model, it was necessary to consider a large 

number o f potentially useful word pairs. In most experiments, these were words of 

intermediate frequency. Function words such as “and”, “but”, “the”, “is” are too 

common and the fact that pairs o f these (or one o f these and a word which is just 

relatively common) occur in the recent history do not imply anything about the topic 

or content o f the document under consideration. On the other hand, pairs o f very 

uncommon words (as in the Brest -  Litovsk example in Chapter 2) would occur so
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rarely that they probably would be of very little practical use as triggers even if  they 

were strongly correlated. The method recommended by Rosenfeld (1996) and adopted 

in this study is to initially propose a very large number of potential trigger pairs, 

where both words o f each pair are “intermediate frequency words” in our lexicon -  

i.e. we exclude the extremely common function words and also extremely rare words. 

This results in a large set o f possible triggers -  (V -  Ec -  Eu )2 pairs, where V is the 

total number o f distinct words in our lexicon, and Ec and Eu are the number o f words 

excluded for being too common and too uncommon respectively. (Note that we 

cannot necessarily assume symmetry within a trigger pair : a word A triggering a 

word B later on may not necessarily be equivalent to B triggering A.) For example, if  

we consider just 10 000 words -  much fewer than the full lexicon - after excluding the 

very common and uncommon words, this would mean we would have a list o f 100 

million possible trigger pairs to consider. If the presence or absence o f all these 

triggers within the recent history were to be included as variables in a language 

model, the computational demands (both in terms o f memory and o f processor time) 

would be extremely high, particularly during the training phase where the relative 

importance o f the different variables is calculated. To reduce the effect o f this 

problem, a much less computationally intensive pre-selection process is carried out on 

trigger pairs. Following Rosenfeld (1996), we retain only those pairs showing a 

relatively high mutual information I(A,B) over the set of available training data :

I(A,B) = P(A, B) log( P(B | A) / P (B )) + P(A, B ’ ) log( P( B ’ |A) / P(B’ ) )

+ P(A ’, B) log( P(B | A’ )/ P (B )) + P (A \ B ’ ) log( P( B* | A *) /P (  B*) )

where the probabilities are empirical estimates calculated by taking ratios o f the 

appropriate counts over the training data, and A ’ indicates the absence o f A, etc. This 

enabled feature-based models to be constmcted using a number o f features (trigger 

pairs) which was small enough so that training the models was computationally 

tractable, but with the models still retaining those features most likely to be useful.

Once the pre-selection o f trigger pairs had been completed, those still under 

consideration are incorporated into an exponential probability m odel:
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where h is the recent history prior to the word w of current interest,^ is a binary 

feature such that f \ { h yw ) = \  if, in the list o f trigger pairs still under consideration, 

the ith trigger targets the word w  and the triggering word is in h , but otherwise 

f \ ( h , w )  is zero, X\ is a weighting factor indicating the relative importance o f the 

trigger f\ and Z\  is a normalisation factor to ensure that the complete set o f 

probabilities sum to 1 across the space o f possible words w  for a given h :

Zx(£) = E exp( E 4/<*■">)
w  ie trigger pairs

A buffer was used to store the "recent history" o f the current document or dialogue, 

which was then compared with the current word to determine which (if any) o f the 

binary features was "currently active". The weighting parameters { } were chosen

using the Maximum Entropy method (see section 2.4) with respect to the training 

data, applying the “Generalised Iterative Scaling” algorithm (Darroch & Ratcliff 

1972, Berger et al 1996, Rosenfeld 1996) to perform the required optimisations. 

Features were added to the model in the iterative manner described in section 2.4, 

choosing at each stage the new feature which gave the largest improvement in the 

objective function over the value for the optimal model with one feature fewer 

included. The iterative process was repeated until either the maximum number of 

features specified had been included in the model, or addition o f any further features 

gave negligible improvement to the objective function (equivalent to maximising the 

entropy).

Note that if  no trigger pairs are “active” for the current version o f the “recent history”, 

this model gives a default probability of 1AV , where W is the number o f distinct 

words under consideration (the vocabulary less any words which have been 

excluded). This aspect can give words unrealistic probabilities when no triggers are 

currently active. For example, consider the case o f a very rare word which occurs just 

m times in the entire training corpus containing C words in total, where (say) m < 10.
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Under a simple unigram model, based on the training dataset, this word should be 

assigned a probability m/C, and estimates of the same word according to bigram or 

trigram models would be of a similar magnitude. However, when no triggers are 

active and we are using the full vocabulary o f V words, the same rare word would be 

assigned a probability of 1/V. In the case of this study, C ~ 7 x 106, V ~ 50000, so if 

m = 7 (say) the probabilities for that rare word would be : P (unigram) ~ 1 X 1 O'6 , 

but P (trigger) ~ 2 x 10'5, twenty times larger, despite no triggers for that word being 

active !

The resulting trigger model was then interpolated with a simple trigram model, the 

optimal interpolation parameters being computed using the interp program from the 

CMU Language Modelling Toolkit, which makes use o f the EM algorithm (Dempster, 

Laird & Rubin 1977), applied to data reserved for this purpose.

In a similar manner to the experiments performed using cache models (described in 

Chapter 5), two distinct groups o f experiments were carried out. The former, using 

ordinary dialogue data from the BNC, with a sample o f ordinary text data o f equal 

size (the “TEQ” dataset) used for comparison, investigated the relative merits o f using 

a fixed-size widow, the current and immediately previous dialogue turns, and the 

current and immediately previous sentences for the “recent history”. The other type of 

experiment concentrated on the “DRT” dataset -  pairs o f consecutive, relatively short 

dialogue turns.

6.2 Trigger Model Experiments on Ordinary Dialogue Data 

from the BNC

6.2.1 Experiments where the number of triggers per target word was restricted.

As noted above, three sets o f experiments were carried out, employing different types 

o f “recent history windows” when searching for words which might potentially be 

triggers for the word of current interest, to construct and evaluate trigger-pair based 

language models for dialogue material. A “restricted lexicon” was constructed by 

taking the full dialogue lexicon (approximately 50 000 words), ordered by decreasing
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frequency o f occurrence within the dialogue portion of the BNC, from which the 10 

most common words were excluded. The 10 000 most common words in the 

remaining list were than taken to form the list of “words o f intermediate frequency” 

which were considered to be the best candidates for either “triggering” or “target” 

words o f trigger pairs. This yielded a set o f 100 million potential trigger pairs, which 

were ranked for their likely utility by their mutual information with respect to the 

training dataset. From the training set of approximately 7 million words o f dialogue 

transcription we found 4957 pairs with an average mutual information greater than 

10‘5 bits. From an equivalently sized quantity of text, 3209 pairs were found. Only 

900 pairs were common to the two styles. A further restriction was imposed in order 

to maintain a reasonable range o f words which were targets for triggers (otherwise, in 

principle, it would be possible for all the trigger pairs being used to target exactly the 

same word) -  a maximum o f 10 distinct triggers were permitted which targeted any 

given word. Pairs which met all these criteria for a given training set were stored in a 

special “appropriate triggers” list.

A sliding window was used to scan the “recent history” o f the current dialogue, with 

respect to the word currently o f interest. Any triggering words from pairs in the 

appropriate list found within the sliding window then made the corresponding pair 

“active” for the target word at that point in the document. (Once the window had 

moved forward to an extent that that triggering word was no longer in the window, the 

pair reverted to being “inactive”.) Using the training dataset, an exponential 

probability model was constructed using the trigger pairs as features, as outlined in 

section 6.1 above. For each type o f experiment, a 10-fold cross-validation procedure 

was followed, with a different 10% o f the available data (approximately 770 000 

words) being retained for testing in each rotation. Of the remaining 90% for each 

rotation (approximately 7 million words), 300 000 words were reserved as 

“development data” for calculating optimal parameters to be used for interpolating the 

exponential (trigger-based) model with an ordinary trigram model.

Three different types of sliding window were used : a “fixed” window of 500 words 

(or back as far as the start o f the current dialogue, if  fewer than 500 words before) in 

“F” type experiments, a window consisting of the previous dialogue turn plus the part 

o f the current turn which had already been seen in “T” type experiments, and a
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window comprising the previous sentence and the part of the current sentence already 

seen (“S” type experiments). For comparison, “F” and “S” type experiments were also 

performed on the “TEQ” dataset (a selection o f text material from the BNC of the 

same size as the dialogue material) -  “T” type experiments not being appropriate 

since there is no natural equivalent o f dialogue turns for ordinary text. In all cases, the 

window was reset (“flushed”) at the start o f each new dialogue or text document and 

the two most recent words in the “history” were excluded from the window since use 

o f them was already being made within the framework o f the trigram model.

During each set o f experiments (i.e. 10 cross-validation rotations for either dialogue 

or TEQ data, using the same type o f window throughout), optimal interpolation 

parameters for combining the current trigger model with an appropriate simple 

trigram model (trained on dialogue or text, as appropriate) were computed using the 

EM algorithm with respect to the reserved 300 000 words o f “development” data for 

each rotation. Average values of the interpolation parameters were calculated across 

the 10 rotations and the models for each rotation applied to the corresponding 

reserved test dataset with the interpolation parameters fixed at the average values. 

Perplexity scores were evaluated for each rotation and weighted average perplexity 

values computed, based on logprob scores for each, weighted by the size o f the 

appropriate dataset used in that rotation.

A summary o f the results obtained is given in table 6.1 below, with more detailed 

results for “F”, “T” and “S” type experiments in tables 6.2, 6.3 and 6.4 respectively.
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Model

Average Perplexity: 

Model Trained on 

Dialogue

Average Perplexity: 

Model Trained on 

6.9 M words o f Text

Simple trigram only 

(baseline)

186.0 532.9

Interpolated trigram-trigger 

model with fixed-size 

(500 word) window

183.0 493.2

Interpolated trigram-trigger 

model with previous turn as 

window

183.1 Not Applicable

Interpolated trigram-trigger 

model with previous sentence 

as window

182.5 492.8

Table 6.1 : Summary o f results from experiments using trigger models. The quoted 

average perplexity values are based on logprob scores averaged over 10 cross- 

validation rotations. The number o f triggers used in each experiment was not fixed, 

but was limited by each target word being permitted a maximum o f 10 possible 

triggering words.

These results may appear slightly puzzling at first. Although the incorporation o f the 

trigger model does give a modest improvement for all 3 types o f window used, the 

best performance would appear to occur when the sentence-based window is 

employed. This would imply that the most useful correlations between words which 

can be exploited by a trigger model occur on a very short range -  o f the order o f one 

or two sentences (or around 10 to 20 words, since the mean length o f a sentence is 

about 8.7 words for the BNC dialogue material). On this basis, it might be expected 

that the turn-based window would outperform the relatively large fixed (500 word) 

window, since typical turns within the BNC dialogue material are o f the order o f 30 

words long (median words per turn 11, mean 30.2, 90th percentile 51) but this is not 

found to be the case.
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Model Trained on 

Dialogue

Model Trained on 

6.9 M words o f Text

Maximum perplexity for 

any one rotation. 197.3 558.0

Minimum perplexity for 

any one rotation 166.5 418.7

Average (based on logprob scores) 

perplexity across 10 rotations 183.0 493.2

% Improvement over baseline 

(ordinary trigram model) 1.60 7.46

Interpolation weighting 

for trigger-based component 0.0356 0.0736

Table 6.2 : Summary results across 10 cross-validation rotations for interpolated 

trigram-trigger models using a fixed-size window of 500 words (“F” type 

experiments). In each case, the baseline trigram model was trained on dialogue or text 

as appropriate for its application. Approximately 2150 triggers were used in each of 

these experiments.

However, it should be noted that the three different types o f experiment did not all use 

the same number o f triggers. Due to the nature of the process used for pre-selecting 

triggers from the list o f those possible, particularly the restriction that there could be a 

maximum of 10 triggers for any given target word, the number o f triggers 

incorporated into the models ranged from approximately 2150 for the fixed window 

(“F” type) experiments, through about 2800 for the turn-based window (“T” type) 

experiments, up to approximately 4200 for the sentence-based window (“S” type) 

experiments. This may account for the “S” window apparently performing better than 

either the larger “F” or “T” windows. A more controlled set o f experiments, using the 

same number of triggers throughout, would clearly be of value here, and such a set of 

experiments is described in section 6.2.2 below.
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Model Trained on Dialogue

Maximum perplexity for 

any one rotation 197.6

Minimum perplexity for 

any one rotation 166.6

Average (based on logprob scores) 

perplexity across 10 rotations 183.1

% Improvement over baseline 

(ordinary trigram model) 1.53

Interpolation weighting 

for trigger-based component 0.0314

Table 6.3 : Summary results across 10 cross-validation rotations for interpolated 

trigram-trigger models using the current and the previous dialogue turn as the window 

(i.e. “T” type experiments). Note that dialogue turns are not a meaningful concept for 

the case o f ordinary text data. Approximately 2800 triggers were used in each of these 

experiments.

In any case, the results o f these experiments are rather disappointing. Since a trigger 

model, in general, exploits more general correlations between words than does a 

cache model, we would expect a trigger-based model to out-perform a cache model, 

with all other factors being equal. However, this was not found to be the case here.

For the dialogue data, even a cache o f just 10 words (see section 5.2.2) outperformed 

all o f these trigger-based models, whereas for the TEQ data, it took a cache o f 50 

words (nevertheless, still quite a small size) to perform better than either o f the 

appropriate trigger-based models. The reason for this is not fully understood, but may 

be linked to repetitions o f words (the basis o f cache models) tending to occur 

frequently even at very short separations in dialogue material. In contrast to this, 

correlations between any two distinct words may tend to be rather weak in dialogue 

and in text occur over a longer range in a manner consistent with the theme of the 

document evolving gradually. Although the ways in which the two types of models 

are constructed are somewhat different, a cache model is in some senses similar to a
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trigger model where the triggering word is constrained to be the same as the target 

word, but where the number of potential trigger pairs incorporated into the model is 

exactly as large as the vocabulary size. This is much larger than the number o f trigger 

pairs in any o f the trigger-based models o f this study (approximately 50000 in the 

former (cache) case compared with approximately 4200 in the latter (trigger) case).

Model Trained on 

Dialogue

Model Trained on 

6.9 M words o f Text

Maximum perplexity for 

any one rotation. 197.0 557.6

Minimum perplexity for 

any one rotation 166.1 418.6

Average (based on logprob scores) 

perplexity across 10 rotations 182.5 492.8

% Improvement over baseline 

(ordinary trigram model) 1.86 7.54

Interpolation weighting 

for trigger-based component 0.0335 0.0690

Table 6.4 : Summary results across 10 cross-validation rotations for interpolated 

trigram-trigger models using the current and the previous sentence as the window 

(i.e. “S” type experiments). In each case, the baseline trigram model was trained on 

dialogue or text as appropriate for its application. Approximately 4200 triggers were 

used in each o f these experiments.

6.2.2 Controlled Experiments Using a Fixed Number of Triggers

In order to study the effect o f varying the number o f trigger used in a rather more 

controlled way -  the above experiments did not necessarily use the same number of 

trigger pairs in each case -  a set of experiments was carried out for which the number 

o f trigger pairs to be used in each case was predetermined. The results are shown in 

tables 6.5 -  6.9 below.
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Using current and previous sentence as window :

Number o f 
triggers 

used.

Dialogue models “TEQ” Text models

Maximum

Perplexity

Minimum

Perplexity

Weighted

Average

Maximum

Perplexity

Minimum

Perplexity

Weighted

Average

100 197.619 166.547 183.128 558.969 419.334 493.440

200 197.519 166.479 183.059 558.778 419.250 493.322

500 197.401 166.399 182.957 558.587 419.068 493.186

1000 197.246 166.336 182.856 558.351 419.020 493.052

2000 197.154 166.254 182.730 558.085 418.858 492.907

Table 6.5 : Variation o f perplexities o f interpolated trigram-trigger models for 

dialogue and TEQ data with the number o f trigger pairs incorporated into the model. 

Current and previous sentence used as the window.

Number o f 
triggers 

used.

Dialogue models “TEQ” Text models

Weighted

Average

Perplexity

Relative

Perplexity

Improvement

Interpolation 

Weight for 

Triggers

Weighted

Average

Perplexity

Relative

Perplexity

Improvement

Interpolation 

Weight for 

Triggers

0 (baseline) 185.997 - 0.00000 532.936 - 0.00000

100 183.128 1.54% 0.02827 493.440 7.41% 0.06533

200 183.059 1.58% 0.02902 493.322 7.43% 0.06589

500 182.957 1.63% 0.02997 493.186 7.46% 0.06692

1000 182.856 1.69% 0.03085 493.052 7.48% 0.06749

2000 182.730 1.76% 0.03183 492.907 7.51% 0.06809

Table 6.6 : Improvement o f perplexities and variation o f interpolation weights o f 

interpolated trigram-trigger models for dialogue and TEQ data with the number o f 

trigger pairs incorporated into the model. Current and previous sentence used as the 

window.
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As can be seen from tables 6.5 and 6.6 above, there is only a very weak improvement 

in the reduction in perplexity over the baseline trigram model as the number of 

triggers incorporated in the model is increased. The decrease in perplexity compared 

with the trigram model is particularly disappointing for the dialogue data. It is 

believed that this is largely due to the relatively short length of typical sentences in the 

dialogue data, resulting in very few triggers, on average, being active at any one time. 

The longer average length o f sentences in the text data would then explain why the 

trigger models work better when applied to ordinary text.

Using the current and previous turn as the window (not appropriate for text data) :

Number of 

triggers 

used

Interpolated Trigram-Trigger Models for Dialogue Data

Maximum

Perplexity

Minimum

Perplexity

Weighted

Average

Perplexity

Relative 

Perplexity 

Improvement 

over baseline

Mean 

Interpolation 

Parameter 

for Triggers

100 197.684 166.602 183.181 1.51% 0.02820

200 197.668 166.603 183.171 1.52% 0.02867

500 197.658 166.619 183.175 1.52% 0.02917

1000 197.654 166.649 183.195 1.51% 0.02971

2000 197.606 166.651 183.168 1.52% 0.03077

Table 6.7 : Variation o f perplexities and interpolation weights o f interpolated trigram 

trigger models for dialogue data with the number o f trigger pairs included in 

the model. Current and previous turn used as the window.

The results for this case (shown in table 6.7) are particularly disappointing. It is not 

clear why use o f the turn-based window should give weaker results than the (on 

average, shorter) sentence-based window. The change in relative perplexity 

improvement over baseline as the number of triggers used is increased is negligible.
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Using a fixed window o f the last 500 words

Number o f 
triggers 

used.

Dialogue models “TEQ” Text models

Maximum

Perplexity

Minimum

Perplexity

Weighted

Average

Maximum

Perplexity

Minimum

Perplexity

Weighted

Average

100 197.661 166.615 183.196 558.876 419.558 493.505

200 197.639 166.589 183.176 558.647 419.142 493.338

500 197.529 166.545 183.116 558.344 418.951 493.190

1000 197.411 166.518 183.074 558.097 418.77 493.063

2000 197.318 166.497 183.033 558.079 418.713 493.192

Table 6.8 : Variation o f perplexities o f interpolated trigram-trigger models for 

dialogue and TEQ data with the number of trigger pairs incorporated into the model. 

Fixed window o f the previous 500 words.

Number o f 
triggers 

used.

Dialogue models “TEQ” Text models

Weighted

Average

Perplexity

Relative

Perplexity

Improvement

Interpolation 

Weight for 

Triggers

Weighted

Average

Perplexity

Relative

Perplexity

Improvement

Interpolation 

Weight for 

Triggers

0 (baseline) 185.997 - 0.00000 532.936 - 0.00000

100 183.196 1.51% 0.02849 493.505 7.40% 0.06574

200 183.176 1.52% 0.02918 493.338 7.43% 0.06736

500 183.116 1.55% 0.03120 493.190 7.46% 0.06927

1000 183.074 1.57% 0.03330 493.063 7.48% 0.07118

2000 183.033 1.59% 0.03533 493.192 7.46% 0.07314

Table 6.9 : Improvement of perplexities and variation o f interpolation weights of 

interpolated trigram-trigger models for dialogue and TEQ data with the number of 

trigger pairs incorporated into the model.
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Once again, in each case shown in tables 6.8 and 6.9, an improvement over the 

perplexity o f the baseline trigram model is obtained when it is interpolated with the 

trigger model. However, little further improvement is obtained by increasing the 

number o f triggers in the model above 100. The trigger model has a much bigger 

effect for the text data than for the dialogue data. However, this longer window (500 

words) does not give better results than the sentence-based window, suggesting that 

such dependences are very short-ranged.

6.3 Trigger Model Experiments on DRT Data

As noted in section 6.1 above, and in chapter 5, it would be expected that very strong 

correlations at a lexical level would occur between successive turns within a dialogue 

and that some such correlations would relate to the nature and structure o f dialogue 

rather than being topic-specific. For example, it would be expected that the turn 

following a "polar " question would have a high probability o f containing one o f the 

words "yes", "no" or "probably", or that the turn after any type o f question might 

include the phrase "I don't know". The framework of trigger models allows such 

issues to be investigated in a more general way than with cache models, which only 

look for repetitions o f the same words over a relatively short scale. Trigger models 

allow not only this (cache models effectively make use of words which are “self- 

triggers”) but also take consideration o f pairs o f words which, during training, have 

tended to co-occur relatively close together. As discussed in section 5.3, better 

modelling o f successive dialogue turns could be of benefit in speech technology 

applications such as dialogue systems. To investigate how useful trigger models could 

be in such a context, experiments were carried out on the DRT (Dialogue Reduced 

Turn) dataset o f pairs of successive turns from the dialogue material in the BNC 

where the total length o f the pair does not exceed 200 words.

A sliding window containing a maximum of 500 words previous to the current target 

word, either in the current turn or the previous turn, was chosen as the word-trigger 

history, with the window being reset after every pair of dialogue turns. The history did 

not include the two words immediately previous to the target (as these would form 

part o f the trigram model with which the trigger model would later be interpolated).
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As suggested in section 6.1, when searching for potentially useful trigger pairs, only 

intermediate frequency words were considered. The arbitrary criterion applied was to 

use (for the purposes o f  the trigger model) a lexicon o f only 10000 words which 

consisted o f the most commonly-found words in the dialogue material, excluding the 

50 most common, as for the experiments described in section 6.2. The pre-selection 

process for triggers was also applied in the same way as for the experiments using 

ordinary dialogue data.

From the list o f potential trigger pairs, a criterion o f a maximum o f 10 triggering 

words per target word was imposed in order that the triggers to be used targeted a 

wide selection o f words. The 2 800 triggers both satisfying this constraint and 

showing the highest mutual information over the training data were used to construct 

a exponential probability model with 2 800 parameters evaluated from training data 

using the Maximum Entropy framework with the Generalised Iterative Scaling (GIS) 

algorithm as discussed in section 6.1. The resulting exponential model was 

interpolated with the baseline trigram model for the content o f second turns of pairs 

using the EM algorithm and a reserved set of data.

As for the other experiments, a 10-fold cross validation process was applied. In a 

similar way to the DRT experiments using cache-based models (see section 5.3), 

during each rotation, 90% o f the available data was used for training the models, 5 % 

reserved for calculating the interpolation parameters and 5 % retained for testing. The 

optimal interpolation parameters were calculated for each rotation, the values 

averaged across the 10 rotations, then the models re-applied to test data with the 

interpolation parameters fixed at these average values. The perplexity o f each model, 

with respect to its appropriate test dataset, and the weighted average perplexity across 

the 10 rotations (based on logprob scores weighted according to the size o f the dataset 

used in each case) computed. These values were compared with those for the baseline 

o f the corresponding ordinary trigram model trained on DRT data. The results are 

summarised in table 6.10 below.
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Trigram model for 

second turns alone

Interpolated trigram-trigger 

model for second turns

Maximum perplexity for 

any one rotation

261.75 250.21

Minimum perplexity for 

any one rotation

145.58 143.70

Average perplexity 

(based on logprob scores) 

across 10 rotations

187.69 182.81

Table 6.10: Summary comparison o f perplexity scores across 10 cross-validation 

rotations for trigram only (baseline) and interpolated trigram-trigger models where the 

trigger component incorporates 2800 trigger pairs. In both cases, these are for the 

second turns o f pairs only, taken from the DRT dataset. The optimal interpolation 

parameters were found to be 0.967573 for the trigram model and 0.032427 for the 

trigger model. The interpolated model with these parameters gives an improvement in 

perplexity o f 2.60% over the baseline o f the trigram model alone.

