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ABSTRACT

We observe n sequences at each of m sites and assume that they have evolved from an
ancestral sequence that forms the root of a binary tree of known topology and branch
lengths, but the sequence states at internal nodes are unknown. The topology of the tree and
branch lengths are the same for all sites, but the parameters of the evolutionary model can
vary over sites. We assume a piecewise constant model for these parameters, with an un-
known number of change-points and hence a transdimensional parameter space over which
we seek to perform Bayesian inference. We propose two novel ideas to deal with the com-
putational challenges of such inference. Firstly, we approximate the model based on the time
machine principle: the top nodes of the binary tree (near the root) are replaced by an
approximation of the true distribution; as more nodes are removed from the top of the tree,
the cost of computing the likelihood is reduced linearly in n. The approach introduces a bias,
which we investigate empirically. Secondly, we develop a particle marginal Metropolis-
Hastings (PMMH) algorithm, that employs a sequential Monte Carlo (SMC) sampler and
can use the first idea. Our time-machine PMMH algorithm copes well with one of the bottle-
necks of standard computational algorithms: the transdimensional nature of the posterior
distribution. The algorithm is implemented on simulated and real data examples, and we
empirically demonstrate its potential to outperform competing methods based on approxi-
mate Bayesian computation (ABC) techniques.

Key words: approximate Bayesian computation, binary trees, change-point models, particle

marginal Metropolis-Hastings, sequential Monte Carlo samplers, time machine.

A phylogeny (or evolutionary tree) can explain the ancestral relationships among species based on

similarities in their genetic sequences (e.g., DNA). A phylogenetic model will typically be parame-

trized by rates that can correspond to genetic mutations that occur within populations as they evolve over

time. In many applications, it is reasonable to assume that genetic sequences share a common phylogenetic

structure across all of their sites. However, to allow for greater modeling flexibility, it is often times desirable

to allow for the evolutionary rate parameters to change across the length of the sequences. The main focus of
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this article is estimating that rate variation across the sites. We consider a model that allows for neighboring

blocks of sites to be parametrized by different evolutionary rates (i.e., a change-point model), and we

propose a novel computational scheme that enables a practitioner to fit this model to genetic sequences

when the true number of change-points is unknown. Thus, our contribution is a methodology that infers

both the number of distinct blocks along the length of the sequence and the values of the rates themselves.

We empirically demonstrate the potential of our algorithm to outperform competing computational

methods.

2. INTRODUCTION

A phylogeny (or evolutionary tree) is the most common structure employed to explain the evolutionary

relationships among species (taxa) based on similarities in their physical or (more usually) genetic char-

acteristics. The branching pattern of the tree is usually referred to as its topology and describes shared and

independent periods of evolution of different taxa. The leaves of the tree correspond to observations on the

taxa. In a rooted phylogenetic tree (Fig. 1 of Appendix A), each internal node corresponds to a speciation

event and represents the most recent common ancestor of all the taxa descended from that node. The length

of the edges connecting the nodes (called branches) can be interpreted as the time between speciation

events.

The evolutionary analysis of molecular sequence variation is statistically challenging. Parsimony methods

were among the first approaches for inferring phylogenies, but in recent years, great research effort has been

devoted to likelihood-based methods, both in the frequentist (Felsenstein, 1981) and Bayesian framework.

DNA sequences occupy one of four states (A, C, G, T) at each site, and so specifying the likelihood

function requires a model for how these change over time at each site. The simplest such model is the

Jukes-Cantor, in which each state is substituted by any other state at the points of a homogeneous Poisson

process. The Kimura model has a rate for transitions (A 4 G or C 4 T) that can differ from the rate for

transversions (all other substitutions); see chapter 13 of Felsenstein (2004). Objects of inference can include

the topology of the phylogenetic tree (here regarded as known), the relative branch lengths on the tree, and

the substitution rates.

