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Abstract

The prevalence of screen-detected premalignancies is too large for it to be feasible that all can
progress to carcinoma at the same average rate, unless that rate is very low indeed. There are
likely to be frailties in the rates of progression. Failure to take heterogeneity into account will
lead to biased estimates and could result in inappropriate screening policy. Approaches to
investigation of heterogeneity in the propensity for screen-detected disease to progress

comprise the main objectives of this project.

We used Markov models with constant hazard rates in sequence throughout the process of
disease natural history within subjects, with heterogeneity terms by means of (1) frailty
models for continuous heterogeneity, (2) mover-stayer models for dichotomous heterogeneity
(in both cases for progression between sequential homogeneous models), and (3) latent
variables; and states to estimate the parameters of progressive disease natural history in the
presence of unobserved factors. Approaches had to be developed to address problems of
tractability and estimation. For example, in the presence of frailty, solution of the

Kolmogorov equations by routine matrix algebra is no longer possible. Heterogeneous models,
both discrete and continuous, were found to be tractable, and estimation was possible for a
variety of designs and data structures. Such models illuminated various issues in real

screening applications.

- Quantifying heterogeneity of potential progress of disease is of potential importance to the
screening process. There are trade-offs between model complexity, identifiability and data
availability, but there are clear examples, such as that of cervical screening, where a
heterogeneous model improves model fit and gives more realistic estimates than a

homogenous.
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Chapter 1 Introduction
1.1 Basic aims

Often in cancer screening, the target of the screening test is a preinvasive or even
premalignant state, for example cervical intraepithelial neoplasia or polyps in the colon. The
prevalence of these premalignant conditions is too large for it to be feasible that all can
progress to carcinoma at the same average rate, unless that rate is very low indeed. Thus there
is likely to be frailty in the rate of progression due to unobserved covariates, and possibly
even mover-stayer population mixtures in which some lesions simply cannot progress at all.

| Another application area is in assessment of cancer rates after a negative screen for cancer.
Some cancers occurring early after a negative screen are tumours which were missed at
screening and are therefore still at an early stage. Others are at an early stage because they
have had little time to progress. A third group may be at a more advanced stage if their early
appearance after a negative screen is due to their being more aggressive cancers with more
rapid progression. Clearly, quantifying such heterogeneity of potential progression of disease

is of some importance to the screening process.

In the past, frailty models have been focused particularly on survival analysis. Stratified and
regression analyses incorporating known risk factors are widely applied to interpret the
heterogeneity within and among populations. These methods, however, cannot deal with the
problem when the risk factors are inaccessible for specific types of data, unable to be
measured or even unknown. The failure to take heterogeneity into account will lead to biased
results. When severe frailty exists, the population hazard will increase to a peak then decline
with time due to the effect of selection and this could be incorrectly interpreted as the central

' tendency of individual hazard. Or even worse, when there is a large proportion of
16



non-susceptible cases that reduce the average population hazard, it is wrong to apply the

resulting small hazard to all individuals, as the aforementioned situation.

The thesis will aim at the development and application of simple heterogeneity and frailty
models to address the issues mentioned above, particularly in relation to progression of
preclinical conditions, and to draw some conclusions about cancer screening strategy from the

application of these methods to screening data.

17



1.2 Basic definition and applications of frailty and heterogeneity models
1.2.1 Frailty models — mathematical development for failure time data

* Since Vaupel and colleagues' introduced the concept of frailty to model the different
susceptibilities in a population, frailty models have been extensively applied to the time to

failure event analysis.

A frailty model is a random effects model for time variables, where the random effect (the
frailty) has a multiplicative effect on the hazard. The hazard for a person with

time-independent frailty z is assumed to be of the form
Ale,z)= zA(e). [1.1]

The unity frailty mean is assumed when the scale parameter is included in A(¢). As z is not
observed for each individual, we consider it random and integrate it out. So far a gamma
distributed frailty is the most common form for its mathematical convenience, with the
closure property of which the distribution among survivors is also gamma with the original
shape parameter and the distribution among deaths at a given time is also gamma but with
different shape and scale parameters. Other distributions used to describe the frailty include a
two point distribution, the uniform distribution, the Weibull distribution, and the log normal
distribution. All the nonnegative exponential families including z as canonical statistic have
been proved to share the same closure property.? The derivation is simply described as

follows.

18



Let A(f) denote the integrated baseline hazard, A(t)= J:/'L(u)du . Combining with

expression [1.1], it is easy to show that the survival function conditional on a given frailty is
S(t | z) = exp{- zA(¢)} [1.2]

Therefore, the unconditional survival function is

8(t)=E.[s( 2)]
= Iexp{— zA(t)} f (z)dz [1.3]
= L{A(e)},

where L(s) denotes the Laplace transform of s. For the nonnegative exponential family,

expressed as P(6 ,0), with shape parameter § and scale parameter 6 having the

probability density function as

f(z)=fi;—(_;:’g%), [1.4]

where m() is any function of z not involving the distribution parameters, and ¢() is any

function of shape and scale parameters not involving the random variable z.

The Laplace transformation for the nonnegative exponential family is

$(5,0 +5)
L(s)= o6.0) [1.5]

19



According to expression [1.3] the unconditional survival function is generalised as

S(t)= %’(;”%)(’». [1.6]

* A simple parametric frailty model would be one when time to event is distributed as

exponential conditional on the rate A(z)=z-1, and then A(z) varies among subjects with a
98 751 ot

gamma distribution, say the frailty has the density as f (z) = ——W

. According to

expression [1.4], ithas m(z)=z" and ¢(5,0)=T(5)/6°.
The unconditional survival function is then obtained from expression [1.6] as

_1(8)/(6 + A1)
S()= r(5)/6°
=0%(0+m)?°

0’ 0\
== lt+—]| ,
A A
with the unconditional survival time distributed as Pareto.

The density of frailty among deaths at a given time is

f(T=112)/(z)
fzlT=1)= )

From expressions [1.2], [1.3] and the equation that f(,)=—dS(t)/dt , the above can be

expressed as

_ zexpl-zAQ)}f ()
-r(al)

20



When & is not a function of 6, it can be shown that ¢(5 +1,0)=-d¢(5,6)/d6 . For

exponential families, the density among deaths is then

2841 ,=(0+A()): m(z)

- 6(6 +1,6 + Al?))

[1.7]
= P(6 +1,0 + A(r)).

The density of frailty among survivors in time t is

A2l slar)
fEIT20)= 2 o =50

_ oxpt-zAW))f(e)
L(A())

- For exponential families, it can be expressed as

29 e—(9+A(t))z m(z)

$(5,0 + At))
[1.8]
= P(5,0 + A()),

the same distribution of frailty with the original shape parameter.

Thus, the mean of this distribution, i.e. the mean frailty among survivors, is



o [zowlsAQLG),
() sz(IT )a'z I p (t))

Alt)) rzex flz
- L(At )-[ p—L(A )}) e 19

for exponential families,

_#(6+1,6 +A(r))
$(5,6 + A(2))

In general, the integrated population hazard is

H(r)=~log{s(:)}
= ~log{L(A())}

for exponential families,

=—log[¢(5 ‘;Z;: 6‘;(’»). [1.10]

The population intensity is

h(t)= H'(t)

[1.11]

= _%((I\A((t—t)))).l(t)= E, 'l(t)’
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which demonstrates that the population density is the average hazard among the survivors.

Hougaard also demonstrated that the choice of distribution was crucial. With Gamma
distributed frailty the relative heterogeneity is constant, however, with inverse Gaussian
 distribution the surviving population becomes homogeneous with time.> Hougaard
generalised the above distributions in addition to the stable distributions on the positive
numbers and the degenerate distribution into a three-parameter family of distribution,

P(a,6 ,y) , on the positive numbers.>* The Laplace transform of the distribution is

L(s)= exp{ 0 _0;)5 [1 - (1 + %ls)]_a H [1.12]

where 0<a <1, § (thesquared coefficient of variation)>0, and

y (the expectation of frailty)>0.If @ or § equals 0, the frailty distribution is degenerate
at y , implying no heterogeneity. When a =1, it gives a special case of gamma distribution
with Laplace transform as

IR
L(s)={l+6ys} : [1.13]

By extending the range of @ to be greater than 1, Aalen®” included a compound Poisson

distribution with a nonsusceptible subgroup of positive probability

P(z=0)= exp{— 5(%_1)} [1.14]

According to the expressions [1.3] and [1.12], the population survival function for this
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three-parameter family is

S()= exp{ i _“a)5 {1 -(1 + %’—A(t)]l_a }} if a=lLa>0, [1.15]

S()= {—1—0—)}% if a=1, [1.16]

1+ 6yA

with the corresponding population intensity

rl(t)

— = for a>0. [1.17]
{l+a ()}

h(t) = -%m S(t)=

The frailty model has been extended to consider the effect of covariates combined with the
Cox regression model by specifying the individual hazard as zexp(8'X )/’L(t), where X is the
_ vector of known covariates and f is the regression coefficient vector. Maximum likelihood
can be used when the underlying intensity can be described by finite parameters.® The EM
algorithm can be used for the semi-parametric case, allowing the underlying hazard to be
distribution free.” A Bayesian approach may also be used, carrying out with Monte Carlo

simulation.®’

In general, frailty models can be classified into two categories: univariate and multivariate
failure time analysis according to the source of the variability in time to the specific event.'’
The univariate (independent) failure time analysis is for the case when the random effect is an
individual variable, while the multivariate (dependent) failure time analysis is used when the

random effect is a variable common to several records and deals with unobserved correlation
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via latent variables (frailties) from the same clusters.

1.2.2 Frailty models — applications and practical problems

Applications of univariate frailty models may be seen in incidence and progression of disease.
Various frailty models \&ith individual hazard increasing with time have been fitted for
patients with diabetes mellitus to data on the incidence of diabetic nephropathy that increase
until 20 years duration of diabetes and later decreases.'’ Although a good fit is seen in some
models, the estimated degree of heterogeneity and the effect of covariates on the hazard are

dependent on the choice of models."'

Aalen et al'? performed a compound Poisson distributed frailty model of the selection
phenomenon to interpret the age-specific incidence of testis cancer, which increased until the
“age group 30-34 years then declined with age in Norway males. In their model, the baseline
hazard is assumed as Weibull distributed, hence an increasing hazard of testis cancer
incidence within individuals. The model including the year of birth showed how the size of

frail group changed over different birth cohorts.

Mortality after myocardial infarction is high and the complication is frequent during the first
days. Hougaard" used frailty models to allow for inter-individual heterogeneity as a possible
explanation of the high hazard rate in early days. Alternatively, the decreasing hazard can be
explained as a general decrease in risk for all patients with time since the onset of myocardial
infarction. Unlike the incidence of carcinoma or other chronic diseases exemplified above in
which the theory of different susceptibility is preferred because of its biological plausibility, it
is difficult in this application to prove which explanation is correct; hence the results should

be interpreted with caution.
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Another application of the frailty model is for the unmeasured host response after vaccination.
The true vaccine efficacy can be distorted when there is failure to take the heterogeneity in
host susceptibility in both vaccinated and unvaccinated people into account. Longini et al**
and Halloran et al'® applied a frailty mixture model for estimating the efficacy of a measles
vaccine allowing a population fraction with nonsusceptibility. Boily et al'® and Desai et al"’
addressed the necessity of studying the behaviour of vaccine efficacy measures under
heterogeneous conditions of population in the planning of phase III HIV vaccine efficacy

trials, and proposed a new efficacy measure based on log-spline hazard regression to give

valid estimation across different modes of vaccine action and in the presence of frailty effects.

Over-parameterisation and identifiability problems can arise in univariate survival analysis
where there is only one endpoint variable per individual. Introducing covariates,
unidentifiability problems could be solved by abandoning the hazard ratio in favour of the
;ccelerate failure time (AFT) framework, an ordinary regression approach of log(survival
time) on covariates with direct physical interpretation, for interpretation of covariate effects in
survival analysis with random heterogeneity.'’*'®* When the underlying intensity is assumed as
Weibull-distributed, the AFT model can give the unchanged regression coefficients on known

factors and redistribute the frailty into dispersion.'®

In multivariate failure time analysis, the idea of the frailty model is to specify independence
c.onditional on a set of unobserved or latent variables, then to complete the model by
averaging over an assumed distribution for the latent variables. This can also tackle the
problem of unidentifiablity in univariate failure time analysis. Fully parametric versions of the
fnodels with parametric specification of the underlying intensity or piecewise constant

baseline hazards,® and the semiparametric version of the model introducing random effects in
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a Cox proportional regression have both been proposed.” The latter is widely adopted for its

lack of a distribution assumption for the baseline hazard.

The ability to estimate models reliably increases dramatically when multivariate survival

times are available, giving more degrees of freedom for parameter estimation.

Large studies based on the Scandinavian Twins Registry data investigated the correlation
jt)etwecn twins at different levels, MZ (monozygotic) and DZ (dizygotic), and the relative
magnitude of genetic and environmental influences on frailty variables. The applications
include the influence of major genes on individual frailty and longevity,' familial aggregation
of breast cancer in twins,”® genetic and environmental influences on susceptibility to heart
disease,”’ genetic analysis of duration of human logevity,”>” the association between cancer
incidence rates among the MZ and among the DZ pairs,”® and the effects of environmental

and genetic factors on the mortality from coronary heart disease.”’

Such models can be used for an unobservable genetic or early environmental effect existing
with individuals in sibling groups, or for an environmental effect if individuals are grouped by
households. Mack et al”° studied the familial aggregation of lung cancer in relation to family

al”®® applied the frailty approach to investigate the effect of

smoking habits. Siegmund et
latent genetic and environmental risk factors on hazard functions in nuclear families. Klein*®
investigated the risks of smoking and cholesterol levels, adjusting for potential random effects
using the data of the Framingham Heart Study. In the same study, Wassell and Moeschberger®!
considered the ‘pair-wise’ covariate information in the dependence parameter of the bivariate

survival function of two events, first detection of hypertension and first cardiovascular disease

event, within an individual.
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In some applications, measurements were taken in the same subjects but at different
anatomical sites. Mache and Chevret®® developed an approach based on the marginal hazard
model and the frailty model to assess the effect of photocoagulation in delaying the onset of
t;lindness, as well as the dependence between the two eyes of blindness times, within patients
with diabetic retinopathy. Robertson and Ranstam™ used a shared gamma frailty model to
model the risk of knee prostheses after arthroplasty, taking into account the correlations

between bilateral operations in the same patient.

Alternatively, the marginal hazard model can be used for multivariate survival analysis. In this
approach, marginal distributions of survival time are modelled as Cox regression, giving
population average regression coefficients, but with a correlation structure to be estimated

within clusters of related survival time.>*
1.2.3 Mover-Stayer models

The Mover-stayer model may be considered as a special case of frailty models, where each
person has a susceptibility variable (the frailty) which has a Bernoulli distribution,
Alternatively it may be thought of as a mixture of two distinct populations, one of which has
an unknown hazard of progression (mover), another a hazard rate known to be zero (stayer).
The task of estimation is to obtain estimates of the proportion of movers in the population and

the parameter pertaining to the non-zero hazard in these movers.

The early development and application is in the discrete-time mover-stayer model, in which
movers are frequently assumed to follow a first-order Markov process with unknown
transition matrix M), and stayers will remain in their initial state throughout the whole

observation period with an identity transition matrix. Let S denote the diagonal matrix with
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ith diagonal element S; as the fraction of being stayer in state i. Then the jth step transition

matrix PY) can be expressed as

PV =g+ (1-SM/.

Frydman®® demonstrated maximum likelihood estimation in the discrete-time mover-stayer
model directly from the maximum likelihood equations and developed a recursive method of
computation. Sampson®® discussed the approach and that for a discrete time finite-state
Markov chain model by using an example of job transitions for unskilled workers. Fuchs and
Greenhouse®’ proposed the EM (expectation-maximisation) algorithm as an alternative
approach to maximum likelihood estimation in the mover-stayer model. Swensen®® derived
the profile likelihood function to establish a simple necessary and sufficient condition for the

maximum likelihood estimator.

Such a simple mover-stayer model in continuous time with a single exponential distribution
fof the movers and a single Bernoulli random variable with the probability p of being a mover
runs into the problem that the likelihood is monotonic increasing in p except in the case of
only censored data, and no events. Using a different distribution of time to movement or
increasing the complexity of the model with further parameters might solve the problem of

monotonic increasing likelihood in p but, depending on the data available, might also give rise

to identifiability issues.

Since the first introduction by Blumen, Kogan, and McCarthy,39 the mover-stayer model has
been frequently used to model various forms of dynamics in the social and economical
sciences such as occupational mobility,**** residence mobility,*** consumers’ brand

preferences,”” income dynamics,* analysis of remarriage,* and political tendency.” In
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biomedical studies, the applications of mbver—stayer models include investigation of the
changes in depression status over time in a mental health survey;’' the HIV/AIDS epidemic

5254 ot in terms of the survivor function® considering the

modelling by means of simulation;
heterogeneous susceptibility of HIV infection among populations. It has also been used to

investigate dedifferentiation and tumour progression in breast cancer via a quasi-likelihood

method.*® Albert treated subjects with dynamic changes between the cut-off point in the scale

of defining chronic disease as movers. This demonstrated the importance of accounting for
measurement error in estimating prevalence and incidence of a disease which is diagnosed
based on dichotomising a continuous marker variable such as blood pressure, fasting blood

glucose or respiratory function.**’
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1.3 Heterogeneity/ frailty models in cancer screening

Usually, heterogeneity in cancer screening exists on two levels, between screened and
unscreened groups, and among screened subjects. The former is a target of cancer screening
evaluation methods, while the failure to consider the latter one can distort the quantification

of disease natural history that can be used in screening policy making.

Comparison between screened and unscreened groups outside of the randomised trial setting
can be difficult because of length bias, lead time bias, and selection or healthy volunteer
bia‘s.58 Length bias and healthy volunteer bias are particular potential applications of frailty
models. Researchers have spent much effort investigating such problems and developing
methods to make adjustments.” Studies by means of computer simulation have been

frequently applied in cancer screening evaluation, %!

Heterogeneity among screened subjects is a crucial problem in analysing cancer screening
data, especially when the screen aims to detect a premalignant lesion which is more likely to
be non-susceptible than other screening targets, such as preclinical invasive cancer. However,
formal heterogeneity or frailty models are rarely addressed in this area in the published
literature. Nevertheless, screening data hold the advantage of more degrees of freedom,
particularly in the design of a randomised screening trial, to reduce the problem of
unidentifiability. Researchers have applied a continuous-time mover-stayer mixture of
Markov chain models using a quasi-likelihood approach to a randomised mammography
screening trial, to investigate whether the population of breast cancer was a mixture of
tumours with and without the potential for the deterioration of the malignancy grade.*65%62

In cervical cancer screening, heterogeneity is complicated due to the possibility of regression
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of pre-invasive lesion. Traditionally, estimates for the proportion of regression were based on
follow-up studies of untreated carcinoma in situ cases.®’ van Oortmarssen and Habbema®*
proposed a five-state (normal, pre-invasive, preclinical invasive, screen-detected and clinical
invasive cancer) stochastic model to fit the screening data from the British Columbia cohort
study. In their model, time between normal and pre-invasive state was assumed to be Weibull
distributed (assumed the same distribution in both progression and regression ways), and for
parsimony purpose a number of simplifications were made: parameters from normal and
pre-invasive, and to screen-detected state assumed to be piecewise constant with age, and the

3

fixed time between pre-clinical and clinical invasive cancer.
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1.4 Purpose of this thesis

Investigation of heterogeneity in the propensity for screen-detected disease to progress is the
main target of this project. To investigate the heterogeneity of progression capability of ductal
carcinoma in situ (DCIS), we fit data from mammography screening firstly by a simple
deterministic approach with various simplifying approximations, and also by a Markov
process, in which observed data are a mixture of two latent separate states, progressive and

non-progressive DCIS. The model construction and results are described in Chapter 2.

In Chapter 3 a novel method to describe the behaviour of movers or stayers in terms of
prognostic factors is applied to a case-cohort study of progression to colorectal cancer of
polyps after polypectomy. This uses a two-compartment model. The first compartment has
dependent variable the dichotomous potential to progress in the absence of treatment. The
second compartment has dependent variable actual progression and time to progression for

those which have such a potential.

In addition to picking up invasive carcinoma in the preclinical phase, screening can detect
preinvasive and premalignant lesions, such as adenomatous polyps for colorectal cancer,?>%
and squamous intraepithelial lesions for cervical cancer.” Again, heterogeneity of malignant
transformation might prevail in the premalignant lesions. In chapter 4, we combine
progressive Markov models with constant hazard rates in sequence throughout the process of
disease natural history within subjects, with a frailty model for continuous heterogeneity and
with a mover-stayer model for dichotomous heterogeneity for progression between sequential

homogeneous models. We use this method to estimate the parameters of progressive disease

natural history for colorectal cancer.
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We introduce latent variables in the multi-state disease process in chapter 5 to tackle the
situation of unknown or unobserved information, sometimes due to a lack of knowledge of
the importance of a particular variable when data are being collected, or sometimes the
information is only meaningful or observable for some selective subjects. The example used
is calcification type in mammography, which was only known for tumours of size 1-14 mm,

in mammographic screening.

In Chapter 6, a variety of disease progressive models were fitted to investigate the
heterogeneity of progression of abnormalities detected in cervical cancer screening. A basic
model taking length bias into account suggests that the low estimated malignant transition
rates are due to ignoring heterogeneity of susceptibility. A further mover-stayer model is used
to deal with the heterogeneity among premalignancies, also incorporating measurement error
in the model. To assess cervical cancer screening, a computer simulation technique is applied
to compare screening with different regimes. This is used to estimate benefits and costs of

different screening frequencies in terms of smears required per invasive cancer prevented.
In Chapter 7, we summarise the particular clinical conclusions, and the generic

methodological conclusions. Suggestions for further work, both clinical and methodological,

are made.
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Chapter 2 Heterogeneity of Progression Capability of Ductal
Carcinoma In Situ (DCIS)

2.1 Introduction
Since the inception of mammographic screening programmes for breast cancer, concerns have
been expressed about the possibility of overdiagnosis of breast cancer, in particular of ductal

8%:% a noninvasive or preinvasive lesion in the breast. A dramatic

carcinoma in situ (DCIS),
increase in incidence of DCIS has been observed since then. According to the Surveillance,
Epidemiology and End Results Registry, the increase of age-adjusted incidence rate of DCIS
among women was 314% between 1983 and 1993 in the United States. For invasive breast
cancer, the increase was only 16%.% The increasing trend was contemporaneous with the
mcr;ase in mammographic screening since the early 1980s. High percentages of DCIS among
screen-detected tumours have been reported, as has an increased incidence of DCIS since the
advent of screening. The proportion of DCIS of all newly diagnosed breast cancer increased
from 3% between 1973 and 1980 to 15.5% in 1996, and is estimated as nearly 20% in 2000.
The percentage of DCIS among screen-detected breast cancer decreases with age from 28%
fbr women aged 40-49 years to 16% for women aged 70-84 years.”’ The percentage in
prevalence mammographic screening (i.e. the first screen of a previously unscreened

population) is even higher and also declines with age from 43% for women aged 40-49 to

19% for those aged 60-69.%

Various interpretations of these results have appeared in the literature ranging from the
ophﬁon that this is mainly overdiagnosis and likely to cause more harm than benefit, to the
position that detection of DCIS is the ideal and that a high rate of DCIS represents a large
number of invasive cancers avoided. Thus, the critical question is: ‘Is DCIS an obligate

precursor lesion of invasive breast cancer?’.
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Researchers have given evidence of similarities of risk factors and of genetic markers in DCIS

1”? found that family history of breast cancer and

and invasive breast cancer. Kerlikowske et a
nulliparity or late age of delivering of first child significantly increased the risk of both
mammographically detected DCIS and invasive breast cancer among women aggd plder than
50 yi:ars. For younger women an elevated BMI was also associated with decreased risk of
DCIS"*” and the same trend bordering on statistical significance was observed for invasive
breast cancer.”” Biological evidence showed the progression of genetic abnormalities,
including change in estrogen receptor (ER) levels, expression of oncogene c-erb B-2, tumour
suppressor gene p53 and loss of heterozygosity at multiple chromosomal loci, from atypical
ductal hyperplasia to low-grade DCIS, to high-grade DCIS, and finally to invasive ductal
carcinoma.”® The evidence also comes from the similar distribution of location in the breast of
DCIS and of invasive cancer.®"? The earlier age of diagnosis and smaller tumour size of

DCIS compared with those of invasive breast cancer also show a potential precursor role of

DCIS for invasive breast cancer.”

By contrast, some argue that the majority of DCIS cases do not necessarily progress to
clinically significant invasive breast cancer and therefore that DCIS cannot be considered as a
precursor lesion. The autopsy studies have typically observed a high prevalence of DCIS,
even in women who were not diagnosed with breast cancer during their lifetime. Welch and
Black™ observed a prevalence of 9%. Nielsen et al”>"® found a prevalence of 14% from series

of consecutive autopsies of women aged over 20 years.

From the results of follow-up studies for women diagnosed with benign breast disease by
misclassification and left untreated, but which were actually DCIS cases, Betstill et al”’ found

6 invasive cancers (60%) occurred out of 10 DCIS cases after an average of 9.7 years follow
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up, Rosen et al”® updated the data and found 9 invasive cancer cases (60%) out of 15 DCIS
cases after 21.6 year follow up. Page et al”* found 9 ipsilateral invasive breast cancer (32%)
18]

out of 28 misclassified cases taking biopsy only after 30 year follow up, and Eusebi et a

reported 9 ipsilateral invasive breast cancer (11%) from 80 cases after 17.5 year follow up.

However, the above results involve uncertainties about the representative nature of the
varieties of DCIS diagnosed by varying detection methods. First, the results of autopsy
studies do not necessarily reflect the DCIS in the living population or mammographically
detectable DCIS in vivo. If around 9% of women at autopsy are found to have DCIS,” but
detection rates at screening are less than 1 per thousand,” it is likely that screen-detectable
DCIS in vivo is not the same clinical entity as autopsy diagnosed DCIS. In addition, Evans et
al* found a higher proportion of high grade cases among screen-detected DCIS compared to
symp;omatic cases (69% vs 61%, p=0.08) and a significantly higher proportion of necrotic
lesions (87% vs 76%, p=0.008). Both features (high grade and necrosis) confer an increased
risk of progressive to invasion. High grade DCIS more often shows abnormal mammographic
features the‘m low grade DCIS, which is often mammographically occult. The mammographic
calcification found in high grade DCIS and DCIS with necrosis is more characteristic of
malignancy. By contrast, the granular-punctate calcifications found in low grade DCIS are
non-specific and are more likely to be confused with benign processes. These cases are likely

to be the subjects in the follow-up studies.