The improvement of the interpolated model over the simple trigram model is rather 

disappointing, particularly in comparison with the larger improvement found when 

using an interpolated trigram-cache model on the same datasets and bearing in mind 

that the trigger model exploits more general correlations between words than the 

cache model does. Although the number o f triggers used in this experiment is smaller 

than the number stated by Rosenfeld (1994,1996) in his experiments on text material 

for the Wall Street Journal corpus, the number used here would appear to be close to 

the limit which is feasible for the computations to be performed in a reasonable time 

on the best computer hardware available locally (Pentium 4 ,2.0GHz PC with 

512Mbytes o f RAM). Rosenfeld (1994, section 5.7) has discussed the issue o f the 

computational resources required by this type of model, exploring options including 

use o f parallel computer architectures or distributed computing and streamlining the 

computational algorithms used.
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6.4 Comparison of “Best” Trigger Pairs 

for Dialogue, Text and DRT Data

It is interesting to compare the highest-ranking (in terms o f mutual information) 

trigger pairs for each o f the ordinary dialogues. This could yield insight into the 

different nature o f words associations between these three distinct forms o f material 

within the BNC (although, o f course, the DRT data is a subset o f the ordinary 

dialogue material). In the case o f dialogue and DRT data, this could be related to the 

psycholinguistic concept of "priming'’ (e.g. Bodner & Masson 2003) and the semantic 

idea o f how participants "ground" the conversation (Traum & Allen 1992), as 

discussed in Chapter 2.

Lists o f the top few o f these “best” triggers for each type o f material are displayed in 

tables 6.11,6.12 and 6.13 below

For the TEQ dataset using the 50000 word vocabulary, the top o f the list o f trigger 

pairs was dominated by relatively unusual trigger words (including a large number of 

proper names), mostly targeting either the word “award” or the word “zero”.

Although this shows that such pairs o f words (as shown in table 6.11 below) tend to 

either occur together or not at all, it also shows the danger o f basing a model on such 

“unrestricted” choices o f trigger pairs. Although the appearance o f words from such 

pairs o f words may be strongly correlated with the appearance o f the other word of 

that pair, if  the words themselves are rather uncommon then will tend to be o f very 

limited value - as in Rosenfeld’s Brest-Litovsk example (Rosenfeld 1996) -  when 

incorporated into a trigger model for predicting the next work in a sequence within 

text. Furthermore, this observation also illustrates the sensitivity o f a model to the 

material it is trained on in comparison to the material to which it is to be applied, also 

noted by Rosenfeld (2000b). The trigger pairs noted here appear to have their origin in 

reports of legal proceedings (e.g. BNC files FBS to FE3) or reports from grant- 

awarding bodies (e.g. ESRC, SSRC). Such trigger pairs -  with the probable exception 

o f those involving proper names -  might be extremely useful within a restricted 

domain, but are very unlikely to be beneficial to the modelling o f language in a more 

general context.
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The set of triggers listed in table 6.1 la  proves an interesting contrast with the other 

cases -  even the situation where the best trigger pairs for the TEQ text data are being 

investigated using the restricted vocabulary (the 10000 most common words, 

excluding the 10 most common) yielded much less unusual triggers. In the latter case 

(table 6.1 lb), the top trigger pairs just comprised very common words with no 

particularly interesting linguistic properties. However, scrutinising a longer version of 

this list shows some trigger pairs where the triggering and target words are in some
• f hway connected. For example, the word “her” triggering “she” comes 35 in the list, 

whilst “she” triggering “her” comes 56th. It is not surprising that the third person 

singular subject pronoun tends to be associated with the presence o f the third person 

singular possessive or object pronoun in relatively close proximity. Similarly, “him” 

triggering “his” comes 83rd in this list. (Note that “he” cannot appear in this set of 

triggers since it is one o f the most common words in the BNC text material). The 

observation that “nineteen” features relatively strongly as both a trigger (104th 

triggering itself, 154th, 183rd in the list o f pairs) and a target (129th, 144th, 199th and 

238th in the list o f pairs) word -  often paired with “by”, “from” or “as” - is probably 

due to its use in dates relating to years o f the twentieth century. However, it is 

difficult to infer very much more from this set of triggers.

The corresponding lists for trigger pairs for BNC dialogue data (tables 6.12a, 6.12b) 

are more intriguing. There is a surprisingly high incidence o f pairs o f mathematical 

words near the top. These probably originate from files within the BNC data recorded 

during maths classes or tutorials -  for example, files G61, GYP, GYX, J91, KND, 

KNE. Words o f such pairs (e.g. “equals” and “X”, “plus” and “minus”) may be 

expected to be strongly correlated in their presence or absence, and would perhaps be 

extremely useful in predicting word sequences used during a maths class ! However, 

they are not expected to be very typical o f everyday British English conversation.
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M I. Trigger Target N(A,B) N(A,B’) N (A \B ) N (A \B ’)

0.00268031 OMBUDSMEN AWARD 4330 211253 324 7524759

0.00267687 SUDIES AWARD 4298 202647 356 7533365

0.00266773 CARLEN AWARD 4288 202088 366 7533924

0.00265628 VICTIMISATION AWARD 4324 215858 330 7520154

0.00265611 HOLDAWAY AWARD 4276 201603 378 7534409

0.00265409 LEVI AWARD 4326 217072 ‘ 328 7518940

0.00263757 CRIMINOLOGICAL AWARD 4333 223841 321 7522823

0.00256208 BARRISTERS AWARD 4304 236256 350 7499756

0.00254865 MCBARNET AWARD 4300 238953 354 7497059

0.00254365 HOSPITALISATION AWARD 4232 218744 422 7517268

0.00251639 PROBATIONERS AWARD 4274 240089 380 7495923

0.00251298 INCARCERATION AWARD 4305 251693 349 7484319

0.00251237 SUDIES ZERO 6112 200833 6788 7526933

0.00251190 ILO AWARD 4214 222240 440 7513772

0.00250365 CARLEN ZERO 6094 200282 6806 7527484

0.00250280 BOSTOCK AWARD 4105 193286 549 7542726

0.00250220 SSRC AWARD 4105 193440 549 7542572

0.00249965 MOFFAT AWARD 4230 230817 424 7505195

0.00249717 CORPORATIST AWARD 4175 214619 479 7521393

0.00249652 HOLDAWAY ZERO 6079 199800 6821 7527966

0.00249641 OMBUDSMEN ZERO 6158 209425 6742 7518341

0.00248547 MAILED AWARD 4257 243941 397 7492071

0.00248375 ESRC AWARD 4298 258637 356 7477375

0.00247444 DETERMINISTIC AWARD 4304 263858 350 7472154

0.00247358 KEELE AWARD 4292 259834 362 7476178

0.00246825 PROTECTIONS AWARD 4207 232857 447 7503155

0.00246614 VICTIMISATION ZERO 6148 214034 6752 7513732

0.00246252 LEVI ZERO 6152 215246 6748 7512520

Table 6.1 la  : The 28 “best” trigger pairs (according to their mutual information 

scores) for text data in the BNC, together with their occurrence and non-occurrence 

statistics. These were obtained using the top 50000 words in the text vocabulary and 

the TEQ dataset (of equivalent size to the BNC dialogue dataset) and a 500 word 

window. The restriction limiting the number o f triggers per target word to 10 has been 

removed in this case.

124



M I. Trigger Target N(A,B) N(A,B’) N (A \B ) N (A ’,B’)

0.00039625 AS AS 40317 3398253 3036 748200554

0.00034303 BY AS 36196 3136727 7157 748462080

0.00032920 FROM AS 35075 3080369 8278 748518438

0.00030448 AN AS 32742 2817649 10611 748781158

0.00030117 WHICH AS 32262 2690823 11091 748907984

0.00027952 AS BY 28844 3409726 2981 748200609

0.00027921 OR AS 30311 2570131 13042 749028676

0.00027665 BY BY 28345 3144578 3480 748465757

0.00027213 ARE AS 29776 2589444 13577 749009363

0.00026108 ARE ARE 25836 2593384 3319 749019621

0.00025525 AS ARE 26370 3412200 2785 748200805

0.00025223 HIS HIS 23459 1909467 2675 749706559

0.00025097 HAD HAD 24016 2175787 3032 749439325

0.00024867 FROM BY 26276 3089168 5549 748521167

0.00023866 AS HAD 24591 3413979 2457 748201133

0.00023858 BEEN AS 26452 2278407 16901 749320400

0.00023544 AS FROM 24415 3414155 2775 748200815

0.00023305 MORE AS 25778 2165353 17575 749433454

0.00023279 BY ARE 24502 3148421 4653 748464584

0.00023128 THEIR AS 25669 2186497 17684 749412310

0.00022920 AS HIS 23666 3414904 2468 748201122

0.00022894 WHICH BY 24296 2698789 7529 748911546

0.00022842 AN BY 24420 2825971 7405 748784364

0.00022688 TWO AS 25495 2294271 17858 749304536

0.00022346 FROM FROM 23253 3092191 3937 748522779

0.00022267 FROM ARE 23691 3091753 5464 748521252

0.00022241 HAD AS 24898 2174905 18455 749423902

0.00021752 BY FROM 22882 3150041 4308 748464929

Table 6 .l i b  : The 28 “best” trigger pairs (according to their mutual information 

scores) for text data in the BNC, together with their occurrence and non-occurrence 

statistics. These were obtained using a restricted text vocabulary o f  10000 words 

(excluding the 10 most common and all uncommon words) and the TEQ dataset (of 

equivalent size to the BNC dialogue dataset) and a 500 word window.
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This again illustrates the sensitivity of language models to the data on which they are 

trained relative to the material to which they are to be applied (Rosenfeld 2000b). If 

these mathematical terms are ignored, the majority of the highest-ranked trigger pairs 

are composed o f words which would be expected to occur commonly in dialogue. 

Some are colloquial words such as “okay” and “aye”, whilst others are essentially 

transcriptions o f noises indicating vague agreement or puzzlement (“mm”, “mhm”), 

sometimes known as “backchannels”. Such backchannels are probably o f significant 

value when the participants in the conversation are trying to achieve "grounding" of it 

(Traum & Allen 1992) - they can provide useful feedback to the other speaker(s) 

regarding to what extent the utterer of the backchannel understands what the 

conversation is about and whether any ambiguities need to be resolved.

Again, we see that some closely-related common words appear as highly-ranked 

trigger pairs -  for example “she” and “her” act as triggers for each other, whilst 

“she’s” acts as a trigger for both “she” and itself. In the case where the unrestricted 

dialogue vocabulary was used, “him” and “he’s” and “his” all acted as triggers for 

“he”. The presence o f the pair “bracelet” and “pounds”, in addition to several other 

lower-ranked pairs relating to jewellery and money, suggest that a significant part of 

the training dataset related to such transactions, where prices in pounds would indeed 

be correlated with names o f items of jewellery. Such cases are examples which might 

be predicted from psycholinguistic studies of semantic "priming" (Bodner & Masson 

2003, Holcomb 1993, Meyer & Schvaneveldt 1971).

The trigger pairs obtained from the DRT dataset when the triggering word was 

restricted to being in the first turn of the pair, with the target word in the second turn, 

showed similar trends to the set o f triggers obtained for the ordinary dialogue data 

with a fixed window. However, words of greeting (e.g. “hello”) and farewell (e.g. 

“bye”) also featured prominently, as might be expected in successive turns. (See table 

6.13 below.)
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M.I. Trigger Target N(A,B) N(A,B’) N(A’,B) N (A \B ’)

0.00207572 SHE SHE 17540 1821546 7320 4416396

0.00173906 HE HE 28972 2619745 10947 3603138

0.00108820 HER SHE 13264 1527158 11596 4710784

0.00101523 SHE'S SHE 10866 1115127 13994 5122815

0.00099989 THE THE 204256 4644248 36416 1377882

0.00082669 MINUS MINUS 979 123248 69 6138506

0.00068960 X X 1036 208322 194 6053250

0.00067906 SHE HER 7297 1831789 4070 4419646

0.00067021 THEY THEY 32852 3302866 13740 2913344

0.00066776 HER HER 6614 1533808 4753 4717627

0.00063701 AND AND 130410 4490373 29469 1612550

0.00062381 HIM HE 18564 1803675 21355 4419208

0.00061367 HE'S HE 18122 1750770 21797 4472113

0.00061297 OKAY OKAY 5056 1424519 3393 4829834

0.00061170 WAS WAS 35701 3444570 14332 2768199

0.00060457 MM MM 15544 2322105 10615 3914538

0.00059451 OF OF 76635 4164888 21609 1999670

0.00059253 SAID SAID 13614 2523101 7305 3718782

0.00058883 WE WE 35423 3434651 14519 2778209

0.00056482 SQUARED X 735 72333 495 6189239

0.00053343 HUNDRED HUNDRED 3656 1332236 2183 4924727

0.00051646 CHAIRMAN YEAH 492 345881 65022 5851407

0.00051547 X MINUS 818 208540 230 6053214

0.00050906 HIS HE 17629 1770381 22290 4452502

0.00049912 SHE'S SHE'S 3789 1122204 3473 5133336

0.00049620 COMMITTEE YEAH 476 333336 65038 5863952

0.00049206 SQUARED MINUS 636 72432 412 6189322

0.00049169 PLUS MINUS 937 443222 111 5818532

Table 6.12a The 28 “best” trigger pairs (according to their mutual information 

scores) for ordinary dialogue data in the BNC, together with their occurrence and non- 

occurrence statistics. These were obtained using the full 50000 word dialogue 

vocabulary and the BNC dialogue dataset with a fixed-size 500 word window.
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M.I. Trigger Target N(A,B) N(A,B’) N (A \B ) N (A ’,B’)

0.00387373 SHE SHE 17540 975172 7320 2399917

0.00203831 HER SHE 13264 817708 11596 2557381

0.00188375 SHE'S SHE 10866 599385 13994 2775704

0.00151116 MINUS MINUS 979 68592 69 3330309

0.00126669 SHE HER 7297 985415 4070 2403167

0.00126344 X X 1036 114633 194 3284086

0.00124601 HER HER 6614 824358 4753 2564224

0.00116826 MM MM 15544 1237499 10615 2136291

0.00112575 OKAY OKAY 5056 773261 3393 2618239

0.00111356 SAID SAID 13614 1356486 7305 2022544

0.00103069 SQUARED X 735 40356 495 3358363

0.00097307 HUNDRED HUNDRED 3656 727453 2183 2666657

0.00094400 X MINUS 818 114851 230 3284050

0.00092276 SHE'S SHE'S 3789 606462 3473 2786225

0.00090630 MHM MHM 2742 492381 2362 2902464

0.00090160 PLUS MINUS 937 242909 111 3155992

0.00089785 SQUARED MINUS 636 40455 412 3358446

0.00087789 MULTIPLY MINUS 668 55153 380 3343748

0.00087563 AYE AYE 1544 239034 1548 3157823

0.00086167 MINUS X 732 68839 498 3329880

0.00085238 FUCKING FUCKING 929 98049 960 3300011

0.00082783 MULTIPLYING MINUS 560 28574 488 3370327

0.00082618 NOUGHT MINUS 711 87850 337 3311051

0.00080873 EQUALS X 731 81455 499 3317264

0.00080142 SHE'S HER 4864 605387 6503 2783195

0.00078169 EQUALS MINUS 675 81511 373 3317390

0.00077095 BRACELET POUNDS 525 6646 2758 3390020

0.00075161 USED USED 3799 846708 2477 2546965

Table 6.12b The 27 “best” trigger pairs (according to their mutual information 

scores) for ordinary dialogue data in the BNC, together with their occurrence and non

occurrence statistics. These were obtained using the restricted dialogue vocabulary 

(the most common 10000 words after the most common 10 had been excluded) and 

the BNC dialogue dataset with a fixed-size 500 word window.
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Although in the case o f the DRT data, the majority of the top-ranked amongst these 

“best” trigger pairs are between rather common words, some interesting pairs do 

appear. Some o f these are due to the exact content of the training material and would 

not necessarily be expected to be typical for general English dialogue. For example, in 

the list o f trigger pairs for ordinary dialogue material, pairs such as “bracelet -  

pounds”, “necklace -  pounds”, “carat -  pounds” feature relatively prominently. Such 

pairs are notable if  the conversation is concerned with jewellery, but would not be 

expected to be particularly useful in more general circumstances. Such sensitivity to 

the content o f a relatively small part o f the training material suggests that, despite the 

efforts o f the compilers o f the BNC, the corpus is not “correctly balanced” with 

respect to the breadth and distribution o f “typical” modem British English dialogue. It 

would appear that, unintentionally, certain topics (or even more restricted areas of 

conversation) -  such as jewellery shopping or coverage o f a particular single football 

match -  have been given a disproportionate amount o f coverage within the BNC 

relative to their relevance to everyday conversation.

However, attempting to compile a large “well-balanced” corpus would not necessarily 

be easy, and collecting genuinely spontaneous conversation in the street or over the 

telephone may raise ethical issues regarding the consent and civil liberties o f the 

participants. Should material be collected or recorded prior to the participants giving 

their consent ? I f  so, it could be considered as infringing the privacy o f the 

participants. However, on the other hand, receiving consent before the recording is 

made could influence what the participants say and how they say it -  making the 

conversation less genuinely spontaneous, since the speakers are conscious o f being 

recorded or monitored.

129



M.I. Trigger Target N(A,B) N(A,B') N(A',B) N(A',B')

0.00903856 SHE SHE 2594 11926 11206 389477

0.00897929 HE HE 3795 17512 16393 377503

0.00393853 THEY THEY 3312 21331 20038 370522

0.00380156 BYE BYE 245 618 467 413873

0.00371063 MM AND 5068 13736 54487 341912

0.00342949 WAS WAS 3531 23153 21817 366702

0.00334803 AND MM 5395 58978 14251 336579

0.00290325 MM THE 5935 12869 74359 322040

0.00278629 ONE ONE 2592 19564 18554 374493

0.00276660 FIVE FIVE 555 4560 4272 405816

0.00258297 THREE THREE 633 5646 5311 403613

0.00240274 TWO TWO 921 8770 8272 397240

0.00238876 SHE'S SHE 822 4416 12978 396987

0.00237265 SHE SHE'S 814 13706 4112 396571

0.00236642 HUNDRED HUNDRED 338 2603 2432 409830

0.00236247 FOUR FOUR 448 3916 3698 407141

0.00236106 HE’S HE'S 750 7246 6755 400452

0.00231743 SHE HER 992 13528 6333 394350

0.00222579 HE HE’S 1220 20087 6285 387611

0.00220836 HER SHE 980 6846 12820 394557

0.00220282 MM A 4505 14299 55278 341121

0.00215342 MM TO 4373 14431 53441 342958

0.00213374 TWENTY TWENTY 353 3079 2919 408852

0.00210480 HELLO HELLO 187 949 996 413071

0.00209474 MINUS MINUS 117 267 263 414556

0.00208920 HE'S HE 1198 6798 18990 388217

0.00206221 SIX SIX 331 2923 2725 409224

0.00205261 YEAH THE 12873 38380 67421 296529

Table 6.13 The 28 “best” trigger pairs (according to their mutual information scores) 

for DRT data in the BNC, together with their occurrence and non-occurrence 

statistics. These were obtained using the fall 50000 word dialogue vocabulary and the 

BNC dialogue dataset, strictly using only the previous turn as window.
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6.5 What Kind of Turn Pairs Benefit Most 

from the Use of a Trigger Model ?

In a similar manner to the study carried out to study the effect o f the cache model on 

individual dialogue turns (see section 5.4), in order to investigate the effect o f using a 

trigger model on individual turn pairs, the program previously used was applied to 

compare the probabilities given to individual dialogue turns according to a simple 

trigram model and according to a trigger model alone. The turns showing the greatest 

ratio of cache model probability to trigram model probability were output, and their 

content (together with the content of the immediately preceding turn) studied. Some 

examples of such turn pairs are given in the table below, where the number preceding 

the text is the logarithm to base ten of the ratio o f trigger model probability to trigram 

model probability for the second turn of the pair. The text in square brackets is the 

preceding dialogue turn, whilst the turn o f current interest follows. The + and - signs 

indicate that the word preceding it had probability at least 10% greater, or less, 

respectively, according to the trigger model relative to the trigram model.

7 2 . 1 5 8  [ NO I  CAN'T STAND TO WATCH IT  I 'M  TRYING NOT TO
REALLY DRINK ] CHI+ CHI+ CHI+ CHI + CHI+ CHI + CHI+ CHI+ 
CHI+ CHI+ CHI+ CHI+ CHI + CHI+

5 0 . 8 1 3  [ NO VIC K I ] BOING+ BOING+ BOING+ BOING+ BOING+
BOING+ BOING+ BOING+ BOING+ BOING+ BOING+ BOING+ BOING+

4 8 . 8 0 9  [ PUT THEM ON THERE THANK YOU ] DOR+ DOR+ DOR+ 
DOR+ DOR+ DOR+ DOR+ DOR+ DOR+ DOR+ DAD-

3 3 . 5 8 7  [ D ID N 'T  SHE ] TICKLE+ ICKLE+ ICKLE+ ICKLE+
ICKLE+ ICKLE+ ICK+

3 1 . 5 3  9 [ SHALL WE DO OUR SECTION WORK AS WELL ] CHING+ 
CHING+ CHING+ CHING+ CHING+ CHING+

2 7 . 6 8 0  [ SEEM LIKE ] GEHT+ DIR+ WOHIN+ KOMMEN+ S IE +
2 6 . 6 6 2  [ HERE WE GO ] HOUSE- HOME- BABY- NAPPY+ NAUGHTY
COT+ BED- BATH- RATTLE+ CRIB+ BROTHER- S IS T E R - AUNTY+ 
UNCLE+ MUM- DAD- GRANDPA+ STORIES+ BOYS- G IR L S- HATS+ 
COATS+ SHOES- GLOVES+ SMILES+ FROWNS+ TEARS+ JOY+ MEALS+ 
WHEELS+ CARDS- GAMES+ CHRISTMAS- EASTER+ CHURCH- LOVE- 
HOLIDAYS+ CHORES+ OUTINGS+ CLEANING- CARPET TABLES SOFAS+ 
CHAIRS BEDTIME+ STORIES+ PRAYERS+ BOOKS- BAKING+ COOKING- 
PASTRY+ CAKES+ BREAD- SWEETS+ FIREWORKS+ CRACKERS+ 
BIRTHDAY- TREATS+ PARTIES+ THEATRE+ FLICKS+ PANTO+
TRICKS + MAGIC+ SHOWS PUNCH+ AND- JUDY- SWIM+ DANCE- SK IP+  

2 6 . 4 6 7  [ YOU NEEDN'T SING ON IT  SHUT UP ] TWEET+ TWEET+
TWEET+ TWEET+ TWEET+
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2 5 . 3 6 9  [ COME ON I DON'T KNOW ] DUD+ D I+  DUD+ D I+  
DUDDILY+ D ID - DIDDLY+ DUD+ DI + DUD+ DI +

2 5 . 1 1 8  [ I  LOVED HIM CARNALLY OH I T ' S  SOMETHING ]
CARNALLY + SEMI+ CARNALLY + CYRIL+ CONNOLLY+ NO- SEMI + 
CARNALLY+ CYRIL+ CONNOLLY+

2 2 . 8 5 4  [ THE THE QUESTION I S  THAT HONOURABLE MEMBER TO
BRING IN  H IS  BIL L SAY AYE AYE THEY AYES HAVE IT  THE AYES 
HAVE IT  WHO WILL CONFIRM BRING IN  THE B IL L  ] MR- ROBERT+ 
MCLELLAN+ MRS- MARGARET- EWING+ DOCTOR- NORMAN+ GODMAN+ 
MR- TAFFORD+ WIGGLY+ MR- RICHARD- SHEPPARD+ MR- DAVID-  
CRIMBLE+ ALICE+ MAHON+ MR- DAVID- ALTON+ MR- B IL L -  
MICKEY+ AND- MYSELF-

2 1 . 4 1 4  [ SULPHUR SULPHUR HYDROXIDE ] HYDROCHLORIC+
HYDROCHLORIC+ ACID+ HYDROCHLORIC+ HYDROCHLORIC+ ACID+  
OKAY-

2 1 . 3 5 8  [ HE WROTE PYGMALION AND SANG DOCTOR DOOLITTLE ]
ELIZA+ DOOLITTLE+ ELIZA+ DOOLITTLE+

2 1 . 3 3 4  [ PARLEZ VOUS FRANCAIS ] AH- OUI+ UN+ PETIT+ UN+
PETIT+ P O IS+

2 0 . 3 7 6  [ OUI ] OUI+ MAIS+ C ' EST+ FORMIDABLE+
1 9 . 8 2 6  [ BRUCE ] HUP+ HUP+ HUP+ HUP+
1 9 . 5 8 0  [ DO TH IS YEAH NO WAY DID YOU GET IT  ] MARCUS+

PEWTALL+ WOOD- PEWTALL+ MARCUS' S+ NICK- NAME- I S -  
PEWTALL+ WOOD- PEWTALL+

1 9 . 2 7 6  [ NO TH IS WOMAN CAME ROUND LAST NIGHT ] ICH+
DEUTSCH+ SPRECHAN+ OU+ A - FRANCAIS+

1 9 . 1 7 5  [ NAME B R IT A IN 'S  LARGEST KNOWN MAMMAL ] LOCH+
NESS+ MONSTER+ MOOSE+ LOCK- NESS+ MONSTER+ RED- DEER+

1 9 . 0  03 [ I  BEG YOUR PARDON SOUNDS NASTY JA  JA  HABEN S IE
KINDER N EIN  ] WASCHER+ WASCHER+ NUMMER+ KINDER+

Although it is possible that, in some o f the above examples, one very unusual word 

triggers another unusual one (e.g. in the cases where foreign words -  notably chunks 

o f French or German -  not adopted into “standard” English appear), a more likely 

explanation is that such words are so unusual in the BNC that their probabilities are 

being boosted within the trigger model up to the default 1/W value since no triggers 

are active at that point. However, as noted in section 6.4 above, some pairs of items 

o f mathematical and chemical terminology did appear in the lists o f the “best” trigger 

pairs found in the training data. Thus, cases like the example where “Sulphur 

hydroxide” (sic) is followed by “Hydrochloric acid” may be genuine situations where 

active trigger pairs are enhancing a word’s probability (and hence the probability of 

the dialogue turn) compared with that given by the simple trigram model. However, 

caution should be exercised before concluding that any pair o f turns showing a 

semantically (or otherwise) plausible pair of words which might be expected to form a
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pair o f triggers. It should be remembered that the trigger-based model works purely 

on statistical associations found in the training data. A human eye may spot 

associations between words, based on wider or specialised knowledge, which we 

could not hope a model based on a strictly limited number o f trigger pairs and 

exposed to a severely limited quantity of training material to acquire. For example, 

consider the following turn pairs, all relatively highly-ranked for probability 

enhancement by the trigger model (with the initial number being the logarithm o f the 

ratio o f the second turn’s probabilities with respect to the trigger-based model to that 

given by the simple trigram model) :

1 3 . 9 9 2  [ JUST ANY METALS ] OH- IRON+ ALUMINIUM+ BRASS+

COPPER+ STEEL+ MAGNESIUM+ SODIUM+ POTASSIUM+ CALCIUM+

1 1 . 5 0 3  [ HURRICANE ] TYPHOON+ HURRICANE+ WAVES+

1 1 . 4 2 7  [ NO I  DON'T MEAN JUDY GARLAND I  MEAN ] LIZA+
M INELLI + (Liza Minelli is Judy Garland’s daughter. However, would these names 
appear in the list o f triggers selected ?)