Likelihood-based approaches usually assume that substitution rates are the same at all sites, so that the

likelihood is obtained as a product across sites. However, variation in substitution rates along DNA

sequences is well established (Huelsenbeck and Suchard, 2007). This variation can be explained by var-

iation in functional constraint across the genes encoded in the sequences. If the DNA sequence is from a

coding region, natural selection may constrain variability at some sites more than others and therefore

sites might exhibit different rates of evolution. Therefore, it is important to accommodate rate variation

across sites in phylogenetic inference (Huelsenbeck and Hillis, 1993; Wakeley, 1994). One possibility is to

estimate a different rate for each site (Swofford et al., 1996), but this is computationally demanding

because of the large number of parameters, and the limited information per parameter leads to poor

inferences. A better alternative is to assume that the rates at different sites are independent draws from a

distribution, typically either a Gamma (Uzzell and Corbin, 1971; Nei et al., 1976) or a Log-Normal

distribution (Olsen, 1987). A more realistic model would assume that the rates are auto-correlated along

the sequence. One possible solution is offered by phylogenetic hidden Markov (phylo-HMM) models,

which allow for correlated rates between nearby sites (Yang, 1995; Felsenstein and Churchill, 1996): the

rate of evolution is modeled as a Markov process operating along the sequence, and site specific rates are

drawn from a finite set of values. The discrete number of ‘‘rate categories’’ represents one limitation of the

phylo-HMM approach (Yang et al., 1994; Siepel and Haussler, 2005), while another is the small number

of taxa that can be accommodated with reasonable computational resources (Yang, 1993). Alternatively,

Suchard et al. (2003) have developed a Bayesian multiple change-point model of rate variation along the

DNA sequence, which assumes that sites are grouped into an unknown number of contiguous segments,

each with possibly a different tree topology, as well different substitution rates and branch lengths. Several

recent proposals involve finite mixtures of distributions to model heterogeneity across sites. In this case,

the distribution of each site on the sequence is a mixture of multiple processes, each of which may have its

own tree topology, branch lengths, and substitution rates (e.g., Pagel and Meade, 2004; Huelsenbeck and

Suchard, 2007; Loza-Reyes et al., 2014). Wu et al. (2013) extend these ideas to infinite mixtures assuming

a Dirichlet process prior.
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The main focus of this article is estimating evolutionary rate variation across sites assuming that the tree

topology and branch lengths are known and the same at every site under analysis. The latter assumption is not

very restrictive in most applications, which involve taxa that are separated by enough time that within-taxon

coalescent variation is unimportant. Although substitution rates can vary along the sequence, they are assumed

to be the same across all taxa at each site. Our proposed time-machine PMMH model is able to account for

quantitative differences in rates of substitutions (e.g., sites with high rates versus sites with low rates), and can

also allow different rates for different types of substitution (such as transitions and transversions).

Recently there has been a revival of interest in models that allow for variation in evolutionary rates due

to an explosion in the availability of comparative sequence data, and consequent interest in comparative

methods for the detection of functional elements (e.g., Boffelli et al., 2003; Gibbs et al., 2004; Chinwalla

et al., 2002). The model proposed in this article is similar in spirit to early work on spatial variation of

evolutionary rates (e.g., Yang, 1995; Felsenstein and Churchill, 1996), which maintains a single con-

sistent topology along the sequence but allows changes in evolutionary rates. In this framework, given

the rate at each site, each site is then assumed to evolve independently along the true phylogeny with that

rate and the correlation between sites arises from the clustering of high and low rates at adjacent

sites. However, most of these models allow for a small discrete number of ‘‘rate categories’’ into which

sections of the sequences are sorted (Yang et al., 1994; Siepel et al., 2005), and many methods are limited

to two-species comparisons as they become increasingly computationally expensive when more species

are included. Our proposed model overcomes both these difficulties, as the model for evolutionary rates,

based on a multiple change-point model, is structurally simple and flexible so that the rates are not

restricted to a finite set but estimated online. Moreover, the use of the ‘‘time machine’’ significantly

speeds up computations.