Percentages of DCIS among screen-detected cases are often quoted in evaluation of screening
programmes as an indicator of benefit or harm depending on opinion. It is not clear what the
preyalence of DCIS should be, or to what extent variability in percentages of DCIS between
screening programmes is due to variation in the absolute rate of DCIS per person screened or

to variation in the absolute rate of invasive carcinoma, which also affects the percentage. For
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example, a prevalence screen which results in 2 DCIS cases per thousand and 4 invasive
carcinoma cases per thousand has 33% DICS, whereas a prevalence screen resulting in 2
cases of DCIS per thousand and 7 invasive cases per thousand will have 22% DCIS. The
former is not diagnosing DCIS any more than the latter; it is diagnosing fewer invasive

cancers.

Duffy:et al® found that detection of DCIS in the Swedish Two-County Trial accounted for
5-12% of the deaths prevented, whereas shifting from invasive stage II or worse to invasive
stage I accounted for around 65% of the deaths prevented. The contribution of saving lives
from breast cancer from detection of DCIS is modest. In addition, the variation between
programmes in percentages of cases of DCIS was as much due to invasive carcinoma
detection rates as to DCIS detection rates (see Table 2.1). The question remains, however, as

to what rates of detection of DCIS should ideally be observed?
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Table 2.1 Detection rates per thousand screened of DCIS and invasive cancers at incidence

screen and prevalence screen, in the Swedish Two-county Trial, and in more recent service

screening programmes

Programme and age range

Prevalence Screen

Incidence screen (where available)

DCIS | Invasive % DCIS Invasive | % DCIS

/1,000 | /1,000 DCIS /1,000 /1,000
Two-County, 50-69 0.7 6.0 11 0.5 33 13
UK, 50-64 1.1 4.9 18 0.6 32 16
Netherlands, 50-69 0.9 5.5 14 0.5 29 15
Belgium, 40-69 1.0 7.1 12 - - -
South Australia, 40+ 1.3 58 18 0.6 2.8 18
New York, 98% 35-69 0.8 44 15 0.3 1.5 20
San Francisco, 50-59 1.8 42 30 - - -

22 9.8 18 - - -

San Francisco, 60-69

It is generally agreed that a proportion of DCIS would not have progressed to invasive

carcinoma in the absence of screening. This proportion, however, is unknown, and cannot be

observed due to the interruption of natural history by excision. Also, as stated above, long

term results in DCIS previously untreated for benign condition are qualified by the non-

representative nature of such cases. Therefore, the only way to estimate the proportion of

progressive DCIS cases is by statistical modelling based on the numbers of DCIS and

invasive cases detected at screening and on the numbers of breast cancers arising clinically

between screenings.
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2.2 Objectives

In the present chapter we use data from the Swedish Two-County Trial and from service

screening programmes to:

(1) derive tentative estimates of what DCIS detection rates should be typically observed;

(2) describe the typical range of absolute detection rates of DCIS in mammographic
scrleening programmes;

(3) estimate the proportion of DCIS detected at prevalence and incidence screens which is

“overdiagnosis”, ie which would not have progressed to invasive disease if left untreated.

We begin with a simple deterministic model incorporating various constraints. Subsequently,
we fit a six-state stochastic model estimating five parameters of incidence and progression

simultaneously.



2.3 Material and methods

2.3.1 Data

We use data from the Swedish Two-County trial, a randomised controlled trial with 77,080
women aged 40-74 randomly assigned to screening invitation gnd regulting in 1,426 breast
cancers during the trial, and 55,985 women assigned to no invitation and resulting in 1,042
breast cancers.* In the present study, only the data on DCIS and invasive breast carcinomas
detected at prevalence and the first subsequent incidence screen, interval cancers detected
betwee_n prevalence and the first subsequent incidence screen and carcinoma-free cases for
women aged 40-69 were used. In addition, the corresponding figures from service screening
programmes in the UK, ¥ Netherlands,?® South Australia,®” and New York®® were extracted
from published papers (Table 2.2). Interval cancer data for these programmes were not

available.
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Table 2.2 Numbers of DCIS, invasive carcinoma and women carcinoma-free at prevalence

and the first incidence screen in the Swedish Two-County Trial, UK, Netherlands, South

Australia and UK programmes
Detection mode Prevalence First incidence
screen screen

Swedish Two-County = DCIS 8 7

4049 - Invasive carcinoma 31 39
Carcinoma-free 18456 16396
Interval cancer* 20

Swedish Two-County =~ DCIS 15 12

50-59 Invasive carcinoma 87 49
Carcinoma-free 21457 18731
Interval cancer* 25

Swedish Two-County DCIS 17 8

60-69 Invasive carcinoma 167 81
Carcinoma-free 20395 16372
Interval cancer* 38

UK - DCIS 2767 173
Invasive carcinoma 12323 925
Carcinoma-free 2520526 227503

Netherlands DCIS 908 383
Invasive carcinoma 5548 2223
Carcinoma-free 1077844 791790
Interval cancer* 760

South Australia DCIS 94 12
Invasive carcinoma 439 61
Carcinoma-free 75573 21433

New York DCIS 42 17
Invasive carcinoma 230 67
Carcinoma-free 52378 45839

* Numbers of interval cancers in Swedish Two-County trial and the Netherlands programme

are adjusted by the compliance rate to represent the subgroup of those attending the first

P

subsequent screen

)



2.3.2 Statistical models and methods
We analysed the data in two ways. Firstly, we used a simple deterministic approach, using
various simplifying approximations, and secondly, by explicitly fitting a Markov process to

occurrence and progression of in situ and invasive carcinoma.

2.3.2.1 Deterministic model

Suppose that two types of DCIS, progressive and non-progressive, follow different natural
history models (A) and (B), respectively (Figure 2.1). In model (A), there is progression from
normal to DCIS, DCIS to preclinical invasive disease, and preclinical invasive disease to
clinical invasive disease. In model (B), the DCIS does not progress further and may indeed
regress. Observed DCIS cases at screening are a mixture of these two types, but the

proportion of progressive cases and the status of any individual case are unknown.

| 7\.2 )\G
(A) Normal ——» DCIS—— Preclincal —  (linical

Invasive carcinoma Invasive carcinoma

I

(B) Normal ——» DCIS
A

Figure 2.1 Natural history models involving progressive DCIS (A) and non-progressive DCIS

(B).

In addition, we define a to be the mean number of years since non-progressive DCIS was born,

I, to be the annual incidence of non-progressive DCIS, S, to be the screening sensitivity to
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DCIS, and §, to be sensitivity to invasive carcinoma.

Before estimation, some simplifying assumptions are made as follows:

(1) The incidence of preclinical progressive DCIS, preclinical invasive carcinoma, and
clinical invasive carcinoma in the absence of screening are equal. This represents a steady
state situation in which all clinical invasive cancer must pass through the preclinical in
situ and invasive state. They are approximated from incidence of invasive carcinoma in
the control group before the first screen in the Swedish Two-County trial. We assume
uniform annual incidence.

(2) The annual progression rate from preclinical invasive carcinoma to clinical disease
follows an exponential distribution and the progression rate and the sensitivity to
preclinical invasive cancer are known from previous work. Progression from in situ to
invasive carcinoma follows an exponential distribution with an unknown rate to be
es;;imated from the data.

(3) ais very large compared with screening interval t.

(4) There is no overdiagnosis of invasive carcinoma.

(5) Sensitivity to progressive and non-progressive DCIS is equal.
In this analysis, we use only screen-detected cases, not interval cancers.

At prevalence screen, the probability of detecting DCIS is

ﬁ(DCIS):(éHOaJS, =p, [2.1]

That i§, the sum of incidence of progressive and non-progressive DCIS multiplied by their

respective sojourn times, and by screening sensitivity.



At prevalence screen, the probability of detecting preclinical invasive carcinoma is

PI(INV)=%S2 -, 2]

i.e. the incidence of preclinical invasive carcinoma times its sojourn time, times the screening

sensitivity.

At first incidence screen, the probability of detecting DCIS is

l-e™) I
P(DCIS)= It S,+Ioa(1—Sl)S1+Ze 1-8)s,=p; [23]

2

The first component represents newly arising progressive and non-progressive DCIS. The two
latter components represent non-progressive and progressive cases missed at first screen. The
probability of detecting preclinical invasive carcinoma at first incidence screen can be

represented as follows:

et _
Pav)=Lewios)s, + =g, 10 S fretvesidan)
A Ay A

The ﬁ;st component represents invasive cases missed at prevalence screen, the second newly
arising invasive cases and the third progressive DCIS missed at first screen and progressing to
invasive during the interval. Our simplifying “steady state” assumption of equal incidence of
preclinical invasive and progressive in situ cases obviate the need to model incidence of the

later and progression to the former in the second component. This simplifies to
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A =4, [2.4]

I

Suppose N; women attend the prevalence screen, and n;; and n; are detected as DCIS and
invasive carcinoma, respectively. The numbers of attending women, screen-detected DCIS
and invasive carcinoma cases at the first subsequent screen are Ny, n,;, and n;,. Based on the

probability formulae derived above, the total likelihood is:

L= pl"np;n (1_p1 -p, )Nl-"n""nz p;zn p:zz (1 — Dy — D4 )Nz‘”u—"zz [2.5]

Based on the assumptions, I, A,, and S, are regarded as constants. This means that there are
four parameters,ly, a, A4,,and S, , left in the likelihood function to be estimated. The
maximum likelihood estimates for Ip, a, A,, and S; were obtained using Newton-Raphson

optimization. SAS/IML 6.12 software was used.

2.3.2.2 Markov models

We consider the six-state continuous-time Markov model depicted in Figure 2.2. In this model,
progressive and non-progressive DCIS are taken into account simultaneously. Note that state
(5), no tumour apparent after non-progressive DCIS regression is not treated as a return to
normal, but as a separate absorbing state. This is done partly to assist in estimation but also to
reflect the fact that the natural history of non-progressive DCIS is not yet established. For
example, those in whom a non-progressive DCIS has regressed might be at increased risk of a
new primary tumour thereafter. Note that in this model, DCIS, whether progressive or not,
denotes ductal carcinoma in situ which has given rise to calcifications and is therefore

screen-detectable. It does not include undetectable DCIS.
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Figure 2.2 Natural history of breast cancer including progressive and non-progressive DCIS

The transition rates of the six-state model above can be expressed as an intensity matrix:

1 2 3 4 5 6
1(-(h+4) 4 4 0 0 0
2] 0 -a 0 0 A 0

3] o 0 -4 4 0 0 [2.6]
2=, o 0 0 -4 0 4,
5| o 0 0 0 0 0
6 o 0o 0 0 0 0

A1 and A; represent the DCIS incidence rates for non-progressive and progressive DCIS,
respectively. A; and A4 are the transition rates from progressive DCIS to the invasive

preclinical phase, and from preclinical invasive to clinical disease, respectively. A, is the

annual transition rate from non-progressive DCIS to no apparent tumour.

Given the transition intensity matrix in [2.6], transition probabilities from state i to state jina

time interval, x, can be expressed as F; (x) The derivation of transition probabilities is based

89,90

on the solution of the Kolmogorov equations™ " or by integration.

From the Kolmogorov equations,
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d

—P(t)=P()Q, [2.7]

dt
which has the unique solution P(f)=exp(Qz) subject to the boundary condition P(0)=1I.
Using canonical decomposition, for the given set of parameters, X, to As in the present study,
Q has distinct eigenvalues d,, ..., dsand A is the kxk matrix whose jth column is a right

eigenvector corresponding to d;, then Q= ADA™' where D= dz‘ag(dl sy ) Then
P(t)= Adiagle™......,e% A 28]

Using integration way, for example, the probability of having preclinical invasive cancer at a

prevalence screen at a given age is

ge—x

Py(4ge)= fgeﬂze“ﬁ"e““" Jye™ e a5 gy iy
)42}3 {e‘(”q +4, )age _ e—k,age e—(/’l., +4, )age _ e'l“'g‘ } [29]

) Ay =2 H—h-4 Ai—A =2y

In the present study, we constructed the likelihood from expression [2.8], the solution of the
Kolmogorov equations, by numerical calculation when the iterations of optimisation were
performed. In this case, a closed form of progression probability in a given time t is not
necessary. This method is especially useful when a transition matrix involves more than two

regressive modes and a closed form expression does not exist.

The probabilities used for maximum likelihood estimation in this six-state model are shown in
Table 2.3. Note that in this more formal representation, it is necessary to take account of the

fact that those with a history of clinical breast cancer prior to the start of screening are
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excluded. This is the reason for the denominators in the first screen probabilities in Table 2.3.

The probabilities are conditional on being either normal, with DCIS, or with preclinical

invasive disease at first screen. In this analysis, we use interval cancer data when available.

Table 2.3 Transition probabilities by detection mode at prevalence and the first subsequent

screen in six-state Markov model

Detection Mode

Transition Probability for models

with interval cancer

Transition Probability for models

without interval cancer

Prevalence Screen

DCIS
Invasive carcinoma

Carcinoma-free

B, (Age)+Pl3 (Age) Plz(Age)+P,3(Age)
P, (4ge)+ P, (Age)+ P;(4ge)+ P (4ge) B, (Age)+ P,(Age)+ Py(Age)+ By(4ge)
P4(4ge) PB4 (4ge)
P, (Age)+ P,(A4ge)+ P;(4ge)+ P,,(4ge) B, (A4ge)+ B, (4ge)+ P;(Age)+ B, (4ge)
P, (dge) P, (4ge)

P,\(Age)+ P,(A4ge)+ P;(4ge)+ P, (4ge)

P, (Age)+ P, (A4ge)+ P;(4ge)+ P, (4ge)

Subsequent screen
DCIS

Invasive carcinoma
Carcinoma-free
Interval Cancer

Non-attender

By(x)+ By (x)
Ry(x)
R,(x)
Py (x)

[P2(x)+ B (x)]x Coverage
B, (x)x Coverage
B, (x)x Coverage

[Pu (x)+ sz(x)"‘ R (x)+Pl4(x)]
x (1~ Coverage)+[Ps(x)+ P (x)]

Nj, ny3, ny3, N, ny; and ny, stand for the same meaning in the deterministic model. The

number of interval cancers between prevalence screen and the first subsequent screen is n.

Based on the probability formulae in table 2.3, the total likelihood, including data on interval

cancers is:
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L=

B, Age)+Pl3(Age) Jnn %
P;I(Age)+Pu(Age)+Pl3(Age)+P,4(Age)

(
[ P (4ge)
:

X
P, (4ge)+ P,(4ge)+ P,(4ge)+ F;,,(Age)J [2.10]

Ny=my—ny,
A, (Ag e) ] X
) (4ge)+ B, (4ge)+ P;(A4ge)+ P, (4ge)

Py (x)+ P (x)) x (B (x)) x (B ()™ x (B (x))

where age is the age of women attending the prevalence screen, and x is the interval between
the prevalence screen and the first subsequent screen. In the service screening programmes,
there were no data on interval cancers available. In this case, we use a complement
probability including total likelihood from women not attending the first subsequent screen
(including women not yet invited thereto) and all interval cancers appearing between the
prevalence screen and the first subsequent screen. Coverage is N,/(N;-nj;-n;2), the proportion
of those attending the first screen who also attend the second. Then, the total likelihood for

screening programmes without interval cancers is:

L= ( Py(4ge)+ Ry (4ge) ]

P, (4ge)+ P, (Age)+ P5(4ge)+ P, (Age)

' [ P(4ge) J
P, (4ge)+ B, (4ge)+ P (A4ge)+ P,,(Age)
( P, (4se) i
B, (4ge)+ B (4ge)+ By (4ge)+ B, (4ge)
[(B,(x)+ P (x))x Coverage]™ x[P,,(x)x Coverage]™ x[P,(x)x Coverage]** " x
1 }
{R(0)+ B, (x)+ Bs (x)+ By (x)]x (1~ Coverage)+ [Rs (x) + B (x)} V™™

[2.11]
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The maximum likelihood estimates were obtained by using Newton-Raphson optimisation.
SAS/IML 6.12 software was used. 95% confidence intervals were calculated using variance

estimated from the inverse Hessian matrix.

Note that the coverage at second screening is not to be confusgzd with compli?,nce. At the time
of the reports in several of the service screening programmes, the first screening was
completed but the second still under way. Thus, those who had not attended the second
screening were a mixture of those choosing not to attend and those who had not yet been

invited to a second screening.
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2.4 Results

2.4.1 Deterministic models

We were unable to obtain convergence from the Swedish Two-County trial data for ages
40-45, probably because of the relatively small number of cancers. The constrained va}ues for
incidence of progressive DCIS, rate of progression of invasive preclinical disease to clinical
disease and sensitivity to invasive disease were 0.0021, 0.2702, and 1.00 for women aged
50-59, 0.0028, 0.2381, and 1.00 for women aged 60-69, and 0.0024, 0.2542, and 1.00 for

women aged 50-69, from Tabar et al.®

The estimates from the Swedish Two-County trial for 10-year age groups were unstable
results, and are therefore not reported. Instead, we estimated the parameters for the

Two-County Trail for the age group 50-69 as a whole.

Table 2.4 shows the estimated annual incidence rates of non-progressive DCIS, sojourn time
of non-progressive DCIS, annual transition rates from progressive DCIS to preclinical
invasive carcinoma, and sensitivity to DCIS from the various ‘sources. Estimat'es of the
sojourn time ranging from 3 to 7 years of non-progressive DCIS were observed in the
Swedish trial, UK, Netherlands, and South Australia. However, a longer sojourn time of
non-progressive DCIS, 13.17 years, was estimated in the New York programme. The
estimated annual non-progressive DCIS incidence rates varied between 1.00 and 1.67 per
10,000 per year, except that of New York programme, 3.80 per 10,000 per year. The estimates
of annual transition rates from progressive DCIS to preclinical invasive carcinoma ranged
from 8.38 (average time to progression 1.4 months) in the New York programme, to 10.94
(average time to progression 1.1 months) in the Netherlands programme, and results generally

indicated a short sojourn time of progressive DCIS. Sensitivities to DCIS were consistently
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estimated as 1. Pooled estimates which are weighted by the number of breast carcinoma cases

for annual incidence and mean sojourn time of non-progressive DCIS, annual transition rates

from progressive DCIS to preclinical invasive carcinoma, and the sensitivity to DCIS were

1.51 per 10,000 per year, 5.04 years, 9.78 and 1, respectively. However, estimated sojourn

time of non-progressive DCIS was unstable and a confidence interval could not be estimated

in many cases. We therefore attempted an alternative estimation algorithm,

Table 2.4 Estimated parameters based on the deterministic model

Parameter Estimate 95% CI**

Swedish Two-County I 1.10x10™ 0~0.0420
50-69 a 4.48 0.0041~4841.80

A2 9.30 0.0300~2886.88

S, 1.00 0~1.00
UK I 1.67x10™ N/E

a 498 N/E

A 9.20 N/E

S 1.00 N/E
Netherlands I 1.28x10* 0.0001~0.0002

a 4.74 3.89~5.80

A2 10.94 9.59~12.47

S 1.00 N/E
South Australia I 1.41x10" 2.13x10°~9.39x10™

a 6.76 N/E

A2 8.94 1.23~64.92

S 1.00 N/E
New York I, 3.80x10* N/E

a 13.17 N/E

A2 8.38 N/E

S 1.00 N/E
Overall* I 1.51x10"* N/E

a 5.04 N/E

A 9.78 N/E

S, 1.00 N/E

* Weighted by number of breast carcinoma cases
** Calculated by Delta method for I, a, and,, and truncated method for S,
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Table 2.5 shows the results of profile likelihood estimation of a, with Newton-Raphson
optimized estimates of the remaining parameters constrained on a. Compared with the results
shown in table 2.4, the estimates of annual incidence rates of non-progressive DCIS became
much smaller. However, the estimates of sojourn time of non-progressive DCIS were greater
than those in table 2.4. Slower transitions from progressive DCIS to preclinical invasive
carcinoma were estimated. The estimates of annual transition rates from progressive DCIS to
preciinical invasive carcinoma ranged from 5.09 (average time to progression 2.4 months) in
the Swedish Two-County trial, women aged 50-69, to 8.05 (average time to progression 1.5
month) in the Netherlands programme. Again, 100% sensitivities were consistently estimated

in this approach. There were still problems in interval estimation.
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Table 2.5 Estimated parameters based on the deterministic model using the profile likelihood

in estimation for sojourn time of non-progressive DCIS

Parameter Estimate 95% CI**
Swedish Two-County a 9 N/E*
50-69 Iy 3.04x10° 5.50x107~1.68x107
A2 5.09 2.56~10.14
S 1.00 0~1
UK a 6 5~7
Iy 1.10x10™ 7.14x10°°~1.70x10*
A 552 4.08~7.49
S 1.00 0.76~1.00
Netherlands a 6 3~8
I 8.80x107 N/E
A 8.05 N/E
S 1.00 N/E
South Australia a 12 N/E
Ip 6.73x10° 8.42x10~5.38x10™
A 5.82 1.65~20.50
S 1.00 0~1
New York a 23 2~30
I 2.02x10° 0.0000~6.1619
A 7.48 0.12~457.38
S 1.00 0~1
Overall* a 6.41 N/E
I 9.39x10° N/E
A2 6.41 N/E
S 1.00 N/E

% Likelihood almost flat giving a 95% CI so wide as to be meaningless

* Weighted by number of breast carcinoma cases

** Calculated by Delta method for I, andA,, and truncated method for S,
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2.4.2 Markov models

Tabl\é 2.6 shows results from estimation based on the six-state Markov model. Note that the
exponential distribution of time to transition implies that the inverse of the estimated
transition rate from a state is the estimated mean time spent in the state (mean sojourn time).
Thus, for example, for the Swedish Two-County trial, women aged 50-59, the esﬁmated
sojourn time of invasive preclinical cancer before transition to clinical symptomatic disease is
1/0.40=2.50 years, and the mean sojourn time of non-progressive DCIS is estimated as

1/0.0617=16.21 years.

The annual incidence rates for non-progressive DCIS ranged from 7.22 per million per year in
the Swedish Two-County trial, women aged 4049, to 7.27 per 100,000 per year in the UK
programme. The annual incidence rates for progressive DCIS ranged from 1 to 2.7 per
thousand. The shortest estimated average time of progression of DCIS to invasive disease was
2 months in the Swedish Two-County trial for women aged 60-69, and the longest was 5.22
months in the New York programme. The estimated average sojourn time of non-progressive
DCIS ranged from 6 years in the UK programme to 40 years in the Netherlands programme.
Pooled estimates derived from weighted averages of the annual incidence rates for
non-progressive DCIS and progressive DCIS, the sojourn time of non-progressive and
progressive DCIS and sojourn time of preclinical invasive carcinoma were 1.11 per 100,000,
2.1 per thousand, 30 years, 3 months, and 2.5 years, respectively. Variance estimates on
parameters pertaining to non-progressive DCIS could not be obtained, partly due to the very
low incidence and therefore to the lack of data on which to base estimation. The profile
likelihood was therefore used to calculate 95% confidence intervals on parameters pertaining
to n;ﬁ-progressive DCIS. This strategy also failed for the rate of transition from

non-progressive DCIS to no apparent tumour in the Swedish Two-County for women aged

40-49 and aged 50-59 because of an almost flat likelihood in this dimension.
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Table 2.6 Estimated results of the six-state Markov model

Parameter Estimate 95% CI
Swedish Two-County Normal 2 DCIS, 7.22x10° 0-3.89x10”
4049 Normal > DCIS, 0.0017 0.0013 — 0.0021
DCIS; = Inv 493 1.24-8.61
Inv > Clinical 0.80 0.57-1.04
DCIS, = Out of DCIS 0.0857 N/E
Swedish Two-County Normal 2 DCIS, 9.86x10° 0-3.54x107
50-59 Normal > DCIS, 0.0016 0.0013 —0.0019
DCIS; > Inv 2.99 1.22-4.76
Inv = Clinical 0.40 0.30-049
DCIS, > Out of DCIS 0.0617 N/E
Swedish Two-County Normal - DCIS, 1.18x10° 1.5x10° - 2.60x10°
60-69 Normal > DCIS, 0.0027 0.0023 — 0.0032
DCIS, > Inv 6.13 1.92-10.33
Inv = Clinical 0.33 0.27-040
DCIS, -> Out of DCIS 0.0273 0-0.2080
UK Normal 2 DCIS, 7.27x10° 6.57x10° - 7.93x10°°
Normal > DCIS,; 0.0026 0.0023 — 0.0028
DCIS,; = Inv 3.87 3.20-4.53
Inv - Clinical 0.52 0.46—0.58
DCIS, > Out of DCIS 0.1693 0.1546 — 0.1859
Netherlands Normal > DCIS, 1.07x10° 1.06x10° - 1.09x107
Normal - DCIS, 0.0021 0.00199 - 0.00212
DCIS; - Inv 4.19 3.83 - 4.54
Inv - Clinical 0.39 0.38-0.41
DCIS, = Out of DCIS 0.0253 0.0235 — 0.0254
South Australia Normal - DCIS, 2.89x10° 1.68x10° —4.27x10°
Normal > DCIS, 0.0021 0.0015 — 0.0029
DCIS; = Inv 3.12 2.08-6.22
Inv > Clinical 0.37 0.25-0.52
DCIS, - Out of DCIS 0.0511 0.0304 — 0.0892
New York Normal > DCIS, 1.41x10° 5.1x10° - 2.54x10
Normal > DCIS, 0.0010 0.0008 — 0.0013
DCIS,; > Inv 2.30 1.44-3.17
Inv 2 Clinical 0.24 0.17-0.31
DCIS, > Out of DCIS 0.0388 0.0119 - 0.1092
Overall* * Normal > DCIS, 1.11x10° 1.098x10° - 1.129x10°
* Normal © DCIS, 0.0021 0.00202-0.00213
* DCIS, > Inv 4.0030 3.7242-4.3025
* Inv - Clinical 0.3990 0.3857-0.4127

* DCIS, > Out of DCIS 0.0332 0.0321-0.0344

~ Likelihood almost flat and a 95% CI so wide as to be meaningless

& Weighted average from Swedish Two-County, women aged 50-69, and screening programs
" of UK, Netherlands, South Australia and New York

* Weighted by the precision of parameters
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Table 2.7 shows the probability of non-progressive DCIS, progressive DCIS, preclinical
invasive carcinoma and the proportion of non-progressive DCIS at prevalence and at the first
subsequent screen derived from the estimates in the six-state Markov model. The larger the
proportion of non-progressive DCIS, the more serious the problem of over-diagnosis. Overall,
about 20% to 50% of DCIS cases (average 37%) at prevalence screen were estimated as
non-progressive. At first incidence screen, the corresponding figure was 3-7%, except for

21% in the UK programme, with an average of 4%.