In the first o f these, it might be expected that the word “metals” would trigger one of 

the names o f specific metals in the following turn. Similarly, in the second example, 

“hurricane” might have been expected to trigger itself and/or the other words o f the 

second turn associated with extremely severe weather. However, none o f the revelant 

trigger pairs occur within the lists (based on those trigger pairs showing best mutual 

information with respect to the training dataset) used for the appropriate experiment. 

The third example is one which illustrates that we should not assume that the model 

has any “higher level knowledge” which a person may possess. Although a human 

familiar with American cinema may know that Liza Minelli is Judy Garland’s 

daughter (and hence, from a psycholinguistic perspective, for such a person , “Judy 

Garland” may act as a "prime" or trigger for “Liza Minelli”) there is no reason to 

assume that, based on limited statistical evidence, a model incorporating only those 

trigger pairs which are believed to be the most generally useful would acquire any 

such association. Each o f these names may occur only a few times within the training 

corpus and indeed, none o f the possible pairings between the two o f them occurs in 

the list o f triggers used for that experiment. Similarly, in the case :
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1 0 . 9 9 0  [ I F  JUST TAKE JUST THINK OF SINGERS AT THE MOMENT

SOPRANO I S  THE HIGHEST THEN AN ALTO ] SOPRANO+ THEN- AN- 

ALTO+ TENOR+ BASS +

only a person (or machine ?) with some knowledge of, or familiarity with, musical 

terminology would make the association between “singers”, “soprano” and “alto” 

with “tenor” and “bass”. All o f these are relatively rare words and it is not very 

surprising that none o f these appear in the set o f trigger used in that experiment.

Some other such examples requiring “higher level knowledge” (e.g. a turn pair 

featuring “Pygmalion” and “Eliza Doolittle”, and cases where one or more words in 

French or German in the first turn are followed by more in the second o f the pair) 

appear in the earlier list o f turns most highly ranked in this manner.

In fact, it would appear that only a relatively small proportion o f those turns most 

highly ranked (by improvement in probability through use o f the trigger-based model) 

contain a target word which both occurs in the set o f triggers used for that particular 

experiment and for which a “semantically salient” triggering word appears in the 

preceding turn. Some such examples are :

1 1 . 5 5 6  [ AND SAUSAGES AND HORS D ' OEUVRES ] SAUSAGES HORS+
D 1 OEUVRES+ (“Sausages” acts as a self-trigger here)

7 . 4 4 7  [ PECUNIARY ] NON+ PECUNIARY+ (Self-triggering o f “pecuniary”)

7 . 4 4 7  [ NON PECUNIARY ] NON+ PECUNIARY+ (As above)

Here we have an example of an extremely rare word, but where it does occur within 

the training data, it normally also occurs in either the preceding or following turn (it 

was found 10 times in consecutive turns in the training data and there were 415190 

triggering events where it was found in neither turn, but it only appeared 3 times in 

isolation). Hence the pair where “pecuniary” triggers itself has a reasonably high 

mutual information and is therefore included in the set of triggers pairs incorporated 

into the model.
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In many o f the other cases of turns highly ranked by this method, we are again seeing 

the probabilities of very rare words being enhanced unrealistically due to them being 

given the default probability when no triggers are active in the framework o f the 

trigger based model. This is a possible weakness of the trigger model as it is 

formulated at present.

6.6 Summary

The results o f the experiments described in this chapter show that incorporating a 

contribution from a trigger-based model can be of benefit to a statistical language 

model for both dialogue and text data from the BNC. However, particularly in the 

case o f dialogue data, the results are rather disappointing compared with those 

obtained for cache-based models in chapter 5. The interpolation weights for the 

trigger-based component are very close to zero, suggesting that the interpolated 

models are mainly relying on the simple trigram component and gaining little 

information from the trigger model. Although the reasons for these observations are 

not yet fully understood, one possibility is that the influence o f correlations between 

distinct words (exploited by trigger models) is strongest at very short ranges (of the 

order o f 10 to 20 words), whereas the influence of repetitions o f the same words (i.e. 

re-occurrences) is strongest at slightly longer ranges (of the order o f 100 words). This 

is broadly in agreement with Rosenfeld’s findings on “long-distance bigrams” and 

“distance-based triggers” for text data from the Wall Street Journal corpus (Rosenfeld 

1996). Another possible reason for the relatively poor performance o f the trigger- 

based models in this study is that they have not incorporated enough trigger pairs -  for 

example, Rosenfeld & Huang (1992) used 620 000 triggers when modelling text from 

the Wall Street Journal. When their trigger-based model was interpolated with a 

simple trigram model, a 10% reduction in perplexity over a baseline o f the trigram 

model alone was obtained. However, as noted by Rosenfeld (1994, 2000a), the 

computational demands o f trigger models greatly increase as the number o f triggers 

being employed is increased, and the models incorporating a few thousand triggers 

described in this present study seem to be approaching the limit of complexity which 

can be dealt with in a reasonable amount of computational time on the hardware 

available locally. Particularly when only a very short window, such as the most recent
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dialogue turn, can be referred to, it is unlikely that many triggers will be active at any 

given instant, reducing the utility o f the trigger model. When no triggers are active at 

all, the trigger model gives all possible words the same default probability which in 

many cases is highly unrealistic.

Furthermore, Rosenfeld (1996) notes that combining trigger and trigram models by 

linear interpolation is necessarily sub-optimal. Indeed, the results of such a model 

trained on almost 38 million words and tested on 70 thousand words of text from the 

Wall Street Journal corpus, incorporating 620 000 triggers, yielding only a 10% 

improvement in perplexity over the baseline o f a simple trigram model (Rosenfeld & 

Huang 1992, Rosenfeld 1996).

It had been hoped that, in analogy with the psycholinguistic phenomenon known as 

priming, the trigger pairs found to be "useful" in the statistical models (using the 

automated selection process involving mutual information) would also prove to be 

"interesting" linguistically. Although some interesting trigger pairs, both from a 

semantic/lexical perspective and from a structural point o f view (e.g. one pronoun 

triggering a related one, such as “she triggering “her”) for the dialogue material, many 

o f the trigger pairs found were either between extremely common words, or between 

rather rare words -  the latter cases believed to be consequences o f the nature o f parts 

o f the training dataset.

Conversely, many examples have been found where semantically associated pairs o f 

words -  clear to a human observer - have not genuinely benefited from the use o f a 

statistically-trained trigger model. This is almost certainly due to the relevant pairs of 

related words not co-occurring (or being “co-absent”) sufficiently frequently within 

the training data. In many cases, the human observer is making use o f higher-level 

knowledge or intuition about language to which the trigger model -  using a restricted 

number o f trigger pairs and statistically-trained on a limited amount of data -  has no 

access. Rosenfeld (2000b) has proposed an interactive strategy, “interactive feature 

induction”, where human knowledge plays a complementary role with statistical, 

data-driven methods.
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These observations suggest that, whilst trigger-based models may be o f some benefit 

to the modelling o f dialogue, their value may be limited on currently-available 

computational hardware unless the models can be incorporated into some type o f 

hybrid model in a way superior to linear interpolation with a simple trigram model.

Furthermore, some of the results presented in this chapter illustrate that the dialogue 

material within the BNC, whilst quite extensive in size and diverse in its sources, does 

not appear to represent modem British English dialogue in a genuinely balanced 

manner -  some very restricted topics seem to be disproportionately represented. This 

has implications for training statistical language models such as those based on word 

trigger pairs and the applications to which such models can be put with success.



Chapter 7 Experiments using Language Models

Based on Clusters

7.1 Motivation & Overview

As discussed in chapter 2, methods based on clustering documents can be a useful 

means o f allowing a statistical language model to adapt to suit the utterance or text 

currently being considered. In the context of a dialogue system, pairs of successive 

dialogue turns have an obvious importance : one turn of each pair will be the 

machine’s own utterance, so will be known by it with certainty. In the light of perfect 

knowledge of the previous turn, a decision on which cluster model (or combination of 

models) would be most appropriate for application to the next turn (the user’s turn) 

can be made. In this chapter, various strategies are proposed and tested for this 

purpose, and the results obtained compared. Also included is a so-called “oracle” 

strategy, which is a cheat -  the decision regarding which cluster model should be 

applied to the second (the user’s) turn o f a pair is based on information about the 

second turn which, for a real dialogue system, could not be known in advance. 

However, the results from this strategy can be used to give a bound on the best 

performance which could possibly be hoped-for by this cluster-based approach if  it 

were somehow possible to predict the correct cluster for the second turn o f the pair 

with absolute certainty from complete knowledge o f the corresponding first turn.

For each experiment, a trigram language model for second turns o f pairs was 

constructed from the data in each cluster. This was then tested on data held back from 

the training set. A hybrid model, interpolated with the ordinary trigram model (which 

had been trained on the full training set, rather than on just the content o f one cluster) 

was produced. The optimal interpolation weights for each cluster were computed 

using the Expectation-Maximisation algorithm (Dempster, Laird & Rubin 1977, 

Jelinkek 1990) with data reserved for this purpose, and an average set of interpolation 

parameters calculated and applied for all the cluster models in that particular 

experiment. Comparison was made between the perplexity scores for the individual 

cluster models, the “baseline” ordinary trigram model and the interpolated trigram- 

cluster model when applied to data held back for use in testing.
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As a contrast, a strategy based on clustering whole dialogues and using the resulting 

clusters to produce “weighted mixture” models was also investigated.

7.2 Clustering Experiments on Ordinary BNC Dialogue Data -  

Using Whole Dialogues and a “Mixture of Clusters” Model

An experiment was carried out to investigate the effects o f basing a language model 

on a weighted mixture o f language models, each based on a single clusters of 

dialogues. Whole dialogues from the BNC were first put into 10 clusters, using the 

“k-means” approach described in section 2.2.3 and the lexically-motivated metric 

proposed by Robertson and Sparck Jones (1997). A trigram language model was then 

constructed for each such cluster. These were then interpolated with an ordinary 

trigram model trained on dialogue in two different ways. Firstly, optimal interpolation 

parameters were computed using 300 000 words o f dialogue data reserved for this 

purpose, and the resulting “static mixture” model applied to test data. The other 

approach -  an attempt to investigate how this type o f clustering could enable the 

model to adapt to the material to which it was currently being applied -  re-calculated 

the optimal interpolation parameters (or “weights”) over each 10% o f the test data, 

and the resulting “temporary mixture” model applied to the following 10% of the test 

data. I.e. if  the 10 approximately equal-sized portions o f the test data are labelled 0,1, 

2, ... ,9  respectively, then the interpolation parameters computed using data from 

portion 0 are applied to portion 1, those computed using portion 1 are applied to 

portion 2, etc. In each case, the relevant interpolation parameters were calculated 

using the interp program in the CMU Language Modelling toolkit, using the 

Expectation-Maximisation Algorithm (Dempster, Laird & Rubin 1977, Jelinek 1990). 

In the absence o f a previous portion, the weights applied to portion 0 o f the test data 

were those computed for the static mixture model. Such a “mixture model” approach 

has previously been used by Clarkson & Robinson (1997) and Iyer & Ostendorf 

(1999).

For comparison purposes, in a ten-fold cross validation experiment, the perplexity of 

an ordinary trigram model trained on approximately 7 million words of dialogue
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material from the BNC (see section 4.6) ranged between 168.31 and 202.28, with the 

mean value being 185.98.

If  a single “static mixture” model (trained on one set of reserved data) was applied to 

the entire set o f test data, a perplexity of 185.77 was obtained.

The results for the 10-stage adaptation process ranged between 159.26 and 220.09, 

with a mean value o f 186.50. This model does not contain any features which allow it 

to adapt to the nature (e.g. the topic) of the data at a very local level -  modifiying the 

weightings just after every 10% of the data is rather crude - and so there is little 

reason to expect it to be much better than the ordinary trigram model.

These results suggest that relatively little extra value can be obtained from clustering 

whole dialogues and incorporating models based on these clusters into a mixture 

model -  at least with respect to this BNC dialogue data. The approach o f updating the 

interpolation weights in stages is probably best-suited to use in cases where a single 

long document (or long dialogue), where the theme or topic o f conversation changes 

gradually, is being considered. There is no real reason to suppose that dialogues from 

distinct files within the BNC -  particularly if  the ordering o f the files has been 

randomised - should be in any way connected, so this process o f adapting the weights 

only 10 times over the entire test set would probably not be expected to yield great 

benefit. Adaptation o f the weights with each new file or each new dialogue might be 

more appropriate.

As was noted in section 4.3, some o f “dialogues” in the BNC are rather long, and 

many are not well-balanced in terms o f both speakers uttering approximately equal 

proportions o f the total number o f words. Thus, a substantial part o f the BNC 

“dialogue” material really consists of chunks o f monologue, interspersed with short 

comments from another speaker. Such examples are probably not typical o f the type 

o f highly interactive dialogues o f greatest interest to speech technologists. Thus, for 

the remainder o f this chapter, we will concentrate on cluster-based models using the 

DRT dataset -  pairs o f successive relatively short dialogue turns from the BNC.



7.3 Clustering Experiments on DRT Dialogue Data 

Using a Lexically-Motivated Similarity Metric

Following the argument proposed earlier that, as far as “dialogue” data from the BNC 

is concerned, the most important correlations between successive dialogue turns and 

most notable structural (rather than topic-based) features are to be found between 

turns o f relatively short lengths, we have again focused on the Dialogue Reduced 

Turn (DRT) data constructed from the dialogue material in the BNC as described in 

section 4.5. In each experiment, dialogue turns (rather than whole dialogues) were 

first allocated to clusters using the “k-means” approach with the “lexically-motivated” 

metric proposed by Robertson & Sparck Jones (1997), as described in section 2.2.3.1. 

Language models were produced for each o f the resulting clusters.

Three sets o f  experiments have been carried out using different strategies for 

determining the clusters and, during the “recognition” phase, selecting which cluster 

language model is appropriate. Additionally, a set of “oracle” experiments, as 

described in section 7.1 above, was also carried out. Each o f these strategies makes 

turns forming a consecutive pair.

Experiment type "F" : The clusters were built according to the content o f both first 

and second turns o f each turn pair in the training set, i.e. treating each turn pair as a 

single entity. Once all the training material had been assigned to clusters, the mean 

value o f the metric for each cluster was computed along with a language model 

appropriate for that cluster. In testing, a model was chosen for the second turn of the 

pair according to which cluster the corresponding first turn would be assigned -  i.e. 

the value o f the metric was calculated for the first turn o f the pair currently under 

consideration and the cluster with mean closest to that value found. The language 

model appropriate for that cluster used for the second turn o f the current pair. This 

model was interpolated with the "full" language model for second turns. Once results 

had been compiled for each of the 10 clusters, an average perplexity, weighted 

according to the sizes o f the clusters, was computed. This approach to modelling turn 

pairs using clusters effectively assumes that the first and second turns o f any pair are 

alike and cluster in the same way, so that use o f either turn is a good way o f predicting 

the content o f the other.
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Experiment type "T" : Similar to type "F" above, but the clusters were built according 

to the content o f the first turns of the pairs only. Each pair o f turns was effectively 

split into its two constituent turns, the first turn being put into a particular cluster (say 

cluster number i) and the second turn being put into a special cluster constructed to 

“shadow” the cluster used for the corresponding first turn (in this case “shadow 

cluster number i). Thus, the turns ending up in shadow cluster i are the second turns of 

pairs o f which the first turns are in main cluster i. A language model was constructed 

for each o f the shadow clusters. In testing, the most appropriate cluster for the first 

turn o f each pair was calculated and the corresponding shadow cluster model applied 

to the second turn o f the pair. This effectively assumes that the content o f the first turn 

o f a pair is a good predictor of the content o f the second turn, but not necessarily the 

other way round. It does not make any assumption about the actual content o f the two 

turns being alike, only that one is a good predictor of the other.

Cluster i

Cluster j

Cluster k

True Clusters Shadow Clusters”

Figure 7.1 : Production o f clusters and "shadow clusters" for first and second turns 

o f pairs in a "T"-type experiment. The clustering algorithm is applied to first turns 

alone, but if  such a first turn of a pair is allocated to cluster i, then the corresponding 

second turn o f that pair is allocated to shadow cluster i. "F" and "S" refer to the first 

and second turns o f a pair respectively.
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Experiment type "R" : Similar to type "F" above, but only the content o f second turns 

o f the pairs was used in constructing the clusters. In an analogous manner to the “T” 

type experiments described above, but reversed, each second turn o f each pair was 

allocated to a particular cluster (say cluster j) and the corresponding first turn o f that 

pair allocated to the corresponding “shadow” cluster (shadow cluster j in this case). 

Thus, in this case, shadow cluster j contains the first turns o f those pairs of which the 

second turns have been assigned to normal cluster j. The mean value o f the metric was 

computed for each shadow cluster. During testing, the appropriate shadow cluster was 

found for each first turn o f a pair. The language model for the corresponding normal 

cluster was then used for each second turn o f that pair. The assumption that it is 

appropriate to cluster second turns and then produce “shadow clusters” for the 

corresponding first turns in effect assumes that, in a case where there was no direct 

knowledge o f the content o f the first turn of a pair, the second turn is a good predictor 

o f the content o f the unknown first turn. Although this may at first sound unrealistic, a 

system based on this principle could be used to retrospectively reconstruct or “repair” 

an unmonitored or corrupted (e.g. by noise) turn using knowledge o f the turn which 

immediately follows it.

Cluster i

Cluster j

Cluster k

“Shadow Clusters”True Clusters

Figure 7.2 : Production of clusters and "shadow clusters" for first and second turns 

o f pairs in an "R"-type experiment. The clustering algorithm is applied to second turns 

alone, but if  the second turn o f a pair is allocated to cluster i, then the corresponding 

first turn o f that pair is allocated to shadow cluster i. "F" and "S" refer to the first and 

second turns o f a pair respectively.
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Experiment type "0" : The "oracle" experiments, where only the content o f second 

turns o f pairs was used to build the clusters and, in testing, the language model for the 

second turn was chosen according to which cluster that turn would be assigned - i.e. 

the metric was computed for the second turn o f the pair currently under consideration

the training data. The language model constructed for the cluster with mean closest to 

the value o f the metric for the current second turn was applied to that turn. This 

process relies on knowledge of the turn currently being tested and, in terms o f any real 

dialogue system, is therefore a cheat. However, unlike the other three approaches, it 

does not make any implicit assumptions about correlations between the content o f the 

two separate turns o f each pair.

7.3.1 Dependence of Model Perplexity on Number of Clusters Used

For each type o f experiment, an investigation was carried out on how the perplexity of 

the model depended on the number of clusters used, both for the cluster model alone, 

and for a hybrid model produced by interpolating the cluster model with the trigram 

model used as a “baseline” for comparison. In each case, the standard BNC dialogue 

lexicon o f 50 000 words was used. In each experiment, perplexity and logprob scores 

were calculated for each cluster, then a weighted mean logprob calculated across the 

M clusters, taking account o f the different numbers o f words in the distinct clusters. 

From this, a “weighted average perplexity” score for that set of cluster models was 

calculated.

If  cluster i contains nj words and gave a perplexity score pp„ corresponding to a 

logprob lpj, then lp, = log2 ( p p j). The weighted mean logprob across the M clusters 

is th e n :

and its value compared with the mean values the metric for the clusters produced from

WMLP

M

where n = ^  n{.
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The weighted average perplexity is then :

WAPP = 2wmlp.

The summaries o f results from these experiments are shown in tables 7.1 to 7.4 below. 

In general, the models using a single cluster alone tended to have rather variable 

perplexities, often rather high values. This is largely due to the limited amount o f data 

available for training each single cluster model. It can be seen that, for a given type of 

experiment, the larger the number o f clusters used, the higher the average perplexity 

o f the models using data from any one cluster alone. (In fact, the case of using the 

simple trigram model alone can be considered as using just one cluster, fitting-in with 

this trend.) This is because the training set used in such cases is made smaller -  there 

is a fixed amount o f training data in all, so the larger the number o f clusters used, the 

smaller the average amount o f data in each cluster. Generally speaking, the 

interpolated models had lower perplexities than those of the corresponding single 

cluster or simple trigram model, showing that the use o f a cluster model could be a 

useful supplement to a standard trigram model. As expected, the number o f clusters 

has very little effect on the perplexity of the simple trigram model -  changing the 

clusters being considered only makes relatively small adjustments to the way the 

training and test data sets are partitioned. However, there is a small but noticeable 

improvement (i.e. decrease) in the average perplexity o f the interpolated trigram- 

cluster models as the number o f clusters is increased. This may be due to a finer 

classification o f  the data being possible when the number o f clusters is larger. This 

trend is similar to that found by Clarkson & Robinson (1997) for models trained on 

mixed text and spoken material from the BNC.
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Number o f 

Clusters

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

5 246.695 218.539 213.325 2.39 %

10 265.991 218.542 212.994 2.54 %

20 307.745 218.544 212.683 2.68 %

40 335.103 218.542 211.908 3.04 %

Table 7.1 : Comparison o f Weighted Average Perplexities o f Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different numbers 

o f clusters. “F”-type experiment, full 50 000 dialogue lexicon used. Percentage 

improvement values quoted are for the interpolated models relative to the 

corresponding baseline simple trigram model. The small variation in the perplexity 

scores o f  the simple trigram models with the number o f clusters used is due to the 

accumulation o f rounding errors during the averaging process, which are not identical 

when the dataset is partitioned in different ways.

As was expected, the “oracle” experiment (the cheat) yielded lower perplexities than 

the others and, when interpolated with the simple trigram model, the largest 

improvements over the baseline. These figures represent the greatest reduction which 

could be hoped-for using this type of approach, i.e. a “bound” on the best possible 

performance using this type of model. This improvement -  o f up to about 13% of the 

perplexity o f the baseline model in these experiments - is encouraging and suggests 

that cluster-based approaches may indeed be valuable in the statistical language 

modelling o f dialogue. However, the “oracle” methodology relies on information 

within the second turn o f the pair and is therefore invalid for predicting the content of 

that turn.
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In terms o f average perplexity scores, there was little difference between the results of 

the other types o f cluster experiments.

Number o f 

Clusters

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

5 262.157 218.542 213.625 2.25 %

10 287.521 218.544 212.919 2.58 %

20 324.136 218.541 212.637 2.70 %

40 359.095 218.541 212.155 2.92 %

Table 7.2 : Comparison of Weighted Average Perplexities o f Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different numbers 

o f clusters. “T”-type experiment, full 50 000 dialogue lexicon used. Percentage 

improvement values quoted are for the interpolated models relative to the 

corresponding baseline simple trigram model.
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Number o f 

Clusters

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

5 258.916 218.543 213.448 2.33 %

10 297.410 218.701 213.215 2.51 %

20 323.220 218.542 212.273 2.87 %

40 360.287 218.543 212.075 2.96 %

Table 7.3 : Comparison o f Weighted Average Perplexities o f Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different numbers 

o f clusters. “R”-type experiment, full 50 000 dialogue lexicon used. Percentage 

improvement values quoted are for the interpolated models relative to the 

corresponding baseline simple trigram model.
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Number of 

Clusters

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

5 222.337 214.631 206.930 3.59 %

10 242.789 214.624 198.882 7.33 %

20 255.405 214.618 191.290 10.87%

40 274.136 214.505 188.148 12.29%

Table 7.4 : Comparison o f Weighted Average Perplexities o f Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different numbers 

o f clusters. “0 ”-type (Oracle) experiment, full 50 000 dialogue lexicon used. 

Percentage improvement values quoted are for the interpolated models relative to the 

corresponding baseline simple trigram model.