2.1. Specific contributions

Several negative mathematical results exist in the literature (e.g., Mossel and Vigoda, 2006) for Markov

chain Monte Carlo (MCMC) inference when the tree topology (and branch lengths) is unknown, and these

have spurred the development of highly sophisticated Monte Carlo–based algorithms (Bouchard-Côté et al.,

2012). Here, the tree topology and branch lengths are assumed to be known, but the position and number of

change-points for the rates are unknown. In addition, as we will explain later, the cost of evaluating the

likelihood will be an O(mp2n2) operation ( p is the number of states at each site, m the number of sites, and

n the number of sequences). It follows that parameter inference requires expectations with regard to a

probability on a transdimensional state-space. Contructing efficient MCMC algorithms on transdimensional

spaces is a notoriously challenging problem, and the standard approach is to use reversible jump MCMC

(RJMCMC) (Green, 1995). Typically, and especially for our model, it is difficult to develop moves on the

transdimensional state-space that are likely to be accepted, which is important here because likelihood

computations are expensive.

To deal with some of these inferential and computational issues, we propose the following:

� To reduce the cost of computing the likelihood and assist the mixing of MCMC, through a likelihood

approximation based on the time-machine principle ( Jasra et al., 2011).
� To improve mixing compared to standard RJMCMC, by adapting an idea in Karigiannis and Andrieu

(2013), developing a particle marginal Metropolis-Hastings (PMMH) algorithm (Andrieu et al., 2010),

based on the sequential Monte Carlo (SMC) samplers method in Del Moral et al. (2006). This

approach can benefit from the time-machine approach.

In the time-machine approach, the unobserved sequence at the root, and possibly also other top-most nodes

of the tree are replaced with the stationary distribution of the substitution process. This can reduce the cost of

computing the likelihood by a linear factor in n; this can allow larger datasets than would otherwise be

manageable. The resulting estimates are biased, but in the examples below we find the bias to be smaller than

for competitive methods. Indeed, we conjecture (and this is supported by empirical results) that our approach is

competitive with other approximate methods, in particular approximate Bayesian computation (ABC); this

latter method is often not appropriate for model selection problems as we describe in section 3.3. An important

point here is that the time-machine performs a ‘‘principled’’ approximation of the mathematical model. This is

based on the general understanding that most of the information in the data is at the lower part of the tree, thus

contrasting with an often ad-hoc selection of summary statistics in ABC approaches.
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Our PMMH algorithm extends the idea in Karigiannis and Andrieu (2013), both with regard to the

methodology and the context of phylogenetic trees with change-points. The MCMC method will often

generate (as we will explain in section 3.2) transdimensional proposals that are more likely to be accepted

than standard RJMCMC algorithms. This is further aided by using the time-machine, which results in a less

complex posterior with faster likelihood evaluations. The combination of the above factors can lead to

reliable, but biased, inference from moderate sized data sets. As mentioned above, we expect the bias to be

minimal relative to ABC methods.

This article is structured as follows. In section 3, the model and methods are described; this includes our

mathematical result on the bias. In section 4, our empirical results are given. In section 5, we conclude the

article with a discussion. The appendixes provide further details of the methods.

3. MODEL AND METHODS

We first describe our change-point model and the associated Bayesian inference problem, then the time

machine approximation and the PMMH algorithm. The end of this section then briefly discusses some

competing ABC methods that can also be used to perform Bayesian inference, but we make a case against

using such algorithms in this context. Throughout the article, given a vector (x1‚ . . . ‚ xn), we define

xk:l := (xk‚ xk + 1‚ . . . ‚ xl), k £ l £ n; also, we use the notation [k] = f1‚ 2‚ . . . ‚ kg.

3.1. Phylogenetic model

We observe n sequences of length m, such that each observation is xij 2 f1‚ . . . ‚ pg with 1 £ i £ n,

1 £ j £ m. Similar to as in Ma (2008), it is assumed that the data originate from a rooted binary tree (ch. 1 of

Felsenstein, 2004) of known topology and branch lengths with the n leaves being the observed sequences.