Table 2.7 Estimated rate per 100,000 of DCIS,, DCIS,, and preclinical invasive carcinoma

with the proportion of DCIS, at prevalence and the first subsequent screen under six-state

Markov model
Prevalence Screen First subsequent screen
Preclinical DCISy/ Preclinical DCISy/
DCIS, DCIS; INV  DCIS DCIS, DCIS;, INV DCIS
Swedish
Two-County
40-49 8 35 216 19% 1 35 164 3%
50-59 16 54 411 23% 2 54 251 4%
60-69 38 44 821 46% 3 4 473 6%
UK 43 66 490 39% 17 65 369 21%
Netherlands 34 49 520 41% 2 49 259 4%
South Australia 56 67 578 46% 5 67 263 7%
New York 33 45 439 42% 3 45 135 6%
Overall 30 52 520 37% 2 52 279 4%

Goodness-of-fit tests (Table 2.8) for Markov models in the Swedish Two-County trial, for
women aged 50-59 and 60-69 at randomisation, show very good model fitting. The Pearson

Chi-squareds on 2 degrees of freedom (7 counts, 5 parameters) were 0.33 and 0.17 for models
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with women aged 50-59 and with women aged 60-69, respectively. However, the model

seems to fit poorly in the Swedish Two-County trial for women aged 40-49, and the

Netherlands programme with Pearson Chi-squared of 8.12 (p=0.017), and 19.20 (p=0.00007),

respectively.

Table 2.8 Model fitting and goodness-of-fit testing of six-state Markov model in the Swedish

Two-County trial

Swedish 40-49

Swedish 50-59

Swedish 60-69

Netherlands

Observed Expected Observed Expected Observed Expected Observed Expected

Prevalence Screen

DCIS
INV

Normal

First subsequent screen

DCIS
INV

Normal

Interval cancer

Chi-square (2 df)

P value

8 8.06
31 39.95
18456 18446.99

7 6.01

39 2701
16396 16405.07
2045 24.34

8.12
0.0172

15 15.08
87 88.69
21457 21455.23

12 10.67
49 47.26
18731 18732.71
25.28 26.60

0.33
0.8488

17 16.93
167 168.96
20395 20393.11

8 7.85

81 78.04
16372 16373.94
3759 3874

0.17
0.9172

908 900.55
5548  5640.57
1077844 1077758.88
383 405.13
2223 2059.19

791790 791879.02

760.00

812.24

19.20
0.00007

For models without interval cancers, the 2-degree of freedom chi-squared figures were 12.01,

1.2 and 1.51 for the UK, Australia, and New York programmes, respectively. The model for

the UK (p=0.0025) programme showed a statistically significant lack of fit. (See Table 2.9)
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Table 2.9 Model fitting and goodness-of-fit testing of six-state Markov model in the service

screening programmes

UK Australia New York

Observed Expected Observed Expected Observed Expected

Prevalence Screen

DCIS 2767  2762.87 94  93.47 42 41.13
INV 12323 12412.36 439  440.04 230 231.12
Normal 2520526 2520440.76 75573 75572.49 52378  523.77

First subsequent screen

DCIS 173 188.64 12 15.66 17 21.74
INV 925 844.42 61 56.50 67 61.89
Normal 227503  226809.25 21433 21413.99 45839 45826.25

No subsequent screen 2291925 2292683.68 54067 54086.85 6455 6468.12

Chi-square (2 df) 12.01 1.24 1.51
P value 0.0025 0.54 0.4703

3
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2.5 Discussion

2.5.1 Clinical Implication

Before considering the implications of our results, we should consider their reliability. The
deterministic model tepds to yield unstable»resrultrs, and cannot be regarded as reliable. The
assumed Markov process model fits well but not perfectly, for the most part. The estimated
rates of progressive and non-progressive DCIS and of progression to invasive disease reflect
the raw data, in that programmes with high detection rates of DCIS tend to have high
estimated incidence thereof in Table 2.6. Also, the Swedish 60-69 age group, which has the
highest detection rate of invasive tumours at prevalence, also has the highest estimated rate of

progression from DCIS to invasive disease.

One can never know with certainty what would have happened to a particular case of DCIS if
left untreated, and there is a substantial range of uncertainty around the estimated rates of
progressive and non-progressive DCIS. However, the estimates are derived from empirical
observations on detection of DCIS and invasive breast cancer at screening, and from interval
cancer incidence where available. They do not rely on extrapolation of outcome in treated
DCIS cases to assumptions about the natural history if treatment had not taken place. Nor do
they depend on the representative nature or otherwise of DCIS cases misdiagnosed as benign

disease.

On a technical point, the complementary probability in the likelihood function is based on the
assumption that the prevalence and incidence screens apply to the same populations. This is
approximately true for all studies except New York, for which the two screens are from
separate screening programmes. The likelihood approximation seems to work for the New

York data, in that estimates compatible with the other programmes are obtained, but it should
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be remembered that it is an approximation nevertheless.

The rates of progression in Table 2.6 can be readily transformed to average times spent in the
relevant states simply by inversion. Taking the combined estimates at the bottom of the table,
the average time a case of screen-detgctqblg prpg;essive DCIS rgmains in that state before
progression to invasive cancer is 1/4.0030 = 0.25 years, or three months. The time is short
since it refers to the window of opportunity for early detection, not from DCIS inception to
invasion, but from the appearance of the associated calcifications which render it
screen-detectable, to the time of invasion. The estimated duration of the preclinical phase
once disease has become invasive is 1/0.3990 = 2.51 years, around 30 months. This gives a
total combined preclinical phase of 33 months, which is similar to estimates of around 3 years

found elsewhere.*

Note that the harvest of progressive DCIS is estimated to be very similar at prevalence and
incidence screens (Table 2.7). This is consistent with the similar detection rates of DCIS and
DCIS: invasive ratios observed in the screening programmes (Table 2.2). It results from the
rapid transition to invasive disease once the DCIS becomes calcified and therefore
screen-detectable. If there is only 34 months to transition to invasive disease, the pool of
preclinical tumours at an incidence screen two or three years after the last screen will be much
the same as at a prevalence screen. This supports the findings of Evans and colleagues® that
the majority of screen-detected DCIS is of high grade and that the calcifications whereby the
DCIS is detected are a consequence of necrqtic debris. An in situ tumour of high grade and
with significant necrosis is likely to be at high risk of imminent progression to invasive

disease.

Detailed interpretation of the results in Tables 2.6 and 2.7 give rise to some interesting
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implications. Table 2.7 indicates that on average 37% of DCIS cases diagnosed at a
prevalence screen are non-progressive. The corresponding proportion at an incidence screen is
4%. This is compatible with previous findings that overdiagnosis and length bias are largely
phenomena of the prevalence screen.® The results suggest that some overtreatment is
inevitable but it does not necessarily follow that 37% of all treatment of DCIS cases
diagnosed at prevalence screen confers no benefit. In the first place, there is uncertainty about
the estimate. In the second, it is not clear that those with non-progressive DCIS have the same
risk status as women free of breast carcinoma. Clinical experience suggests that women with
breast cancer are at greater risk of new primary breast cancers. If this applies to women with

non-progressive DCIS, treatment of these may in some cases forestall future new primaries.

Accepting that there is some diagnosis of non-progressive DCIS and therefore some
overtreatment, we can obtain an estimate of the relative burden of this in comparison with the
benefit of early treatment of progressive lesions. On the basis of the estimates in Table 2.7, a
woman attending for screening for the first time has a 1 in 3,325 chance (30.08 per 100,000)
of being diagnosed with a non-progressive DCIS. This is a 19 times smaller chance than the 1
in 175 probability of being diagnosed with a progressive in situ or invasive lesion (519.73 +
51.53 iﬁer 100,000). At an incidence scre;en, the chance of having a non-progressive DCIS
lesion diagnosed is 1 in 42,373 (2.36 per 100,000), whereas the chance of having a
progressive lesion, whether invasive or in situ, diagnosed is 140 times higher at 1 in 302

(51.60+279.18 per 100,000).

We have specifically avoided using the clinical and pathological aspects of treated DCIS in
the above exercise. As stated, this was to avoid the necessity of extrapolation of results in
treated DCIS to the estimation of what would happen if the disease were left untreated. It is,

however, useful to consider our results in the light of observed behaviour after treatment.
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After treatment with local excision alone it is estimated that 18% of DCIS cases recur.””
Lower rates are observed after mastectomy or after local excision with irradiation.”
Probability of recurrence is also affected by size and grade of lesion, presence of necrosis and
resection margin width in the case of local excision.”® Opinions vary as to the likely course of
disease if left untreated. McCregdy” suggests thgt p;ogres_sio_n of untreated DCIS to invasive
disease would occur in 25-35% of subjects, whereas Frykberg and Bland suggest that such
progression would happen in the majority of cases.** Our results are more consistent with the
latter. Given the expected detection rates of progressive and non-progressive DCIS in Table
2.7, one would expect 50-80% of DCIS lesions to progress if left untreated. This is also
consistent with the results of Evans et al,*? who found that 61% of screen-detected DCIS
cases were of high grade, which is a strong risk factor for progression or recurrence in treated

DCIS.>

If the results above are accepted, the implication is that the majority of screen-detected DCIS
cases would progress if not treated. It is therefore important to target therapy in a way which
reflects the risk the lesion poses to the patient. Of course, if a majority of lesions progress,
resection is indicated in all cases, but it may be reasonable to reserve mastectomy and use of
adjuvant therapies for high-risk lesions. A consolidation of current knowledge to form the

basis of practice and further therapeutic research are both indicated.

The implications of our results are therefore:

1) thfre is an element of overdiagnosis and overtreatment of DCIS in mammographic
screening programmes;

(2) this element is modest compared with the likely benefit of early diagnosis and treatment
of progressive lesions; and

(3) increasing diagnosis of DCIS poses a challenge to therapy as much as to early detection.
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2.5.2 Methodological implications

One interesting observation is that the stochastic model on the whole performed better than
the simpler deterministic model, despite the larger numbers of parameters estimated in the
stochastic model. This is likely to be due to the relative wealth of prospective data, which
tends to favour the fitting of longitudinal, stochastic models, and to the failure of some of the

simplifying assumptions used in the deterministic model.

As already stated, the mover-stayer models above used only detection rates of DCIS, and did
not rely on pathological or therapeutic prognostic factors in treated DCIS. Thus our estimates
of progression capability and rates are valid estimates of what would have happened in the
absence of treatment. It would be of some interest, however, to combine the estimation of
mover-styaer model parameters with that of effects on progression in treated DCIS. For this,
two compartments of the model might be defined: first a logistic regression model identifying
factors predictive of being a mover, i.e. having the propensity of progression to invasive
disease in principle; the second an exponential regression or proportional hazards model for
time to progression despite treatment, in the movers. One might expect the important
predictors in the first compartment to include host factors and pathological aspects of the
tumour (for example age, grade of DCIS, size of DCIS), and the second to contain aspects of
treatment (such as radiotherapy, mastectomy or local excisién, margin status if the latter, and
so on). The definition of such a model to preinvasive conditions will be the subject of later

chapters.

A final point to note is that this sort of mover-stayer model with latent mover-stayer status is a
potentially powerful technique for obtaining empirical estimates of overdiagnosis in disease

screening. Up to now, discussion of overdiagnosis has largely centred around assertions as to
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the proportion of non-progressive DCIS, which are based on little or no empirical estimation.
This approach provides estimates based on actual data. The approach has potential in

evaluating screening for premalignant conditions as in cervical, colorectal or oral screening.
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Chapter 3 Two-compartment model with covariates—application to

adenomas in the bowel

3.1 Intreduction

The methods developed in chapter 2 aim to deal with the heterogeneity problem when
investigating disease natural history from screening data prior to the effect of treatment.
Investigation of heterogeneity may benefit from information on disease progression after
treatment, providing a suitable model can be formed. Also, the preceding development did not
distinguish the effect of explanatory variables, such as pathological characteristics. A
two-compartment model is proposed to investigate the behaviour of movers or stayers in
terms of prognostic factors. The first compartment has as the dependent variable the
dichotomous potential to progress (or not). The second compartment has as dependent
variable the actual progression and observed time to progression for those which have such a

potential.

The proposed model is demonstrated in this chapter by the investigation of malignant
transformation to colorectal cancer from polyps after polypectomy in terms of size,
histological characteristics, and site of the primary lesions. Researchers have demonstrated
the importance of histological change and morphologic features of adenomas for the risk of
recurrence or progression to cancer.”>”® However, the statistical methods in those studies were
based on traditional regression methods. In this chapter, we estimate the on the probabilities
of cases with potential to progress. Data were obtained from a case-cohort study that recruited
subjects who underwent their first examination with colonoscopy between 1979 and 1998 in a

medical centre in southern Taiwan.

67



3.2 Materials and Methods

3.2.1 Data

A total of 13908 subjects who underwent the first examination with colonoscopy between
1979 and 1998 in Kaushoping Medicgl centre, thg lgrgf;st hos_pital in southern Taiwan, form
the cohort. After receiving colonoscopy, this cohort includes three groups, 10496 normal
subjects, 2652 patients with polyps, and 760 colorectal cancers. 305 normal subjects and 300
polyp ~cases that had not yet progressed to invasive carcinoma until the end of 1998 were
randomly selected from normal and polyp cohorts, respectively. As regards CRC, a total of

116 cancers were randomly selected. See figure 3.1 for a summary of the design.

All polyps after polypectomy in this cohort were linked to cancer registry data until the end of
1998. A total of 25 CRC cases, regarded as uncensored cases, were identified. These 25 cases
plus three hundred polyp cases selected from the above polyp cohort, regarded as censored
cases, were used in the present analysis. Patient charts were available for 19 of these 25 cases.
Average folléw—up for potential malignancy was 3.18 years (3.25 for polyp cases that had not

yet progressed, and 2.00 years for malignantly transformed cases).
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Figure 3.1 The case-cohort design from Kaushouing Medical centre, Taiwan

13908
Normal Polyp Polyp ->Cancer Cancer
10496 2627 25 760
Radom Ragdom Chart Rapdom
Sawple Sample Review Sample
Normal Polyp Polyp ->Cancer Cancer
305 300 19 116

3.2.2 Statistical models

Suppose heterogeneity of risk of malignant transition to colorectal cancer exists among
patients who received polypectomy, and the pathological characteristics that affect the risk of
being potentially progressive can be identified. Then one can expect that the relative risks of
observed progression and those of being potentially progressive will be different. The
standard logistic regression model was used to model the former, and a mover-stayer model

for the latter.
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3.2.2.1 Standard model

To investigate the relationship between a binomial event and a set of covariates, one can use

the linear regressicn equation on the logit, or log of the odds:

1{%} =Y pX [3.1]

prog
where P, represents the probability of progression.
So, the probability of progression to colorectal cancer after polypectomy is

P 1

= 3.2
prog e_zﬂ.x +1 [ ]

The full likelihood from n colorectal cancer cases after polypectomy and (N-n) polyps who

had not yet progressed to cancer is

lik ( : ]n o N [3.3]
ik = .
e_Z‘B'X +1 e_zﬂ'x +1

Althoﬁgh it is believed that most colorectal carcinomas develop from preformed adenomas,

only a minority of adenomas undergo malignant transformation. An alternative model to

handle data with part of the cohort having zero susceptibility is introduced.
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In this chapter, we also use the regression models to see how the pathological factors affect
the progression rate assuming all polyps have potential to progress. Both semi-parametric
methods using the Cox regression model and parametric methods using the accelerated failure

time (AFT) model assuming exponential by distributed time to progression are performed.
3.2.2.2 Mover-stayer model

We use another logistic regression formula to represent the relationship between log of the

odds of benign polyp with positive susceptibility (mover) and covariates.

P mover - '
‘“(TF,;J =) B'X [3.4]

where P, is the probability that the polyp can progress.

So, the probability of being a mover is

Pr(Being mover) = [3.5]

e_z'” +1

Therefore, the probability of progression taking heterogeneity into account is the sum of the
product of being a mover times the probability of malignant transformation and the product of

being a stayer, with zero susceptibility, times zero:
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P (ti ) = Pr(Progress to cancerat ¢, )

et Ae7H +—e—Zﬁ.X x0 [3.6]
e—Zp'x +1 e_zﬂ'x +1
Ae~H
e—Zp-x +1

where A represents the rate of progression if capable of progression. The above assumes an
exponential distribution of time to malignant transformation for the movers. In our example,

we do not have sufficient event data to model covariates on the actual progression rates.

The probability of no progression is the product of being a mover times the survival function

plus the probability of being a stayer:

P, ()= Pr(No progress to cancer by time t,)

1 ( i _,1_,‘) e—Zﬂ'X
= x|1- [ e |+ S x1 [3.7]
e ZPX 4 'E e XPX
: e +e-2p'x
e-Zp’x +1

Under this model, the full likelihood from n colorectal cancer cases after polypectomy and

(N-n) polyps who had not yet progressed to malignant cancer becomes

n M—M,- N
lik =
-l

1 Ji=n+1

Ay -2 BX
(e _Z-I-;X ] [3.8]
e +1

3.2.3 Estimation taking design into account

Because of the case-cohort design, we use the conditional probability of progression to cancer
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and of no progression to cancer given whether the sample was selected (S=1). The
corresponding probability formulae are

P/ (z,) = Pr(progress to cancer at t, | whether to be sampled)
=Pr(R@)|S=1)
Pr(S =1| R(t))x A(t)

T2
D Prls =1] B, t))x P, (1) [3.9]
j=l

- ”1 xPl(tl) and

P; (t,.) = Pr(No progress to cancer by t; | whether to be sampled)
__mXxPA)

=— , [3.9]
2.7 % By(t)
j=1

where 7, (=19/25) and =,(=300/2652) are random sample fractions for polyp not yet

progress to cancer by time t; and progress to cancer at t;, respectively.

Therefore, the full likelihood considering sampling fraction based on case-cohort study and
the proportion of available data based on missing complete at random assumption from n
colorectal cancer cases after polypectomy and (N-n) polyps who had not yet progressed to

malignant cancer becomes

ik =T B )ﬂ Py (t:)

i=l i=n+l

The Newton-Raphson method in the SAS/IML software was used to estimate maximum

likelihood estimates (MLEs) and standard errors.
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3.3 Results

We estimate the effects of the predictor variables, size (in categories: less than or equal to 0.5
cr/ greater than 0.5 cm and less than or equal to 1 cm/ greater than 1 cm/ unknown), subsite
(section from ascending to transverse colon/ descending colon/ sigmoid and splenic flexure/
rectum and rectosigmoid/ lesions over two or more sites and unknown), and pathology
(tubular adenoma/ tubulovillous adenoma/ villous adenoma/ unspecific adenoma and lesions
with unknown pathological type). Table 3.1 shows the distribution of the predictor variables

in polyp cases which progressed to colorectal cancer and controls.
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Table 3.1 Distribution of the predictor variables in progressive cases and controls

Polyps who had not yet progressed Polyps progressing to CRC

(n=300) (n=19)
Size
(0 cm, 0.5 cm] 204 (68%) | o : 7 (37%)
kO.S cm, 1 cm] 28 (9%) 4 (21%)
> 1lcm 23 (8%) 5(26%)
Unknown 45 (15%) 3 (16%)
Site*
A,C Hf T 34 (11%) 1 (6%)
D 18 (6%) 2 (11%)
S, SF 126 (42%) 6 (32%)
R,RS 85 (28%) 9 (47%)
A&D, W, 37 (12%) 1 (5%)
Unknown
Pathological type**
T 68 (23%) 8 (42%)
TV 24 (8%) 4 (21%)
v 9 (3%) 2 (11%)
A and others, 199 (66%) 5 (26%)
and Unknown

* Subsite abbreviations: A for ascending colon, C for caecum, HF for hepatic flexure, T for transverse
colon, D for descending colon, SF for splenic flexure, R for rectum, RS for rectosigmoid, A&D for
multiple lesions on ascending and descending colon, W for the whole colon.

** Pathological type abbreviations: T for tubular adenoma, TV for tubulovillous adenoma, V for villous

adenoma, and A for nonspecific adenoma.
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Table 3.2 shows the odds ratios of progression in the standard logistic model, assuming all

adenomas have the potential to progress. We see the highest risk of progression in the lesions

with unknown size then a trend of increasing risk with size. The highest risks of progression

were observed for subsite rectum or rectosigmoid, and pathological type villous. The table also

shows the probability of progression for five hypothetical cases.

Table 3.2 Result of standard logistic regression

Covariate Beta SE [ OR Casel Case2 Case3 Case4 Case5
Intercept -3.5911 | 1.02 1 1 1 1 1
Size

(0 cm, 0.5 cm] -2.4345 | 0.93 | 0.09 0 1 0 0 0
(0.5cm, 1 cm] -1.5920 | 1.06 | 0.20 0 0 1 0 0
> lem -0.6555 | 0.98 | 0.52 0 0 0 1 1
Unknown — - | 1.00 1 0 0 0 0
Site
A, CHfT 0.4607 | 1.56 | 1.59 0 1 0 0 0
D 2.1153 | 1.48 | 8.29 0 0 1 0 0
S, SF 1.2574 | 1.30 | 3.52 0 0 0 1 0
R, RS 23117 | 1.30 | 10.09 0 0 0 0 1
A&D, W, -— -
'Unknown 1.00 1 0 0 0 0
Pathological type
T 1.6431 | 0.69 | 5.17 0 1 0 0 0
TV 1.4770 | 0.83 | 4.38 0 0 1 0 0
\% 2.1704 | 1.03 | 8.76 0 0 0 1 1
A and others, — - | L.0O 1 0 0 0 0
and Unknown
SCORE -3.5911 -3.9218 -1.5908 -0.8188 0.2355
Pr(progress) 0.0268 0.0194 0.1693 0.3060 0.5586
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Table 3.3 shows the results for the mover-stayer model combined with the logistic regression
model for being a mover. The quantitative results of the latter are similar to those of the
standard logistic model, but the estimated probabilities of being a mover are rather higher
than those of actually progressing. This is because only a subgroup of those aderiomas
capabie of progression actually do so in the time of observation. The rate of progression for
the movers is estimated as 0.16, which converts to an average progression time of 6 years.
The probability of progression in 6 years is 0.62, which is approximately the rate of the

probabilities of potential for pfogression in Table 3.3 and that of actual progression in Table

3.2, for three out of the five hypothetical examples.
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Table 3.3 Result of mover-stayer model

Covariate Beta | SE | RR Casel Case2 Case3 Case4 CaseS
Intercept -3.1492 | 1.16 1 1 1 1 1
Size

(C cm, 0.5 cm] -2.5788 [ 1.27{0.08 0 1 0 0 0
(0.5cm, 1 cm] -1.5339 (1.43(0.22 1 0 0
> lcm -0.4215 [ 1.350.66 0 1 1
Unknown - — [ 1.00
Site
A,C Hf T 0.3073 |1.73|1.36 0 1 0 0 0
D 2.2426 |1.7019.42 0 0 1 0 0
S, SF 1.2482 | 1.49|3.48 0 0 0 1 0
R,RS 22420 |1.48|9.41 0 0 0 0 1
A&D, W,
Unknown - - | 1.00
Pathological type
T 1.8303 [ 0.876.24 1 0 0
TV 1.5158 {1.03]4.55 1
A" 2.2549 [1.3419.53 0 1 1
A and others, - -—- | 1.00
aﬁd Unknown
LAMDA 0.1596 |0.12
SCORE -3.1492 -3.5905 -0.9247 -0.0677 0.9261
Pr(mover) 0.0411 0.0268 0.2840 0.4831 0.7163
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3.4 Discussion

The result shown above is from a very preliminary analysis and shows the feasibility of

proposed model. There are, however, some concemns about the data.

3.4.1 Missing data

In the present study, pathological characteristics were collected from chart reviewing of
randomly sampled data for the non-progressing polyps and for 19 cancers out of 25. For the
remaining 6 cancers, patient charts were not available. Among cases with chart available,

some pathological characteristics are missing.

34.2 Adenomatous type vs Non-adenomatous type
We restricted polyp sampled data to the adenomatous type only. 181 NY (not yet)-progressive
polyps (60%) with other histological types (66) or unknown records (115) and 6 CRCs after

polypectomy with unknown histological type was excluded from our analysis.

3.4.3 Repeat check-ups between first detection of polyp and diagnosis of cancer

The pathological characteristics used in the present study are the first record of diagnosed
polyp. Although there were many repeat colonoscopy check-ups, which may have found other
polyps for the patient, corresponding pathological variables were not collected. Therefore, the
result here represents the risk from the first diagnosis of first polyp rather than from the

temporally closest polypectomy.

3.4.4 Interpretation
There is a further complication of interpretation. The probability of and risk factors for being

a mover, and the role of progression are both estimated from data on progression after
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polypectomy. As a consequence, it may be that the probabilities of being a mover and the
estimated rate of progression for mover are lower bounds on the corresponding probabilities

and rate if polypectomy had not occurred.
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3.5 Model testing using the simulated data

One hypothetical population with known parameters was created to test

(1) The mathematical accuracy of models,

(ii) The effect of different p;obability formulae in the analysis of sampled data and of the
whole population.

(iii) Whether the mean follow-up time affects the stability of model

(iv) If there exist unobserved variables that can explain some part of heterogeneity, what
would be the difference between the true values and estimates from a random-effect
model? How to deal with the unobserved heterogeneity? To what extent does ignoring

heterogeneity affect estimates of the covariate effects?

The procedure of creating a hypothetical population:

(i)  According to the distribution of gender and age in Taiwan, randomly assign the value of
sex (0 for female; 1 for male) and age (from 30 to 79 years old) to 10,000 individuals.

(ii) Assume that the distributions of covariates A, B, C follow Bernoulli distributions with
parameters 0.06, 0.3, and 0.1, respectively, assign value 0 or 1 for cases without or with
the property of that covariate, respectively. Assume there is no dependency among these
covariates,

(iii) Create a deterministic relationship between the probability of being a mover and relevant

covariates: age, sex, A, B, and C, based on a logistic form,

1-Pr

mover

ln[—-Pr"'%‘J =-5+0.6931* sex + 0.0488* age + 2.3026* 4 +1.0986* B + 2.0794*C

-

(iv) From (iii), the probability of being a mover, Prmover, can be calculated for each individual.
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Ifranciom number is less than or equal to Pryver, then the individual will be labelled as a
mover.