7.3.2 Dependency of Language Model Perplexity on Size of Lexicon Used

Experiments were also carried out, using a fixed number (10) of clusters in each, to 

investigate the effect o f varying the size o f the lexicon used on the perplexity o f the 

resulting cluster-based language models. The different lexica were only used in the 

construction o f the clusters and did not affect the trigram model for the full dataset. 

The results are summarised in tables 7.5 and 7.6 below.
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Size o f

Lexicon

(words)

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

50 000 265.911 218.542 212.994 2.54 %

5 000 267.833 218.545 212.995 2.54 %

500 264.749 218.540 213.073 2.50 %

50 281.547 218.544 213.250 2.42 %

Table 7.5 : Comparison of Weighted Average Perplexities o f Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different sizes o f 

lexicon. “F”-type experiment, 10 clusters used in each case. Percentage improvement 

values quoted are for the interpolated models relative to the corresponding baseline 

simple trigram model.



Size o f

Lexicon

(words)

Weighted Average Perplexity

ImprovementCluster-based 

model only

Simple trigram 

model only

Interpolated

model

50 000 242.789 214.624 198.882 7.33 %

5 000 242.998 214.631 198.884 7.34 %

500 235.693 214.674 200.763 6.48 %

50 245.971 214.688 198.060 7.75 %

Table 7.6 : Comparison o f Weighted Average Perplexities of Cluster-Based, Simple 

Trigram and Interpolated Cluster-Trigram Language Models using different sizes o f 

lexicon. “O” (oracle)-type experiment, 10 clusters used in each case. Percentage 

improvement values quoted are for the interpolated models relative to the 

corresponding baseline simple trigram model.

As can be seen from the above, there appears to be little effect on model perplexity - 

with the exception o f the perplexity o f the uninterpolated cluster model in the “F” 

type experiment when the very small (50 word) lexicon was used, which was slightly 

higher -  due to varying the lexicon size. When the content o f individual clusters was 

investigated (see sections 7.6 and 7.7 below), in many cases the cluster for a given 

turn seems to have been determined by the presence or absence o f one or more words 

from a small set o f relatively common words. This may explain why such little 

variation o f cluster model perplexity was found as the size of the lexicon used was 

varied.
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7.4 Experiments Using an Entropy-Based Clustering Metric

In a similar manner to the experiments described in section 7.3 above, experiments 

were carried out to investigate the effect of clustering the dialogue turns o f the DRT 

dataset using the entropy-based (or, equivalently, perplexity-based) metric described 

by Carter (1994a,b). The full 50000 word dialogue vocabulary was used as lexicon. 

Concentrating on “O” (Oracle) type experiments (see section 7.3 above), language 

models were constructed for each o f M clusters (for M = 5, 10, 20 or 40). The 

perplexities o f these models were then calculated with respect to appropriately- 

clustered data held back during the building o f the models. The cluster models were 

also interpolated with a simple trigram model, the optimal interpolation parameters 

being calculated with respect to data reserved for this purpose. The results are 

summarised in tables 7.7, 7.8 and 7.9 below.

It can be seen that the weighted average perplexities o f both the cluster models and 

the optimally-interpolated trigram-cluster models decrease as the number o f clusters 

used in the experiment is increased. In all cases, there are big differences in the sizes 

o f the individual clusters, with it being commonplace for the largest cluster in one 

particular experiment to be as large as all the other clusters put together. In most (but 

not all) cases, the largest perplexity for both the purely cluster-based and the 

interpolated trigram cluster models are found for the largest cluster o f an experiment.

It can also be noted that for small numbers o f clusters, the entropy-based metric 

performs better than the lexically-based one, whereas the converse is true if  larger 

numbers of clusters are employed. This will be further discussed in section 7.5 below.
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Number of 

Clusters

Weighted Average Perplexity 

(interpolation weight for cluster model)

Improvement

Cluster-based 

model only

Simple trigram 

model only

Interpolated

model

5 222.006 214.478 202.652

(0.457035)

5.51 %

10 221.087 214.413 200.571

(0.469487)

6.46 %

20 218.591 214.638 199.280

(0.460405)

7.16%

40 217.063 214.643 199.028

(0.464878)

7.27 %

Table 7.7 : Weighted average perplexities of cluster-based, simple trigram and 

interpolated trigram-cluster models for DRT dialogue data from the BNC, where the 

clustering was carried out using the entropy-based metric. “O” (Oracle) type 

experiments using the full 50000 word dialogue lexicon. Rotation 0 only.
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Number of 

clusters

Size of 

largest 

cluster 

(words)

Size of 

smallest 

cluster 

(words)

Peplexity of cluster-based model alone

Weighted

average

Highest 

value for 

one cluster

Lowest 

value for 

one cluster

5 381010 22497 222.006 263.64* 109.29*

10 395807 5180 221.087 258.06* 87.09

20 413450 2159 218.591 250.14* 59.42

40 432138 350 217.063 335.04* 34.74

Table 7.8 : Summary o f cluster sizes and perplexities o f cluster-based models (during 

evaluation of trained models), rotation 0 only. “0 ”-type experiments with the entropy- 

based clustering metric and the foil 50000 word dialogue vocabulary.
JU

* occurs for largest cluster, occurs for smallest cluster.

Number of 

clusters

Perplexities o f simple trigram 

models alone

Perplexities o f interpolated 

trigram-cluster models

Highest value 

for one cluster

Lowest value 

for one cluster

Highest value 

for one cluster

Lowest value 

for one cluster

5 270.49 85.09 254.773* 81.33*

10 266.82 68.16 251.186* 61.96*

20 261.85 51.97 246.447* 44.47*

40 256.13* 43.93 242.259* 29.476

Table 7.9 : Summary of range o f perplexities found across clusters during evaluation 

o f cluster models : simple trigram models and interpolated trigram-cluster models. 

“0 ”-type experiments using the entropy-based clustering metric and the foil 50000 

word dialogue vocabulary.

* occurs for largest cluster,# occurs for smallest cluster.
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It would appear that the entropy-based clustering method produces one very large 

“dustbin” cluster for turns which are relatively unpredictable (and hence, when 

modelled, show a high perplexity). The turns of the other clusters are then, in relative 

terms, more predictable, and the language models for those clusters are thus of lower 

perplexity. (However, due to the relative sizes of the clusters, the weighted average 

perplexity across all the clusters is not necessarily lower than in cases resulting from 

the use o f the lexically-based metric.) This would suggest that modelling the 

individual clusters o f turns, where the turns have been identified and constructed 

using the entropy-based metric, could be of significant value in the modelling of 

dialogue.

7.5 Comparison of Entropy-Based and Lexically-Based 
Clustering Methods

A set o f experiments, using all 10 cross-validations across the data, was carried out to 

compare the effects of the entropy-based (Carter, 1994b) and lexically-based 

(Robertson & Sparck-Jones, 1997) methods of clustering dialogue turns. These were 

all performed within the framework o f “O” (Oracle) type experiments.

Number o f clusters Lexically-based metric Entropy-based metric

5 3.59% 5.51%

10 7.33% 6.46%

20 10.87% 7.16%

40 12.29% 7.27%

Table 7.10 : Average relative reduction in perplexity (with respect to baseline of 

simple trigram model) o f interpolated trigram-cluster models using different numbers 

o f clusters and the two different clustering metrics. “0 ”-type experiments.

Findings indicate that, when a small number of clusters is used, there is little 

difference in performance -  in terms o f the relative reduction in perplexity of an 

interpolated trigram-cluster model over that of the trigram model alone -  between the 

lexically-based and entropy-based clustering metrics. When 5 clusters were used in 

each experiment, the entropy-based metric gives slightly larger reductions in 

perplexity than were obtained using the lexically-based metric. On the other hand, in
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the experiments using larger number of clusters (see sections 7.3 and 7.4 above), 

greater benefit seemed to be achieved by increasing the number o f clusters employed 

in the case of the lexically-based metric than when the entropy-based metric was used. 

This may be because, when the number o f clusters allowed is large, the lexically- 

based metric allows finer discrimination between the content o f individual clusters.

However, in terms of the computational time taken to allocate turns to the most 

appropriate clusters and subsequent construction o f language models, the entropy- 

based approach is somewhat faster -  at least for the present implementations on the 

available hardware. The experiments using the lexically-based metric with 40 clusters 

took approximately 24 hours per cross-validation rotation on the hardware available, 

whereas those using the entropy-based metric on average took only about 10 hours for 

each rotation. For the same type o f metric and number o f clusters, there was little 

difference between the time required for the different types o f clustering experiments 

but, as might be expected, the CPU time used increases as the number o f clusters used 

is increased -  probably growing at a rate greater than linearly with respect to the 

number of clusters.

Number of 

clusters used

Time per rotation (in hours)

Experiment type

“ J7” “R” “O”

5 0.914 0.918 0.922 0.865

10 1.810 1.728 1.764 1.720

20 4.060 3.955 3.730 3.989

40 10.397 9.903 9.806 10.711

Table 7.11 : CPU time required per cross-validation rotation on a 2.0 GHz Pentium 4 

PC with 512 Mbytes o f RAM for cluster model experiments with the entropy-based 

clustering metric.

For the entropy-based approach, working within the framework of these “0 ”-type 

experiments, for each cross-validation rotation across the data, the clustering
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produced one very large cluster -  often containing more words than all the other 

clusters put together -  which showed very high perplexity for each o f the cluster, 

simple trigram and interpolated trigram-cluster models. Generally, the perplexities of 

all the other clusters were much lower for all 3 types o f language model. This 

suggests that the method is producing one cluster which acts rather like a “dustbin”. In 

this are placed turns which the language modelling framework cannot make reliable 

predictions -  hence the high perplexity values. The content o f the turns in each o f the 

other clusters is more predictable, hence the lower perplexity values.

In the case o f the experiments using the lexically-based metric, the clustering method 

did always produce one particularly large cluster -  in some cases containing more 

words than all the other clusters put together -  in a similar manner to the entropy- 

based metric. However, unlike the entropy-based case, the large cluster did not always 

give the highest perplexity scores

7.6 Qualitative Discussion on the Content of Individual Clusters

It would be hoped that the clustering process would produce clusters of turns which 

were in some sense coherent. Perhaps the individual clusters would contain turns 

which appeared to share a common theme, or at least contain words which were in 

some way related ? This would particularly be expected to be the case when the 

lexically-based metric is used for producing the clusters.

In the results o f this study, the very wide range of cluster sizes made direct statistical 

comparison between the clusters impractical. However, in some cases, it was possible 

to made some qualitative observations about the content o f individual clusters.

For the clusters produced using the lexically-based metric, there were several cases 

where a single word, or members of a small set of words, appeared in the majority of 

the dialogue turns within that cluster. For example, when 40 clusters were used, 

produced using the metric suggested by Robertson & Sparck Jones (1997), with 10 

cross-validation rotations across the data, the following were observed :
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Rotation 0, cluster 12 : “Mm” occurs very frequently.

Rotation 0, cluster 14 : The word “Aye” occurs very commonly -  but not in every 

turn -  along with “Yes”, “Yeah” and other words of acknowledgement.

Rotation 0, cluster 15 : Most turns contain a word being spelt-out alphabetically (e.g. 

“G R O U N  D”) or a chemical formula being spelt out (e.g. Na Cl “N A C L”, 

“Ammonium ... N H Four”), or else one of two presumed mis-transcriptions of 

“Dunno” (“Du N No” or “Du N”)

Rotation 0, cluster 25 : Most turns contain the word “Ah”

Rotation 1, cluster 32 : Many turns contain an acronym (particularly ones containing 

a letter “F”, e.g. RAF, FBI, MFI. HBF, ESF, VHF, NFU) or another word being spelt- 

out alphabetically (e.g. “F L O O D E  D”, “F R I A  R”, “M A N T U  A”, “V E R O N 

A”). Names o f fighter aircraft (e.g. “Eurofighter”, “Jaguar” and “Phantom”) are also 

quite common.

Rotation 2, cluster 1 : “Yep” occurs in most turns.

Rotation 2, cluster 15 : “Thank” occurs in most turns.

Rotation 2, cluster 20 : “Alright” occurs in most turns.

Rotation 2, cluster 23 : “Sure” occurs in most turns.

Rotation 2, cluster 30 : “Those” occurs in most turns. Wh-question words (e.g. 

“Which”, “When”, “How”) are also quite common.

Such trends are less obvious within the clusters produced using the entropy-based 

metric. This is perhaps to be expected, since the metric is not explicitly based on the 

lexical content of turns -  although it is certainly not correct to say that the entropy- 

based metric takes no account of the words present: rather, the dependence on the 

lexical content is more subtle, via probabilities given by the language model
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constructed for each cluster. However, some clusters did show certain trends in terms 

o f the words contained in their turns, e.g. (when 40 clusters were used in each o f 10 

cross-validation rotations across the da ta):

Rotation 1, cluster 2 : Very common words include “Do” and “Does”, “Did” and 

“Didn’t”, “Can” and “Can’t”, “Could” and “Thank”. There are also quite a high 

proportion o f “Wh-question” words : “What”, “Where”, “How”, etc., and a relatively 

large number o f pronouns, especially “You”.

Rotation 1, cluster 4 : Pronouns (including compound pronoun-verb forms) are 

particularly common, including “It”, “Its” and “It’s”, “You”, “You’ve” and “You’re”, 

“They”, “They’re” and “They’ve”.

Rotation 1, cluster 5 : Very small cluster consisting of single word turns -  either 

“Okay”, “Right” or “Thanks”

Rotation 1, cluster 14 : All very short turns, mostly including “This”, “That”, 

“That’s”, “What”, “W hat’s”, “Which”, “Where” or “Where’s”. “Agreed” is also quite 

common.

So we see that clustering using the entropy-based metric can produce a similar result -  

in effect, clustering some turns with similar lexical content together -  to the approach 

using the metric which is explicitly lexically-based.

7.7 What types of turn benefit most from cluster-based modelling ?

In a similar manner to the method used for the cache and trigger models (see sections 

5.4 and 6.5) on individual turn pairs, a program was used to compare the probabilities 

given to individual dialogue turns according to a simple trigram model and according 

to the cluster-based model alone. The turns showing the greatest ratio o f cluster-based 

model probability to trigram model probability were output, and their content studied.
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The number preceding each turn is the logarithm to base ten o f the ratio of 

probabilities, whilst the + and -  signs indicate that the probability o f the word 

preceding it has been increased (or, respectively, diminished) by at least 10% by 

using the cluster-based model relative to the probability given by the trigram model.

In some cases, with the lexically-based metric, it was possible to spot some common 

feature o f turns which were rated much higher by the cluster-based model than by the 

ordinary trigram model, e.g.

“O” type clustering experiment using 10 clusters:

Rotation 9, cluster 0 :

7 4 . 9 8 7  YEAH- WEAR- THEM+ DA+ DA+ DA+ DA+ DA+ DA+
6 1 . 8 0 7  WE+ WE+ WERE+ SAYING- THE+ OTHER+ DAY- YEAH- WE 

RECKON+ WE+ RECKON+ YEAH- SHE- LOOKS+ L IK E - 0 1 +  0 1 +  0 1 +  
YOU+ KNOW+ 0 1 +  0 1 +  0 1 +  YOU+ KNOW+ THE+ FRAGGLES-

5 2 . 6 2 4  DOWN+ I -  DU+ N+ N0+ MY+ FRIEND+ TOLD- ME+ YEAH- 
HE+ SAYS+ I T 1S+ TWENTY+ POUNDS+ FOR+ A+ SERVICE+

4 3 . 1 8 8  YEAH- BUT+ YOU+ KNOW+ YEAH- YEAH+ BUT+ THEN+ 
CLAIRE+ CAME+ HOME+ WITH+ ME+ COS+ WE+ M ISSED+
CORONATION+ STREET+ D I D N ' T -  WE+ LAST+

4 1 . 6 9 7  N0+ YEAH- YEAH+ SAD- REALLY + AND+ AMANDA+
D I D N ' T -  LIKE+ OUR+ OWN+ SCHOOL+ COS+ SHE+ FIN ISH E S+ HER- 
TEACHER+ TRAINING+ COLLEGE+ TH IS+

3 2 . 3 4 8  POLO+ NECK+ JUMPER+ 1+ WANT+ SOME+
2 7 . 7 9 2  THAT+ PROGRAMME+ IT + CAME+ FROM+ RED+ DWARF+ OR 

WHATEVER+
2 5 . 4 7 3  YEAH- 0H+ HE' S +  VERY+ BUSY+ YEAH- LOTS+ 0F +  

PEOPLE+ THAT+ ARE+ FINDING+ IT + VERY+ D IFFIC U L T+ A R E N 'T -
2 5 . 2 2 3  YEAH- YOUR- FAULT+ HALF PAST+ THREE+ I -  COULD-

0F +  GONE+ OUT+ EVEN- MORE+ THEN+ 0H+
2 3 . 7 4 8  YEAH- I ' V E -  GOT G+ C+ S+ E+ IN+
2 3 . 2 2 4  YEAH- YEAH+ COS- 1+ WAS+ STAYING+ IN + HER- ROOM+

AND+ 1+ WAS+ ILL+ AND+ MM+ YEAH- YOU- CAN+ ALWAYS+ BLAME-  
IT +  0N+
“Yeah” occurs in most of the above sentences.

Rotation 9, cluster 2 :

3 8 . 1 0 9  1+ KNOW- SO+ THAT+ WAS- THE+ PHONE+ GOING- 
TWICE+ NOW+ I T ' S+ DISGUSTING+ OH- I ' V E +  GOT+ TA+ GET+ 
W HAT'S- IT +  NAME- NEXT- WEEK+ NEXT+ MONTH+ I -  CAN'T  
REMEMBER+ WHAT+ I T ' S +  CALLED+ I T ' S +  GOT ERICA-  
HASSLEHOFF- I -  MEAN+ ERICA- TUT- IN+ I T -  ANYTHING+ OF- 
INTEREST+ IN+ IT + OH- OH- OH THERE+ WE+ GO+ OH- YES+ OH-
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3 5 . 5 1 6  OH- GOD+ YEAH THERE' S+ ORANGE- JU IC E + BUT OH- 
YEAH- AN- ORANGE+ MM+ WHAT+ IS  THIS + OH- I  SEE+ PEOPLE+ 
WITH+ FAMOUS+ NAMES- THERE+ IS +  A+ PERSON+ CALLED+ DAWN+ 
FRENCH+ JENNIFER+ SAUNDERS- JULIA+ ROBERTS- MANDY+ SMITH+ 
HEY-

3 5 . 1 9 4  HIM+ AND+ ANDY+ GOT- PISSE D + RIGHT AND+ HE+ 
COULD+ SAY+ OH- THERE'S+ A - FIRE+ ANDY+ THERE' S+ A+ FIRE+  
ANDY+ AND+ GOT- BLOWN+ AWAY+ RIGHT+ A N D Y 'L L- SAY+ OH- OH- 
OH

3 1 . 6 0 8  MUMMY+ GOES- RYAN+ SHOULD HAVE+ BEEN+ SHOULD 
HAVE+ BEEN+ A - ACTOR+ RYAN+ RYAN' S-  SICK + ALREADY- LAST- 
NIGHT- THOUGH+ THERE+ WAS + RYAN+ RYAN+ SAT+ THERE+ OH- 
MUMMY+ MY+ BELLY+ OH- OH- MUMMY+ I ' M -  GON+ NA BE+

3 1 . 3 0 9  LATEST+ OH- OH- SHE COMES+ DA- NA+ NA+ NA+ NA+ 
NA+ OH- OH- HERE- SHE- COMES+ OH- YEAH+ OH- OH- HERE- 
SH E- COMES+ HA- HA MUM+ WIND- IT +

2 9 . 5 3 3  BRYANT+ MAYBE- NO+ I D I D N ' T -  PUT+ PAUL- 
COULDN' T+ HAVE- BEEN+ HIM+ SO+ I ' M+  GON+ NA SHOW+ DAD+ 
THAT- L IS T +  THI S -  WEEKEND+ SE E- IF +  HE+ SAYS+ OH- OH

Observe how common the word “Oh” is in the above. Proper names (particularly of 

people) and references to food are also common in this cluster.

Rotation 9, cluster 3

5 6 . 8 7 2  ALL- RIGHT- THEN YEAH- LIKE+ 1+ WAS+ SAYING+ 1+  
GOT INTO+ A - MASSIVE+ ARGUMENT+ WITH+ HIM+ LAST+ NIGHT+
1+ HAD+ AN+ ARGUMENT+ WITH+ OSMAN-

4 8 . 6 6 6  ALRIGHT+ LISTEN+ RIGHT- L IST E N - LISTEN + LISTEN+  
LISTEN + LISTEN+ RIGHT- I ' M+ JUST+ THINKING+ OF IT  AGAIN-  
RIGHT- YOU' VE+ PROBABLY+ HEAR+ ALL+ THESE- RIGHT- THERE'S 
T H IS - THERE' S-  T H IS - MAN+ AND HE+ NO- 1+ DON' T+ WAN+ NA 
SA Y- THAT- ONE- YEAH+ THERE' S+ THESE+ THREE+ MEN+ AND+ 
TH EY'RE- WALKING+ THROUGH+ THE+

4 0 . 7 8 2  BECAUSE+ TH IS+ IS +  WHAT+ EMMA+ DID + RIGHT- SHE+ 
SA ID + WHEN+ WHEN- MRS+ SAID+ WHY+ DID+ YOU+ ASK+ EMMA+
SHE GOES- COS+ WE ASKED+ YOU+ TO+ GO THE- CINEMA+ ALL- 
THE+ TIM E-

3 9 . 8 6 1  KATHY+ I S -  THE ONE+ YEAH- NO+ T H A T 'S - RIGHT- 
YEAH+ SHE+ IS +  KATHY+ 1+ DU+ N+ NO+ 1+ JU ST+ SORT- OF+ 
GET+ THOSE+ TWO+ MUDDLED+ UP+ I  DON'T+ KNOW+ WHY+ ANYWAY- 
KATHY WAS+ JUST+ TALKING+ RIGHT- AND

3 9 . 5 5 8  FEMALE+ MALE+ MALE+ REGIONAL+ ACCENT+ HAVEN' T+
A - CLUE+

3 8 . 8 2 7  ALL- RIGHT- LOOK- WHAT'S+ THE WHAT' S+ THE+ WHAT+ 
CAN- YOU+ PUT- IN+ YOUR LEFT- HAND+ BUT+ NOT IN + YOUR+ 
RIGHT- YOUR+ RIGHT- ELBOW+ 1+ MEAN- COME- ON- I T ' S +  A-  
B I T -  OBVIOUS + WELL+ WHAT- CAN+ YOU+ PUT- IN + YOUR LEFT- 
HAND+ BUT+ NOT IN+ YOUR+ RIGHT- YOU+ CAN+ PUT+ YOU+ CAN-

161



PUT+ YOU+ CAN- PUT+ BUT+ YOU- CAN' T+ PUT+ YOUR- LEFT- 
HAND+ I N -  YOUR+ RIGHT- ELBOW+ SE E - SHANE + 1+ THINK+ YOU+ 
SHOULD+ STIC K + TO+ THE+ KNOCK+ KNOCK+

3 8 . 8 2 0  T H A T 'S - RIGHT- BECAUSE+ WHEN+ WE- CAME+ HOME+ WE 
CAME+ HOME+ ON+ A+ FRIDAY+ NIGHT + 1+ SAY+ AND- OH- THE+

“Right” and variants such as “Allright” are extremely common in the above.