The sequences at the other n - 1 nodes are unobserved. Nodes are numbered backward in time, starting from

the observed leaves (numbered 1 to n) to the root 2n - 1. Let � : [2n - 2]! fn + 1‚ . . . ‚ 2n - 1g map nodes

other than the root onto their parent node. It is assumed that we are given a Markov model on the tree

describing the evolution of states over time on each branch of the tree and at each site; each site evolves

independently given the branch lengths. Treating the sequence states at internal nodes as missing data, we

can write the full-data likelihood as:

p(x1:2n - 1‚1:mjh) =
Ym
j = 1

lh(x(2n - 1)j)
Y2n - 2

i = 1

fh(xijjx�(i)j) (1)

where h 2 Y � Rd is an unknown parameter, fh a Markov transition probability, and lh a probability

distribution on the state space at a site. Note that xn + 1:2n-1,1:m are unobserved, whereas x1:n,1:m are observed.

Note also that fh(xijjxm(i)j) can depend on the (known) length of the branch connecting the node i with node

m(i). For convenience in subsequent formulas we will write fh(x(2n-1)jjxm(2n-1)j) in place of lh(x(2n-1)j), even

though m(2n-1)j is undefined.

The observed-data likelihood can be written as a sum over the missing data:

p(x1:n‚1:mjh) =
Ym
j = 1

X
xn + 1:2n - 1‚ j2[p]n - 1

Y2n - 1

i = 1

fh(xijjx�(i)j)

2
4

3
5: (2)

Using belief propagation (Pearl, 1982) (also called the sum and products algorithm), the cost of computing

(2) is O(mp2n2).

Our model generalizes (1) to allow h to vary along the sequence at a set of change-points

1 = s0 < s1 < � � � < sk + 1 = m. Then the full-data likelihood for the change-point model is:

p(x1:2n - 1‚1:mjk‚ s1:k‚ h1:k + 1) =
Yk + 1

j = 1

Ysj - 1

l = sj - 1

Y2n - 1

i = 1

fhj
(xiljx�(i)l)‚

and, as in (2), one can sum over xn + 1:2n-1,1:m to obtain an observed-data likelihood:
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p(x1:n‚1:mjk‚ s1:k‚ h1:k + 1) =
Yk + 1

j = 1

Ysj - 1

l = sj - 1

p(x1:n‚ ljhj)

where

p(x1:n‚ ljhj) =
X

xn + 1:2n - 1‚ l2[p]n - 1

� Y2n - 1

i = 1

fhj
(xiljx�(i)l)

�
:

3.1.1. Bayesian inference. For 0 £ k < m, let

Sk = fs1:k 2 [m] : 1 < s1 < � � � < skpmg:

Then we will define a posterior probability on the space

E : =
[m - 1

k = 0

(fkg · Sk ·Yk + 1):

Let p(k,s1:k,h1:k + 1) be any proper prior probability on E. Our objective is then to consider the posterior

p(k‚ s1:k‚ h1:k + 1) / p(x1:n‚ 1:mjk‚ s1:k‚ h1:k + 1)p(k‚ s1:k‚ h1:k + 1) (3)

which can be computed pointwise up to a normalizing constant in O(mp2n2) steps. We assume that we

know how to calculate the priors p(s1:k,h1:kjk) and p(k).

3.1.2. Time machine. One way to cut the cost of theO(mp2n2) calculation of the likelihood is to remove

the top of the tree (a related idea is used in Jasra et al., 2011, for the standard coalescent). Suppose we only

consider the tree backward in time until the parent of node 2n - g‚ g 2 f2‚ . . . ‚ ng. We propose the model:

pB(x1:2n - g‚ 1:m‚ x2n - g + 1:2n - 1‚ 1:mjk‚ s1:k‚ h1:k + 1) =

Yk + 1

j = 1

Ysj - 1

l = sj - 1

Y2n - g

i = 1

fhj
(xiljx�(i)l)

( )
ghj

(xB(2n - g + 1:2n - 1)‚ l)