(v) For movers, assign their failure times which follow iid exponential distributions with
common transition rate 0.2. For stayers, assign their failure times as 99999.

(vi) Randomly assign follow-up times as integers between 1 and 10 years. If the actual failure
time derived from (v) for movers is less than or equal to the follow-up time, then the
observed survival time is equal to her actual failure time and let CASE (variable
represents observed progression)=1. If the actual failure time for movers is greater than
follow-up time, i.e. right censored, and for all stayers, the observed survival time equals

her follow-up time and let CASE=0.

The SAS code is as follows:

data x.hypo; '
do i=1 to 10000;
sex=rantbl(0,0.4879)-1;
if sex=1 then do;
age=rantb1(0,0.0352,0.0352,0.0352,0.0352,0.0352,0.0350,0.0350,0.0350,0.0350,0.0350,
0.0316,0.0316,0.0316,0.0316,0.0316,0.0253,0.0253,0.0253,0.0253,0.0253,
0.0153,0.0153,0.0153,0.0153,0.0153,0.0149,0.0149,0.0149,0.0149,0.0149,
0.0128,0.0128,0.0128,0.0128,0.0128,0.0134,0.0134,0.0134,0.0134,0.0134,
0.0105,0.0105,0.0105,0.0105,0.0105,0.0060,0.0060,0.0060,0.0060,0.0060)
+29;
end;
.1f sex=0 then do;
age=rantbl(0,0.0355,0.0355,0.0355,0.0355,0.0355,0.0355,0.0355,0.0355,0.0355,0.0355,
0.0322,0.0322,0.0322,0.0322,0.0322,0.0259,0.0259,0.0259,0.0259,0.0259,
0.0159,0.0159,0.0159,0.0159,0.0159,0.0160,0.0160,0.0160,0.0160,0.0160,
0.0137,0.0137,0.0137,0.0137,0.0137,0.0114,0.0114,0.0114,0.0114,0.0114,
0.0084,0.0084,0.0084,0.0084,0.0084,0.0055,0.0055,0.0055,0.0055,0.0055)
+29;
end;

0; if ranuni(0)<=0.06 then a=1;
0; if ranuni(0)<=0.3 then b=1;
0;

O?‘N

if ranuni(0)<=0.1 then c=1;
score=exp(-(-5+0.6931*sex+0,0488*age+2.3026*a+1.0986*b+2.0794*C));

mover=0; if ranuni(0)<=1/(1+score) then mover=1;
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if mover=1 then time=ranexp(0)*5;
if mover=0 then time=99999;

fu=rantbl(0,0.2,0.2,0.2,0.2);
if time<=fu then do; case=1; stime=time; end;
if time> fu then do; case=0; stime=fu; end;

output;
end;
run;

Results are shown in Table 3.4 and 3.5. Note that this is the result from only one sampled data

set, so slight differences between true values and estimates may result by chance.

Model 1 shows that when the progression rate of movers was fixed as the true value (not
exactly the same as the true value of this sample), the corresponding regression coefficients
were similar to the true values. After releasing Lamda in Model 2, the regression coefficients
were still similar to the true values and a reasonable estimate of lamda was derived. However,
Model 2 was unstable when the initial value of lamda was changed. When the initial values
are greater than or around the true value, the convergence works well. When the initial value
was substantially less than the true value, it converged to some smaller value. (Initial values
0f 0.15, 0.2, 0.5, 0.95 for lamda converged to around 0.2 and were consistent with each other;
initial values of 0.1, 0.05 for lamda converged to around 0.0258). This may mean that the

shape of the log-likelihood is not concave, or that the shape is bimodal.
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Table 3.4 Results expressed as regression coefficients

Regression | True value | Mover-stayer models Standard model

Coefficient Model 1 Model 2 Logistic Cox AFT
regression | regression | model

Intercept -5.0000 -5.2040 | -5.2015 -5.1127 -— -6.4740

Sex 0.6931 0.6525 0.6508 0.5313 0.4961 0.5134

Age 0.0488 0.0546 0.0544 0.0443 0.0376 0.0387

A 2.3026 2.0870 2.0782 1.5621 1.2237 1.2801

B 1.0986 1.0031 1.0000 0.8323 0.6989 0.7179

C 2.0794 2.1144 2.1057 1.6336 1.3438 1.3907

Lamda 0.2000 0.2000 0.2030 - - (0.0015)

(Fixed)

Table 3.5 Results expressed as OR’s, HR’s

Relative | True value | Mover-stayer models Standard model

Risk Model 1 Model 2 Logistic Cox AFT
regression | regression model

Sex 2.00 1.92 1.92 1.70 1.64 1.67

Age 1.05 1.06 1.06 1.05 1.04 1.04

A 10.00 8.06 7.99 4.71 3.40 3.60

B 3.00 2.73 2.72 2.30 2.01 2.05

C 8.00 8.28 8.21 5.12 3.83 4.02
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Compared to the results of standard models which did not take heterogeneity into account, we
can see large differences between the true value and the estimate of any standard models.

Thus, ignoring heterogeneity can lead to substantial bias in the estimates.

In summary, the rresults shovyed that Whgn the ‘prqgrgssrionr rate (4 ) for movers was fixed as
the presumed value, the corresponding regression coefficients were similar to their
counterparts. After releasing A to be estimated, the regression coefficients were still stable
where initial values for A were reasonably close to the true value and yield a reasonable
estimate of A . However, the estimation was unstable when the initial value of A was
changed: when the initial values are greater than or around the true value, the convergence
works well; when the initial value was substantially less than the true value, it converged to

some smaller values.

Compared to the results of standard models which did not take heterogeneity into account,

mover-stayer models’ performance were superior.
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Chapter 4 Disease natural history modelling of adenoma-carcinoma
in the large bowel using a multi-state model combined with a frailty

model

4.1 Introduction

As noted in previous chapters, in screening for cancer, it is of interest not only whether
screening tools can pick up the malignancy in the earliest and most curable preclinical state,
but also whether screening can detect a precancerous phase, treatment of which avoid the
development of malignancy at all.” The success of detecting premalignancy could lead to the
reduction of cancer incidence, and, potentially, a corresponding decrease in mortality from
cancer. Possible candidates include detection of adenomatous polyps for colorectal cancer,®>%
leukoplakia or erythroleukoplakia for oral cancer,'® and squamous intraepithelial lesions for
cervical cancer.'” These possibilities stimulate research on the understanding of disease
natural history that would affect policy on screening methodology and interval, and selection

of the target population.

The study of disease natural history is, however, difficult because of interruption from
treatment immediately after detection of lesions. Follow-up studies of untreated patients or
stochastic modelling may be used to elucidate the disease natural history. Stryker et al'®*
reviewed 226 patients with untreated colonic polyps greater than or equal to 1 cm in diameter
from the retrospective data in Mayo Clinic records from a 6-year period just before the advent
of colonoscopy. The cumulative risks of diagnosis of cancer at the site of the index polyp and
at any site within the colon at 20-years follow up were found to be 24% and 3‘5%, respectively,
in their study. The result, however, may be of doubtful applicability due to the potential

limitations of retrospective data and the bias from the selection of patients without treatment.

This has a parallel in the studies of biopsy-only-treated cases of ductal carcinoma in situ
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(DCIS) of the breast. These are retrospectively identified from pathology archives of cases
primarily misdiagnosed as benign diseases. However, such cases are not representative of
DCIS in general. In addition, the debate on the two possible pathways for the carcinogenesis

of colorectal cancer, ‘adencma-carcinoma sequence’ and ‘de nove pathway’'®

(screening is
antiqipated to detect apd treat the premalignancy in the former, and aims to treat frank cancer
patients before the clinical syndrome emerges in the latter), complicates the disease natural
history. Chen et al'® used a simple Markov model to address the problem. Annual transition
rates were estimated as 0.0095 and 0.022 from adenoma to invasive CRC in their three-state
(normal, adenoma, and invasive CRC) model with and without taking the de novo pathway

into account, respectively. This is consistent in that a higher transition rate from adenoma to

cancer should result from the assumption that adenoma provides the only pathway to cancer.

Different mechanisms of disease progression could have major implications for screening
policy. In the case that a majority have a very long sojourn time in the detectable and curable
stage, screening requires a less frequent interval in terms of economy. However, in the case of
considerable heterogeneity, a long interscreening interval is not suitable for everyone.
Identification of the group with a high risk of rapidly progressive disease for more frequent
surveillance is important in terms of efficiency. Further, in countries with low incidence of
colorectal cancer, selective screening with invasive tools such as colonoscopy could be

applied to a high-risk group only, instead of offering mass screening to the whole population.

To investigate the heterogeneity, one can use various covariance and regression analyses when
all relevant information are available, or use frailty models when dealing with unobservable
or unknown factors.'® Aalen et al'? used a compound-Poisson-distributed frailty model to
interpret the higher incidence of testis cancer among jmunger men and concluded that the

decrease from a certain age was because of a selection phenomenon rather than declining
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carcinogenesis with age. There have been various studies using frailty models to address
heterogeneity among tumours, but most of them dealt with the traditional survival problem, a

two-state rather than multi-state model.'*"

For multi-state processes, although simple Markov models have been widely applied to
elucidate the natural history of cancer,'*'' they assume homogeneous transition rates in the
population. Combination of a progressive Markov model with constant hazard rates in
sequence throughout the process of disease natural history within subjects, with a
time-dependent population hazard rate due to heterogeneity between subjects by means of

frailty model is the basic idea of the present chapter.
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4.2 Objectives

In this chapter, we use data from a case-cohort study which collected results from patients
who underwent their first endoscopy examinaticns in one medical centre in Southern Taiwan
to

(1) demonstrate the derivation of the likelihood when introducing Gamma- and
compound-Poisson-distributed frailty in a multi-state model;

(2) demonstrate the derivation of the likelihood for a mover-stayer model of a multi-state
disease process;

(3) estimate the parameters of the progressive disease natural history model, taking into
account heterogeneity of malignant transformation rate from adenoma to colorectal cancer,
with and without consideration of adenoma size or histological type;

(4) compare the estimated results, model validation, and predictive clinical performance of

the above heterogeneous models with that of the purely homogeneous model.

We begin with a generalised description of a three-state model with transition rates with no

distributional assumptions, and expand the model to a k-state process.
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4.3 Materials and Methods

~

4.3.1 Data sources

Patients who had their ﬁrst gndosqopy e?(anﬁnatipns (including colonosopy and
sigmoidoscopy) between 1979 and 1998 in Kaushouing Medical centre in southern Taiwan
were enlisted. All records were classified into three categories: no polyp or colorectal cancer
(n=10,496), polyp (n=2,652), and colorectal cancer (n=760) with data on the corresponding
examination date, but no further data were collected. To estimate the disease natural history of
adenoma-carcinoma, one needs information on age at first examination, and the pathological
data to distinguish adenoma from non-adenomatous polyps. It is costly and inefficient to
review all medical charts. Therefore, a case-cohort study was conducted to review and collect
a set of random samples. A total of 305 disease-free subjects, 300 polyp patients, and 116
colore(;tal cancer cases (all at first endoscopy examination) were extracted.'®* A three-state
Markov process and two five-state Markov processes were applied to this case-cohort study to
elucidate the disease natural history of adenoma-carcinoma with and without consideration of
adenoma size or histological type.'™ Among the sampled data, the average age and proportion
of males for disease-free, adenomatous polyps, carcinoma cases were 49.6, 59.3, 60.6, and
48.2%, 59.7%, and 60.3%, respectively. Details of the study design, data sources, construction
of likelihood within the case-cohort design in a simple Markov model, and the estimated

results from homogeneous models are described elsewhere. '*

4.3.2 Statistical models

To study heterogeneity in a multi-state progressive process, we develop the transition
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probability formulae in a general way and thereafter introduce the frailty factor.

Suppose there is a three-state progressive model as follows.

2(0) Al

State 1 > State 2 > State 3

For example, state 1 might be no disease, state 2 adenomatous polyp and state 3 colorectal
cancer. J,(t) represents the instantaneous transition rate from state 1 to state 2 at time t, and
2,(¢) represents the transition rate from state 2 to state 3. The “survival” time t from time
origin in state 1 and from time origin of state 2 are denoted by S,(z) and S, (¢), respectively.

The probability of staying in state 1 is then simply given by
B,(6)=5,(). [4.1]

The probability of observing state 2 at t from time origin of state 1 is expressed as

P, = [S, () 2,(s)- S, (¢ - 5)ds. [4.2]

The probability of observing state 3 at t from time origin of state 1 is given by

B, = .[Sl (s) A (s)fs S, (u) 2, (u)duds. [4.3]

,

The above formulae are in a general form that can be applied to any distribution of transition
rates, or equivalently, sojourn times. When the transition rates between states are time and
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inter-individual homogeneous, it is the simple Markov model. When there is heterogeneity
among individuals, a frailty factor may be introduced. In chronic diseases, heterogeneity is
often likely, but modelling a multi-state disease process with heterogeneity, especially in more
than two transition rates simultaneously, is impractical from a statistical point of view. This is

because the matrix solution of the Kolmogorov equations is no longer possible.

To demonstrate how we can incorporate frailty into the above model, we assume that the
heterogeneity exists in A, (z). Although time-homogeneity is assumed throughout the whole
process in the same subject, the population hazard from state 2 is still a function of time due
to the frailty in the model. This arises because those with larger values of A, (t) will progress
earlier, so that those remaining in state 2 will have on average lower A,(¢) values than the
population at the start of observation. The transition rate from state 1 is not time varying and

can be expressed as a constant, 4,.

The probability formula in expression [4.1] is now

Py()=s5,() [4.4]

- e—}.lt .
The probability of observing state 2 or state 3 at t from the time origin of state 1 is dependent
on the distribution of the frailty factor. For a Gamma-distributed frailty factor,’ the

probabilities can be rewritten as follows.

95
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s 62, 0°
P.(t)= s 0. duds , 4.6
13() -Elle 0+ Ayu [0+/120u]6 He L4.6]

where 8 and 0 are the shape and scale parameter of the Gamma distribution for the frailty

factor, respectively. The parameter space is 8, 0 >0.

When the frailty distribution is in the compound-Poisson type as studied by Aalen,*'* the
frailty variable is defined by the sum of N independent random variables which are gamma
distributed with scale parameter v and shape parameter 1, and N is a random variable which
is Poisson distributed with expectation p. The parameter space is v, 1, p>0. The probabilities

of observing state 2 or state 3 at t from the time origin of state 1 can be rewritten as follows.

-1
B,(t)= .[Ale"" -exp{p[1+-}i2°—(‘-’/;‘—)] -~ p}ds,and [4.7]

pn
s "o ) -
By(t)= L/‘Lle"" I —L—H~exp{pl:1+—:f—u] - p}duds. [4.8]

5]
14

An alternative approach to heterogeneity is the mover-stayer model. When the heterogeneity
of A, among population is assumed dichotomous, zero-susceptible, and susceptible with a
common hazard rate from state 2 to state 3, subjects follow either of the following two

possible pathways:

(A) State 1 > State 2 > State 3
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(B) State 1 r g State 2

The above two homogeneous disease processes, (A) and (B), follow a three-state Markov
chain model and a two-state Markov chain model, respectively. This is called the
mover-stayer model.*® Using formulae developed in Chapter 2, we can obtain the
corresponding transition probability matrix. Let Pj; (t) and P (t) represent the transition
probability matrices in a given time interval, t, for pathway (A) and (B), respectively, and
Prover as the proportion of people who will follow pathway (A). The probability of staying

in state 1 is still

P, (1) =5,0) [4.9]

= e—l,t'

The probabilities of observing state 2 or state 3 at t from the time origin of state 1 are simply

expressed by
Py (6)= Py x Pit (ON1.2]+ (1 - P, )% P (£)1,2], and [4.10]
Ps(t)= P, x Pt (Of13] . [4.11]

The above probability formulae will be used in a three-state adenoma-carcinoma model:

Model 1. Disease-free = Adenoma - Colorectal cancer.

We now consider the more general case, again dealing with frailty first, then mover-stayer
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models. Allowing only one heterogeneous transition rate among individuals can give a
general formula. Let us consider a k-state progressive model. Suppose the frailty factor affects

the hazard rate from state i (i<k) to state i+1, A,(z). The probability formulae can then be
generalised into three classes:

(i) the probability of observing state j, 1<j<i-1, at t from time origin of state 1,

(ii) the probability of observing state i, at t from time origin of state 1, and

(iii) the probability of observing state j, i+1<j<k, at t from time origin of state 1.

Because the population hazard is time-homogeneous in case (i), the Markov property holds.

We can obtain the transition probabilities using the formulae in Chapter 2.

For case (ii), the probability would be
Pli(t)= ’[E,i—l(s)'ﬂ’i—l -Si(t—s)ds. [4.12]

For case (iii), the probability would be

B (t) = _[Pl,i—l () 4y ﬂg'x (u) 4 (u)] B, (t —s—u)duds.  [4.13]

Due to the time-homogeneous population hazard from state i+1, the process after state i+1 is a
simple Markov process. Therefore, the transition probabilities can be obtained from the

formulae in Chapter 2.

Again, to fit the above the multi-state model with dichotomous hazards (mover-stayer model)
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from state i to state i+1 among population, the transition probability of observing state j at t

from the time origin of state 1 is

P,

Lj

A . B A . .
(t): P""’V” X PI;I (txl’-]]n‘-(l—ljmover))< PM (t)[l’]] 1 < J <1 [414]
PmoverXPM(t)[lyj] 1<_]Sk

where Pj (t)[l, j] and P, (t)[l, j] represent the transition probability matrices in t for those

with positive and zero susceptibility of transition from state 1, respectively.

From the above derivation, two five-state models considering lesion size and histological type
were applied to elucidate the disease natural history of the adenoma-carcinoma sequence

considering the adenoma size (Model II1.A) and histological type (Model I1.B).

Model II.A Disease-free - Diminutive Adenoma -> Small adenoma

- Large Adenoma -> Colorectal cancer.

Model I1.B Disease-free -> Tubular Adenoma -» Tubulovillous adenoma -

Villous Adenoma = Colorectal cancer.

The above formulae can be expanded to allow regression in which transition from or to any
state is possible except for state i and any states with a non-zero instantaneous transition rate

to or from state i.

4.3.3 Likelihood derivation

In Model I, as developed in the previous study,'®* the probability for disease-free state at first
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examination at age t conditional on being selected can be expressed as:

B, (t) = Pr(In state 1 at first examination at age t | being sampled)
=P, (t|S=1) [4.15]
Pr(S =1|1,¢)x B, (r)

S [Ps =11 1) B, ()

=

The sampling fractions for disease free, polyps, and colorectal cancer are 305/10496,
300/2652, and 116/760 (i.e. 0.03, 0.11 and 0.15, respectively). The probabilities for adenoma

(Pz) and colorectal cancer (P;) at first examination at age t given being selected can be

derived in the same way.

The likelihood function can then be obtained by

3 nr
T1T120) [4.16]

j=1 i=l

where m;; is the age at first examination of the ith individual in state j, and §; is an indicator
for the ith individual in state j (j=1, 2, and 3), i.e. ;=1 if ith individual is in stage j, and zero

otherwise.

The likelihood function for the S-state model can be derived in a similar way. The sampling
fractions for diminutive adenoma, small adenoma, and large adenoma in model II. A, and for
tubular adenoma, tubulovillous adenoma, and villous adenoma in model II.B are all assumed
to be 300/2652, since random sampling was carried out uniformly to all adenomas without

knowledge of type until after the fact of sampling.
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The numerical integration in the interactive matrix language (IML) in SAS software was used
to obtain the result of integration for deriving the transition probabilities. The matrix language

was also used to optimise the likelihood function by the Newton-Raphson method.'"!
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4.4 Results
4.4.1 Three-state model

In Model I, the annual incidence rate of adenoma was estimated as 0.0031 when incorporating
a Gamma-distributed frailty factor on transition from adenoma to carcinoma (Table 4.1). With
the baseline malignant transition rate of adenoma estimated as 0.0804, the scale and shape
parameters for the Gamma distribution of frailty factor were 0.3111 and 0.2846. Note the very
high variance of A.

7

The estimated result gives the mean of the frailty factor as

E(Z)=%=0.9150.

Table 4.1 Estimated results from a natural history model for colorectal cancer allowing a

frailty distribution of Gamma type for the transition from adenoma to colorectal cancer

Parameter Estimate 95% CI
A 0.0031 0.0026 ~ 0.0036
Az 0.0804 0.0000 ~ 4.1328
0 0.3111 0.0000 ~15.7124
/ ) 0.2846 0.0000~ 1.1971

In this model the average transition rate from adenoma to colorectal cancer is 0.0804x
0.915=0.0736, the product of the basic transition rate times the mean of the frailty factor.

However, the distribution of the frailty factor is extremely positive skewed, so that the mean
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is not representative (figure 4.1). Percentiles of the frailty factor and the corresponding
transition rates and mean sojourn times (MST) are therefore given in Table 4.2. Integrating for
each percentile and taking the average, just over 40% of adenomas would progress to cancer
within 20 years. About 50% of adenomas have sojourn time longer than 60 years. These cases

are vefy unlikely to have malignant transition in their lifetime.
Figure 4.1 Probability density function of the frailty factor in Model I with Gamma type

0.02
0.003
0.005
0.004

1 L) [ 1] L1 100

Table 4.2 Distribution of the frailty factor in Model I with Gamma type, the corresponding

transition rates and mean sojourn time

Percentile  Frailty factor Az MST
Oth 0 0 )
10th 0.000680 0.0000547  18288.04
20th 0.007781 0.000626 1598.42
30th 0.032538 0.00262 382.26
40th 0.090669 0.00729 137.18
50th 0.204037 0.01640 60.96
60th 0.405967 0.03264 30.64
70th 0.755622 0.06075 16.46
80th 1.383821 0.1113 8.99
90th 2.714305 0.2182 4.58

100th © © 0
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Similarly, Model I can incorporate frailty factors in the form of the compound Poisson

distribution, as in equations [4.7] and [4.8]. The estimated results are shown in Table 4.3.

Again, note that there is considerable uncertainty in the estimate of A,y. The annual incidence

rate of adenoma was the same as in Table 4.1, 0.0031. A compound Poisson distributed

frailty gave the probability of zero susceptibility as
Pr(Z = 0)=exp(- p)=0.1685.

Given such a model, the expectation of frailty can be obtained as

E(z)=21 = 0.4928.
v

Therefore, the average transition rate from adenoma to colorectal cancer is estimated as

0.1282x0.4928=0.0632.

For those with non-zero susceptibility, the expectation is given as

E(Z|Z>0)= > E(z) =0.5927

r(Z >0)

This means that the malignant transition rate among the susceptible has a mean of 0.0760.
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Table 4.3 Estimated results from a natural history model for colorectal cancer allowing a

frailty distribution of compound Poisson type for the transition from adenoma to colorectal

cancer
Parameter Estimate 95% CI
A , 0.0031 0.0026~ 0.0036
A2 0.1282 0.0000~ 3.9528
P 1.7809 0.0000~12.2086
v 0.9739 0.0000~33.6948
n 0.2695 0.0000~ 3.0527

Again, for the extremely positive skewed distribution, the mean gives insufficient information.
We show the percentiles of the frailty factor in this model in Table 4.4. It implies that some
45% of adenomas would progress to colorectal cancer in 20 years, while the mean sojourn
time of 10% of adenomas is less than 5 years. About 50% of adenomas have mean sojourn
time(lqnger than 55 years which means that malignant transformation in the lifetime is very
unlikely. These results are similar to those using the Gamma frailty model, with only slightly

larger probabilities of progression.
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Table 4.4 Distribution of the frailty factor in Model I with compound-Poisson type, the

corresponding transition rates and mean sojourn time

Percentile  Frailty factor Az MST
Oth 0 0 0
16.85th 0 0 C

20th 0.00012 0.000016 63978.47
30th 0.01176 0.001508 663.33
40th 0.05653 0.007247 137.99
50th 0.14408 0.01847 54.14
) 60th 0.28448 0.03647 27.42
70th 0.49843 0.06390 15.65
80th 0.83652 0.1072 9.32
90th 1.46631 0.1880 5.32

100th © © 0

The estimated results of Model I by means of a mover-stayer model are shown in Table 4.5.

The estimate of annual incidence rate of adenoma, 3.1 per thousand person years, in this

model was the same as in models allowing Gamma-distributed and exponentially distributed

frailty. The proportion of progressive adenomas was estimated as 55%, in which adenomas
progress to malignancy with an estimated hazard of 0.0691 per year. Table 4.5 implies that

around 42% of adenomas would progress to cancer within 20 years, after taking the

possibility of non-progressive adenomas into account.
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Table 4.5 Estimated results from a natural history model for colorectal cancer using a

mover-stayer model

Parameter Estimate 95% CI
A 0.00631 0.0026~0.0036
A2 0.0691 0.0000~0.2367
Prover 55.29% 16.04%~94.55%

4.4.2 Five-state model

4.4.2.1 Five-state model for adenoma size

When introducing Gamma-distributed frailty into the hazard rate from diminutive adenoma to
small adenoma in Model IL. A, the annual incidence rate of diminutive adenoma was estimated
as 0.0031. With the baseline transition rate from diminutive adenoma to small adenoma
estimated as 0.2632, the scale and shape parameters for the Gamma distribution of the frailty
factor were 0.0204 and 0.1696. The annual transition rates from small adenoma to large
adenoma and from large adenoma to colorectal cancer were 0.0964 and 0.1462, respectively.
The mean soj ourn times for small adenomas and large adenomas were 10.37 and 6.84 years,
resj;ectively. The Hessian matrix was not negative definitive, however, so the estimate of the

variance-covariance matrix could not be obtained.
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Table 4.6 Estimated results from a natural history model for colorectal cancer allowing a

frailty distribution of Gamma type for the transition from diminutive adenoma to small

adenoma
Parameter Estimate

M 0.0031
Ay 0.2632
A3 0.0964
Ay 0.1462
0 0.0204
) 0.1696

The distribution of the frailty factor under this model was again positively skewed (figure 4.2).
Table 4.7 implies that about 65% of diminutive adenomas will progress to small adenomas in
20 years. More than 30% of diminutive adenomas would be expected to progress very soon,

in one year. About 30% of diminutive adenomas have very long sojourn time, and are likely to

have the diminutive adenomas without progression in their lifetime.