Rotation 9, cluster 4 :

1 0 8 . 1 5 4  WHAT+ WERE+ YOU+ WHAT- WERE+ YOU+ HOW+ COME+ YOU+ 
WERE+ WAITING+ FOR- JIM + TONIGHT- OUTSIDE+ AH+ COS+ I -  
WAS- JU S T - LU STIN G - AFTER+ NO- NO- NO- NO- NO- NO- NO- 
NO- YOU+ THOUGHT + I  1D+ GOT- OFF+ WITH+ HIM+ FOR+ FUCK'S+  
SAKE+ OH+ D ID + L IZ Z IE - TELL YOU MM+ NO- NO- I  1+ DON'T  
KNOW+ 1+ SORT+ OF+ THOUGHT+ SOMETHING MIGHT'VE+ HAPPENED- 
OH+ YEAH+ WELL- YOU+ KNOW+ OH- YEAH+ NO- WELL WE+ WHAT- 
YOU- WHAT+ WERE+ YOU+ NO- WELL I WAS+ 1+ WAS + JU S T -  
TELLING+ HIM+ SOMETHING+ AND+ 1+ SAID+ I ' M+ NOT+ TELLING+ 
YOU+ T IL L - TEN+ THIRTY+ JU ST - TO+ KEEP+ HIM+ IN +
SU SPEN SE - I  C A N 'T - BELIEVE+ I  KNOW+ HE' S+  SUCH+ A+ DICK+ 
WHY+ D ID N ' T+ HE+ GO- AND- BUST+ THEM- MAYBE + HE+ WAS- 
BORED+ WITH+ BUSTING+ PEOPLE+ WHAT+

6 8 . 5 5 7  NO- NO- NO- NO- NO- NO- NO- NO- YOU'VE+ GOT+ 
C H IL L I- ON+ YOUR- FINGER+ HEY+ ROB- DO YOU+ WAN+ NA+
LEND+ ME+ F IF T Y + P+ I ' L L -  WAIT- TILL+ HE+ GETS+ BACK+
NOW+ YOU' RE+ ALL+ WITNESSES+ INCIDENTALLY+ 1+  OWE+ T H IS -  
MAN+ A TICKET+ FOR+ THE+ CONCERT+ I ' L L -  GIVE+ I T -  TO+
HIM+

4 2 . 0 0 2  NO- INSY+ WINSY+ SPIDER+ CLIMBING+ UP+ THE+ 
SPOUT+

3 7 . 3 6 2  DO+ YOU+ RECKON+ TH IS+ SNOW+ WILL- HOLD+ OUT+ 
UNTIL+ CHRISTMAS+ NO- NO- NO- IT  WON'T HOLD- OUT+ UNTIL+ 
CHRISTMAS+ NORMALLY- YOU+ GET+ TWO+ OR+ THREE+ WEEKS+ OF+ 
A+ BAD- COLD+

3 4 . 8 4 5  NO- I T ' S -  OVER+ THERE+ SORRY+ 0 1 -  0 1 +  0 1 +  0 1 +  
CAN- I  THAT- THAT+ YELLOW+ PLEASE- NO- SORRY YELLOW+
JA N E- CAN- I  BORROW+ THE+ YELLOW- NO- JANE+ I -  HATE- 
DRAWING- PEOPLE+

3 3 . 5 0 9  NO- NO- NO- NO- NOTHING+ LIK E - THAT+ WHAT+ 
P ISSE D +  ME- OFF+ I S +  IS +  H E ' S -  HANGING+ ABOUT+ WITH+
JAMES + AND+ THAT LOT+ NOW+ RIGHT + BUT+ WHEN+ YOU+ TALK+ 
ABOUT + JAMES + AND+ THAT LOT+ TO+ HIM+ I T S -  OH- THEY' RE+
A - BUNCH+ OF+

“No” is particularly common in the above turns, as are “Don’t”, “Didn’t”, “Couldn’t”, 

etc. Pronouns are also very common, especially “I”.
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Rotation 9, cluster 5 :

5 9 . 0 6 4  WHO+ ARE SITT IN G + WAITING- FOR- POSTS+ I T ' S -  
MOST+ LIKELY+ BE+ ONE- OF THOSE THAT+ WILL+ GET+ I T -  BUT+ 
H E ' S -  CERTAINLY+ H E ' S -  MADE+ ENQUIRIES+ T H E R E 'S- A+ LOT+ 
OF CHANGES+ IN + AFOOT WE' RE-  I -  SHALL- D ISC U SS+ IT + LET- 
YOU+ KNOW+ ALL+ ABOUT+ IT + ONE- ONE- DAY- IF +  ANYTHING+ 
COMES+ OF- IT +  BUT+ UNLESS+ YOU+ DO+ SOMETHING* YOURSELF* 
T H E R E 'S- NO* PROMOTION*

5 0 . 9 6 5  THREE- K IN D S- OF+ INDUSTRY+ JO Y- LISTEN JOY 
YOU'VE- GOT- YOURSELF+ A+ PAGE- FULL OF L IN E S + I ' M+ SICK *  
AND- TIRED+ OF+ THESE- PEOPLE* SHOUTING- OUT+ CHOOSE- A* 
PROPER+ ONE- AND HAND- IT +  IN * BY* ONE- FIFT Y * TODAY- SO- 
YOU+ CAN DO* IT +  IN + YOUR+ LUNCH* HOUR+ THREE- TYPES- OF* 
INDUSTRY+

4 6 . 9 7 6  1+ WILL+ HAVE- ONE- OF- THEM+ KRAYS- YOU+ KNOW+ 
THAT- YOUNG* LAD* WHOSE- AYE+ H E ' S + MADE* ONE- OF+ THE* 
KRAYS* H IS *  DAD* HAVE YOU+ READ* IT +  WELL* HI S +  STEPDAD- 
H E ' S *  H E ' S + FROM OUR* VILLAGE+ HIM+ HE* WRITES+ TO* HIM+ 
AND+ HE+ GOES+ AND+ V IS IT S +  HIM+ AYE+ ONE- OF+ THE+

4 6 . 9 1 3  WHAT+ HAPPENED- TO- THEM+ TOO- EXPENSIVE+
BENSONS+ HAVE- GONE+ U P - AFTER+ ALL+ TH EIR - ADVERTS+
ABOUT+ STAYING+ AT+ ONE- NINETY- NIN E+ OR+ SOMETHING+
THEY' VE+ GONE+ U P - NO+ NO+ THEY'VE- GONE+ U P - AGAIN+ 1+  
C A N 'T - BELIEVE+ I -  ACTUALLY+ BOUGHT+ BENSON+ BUT- THEY- 
NEVER+ SAID+ THAT+ THEY+ DID+ THEY+ HAD- ALL+ THESE+ 
ADVERTS+ S T IL L - A T - ONE- NINETY- NINE+ THAT' S+ WORSE+ 
T H A T 'S- WORSE+ COS- ROLL- UP+ I S -  A - M AN'S+ A - MAN'S+ 
CIGARETTE- BENSONS+ WERE NEVER+ ONE- NINETY- NINE+ NO+ 1+  
MEAN+ 1+ MEAN LAMBERTS- OH+ RIGHT+ TH EY'RE- ONE- NINETY- 
FIVE+ IN+ MY+

4 3 . 4 7 7  TO+ THE- MOVIES+ ACTUALLY- 1+  HAVEN'T- RECENTLY 
ONE- GUY+ IN + THE CHOIR+ SAID+ THAT- THE+ TINA+ TURNER+ 
ONE- I S -  PROBABLY- ON- IN + STRAWBERRY- H IL L - AND+ HE+ 
LIV ES+ NEAR+ THERE+ SO - YOU+ COULD- GO+ TO+ THAT- I ' M+  
QUITE+ INTERESTED+ I N -  SEEING+

4 3 . 0 3 3  L IK E - THAT- AND+ THE+ THINK- THEY' RE+ BEING+ 
CLEVER- WELL+ LET+ THEM+ GET+ ON+ WITH+ IT +  BUT+ IF +  
THERE- WEREN' T+ ANY+ MONEY+ FOR- THEM+ ONE- PARENT 
FAM ILIES+ THERE SHOULDN' T+ BE+ ANY+ ONE- PARENT-

4 2 . 9 7 0  YEAH+ MY- DAD+ AND+ MY+ COUSIN+ THEY+ WERE- GON- 
NA+ MY- DAD+ SA ID + YEAH+ WELL- MY- ONE- NO+ MY+ DAD' SH
ONE- WAS CALLED+ RHINO- AND+ THE- OTHER- ONE- WAS CALLED+ 
ELEPHANT+ AND+ THEIR+ ONE- DIED+ THEY+ KEPT+ IT + IN+ A+ 
BUTTER- D IS H - AND+ KEPT+ FEEDING+ IT +  MOTHS AND- THINGS+ 
NASTY+ SO- 1+ HATE+ L IK E - THE- WINTER+ T H A T 'S- WHEN+
THEY+ START+ TO+ COME-

“One”, and other numbers, are particularly common in the above.
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Rotation 9, cluster 6

8 4 . 8  96  WOO- WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+
WOO+

8 4 . 8  96  WOO- WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+
WOO+

6 7 . 1 2 9  H E ' S -  EX- FREEZE- JUMP+ AROUND+ JUMP- AROUND+ 
JUMP+ JUMP- JUMP- H I-  HO+ HI + HO+ I T ' S +  TO- DO+ MY- 
HISTORY PROJECT- T H A T 'S- MY- FUCKING- H I -  HO+ H I+  HO+ H I+  

6 6 . 8 0 6  THAT+ LITTLE+ T IN Y - BLUE- FLOWER- AH- BUM+ BUM+ 
BUM+ BUM+ BUM+ BUM+ BUM+

5 5 . 9 5 0  I ' M -  HERE+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ WOO+ 
3 6 . 5 0 4  TWINKLE- TWINKLE+ LITTLE+ STAR+ HOW+ 1+
3 6 . 3 0 3  TWINKLE- TWINKLE+ LITTLE+ STAR+ HOW+ 1+
3 3 . 0 1 9  OKAY+ L IST E N - LISTEN + LISTEN+ A - BAR+ WITH- 

R A IS IN S +  MUESLI+ AND+ OATS+ CALLED- OAT+ BAR- YEAH+ 
T H A T 'S - MY- DESIGN A+ BAR+ WITH- NUTS+ AND+ R A IS IN S +
WHAT- CAN+ THAT- BE - CALLED+ MUM+ GOES+ NATURE-

What would normally be relatively unusual words appear in the above, often repeated.

Rotation 9, cluster 7

8 3 . 3  54  YOU- SCUM- OF+ THE+ EARTH+ DE+ DE+ DE+ DE+ DE+ 
DE+ DE+ DE+ YOU- SHOULD ONLY+ HAVE THAT- ATTITUDE+ I F -  
YOU- COME FROM A+ DEPRIVED+

6 4 . 6 3  8 I -  KNOW- I T ' S +  A+ STUPID+ PHRASE- BUT- YOU- 
LEARN BY+ YOUR- MI STAKES + AND+ I ' M+ TELLING- YOU TOO+
I T ' S+ BLOODY- TRUE+ 1+ KNOW- I ' V E -  LEARNT+ A+ FEW- THINGS 
BY+ HUGE+ MISTAKES+ YOU- DO- LEARN+ BY+ DAVE+ OBVIOUSLY 
D I D N ' T+ KNOW- NO+ RIGHT- YEAH+ BUT- THERE1S+ SO - MUCH- 
DAMAGE+ TO+ YOU- YOU- SAW+ THAT+ FILM - YOU- SAW+ WHAT+ 
HAPPENED+ TO- THAT+ PERSON- I T ' S +  AWFUL+ YEAH+ I ' M -  
SAYING - THEY' RE+ BEING+ EDUCATED+ A R E N 'T - THEY+ THEY1RE+ 
BEING+ EDUCATED+ I F -  THEY+ I F -  THEY+ HAVEN' T+ LEARNT+ 
THEIR+ LESSO NS- I F -  THEY+ HAVEN' T+ I F -  THEY+ HAVEN' T+ 
PA ID + ATTENTION+ IN -  CLASS+ I T ' S +  THEIR+ FAULT+ I T ' S +  
THEIR+ FAULT+ I  KNOW- BUT YOU- SEE+ TH EY 'LL- REGRET+ IT +  
LATER- BUT- THEY+ NEED- A - BIT +

4 6 . 1 8 2  YES+ THAT' S+ PARTICULARLY+ IMPORTANT+ I N -  
SYSTEMS+ L IK E - OURS+ WHERE- YOU- CAN DIVERT+ YOUR- 
TELEPHONE+ SO - EVEN+ THOUGH- YOU'RE+ CERTAIN- THAT+ YOU+ 
DIALLED+ THE+ RIGHT+ NUMBER+ YOU- COULD+ END+ UP+ 
ABSOLUTELY- ANYWHERE- BECAUSE- THE+ NUMBER+ YOU- DIALLED+ 
COULD- BE+ DIVERTED+ SOMEWHERE+ COMPLETELY- DIFFERENT+
SO - I T ' S+ VERY- IMPORTANT+ WHEN+ YOU- ANSWER- THE 
TELEPHONE- TO+ SAY- WHO+ YOU- ARE+ THE+ OTHER- THING- 
THAT' S+ ANNOYING- ABOUT- THAT IS  I T -  THEN+ FORCES + YOU- 
INTO A+ COMPLETELY + U SE L E SS- SMALL- CONVERSATION- SUCH+ 
AS+ I S -  THAT- SO+ AND+ SO - AND+ THEY+ SAY- YES+ AND+ YOU- 
THEN+ FEEL- LIKE THEY+ SAY+ YES+ AS+ MUCH- AS TO+ SAY+
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WELL- WHY- D ID N ' T+ YOU- KNOW- THAT ANYWAY + AND+ THEN- 
YOU- FEEL- LIKE SAYING* WELL* WHY+ D I D N 1T+ YOU- SAY- SO+ 
AND YOU- START OFF* ON+ THE+ WRONG* FOOT- ANYTHING- 

4 6 . 0 9 5  OH+ WELL- 1+ KNOW- JU ST - THOUGHT- I ' D +  CALL*
YOU- ALRIGHT+ SO+ YOU- COULD* YEAH* YOU'VE+ GOT+ H I S -  
TELEPHONE+ NUMBER+ ANYWAY- SO YOU- CAN- ALSO+ PHONE- HIM+ 
A T - THE SAME- TIM E* 1+ JUST SAID LOOK+ YOU* KNOW* SIL L Y - 
REALLY+ COS+ I -  MEAN* HE+ KNEW+ I -  HAD* A COUPLE+ OF* 
PEOPLE+ YOU KNOW+ MONDAY + AND- TUESDAY+ BEFORE* MONDAY+ 
AND- TUESDAY* AND* YOU- KNOW YOU- GOT YOU NEED A - COUPLE* 
OF* PEOPLE* A S - WELL* SO- I F -  YOU- D O N 'T - MIND* COMING* 
OVER* FROM* I T ' S -  ENTIRELY- U P- TO

“You”, especially in combinations such as “you know” is especially common in these.

Rotation 9, cluster 8 :

3 6 . 8 1 7  MM- WHAT- TO* THINK* OH* I *  CA N'T* THINK* OF*
ANY* WORDS* OH- WE' RE* GOING* TO* GO- OFF* FOR- AN* 
INTERVIEW* NOW- ANYWAY* MM- LOOKS* VERY*

3 0 . 8 3 0  MM- HAVE* TO* BE CAREFUL* WHEN* YOU'RE* TALKING* 
ABOUT* THAT-

3 0 . 0 5 4  EGG* AND* SAUSAGE* WHAT* KIND* OF* EGG*
2 7 . 3 2 5  SEVEN* FOUR* SEVEN* HUNDRED* SEVEN* FOUR* SEVEN* 
2 6 . 8 7 8  MM- LEAVE- HIM* A* LIT TLE - NOTE* I *  THINK- WE'D*  

BETTER* GO*
2 4 . 4 8 1  WHOSE* WHOSE* MOTHER* D ID * YOU- SEE* T H IS*  

MORNING* MM-
2 3 . 9 5 2  MM- PERHAPS- I *  OUGHT* TO* HAVE* A* GO* AT* 
2 3 . 9 2 6  EXCUSE* ME* WHO'S-  THAT* MAKING- THAT* NO ISE*  
2 2 . 4 4 2  THEY* DO* THEY* GO* THEY GO* AND- THEY* BREAK* 

INTO* SHOPS*
2 0 . 7 3 8  YOU* FEEL* BUT- WHEN* YOU- GOT- IT *  ON* RIGHT-  

YOU* FEEL* SORT- OF LIKE* MM- MM- MM- MM- MM- MM- MM- 
AND+ YOU FEEL* L IK E * LOOK- AT- ME* EXPENSIVE- EQUIPMENT* 
I T ' S *  PROBABLY* ONLY* WORTH* ABOUT* A*

2 0 . 5 6 6  MM- YESTERDAY* WHEN* I *  REMEMBERED* IT *  I *  JUST*  
CRACKED* UP*

“Mm” is particularly common in these turns.

So, in many cases, the production of a cluster using the lexically-based metric appears 

to be very heavily influenced by the presence or absence o f a single specific word.

It was normally less easy to spot such trends in the clusters produced using the 

entropy-based metric, although some such patterns were observed.
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e.g. “O” type experiments, using entropy-based metric with 10 clusters

Rotation 9, cluster 0

4 6 . 2 7 4  AND- HE WAS- PLAYING COMPUTER- WITH ME+ AND- I -  
MEANT- TO- COME- UP TO YOU+ COS + WHEN- THEY+ GO+ AWAY+ 
COS- TH EY 'R E- NOT- GOING+ AWAY+ TH IS+ WEEKEND* BUT* WHEN 
THEY GO+ AWAY+ YOU- SHOULD* COME- DOWN* COS* THE- F L A T 'S -  
QUIET+ AND- I  A I N ' T  GOT NOTHING+ TO DO S IT +  AND- PLAY- 
MY+ COMPUTER- AND- IT  WAS JUST SO- BR ILLIA N T* 1+ COULD 
LEAVE* EVERYTHING- LYING- ABOUT+ ON- THE- FLOOR+ AND- 
NOTHING+ WOULD- GET BROKEN- I COULD LEAVE* A+ MADONNA- 
TAPE+ I N -  THE- MIDDLE OF- THE ROOM- AND- NO ONE+ WOULD* 
R I P -  I T -  I ' D +  S IT +  AND* WATCH+ IT +  YOU- KNOW* JUST PUT* 
IT +  THERE* S IT +  AND- WATCH* IT +  IT  WAS BRILLIANT + 1 +
COULD WATCH* TELLY AND- ACTUALLY- HEAR* WHAT JIM + WAS* 
SAYING* I N -  NEIGHBOURS* IT  WAS AMAZING+ I ' V E  NEVER I ' V E *  
NEVER+ EVER HEARD- J I M ' S -  VOICE

4 3 . 7 5 9  NO* I  WAS- THINKING+ OF HISTORY WHAT+ WHERE 
THEY- ARE+ I N -  HISTORY- SO* YOU'VE NOW+ GOT+ TWO- FOUR+ 
S I X+  EIGHT TEN+ TWELVE* FOURTEEN+ SIXTEEN+ EIGHTEEN* 
TWENTY+ TWENTY+ ONE+ SO - FAR* FOUR+ MORE* THAT' S +
PUSHING- IT  D A D 'LL - LET+ TWENTY- FIVE 1+ THINK+ AND- 
EVERYBODY'S- GOT- TA+ BRING* A PRESENT* SO - THAT'S  
TWENTY + F IV E - PRESENTS- I -  GET- TWENTY + FOUR+ PRESENTS* 
T H A T 'S - NOT+

4 2 . 3 4 6  YOU+ BITCH THE- MIKE A I N ' T  THE- MI KE ' S -  GONE 
AGAIN+ TESTING TESTING+ ONE+ TWO+ THREE+ I T ' S -  GONE+
YEAH+ I ' M +  GON NA OH+ TESTING- TESTING+ ONE+ TWO+ THREE+ 
YOU+ CAN HEAR+ YEAH+ I T ' S +  ON+ THERE + WHAT+ THE- FUCK+ 
ARE+ YOU+ DOING

4 0 . 4  9 2  RIGHT+ FOR- HOW+ MANY+ YEARS+ HAVE+ WE+ BEEN- 
TOLD I T ' S+ TAX- PAYERS'+  MONEY+ DO+ YOU+ REMEMBER- 
MAGGIE- AND- THE- TAX- PAYERS'+  MONEY+ I T ' S +  L IK E - TH IS+  
ANIMAL- SOMEWHERE- CALLED- THE TAX- PAYER- BUT IT  CAME- 
OUT OF+ THE WALL+ A S - IF +  WE+ WEREN' T+ ONE- O F- THEM+
AND- THAT+ WE- HAD+ TO LOOK+ AFTER+ THE TAX- PAYERS' + 
MONEY+ WHAT ARE+ THEY+ DOING+ WITH+ MY+ MONEY + NOW+
THEY' RE+ B R IB IN G - PEOPLE- LEFT- RIGHT+ AND+ CENTRE+ WITH+ 
IT +  I  OBJECT- TO+ THAT MIND- YOU I SUPPOSE+ I F -  THE- 
OTHERS- WERE- IN  THEY' D+ DO EXACTLY THE- SAME THING 
WOULDN' T+

3 9 . 6 1 1  DO+ DO+ DO+ DO+ CHOO- DO+ DO+ DO+ DO+ CHOO- I  
REALLY + LIK E+ THAT- I  PLAY+ IT + ON+ MY+ BROTHER'S- 
COMPUTER I ' M+  ALWAYS BLOWING- THE- LITTLE+ DUCKS- U P- 
THEY- GO+ THEY'RE GOING- LIKE+ THAT AND- YOU+ SHOOT- 
THEM- AND- THEY- TURN- INTO- A - I T ' S  REALLY GOOD+ I -  
LOVE+ THE- MUSIC+ IT  GOES- DO+ DO DO+ DO+ CHOO- DO+ DO+ 
DO+ DO+ CHOO- DO+ DO+ DO+ DO+
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The words “Do” and “Cos” and numbers are quite common in this cluster.

Rotation 9, cluster 3 :

6 0 . 3 2 7  WHAT- I ' M -  SAYING TO+ YOU+ NOW+ I S +  1+  WAS + 
SAYING+ TO+ ARTHUR- THE- THE+ PETROL+ MONEY + THAT- WE+ 
USED+ TO+ PUT- IN  FOR- PETROL+ I T -  COST+ US+ FIV E + POUND+ 
A+ WEEK+ IN + THE- WINTER* BUT- IN + THE SUMMER* I T -  COST* 
US + EIGHT* POUND* A+ WEEK* SOMETIMES+

5 6 . 9 3 0  COS+ I ' M+  IN  BED- RIGHT- COS* SOMETIMES* 1+ GO* 
IN *  THE WEEK+ IT *  DEPENDS- HOW+ I -  FEEL+ LIK E* TONIGHT- 
I ' L L -  PROBABLY + GO+ TO+ BED- ABOUT* ABOUT+ HALF* TEN+ OR+ 
ELEVEN* COS- I ' M+ GON- NA WATCH* RUBY- WAX+ AND-

5 6 . 0 2 8  HE' S  DOING* IT  A S* A WEDDING* PRESENT* H E ' S *  
NOT* CHARGING* THEM+ ANYTHING* LIKE+ T H A T 'S- A - I -  SAYS* 
WHAT+ CAN WE- GIVE+ THEM* A S* A* WEDDING+ PRESENT+ HE+ 
SA Y S- I ' M+  GIVING* ME+ DAUGHTER* T H A T 'S- A - WEDDING* 

5 1 . 8 5 8  HE+ JU S T - WENT+ HELLO+ KATH- I -  WENT+ RIGHT- 
YEAH+ YEAH+ COS- I -  DO- ACTUALLY + KNOW+ WHO+ YOU+ ARE+ 1 + 
JU S T - REMEMBER+ THE+ TIME+ HE+ CAME+ INTO- AND- HE+ HAD+ 
A - FAG+ AND+ HE+ SE T - THE- ALARM+

4 4 . 5 4 0  ABOUT+ TEN+ PAST+ TWELVE+ STARTS- TO WORK+ 0 1 -  
THINK OF A+ PROJECT+ FOR+ ME THAT- 1+ CAN+ DO FOR+ THE 
NEXT SEVEN+ WEEKS+ WHAT+ CAN+ HE+ DO+ FOR RIGHT- DRAW+ 
LOADS- OF+ PEOPLE+ WITH- THEIR+ HEADS+ BEING - BLOWN- OFF- 
YEAH- T H A T 'S - A -

4 2 . 6 3 9  ME- ME+ MUM+ AND+ DAD S P L IT - UP+ JUST+ BEFORE+ 
D ID N ' T+ THEY+ AND+ COULDN'T AFFORD+ IT + S HE' S +  DOWN- TO+ 
HER+ TARGET+ WEIGHT- NOW+ SHE' S+  GOT+ TA- DO ANOTHER+
TWO- WEEKS+ AT+ AT+ AT+ SAME+

3 7 . 6 1 5  NO+ YOU- CAN' T+ YOU+ CAN' T+ RIGHT WE' RE+ GON+ 
NA+ START+ WITH- B+ THAT+ I ' M+  GON- NA DO- IN + AND+ THE+ 
NEXT- PERSON+ WHO'S+ ST IL L + TALKING+ WHEN+ NO+ YOU'RE+ 
NOT IF +  GETTING+ OUT+ OF+ MY CLASS+ NOW+ I 'M  GOING- TO- 
AND+ THEN- GET IN D IG ESTIO N - AND+ THEN- AND+ AND+ ALL+ 
THAT+ I  THINK+ YOU- CAN+ START OFF BY+ HAVING+

3 3 . 8 3 1  AND IN+ FACT+ IT +  STARTS- OFF+ WITH+ HIM+ IN -  
THE- GYM+ DOING+ HI S +  WORK+ OUT- AND- HE+ HAS+ TH IS+
SONY- WALKMAN+

3 2 . 9 4 2  AND+ WELL+ OF+ COURSE+ THEN+ SOMEBODY+
SUGGESTED+ OH- WHAT- ABOUT+ SCOTTISH- COUNTRY+ DANCING+ 
COS+ THE SO+ I SAID+ OH- I ' D+ LOVE+ SCOTTISH- COUNTRY+ 

3 2 . 0 4 3  WHERE+ ARE THOSE+ TAPES+ FOR THAT+ YOU- SA ID + I -  
COULD+ HAVE- ONLY+ ONE- THAT'S ALL+ RIGHT- I  MEAN+ LIKE+ 
1+  ACTUALLY+ SORT- OF+ WORKED+ OUT- ABOUT+ ANOTHER+ TWO- 
OR+ THREE+ TAPES- YESTERDAY+ THE+ ONLY+ THING+ SE E - IS +  
THAT- I T ' S+ ALL+ MY- OWN+ TAPES- THEY'RE+ SUCH+ CRAP- 
ONES- AND+ LIKE THEY+ JU S T - SOUND- REALLY+ BAD+ WHEN+ 
THEY' RE+ RECORDED- ON- I T ' S  LIKE+ THE- SAME- THING+ WITH
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VIDEO - TAPES+ THEY+ ALL+ GET+ BUGGERED+ U P - SO+ I ' V E -  
GOT- TO SORT+ OF+ I ' V E -  GOT- TA- RECORD-

3 1 . 6 2 1  WELL- OURS+ IS +  SORT+ OF+ WELL DEREK+ 1+ TOLD+ 
YOU NEW- NEW+ YEAR+ ON- THE+ SUNDAY+ HE+ WENT+ UP+ AND+ 
JUST+ THREW + SOME- OF+ OURS+ OUT- AND+

3 1 . 5 1 1  BUT+ I T -  ALWAYS+ SEEMS+ TO BE+ SOMETHING+ WE+ 
WANT+ SPECIAL+ EITHER+ A - SIL L Y - LITTLE+ COMEDY- AND+ 
THINGS+ LIK E+ THAT+ THEY+ WERE+ PERFECT- BUT+ ANYTHING- 
WE+ REALLY + WANT- IT +  ALWAYS+ SEEMS+ TO

3 0 . 4 9 8  WICKED+ YOU- KNOW+ WHAT+ I ' V E -  GOT- TA- BLOODY-  
DO- YEAH+ TO- BRING TH IS+ BACK- YEAH- TH EY 'V E- ASKED+ ME- 
YEAH- TO- GET+ UP+ AT+ TEN+ THIRTY+ IN + THE+ MORNING+ 
AND+ GO- TO - THE- SCHOOL+ ON- MONDAY + WHEN+ 1+ COULD- BE 
LYING+ IN + BED+ OH-

2 9 . 4 6 2  I  DU+ N NO BUT+ SHE+ SAYS THAT+ S H E ' S -  YEARS + 
AGO+ SHE+ USED+ TO+ PUT- AN+ ONION+ IN+ HER+ EAR- OR- 
SOMETHING+ WHEN+

The above seem to include a lot of words related to time and dates, including 

numbers.