 !
‚

where B(2n - g + 1 : 2n - 1) denotes the nodes in the cut-off part of the tree 2n - g + 1 : 2n - 1 that are parents

to at least one of the nodes in 1 : 2n - g, and ghj($) is a joint probability distribution over sequences on these

‘‘boundary’’ nodes. Thus, the joint distribution of a number of the upper-most g - 1 nodes, for the j site, is

replaced by the approximation ghj. Then one can perform inference from the relevant posterior

pB(k‚ s1:k‚ h1:k + 1) / pB(x1:n‚ 1:mjk‚ s1:k‚ h1:k + 1)p(k‚ s1:k‚ h1:k + 1)

using the PMMH method described below. The cost of computing the new likelihood is now O(mp2n(n - g)).

3.2. Particle marginal Metropolis-Hastings (PMMH)

To sample from the transdimensional state-space of (3), we first consider an SMC sampler that only

samples on Sk · Yk + 1 for k fixed. We then show how the SMC sampler can be embedded within a PMMH

algorithm to target (3). The SMC sampler will be necessary to ensure a good acceptance probability for

transdimensional moves. Our approach has the advantage over alternative simulation techniques for model

selection (see Zhou et al., 2013) that the model selection and parameter estimates are simultaneous, which

helps to focus computational resources on the important model(s).

For 1 £ k < m, and a user-specified T ‡ 1, let {nt,k}0 £ t £ T be a sequence of probabilities on Sk · Yk + 1,

such that n0,k(s1:k,h1:k + 1) = p(s1:k,h1:k + 1jk) and

nT‚ k(s1:k‚ h1:k + 1) / p(x1:n‚ 1:mjk‚ s1:k‚ h1:k + 1)p(s1:kh1:k + 1jk):

The remaining sequence of targets {nt,k}1 £ t £ T-1 interpolate between the (conditional) posterior and the

prior, for example, via the tempering procedure:
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nt‚ k(s1:k‚ h1:k + 1) / p(x1:n‚ 1:mjk‚ s1:k‚ h1:k + 1)jt p(s1:k‚ h1:k + 1jk)

with 0 <j1< � � � <jT - 1<1. The SMC sampler will propagate a collection of N particles from the prior

n0,k all the way to the posterior nT,k via the bridging densities nt,k by means of importance sampling,

resampling, and MCMC move steps. The tempering procedure aims at controlling the variability of the

incremental importance weights, for instance, providing robust estimates of the normalizing constants

p(x1:n,1:mjk), which is an important attribute for the overall algorithm. The sampler propagates the particles

by using a sequence of MCMC kernels of invariant densities nt,k (which operate on a fixed dimensional

space). All the details of the specific steps of the SMC sampler are given in the Supplementary Material

(available online of www.liebert pub.com/cmb). We write the probability of all the variables associated

with the SMC sampler (which resamples N > 1 ‘‘particles’’ at every time except at time T) as

Ck‚ N(a1:N
0:T - 1‚ /1:N

0:T (k))‚

where a1:N
0:T - 1 = (a1

0‚ . . . ‚ aN
0 ‚ . . . ‚ a1

T - 1‚ . . . ‚ aN
T - 1) are the resampled indices and /1:N

0:T (k) = (/1
0(k)‚ . . . ‚

/N
0 (k)‚ . . . ‚ /1

T (k)‚. . . ‚ /N
T (k)) with /i

t(k) = (si
t‚ 1:k‚ hi

t‚ 1:k + 1)‚ i 2 [N]‚ t 2 f0g [ [T] is the collections of the N

particles as propagated through the sequence nt,k.