Figure 4.2 Probability density function of the frailty factor in Model IL.A with Gamma type
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Table 4.7 Distribution of the frailty factor in Model IL A with Gamma-distributed type, the

corresponding transition rates and the mean sojourn time

Percentile  Frailty factor A2 MST
o* 0 0 ®
10® 0.000040  0.0000105 95539.16
20" 0.002369  0.000623 1604.02
30th 0.025880  0.00681 146.81
40th 0.141415  0.03722 26.87
50th 0.530690  0.13968 7.16
60th 1.583504  0.41678 2.40

~ 70th 4.102043  1.07966 0.93
80th 9.922485  2.6116 0.38
90th 24978886  6.5744 0.15
100" © o 0

Table 4.8 shows the estimated results of Model II.A with compound-Poisson distributed frailty.
With this model, variance estimation was possible, although again the baseline rate for the
state with frailty has a very high variance. The annual incidence rate of diminutive adenoma
was estimated as 0.0031. The characteristics of the compound Poisson distribution gave a
probability of zero susceptibility of 6.25%. The annual transition rates from small adenoma to
large adenoma and from large adenoma to colorectal cancer were 0.0953 and 0.1450,
respectively giving mean sojourn times for small adenomas and large adenomas of 10.49 and

6.90 years, respectively.

106



Table 4.8 Estimated results from a natural history model for colorectal cancer allowing a

frailty distribution of compound Poisson type for the transition rate from diminutive adenoma

to small adenoma

Parameter Estimate 95% CI

A 0.0031 0.0026~ 0.0036

A2 0.4360 0.0000~30.5312
A3 0.0953 0.0473~ 0. 1434
A4 0.1450 0.0632~ 0.2268
P 2.7720 0.0000~30.0007
v 0.0496 0.0000~ 2.6845
n 0.0809 0.0000~ 1.3619

From the distribution of frailty shown in Table 4.9, about 65% of diminutive adenomas would

progress to small adenomas in 20 years. 45% of diminutive adenomas might progress very

soon, in one year. About 30% of diminutive adenomas have very long sojourn time, and

would be unlikely to progress in the host’s lifetime.
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Table 4.9 Distribution of the frailty factor in Model IL. A with compound-Poisson-distributed

type, the corresponding transition rates and the mean sojourn time

Percentile  Frailty factor As MST
Oth 0 0 0
6.25th 0 0 _ o
20th 0.00028 0.0001217  8218.75
30th 0.01152 0.005025 199.02
40th 0.09419 0.04106 24.35
50th 0.39243 0.1711 5.84

. 60th 1.15349 0.5029 1.99
70th 2.79486 1.2186 0.82
80th 6.17744 2.6934 0.37
90th 13.99184 6.1004 0.16
100th o 0 0

The estimated results of Model II.A by a mover-stayer model are shown in Table 4.10. The
annual incidence rate of diminutive adenoma was consistent with the other models. The
transition rate from diminutive adenoma to small adenoma was estimated as 1.6979 among
movers, of which the proportion was estimated as 62%. The variation of A, is very large in
this model. In movers, the estimated transition rates from small adenoma to large adenoma
m;d from large adenoma to invasive colorectal cancer were 0.0888 and 0.1367, respectively.
The results imply that the majority of progressive diminutive adenoma would progress in five

years. After then, the remaining diminutive adenomas are mainly non-progressive.
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Table 4.10 Estimated results from a natural history model for colorectal cancer considering

the lesion size of adenoma using a mover-stayer model

Parameter Estimate 95% CI
M 0.0031 0.0026~ 0.0036
A2 1.6979 0.0000~18.5956
A3 0.0888 0.0541~ 0.1234
As 0.1367 0.0695~ 0.2039
Prover 61.86% 52.96%~70.76%

4.4.2.2 Five-state model for histological type

When introducing Gamma-distributed frailty into the hazard rate from tubular adenoma to
tubulovillous adenoma in Model II.B, the annual incidence rate of tubular adenoma was

estimated as 0.0029 (Table 4.11). With the baseline transition rate from tubular adenoma to

tubulovillous adenoma estimated as 0.3236, the scale and shape parameters for the Gamma

distribution of the frailty factor were estimated as 0.0239 and 0.1790. The annual transition

rates from tubulovillous adenoma to villous adenoma and from villous adenoma to colorectal

cancer were 0.0881 and 0.2364, respectively. The mean sojourn times estimated for

tubulovillous adenomas and villous adenomas were therefore 11.35 and 4.23 years,

respectively.
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Table 4.11 Estimated results from a natural history model for colorectal cancer allowing a

frailty distribution of Gamma type for the transition rate from tubular adenoma to

tubulovillous adenoma
Parameter Estimate 95% CI
M 10.0029 0.0024~0.0033
A2 0.3236 0.0000~1.6131
A3 0.0881 0.0475~0.1287
Ag 0.2364 0.0762~0.3966
0 0.0239 0.0000~0.4620
) 0.1790 0.0000~0.7561

The distribution for the frailty factor under this model is also positive skewed (figure 4.3).

Table 4.12 implies that about 70% of tubular adenomas will progress to tubulovillous

adenomas in 20 years. About 40% of tubular adenomas might progress very soon, in one year.

Under this model, 30% of tubular adenomas have very long sojourn time. These cases are

likely to stay in tubular adenoma without further progression in their lifetime.

Figure 4.3 Probability density function of the frailty factor in Model II.B with Gamma type
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Table 4.12 Distribution of the frailty factor in Model II.B with Gamma-distributed type, the

corresponding transition rates and the mean sojourn time

Percentile  Frailty factor Az MST
o* 0 0 o

10" 0.0000697 0.0000226  44332.07
20" 0.00335 0.001084 922.46
30® 0.03229 0.01045 95.71
40" 0.1615 0.05226 19.13
50th 0.5664 0.18328 5.4560
60th 1.6014 0.51820 1.9297
70th 3.9703 1.28477 0.7783
80th 9.2598 2.99646 0.3337
90th 22.5807 7.30712 0.1369
100th ® © 0

Table 4.13 shows the estimated results of Model II.B with compound-Poisson distributed
frailty. The annual incidence rate of tubular adenoma was estimated as 0.0029. The
characteristics of the compound Poisson distribution gave the probability of zero

susceptibility as 6.37%. The annual transition rates from tubulovillous adenoma to villous
adenoma and from villous adenoma to colorectal cancer were 0.0873 and 0.2346, respectively.
With the constant hazard assumption, the mean sojourn times for tubulovillous adenomas and
villous adenomas were about 11.45 and 4.26 years, respectively. The Hessian matrix was not

negative definitive so that the estimated variance-covariance matrix could not be obtained.
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Table 4.13 Estimated results from a natural history model for colorectal cancer allowing a
frailty distribution of compound Poisson type for the transition from diminutive adenoma to

small adenoma

Parameter Estimate
A 0.0029

Az 0.7292

As 0.0873

A4 0.2346

p 27536

Y 0.0942
S 0.0904

Table 4.14 implies that about 65% of tubular adenomas will progress to tubulovillous
adenomas in 20 years. 40% of tubular adenomas might progress very soon, in one year. About
30% of tubular adenomas have very long sojourn time, and are likely to have tubular adenoma

without progression in their lifetime.
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Table 4.14 Distribution of the frailty factor in Model II.B with compound-Poisson-distributed

type, the corresponding transition rates and the mean sojourn time

Percentile  Frailty factor Az MST
Oth 0 0 ©
6.37th 0 0 . ®
20th 0.00042 0.0003027 3303.25
30th 0.01220 0.008896 112.41
40th 0.08203 0.05982 16.72
50th 0.30003 0.2188 4.57
60th 0.80291 0.5855 1.71
/ 70th 1.81211 1.3214 0.76
80th 3.78560 2.7605 0.36
90th 8.16696 5.9553 0.17
100th o0 o 0

The estimated results of Model ILB from a mover-stayer model are shown in Table 4.15. The

annual incidence rate of tubular adenoma was consistent with the other models. The transition

rate from tubular adenoma to tubulovillous adenoma was estimated as 1.3620 among movers

of which the proportion was estimated as 62%. In movers, the estimated transition rates from

tubulovillous adenoma to villous adenoma and from villous adenoma to invasive colorectal

cancer were 0.0733 and 0.1983, respectively. The results imply that the majority of

progressive tubulovillous adenoma would progress in five years. Thereafter, little progression

would be observed.
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Table 4.15 Estimated results from a natural history model for colorectal cancer considering

the lesion size of adenoma using a mover-stayer model

Parameter Estimate 95% CI
) A 0.0031 0.0026~ 0.0036
As 1.6979 0.0000~18.5956
A3 0.0888 0.0541~ 0.1234
Aa 0.1367 0.0695~ 0.2039
Prover 61.86% 52.96%~70.76%

4.4.3 Comparison with purely homogeneous models

Chen et al'™ investigated the disease natural history of colorectal cancer by means of purely
homogeneous, simple Markov models. The results corresponding to the Model I in this
chapter suggested an estimated transition rate from disease free to adenoma as 0.0031
(0.0026-0.0036) per year, and the annual transition rate from adenoma to invasive CRC was
estimated as 0.022 (0.016-0.024).'™ Accordingly, the cumulative risk of malignant
transformation from adenoma to invasive CRC under a 3-state Markov model can be
illustrated by time (Figure 4.4). With knowledge of population survival from adenomas under
gamma- and compound Poisson distributed frailty assumptions and the estimated results from
Table 4.1 and Table 4.3, one can demonstrate the cumulative risk under these circumstances,
and under the dichotomous hazard assumption in a mover-stayer model from Table 4.5.

Estimates are shown in Figure 4.4.

Figure 4.4 shows almost identical prognosis from the two curves taking frailty into account,

2
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and a slight difference from the curve of the mover-stayer model, but a clear difference of the
homogeneous model from the other three models. When heterogeneity is allowed, the

increase in cumulative risks of progresstion are higher in the earlier years, and then decelerate,
because the remaining cases are mainly of lower-susceptibility or even non-susceptible. In the

homogeneous model, the trend of cumulative risk is closer to linear.

Figure 4.4 Cumulative risk of malignant transformation from adenoma to colorectal cancer in
a three-state model of homogeneous (exponentially distributed sojourn time) and
heterogeneous (by introducing gamma- and compound Poisson distributed frailty, and a

mover-stayer model) transition rates from adenoma to colorectal cancer
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Despite the different appearance of cumulative risk of progression from adenoma between the
homogeneous and heterogeneous models, all fitted well (Table 4.16). The heterogeneity
models provided only a slight improvement in fit, but probably capably, this was most

reached for number of invasive carcinomas.
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Table 4.16 The observed number and the expected numbers in a 3-state homogeneous model
and three 3-state heterogeneous models with gamma- (Model I-G), compound Poisson

diétributed frailty (Model I-CP), and dichotomous hazard (Model I-MS) assumption

Mode Observed Expected number

number Markovmodel  ModelI-G ~ Model I-CP Model I-MS

Normal 305 304.06 303.95 303.97 303.96
Adenoma 119 123.46 121.52 121.53 121.64
Invasive CRC 116 112.48 114.52 114.50 114.40

Pearson 1(21) 0.2742 0.0750 0.0758 0.0830

In the 5-state homogeneous Markov model considering lesion size,'® the incidence of
diminutive adenoma was estimated as 0.0031 (0.0026-0.0036) per year. The transition rates
from diminutive to small adenoma, small to large adenoma, and large adenoma to invasive
CRC were estimated as 0.038 (0.030-0.047), 0.13 (0.078-0.18), and 0.19 (0.095-0.28),
respectively. Figure 4.5 shows the cumulative risks of progression from diminutive adenomas
in the Markov model and the three heterogeneous models. It shows a more remarkable
discrepancy between homogeneous and heterogeneous models, compared with the curves
shown in Figure 4.4. The cumulative risk of progression for diminutive adenomas in the
mover-stayer model increases rapidly in the very early years. The compound Poisson and
gamma frailties give almost identical estimates of cumulative risk, with rapid progression in
the early years (although not as extreme as in the mover-stayer model). Again, the

homogeneous Markov model, by definition, gives a homogeneous incidence over time.
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Figure 4.5 Cumulative risk of malignant transformation from diminutive adenoma to small
adenoma or more severe status in a five-state model of homogeneous (exponentially
distributed sojourn time) and heterogeneous (by introducing gamma- and compound Poisson
distributed frailty, and a mover-stayer model) transition rates from diminutive adenoma to

small adenoma
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Table 4.17 indicates a good fit for all five-state models taking lesion size into account. The
frailty models are only slightly better fitting than the mover-stayer and the homogeneous

models.
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Table 4.17 The observed number and the expected numbers in a 5-state homogeneous model,
three 5-state heterogeneous models with gamma- (Model I1.A-G), compound Poisson

distributed frailty (Model II.A-CP), and dichotomous hazard (Model II. A-MS) assumption

Mode Observed Expected number

number Markov model Model ILA-G Model I1.A-CP Model IL.A-MS

Normal 305 304.26 304.13 304.13 304.14
Diminutive adenoma 78 82.89 79.30 79.19 78.43
Small adenoma 23 22.93 24.63 24.70 25.12
Large adenoma 15 14.68 15.73 15.77 16.01
Invasive CRC 116 112.24 113.21 113.22 113.30

Pearson y (21 ) 0.4228 0.2345 0.2427 0.3126

In the 5-state homogenous Markov model considering histological type,'™ the incidence of
tubular adenoma was estimated as 0.0031 (0.0026-0.0036) per year. The transition rates from
tubular to tubulovillous adenoma, tubulovillous to villous adenoma, and villous adenoma to
invasive CRC were estimated as 0.038 (0.029-0.047), 0.11 (0.065-0.15), and 0.28 (0.10-0.46),
respectively. The comparison of cumulative risks of progression from tubular adenomas, and
the fits of the three models, are similar to that of five-state models considering lesion size
(Figure 4.6 and Table 4.18). Also, the cumulative risk of progression under all heterogeneity
models, but most obviously in the mover-stayer model, shows a sharp increase in the very

early years.

Again, the frailty models fit slightly better than the mover-stayer, which in turn fits slightly

better than the homogeneous model. All four models, however, provide a good fit.
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Figure 4.6 Cumulative risk of malignant transformation from tubular adenoma to
tubulovillous adenoma or more severe status in a five-state model of homogeneous
(exponentially distributed sojourn time) and heterogeneous (by introducing gamma- and
compound Poisson distributed frailty, and a mover-stayer model) transition rates from tubular

adenoma to tubulovillous adenoma
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Table 4.18 The observed number and the expected numbers in a 5-state homogeneous model,
two 5-state heterogeneous models with gamma- (Model I1.B-G) and compound Poisson

distributed frailty (Model I1.B-CP), and dichotomous hazard (Model II.B-MS) assumption

Mode Observed Expected number

number Markov model Model II.B-G Model I1.B-CP Model I1.B-MS

Normal 305 304.33 304.20 304.22 304.16
Tubular adenoma 68 72.35 69.20 69.21 68.43
Tubulovillous adenoma 24 23.94 25.72 25.79 26.29
Villous adenoma 9 873 9.43 9.44 9.60

Invasive CRC 116 112.65 113.46 113.37 113.58
Pearson x (21) 0.3710 0.2143 0.2256 0.2953
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4.5 Discussion

This chapter incorporated frailty in a general multi-state model and an alternative
mover-stayer model to elucidate the disease natural history of the adenoma-carcinoma
sequence of colon and rectum. The results were compared with that of a purely homogeneous

model in a previous study.'® The implications of our results are as follows.

4.5.1 Clinical considerations

Stryker et al'® showed a 24% and a 35% cumulative risk of invasive cancer in the index site
and any site in colon, respectively. In our three-state model, the consistent results from
heterogeneous models imply that around 40% of adenomas would progress to invasive cancer
in 20 years. Although Stryker et al’s included large colonic polyps (>1 cm) only, the predicted
riskﬂ is still lower than ours. This suggests a different casemix in our study from that in Stryker

et al.

In the five-state heterogeneous model, a very high early cumulative risk from diminutive or
tubular adenomas is seen, particularly in the mover-stayer model. Results suggest a mean
sojourn time of less than one year among those who could progress. The majority of those
with positive susceptibility would be expected to progress in the early years. This could result
from the assumption of only diminutive (or tubular) adenomas having lower or zero
susceptibility. The observations of Stryker et al,'® while quantitatively different from those
here are qualitatively consistent with heterogeneity models. The fact that the majority of
requspectively identified adenomas had still not progressed after 20 years strongly suggests a
mixture of populations, some with very low or zero susceptibility. The tendency of the

cumulative recurrence of treated adenomas to plateau at around ten years is also consistent
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with this (Figure 4.7).”
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Figure 4.7 Overall cumulative probability of recurrence of adenomatous polyps by time

interval after initial polypectomy (Source: Bertario L, et al. (2003) Int. J. Cancer)

4.5.2 Methodology considerations

Estimation was sensitive to the initial values in all heterogeneous models except the
mover-stayer model of the three-state disease process. There was similar sensitivity to initial
values in the estimation of variances of transition rates in heterogeneity models. This is
probably a symptom of the relatively small number of cancer events. Although quite complex
longitudinal models can be identifiable in principle, they often need a large body of event data

for stable estimation in practice.

With similar good fitting of homogenous and heterogeneous models, one might tend to
choose homogenous model in terms of parsimony. Moreover, model selection must be based
on a very important issue, practical rationality. From clinical experience, it is unlikely to have

extremely different groups in terms of progression from diminutive or tubular adenomas, with
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the-vast majority of progressive cases progressing in 5 years, as in the results of the 5-state
heterogeneous models in this chapter. Also, the possibility of some, although fewer,
non-progressive cases among the more severe adenomas suggests inadequacy of the five-state

heterogeneous models with heterogeneity in only cne transition, as in this chapter.

Two further observations should be noted, however. Firstly, in the three-state model of no
disease, adenoma and carcinoma, it is plausible to assume homogeneity of transition to
adenoma but heterogeneity of transition from adenoma to cancer. Secondly, the five-state
heterogeneity models uniformly give a better fit, albeit only slightly better, than the
homogeneous models. In particular, they fit better to the “failures of the process, the number
of invasive carcinoma cases. In addition, the shape of the cumulative incidence cases agrees
weil with clinical observation of adenoma recurrence.” In terms of practicability, fitting
frailty models to processes with three states or more is conventionally a daunting prospect. In
this chapter, we have demonstrated that if the frailty applies only to a single crucial transition
rate between two states, with homogeneous models for transitions between lower and higher
states, the model is tractable and estimates can be readily derived with standard software. In
theory, this is expandable to more than one transition being subject to heterogeneity. For
example, if two transitions were subject to heterogeneity, we would have piecewise
homogeneity with three homogeneous processes instead of two. In practice, however,
’computing and estimation are liable to be difficult. Appendix 1 shows the SAS IML code for

the three-state model.

4
Although the probability formulae derived in this chapter successfully incorporate frailty
terms in the multi-state progressive disease process, such methodology has its shortcomings.
Firstly, the numerical integration, the only means of estimation due to the lack of closed form

of the multiple integration, can be very time-consuming, especially when the number of states
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rises. Secondly, the derivation in this chapter can only deal with the progressive model, and
does not apply to multiple pathways such as the mixture of adenoma-carcinoma and de novo
pathways.'™ Finally, for large numbers of states, it is clear that substantial datasets are
required for variance estimation. In our example, there was insufficient data for variance

estimation for some of the frailty analyses in the five-state models.

e
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Chapter 5 Latent variable analysis in a multi-state disease process for
screening data with unobserved or unknown information: the
elucidation of the effect of casting-type calcification on the disease

process and pregnosis of women attending mammographic screening

5.1 Introduction

The situation of unknown or unobserved information is commonly seen in data analysis.
Sometimes, this is due to a lack of knowledge of the importance of a particular variable when
data are being collected, or sometimes the information is only meaningful or observable for
some selective subjects. Calcification features on the mammograms provide such an example.
Calcifications are observed as bright dots or lines on a mammogram, usually indicative of
calcified necrotic lesions associated with all or part of a tumour which is confined to the milk
ducts (ductal carcinoma in situ, DCIS) (Figure 5.1). Calcifications observed in addition to an
invasive tumour mass are associated with varying processes depending on the particular
radiological appearance of the calcifications. In particular, casting-type calcifications
consisting of lines, often branching, are associated with poor prognosis (Figure 5.2). The first
study on the role of casting-type calcifications as predictors of long-term survival of small
breast cancer, particularly for breast tumours smaller than 15 mm, was published in 2000.""

Since then, researchers have provided more evidence on the issue.'**"?

Although many archives of mammograms are potentially available, data on the calcifications
were not generally extracted and recorded in the datasets before such features attracted
research attention. It is possible to collect data retrospectively from the archive of films.
However, this is costly and time-consuming. There may also be problems of loss or
inadequate storage of mammograms. The particular interest in calcification features for
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invasive breast tumours of size 14 mm or smaller (see below) and the fact that calcifications
are often unobservable in larger tumours make smaller tumours the priority of data retrieval.
In order to elucidate the multi-state disease process taking the calcification features into

account, one needs data from each state, including subjects with normal findings for whom,

however, data on calcification features are inapplicable.

All of them have histologically proven 1-9 or 10-14 mm invasive cancer.

Figure 5.1 Appearance of mammographic features
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Figure 5.2 Cumulative survival of women with 1-14 mm invasive breast cancer by

mammographic appearance and detection mode in Dalarna county, Sweden, 1977-1998
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Temporal change in risk factors of interest (or change in their observability) is another issue
of concern. For example, it is possible that the calcification features could be ablated over
time due to various benign and malignant processes''® which could cause the situation that a
case'with qasting—type calciﬁcations m the early stage, but not detected until the invasive
tumour has grown larger, may not have observable casting-type calcifications by the time of

diagnosis, despite still having the corresponding poorer prognosis.

In this chapter, we attempt to fit multi-state models of tumour incidence, tumour size,
preclinical/clinical status, and breast cancer death with casting-type calcifications as a
covariate on some transitions. Where the presence of casting-type calcifications is unknown
or unobservable, it is treated as a latent variable. Such models are compared with another
multi-state model taking disease with different characteristics as distinct states and without

latent variables involved.
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5.2 Objectives

~ In the present chapter we aimed to use data from the breast cancer mammographic screening
programme between 1977 and 1997 in Dalarna county, Sweden

(1) to demonstrate the incorporation of latent class analysis in a multi-state process
mbde]ling therdiseaée ﬁatﬁrai hiétofy—ﬁrdgnbsié process with inapplicable or
unobserved information among subjects in some states,

' (2) to quantify the proportion of tumours with casting-type calcifications in the tumour
population of size 1-14 mm,

(3) to illustrate the effect of casting-type calcifications on the disease process and
prognosis after diagnosis under the assumption that there is no temporal change in
casting-type calcifications,

(4) to demonstrate a model which treats the heterogeneity as explicitly different states but
without latent variables, and compare the results with those of (1) and (3),

(5) to quantify changes in casting-type calcifications with disease progression from
preclinical phase to clinical phase for women with 1-14 mm invasive breast tumours,
and

(6) to illustrate the effect of casting-type calcifications on the disease prognosis after
diagnosis by detection mode when taking account of the possible temporal change in

casting-type calcifications, and compare with the results of (3).
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5.§ Material and methods

5.3.1 Data sources

We used mammograhpic rscreening data‘ fron Da_lama county, Sweden, between 1977 and
1997, with two epochs, the randomised trial epoch (1977-1987), in which around 65% of
women aged 40-69 were invited to screening, and the service screening epoch (1988-1997), in
which all women in this age group were invited.""” The person-years of attending screening in
this period and screening intervals by age groups are listed in Table 5.1. The numbers
attending first screening were only available in the trial epoch. The trial epoch included the
period during which the control arm received screening at the end of trial."'® The fact that the
coverage rate after 1988 was around 85% suggests that the number of new attendees in the
service screening epoch after 1988 was small. Those participants were treated as subsequent

screen attendees in our analysis.

Table 5.1 The person-years of attending screening, screening intervals, and the numbers of

attendees of the first screen by 5-year age groups in Dalama county, Sweden, 1977-1997

Age Person-years Screening Interval (years)  Numbers attending first

groups  Trialepoch Service epoch  Trial epoch Service epoch screen in the trial epoch

4044 55 898 87 088 2.00 1.50 7130
45-49 47 829 87 940 2.00 1.50 7272
50-54 46 610 75 561 2.75 1.50 8 056
55159 51364 65 288 2.75 2.00 9070
60-64 53 689 65474 2.75 2.00 8717
65-69 53 146 68 752 2.75 2.00 8351
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For breast cancer cases, individual data were available on age at diagnosis, detection mode,
tumour attributes, including tumour size, and follow-up details until the end of 2001. Data on
mammographic appearance of small (<15 mm) invasive breast cancers were extracted from
archives in Falun Central Hospital, Sweden. Mammograms of tumours of size 15 mm or more
V&;ere not classified with respect to calcifications, partly because éf prior interest in the small
tumours, and partly because clinical experience suggested that calcifications were rare in
larger tumours, thus mammographic features including presence or absence of casting-type
calcifications, with or without associated tumour mass, were recorded for invasive tumours of
size less than 15 mm only. Data were available on 1408 invasive breast cancers. Of these,
1009 (72%) were screen-detected and the remainder interval cancers, i.e. clinically detected.
827 (59%) were of maximum diameter 15 mm or more. All were diagnosed in women aged
40-69. Of the 1409 cases, 212 (15%) died of breast cancer during the maximum 24-year

follow-up period.

5,3.2 Statistical models and methods

5.3.2.1 Markov process

A six-state continuous-time Markov process was proposed to model progression of breast
cancer in terms of disease status (normal, preclinical detectable phase (PCDP), and clinical
phase), tumour size (1-14 mm and >=15 mm), and breast cancer death. The process is

depicted in Figure 5.3.
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Figure 5.3 The six-state disease process of breast cancer

Accordingly, the transition intensity matrix can be expressed as follows.

PCDP PCDP Clinical  Clinical Breast cancer

Normal
1-14mm 15+mm 1-14mm 15+ mm Death
Normal -4 A 0 0 0 0
PCDP,1-14mm | 0 —(A,+4;) YR A 0 0
_ PCDP,15+mm | 0 0 — 4 0 Aq 0
" Clinical,1-14mm| 0 0 0 y 0 As
Clinical,15+mm | 0 0 0 0 -2 Ag
Breast cancer death{ 0 0 0 0 0 0)

Again, the transition probabilities can be derived from the transition intensity matrix based on

the solution of the Kolmogorov equations®>°

or by integration, as described in Chapter 2.
Note that transitions among states 1 to 5 follow the disease natural history, and the transitions
from state 4 to state 6, and from state 5 to state 6 model the disease prognosis following
treatment after clinical detection. Data on survival of screen-detected treated cases cannot be
directly modelled by the transition probabilities from state 2 to state 6, or from state 3 to state
6\derived above, because those ignore therapeutic intervention before the onset of clinical

stage. Therefore, separate fatality rates, outside of the above process from PCDP, 1-14 mm
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(4, ) and PCDP, 15+ mm ( 44) to breast cancer death were modelled.