Rotation 9, cluster 4 :

5 2 . 8 7 8  YES+ WELL- YOU+ KNOW+ WENDY+ YOU+ COULD- COME+ 
AND+ AND- HAVE+ A+ SPOT+ OF+ LUNCH- IF +  YOU'D+ LIKE+ 1 + 
MEAN+ YOU' RE+ ALWAYS+ SO- WELCOME+ TO+ COME+ AND+ HAVE+ 
ANYTHING+ YOU+ ONLY+ JU S T - HAVE+ TO+ SAY+ WELL+ YOU+
KNOW+ WOULD- I T -  S U IT - YOU+ FOR- ME- TO+ COME+

4 1 . 4  06  1+ DON' T+ KNOW THAT- ONE- OH+ YOU+ DO+ YOU'RE+ 
SO - BU LLSH IT- JU S T - TO+ THE- REAL- ONES+ WHATEVER+ THEY+ 
ARE+ OH- THEY+ GET- ALL+ THE+ I ' M -  TALKING+ I ' M+ TALKING+ 
TALKING+ SEE+ 1+ DID + I T -  I T ' S -  ME- JUST+ DO+ IT +  1+
JUST+ D ID + IT +  DO+ THE LONG- ONE+ A S -

4 0 . 9 9 8  NO+ THEY' RE+ NOT+ IGNORANT+ NOT- IGNORANT+ WHEN 
THEY+ SAY- WELL+ THEY+ ARE+ IGNORANT+ COS- 1+ WOULD-  
NEVER+ SAY+ WHICH+ PART+ O F- FELLOW- SA ID + TO+ ME+ THE- 
OTHER+ WEEK+ YOU+ DON'T LIVE+ HERE+ 1+ SA ID  OH YES+ 1+  

3 7 . 7 9 1  1+ GOT- HER+ THERE- SHE- SAID+ SHE+ WAS IN+ A - 
HURRY+ BECAUSE- SHE+ WAS- AFRAID+ TO+ LEAVE + KEITH- TOO- 
LONG+ 1+ SA ID + WELL+ I ' M+ IN+ A+ HURRY + A S -  WELL+ SO+ 1 + 
GOT+ HER+ THERE- AS+ QUICK+ AS+ 1+ COULD+

3 6 . 7 0 2  THEY+ SAY- THEY+ ARE+ GOING+ TO+ SH IP +  THEM+ 
WITH+ EVERY + SYSTEM+ SEVEN+ YOU- GET+ TH IS+ SO+ 1+ WENT+ 
IN + THERE+ AND+ 1+ THOUGHT OH+ GOD+ 1+ MEAN- 1+ COULD+
IF +  YOU+ GAVE- ME+ IF +  1+ DID+ A - N IC E - SKETCH- AND+ 
WORKED- ON+ IT + IF +  1+ SPENT- A+ DAY- A -

3 3 . 4 9 1  ALRIGHT+ 1+  MEAN+ NORMALLY + 1+ JU ST KEEP+ GOING+ 
YOU+ KNOW+ AND+ SORT+ OF- DON' T+ BUT- I ' V E +  BEEN- ACHING+ 
SO+ MUCH+ THAT+ I T ' S +
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2 8 . 9 5 4  1+ MEAN+ I ' M+ SK INT+ AT- THE MOMENT I ' V E +  I ' V E +  
I ' V E +  HARDLY + GOT+ ANY+ MONEY+ MONEY + AT+ THE-

2 8 . 0 6 6  AND+ 1+ OFFERED+ THEM+ A+ F IV E R - TO+ PAY+ FOR+ 
THE+ VAN+ BUT- THEY+ D ID N ' T+ TAKE+ IT  I T -  WAS- VERY- 
N IC E+ VERY+ BUT+ YOU+ HAVE+ TO+ TAKE-

2 8 . 0 2 3  OH+ YEAH+ WELL- YES- WE'VE+ HAD- WE'VE+ PUT+ 
BEDDING+ PLANTS+ BEDDING+ PLANTS+

2 6 . 3  6 5  WHAT1S + WRONG+ WITH+ THAT+ 1+ CAN' T+ BARN+
DANCE+ BUT- 1+ CAN+ HAVE- A+ JOLLY GOOD+ BASH+ AT+

2 6 . 1 0 3  STO P- A - MINUTE+ BEND- OVER+ I ' V E -  GOT TA+
WRITE+ DOWN+ WHO' S-  TALKING+ TO- ME+ 1+  JU S T - GOT- TA+ 
WRITE+ DOWN+ WHO' S-  TALKING+ TO- ME+

2 5 . 9 9 7  YEAH+ 1+ CAN+ HEAR+ YOU+ LOUD- AND+ CLEAR+ 
COMING- THROUGH+

2 5 . 2  63  1+ HEAR+ YOU+ D ID N ' T+ HAVE+ YOU- D I D N ' T -  ENJOY+ 
YOUR+ LIVER+ THE- OTHER DAY+ OX- LIVER+ OR- SOMETHING+
I S -  THAT+

2 4 . 3 1 0  RIGHT- I ' M+ JUST+ GOING+ TO+ DESTROY+ T H IS - NOW+ 
ANDY- WHAT- DO+ WE+ NEED+ TO+

2 4 . 0 2 3  COULD+ YOU+ GIVE+ ME+ SOME+ IDEA+ OF+ HOW+ I T -  
HAS-

These are mostly quite short turns containing a high proportion o f pronouns.

Rotation 9, cluster 6 :

4 8 . 4 2  0 RIGHT+ NOW+ YOU'RE- DOING- WHAT I -  USED+ TO+ DO- 
WHAT+ I  USED+ TO+ DO- WHEN+ I STARTED+ OKAY- YOU'RE- 
RUSHING+ I -  ST IL L  DO+ OKAY+ YOU'RE- YOU'RE+ RUSHING+ 
THROUGH + YOU- ARE+ YOU'RE+ STARTING+ OFF+ SO+ YOU- GO+ 
THEN+ YOU- SUDDENLY+ REALIZE- I -  KNOW- TH IS+ YOU'RE- 

4 4 .  0 8 1  J +  J +  WHAT'S- GOING+ ON WITH+ J +  J +  WHAT- DO- 
YOU- THINK+ DO I -  LOOK+

4 3 . 8 4 6  Y O U 'R E - FIVE+ EIGHT+ YO U'RE- FIV E + EIGHT+ YOU- 
STAND+ YOU- I -  D O N 'T- THINK+ SAME+ S I Z E -  AS+ MY+ MUM+ I -  
D O N 'T - THINK+ SO SOMEHOW+ COS- MY+ MUMS+ FIVE+ EIGHT+ 
AND+ MY+ MUMS+ Q UITE- TALL+ SHE' S NOT+ FIVE+

4 1 . 7 4 0  WELL- I -  LIKE+ THE+ BLUE- AND+ YELLOW+ ONES- 
WELL- I ' VE+ HAD+ ONE+ TWO+ THREE+ FOUR+ FIVE+ SIX +
CONVERSATIONS- OOH

4 0 . 9 8 1  NO- YEAH+ OH MY+ GOD+ OH+ MY+ GOD+ HE+ REALLY+ 
DOES+ OH- MY+ GOD+ THAT'S REALLY- WEIRD+ I THINK 
RICH ARD'S+ HERE- OH- I -  KNOW+ R IC H A R D 'S- MUMS- CAR+ I T ' S -  

4 0 . 4 2  0 WELL- I T ' S -  I T ' S -  GON+ NA+ BE VERY- LATE+ THERE+ 
YOU' LL+ BE+ GETTING+ HER+ OUT+ OF- BED+ IF +  YOU'RE+ NOT- 
CAREFUL+ I -  KNOW- SHE+ SAYS+ I T -  DO ESN'T+ MIND+ SHE+ SHE+ 
D O E SN 'T - MIND+ I T -  DO ESN'T- MATTER- BUT- OH+ DEAR- 
T H E R E 'S- A+ PIECE+ HERE+ IN+ THE+ NEWSPAPER+ D ID - YOU- 
SEE+
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3 2 . 3 4 5  OH- YEAH+ TH AT'LL- SU IT + YOU RIGHT+ DOWN+ TO* 
THE+ GROUND* YO U'RE- A* WEE* THAT+ WAS+ OBVIOUSLY* WHAT- 
I -  WAS* GON+ NA* SAY* AHA+ JU S T - BECAUSE+ I T ' S -  YOUR- 
BIRTHDAY+ I ' L L -  LET* YOU+ GET+ AWAY- WITH*

2 9 . 3 0 7  I F *  HE+ WERE* TAKING* SEVERAL- OF* YOU- OUT*
WHY- D I D N ' T *  YOU* SAY+ TO* ONE OF* THE* OTHER- G IR LS*
WHY- D O N 'T - YOU COME* DID HE* HAVE* A* P A IR - OF*

2 8 . 9 5 0  I -  SUDDENLY* WONDERED- I F *  I -  WAS* ALLOWED* YEAH 
H E ' S *  SUCH* AN* ARSEHOLE- BUT* I -  C A N 'T - BELIEV E- WHEN* 
HE* CALLED* YOU- A* SLUT*

2 8 . 3 9 0  BUT I F *  I  EVER* HAVE* I T -  DONE* AGAIN* I ' M -  
GOING+ TO BUY* THOSE* BRASS- THINGS* AND* I T -  ONLY*
COSTS* ABOUT* F IV E * POUNDS- MORE* WHEREABOUTS* D ID * YOU- 
GET+

2 5 . 2 7 5  OH- MY* GOD* WE* DI D N ' T *  KNOW- WHAT- HE* WAS* 
DOING- I *  MEAN* I T -  WOULD* HAVE* TO* HAPPEN- TO- ME*
YEAH- THAT WAS* SIC K * HONESTLY- I T -  REALLY- WAS* I -  WAS* 
L IK E - B IG * FAT*

2 5 . 1 0 0  WHAT* AH- I *  CAN'T F IN D - MY* YES I -  AM* SORRY*
I *  C A N 'T - SMELL- THE* GOOD- ONES* I -  D ID N 'T *  KNOW- L IK E - 
T H IS - M+ S+ FROM- M+

2 4 . 8 8 3  I -  D O N 'T - KNOW* SHE* JU ST * SA ID * THAT* HE* WAS* 
TWO* FACED* THEN* AGAIN- I -  THINK* MOST* OF* THE* PEOPLE* 
HERE* ARE* I -  D O N 'T - KNOW* WHAT- YOU- CAN* GET AWAY*

2 4 . 4  97  THEY'RE* U P- TO THEIR* EYES* IN *  IT  YOU CAN'T*  
ASK* THEM* WHILE* THEY'RE- THEY'RE I T ' S -  NOT-

These are again mostly rather short turns, where “do” & “don’t”, “did” & “didn’t”, 

“can” & “can’t”, etc. are quite common.

Rotation 9, cluster 7 :

8 7 . 7 2 1  HE* WENT- UP* AND- I T ' S -  F IR S T - TIME* HE' D*
SEEN* HER* FOR* A* WHILE* AND* SHE* SA ID * SOMETHING* 
ABOUT* OH* HE* WAS* SUPPOSED* TO HAVE* SOMETHING* BUT HE* 
GOT- TO- HEAR- T H IS* WELL- I T ' S -  GOT- NOTHING* TO* DO- 
WITH- ALL* THE* OTHERS* COS ALEC- SA ID * SOMETHING* TO*
ME* ABOUT- MAGGIE* I *  SAYS* WELL* WHAT AH* I *  DON'T* 
UNDERSTAND* IT *  BECAUSE* MARGARET* ALEC- GOT- ON* WELL* 
WITH* MARGARET* MAYBE* THEY* BOTH KNEW* THAT I S -  I *
DON' T+

7 8 . 7 9 8  LIKE WHEN* SHE- GETS* THERE- S HE ' S *  GON* NA* BE- 
PANICKING- ABOUT* ONE- THING* AND- ANOTHER* SHE* I -  
THINK+ WELL* THEY* SORT* OF SA ID * THAT WHAT- HOPEFULLY* 
SH E'LL * LIK E* B E - THERE FOR- A * COUPLE* OF DAYS* AND* 
SH E'LL * NEVER* THINK S HE ' S *  BEEN* ANYWHERE* ELSE* SH E'LL*  
THINK* S H E ' S *  BEEN* THERE* ALL* THE* TIME* BUT* I *  DON'T  
THINK- SHE* WILL* I ' L L *  TELL*

6 2 . 8 0 1  YEAH- SO - I *  SA ID * SO - I S -  YOUR* MUM* AND* DAD* 
COMING* DOWN- FROM* BRISTOL* T H IS - WEEKEND* SHE* SA ID *
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N0+ MY+ FRIENDS+ COMING- DOWN- AND+ 1+ SA ID  WELL+ DID+  
YOU+ MANAGE+ TO- DO+ ANYTHING+ LA ST- SATURDAY+ SHE+ SAID+  
WE- WENT+ TO+ THE+ ISL E + OF+

This cluster contains a lot o f pronouns, notably a high proportion o f third person 
feminine ones : “She”, “her”, “she’s”, “she’ll”, etc.

7.8 Summary

In this chapter, experiments have been described in which various language models 

for the dialogue material in the BNC were constructed in a manner based on 

clustering the available data.

The first approach, in which complete dialogues were clustered, constructed a trigram 

model for each o f 10 clusters. These were then combined by interpolation, together 

with an ordinary trigram model, to give a “mixture model”. The weightings o f the 

components for the mixture model were found both for a “static” model (where the 

optimal weights were computed based on the whole set o f data reserved for this 

purpose) which was then applied to the full test dataset, and for an adaptive model 

(where the weights were adapted on the basis o f the most-recently seen data from the 

test set), with the model being adapted after every 10% of the available test data. In 

both cases, the mixture models showed very little improvement in perplexity over the 

ordinary trigram model. This suggests that clustering o f whole dialogues for use in a 

mixture model o f the kind described here is o f little value in modelling the BNC 

dialogue data, or at least that any updating of the weights of such a model should be 

done much more frequently -  each 10% chunk o f the test data will contain many 

dialogues from several different sources and there is little (if any) reason to suppose 

that dialogues from distinct sources should be connected in any way.

The second approach involved clustering pairs of successive, relatively short, 

dialogue turns using a lexically-motivated metric or an entropy-based metric. It was 

expected that knowledge o f the nature o f the first turn o f a pair -  i.e. to which cluster 

that first turn would be allocated -  would be useful in predicting the content o f the 

second turn of the same pair. Three different “valid” approaches to cluster choice, 

plus one “oracle” (cheating) approach were used. In any one experiment, M clusters

171



were found for the training set and a language model produced for each. Individually, 

each cluster model was interpolated with a simple trigram model. In testing, these 

interpolated models gave a modest improvement in perplexity over the ordinary 

trigram model. Not surprisingly, the “oracle” method out-performed the others, giving 

a bound on the best improvement which could possibly be obtained by this type o f 

approach. It was found that the perplexity obtained using a given clustering strategy 

improved as the number o f clusters used was increased (at least up as far as 40 

clusters). However, for a fixed number o f clusters, there was no significant change in 

perplexity if  the size o f the lexicon used in the language modelling was varied.

These results suggest that clustering the data can be o f values in the statistical 

modelling o f dialogue, particularly if  the dependencies and similarities we are hoping 

to model are o f  the appropriate type.

172



Chapter 8 Discussion, Conclusions and 

Suggestions for Further Work

8.1 Discussion and Conclusions

As noted in chapter 3, the majority o f language models used in modem automatic 

speech recognition systems have been trained on text material or transcriptions of 

news broadcasts (or similar) and the acoustic models used have typically be trained on 

read speech. However, it was argued that read speech is somewhat different to 

spontaneous speech, and (even once transcribed), spontaneous speech -  and dialogue 

in particular -  is quite different from written text material. It would seem much more 

appropriate to train both language and acoustic models on material as close as 

possible to the type o f speech and language to which they are to be applied.

The work presented in this thesis, based on the large body of dialogue material within 

the BNC, has provided evidence in support of the hypothesis put forward in chapter 3 

that dialogue material is rather different from text in several ways.

At the most basic level, the variety of vocabulary is considerably smaller in the 

dialogue material than in the text, and (with the exception o f restricted vocabularies of 

up to 9 words), a lexicon consisting o f only the most common N  words (chosen 

appropriate to the material currently being studied) accounts for a higher proportion of 

the BNC dialogue material then the corresponding N word text lexicon does for the 

BNC text data. The smaller lexicon size for dialogue data leads to simplification of 

the problem of constructing language models. The dialogue vocabulary can be 

regarded as a closed system -  if  we can be sure that our vocabulary includes all the 

distinct words which might be encountered within both the training and test data, then 

there is no concern about how to deal with out-of-vocabulary words.

A wide variety o f lengths of sentences, dialogue turns , dialogues (defined here to 

allow only two speakers per dialogue) and “conversation files” (a record o f a set of 

one or more dialogues occurring in sequence at one location and event) were observed 

within the BNC dialogue data. In some cases, the so-called dialogue files contained
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several speakers and/or lengthy sections where the speaker did not change. This 

prompted the sub-division o f the data files into dialogues (with only two speakers 

each) and the creation o f the “Dialogue, Reduced Turns” (DRT) dataset, comprising 

pairs of relatively short dialogue turns which were considered to be more typical of 

spontaneous highly interactive dialogue and to emphasise short-range, structural 

features rather than aspects heavily dependent on a longer scale, such as the topic of 

the conversation.

Separate simple trigram language models were constructed for the “ordinary” 

dialogue data (taken directly from the appropriate BNC files), for the DRT dataset and 

for samples o f BNC text data of various sizes. These models were then applied to 

“reserved data” o f the appropriate type and their perplexities with respect to that data 

calculated. The perplexities o f the models for “ordinary dialogue” and DRT data were 

quite similar, but those for the text models -  even those trained on significantly more 

data -  were much higher. Although the perplexities of the text models decreased as 

the size of the training set was increased, extrapolation o f the trend suggested that 

approximately 500 million words of text training material would be required to 

achieve results comparable with those trained on 7 million words o f dialogue. These 

results (“improvement, but with diminishing returns” as the size o f the training set is 

increased) are broadly in line with those of Lamel et al (2002) and Moore (2003) on 

the amount o f data required to achieve various targets o f Word Error Rates (WERs) 

for an automatic speech recognition system performing a specified task. The 

sensitivity o f the model to the type o f data on which it is trained and tested is 

consistent with the observations of Rosenfeld (2000b) and Young (2000).

As noted below, one consequence of the trigram language models for dialogue having 

much lower perplexities than those for text is that it is more difficult to gain large 

improvements in perplexity, by refining the language models through the use o f more 

advanced techniques, for dialogue data than it is for text material.

Attempts to allow more “adaptability” o f the language model to the nature o f the 

conversation of current interest were made using cache and trigger pair models. The 

cache models, when interpolated with the basic trigram model, gave a noticeable 

improvement for both “ordinary dialogue” and DRT material. This appears to be
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largely due to repetitions of words and phrases, both by the same speaker and by the 

other speaker -  features which are particularly common in dialogue, used for speech 

repairs, for emphasis and for confirmation or clarification purposes - in addition to the 

kind o f repetitions which tend to occur in text material. Even use o f a very small 

cache (just a few words) proved beneficial. Thus, the cache model, despite being quite 

simple conceptually and easy to implement, is really quite effective in the modelling 

o f dialogue. This has analogies with psycholinguistic approaches to dialogue, where 

small "caches" within short term memory are believed to play a role in the processing 

of conversation by humans (e.g. Walker 1996, Purver, Ginzburg & Healey 2002).

In contrast to this, the benefits obtained using the trigger pair based models on 

dialogue were less than those obtained using a cache. Previous work on text data (e.g. 

Rosenfeld 1996) had suggested that a model based on word trigger pairs could be 

quite powerful and o f major benefit in improving the adaptability o f language models. 

However, it was noted in this study that very few triggers tended to be active at any 

point. This was partly due to the short nature o f typical sentences and turns in 

dialogue and the relatively small window sizes which, consequentially, could be used. 

When no triggers are currently active, the exponential probability model using trigger 

pairs effectively uses a “default” probability - namely (1/W), where W is the number 

o f possible words (possibly o f a “restricted” vocabulary, where the most common 

and/or least common words are excluded). This may give a specific word a very 

unrealistic probability -  either too high or two low -  both with respect to its normal 

frequency o f occurrence and the current context. These factors are believed to be a 

major difficulty with regard to a trigger-based model being o f major benefit in the 

modelling o f highly interactive dialogues with relatively short turns. Furthermore, 

training these trigger models proved very expensive in terms o f the computational 

time and memory required. Thus, such trigger models -  at least o f the “word trigger 

pair” type investigated here -  would appear to be of limited value when modelling 

short dialogue turns.

As recommended by Rosenfeld (1996), potential word trigger pairs were selected on 

the basis o f their mutual information with respect to training data. It was hoped that 

some trigger pairs found for dialogue data in this way would be linguistically notable 

in some way. Unless restrictions were imposed on either the words which could act
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as triggers, or as target words, or both, for dialogue material the majority of such 

trigger pairs yielding a relatively high mutual information were extremely common 

words. A model based on such trigger pairs would not be expected to yield much 

benefit over a simple trigram model, where the probabilities of very common words 

are generally well-estimated. However, some interesting trigger pairs, showing 

reasonably high mutual information, were found in the dialogue material. Some o f 

these were trigger pairs which did not appear in the corresponding list for text 

material -  indeed, some included rather “colloquial” words which would not be 

common in ordinary written text material. On the other hand, some trigger pairs 

highly-ranked in the both the lists for dialogue and for text data, although interesting, 

did appear to be quirks o f some of the training material rather than widely useful 

trigger pairs for the general case.

It was hoped that training a trigger-based model on the DRT data might yield some 

trigger pairs more related to structural features o f dialogue rather then just pairs o f 

lexically-related words relevant to the current theme and context o f the conversation. 

To some extent, some such trigger pairs were found which had high mutual 

information. For example, certain related pronouns which might share their 

“resolution” (i.e. person/object to which they refer) were found to act as triggers for 

each other : e.g. “she”, “she’s”, “she’d” and “her” tended to trigger each other. 

However, there was no strong evidence for certain other expected features of 

dialogue, such as a turn featuring “why” being followed by one featuring “because” 

(indicative o f a question being followed by an answer), within the lists o f most 

promising trigger pairs.

Another approach to allowing the language model to adapt to the material o f current 

interest was to cluster the turn pairs according to a similarity criterion -  “similar” 

turns being put in the same cluster. Two different similarity (or difference) metrics 

were used -  one “lexically” based : on how distinctive any given word was to a 

particular group o f documents compared with any other group, the other based on the 

perplexity (or entropy) of the resulting cluster-based models -  and four different rules 

for dealing with pairs of turns were employed. Some promising results were obtained. 