One can use this SMC sampler within a broader PMMH algorithm to sample from the true target of

interest (3). The specific steps of PMMH are given in the Supplementary material, but briefly, a single

iteration of the algorithm is as follows. Given the current state of the Markov chain, one proposes to change

k with some proposal kernel q(k0jk). Conditional on this k0, we run an SMC sampler Ck0,N($) and choose a

particle /l
T (k0), for some 1 £ l £ N, with probability proportional to a weight. Acceptance of both the model

index k0 and of the proposed change-point times and rates /l
T (k0) happens with probability

1 ^ pN(x1:n‚1:mjk0)p(k0)

pN(x1:n‚1:mjk)p(k)
·

q(kjk0)
q(k0jk)

‚

where pN(x1:n,1:mjk) is the SMC (unbiased) estimate of p(x1:n,1:mjk), the normalizing constant of nT,k (see Del

Moral, 2004). The Supplementary Material presents the formula used to calculate pN(x1:n,1:mjk). Note that

whilst there are a lot of user set parameters (namely, the temperatures and tuning parameters for the MCMC

kernels), their choice can be done adaptively to reduce user involvement (see Jasra et al., 2014). In this

article we tune the parameters by trial and error.

The advantages of our procedure is that it mitigates having to construct transdimensional proposals that

need to mix well (see Karigiannis and Andrieu, 2013, for another recent work that attempts to deal with this

issue). We note, however, that the cost of each proposal will be O(NTmp2n2), as nt,k must be obtained at

each time step of the SMC sampler (see Supplementary Material). In addition, note that tailored methods

for change-point models (e.g., Fearnhead and Liu, 2007) do not apply here as one does not have a

convenient way to integrate the likelihood.

3.3. Approximate Bayesian computation (ABC)

ABC is another methodology that avoids exact computation of the likelihood, at the cost of a biased

approximation of the posterior; see, for instance, Marin et al. (2012) for a review. The method is based on

accepting simulated data sets that are similar to the observed data set, where ‘‘similar’’ is usually assessed

using summary statistics sensitive to the parameter(s) of interest.

ABC can be unreliable as a tool for model selection. According to Marin et al. (2013), the best summary

statistics to be used in ABC approximation to a Bayes factor are ancillary statistics with different mean

values under two competing models. Otherwise, the summary statistic must have enough components to

prohibit a parameter under a wrong model from generating summary statistics that are plausible under the

true model. However, summary statistics satisfying the conditions of Marin et al. (2013) for model choice

in ABC is not easy (or even possible) to verify in our context.

In the numerical examples of section 4.1, we consider two ABC algorithms that approximate the same

ABC posterior. The first algorithm is a PMMH that replaces the SMC sampler of Del Moral et al. (2006)

with the SMC sampler of section 3.3 of Del Moral et al. (2012); see Supplementary Material for details.

The second ABC algorithm is the ABC-SMC algorithm for model selection appearing on page 190 of

Toni et al. (2009).
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4. RESULTS

4.1. Comparison of computational methods on simulated data

We compared three algorithms on their performance in Bayesian model selection for four simulated

DNA data sets. Within each data set, the DNA sequences shared a common ancestral binary tree with

known topology, unknown sequence states at ancestral nodes, and unknown substitution rates and branch

lengths. The first algorithm was our proposed PMMH algorithm outlined in section 3.2, and we employed

three versions of the time machine. Using the notation of section 3.1.2, these used g = 1 (so in effect the

time machine was not implemented at all), g = 4, and g = 8. We also used two ABC algorithms described

in section 3.3. The PMMH algorithms were not run until they converged fully, but were compared on the

basis of results achieved after 6 hours of computation. Other implementation details of the algorithms may

be found in the Supplementary Material.

4.1.1. Base data set. The base data set consists of n = 8 simulated DNA sequences ( p = 4 types of

nucleotide), each of m = 50 sites. The sequences evolved according to a binary tree under a Jukes-Cantor

model of DNA evolution with one substitution rate up to site s1 = 25, and a second rate beyond this single

change-point (so k = 1, but for inference we assumed only k 2 f0‚ 1g). In the standard Newick notation, the

structure of the tree was:

(((Taxon0:1.0,Taxon1:1.0):1.0,(Taxon2:1.0,Taxon3:1.0):1.0):1.0,
((Taxon4:1.0,Taxon5:1.0):1.0,(Taxon6:1.0,Taxon7:1.0):1.0):1.0):1.0
We ran the three algorithms to infer k, location of the change-point, s1 given k = 1, and the substitution

rate(s) h1:k + 1. The prior on k was uniform on {0,1}; the prior on s1 was 1/m - 1 (change-points occur

immediately before a site so cannot occur at site 1); finally, all substitution rates had a gamma prior, with

shape = 2 and scale = 0.4, and so expected value of 0.8 mutations per generation per site.