Thus, our combined models do not assume that death from screen-detected disease is
impossible; they do, however, rule cut direct progression from asymptomatic disease to breast

cancer death with no intervening symptoms ever occurring.

Since we are also interested in modelling the effect of casting-type calcifications on the
transition rates among small tumours, exponential regression was used for the transition rate
from preclinical stage (1-14 mm) to clinical stage (1-14mm) and for the mortality rates from
screen-detected (1-14 mm) and from clinical stage (1-14 mm) to breast cancer death. The

regression equations are:

Ay =2y -exp(ﬁ3x)
A7 =2qg -exp(ﬂ7x), and

As =g -exp(ﬁsx),

where x is the indicator for small tumours with casting-type calcifications. From the above

equations, the relative risks (RRs) of dying from breast cancer for cases with casting-type

calcifications compared with non-casting cases are the exponential transformations of the

B's.

5.3.2.2 Likelihood construction
In this section, we demonstrate the likelihood derivation by different detection modes prior to
the introduction of latent variables. The treatment of latent variables is described in the next

section. The transition probabilities can be derived from the transition intensity matrix.

Derivation details are given in 5.2.1 and Chapter 2. Let F; (m) denote the transition
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probability from state i to state j in a time interval, m.

5.3.2.2.1 The disease natural history model
At prevalence screen, the probabilities of normal finding, detecting breast tumour smaller than
14 mm, and detecting breast tumour larger than 15 mm are conditional on no clinical disease,

as follows:

P,y oge = P (4ge)/[R, (4ge) + P, (4ge)+ By (4ge)],
PpZ.age = })12 (Age)/[Pll (Age)+ PIZ (Age)+ 13]3 (Age)]’ and
Py oge = B (4ge)/[P1(4ge)+ P, (4ge) + Py (4ge)], respectively.

The conditional probabilities given subjects are in state 1, 2, or 3 at the time of the prevalence
screen are used because cases already diagnosed with symptomatic breast cancer are

ineligible for the screening programme.

At subsequent screens, the probabilities of normal finding, detecting breast tumour smaller

than 14 mm, and detecting breast tumour larger than 15 mm are

P, =P11(t)’
P, =P12(t)= and

§

P, = P,(t), respectively,

where t is the screening interval.

For interval cancers, the probability of breast tumours smaller than 14 mm is

Fias =Pl4(t)’and

2
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the probability of interval cancers larger than 15 mm is
P, = Bs5(0).

Again, t is the screening interval.

5.3.2.2.2 The prognosis model after diagnosis
A patient who dies from breast cancer at time t contributes a term f{t), the density of failure at

t, to the likelihood. The contribution from a subject whose survival time is censored at t is

Fl)=1- J: £ (s)ds , the probability of survival beyond the time of censoring.

The densities of failure time t (for breast cancer deaths) since diagnosis from preclinical
breast cancers smaller than 14 mm, from preclinical breast cancers larger than 15 mm, from
clinically-detected cases smaller than 14 mm, and from clinically-detected cases larger than

15 mm are

S =y -exp(— }“7t)’
-f:v3.t = )1'8 : exp(— A'Bt)’
Soar =25 'exp(— ’15’)’ and

fiss = Ag -exp(= A4t), respectively.

The probabilities of survival at the end of 2001 or death from other causes at time ¢ since
diagnosis, for preclinical breast cancers smaller than 14 mm, preclinical breast cancers larger
than 15 mm, clinically-detected cases smaller than 14 mm, and clinically-detected cases larger

than 15 mm are
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F,. =exp(-Ayc),
F;B.c = exp(— 2’Bc)’

F,

s

4c = exp(— A‘SC) ’ and

F,

5. = exp(~ /16c) , respectively.
The interactive matrix language (IML) in SAS software version 8.1 was used to compile the
code for optimisation for the maximum likelihood estimates (MLEs) and for the second

derivatives from which the estimated variance-covariance matrix can be derived.

5.3.2.3 Latent variable analysis

5.3.2.3.1 Model (A): the multi-state process model with a latent variable under the
assumption of constant casting-type calcifications

In the previous section, subjects without information on calcifications, such as screen negative
subjects, and breast cancer cases with tumours larger than 15 mm, may be considered as a
mixture of cases with or without casting-type calcifications which would be observable only
in the PCDP at size less than 15 mm. The screen-negative subjects with no detectable disease
}nay be regarded as potentially casting or non-casting cases who have not yet developed
disease and who may never do so. The tumours of size 15 mm or more which were not
classified with respect to calcifications represent the more straightforward case of an
unobserved covariate. To deal with this, we introduce a parameter, p_cast, to represent the
proportion of 1-14 mm tumours with casting-type calcifications. Because the temporal change
in casting-type calcifications (e.g. from ablation) is not assumed in this model, p_cast denotes
the proportion of 1-14 mm tumours with casting-type calcifications in the preclinical state and
in the clinical state. Therefore, the probabilities of casting or not in subjects without

information on casting-type calcifications can be calculated as a mixture of the corresponding
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probabilities of potentially-casting type tumour and of potentially-not-casting type tumour.
For example, the probability of detecting 15+ mm breast cancer at subsequent screening with

last negative screening result t years ago can be expressed as

P (t)=p _castx B3 (¢ | casting)+ (1 - p _cast)x P (t| non — casting).

Three variations of regression model to elucidate the effects of casting-type calcifications on

different transition rates were fitted.

Model (A.1): transition from preclinical stage (1-14 mm) to clinical stage (1-14mm)
dependent on casting-type calcifications

Model (A.2): transition from preclinical stage (1-14 mm) to clinical stage (1-14mm) and from
preclinical stage (1-14 mm) to preclinical stage (15+ mm) dependent on
casting-type calcifications

Model (A.3): transition from preclinical stage (1-14 mm) to preclinical stage (15+ mm)

~

dependent on casting-type calcifications

5.3.2.3.2 Model (B): Multi-state model with latent variables under the assumption of
temporal change in casting-type calcifications

To deal with the situation that the observed non-casting type small tumours at clinical
detection could be a mixture of casting-type calcification tumours in the early PCDP which
have since been ablated by natural processes and of non-casting-type tumours in the PCDP,
we introduce another parameter, pc_nc, to represent the proportion of cases with casting-type
calcifications earlier in their development but whose calcifications were ablated by the time
the tumour become palpable and therefore clinically detectable. Taking breast cancer with
1-14 mm tumour detected with clinical symptoms since a last negative screening result t years

ago as an example, the corresponding probabilities for observed casting-type and

~
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non-casting-type are

I’M_c(t):p_castx P, (t[casting)x (l—pc_nc), and

1‘}4_M(t)= p_castx By (t| casting)x pc _nc+(1- p _cast)x PB4(t| non — casting),

respectively, where p_cast in Model (B) specifically denotes the proportion of 1-14 mm

tumours with casting-type calcifications in the PCDP only.

Note that the newly introduced parameter is highly dependent on the effect of casting-type
calcifications on the transition rate from small tumour in the PCDP to small tumour in the
clinical phase, f,. In this model, to avoid problems of collinearity and non-identificability,
we abandoned estimation of f; and treated it as a constant, 0; that is with a relative risk of
unity. This estimates a common transition to clinical disease and therefore a common sojourn
time for casting-type and non-casting-type tumours. This assumption is reasonable under the
belief that the clinical symptom, usually the awareness of palpable lumps, is independent of

calcifications.

5.3.2.4 Model (C): heterogeneity in terms of different states in one multi-state process
model

In the previous sections, we treated subjects with different characteristics as different groups
that follow multi-state processes with different transition rates. Since the proportion in each
:group is unobservable, latent variables were applied. In this section, we treat subjects with
different characteristics as different states in one multi-state process. By analogy to Model (A),

we propose a model of disease progression as follows.
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Figure 5.4 An eight-state disease process of breast cancer taking heterogeneity into account by

different states

In this model, patients with small breast tumours detected by mammographic screening were
classified into two states: with or without casting-type calcifications. If there is no screening

/ interference, each can progress to the clinical phase or can grow to larger than 15 mm prior to
clinical symptoms, the state with no information on calcifications. In this model, there is no
need to quantify the potential proportion of subjects with normal finding in screenings or in
large tumours detected. The derivation of the transition probability matrix, the construction of
the likelihood, and the optimisation for the MLEs followed methods described in Chapter 2

and previous sections.
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. 5.4 Results

Results for model (A) are shown in Table 5.2. In Model (A), the estimated annual incidence
rates of small preclinical breast cancer were around 2 cases per thousand women years for the
three sub-models. The trgnsition rate from preclinical to clinical stage among 1-14 mm
tumours unstratified by casting-type calcifications was estimated as 0.1777 in model (A.3).
When taking into account the effect of casting-type calcifications on the transition rate from
preclinical to clinical stage among 1-14 mm tumours, the transition rate among tumours
without casting type calcifications was estimated as 0.1841 in model (A.1) and 0.1829 in
model (A.2). The result of exponential regression suggests a statistically non-significant lower
risk with casting-type calcifications of progression to clinical disease for small tumours (Risk
-ratio (RR)=0.39, 95% confidence interval (CI): 0.12-1.27) in model (A.1) and 0.48 (95% CI:
0.13-1.72) in model (A.2)). Casting calcifications were also associated with a
non-significantly lower rate of transition from PCDP 1-14 mm to PCDP 15+mm (RR=0.41,
95% CI: 0.07-2.54 in model (A.2) and 0.23 (95% CI: 0.04-1.44) in model (A.3)). The results
therefore suggested a greater sojourn time for small tumours with casting-type calcifications.
The estimated mean sojourn time for tumours larger than 15 mm in the three models were
similar, 1.3 (=1/0.77) years regardless of calcification characteristics. The estimated
proportion of observing casting-type calcifications in screen-detected small invasive tumours
in model (A.1) was 6.86% (95% CI: 4.74%-8.98%), while in model (A.2) and model (A.3) the

estimated proportion were considerably lower, 4.6% and 3.3%, respectively.

Table 5.2 also shows the prognosis model results in terms of breast cancer fatality. The
_estimated results were almost identical in the three models. Without casting-type
calcifications, the fatality rates from breast cancer among women with tumours smaller than

14 mm were 0.0025 and 0.0051 in the PCDP and clinical phase, respectively. For those with
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tumours larger than 15 mm (casting data not available), the fatality rates were 0.0168 and
0.0304. Preclinical tumours with casting-type calcifications had 11.27 times the risk (95% CI:
4.94-25.73) of dying of breast cancer in the non-casting type cases, while the risk ratio
associated with casting-type calcifications was smaller (RR=8.43, 95% CI: 1.04-68.53)

among clinically-detected tumours.

Table 5.3 shows the observed and expected numbers according to the detection mode. The

result indicated good model fits in the three models (model (A.1), 1(2”) =15.36, p=0.1667;

model (A.2), xkq =15.84, p=0.1042; model (A.3), x3, =17.46, p=0.0951).

Model (A) was also fitted separately in age groups 40-49, 50-59, and 60-69. This led to

unstable estimates, particularly for the 4049 age group. Results are therefore not shown here.
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Table 5.3 The goodness of fit for Model (A)

Detection Mode

Tumour size Casting type Observed

Expected

Model (A.1) Model (A.2) Model (A.3)

Prevalence screening
Ncrmal
Breast cancer
Breast cancer
Breast cancer
Subsequent screening
Normal
Breast cancer
Breast cancer
Breast cancer
Interval cancer
Breast cancer
Breast cancer
Breast cancer
Death from Breast cancer

Screening detected cases

Interval cancer

Censored

Screening detected cases

Interval cancer

N/A

1-14 mm

1-14 mm -

15+ mm

N/A

1-14 mm

1-14 mm

15+ mm

1-14 mm
1-14 mm

15+ mm

1-14 mm
1-14 mm

15+ mm

1-14 mm
1-14 mm

15+ mm

1-14 mm
1-14 mm

15+ mm

1-14 mm
1-14 mm

15+ mm

N/A
No

Yes
N/A

N/A
No
Yes
N/A

No
Yes
N/A

No
Yes
N/A

Yes
N/A

Yes
N/A

No
Yes
N/A

48407  48422.16

82 61.51
5 4.91
102 107.42

343739.8 343711.44
362 400.50
30 31.40
428 416.48
99 95.93
3 2.81
297 279.61
13 12.91
10 9.51
92 95.36
6 4.92

1 1.05
90 77.91
432 431.09
25 25.49
438 434.64
93 94.08
2 1.95
207 219.09

48421.21
61.08
6.16
107.55

343712.85
400.70
29.39
416.89

96.03
2.82
279.94

12.91
9.51
95.36

4.92
1.05
7791

431.09
25.49
434.64

94.08
1.95
219.09

48420.91
61.30
6.44
107.35

343713.26
402.46
26.60
417.52

93.83
5.02
280.00

12.91
9.51
95.36

4.92
1.06
77.90

431.09
2549
434.64

94.08
1.94
219.10
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Table 5.4 shows the estimated results of fitting Model (B). The estimated incidence rate,
transition rate from small PCDP to large PCDP, and from large PCDP to large clinical phase

were almost identical to those in Model (A.1) (Table 5.2). The average time spent at size 1-14

mm in the PCDP was estimated as 0.7 years | = —l— . The estimated proportion
1.2420 +0.1761

with casting-type calcifications in the small tumours in the PCDP was slightly higher (7.30%,
95% CI: 4.98%-9.63%) than that estimated in Model (A.1). In this model, we also estimated
the potential proportion of tumours in which the casting-type calcifications in the PCDP were
ablated over time and showed non-calcification when detected with clinical symptoms. The

estimated proportion was approximately 60%.

In Model (B), the mortality rates of breast cancer from small screen-detected cases without
casting-type calcifications and from large breast cancer were identical with those in Model
(A). The small clinically-detected cases without casting-type calcification when they were in
the PCDP, had a lower risk of dying from breast cancer compared with their counterparts in
Model (A). The latter may have included a proportion of cases who had casting-type
calcifications earlier in the disease process. The effects of casting-type calcifications on breast
cancer mortality were similar in small screen-detected cases and small clinically-detected
cases (RR=11.3 (95% CI: 4.94-25.73), and 11.2 (95% CT: 0.68-185.18), respectively). Table
5.5 shows good model fitting with a Pearson chi-square value of 15.28 on 11 degree of

freedom (P=0.1701).
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Table 5.4 The estimated results of fitting Model (B)

Parameters Estimate 95% CI
Natural History Component
Normal = PCDP, 1-14 mm 0.0019 0.0018 ~ 0.0020
PCDP, 1-14 mm -> PCDP, 15+ mm - 1.2420 1.1249 ~ 1.3592
/ PCDP, 1-14 mm -> Clinical, 1-14 mm 0.1761 0.1403 ~0.2118
PCDP, 15+ mm -> Clinical, 15+ mm 0.7700 0.6855 ~ 0.8545
7.30% 4.98% ~ 9.63%

Proportion of casting in PCDP, 1-14 mm

Proportion of transferring to non-casting in

Clinical, 1-14 mm 59.69% 25.44% ~ 93.94%

Prognostic Component

PCDP, 1-14 mm -> Breast cancer death

Non-casting type tumour 0.0025 0.0011 ~ 0.0039

Reg. Coefficient (Casting/Non-casting) 2.4225 1.5973 ~ 3.2476
11.27 4.94~25.73

PCDP, 15+ mm -> Breast cancer death 0.0168 0.0134 ~ 0.0202

‘ Clinical, 1-14 mm - Breast cancer death

Non-casting type tumour 0.0037 0.0000* ~ 0.0087

Reg. Coefficient (Casting/Non-casting) 2.4158 -0.3898 ~ 5.2213
11.20 0.68 ~ 185.18

Clinical, 15+ mm - Breast cancer death 0.0304 0.0241 ~ 0.0367

* Truncated according to the parameter space

143



Table 5.5 The model fitting of Model (B)

Detection Mode

Tumour size Casting type Observed Expected

Prevalence screening
Normal
Breast cancer
Breast cancer
Breast cancer
Subsequent screening
Normal
Breast cancer
Breast cancer
Breast cancer
Interval cancer
Breast cancer
Breast cancer
Breast cancer
Death from Breast cancer

Screening detected cases

Interval cancer

Censored

Screening detected cases

Interval cancer

N/A
1-14 mm
1-14 mm

15+ mm

N/A
1-14 mm
1-14 mm
15+ mm

1-14 mm
1-14 mm

15+ mm

1-14 mm
1-14 mm
15+ mm

1-14 mm
1-14 mm
15+ mm

1-14 mm
1-14 mm
15+ mm

1-14 mm
1-14 mm
15+ mm

N/A
No
Yes

N/A

N/A
No

Yes
N/A

No
Yes
N/A

No
Yes
N/A

No
Yes
N/A

Yes
N/A

No
Yes
N/A

48407
82

5

102

343740
362

30

428

99
3
297

13
10
92

— O\

90

432
25
438
93

207

48422.18
61.57
4.85
107.41

343711.40
400.39
31.55
416.50

95.88
2.83
279.60

12.91
9.51
95.36

4.98
1.03
77.91

431.09
2549
434.64

94.02
1.98
219.09
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Table 5.6 shows the estimated results of fitting Model (B) by 10-year age groups. Although
more stable than model (A), there were nevertheless problems in estimation, notably in age
groups 40-49 and 60-69. The estimated proportion of casting-type calcifications in small
tumours in the PCDP was higher in younger age groups (12% for women aged 40-49, 7% for
50-59, and 6% for 60-69). The estimated proportion of tumours in which the casting-type

_ calcifications in the PCDP phase were ablated and showed non-calcification when detected
clinically decreased with age, 100% for women aged 40-49, 64% for 50-59, and 16% for

60-69. However, the estimates are extremely imprecise.

Table 5.7 indicated very good model fitting in Model (B) for each 10-year age group
sub-model. The Pearson Chi-squares on 9, 11, and 11 degrees of freedom for models with
women aged 4049, 50-59, and 60-69 were 6.09 (p=0.7310), 2.73 (p=0.9938), and 3.60
(p=0.9803), respectively. There are only nine degrees of freedom for the 40-49 age group
because it is not applicable for two types of modes, death from breast cancer or censored

among interval cancer with casting-type calcifications at size 1-14 mm.
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" Table 5.7 The goodness of fit of Model (B) by 10-year age groups

Detection Mode Tumour Casting 4049 50-59 60-69
size type Observed Expected Observed Expected Observed Expected
Prevalence screening
Normal N/A N/A 14381 14381.30 17078 17074.34 16948 16949.88
Breast cancer 1-14mm No 10 5.89 21 19.65 51 43.54
Breast cancer 1-14mm. Yes 1 0.82 1 1.46 3 2.80
Breast cancer 15+mm N/A 10 13.99 26 30.55 66 71.79
Subsequent screening
Normal N/A N/A 153968 153971.53 101287 101290.88 88485 88486.62
Breast cancer 1-14mm No 59 61.86 106  108.55 197  203.87
Breast cancer 1-14 mm Yes 9 8.59 8 8.08 13 13.09
Breast cancer 15+mm N/A 111 104.85 118 111.39 199  190.51
Interval cancer
Breast cancer 1-14mm No 25 24.98 36 35.32 38 37.65
Breast cancer 1-14mm Yes 0 0.00 1 0.75 2 2.03
Breast cancer 15+mm N/A 89 91.47 95 92.78 113 113.29
Death from Breast cancer
Screening detected cases
1-14mm No 1 0.88 2 1.86 10 10.51
1-14mm Yes 1 0.87 3 2.36 6 6.94
15+mm N/A 27 26.00 24 24.72 41 44.10
Interval cancer
1-14mm No 1 0.78 3 243 2 1.59
1-14mm Yes N/A N/A 1 0.84 0 0.00
15+mm N/A 24 19.53 34 30.22 32 28.46
Censored
Screening detected cases
1-14mm No 68 68.12 125 125.14 239 23749
1-14mm Yes 9 9.13 6 6.64 10 9.06
15+mm N/A 94 95.00 120 119.28 224 220.90
Interval cancer
- 1-14mm No 24 2422 33 33.64 36 36.38
1-14mm Yes N/A N/A 0 0.08 2 2.04
15+mm N/A 65 69.47 61 64.78 81 84.54
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Table 5.8 shows the estimated result of Model (C). The annual incidence rates of invasive

breast tumours with and without casting-type calcifications were estimated as 7.9 per 100,000

and 1.9 per 1000. The overall incidence rate is around 2 per thousand. The estimated

transition rates from PCDP 1-14 mm shows that tumours with casting-type calcificaticns had

lower transition rates, except for fatality from breast cancer. The fatality rate of small

screen-detected tumours with casting-type calcifications (0.0281) was similar to that of large

~ clinically-detected tumours (0.0304), which in turn was lower than the fatality rate for small

clinically-detected tumours with casting-type calcifications (0.0433). Table 5.9 shows a good

model fit of Model (C) with a Pearson chi-square value of 15.31 on 10 degrees of freedom

(P=0.1210).

Table 5.8 The estimated results of fitting Model (C)

Parameters

Estimate

95% CI

Natural History Component
Normal > PCDP, 1-14 mm, casting

0.000079  0.000011 ~ 0.000147

Normal - PCDP, 1-14 mm, non-casting 0.0019 0.0017 ~ 0.0020
(casting) PCDP, 1-14 mm -> Clinical, 1-14 mm 0.0876 0.000* ~ 0.1949
(non-casting) PCDP, 1-14 mm - Clinical, 1-14 mm 0.1829 0.1451 ~ 0.2207
PCDP, 1-14 mm, casting > PCDP, 15+ mm 0.5353 0.000* ~ 1.4298
PCDP, 1-14 mm, non-casting <> PCDP, 15+ mm 1.2951 1.1558 ~ 1.4344
PCDP, 15+ mm > Clinical, 15+ mm 0.7681 0.6836 ~ 0.8526
Pr;gnostic Component

PCDP, 1-14 mm, casting -> Breast cancer death 0.0281 0.0107 ~ 0.0456
PCDP, 1-14 mm, non-casting -> Breast cancer death 0.0025 0.0011 ~0.0039
PCDP, 15+ mm -> Breast cancer death 0.0168 0.0134 ~ 0.0202
Clinical, 1-14 mm, casting = Breast cancer death 0.0433 0.000* ~ 0.1282
Clinical, 1-14 mm, non-casting - Breast cancer death 0.0051 0.0010 ~ 0.0092
Clinical, 15+ mm -> Breast cancer death 0.0304 0.0241 ~ 0.0367

* Truncated according to the parameter space
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~ Table 5.9 The model fitting of Model (C)

Detection Mode Tumour size Casting type Observed Expected

Prevalence screening

Normal N/A N/A 48407 48421.22

Breast cancer 1-14 mm No 82 61.08

Breast cancer 1-14 mm Yes 5 6.16

Breast cancer 15+ mm . NA 102 107.55
Subsequent screening

Normal N/A N/A 343739.8 343328.13

Breast cancer 1-14 mm No 362 400.24

Breast cancer 1-14 mm Yes 30 29.37

Breast cancer 15+ mm N/A 428 416.38
Interval cancer

Breast cancer 1-14 mm No 99 96.03

Breast cancer 1-14 mm Yes 3 2.82

Breast cancer 15+ mm N/A 297 279.94

Death from Breast cancer

Screening detected cases

1-14 mm No 13 1291
1-14 mm Yes 10 9.51
15+ mm N/A 92 95.36
Interval cancer
1-14 mm No 6 4.92
1-14 mm Yes 1 1.05
15+ mm N/A 90 7791
Censored
Screening detected cases
1-14 mm No 432 431.09
1-14 mm Yes 25 25.49
15+ mm N/A 438 434.64
Interval cancer
1-14 mm No 93 94.08
1-14 mm Yes 2 1.95
15+ mm N/A 207 219.09
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5.5 Discussion

The present chapter introduced latent variables in the multi-state disease process to deal with
unobserved or unknown information in the mammographic screening. The example used was
calcification type, which was only known for tumours of size 1-14 mm. The calcification
features were fopnd to be a reliab]e predjc'c-or for_ long-tenfrl survival of sma]l invasive breast
cancer."*""* Using multi-state models, rates of disease progression, disease prognosis in terms
of survival, proportions of casting-type calcifications, and proportion of these ablated with
time can be simultaneously estimated and adjusted for each other. The results of

goodness-of-fit tests suggested the adequacy of the proposed models.

The best fitting model was Model (B), the latent variable model incorporating change in the
calcifications over time. The second best fitting model was Model (A.1), the latent variable
model with unchanging calcifications status and with regression of the transition rate from
preclinical tumours of size 1-14 mm to clinical tumours of size 1-14 mm, on casting-type

calcifications.

Another latent variable incorporated in Model (B) was used to model the proportion of
casting-type calcification in the PCDP phase which were ablated with time and hence
observed as non-casting cases in the clinical phase. However, the problem of unidentibility
makes the simultaneous estimation of the proportion of casting-type calcifications ablated and
the effect of casting-type calcifications on the instantaneous rate of clinical transformation
impossible. In the present study, in Model (B), we assume identity of clinical transition in
small tumours between casting- and non-casting-type tumours. Because the clinical symptoms
mainly arise as palpable lumps which are an independent way of the appearance of

calcifications, it could be argued that the assumption is reasonable.
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One of the most striking findings was the observed reduced rate of progression to clinical
disease associated with casting-type calcifications in Model (A), in which it is assumed that
casting-type calcifications do not change with the tumour’s growth. Alternatively, this
_observation can be qualified by the likelihood that a proportion of clinical symptomatic
cancers, which are not obsewed to hav¢ ca_sting—_type cralciﬁcr:atipns, did have these
calcifications in the preclinical phase. Model (B) suggests that this proportion is a majority.
However, there is considerable uncertainty in estimation of the proportion ablated. Also,
clinical impressions suggest that while other calcification types (such as powdery or crushed
stone-type calcifications) may be ablated over time, this is not the case for casting-type
calcification (Laszlo Tabar, personal communication). On the other hand, it seems unlikely
that a feature associated with poor survival should be also associated with slower progression

to clinical disease and from small to large tumours.

1t is therefore likely that while the models provide a reasonable fit, none of them are

" biologically accurate. The clinical significant of casting-type calcifications is a recent
discovery, and knowledge of the underlying biological process is rudimentary. Better
biological models may follow from further pathological research into tumour markers such as

hormone receptors and c-erbB/2 status in cases with casting-type calcifications.