One approach -  an “oracle” method, where information within the second turn was 

used to choose the cluster language model appropriate for that turn -  showed a
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significant reduction in perplexity o f up to about 13% when comparing an 

interpolated trigram-cluster model with the trigram model alone. However, it should 

be noted that this “oracle” method is something of a “cheat” as far as a realistic 

automatic dialogue system would be concerned, since it relies on information within a 

given turn to “predict” things about the same turn. Nevertheless, similar “oracle” 

approaches, e.g. to the modelling o f sequences o f dialogue acts, have been used by 

previous authors (e.g. Stolke et al, 2000). The results from the use o f such an “oracle” 

approach can be considered as an upper bound to the improvements in perplexity 

which could be aspired to through the use of turn clustering. The other three 

approaches to clustering the data -  which could be genuinely incorporated into a real 

automatic dialogue system - gave more modest improvements o f up to 3% with 

respect to the baseline trigram model when interpolated with it.

This case o f the “oracle” experiments also produced an interesting property -  a 

“dustbin” effect. The clusters produced varied greatly in size -  often, one cluster 

contained as much o f the data as all the other clusters put together. The perplexity of 

the language model corresponding to this largest cluster was usually much higher than 

that o f any other. It would appear that the effect o f applying this method is to sweep 

all turn pairs which are highly unpredictable into this single large “dustbin” cluster -  

hence its very high perplexity, whilst the other, more predictable (and hence easier to 

model) turns are divided into relatively homogeneous clusters in a useful manner. The 

two different metrics gave similar results -  the lexically-based metric gave slightly 

lower perplexities when just a few clusters were allowed, whereas the entropy-based 

metric gave better perplexity values when larger numbers o f clusters were used. In 

both cases, the perplexities o f interpolated trigram-cluster models decreased as the 

number of clusters used was increased, indicating that finer discrimination between 

types of turn were possible when more clusters were employed. However, in terms of 

computational speed, the entropy-based metric gave significantly better performance.

Some interesting linguistic features o f the resulting clusters were observed. The 

content of the clusters o f turns produced using the lexically-based metric did show 

certainly similarities between the individual turns, but in most cases these were at a 

very simple level -  particular individual words, or words taken from a small group 

(e.g. numbers or “wh- question” words) might occur in most or all or the turns within
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a given cluster. A similar trend -  although rather less pronounced -  was found 

amongst some o f the clusters produced by the entropy-based metric. However, there 

was little or no evidence o f the clusters of turns produced by either o f these methods 

showing any real consistency o f topic.

This study has shown that improvements over simple trigram models can be made to 

statistical language models for dialogue using techniques which allow the language 

model being used to adapt to the material currently o f interest. However, the relative 

benefits o f these adaptive methods -  cache, trigger and cluster-based techniques -  are 

not necessarily the same as for modelling written text material where, for example, 

use o f a model based on word trigger pairs would be expected to yield more benefit 

than the use o f a relatively small cache. This study has shown that -  at least when 

comparing the text and dialogue data within the BNC -  there are features o f dialogue 

material which are significantly different from ordinary text. As outlined above, the 

differences in relative utility o f cache, trigger and cluster based models for text and 

dialogue data are believed to be due to such features.

Some o f the results o f this study -  notably some o f the trigger pairs showing highest 

mutual information with respect to the training corpus, both in the cases o f dialogue 

and text material -  illustrate that, in its present form, the BNC is far from ideal as a 

training corpus for language models intended for applications in automatic speech 

recognition or speech understanding systems. On the one hand, the range o f material -  

in terms o f the sources and topics covered -  in the BNC is too broad to be appropriate 

for training a model aimed at a specific type of application such as news transcription, 

ticket booking or travel enquiries. On the other hand, the material contained in the 

BNC -  even when, say, we only consider the dialogue data -  is not sufficiently 

representative of the full range o f modem British spoken English in terms of topic of 

conversation to be the ideal source of training material for a “general purpose” speech 

recognition or dialogue system. For either of these aims, the construction o f new, 

large corpora o f training material -  either focusing on a specific domain, or 

attempting to be as general and representative as possible -  would be desirable.
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8.2 Suggestions for Further Work

This project has yielded several interesting questions as yet unanswered. It has 

provided further evidence for the hypothesis that dialogue material is significantly 

different in nature from written text, and that this should be taken account o f in 

statistical language modelling. This is o f particular importance when constructing and 

training language models for automatic spoken dialogue systems, for applications 

such as automated enquiry services.

Most automatic speech recognition systems have acoustic models and language 

models which were both trained on read text material. This study has illustrated that, 

at the language modelling level, dialogue differs significantly from text. Indeed, it was 

observed (see section 4.6) that even simple language models trained and tested on 

dialogue data from the BNC had much lower perplexities than equivalent models 

trained and tested on BNC text material. Therefore, it would seem appropriate that the 

language model for a dialogue system should be trained on dialogue material. It 

would also appear likely that other, more acoustic, features o f speech -  such as 

intonation and co-articulation -  may differ between read speech and spontaneous 

dialogue. Some studies o f this nature have already been carried out (e.g. Taylor et al 

1998, King 1998).

As noted in section 8.1 above, the “quality” o f a language or acoustic model 

(measured in terms of having a low perplexity or word error rate) tends to improve as 

the quantity o f material used to train it is increased. Bearing in mind the above 

observation -  that models for dialogue applications should be trained on dialogue 

material, it would be desirable that much larger corpora o f dialogue material were 

available. The “dialogue” portion o f the BNC contains approximately 7.7 million 

words, but a substantial part of that consists o f long “pseudo-monologues” where the 

speaker changes only occasionally or, in some cases, one speaker accounts for almost 

all the words spoken. Furthermore, quite a large number o f the files were recorded in 

controlled situations such as school lessons where the interaction between the 

speakers is not typical o f more general dialogue. The vocabulary used in such
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situations (e.g. in a chemistry or mathematics lesson) may also be highly atypical of 

everyday conversation.

During the study o f the word trigger pairs produced from the BNC dialogue material, 

it was noted that some pairs showing relatively high mutual information were very 

unusual -  for example, the name “Collymore” occurred both as a self-trigger and in 

association with the word “football” (probably due to frequent occurrence in BNC file 

HMN -  a football commentary from “The Central Match”). Similarly, descriptions of 

mathematical notation and relatively obscure chemicals occurred in the list o f 

promising trigger pairs. Likewise, when no restrictions were placed on the trigger or 

target words, some o f the highest-ranked trigger pairs for text data were rather 

surprising (with “award” and “zero” as extremely common target words). None of 

these examples would be expected to be particularly beneficial to the modelling of 

“typical” English dialogue (or text). This illustrates how sensitive the language model 

-  in this case a trigger-based one- can be to the nature o f the material on which it is 

trained relative to the material to which it is to be applied, consistent with the 

observations o f Rosenfeld (2000b) and Young (2000). To model “typical” British 

English dialogue successfully, our training data should be genuinely representative of 

British English dialogue ! However, production o f such a “genuinely representative” 

training corpus is likely to be difficult at best. For example, how should we judge 

whether the spontaneous dialogue material which had been collected was “genuinely 

representative” o f typical modem British English conversation, or whether the range 

o f sources was “sufficiently broad” ? For more specific applications, training material 

should both be as extensive as practicable and appropriate to the application for which 

the model is to be used. It would be interesting to investigate how the results o f this 

present study compared with those for a corresponding set o f experiments on a corpus 

o f dialogue material on a more restricted (but more uniform) range of topics.

Although other large corpora containing dialogue material do exist, most o f these are 

o f American English and some only contain dialogues on a specific topic or relating 

to a particular task. The recording, annotation and mark-up of a much larger corpus of 

spontaneous dialogue material -  preferably with acoustic information such as 

intonation included - would be of benefit to both language and acoustic modelling of 

dialogue. However, the production o f such a corpus is likely to be both highly labour
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intensive and expensive. Nevertheless, some o f the more restricted corpora could be 

o f value in studies like the one suggested in the preceding paragraph above.

The use o f cache models in dialogue modelling proved to be a simple but relatively 

effective way o f making the language model adapt to the material o f current interest, 

with even a very small cache proving useful. Experiments using a decaying cache -  

where word probabilities are not just calculated according to their presence in (or 

absence from) the cache, or their frequency within the cache, but according to how far 

back in the history they occurred -  as used by Clarkson & Robinson (1997), might 

prove o f benefit, particularly since dialogue turns tend to be relatively short and word 

repetitions on a relatively short distance scale (in words) common. Some evidence 

from semantic studies on requests for clarifications in dialogue (Purver, Ginsburg & 

Healey 2002) suggests that repetitions (for purposes o f clarification or 

acknowledgement) are particularly common at short distances within dialogue. This 

would support the use o f such a decaying cache.

The application o f clustering techniques to the dialogue material yielded interesting 

results, even if  the most successful approach (the “oracle” method) was really 

something o f a cheat. Nevertheless, this illustrated that some significant benefit was in 

principle obtainable from the use o f language models based on clusters o f dialogue 

turns or pairs o f dialogue turns. This approach may well be worth further 

investigation, particularly from a point of view o f a stochastic state model, or “cluster 

transition model”, with the clusters as the states -  i.e. if  it is known that the current 

turn belong to cluster A, construct a model in order that the probabilities o f the 

following turn belonging to each o f clusters A, B, C, etc. can be estimated. This could 

possibly incorporated into a “mixture o f clusters” model, so that words in the 

following turn can be predicted according to probabilities obtained according to each 

cluster model, weighted by the individual cluster probabilities given by the “cluster 

transition model”. This idea shares some features with the dialogue move models used 

by some previous authors (e.g. Stolke et al 2000, Reithinger 1996, Wahlster 2000) and 

also with some aspects o f trigger models. Perhaps trigger pairs based on clusters -  

where the presence o f a word or phrase from one cluster triggers another “target 

cluster” (rather than a specific target word) -  might show more success than a model 

based on word trigger pairs. Possibly even a single word or short phrase could be a
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useful trigger to predict the cluster to which the next turn should belong. Alternative 

strategies for clustering turns should also be explored. For example, some approach to 

turn clustering as yet untried might lead to the automatic classification of turns into 

dialogue acts, or even suggest alternative categories to some o f those currently in 

general use.

Finally, there has traditionally been a rather strict division between the “Statistical 

Language Modelling” and “Natural Language Processing” (knowledge-based methods 

using syntactic parsing and/or semantics) approaches to the computational modelling 

o f English. It would be hoped that some benefit could be obtained by attempting to 

produce a hybrid approach, trying to capitalise of the strongest features o f both 

methodologies. For example, a statistical approach to classification or clustering o f 

dialogue turns as “dialogue acts” could be combined with a knowledge-based 

approach for analysing transitions between such acts.
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Appendix A

Some Further Examples of Turn Pairs Showing Large Increases in 
Probability Through Use of a Cache Model



From Test Set 0

5 4 . 3  6 6  [ OKAY ALLOTROPES OF CARBON A CARBONATE PLUS AN 
AC ID GIVES ] AN+ ACID+ CARBONATE + PLUS+ AN+ ACID+

3 6 . 4 8  9 [ ONE FROM ELIZABETH AND ONE FROM RON ] ONE+
FROM+ RON+ AND+ ONE+ FROM+ ELIZABETH+

3 6 . 4 3 3  [ HARD RETURN AND SOFT RETURNS ] HARD+ RETURN+
SOFT+ RETURN+

3 4 . 4 0 1  [ WHERE'S TAB OH ] TAB+ TAB+ TAB+
3 2 . 9 2 2  [ BUT THERE'S ONE SCORE WHICH UNAMBIGUOUSLY

CALLS IT  IN  C MINOR ON THE AND IT  STARTS IN  C MINOR SO ] 
IT +  IT +  STARTS+ IN + C+ MINOR+ IT + STARTS+

3 1 . 7 8 6  [ SH IFT F SEVEN ] SH IFT+ SH IFT+ F+ SEVEN+
3 1 . 6 7 8  [ EIGHT AND WELL FOUR TWOS TWO FOURS AND FOUR

TWOS ] TWO+ FOURS+ FOUR+ TWOS+ EIGHT+
3 1 . 1 0 1  [ RIGHT AND THAT'S A GENERAL REACTION THAT

HAPPENS WITH VIRTUALLY ANY ACID AND ANY ALKALI ] ACID+  
AND+ ANY+ ALKALI+

3 1 . 0 8 5  [ ONE ONE THIRD JUST WRITE DOWN ONE THIRD ADD
ONE SIXTH ] ONE+ THIRD+ ADD+ ONE+ SIXTH+

2 8 . 6 4  8 [ TAKE AWAY ONE TWELFTH OKAY JUST WRITE THAT
DOWN THAT YOU'VE GOT TO TAKE AWAY THE ONE TWELFTH ] ONE+ 
TWELFTH+ ONE+ TWELFTH+

2 7 . 6 0 3  [ AND D A V ID 'S  GON NA CONVALESCE ] D A V ID ' S+ GON+
NA- CONVALE S CE+

2 7 . 4 4 7  [ EAST HERTS YEAH ] YEAH+ EAST+ HERTS+
2 7 . 4 2 6  [ CLUB BAR LICENCE ALAS ] CLUB+ BAR+ LICENCE+
2 7 . 2 3 5  [ SO I T ' S  TWO TIME WHAT ABOUT NINE EIGHT OR NINE

FOUR NINE FOUR WE'D BETTER DO HADN'T WE ] NINE+ FOUR+ 
I T ' S +  NINE+ I T ' S+ NINE+

2 6 . 9 3  7 [ THE SONG SOUNDED BEAUTIFUL AND LONELY ] 
BEAUTIFUL+ AND+ LONELY + THE+ SONG+

2 6 . 9 3  5 [ I T ' S  A BOGGIN CRASH ] I T ' S +  A+ BOGGIN+ CRASH+ 
2 6 . 8 3  6 [ VERY WELL ON THAT NITRATES SULPHATES AND WHAT

ELSE ANY OTHER HATES THAT YOU'VE HEARD OF ] NITRATES+ 
SULPHATES+

2 6 . 3 2 7  [ THE CURRENT IN  THAT RESISTOR ] THE+ CURRENT+
IN + THAT+ RESISTOR+

2 5 . 9 4 3  [ OH YES OOPS SORRY YOU YOU WRITE IT  P U N C ]
P+ U+ N+ C+ P+ U+ N+ C+

2 5 . 9 4 3  [ I T  WAS CREEPING SUBURBIA THEN IT  WASN'T ] 
CREEPING+ SUBURBIA+

2 5 . 9 4 2  [ TH IS I S  PURELY STAFF COSTS ] PURELY+ STAFF+
COSTS+

2 5 . 8 3 1  [ RIGHT SO YOU LOAD YOUR FILE F ONE F ONE ] F+
ONE+ F+ ONE+

2 5 . 6 5 5  [ E S S O' S  THE TIGER ] E S S O' S +  THE+ TIGER+
2 5 . 1 2 1  [ SHE' S  NO MORE MEDICINE LEFT ] SHE' S +  NO+

MEDICINE+ LEFT+
2 4 . 6 6 2  [ I  WANT TO KNOW WHAT WORK WITH UNEMPLOYE ED I S

] UNEMPLOYE+ ED+
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2 4 . 5 5 9  [ YEAH THERE I S  THORLEY SAINSBURY' S ] THORLEY+
SA IN SBU R Y ' S +

2 4 . 5 5 3  [ EXACTLY I T ' L L  BE COS WE LOOKED AT T H IS LAST
WEEK AS YOU SA ID  AT THE END WHAT HAPPENS D R IPPIN G  ACID  
ONTO ONTO CHIPS NOW THE THINGS TO KNOW ABOUT A C ID S BASES 
AND SALTS A METAL PLUS AN ACID WHAT HAPPENS ] A+ METAL+ 
AND- PLUS+ AN+ ACID+

2 4 . 4 7 9  [ WE GOT THEIRS WERE HIGHER THAN OURS ] THE IR S +
WERE+ HIGHER+ THAN- OURS+

2 4 . 1 2 8  [ A N D  SO SULPHUR TRIOXIDE ADD WATER MAKES 
SULPHURIC ACID ] SULPHURIC+ ACID+

2 3 . 8 2 6  [ I T  MUST HAVE BEEN GOOD IT  MUST HAVE BEEN SOME
SORT OF CARBONATE AND THE SALT THAT WAS FORMED WAS FROM 
THE HYDROCHLORIC ACID WAS CALCIUM CHLORIDE SO IT  MUST 
HAVE BEEN ] CALCIUM+ CARBONATE+

2 3 . 8 1 1  [ S O  YOU'D NAME TH IS AS BUTANE IN  OTHER WORDS 
YOU'RE SAYING I T ' S  A BUTANE CHAIN YOU TAKE OFF THE E YOU 
WILL ADD O L AND I F  THERE ARE POSITIONAL ISOMERS POSSIBLE  
YOU HAVE TO INDICATE THE PO SITIO N ONE 0  L BUTANE ONE L 
ONE O L BUTANE ONE O L ] BUTANE + ONE+ 0+  L+

2 3 . 7 4 0  [ AND THEN A THREE DASH DIE ] THREE + DASH+ DIE+
2 2 . 7 9 2  [ I T  GETS BIGGER RIGHT SO YOU'VE TAKEN THAT DOWN

A SEMITONE TO TO MAKE IT  MINOR TO MAKE IT  DIM INISH ED YOU 
JUST TAKE IT  DOWN ANOTHER SEMITONE ] TAKE+ I T -  DOWN+ 
ANOTHER+ SEMITONE+

2 2 . 6 5 6  [ KILOWATT HOURS ] KILOWATT+ HOURS+
2 2 . 6 0 8  [ AND IT  LIBERATED THE HYDROGEN OKAY SO THAT'S

AN ACID PLUS A METAL NOW AN ACID PLUS A BASE WHICH I S  
TH IS ONE WE'VE JUST DONE A METAL OXIDE THE METAL OXIDES 
ARE BASES YOU CAN THINK OF THEM AS BEING ALKALINE WE CALL 
IT  BASIC BUT VERY VERY SIM ILAR SORT OF THING TO ALKALINE 
OKAY SO WHAT HAPPENS WITH A BASE AND AN ACID ] WITH+ A - 
BASE+ AND AN+ ACID+

2 2 . 2 4 2  [ HOW ABOUT TH IS ONE ONE YOU TRY TH IS ONE ON
YOUR OWN ONE THIRD TAKE AWAY ONE TWELFTH ] ONE+ THIRD+ 
ONE+ THIRD+ TAKE+ AWAY+

2 2 . 1 5 1  [ BURIED IN  SOME ] BURIED+ BURIED+
2 1 . 8 2 4  [ SH IFT F SEVEN ] SH IFT+ F+ SEVEN+
2 1 . 8 2 3  [ NO SUGAR NO MILK ] NO+ SUGAR + NO+ MILK+
2 1 . 6 3  9 [ I T ' L L  BE DR ] DR+ DR+
2 1 . 6 1 1  [ BAR NINE I S  BAR ONE AN OCTAVE LOWER HERE' S  THE

B IT  THAT'S IMPORTANT THIS I S  BAR NINE AN OCTAVE LOWER
OKAY NOW THEN WILL YOU PLEASE COPY PRECISELY WHAT IS  
THERE AT BAR TEN THE MUSIC YOU NEED ONE BAR OF MUSIC LINE  
WITH THOSE BLOBS WHICH ARE THE NOTE HEADS IN  EXACTLY THE 
RIGHT PLACES JUST COPY WHAT'S IN  THE BOOK ] COPY+ WHAT+ 
BAR+ TEN+

2 1 . 5 9 8  [ CHOKE KIND OF CHOKE DOWN ] KIND+ O F- CHOKE+
DOWN+

2 1 . 4 5 7  [ POWER OF THE UNCONSCIOUS ] POWER+ OF+ THE 
UNCONSCIOUS+
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2 1 . 3  97  [ GARDEN TOOLS ] GARDEN+ TOOLS+
2 1 . 3  94 [ OKAY EIGHT TIMES ONE EIGHT LOTS OF ONE EIGHT

ONES ] EIGHT+ ONES+ EIGHT+
2 1 . 3  66  [ PROJECT ENGINEER ] PROJECT+ ENGINEER+
2 1 . 2 2 1  [ IT  COMES TO S IX  WHAT DOES IT  MEAN WHY WOULD WE

WANT TO WORK OUT THREE TIMES TWO WELL L E T ' S  SAY I F  YOU 
HAD TWO PS I F  YOU HAD THREE TWO PS YOU MIGHT WANT TO WORK
OUT HOW MUCH THAT COMES TO HOW MUCH WOULD IT  COME TO ]
HOW+ MUCH- WOULD+ THREE+ TWO+ PS+ COME+ TO+

2 1 . 1 7 9  [ TERMS OF ENGAGEMENT ] TERMS+ O F- ENGAGEMENT+ 
2 1 . 1 7 1  [ LETTER ] LETTER+ LETTER+
2 0 . 8 7 1  [ A H  WELL I  FORGOT THE NAME OF IT  THE ST 

NICHOLAS ] NICHOLAS+ NICHOLAS+
2 0 . 8 2 5  [ PLAN PRINTING WE'RE AGAIN ] PLAN+ PRINTING+
2 0 . 4 9 0  [ YOU MEAN FROM OBJECTORS ] FROM+ OBJECTORS+ 
2 0 . 4 6 1  [ BUY A BOTTLE OF WHISKY AND ORDER UP A HAGGIS ] 

WHISKY+ AND- HAGGIS+

From Test Set 1

4 4 . 5 7 6  [ TH IS ONE I S  CALLED NONNIE ] NONNIE+ NONNIE+ 
NONNIE+

3 7 . 4 1 5  [ ARE THESE NATIONAL ACCOUNT OR KEY ACCOUNT ] 
KEY+ ACCOUNT+ KEY+ ACCOUNT+

3 3 . 0 6 0  [ REAL GEM ] REAL+ GEM+ GEM+
3 2 . 5 7 3  [ HIGH TENSILE STEEL ] HIGH+ TENSILE+ STEEL+
3 1 . 8 8 1  [ NONNIE NONNIE NONNIE ] NONNIE+ NONNIE+
3 1 . 0 3 3  [ INTER PERSONAL SKILLS ] INTER+ PERSONAL+

SK ILLS+
3 0 . 6 8 6  [ AKSED SAY AGAIN ] AKSED+ AKSED+
3 0 . 6 5 6  [ GETTING YOUR POINT ACROSS EFFECTIVELY YEAH ] 

GETTING* YOUR+ POINT+ ACROSS+ EFFECTIVELY+
3 0 . 4 5 6  [ YEAH YEAH BUT WHY THE GRAPHICS I S  JUST SO YOU 

CAN DO SCREEN DUMPS I S N ' T  IT  ] SCREEN+ DUMPS+ SCREEN+
2 9 . 5 7 8  [ AYE THAT I T ' D  BE THE VOLTAROL THAT WOULD GIVE

HER THE THE BLACK STUFF COMING THROUGH ] BLACK* STUFF* 
AYE+ COMING+ THROUGH* AYE+ AYE*

2 9 . 5 0 5  [ OF PRIDE BEFORE A FALL ] PRIDE* BEFORE* A* 
FALL*

2 8 . 1 8 6  [ IT  WAS WAS IT  AN OLD ENGLISH SHEEPDOG ] OLD+ 
ENGLISH* SHEEPDOG*

2 7 . 7 8 3  [ TWENTY MILLION COLLEGE GOES UP IN  FLAMES
BACON'S BURNING COME EVALUATION WHICH DO YOU THINK THE 
MOST EFFECTIVE SO FAR REPEAT WHAT WAS IT  GOODNESS 
GRACIOUS GREAT BALLS OF FIRE FIRE FIRE BACON'S COLLEGE 
ABLAZE I T ' S  HOT IN  THE KITCHEN AND YOURS WERE ] TWENTY+ 
MILLION+ COLLEGE* GOES+ U P - IN * FLAMES*

2 7 . 1 7 7  [ I T ' S  PART OF THE THIRTY S IX  HECTARES CHAIRMAN 
BUT I T ' S  ONLY A SEVEN HECTARE SIT E  ] SEVEN* HECTARE* 
S IT E *
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2 7 . 1 0  9 [ AND ALSO OF COURSE THE FACT THAT THE GERMAN 
MARKET HAD CLOSED ] THE+ GERMAN+ MARKET+ HAD+ CLOSED+

2 7 . 1 0 5  [ YEAH OKAY AFTER THE FIR ST  FIV E NUMBERS TH AT'S
IT  BECAUSE WHAT YOU WELL YOU EITHER HOLD ON TO THE FIR ST  
F IV E  OR S IX  AND THEN YOU LOSE THE REST OR SOMETIMES YOU 
REMEMBER THE BEGINNING AND THE END AND YOU LOSE THE B IT  
IN  THE MIDDLE AH I T ' S  LIKE THAT GAME THAT THEY USED TO 
PLAY ON CRACKERJACK FOR THOSE OF YOU OLD ENOUGH TO 
REMEMBER CRACKERJACK ] CRACKERJACK+ CRACKERJACK+

2 6 . 6 3 9  [ WAIVER OF PREMIUM ] WAIVER+ OF+ PREMIUM+
2 6 . 3  03 [ BUT YOU DON'T HAVE A COSTING YOU DO HAVE A

COSTING QUOTE FORM ] COSTING+ QUOTE+ FORM+
2 6 . 0  90 [ NON PECUNIARY ] NON+ PECUNIARY+
2 5 . 1 6 0  [ I T ' S  TODAY'S GUARDIAN ] I T ' S +  TODAY' S+

GUARDIAN+
2 5 . 1 0 5  [ I  SWEAR BY ALMIGHTY GOD ] 1+  SWEAR+ BY+ 

ALMIGHTY+ GOD+
2 4 . 9 7 0  [ YEAH THEY'RE SHOOTING AT US IN  MOUNT CARMEL ] 

MOUNT+ CARMEL+
2 4 . 9 6 7  [ GOLF ROMEO ALPHA ALPHA ROMEO ] ALPHA+ ROMEO+
2 4 . 8 3 2  [ YES ADAPTING FOR CHANGE ] ADAPTING+ FOR+

CHANGE+
2 3 . 9 7 0  [ THEY THEY DROVE GENERATORS ] THEY+ DROVE+ 

GENERATORS+
2 3 . 8 0 1  [ I T  D I D N ' T  SAY TO PUT SMART DRIVE AFTER AN SI 

D ID  IT  IT  SA ID TO PUT ANSI BEFORE WINDOWS OR KEYBOARD 
BEFORE WINDOWS ] KEYBOARD+ BEFORE+ WINDOWS+

2 3 . 4 4 5  [ MR CURTIS ] MR+ CURTIS+
2 2 . 9 2 9  [ I ' V E  A FEELING B E T N . ] B+ E+ T+ N .+
2 2 . 4 8 0  [ ON THE Y AX IS ] ON+ THE- Y+ AXIS+
2 2 . 3 7 3  [ THAT WAS YOUR CANDY PEEL ] CANDY+ PEEL+
2 2 . 2 5 2  [ MR SPITTLE ] MR+ SPITTLE+
2 1 . 9 2 3  [ TWENTY METRES PER SECOND PER SECOND ] TWENTY+

METRES+ PER+ SECOND- PER+ SECOND+
2 1 . 7 4 5  [ M Y  LORD I  CALL SERGEANT TAKE THE BOOK IN  YOUR 

HAND AND REPEAT AFTER I SWEAR BY ALMIGHTY GOD ] 1+  SWEAR+ 
BY+ ALMIGHTY+ GOD-

2 1 . 7 3 5  [ I ' M A TECHNICAL AUTHOR ] TECHNICAL+ AUTHOR+ 
2 1 . 6 0 0  [ NOT IN  STENNESS ] NOT+ IN + STENNESS+
2 1 . 5 9 0  [ LORD I  CALL SUPERINTENDENT PLEASE TAKE THE 

BOOK IN  YOUR HAND I  SWEAR BY ALMIGHTY GOD ] 1+ SWEAR+ BY+ 
ALMIGHTY+ GOD-

2 1 . 3 6 9  [ ANCIENT GREEK ] ANCIENT+ GREEK+
2 1 . 3  63 [ THERE'S THE TWO RONS ] THE+ TWO+ RONS+
2 1 . 3 1 8  [ MM I  HAVEN'T GOT THAT AND OF COURSE I  COULDN'T 

RUN YOUR VERSION OF SETVER UNLESS I  HAD SETVER COS IT  
WOULD SAY INCORRECT DOS VERSION ] INCORRECT+ SETVER+

2 1 . 2  98  [ PER AD ] PER+ AD+
2 1 . 1 6 2  [ SAY ASKED ] ASKED+ ASKED+
2 1 . 0 7 1  [ OH NO IN  THE I N THE F IF T IE S  WE WERE ON THE THE 

GLASS BOWL FITT IN G S YES ] ON+ THE- GLASS+ BOWL+ FITT IN G S+
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2 0 . 9 9 5  [ I ' M  ANNOYED ABOUT THAT YOU KNOW WE NEGOTIATED
ONE PRICE D I D N ' T  GET AND THEN WE WE'RE SENDING THEM THE 
NET L IS T  AND SAYING THERE'S YOUR NEW PRICE ] SENDING+ 
THEM- THE+ NET+ L IST +

2 0 . 8 8 1  [ I T ' S  PART A TRIAL BUNDLE ] TRIAL+ BUNDLE+
2 0 . 8 6 3  [ MY LORD NEXT RAISE THE BOOK IN  YOUR RIGHT HAND

I SWEAR BY ALMIGHTY GOD ] I -  SWEAR+ BY+ ALMIGHTY+ GOD-
2 0 . 7 1 7  [ GREEN OAR ] GREEN+ OAR+
2 0 . 6 2  0 [ AMUSE KIDS ] AMUSE+ KIDS+
2 0 . 5 5 0  [ DI D HAVE TABLE LAMPS 3 TABLE+ LAMPS+
2 0 . 5 1 1  [ THE FACT OF THE MATTER I S  THAT AT THE NEXT

GENERAL ELECTION THE STORMANT OR THE WESTMINSTER ELECTION 
GERRY ADDAMS WILL WIN THAT SEAT NOT BECAUSE HE CARRIED 
THAT COFFIN BUT BECAUSE THE PEOPLE ON H IS  SID E  ARE 
RAVAGED THEIR NERVE ENDS ARE TORN RAW AND I F  HE BACKED 
OFF AND D I D N ' T  SUPPORT A DEAD FELLOW IRISHMAN HE' D BE
DEAD POLITICALLY ] IS +  GERRY+ ADDAMS+

2 0 . 2  52 [ I  THINK THERE'S ONLY THERE'S ONLY THE BED
THERE LEFT NOW ] THERE' S+ ONLY+ THE+ BED+ THERE + LEFT+

2 0 . 1 9 8  [ YES ALL QUITE TIDY ] ALL+ QUITE+ TIDY+
2 0 . 1 9 7  [ EVERYTHING WAS DONE BY HAND ] EVERYTHING+ WAS +

DONE+ BY+ HAND+ EVERYTHING+
2 0  . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0  . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0  . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0 . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0 . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0  . 1 5 1 [ THAT THE EVIDENCE I SHALL GIVE THAT+ THE+

EVIDENCE+ 1+  SHALL+ GIVE+
2 0 . 1 2  6 [ SEARCH LIGHTS ] SEARCH+ LIGHTS+
1 9 . 9 1 0  [ MARVELLOUS TRACEY ABSOLUTELY MARVELLOUS PUT

THE NEXT B IT  ON FOR ME SAVE ME THE JOB SAY 
NOTTINGHAMSHIRE'S BIG  BANG ] NOTTINGHAMSHIRE' S+  BIG +
BANG+

1 9 . 6 9 7  [ PER POLICY ] PER+ POLICY+
1 9 . 6 8 3  [ LIKELY TO BE REJECTED ] LIKELY+ TO- B E -

REJECTED+
1 9 . 5 3 2  [ NO PROBLEM STARTING TEMPERATURE I S  PLUS EIGHT

ONE ZERO ONE NINE ] ONE+ ZERO+ ONE+ NINE+
1 9 . 4 2 6  [ RIGHT I'M  ROSEMARY I AM A TECHNICAL LEADER AT

MANAGEMENT SERVICES IN  WHICH I S  A A FAIRLY NEW ROLE ] A+
TECHNICAL+ LEADER+

1 9 . 4 0 1  [ I  I  MISREAD PREVIOUS THE WORD PREVIOUS ] WORD+ 
PREVIOUS+

1 9 . 3 8 5  [ JU ST IS  IT  LESMAHAGOW I S  IT  ] IT +  I S +
LE SMAHAGOW+
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1 9 . 2  63  [ SHALL WE CALL ALAN TURNER ] ALAN+ TURNER+
1 9 . 0  06  [ MHM AND TH IS WAS JUST AN INNOCENT PARTY ]

PARTY+ MHM+ MHM+ MHM+ MHM+ MHM+
1 9 . 0 0 4  [ OH WRITERS NEWS YEAH THE OTHER ONE ] WRITERS +

NEWS +
1 8 . 8 5 3  [ IT  LASTS IT  LASTS EIGHT MINUTES CHAIRMAN ] IT +

LASTS + EIGHT+ MINUTES+
1 8 . 8 3 3  [ NO I ' M  A FIRE OFFICER ] I ' M+ A+ FIR E+ OFFICER+
1 8 . 8 2 7  [ NOT IN  THE COOPERATIVES ] NOT+ IN+ THE-

COOPERATIVES+
1 8 . 7 3 1  [ I T ' S  A MOORHEN ] A+ MOORHEN+
1 8 . 7 3 1  [ DO A LITERAL ] A+ LITERAL+
1 8 . 5 3 4  [ AND I T ' S  MADE OF FIBRE GLASS I S  IT  ] FIBRED-

G LASS+
1 8 . 5 3 3  [ SECONDHAND NO NO NO NEW FURNITURE ] NO+ NEW+

FURNITURE+
1 8 . 2 0 9  [ WORKING IN  THE QUARRIES LOADING THE LORRIES 

WITH A HAND SHOVEL ] HAND+ SHOVEL+
1 8 . 2  04  [ I F  YOU'RE STUCK FOR SOMEWHERE TO TAKE THE KIDS

ON FIREWORK NIGHT AND YOU WANT TO KNOW THE ONE THAT'S  
NEAREST TO YOU ACTION LINE HAVE GOT A GREAT BIG  LONG L IS T  
YOU'VE GOT P IL E S HAVEN'T YOU ] PILES+ AND- P IL E S+
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LEARNING ON THE JOB: THE APPLICATION OF 
MACHINE LEARNING WITHIN THE SPEECH DECODER

M A Huckvale Department of Phonetics and Linguistics, University College London, 
Gower Street, London WC1E 6BT, U.K.

G J A Hunter Department of Phonetics and Linguistics, University College London, 
Gower Street, London WC1E 6BT, U.K.

1. INTRODUCTION
The current approach to the training of large vocabulary continuous speech recognition 
(LVCSR) systems involves the use of large corpora of text and labelled audio recordings
[1]. These resources are analysed and statistics extracted so that the recogniser can 
determine the likelihood that the observed signal would have been generated from each 
sentence it proposes. The analysis of corpora is performed off-line, using statistical 
language models of the text (often trigram models of words), and acoustic models of 
the signal (often hidden Markov models of phonemes).

To this off-line processing, recent years have seen a growth in the use of methods of 
adaptation in which the general statistical models are tuned to the specific 
characteristics of a given speaker, a given acoustic environment or a given topic. 
These adaptation processes modify the stored characteristics of the language model 
and the acoustic model to improve the probability that the correct interpretation would 
have given rise to the observed signal.

No one would argue that these components provide a perfect model of the true 
statistical distribution of words and sounds. Weaknesses in typical acoustic models 
include:

□ crude modelling of the interdependencies between the acoustic forms of 
different phones

□ no model of systematic pronunciation variation across different contexts or 
speakers

□ little exploitation of durational or pitch cues
□ no exploitation of knowledge of style, emotion, or physiological state of the 

speaker

Weaknesses in typical language models include

□ restriction to short-distance dependencies within sentence (trigram models)
□ little exploitation of topic or meaning or grammaticality
□ poor predictive power for novel or rare events
□ limited vocabulary and inability to deal with novel words
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These weaknesses are, of course, opportunities for research; and much effort has been 
spent at looking at these.

There are also many weaknesses that can be seen within the decoder: how these 
statistical components are exploited in recognition. Weaknesses here include:

□ arbitrary balancing of probabilities between the acoustic and language 
models

□ ignorance of interactions between the acoustic model and the language 
model

□ assumptions that words don't overlap in time
□ inability to deal with disfluencies and restarts

These are less common areas for research.

Thus we arrive at the present situation in which work is required on many fronts, but 
each aspect may in itself only provide a modest improvement in performance. It is as if 
there are many small weaknesses rather than one significant problem. A serious 
consequence of this situation in speech recognition research is that workers on one 
small aspect do not know what effect their 'improvements' will have in combination with 
the work of others. We have been working in the area of morphology for speech 
recognition [2] but we do not know whether the improvements we've seen will show up 
in combination with more sophisticated language models or with state-of-the-art 
acoustic models.

In this paper we are looking towards a 'third way'. Rather than try to build better 
statistical models, or try to find ways of adapting them to the context, we seek to 
apply general machine learning principles within the decoder. Thus the decoder will 
monitor and modify its own behaviour by 'learning on the job'. This work is very much 
in the exploratory stage. We do not yet know whether the approach will make any 
significant impact. We do not yet know tow it relates to other work in improving 
language models and acoustic models. We do not even know the best way to make it 
work.

Our learning decoder is able to relate the correct transcription of an utterance to the 
complete list of hypotheses that it generated during its attempt at decoding the signal. 
By looking at the correct and incorrect hypotheses over large numbers of training 
utterances, it tries to find features of these hypotheses that correlate with their 
correctness (or with their incorrectness). The aim is not to replace the language model 
or acoustic model, nor to act as an alternative to adaptation. Instead the machine 
learning should identify and compensate for common errors made during decoding. 
Those features that correlate with correct can be used to improve the score of 
probably correct hypotheses, and those features that correlate with incorrect can be 
used to worsen the score of probably incorrect hypotheses. We can use data held-out 
from training to evaluate the effect of the learning component.

In this paper, we describe how we have implemented and tested this application of 
machine learning within the decoder of a large vocabulary continuous speech 
recognition system. In section 2 we describe the mathematical framework we have 
adopted, while in section 3 we describe a small experiment proposed only as a proof-of-
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concept. In section 4 we reflect on the promises offered by the technique and make 
suggestions for further investigations.

2. S u p e rv i s e d  m a c h in e  le a rn in g  in t h e  d e c o d e r
The aim of the machine learning system is to

□ uncover characteristic features of sentence fragment hypotheses which correlate 
with the correctness of the hypothesis, and

□ deliver a probability to the decoder that a sentence fragment is correct given the 
features that it exhibits.

We describe each of these in turn.

2.1 Selection of features
What features of a sentence fragment hypothesis would assist in determining its 
probability of being correct? Any features we choose should be complementary to the 
information provided by the acoustic model and the language model.

In terms of acoustic information, these features might be based on:

□ articulation rate, tempo variations, segment durations
□ fundamental frequency, voice quality
□ articulatory quality
□ level of background noise
□ detection of speaker, accent, style, emotion or physiological state 

In terms of linguistic information, these features might be based on:

□ collocational information about words across whole sentences
□ measures of grammaticality
□ measures of semantic relationships between words

Although many of these aspects of language are likely to influence how a listener 
decodes an utterance, it is just very complicated to see how they can all be modelled 
independently and all incorporated in the decoding.

Worse, in many cases we don't know the relative importance of the different features, 
not how they interact. It  is very hard to judge the utility of the information provided 
by a feature. We may run into the problem highlighted by Rosenfeld [3] that we will 
never have enough data to model rare events - because they are rare.

Thus the first task of our machine learning component will be to decide which of the 
very many possible features will be of use in practice. Since it is relatively easy to 
suggest features, but hard to know how useful they are, we leave this task up to the 
learning system. We simply suggest a very large number of possible features and let 
the system decide which ones to take note of. A useful measure of utility is mutual 
information [10]. For some binary feature fj and some correctness indicator y, we can 
calculate the mutual information between f| and y as:
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m f „ y ) =  £  = f , y = g ) iogĈ  f ) ) (1)
/=o,ig=o,i p(y = g)

We can choose features with high mutual information shown between the feature and 
the known correctness of a hypothesis. Features with high mutual information may be 
useful in predicting correctness or incorrectness and are saved for evaluation in 
combination.

2.2 Probability modelling of features
Given some signal S and some hypothesis W, we normally calculate the probability that 
a hypothesis is an interpretation of a signal using Bayes' theorem

P(W|S) = p(S|W ).p(W )/p(S) (2)

Where p(S|W) is the probability that the hypothesis generated the signal calculated by 
the acoustic model, and p(W) is the probability of the hypothesis itself, as calculated 
by the language model. The decoder seeks to find the single hypothesis that maximises 
P(W|S).

To incorporate knowledge about some additional features of a hypothesis F(W) not 
covered by the language model, we can extend the language model to incorporate the 
prediction of some property y indicating the correctness of the hypothesis:

p'(W,y) = p(W).p(y|F(W)) (3)

assuming that the language model and the predictions from the features are 
independent. The probability that a hypothesis is correct given the features of the 
hypothesis can be expressed in terms of an exponential model of the form

p (y  =  correct \ F ( W ) ) =  ---------^  (4)
1 + exp[ 2_j \ f i  ]

/

where f; is 1 if the feature / is present in the list F(W). The {3,} are constants found 
from training data. A particular benefit of this model is that the can be estimated 
using the principle of maximum entropy. Here the least constraining assumptions are 
drawn from the training data. The are found by maximising the entropy function

'J '(A )= -X p W k .g ( l  + eXp [^ A ,7 ; ] )+ X A ,^ ( / ; )  (5)
x  i i

where x refers to each different training pattern, p(x) is the probability that the pattern 
occurs in the training data, and p(fO is the probability that feature / is seen. We 
choose to find the maximum of this function using a method of functional optimisation
[4]. Other approaches can be found in [5].
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3. Experiment
3.1 Materials
Text material for training and testing was selected from the British National Corpus [6]. 
80M word of text was reserved for training, and the rest for testing. The corpus was 
pre-processed to remove all punctuation except for sentence markers, and to convert 
all numeric items and abbreviations to whole words. A vocabulary of 65,000 words was 
generated from the most common words in the training portion.

For this experiment we used 1000 spoken sentences taken from the testing portion of 
the BNC, 100 each from 5 male and 5 female speakers of British English. These were 
converted to word lattices using the Abbot system [7] with a 65,000-word 
pronunciation dictionary adapted from BEEP [8] and supplemented with pronunciations 
from a letter-to-sound system. Abbot was run with parameters provided by Steve 
Renals to increase the maximum number of hypotheses considered per node to 100.

A language model was constructed for the 65,000-word lexicon using the 80Mword 
training portion of the BNC. This was performed using the CMU-Cambridge toolkit [9] 
using Good-Turing discounting.

Decoding of the word lattices using the language model was performed by the UCL 
decoder, which is able to report node-by-node the currently considered sentence 
fragment hypotheses for each time step in the word lattice. These hypotheses always 
extend from the start of the sentence to a word that ends at the current node. They 
are marked with an overall log probability found during decoding from the acoustic 
model and the language model.

3.2 Preparation
The hypotheses produced during the decoding of the 1000 sentences were marked for 
correctness using the known transcription. For training and testing the maximum 
entropy feature model, we used only those hypotheses that originated from nodes 
where a correct answer was present within the top 100 hypotheses. This gave us a 
total of 430,000 hypotheses, of which 26,000 were correct. On average each 
hypothesis contained 5.65 words.

10% of the data (10 sentences) was reserved from each speaker for testing; the rest 
was input to the training procedure.

3.3 Feature generation
For this experiment we based our features simply on the collocational properties of 
word classes within the hypotheses. To do this we designed a set of 50 word classes 
using word frequency information generated from the training corpus. The word classes 
were chosen to have approximately similar frequencies in the training corpus. This was 
achieved by studying the relative frequency of the 50 most common words and the 
frequency of the 50 most common BNC word tags. We found that a combination of the 
25 most common words, 24 most common tags and 1 miscellaneous class gave a
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suitable mapping from each word to one of 50 classes. The list of classes is shown in 
table 1

Table 1 - Word Classes

Class Word Class Tag Description
1 THE 26 NN1 Singular Noun
2 <S> 27 MISC Miscellaneous
3 OF 28 AJ0 General Adjective
4 AND 29 NN2 Plural Noun
5 TO 30 AV0 General Adverb
6 A 31 NP0 Proper Noun
7 IN 32 CRD Cardinal Number
8 IS 33 PNP Personal Pronoun
9 THAT 34 DTO General Determiner
10 WAS 35 W1 Verb Infinitive
11 FOR 36 PRP Preposition
12 IT 37 WN Past Participle Verb
13 ON 38 VM0 Modal Aux. Verb
14 WITH 39 W D Past Tense of Verb
15 AS 40 WG Verb ( -ing form)
16 HE 41 DPS Possessive Determiner
17 BE 42 NN0 Noun (not number specific)
18 BY 43 CJS Subordinating Conjunction
19 AT 44 DTQ wh- determiner
20 I 45 WZ Present form ( -s) of verb
21 ONE 46 AT0 "Article" determiner (a, the,an)
22 HIS 47 AJ0-NN1 Word can be noun or adjective
23 NOT 48 VBB Present tense of verb "to be"
24 BUT 49 AVP Adverb particle (up, o ff,....)
25 FROM 50 VHD Past tense of verb "to have"

Using these word classes, collocational features were proposed as follows: feature 
F(m,n) is 1 if and only if word-class m occurs in the hypothesis before word class n. 
Thus each hypothesis is converted to a (sparse) vector of 2500 bits.

3.4 Feature Winnowing

To determine which of the 2500 features had some potential for predicting the 
correctness of the hypothesis, a first 'winnowing' stage was implemented using a 
mutual information criterion as described in section 2.1.

The winnowing procedure looked only at those hypotheses that were either correct or 
which had a score better than the correct hypothesis on the node. The mutual 
information was calculated between each feature f and the correctness indicator y. 
The 50 features showing the greatest values were retained for input to the maximum 
entropy modelling.
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3.5  Maximum entropy modelling

From the list of 50 features showing the greatest mutual information, maximum entropy 
models are made using a greedy algorithm (following [5]) that considers first the best 
model with one feature, then the best second feature that can be added to the first, 
the best third feature that can be added to the first two, and so on.

The maximum entropy modelling halts when the additional benefit of adding another 
feature falls below some threshold. A typical example of a model of 10 features is 
shown in table 2.

Table 2 - Example Maximum Entropy Model

No. Feature Lambda Description
1 1<26 -1.55945 “the” before singular noun
2 26<26 -1.50821 singular noun before singular noun
3 27<1 -1.42796 miscellaneous before “the”
4 1 <28 -1.558 “the” before general adjective
5 30<1 -1.42289 general adverb before “the”
6 30<31 -3.89828 general adverb before proper noun
7 34<1 -1.3658 general determiner before “the”
8 27<8 -1.92252 miscellaneous before “is”
9 1 <27 -1.43065 “the” before miscellaneous
10 26<35 -1.56516 singular noun before infinitive

Note that all the lambda values are negative, indicating that these features reduce the 
likelihood of any hypothesis containing these features being correct. Features that 
increased the likelihood of a hypothesis being correct were found by the winnowing 
procedure but they did not find their way into any maximum entropy model.

At first sight these features of incorrect hypotheses do not look particularly odd. 
However a feature is useful if its frequency of occurrence is different in correct and 
incorrect hypotheses. Thus the fixation on the use of 'the' may simply indicate that 
the recogniser is hypothesising this word too often.

3.6 Evaluation

To evaluate the feature selection and maximum entropy models, the 10% of data 
reserved for testing was processed through the word-class mapping and feature 
extraction stages. The overall score for each hypothesis was then adjusted using 
equations (3) and (4) for each of the selected features and calculated lambda 
parameters found from the 90% of data used for training. The procedure was then 
repeated 10 times for each possible division between test and training.

To evaluate the effectiveness of the new scores for each hypothesis, we calculated 
the average rank of the correct answer in the list of hypotheses generated for each 
node. After rescoring, the hypothesis list was resorted and the average rank of the 
correct answer recalculated. The results are shown in table 3:
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Table 3 - Change in Ranking of First Correct Hypothesis

Test Data Set Mean Correct Ranking 
(Before)

Mean Correct Ranking 
(After)

Mean Improvement

hypO.lst 13.15 9.94 3.21
hyp 1.1st 15.63 12.38 3.25
hyp2.1st 14.96 11.99 2.97
hyp3.1st 16.19 11.89 4.30
hyp4.1st 13.96 10.59 3.37
hyp5.1st 15.19 10.12 5.07
hyp6.1st 17.04 11.06 5.98
hyp7.1st 14.51 10.56 3.95
hyp8.1st 14.21 10.40 3.81
hyp9.1st 14.26 10.16 4.10

Overall the mean ranking of the correct answer improved by 4 places, from an average 
rank of 14.9 to an average rank of 10.9. The results seem consistent across each 
rotation of data. We have not yet determined how these improvements in ranking 
affect word recognition score. For this experiment we simply wanted to show that the 
maximum entropy model made consistent changes to scores in the right direction.

4 . D isc u ss io n
The experiment described above is only a first attempt at applying the idea of machine 
learning within the decoder, and serves only as a proof of concept that the idea holds 
some promise. We made many arbitrary decisions in feature analysis and in modelling 
and these can almost certainly be improved.

Now that we have the basic framework for experimentation we would like to look at:

1. choosing word classes on the basis of either grammatical functionality, or on the 
basis of how the word contributes to meaning

2. choosing other features based on the position of the word with respect to words 
that become before and after it

3. finding the best way to exploit the modified scores in the decoder: whether the 
modifications should be actually incorporated with scores from the acoustic model 
and language model, or whether they should be used simply to help rank hypotheses 
within a node.

4. determining the effect of the machine learning on word accuracy
5. determining the effect of the machine learning on sentences drawn from a different 

corpus spoken by speakers outside the training set.

One particular problem that might arise with this technique is that the features found in 
one set of data fail to be useful in another. On the other hand, the technique trawls 
through a large number of features to find ones that occur commonly and have the 
greatest effect. We are hopeful that the technique can be extended and refined to 
incorporate acoustic as well as linguistic features, and that a general learning 
framework can be established within the decoder to identify further features 
automatically.
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