The discrepant findings between Model (A) and Model (B) are also illustrated in the disease
prognosis in terms of fatality from breast cancer. In Model (A), the risk ratio for dying from
breast cancer associated with casting-type calcifications was smaller among
clinically-detected tumours than that among screen-detected cases, which is unexpected.
Together with the result on longer sojourn time for tumours with casting-type calcifications, it
raises the hypothesis of a selection phenomenon whereby the disease process is heterogeneous

. among cases with casting-type calcification tumours. Although the ideal way to deal with
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such a problem is to use a frailty model, insufficient data in the present study led to a failure
to fit such a model. In Model (B), under the assumption of possible ablation of casting-type
calcifications, the risk ratios for dying from breast cancer associated with casting-type

calcifications were similar among screen- and clinically-detected tumours.

The present study results add further support to the findings that casting-type calcifications
are associated with poorer prognosis and indicate that absolute mortality in small tumours
without calcifications is very small indeed (Figure 5.2). This has two clinical implications.
First, there is clearly a need to develop effective treatment regimes for tumours with
associated casting-type calcifications. Second, in view of the excellent survival of the group
of small tumours without casting-type calcifications, who were treated with surgery alone or
surgery plus radiotherapy,'"” the balance of benefits and harms of adjuvant chemotherapy in

such cases may contraindicate such therapy.

Age-specific results of both model (A) (not shown) and model (B) (Table 5.6) suggest that
some of the parameters change substantially with age. Estimation, however, was imprecise
within age subgroups, and variance estimation was not always possible. The proportion of
cases with casting-type calcifications reduces with increasing age, and of course it is known
that absolute incidence of disease increases with age. Beyond this, any interpretation of the
age-specific results must be tentative. Nevertheless, the preliminary results of these
tendencies regarding specific age groups provide an important message, that the proportion of
casting-type calcifications among small tumours is associated with age. Larger numbers of

breast cancer cases for such models will be needed to further quantify age-specific results.

For the proportion of small tumours with casting-type calcifications, we found that the

estimate of this proportion was related to the simultaneous estimation of the effect of casting
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on the transition from small to large tumours (f3,) in the PCDP, in the three sub-models of

' Model (A). Without the estimation of B, (i.e. assuming it to be zero), the proportion with
casting-type calcifications was estimated as around 7% which is slightly smaller than that in
Model (B) in which the estimate represented the proportion among small tumours in the
PCDP only. Further, with the estimation of B2, th;: estimat_ed ‘prqportion is much smaller (4%
in Model (A.2) and 3.3% in Model (A.3)). This suggests an inadequate estimation of 3, partly
due to collinearity and partly to its estimation depending on numbers of large tumours in the
PCDP (for which we do not have information on the presence or not of casting-type
calcifications). In addition to the models with latent variables, we also proposed a model to
deal with the heterogeneity in terms of different states in one multi-state model (Model (C)).

The estimated results yielded similar implications to those of Model (A).

The major limitation of this study is the information on casting-type calcifications which was
- available from retrospective investigation of invasive tumours with size smaller than 15 mm
only. To investigate the entire natural history of tumours with casting-type calcifications and
also to examine the hypothesis of frailty mentioned above, we need data not only on small
tumours, but also on large tumours and on in situ cases, in which the presence of calcium and

necrosis is cytologically proven to be associated with high grade (comedo) cases.'*’

In conclusion, various assumptions were assessed via different multi-state models and
demonstrated in this chapter. One assumed that the feature of casting-type calcifications is an
unchanged variable in the mammograms, and another assumed that the feature is likely to
have temporal change. The results of the first suggest that the progression of tumours with
casting-type calcifications is possibly heterogeneous, and those of the second suggest that a
high proportion of casting-type calcifications are ablated between the PCDP and the clinical

phase. This suggests that mammographic screening may give a good opportunity to catch the
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tumours with casting calcifications at an early stage. Clarification and choosing between
models need more investigation. We need further investigation with casting data on tumours
of all sizes, and further biological studies of histopathological tumour features to clarify these
. issues. What is clear is that the present study also confirmed with multi-state models the
previou§ fmdings of survival analyse_s that _the mgmmographic features represent an important

prognostic marker.

154



Chapter 6 Heterogeneity of abnormalities detected in cervical cancer

screening

6.1 Intreduction

Cytological screening using Pap smear for cancer of the uterine cervix has been performed in
western countries since early 1960s.'2''2® The effect on incidence of and mortality from
invasive cervical cancer, although without evidence from randomised controlled trials, has
been demonstrated by epidemiological studies. Some 50% mortality reduction from cervical
cancer about a decade after the advent of screening was observed in Scandinavia,'?2127128
Iceland,'” German,' Scotland,' the USA,132 Canada,' and the UK."** In addition to
detecting invasive cancer at an early stage, cervical screening also picks up premalignant
lesions. Early detection and treatment of such precursor lesions can prevent the incidence of
cervical cancer."**'*® However, the majority of premalignancies would be unlikely to progress
to invasive cervical carcinoma and some may regress, '>""** which makes the traditional
methods of estimating the mean sojourn time, such as the difference between modal age in

" different states or the ratio of prevalence to incidence rate'*’, unreliable. Mathematical an(i

statistical models which incorporate the heterogeneity of progression are therefore required to

quantify progression or regression sufficiently to inform decisions on frequency of screening.

Mathematical and statistical models are developed for better understanding of the disease

142;143 used a

natural history and of the effect of different screening regimes.'*' In 1973, Knox
computer macro-simulation technique to fit a comprehensive but complicated model for
cervical cancer screening with 26 states, including ‘normal’, ‘reverted normal’, ‘dysplasia’ by

regressive or progressive type, ‘carcinoma in-situ’ by young or old type, ‘invasive disease’ by

occult, early or late stage, ‘coned’ by disease status, ‘treated invasive’ by early or late, ....... ,



‘dead of cervical cancer’ and ‘dead from other causes’. Later, micro-simulation screening

_ analysis (MISCAN) was used to assess cervical cancer screening.'**'*® The macro-simulation
used a simulated cohort in which the transitions between states are generated by the
application of the assumed probabilities aggregated over the population; the micro-simulation
model was one in which individual life his_tor»ies»in a particular population, and the effects of
screening on those life histories, were generated by Monte Carlo simulations from stochastic
life history and screening models. In simulation modelling procedures, a constellation of
parameters with respect to demographic features, epidemiological factors and the disease
natural history are assigned initially to simulate a scenario of the observed data. Adjustments

of the parameters are iteratively made until the predicted results are close to observed data.

Researchers have also used non-simulation modelling methods to investigate the disease
process of cervical cancer. Gustafsson and Adami'¥’ constructed a five-state disease process

" including a progression-like and regression-like in situ state in a dynamic model of natural
history and screening interference, and calculated parameters by a least squares process
comparing the observed and predicted reductions in incidence of and mortality from cervical
cancer. Because of limitations of the data source, the preinvasive stage in their model included
carcinoma in situ only. Van Oortmarssen and Habbema'*® used a simplified model to test
hypotheses about regression against data from the screening programme in British Columbia.
Bos and colleagues'*’ used a two-step procedure to investigate the non-progression of cervical
intraepithelial neoplasia. This incorporated estimation of prevalence and incidence rates of
preclinical disease from the observed detection rates, followed by the application to the
probability formulae expressed as a function of the proportion of non-progressive cases and
the duration of preinvasive stage. Recently, Raffle and colleagues'®® compared the cumulative

" abnormality rates with numbers expected to develop cancer in the absence of screening to

estimate the proportion of high grade dyskaryosis and of high grade dysplasia which would
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not progress to cancer.

Other problems in cancer screening include length bias and measurement error. At the
prevalence screen, the screen-detected premalignant cases are those with slower progression
rates. Therefore the real transition rates of the typical incident cases of dysplasia could be

underestimated from the prevalence screen when length-bias exists.

In this chapter, we propose to investigate the disease process of cervical lesions by means of
stochastic models, taking account of length bias, measurement error, and heterogeneity. Based
_on the estimated parameters, a cost-effectiveness analysis is performed, with costs in terms of

smears required rather than actual financial sums.
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6.2 Objectives

The present chapter aims to establish the disease progression-regression history taking the
following items into account:
“ (1) heterogeneity between lesipns d¢tected at prcya}ence screen and subsequent screens,

which is mainly a function of length bias,

(2) the proportion of successfully treated premalignant cases,

(3) measurement error in terms of sensitivity and negative predictive value, and

(4) the heterogeneity of transition rates from pre-malignant lesions to invasive cervical cancer
by means of a mover-stayer model.

(5) Finally, we aim to apply the final model to evaluate the cervical cancer screening in terms
of additional numbers of smears required to prevent one invasive cervical cancer

compared with no screening at all.
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6.3 Materials and methods

6.3.1 Data
The cervical screening programme in Taiwan was initiated by the Bureau of National Health
Insurance in 1995 and has provided women aged 30 years and over with annual cervical

smear and pelvic examination since then.

Between July 1995 and the end of 1998, approximately 2.7 million women were enrolled in
this program. Half of them only attended for one screen during this period. The overall
coverage for the target population aged over 30 years is 43% and declines with age, ranging

from 54% for women aged 30-39 to 24% for women aged 60 and over.

Table 6.1 Frequency of women attending cervical screening programme in Taiwan,

1995-1998

Age Population Women attending Women attending

at the end of 1998 screening at least two screens
15-29 2,786,815 349,015 (13%) 110,107 ( 4%)
30-39 1,888,256 1,022,840 (54%) 486,971 (26%)
40-49 1,612,925 735,041 (46%) 335,566 (21%)
50-59 875,964 338,213 (39%) 129,936 (15%)
60-69 680,919 195,599 (29%) 54,360 ( 8%)
70-79 388,822 72,829 (19%) 14,006 ( 4%)
80-99 139,630 10,636 ( 8%) 1,032 ( 1%)
1 8,373,331 2,724,173 (33%) 1,131,978 (14%)
>30 5,586,516 2,375,158 (43%) 1,021,871 (18%)




Because our primary interest is in delineating the natural history of cervical carcinoma of the
squamous type, we excluded glandular atypia and adenocarcinoma from the primary analysis.
Data were obtained from the National Pap Smear Registry. The most severe record was kept if
there were duplicate rgcqrds fqr the same woman m a ;ingle day All women were linked to
the National Cancer Registry to ascertain clinically-detected cancer. Once the date of cancer

diagnosis was defined, screening records after that date were deleted.

6.3.2 Models and statistical methods
6.3.2.1 Prior to taking measurement error and heterogeneity of susceptibility of

malignant transformation into account

A 4-state Markov process model was used to investigate the disease process of cervical cancer
from screening data. The state space S={0; 1; 2; 3} was defined, where 0 stands for the
disease-free state and 1, 2, and 3 represent premalignant lesions, preclinical invasive
carcinoma and clinical invasive carcinoma, respectively. The premalignant state contains
cervical carcinoma in situ, and is allowed to regress. The disease process is depicted as

follows.

A A Ay
Disease free ‘_' Premalignant ___,  Preclinical __,  Clinical

()] A, €)) invasive carcinoma (2)  invasive carcinoma (3)

Let Xj; denote transition from state i at previous time to state j at the current observation,
where i,j=0,1,2,3. The corresponding probability of transition in a given time interval is

denoted as Pj(t). Please refer to Chapter 2 for the derivation of transition probabilities. Let Py
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denote the proportion of successfully treated premalignant lesions, i.e. cases when the lesion
is treated and returns to the disease-free state immediately and then follows the disease
process from disease-free thereafter. Not all premalignant lesions undergo treatment, and the
screening records do not identify treated cases. The individual lesions successfully treated are
not statistically distinguishable from the probabi_lity of spontaneous regression or from false

positives.

To consider the effect of length bias on incidence of premalignant lesions and transition rate
from premalignant to preclinical invasive, we introduce the exponential regression form and

define

A=Ay e P

Ay =2y - e P,

where x is an indicator for records from prevalence screen. Length bias is the phenomenon
whereby screening detects a disproportionately large number of indolent lesions with very

- long periods in the preclinical phase. Because of their long preclinical duration, they tend to
need only one screen to detect them and therefore they are mainly a phenomenon of the

prevalence screen.

At the prevalence screen, all subjects diagnosed with invasive cervical carcinoma prior to

screening were excluded from the programme. For subject m receiving screening at age 4,

the probabilities of detecting disease-free, premalignant lesion, and invasive carcinoma at

Poo(4,,) Py (4,)

’ ,and
POO(Am)+P0](Am)+P02(Am) Poo(Am)"'Pox(Am)"'Poz(Am)

screening are therefore

Py(4,)
ﬁPoo(Am)*'Pm(Am)‘*Poz(Am)

, respectively.
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At a subsequent screen, with a time interval T, from a previous screen with disease-free
finding, the outcome could be disease-free, premalignant lesion, and invasive carcinoma with
probabilities Py, (7} ), Py, (T,c) and P, (T, ), respectively. If the previous smear finding is a
premaligngnt lesion, then the t;ansition prqbabilifty is a mixtqre of untreated and treated cases.
The likelihood of disease-free finding in the subsequent screening with previous premalignant
finding is then (1-P,)- By(T,)+ P, - P,,(T, ). Similarly, probabilities of premalignant and
invasive finding ate (1~ 5, )- B, (T; )+ P, - Py (T;) and (1-B,) Py (T )+ P - Py (T3),

respectively.

For invasive carcinoma cases arising due to the appearance of clinical symptoms (interval
gancers), the time of clinical invasive cancer onset is known. The likelihood for those with
previous disease-free finding after a time interval U, is P, (U, )- 4,. Again, the likelihood
for those with previous premalignant finding is the sum of that from untreated or
unsuccessfully treated cases, (1-P,)- B,(U, )- A, , and that from treated cases,

Pm 'POZ(Uic)'A%‘

Until the end of 1998, subjects without any record of screen-detected invasive cancer or
clinical-detected invasive cancer (via linkage to the national cancer registry dataset) are taken
as censored. For those with previous disease-free and premalignant finding, the likelihood
formulae are (1- Py, (¥,)) and (1-P,)-[1- B3 (7, )]+ P, -[1- Py (¥, )], respectively, where ¥,
is the interval between last screening and the end of 1998.

6/.3.2.2 Measurement error

From the estimated result without taking measurement error and heterogeneity into account,

at incidence screen predicted numbers of screen-detected invasive carcinoma cases from
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previous disease-free findings are underestimated and numbers from previous premalignant
findings are overestimated (see below, Table 6.6 and 6.8). It is presumed that overestimated
cases result from possibly false-negative cases, i.e. the sensitivity to premalignant lesions is
not 100%. False negatives would imply firstly that the observed previous disease-free group is
actually a mixture of disgasg ﬁee and premalignant cases. S¢c01_:1dly, it may also mean that the
observed previous premalignant group is not representative of premalignancies as a whole,
since those which are misclassified as disease-free may be have different progression rates
from the rest of the premalignant population. These unobserved phenomena could lead to a
lack of fit in various ways, including that observed. Interval cancer rates after a previous
normal finding are similarly underestimated, and are overestimated from a previous
premalignant finding. Ignoring sensitivity may lead to the higher estimates of transition rates
from premalignant to preclinical invasive carcinoma, and thus cause prediction of more
screen-detected cases from premalignant lesions. In this section, therefore, we introduce

measurement error into our model.

When taking measurement error into account, test sensitivity (Sen) to premalignant lesion and

negative predicted value (NPV) of disease-free from premalignant lesion are considered. The

N

negative predictive value is the probability that a subject classified at screening as
disease-free is truly disease-free. It can be expressed as a function of sensitivity, specificity

and prevalence, and is used here as it is easier to incorporate into the model than specificity.

At prevalence screening, some screen detected disease-free subjects could be false negative

premalignant lesions. The probabilities of detecting disease-free, premalignant lesion, and
P (45)+ (1= Sen)- Py, (4,,)
Pyy(4,)+ Py (4,)+ Py (4,,)

Sen - Fy, (Am ) and Py (Am )
Pyo(4,)+ Poy(4,)+ Py (4,,) Pyy(4,)+ Py (4,,)+ Py (4,)

invasive carcinoma aged A4, become

, respectively.
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At subsequent screening, previous disease-free findings could be composed of truly negative
cases (with probability of NPV) or actually premalignant lesion but detected as disease-free
(with probability of 1-NPV) in the previous screening. For these cases, the current finding of
disease-free could be truly negatiye or fglsg nega_tivg p;emalignant. Therefore, the probability
for cases with observed transition from previous disease-free state to current disease-free state
is NPV x[Py(T, )+ (1 Sen)- Py, (T, )]+ (1 - NPV )x [P, (T}, )+ (t - Sen)- B, (T} )]. For
premalignant findings at current screening with previously observed disease-free, the
probability is NPV x[Sen- Py, (T} )]+ (1- NPV )x[Sen- B, (T} )]. The probability of currently
preclinical invasive finding with previously observed disease-free is

NPV x Py, (T, )+ (1- NPV )x P, (T} ).

For those having a premalignant finding at the previous screen, the possibility of a false
positive is not distinguishable from Py, but sensitivity still affects the result of the current
observation. The population of successfully treated premalignancies contributes to the
likelihood. The likelihood formulae for disease-free, premalignant and invasive findings are
then (1- P, )Py (Z; )+ (- Sen)- B (T, )]+ P, - [Py (T, )+ (1 Sem)- P, (T, )],

(1~ P, )Sen- B (T, )]+ P, -[Sen- Py, (T, )], and (1-P.)- B, + P, - P, , respectively.

For interval cancers and censored cases, the term of negative predictive value exists in the
likelihood terms for those with previous disease-free findings but not for those with previous
premalignant findings. Subjects with previous disease-free findings have probabilities of
being clinically-detected and censored as NPV - Py, (U, )- A, + (1 - NPYV)-P,(U,) A, and
NPV -(1- P (U, ))+ (1- NPV)-(1- P5(U;. ). The corresponding probabilities for those with
previous premalignant finding are (1- P, ) P,({U,,)- A4 + P, - Py, (U, )- A, and

(- [i-R@ )+ £ - B )]
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In the analysis taking measurement error into account, only data from the subsequent screens

were used, to avoid the need to estimate length bias effects simultaneously.
6.3.2.3 Mover-stayer model

As stated above, the majority of premalignant lesions are unlikely to progress to invasive
cervical carcinoma. We propose a mover-stayer model in which a proportion, say P_mover, of
subjects can follow the entire natural history of cervical cancer from normal to invasive
carcinoma, while the rest (1-P_mover) can only progress to premalignanct lesions and then
either stay in that state or regress to normal. Within these two groups, the transition rates
among subjects are assumed to be homogeneous. The possible pathways of these two groups

are depicted as follows.

Model (A) (for mover)
}'l ﬂ’3 2’4

Disease free 4_' Premalignant ____,  Preclinical __,  Clinical

(1)) A, ) invasive carcinoma (2)  invasive carcinoma (3)
e
and Model (B) (for stayer) Disease free 4__' Premalignant
0 2 (1)

Under the assumption of homogeneity in the submodels, the above two submodels follow a
four-state and a two-state Markov model, respectively. The transition probability matrixes in

model (A) and model (B) are represented by P;i (t) and P/ (t) using the formulae derived
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in Chapter 2. Therefore, the transition probability matrix in section 6.3.2.1 and 6.3.2.2

becomes

P(t)[i’] = Pmover x P]:; (tIi’]+ (1 - Pmover )X Plg (tli’] fori = 1’2
’ P(t)i,|= P ()] fori=3,4
6.3.3 Computer simulation

After estimating the progression and screening parameters from a credible and well-fitting
model, there remains the problem of determining the implications of these for the screening
regime. To address this problem, we used computer simulation, using the parameter estimates
of a well-fitting model to generate premalignancies, preclinical invasive cases, clinical
cancers, and screening-detected events. Cohorts of 1,000 women aged 30, 40, 50, and 60
years were simulated until the age of 79 years in five arms with screening intervals of 1, 3, 5
and 10 years, and for no screening at all. We estimated the outcomes in those actually
attending, and assumed sensitivities of 95% and 90% to the premalignant lesions, specificity
of 98%, and successfully treated proportions of 100% and 85%. These two sensitivities and
single specificity were consistent with observed results (see below). Two scenarios were
simulated: no screening before the start age (the eligible pool includes subjects in disease-free,
preclinical, and clinical state at entry); and population already intensively screened (all
women start from normal state). The former case corresponds to screening starting at the
lower point of each age group considered, so that, for example, the results for age group
40-79 correspond to the benefit of starting screening at age 40 and ending at age 79. The latter
pertains to screening in a given age group assuming all prevalent preclinical disease is already
excluded by previous screening. Thus the results for age group 40-79 would then correspond
to the benefit of continuous screening for age 40 to age 79 given that intensive screening had
been performed before age 40. Figure 6.1 shows the flowchart of the computer simulation in

the first scenario.

166



L91

uonenwis 19)ndurod 10y JeYOMO[y YL ['9 2InJ1]

S9SBO PajodIOp-A[[BoTuI]) S3SBO PIJOJOP-3UIUIING

IOJUBD JAISBAUI [BOTUI[OA1] o

J90UBD DAISBAUIL [BITUI])) o suoisa] jueugiewaid Jo aanisod aniy o

IODUBD QATISBAUI [BOTUI[031]
SUOIS9] JUBUII[BWAI] o
[BULION] o

suo1so] JueuSirewald Jo 9ATIE3OU OS[B.] o
[euLIou Jo 9ANIsod os[eq o
[EWLIOU JO 9ATJE3QU NI o

a

I
1
1
1
1
1
1
1
1
1
|
]
1
i
1
T
1
!
1
1
1

Suruoaros
ON Jo 1eax SO

U9210g
ON SOx

I90UBD JAISBAUI [BOIUI[ORI] o
SUOIS3[ JuBUSI[PWI] o
[EULION] o




6.4 Results

6.4.1 Descriptive results

Table 6.2 shows the distribution of screening findings at the prevalence screen. The
proportion with premalignant findings ipcrgased yvith age, ﬁ'pmr argund 1% for women aged
under 30 to 4.4% for women aged 80 and over. The detection proportion of invasive cervical
cancer had a more radical increase with age, from 0.1 per 1,000 for women aged under 30 to
14 per 1,000 for women aged over 80. When taking age younger than 15 and older than 99 as
missing values, the mean (SD) ages of normal, atypical change, low-grade squamous
intraepithelial lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL), cervical
carcinoma and others at prevalence screen were 41.63 (12.27), 46.13 (13.50), 41.18 (12.53),

48.18 (13.81), 58.91 (13,66), and 48.63 (15.29), respectively.
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Table 6.2 Screening findings at prevalence screen by age group

Screening  Normal ASCUS LSIL HSIL Preclinical Total

finding invasive cancer

15-19 14,519 64 108 15 - 14,706
98.73% 0.44% 0.73% 0.19% 0.00%

20-29 330,616 1,308 1,686 638 49 334,297
98.90% 0.39% 0.50% 0.19% 0.01%

30-39 1,009,474 4,972 4,071 3,629 657 1,022,803
98.70% 0.49% 0.40% 0.35% 0.06%

40-49 721,890 4,881 3,201 3,864 1,199 735,035
98.21% 0.66% 0.44% 0.53% 0.16%

50-59 331,013 3,071 1,282 1,875 976 338,217
97.87% 0.91% 0.38% 0.55% 0.29%

60-69 189,540 2,394 815 1,712 1,154 195,615
96.89% 1.22% 0.42% 0.88% 0.59%

70-79 69,995 1,081 285 865 612 72,838
96.10% 1.48% 0.39% 1.19% 0.84%

80-99 10,017 199 65 204 153 10,638
94.16% 1.87% 0.61% 1.92% 1.44%

Total 2,677,064 17,970 11,513 12,802 4,800 2,724,149
98.27% 0.66% 0.42% 0.47% 0.18%

* ASCUS: atypical squamous cell of undetermined significance; LSIL: low-grade squamous
intraepithelial lesion, encompassing cytological evidence of human papillomavirus/mild
dysplasia/cercical intraepithelial neoplasia (CIN) 1; HSIL: high-grade squamous intraepithelial lesion,

encompassing moderate and severe dysplasia, carcinoma in situ; CIN 2 and CIN 3
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Compared to Table 6.2, the proportion of premalignant findings at subsequent screening is

slightly lower but still increases with age, from around 1% for women aged under 30 to 3.5%

for women aged 80 and over. The proportion of screen-detected invasive cancer increases

with age even more rapidly. (Table 6.3)

Table 6.3 Screening findings at subsequent screening by age group

Screening Normal ASCUS LSIL HSIL Preclinical Total

finding invasive cancer

15-19 1,151 3 7 - - 1,161
99.14% 0.26% 0.60% 0.00% 0.00%

20-29 85,317 361 392 172 7 86,249
98.92% 0.42% 0.45% 0.20% 0.01%

30-39 662,758 3,020 2,306 1,720 223 670,027
98.92% 0.45% 0.34% 0.26% 0.03%

40-49 568,349 3,287 2,078 1,804 322 575,840
98.70% 0.57% 0.36% 0.31% 0.06%

50-59 223,205 1,723 747 690 160 226,525
98.53% 0.76% 0.33% 0.30% 0.07%

60-69 86,221 831 355 489 100 87,996
97.98% 0.94% 0.40% 0.56% 0.11%

70-79 23,564 336 111 199 59 24,269
97.10% 1.38% 0.46% 0.82% 0.24%

80-99 2,028 33 6 35 11 2,113
95.98% 1.56% 0.28% 1.66% 0.52%

Total 1,652,593 9,594 6,002 5,109 882 1,674,180
98.71% 0.57% 0.36% 0.31% 0.05%
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Table 6.4 shows the previous screening finding for interval cancers. We can see that the
proportion of interval cancers whose previous finding was normal was decreased about half
from the youngest age group to the eldest. This could arise from a higher progression rate or a

poorer sensitivity in the younger groups.

Table 6.4 Previous screening findings for interval cancers by age group

Screening Normal ASCUS LSIL HSIL Total
finding
15-19 18 2 - 1 21
85.71% 9.52% 0.00% 4.76%
20-29 263 20 11 17 311
84.57% 6.43% 3.54% 5.47%
30-39 468 60 18 45 591
79.19% 10.15% 3.05% 7.61%
40-49 468 60 18 45 591
79.19% 10.15% 3.05% 7.61%
50-59 250 21 2 14 287
87.11% 7.32% 0.70% 4.88%
60-69 182 41 5 26 254
71.65% 16.14% 1.97% 10.24%
70-79 95 36 4 17 152
62.50% 23.68% 2.63% 11.18%
80-99 9 5 1 6 21
42.86% 23.81% 4.76% 28.57%
Total 1,285 185 41 126 1,637
78.50% 11.30% 2.50% 7.70%
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6.4.2 Basic model

Table 6.5 shows the estimated results from the 4-state Markov chain model prior to taking
measurement error and heterogeneity of susceptibility of malignant transformation into
account. The incidence of premalignant lesions at the subsequent screens increased by age,
around 1.4 per 100 women-years for women aged 30-379 to a;oqnd 2.3 per 100 women-years
for women aged over 80. The incidence of premalignant lesions at first screening was
non-significantly lower than that at subsequent screening for women aged 30-39 and 70-99,
but higher for all other ages and significantly higher for women aged 40-69. The regression
rates were more than 1 per women-year for women aged 30-69. Slower regression rates were
seen in the older women. The annual transition rates from premalignant lesions detected at
incidence screens to preclinical invasive lesions increased with age, from 0.0383 for women
aged 30-39 to 0.1452 for women aged 80-99. Taking the inverse of the annual transition rates,
we estimated the mean sojourn time in the premalignant state as around 26 years for women
aged 30-39 and 7 years for women aged 80-99. Lesions detected at prevalence screen
generally had an approximately 50% lower rate of progression. The annual transition rates
from preclinical to clinical invasive cancer ranged from 0.1903 to 0.2421, except for a lower
estimate of 0.1037 for women aged 70-79. This gives an estimated sojourn time from 4 to 5
years, except for the estimated 9.6 years for women aged 70-79. The proportion of

successfully treated premalignancies tended to be lower in women aged over 60.

The results of goodness-of-fit testing are shown in table 6.6. The fit is not good when age
groups are combined nor for women aged 30-39, 40-49, 50-59, but is satisfactory for women
aged 50-59, 60-69, 70-79, and 80-99. The main discrepancy between observed and fitted
comes from the mode of screening-detected invasive cancer, whether with previous normal or
premalignant finding, and from the poor fit of interval cancers, as can be seen from the

chi-squares at the bottom of table 6.6, when the interval cancers are excluded.
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It could be argued that the majority of cases with HSIL or worse are treated by excision and
the natural history is not observable thereafter. The same model was therefore applied to data
with records truncated after HSIL or more severe lesions were diagnosed. Table 6.7 shows
similar results to the inclusive analysis, excreptr for lqwer estimatgs of Fhe proportion of

successfully treated cases. Similar results on model fit can be seen in table 6.8.
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6.4.3 Measurement error and Mover-Stayer model

Table 6.9 shows the estimated results of the model taking measurement error and
heterogeneity of progression capability into account. In this model, only data from subsequent
screens were included. The incidence of premalignant lesions increased by age from 2 per
1000 woman-years for women aged 30-49 to 6_pe§ IQOQ woman-years for women in their
sixties. The regression rates also increased with age among women aged 30-69. The
malignant transition rates from premalignant lesions among those with susceptibility (movers)
were estimated as 0.77 in women aged 30-39, and around 1.2 for women aged 40-69. The
annual transition rate from preclinical to clinical invasive cancer increased by age from 30-59,
and decreased after 60. The estimated proportion of movers increased with age from 6% to
11%. The estimated results show good performance of screening in terms of measurement
error with 100% sensitivity and above 98% negative predictive value in all age groups. The
estimates, however, were quite unstable for the age group 70-79 in this model, being very

dependent on starting values in the estimation.

Table 6.10 shows the result of goodness-of-fit testing in this model. The results show a good
fit in all age groups, except for age group 40-49, with a Pearson % of 9.93 with 2 degrees of
freedom (p-value 0.007). This is mainly due to underestimation of interval cancers after a

previous premalignant screening finding,
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6.4.4 Computer simulation

Table 6.11 shows the simulated results of different screening regimes using the estimated
parameters of the model with heterogeneity (Table 6.9) by screening interval and starting age
under the assumption of no previous screening. Four situations were tabulated: sensitivity of
95% and 90%, and proportions of successfully treated premalignancies of 100% and 85% (i.e.
assuming a more aggressive treatment policy than in the programme). In table 6.11 it is shown
that the reduction in invasive cancers (screening-detected or clinically detected), compared
with no screening at all, decreased with a longer screening interval. When screening starts at
age 30 years, the reduction decreases from 72% with annual screening to 20% with ten-yearly.
When screening starts at 60 years, the change in the reduction becomes less radical, from 53%
with annual screening to 21% with 10-yearly screening. Under the same screening interval,
the reduction is smaller when screening starts later in life, but screening is more costly when
screens start at from younger ages, due to the longer period and therefore larger number of
screens. In order to take both cost and effectiveness into account, a ratio of smears required
per invasive cancer prevented, S/I, was used. With the same starting age, a longer screening
interval leads to smaller S/I. There is clearly a trade-off between the effectiveness in terms of
absolute rates of invasive cases detected and marginal cost in terms of number of smears
required per invasive case prevented. It could be argued that 3-yearly screening confers a
substantial benefit of the order of 40-50% of invasive cancer prevented, with an acceptable
marginal cost. Annual screening confers a clear additional absolute benefit, but at a
substantially greater absolute and marginal cost. The smaller the sensitivity or proportion

successfully treated, the larger the figure of S/I.

Table 6.12 shows the simulated results of different screening regimes by screening interval

and starting age under the assumption of perfect screening beforehand. The results indicate
183



greater absolute benefits but larger S/I than in Table 6.11. The qualitative implications for

absolute benefits and marginal costs, however, are similar.
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6.5 Discussion

In this chapter, we started from a basic model of disease progression of cervical cancer
applied to the population screening programme in Taiwan. The results suggested that the low
malignant transition rates estimated were due to ignoring heterogeneity of susceptibility. From
the estimated results numbers of predicted screen-detected carcinoma cases at incidence
screens from previous disease-free findings were underestimated and numbers from previous
premalignant conditions were overestimated. It was suspected that overestimated cases
resulted from false-negative cases, i.e. the sensitivity or the negative predictive value cannot
be 100%. Interval cancer rates after a previous normal finding were similarly underestimated.
Therefore, mover-stayer models incorporating measurement error and heterogeneity of
potential transformation from the premalignant lesions into the model were developed. The

latter showed a significant improvement in model fit.

In the final mover-stayer model with measurement error, only data form the incidence (second
or subsequent) screens were used. Prior to this, we tried a mover-stayer model taking into
account measurement error and length bias simultaneously, with prevalence and incidence
data in the same model. The estimates were very sensitive to the initial values of sensitivity
and proportion of premalignant cases successfully treated. Also, different sets of estimates
gave very similar values of the log-likelihood. This suggested identification problems due to

overparameterisation.

One point which is illustrated by the results in this chapter is that the most complex model is
not necessary the best fitting. A more complex disease process with LSIL and HSIL as
different disease state has shown worse fit than our final model. The following is an example

for women aged 50-59:
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0.0074 3.2269 0.4091 0.8370

- -
Normal LSIL HSIL - Preclinical -  Clinical
« «

1.2483 1.9488
Estimate of the proportion of successfully treated or misclassified LSIL cases: 84%

Estimate of the proportion of successfully treated or misclassified HSIL cases: 85%

Table 6.13 The comparison of observed and predicted cases based on a 5-state Markov

process model for women aged 50-59, Taiwan, 1995-1998

Observed Expected

First screening

Normal 332746 332750.79
LSIL 1299 1359.72
HSIL 1912 1862.60
__ Preclinical 929 _912.89
Later screening
Normal-> Normal 185146 185066.55
Normal-> LSIL 523 487.05
Normal-> HSIL 446 515.83
Normal-> Preclinical 115 105.21
LSIL - Normal 887 885.87
LSIL - LSIL 64 27.75
LSIL - HSIL 33 49.92
LSIL - Preclinical 2 14.10
HSIL - Normal 1083 1080.66
HSIL - LSIL 37 35.33
HSIL - HSIL 93 71.05
_ . HSIL = Preclinical 12 2399
Interval cancer (IC)
From Normal 75 123.52
From LSIL 1 11.25
_ FomHSIL 3 18.43
Model fitting
Chi-square 135.01
P-value <0.0000

Similar results were observed in a 5-state mover-stayer model, with a chi-square of 181.76 for

goodness of fit.
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The fact that the annual premalignant incidence and regression rates were about 5 times larger
in the basic model than in the heterogeneity model can be explained by the failure to take
heterogeneity into account. All premalignant lesions were assumed to be capable of
progression, so that higher regression rates were estimated, which in turn led to higher

estimated incidence rates of premalignant lesions.

The proportion of movers who have the potential to follow the entire natural history of
cervical cancer from normal to invasive carcinoma was estimated as between 6% and 11% in
our study. This estimate was lower than the finding of 24% progression in women aged 25-50
by Bos et al."*’ Van Oortmarssen and Habbema concluded that 84% of new lesions regress
spontaneously for women aged undér 34, and 40% for women over age 34. Their study also
found a larger proportion of progressive lesions than ours. Raffle and colleagues’ study'”
showed a closer result to ours. They found that at least 80% of high grade dyskaryosis and of
high grade dysplasia would not progress to cancer. The discrepancies from our study might be

explained by the fact that our study was based on an annual screening data, which would

therefore diagnose more non-progressive premalignant lesions due to the frequent screens.

In the screening assessment, we used a ratio of number of smears per invasive cases prevented
(S/I) to represent the marginal cost of screening. In the results of the simulations, there is a
further benefit of annual screening over 3-yearly but at a considerable increase in both
absolute and marginal costs. The simulation results also suggest that for screening with a
3-year interval or longer, screening starting from 30 years old is the optimum option with
respect of interval cancer reduction and S/I. Moreover, the choice of interval also depends on
societal willingness to attend. Under the policy of annual screening in Taiwan during
1995-1998, there were only 43% attending repeated pap screening in the three years of

observation. The average time since last screen, for the women who actually did attend for
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repeat screening, was 1.4 years.

Generally speaking, a disease natural history model has to take heterogeneity into account.
Very simple homogeneous models estimate sojourn times of 12-20 years. This would mean
that 5-10 yearly screening would be adequate. Our chosen model fitted the observed data
much better than a homogeneous model, and simulations from our model showed a clear and
substantial benefit of 3-yearly screening over 5-yearly. Sasieni et al**, on the basis of
case-control evidence, proposed a 3-year interval for women aged 25-49 in the UK. This

recommendation has been implemented.'*%"!
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Chapter 7 Discussion and Conclusion

7.1 Generic implications—methodological

There is no general rule about whether a simple or more complex model will give a better fit.
For example, in chapter 2, the more complex stochastic model clearly performed better in
modelling DCIS progression than the simple deterministic model. Similarly, a heterogeneous
model gave a better fit than a homogeneous to the cervical screening data in chapter 6.
However, additional complexity beyond the 4-state heterogeneous model for cervical cancer

led to a deterioration in fit rather than a further improvement.

The results of chapter 4 showed only a slightly better fit of heterogeneous models over
homogeneous, in the analysis of the adenoma-carcinoma process in colorectal screening.
However, the better fit was most strongly manifested in the estimation of numbers of
colorectal cancers, i.e. the most important event in clinical terms. The heterogeneity models

also gave more plausible prediction of further cumulative disease progression.

In view of the results of chapters 2, 4, and 6, therefore, it is clear that there is a potential role
for heterogeneous models in cancer screening. The two practical questions which arise are
(1) the ability to fit the model and estimate the parameters with precision and consistency;

(2) the usefulness of the results in terms of policy decisions.
(1) will depend on the complexity of the model, the methodology, and the data available. (2)

depends on the fit of the model and its plausibility based on knowledge of the biological

process being modelled. We now consider the two questions in more detail.
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7.1.1 Tractability and estimation

As in other fields, the more complex the model, the more difficulty in fitting. This is not a
question of simple overparameterisation. In various examples we found either difficulties in
convergence, dependence on starting values or non-invertability of the matrix of second
derivatives, despite there being theoretically sufficient degrees of freedom in the data. This
illustrates the fact that a complex model can be identifiable in principle, but may require more
data than one could hope to gather in practice for reliable estimation. This is the case for some
of the more complex models attempted for chapter 6 (numerous models were tried but their
results are not reported here). Despite having screening data on 2.7 million women, some

models gave results which were strongly dependent on starting values.

While a model can be too complex, it can also be too simple, as noted for the cervical
screening example. Also, the results in chapter 4 are suggestive of better fit and greater

plausibility of the frailty models than the homogeneous models to the colorectal data.

Chapter 4 also raises possibly the most important methodological part of this work, the issue
of tractability of the models. Superficially, applying continuous frailty to multistate disease
processes (particularly if there are 3 states or more) is a daunting prospect. This is because
there is no longer a straightforward matrix approach to deriving finite transition probabilities,
so that we rely on complex multidimensional numerical integration. However, the strategy of
splitting up the process into two piecewise homogeneous processes, separated by a single
transition with frailty, proved effective. In principle, this approach could be extended to frailty
in more than one transition, separating more than two piecewise homogeneous processes. We

suspect, however, that this would run into computing and estimation problems.
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7.1.2 Plausibility of the model and usefulness of the results

To some extent, these are dependent on both the model and the data. A model may be correct
in biological terms but the data may be insufficient to give precise estimates or indeed to fully
identify the parameters. On the other hand, a model may give a good fit to the data, but yield
estimates which we do not believe to be plausible. The casting calcification work in chapter 5
is a good example. In chapter 5, several models gave a good fit to the data but all yielded at
least one estimate which was not plausible in clinical or biological terms. This may be partly
due to the fact that in a large number of subjects, the crucial variable (presence of casting-type
calcifications) was either unobserved or unobservable, but it is more likely to be due to the
fact that the biological process is not well understood, and the models do not adequately
reflect this process. This illustrates the fact that with sufficient parameters one can obtain a
good fit to the data, even if the model is unrealistic. This in turn is a warning against

overcomplexity.

7.1.3 Conclusions on methodological strategies

Clearly, a good rule of thumb is that one should start with the simplest models and gradually
introduce increasing complexity, assessing the improvement, if any, at each stage. It may be
that there is no advantage in moving beyond the simplest model. It is more likely, however,
that an improvement in fit will be observed initially with increasing complexity, but at some
point the improvement will cease to be observed, or problems of estimation will arise. In this
case a “best” model of intermediate complexity will be observed, as in the cervical screening
example. The work in chapter 4 developing piecewise homogeneous models separated by a
transition incorporating frailty gives an opportunity to introduce continuous frailty to

multistate models as part of this process.
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7.2 Specific implications—clinical

7.2.1 Overdiagnosis of DCIS in breast screening

In addition to the debate on the role of detecting ductal carcinoma in situ (DCIS) in
mammographic screening between ‘mainly overdiagnosis’ and ¢ a representation of
substantial prevention of invasive breast cancer’, our results suggested that there is an element
of overdiagnosis and overtreatment of DCIS in mammographic screening programmes. We
estimated that 37% and 4% of DCIS cases were non-progressive when diagnosed at a
prevalence screen and an incidence screen, respectively. Since DCIS cases are a minority of
screen-detected cancers, this means that the great majority of cases diagnosed at screening are
progressive, either invasive disease or progressive DCIS. We estimated that for each
non-progressive DCIS case diagnosed at a prevalence screen, 19 invasive or progressive
DCIS cases are diagnosed. For incidence screens, there are around 140 progressive DCIS or
invasive cases diagnosed per single non-progressive case. Although we should not be
complacent and we should always strive to minimise unnecessary intervention, this suggests
that the overdiagnosis element is modest in comparison with the likely benefit of early
diagnosis and treatment of progressive lesions. The finding that there is an element of
overdiagnosis also raises the question of treatment of DCIS. Clearly, it would be imprudent
not to excise such tumours given the finding that the majority will progress to invasive breast
cancer if left untreated. However, there is an urgent need to design the adjuvant treatment to
fit the risk the disease poses to the patient. In particular, classification of DCIS cases into
those who need postoperative radiotherapy and those who do not would be of great value.

Thus our results also pose a challenge to therapy of DCIS as much as to early detection.

7.2.2 Colonoscopy screening
With the incorporation of frailty in a general multi-state model with continuous or

dichotomous heterogeneity for the natural history of the adenoma-carcinoma sequence in the
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colon and rectum, we found consistent results of three-state models, implying that around
40% of adenomas would progress to invasive cancer in 20 years. In a more complex model
with adenoma states classified by polyp size or histological typé, a very high early cumulative
risk among the progressive or “faster’ cases from diminutive or tubular adenomas was seen.
This could result from the assumption of only diminutiye (or mbulm) adenomas having lower

or zero susceptibility, so that early events are dominated by those with greater susceptibility.

7.2.3 Cervical cancer

In the investigation of heterogeneity of abnormalities detected in cervical cancer screening,
around 6%-11% of premalignancies were estimated to have positive susceptibility of
malignant transformation. Our empirical estimates of disease progression rates were from a
model which fitted well to screening data on 2.7 million women. The results of computer
simulations from these estimates showed a clear and substantial benefit of a 3-yearly
screening interval in terms of marginal cost of screening by using numbers of smears required
to prevent one invasive cervical cancer. This is borne out by study of invasive cancer by time
since last screen (Table 7.1). Clearly, after 3 years since last screen, the incidence of invasive

cancer increases dramatically.

Table 7.1 Invasive cervical cancer incidence by time since last screen

Time since last  Numbers of Invasive cancer Person-years Incidence Rate per 1000
screen (year)  Screen- IC Total Screen- IC Total
detected detected
0.50-0.99 303 176 479 7198563 04209 0.2445 0.6654
1.00-1.99 460 130 590 499890.7  0.9202  0.2601 1.1803
2.00-2.99 94 40 134 85665.8 1.0973 04669  1.5642
3.004.00 25 6 31 5759.0 43410 1.0418  5.3829
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Results from homogeneous models suggest a very slow average progression rate of
premalignancy and suggest that longer interscreening intervals are acceptable. Assuming that
all premaligancies can progress when in fact the majority cannot means that the estimated rate
of progression and therefore screening interval policy, will be based mainly on the majority of

lesions which do not need screen-detection, rather than on the minority which do.

7.3 Future work
From a methodological point of view, there is no doubt that pure statistical research will
continue to develop methods and models for multistate data with frailties. The piecewise

homogeneity strategy seems to be a good way forward.

For models to be of any use, there must be data. Our results emphasise the need for rich and
high-quality data on disease events in screening programmes. The results on casting-type
calcifications illustrate the difficulties of estimation when there are major gaps in the data,
notably on a key variable. An immediate challenge for those working in screening
programmes is collection of data not only for monitoring the programmes but also for
evaluation of hypotheses which may lead to improved screening and disease control in the

future.

In clinical terms, there are a number of targets for the future. While recent work by others and
in this thesis has indicated optimum screening regimes for pap smear screening, interest in
human papillomavirus (HPV) testing as a frontline screening tool is increasing. There will be

a need to evaluate screening using HPV testing in the near future.

There remains considerable work to be done in modelling and evaluation of the many
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colonoscopy programmes in individuals at high risk of colorectal cancer around the world.
Other targets for evaluation in the future will be the evaluation and comparison of

colonoscopy, sigmoidoscopy and virtual colonoscopy.

Lung cancer screening with computed tomography is a topic of some interest. Because of
fears of overdiagnosis, there will be a need for detailed statistical modelling and analysis to

investigate this.

When breast cancer screening was initiated, the clinical and scientific worlds were given the
opportunity for the first time to study the natural history of early invasive breast cancer and
DCIS. With the ovarian cancer screening studies ongoing, ' a similar opportunity will
become available for early ovarian cancer. There is considerable scope for mathematical
modelling to investigate hypotheses about biomarkers for the development of ovarian

cancer.'”

In Asian countries, there are a number of screening strategies for malignancies common in

Asian populations. These include

B visual inspection for oral premalignancies,

B two stage screening (Epstein-Barr virus testing followed by endoscopy) for
nasopharyngeal cancer,

B two stage screening (hepatitis testing together with family history of liver cancer followed
by ultrasound) for liver cancer, and

H various approaches to screening and control of precursors of gastric cancer.

For many of these issues, simple analytic methods will sufficient. For some, however, explicit

mathematical modelling of the disease process will be necessary. It is reasonable to expect
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that problems of heterogeneity of progression will be common, and that some of the methods

in this thesis will be relevant.
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Appendix 1 SAS macro for three-state model conjugated with frailty term

applying to one transition rate between two states

smacro G_pf1;

%macro G_probi1;
p11= Exp(-(b1*predt));
%smend G_prob11;

%macro G_probi12;
start fun12(s) global(predt,b1,b20,theta,delta);
vi2=bi*exp(-b1*s)*( theta / (theta+b20*(predt-s)) )**delta ;
return(vi2);
finish funi2;
call quad(p12,"funi2",indext);
%smend G_prob12;

ssmacro G_prob13;
start fun13(s) global(predt,b1,b20,theta,delta,xs);
XS=§;
indext23=J(2,1,0); indext23[2]=predt-xs;

start fun23(u) global(predt,b1,b20,theta,delta,xs);

v23=( theta / (theta+b20*u )) **delta * (delta*b20/(theta+b20*u)) ;
return(v23);
finish fun23;
call quad(p23,"fun23",indext23);
vi13=b1*exp(-b1*s)*p23;
return(vi3);
finish funi13;
call quad(p13,"fun13*®,indext);
smend G_prob13;

%smend G_pf1;

Ssmacro G_pf2;

predt=tt[i,1];

indext=J(2,1,0); indext[2]=predt;
bi=h[1]; b20=h{2]; theta=h[3]; delta=h[4];
%G_prob11; %G_prob12; %G_probi13;

pO=pi1;

p1=p12;

p2=p13;

Ssmend G_pf2;

%macro G_para;
ho={ 0.002 0.3 1 1 };
con={ 0 0 o o ,
};
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%smend G_para;

%smacro CP_pf1;
%macro CP_prii;
p11= Exp(-(b1*predt));
%smend CP_prii;

%macro CP_pr12;
start funi2(s) global(predt,bt,b20,tho,fi,ita);
vi2=bi*exp(-bi*s + tho* ( (1+b20*(predt-s)/fi)**(-ita) ) - tho
return(vi2);
finish fun12;
call quad(p12,"funi12®,indext);

smend CP_pr12;

Ssmacro CP_pr13;
start fun13(s) global(predt,bt,b20,tho,fi,ita,xs);
XS=§;
indext23=J(2,1,0); indext23[2]=predt-xs;
start fun23(u) global(predt,b1,b20,b4,tho,fi,ita,xs);
v23=( tho*ita*b20 ) / (fi * ( (1+b20*u/fi) ** (ita+t)) ) *
exp( tho* ( (1+b20*u/fi)**(-ita) ) - tho );
return(v2d);
finish fun23;
call quad(p23,"fun23",indext23);
v13=bi1*exp(-b1*s)*p23;
return(vi3);
finish fun13;
call quad(p13,*“fun13*,indext);
%smend CP_pri3;

%mend CP_pf1;

smacro CP_pf2;
predt=tt[i,1];
indext=J(2,1,0); indext[2]=predt;
bi=h[1]; b20=h[2]; tho=h[3]; fi=h[4]; ita=h[5];
Sscp_pri1; %cp_pr12; S%cp_pri3;
pO=p11;
p1=p12;
p2=p13;

%smend CP_pf2;

%smacro CP_para;
ho={ 0.002 0.3 0.4 1 0.9 };
con={ 0 0 0 o o ,

. . };
%smend CP_para;

%smacro MS_pf1;

start pmtrxa(h,t);

) ;
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0=J(3,3,0);
Q[1,1]=-h{1];
Q[1,2]= h[1];
Q[2,2]=-h[2];
Q[2,3]= h[2];
A=teigvec(Q);
v=teigval(Q);
D=diag(exp(v[,1]#t));
P=A*D*inv(A);
return(P);
finish pmtrxa;

start pmtrxb(h,t);
Q=J(2,2,0);
Q[1,1])=-h[1];
Q[1,2]= h[1];
A=teigvec(Q);
v=teigval(Q);
D=diag(exp(v[,1]#t));
P=A*D*inv(A);
return(P);

finish pmtrxb;

ssmend MS_pf1;

ssmacro MS_pf2;

Pa=pmtrxa(h,ttf[i,1]);
Pb=pmtrxb(h,tt[i,1]);
mover=h[3]; stayer=1-mover;

pO=mover*pa[1,1]+stayer*pb[1,1];
pi=mover*pa[1,2]+stayer*pb[1,2];

p2=mover*pa[1,3];

smend MS_pf2;

Ssmacro MS_para;
ho={ 0.005 0.015 0.6};
con={ 1.e-5 1.e-5 0 ,

1 1 1}

Ssmend MS_para;

%smacro hetero(type, tt, para);

title '3 state, Excluding hyperplasia';
title2 "Heterogeneity model, Type: &tt";

proc iml;

use mydata;

read all into tt[colname=col};
m=nrow(tt);

%&type._pf1;
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start f_loglL(h) global(tt,m &para);
sum=0;
do i=1 to m;

propor1=305/10496;
propor2=300/2627,
propor3=116/760;

%s&type._pT2;

px0=pO*propor1/ (propor1*p0+propor2*pi+propor3*p2);
px1=p1*propor2/(propori*p0+propor2*pi+propor3*p2);
px2=p2*propor3/ (propori*p0+propor2*pi+propor3*p2});

if tt[i,2]=0 then sum=sum+tt[i,3]*log(px0);
else if tt[i,2]=1 then sum=sum+tt[i,3]*log(px1);
else if tt[i,2]=2 then sum=sum+tt[i,3]*log(px2);
end;
return(sum);
finish f_logL;

%s&type._para;

optn={1 2};

call nlpnra(rc,xres,"f_logL",h0,optn,con);
estimate=xres’;

call nlpfdd(f,g,hes2,"f_loglL",estimate);
cov=-inv(hes2);
print "Variance-Covariance Matrix";
print cov;
prob=.05;
norqua=probit(1-prob/2);
stderr=sqrt(vecdiag(cov));
lowbound=estimate-norqua*stderr;
upbound=estimate+norqua*stderr;
print "Asymptotic 95% Confidence Interval®;
print lowbound estimate upbound stderr;
print rc;

quit;

smend hetero;

shetero(type= G ,
tt=Gamma-distributed,
para= %str(,) predt %str(,) b1 %str(,) b20 %str(,) theta %str(,) delta);

shetero(type= CP ,
tt=compound Poisson_distributed,
para= %str(,) predt %str(,) b1 %str(,) b20 %str(,) tho %str(,) fi %str(,) ita);

%hetero(type= MS ,

tt=mover-stayer model,
para=);
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