The results in the top quadrants of Tables 1 and 2 in Appendix B show that our time-machine PMMH

algorithm with g = 4 outperformed all other algorithms. It sampled from the true model (i.e., k = 1) much

more frequently than the incorrect k = 0 model (Appendix Table 1). In comparison g = 8 performed poorly,

as expected since n = 8 for this data set so g = 8 implies removing all internal nodes and assuming

independent evolution of each sequence. The ABC algorithms did not perform well. The PMMH-ABC

algorithm sampled from the two models almost evenly, while the ABC-SMC algorithm had low effective

sample sizes (Kong et al., 1994; Liu, 1996) and actually preferred the wrong model.

In Appendix Table 2, we give 95% confidence intervals of estimates of s1 and of the rates given k = 1.

The time-machine PMMH algorithms again provide the best inferences and were able to find the change-

point. The PMMH-ABC was more accurate for the substitution rates but less precise. The ABC-SMC

algorithm gave unusable output.

We do not present the output for the g = 1 version of the time machine because it performed very

poorly. Without removing any nodes from the top of the tree, the variability of pN(x1:n,1:mjk0)/
pN(x1:n,1:mjk) in the acceptance probability of the PMMH was very high when k s k0 (Fig. 2 in Appendix

A). Thus, the algorithm accepted jumps between models only rarely and the output was very ‘‘sticky.’’

This phenomenon illustrates that the time machine is a cost-saving technique by two measures. First, it

reduces the computational complexity of the algorithm. Second, it aids in mixing and facilitates jumping

between models.

4.1.2. Further tests. We repeated the above experiment for three more data sets that differed only

slightly from the base data set. We found the results to be similar across the data sets (see Tables 1 and 2 in

Appendix B). Collectively, these results suggest that when doing Bayesian model selection under these

scenarios, ABC approximations should be avoided and instead our PMMH method used instead, with the

time machine but removing as few nodes as computational considerations permit.

4.2. Application to a real dataset

Using the publicly available database of Weiss et al. (2013), we assembled a data set consisting of n = 6

ACT1 gene DNA sequences (m = 540 sites). We assumed the tree structure given in Figure 1 of Appendix

A, and a Jukes-Cantor model of DNA evolution. We implemented our time-machine PMMH algorithm to

infer k, s1:k, and h1:k + 1 for cut-off parameter g = 4 (see Supplementary Material for further details). The
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prior on k was a discrete uniform distribution on {0, 1, 2}, the prior on s1:k was uniform on k-subsets of

[m - 1], and each substitution rate had a gamma prior with shape = 1 and scale = 0.3.

We ran the algorithm for 10,589 iterations (23 days) on a Linux workstation that used 12 Intel Xeon E5-

1650 3.20 GHz CPUs. We monitored convergence via autocorrelation and trace plots (Appendix Fig. 3).

We also monitored convergence of each model individually using the diagnostic in Geweke (1992); that is,

we obtained a Z-score for each model parameter per each value of k to get a sense of the algorithm’s ability

to fully explore the state space of each model (only some values are reported below). Appendix Figure 3

suggests good exploration of the state space of k, resulting in an estimated distribution: 0.17 (k = 0), 0.47

(k = 1), and 0.36 (k = 2).

From the 4,946 samples with k = 1, we estimated a 95% highest posterior density interval of

(194,199) (see also the histogram in Appendix Fig. 4). The Z-score for k was - 0.60, suggesting

that we were still some way off convergence (values close to 0 imply convergence). For the rates h1

(before the change-point) and h2 (after the change-point), the Z-scores of 0.11 and 0.23, respec-

tively, give stronger evidence for convergence (estimated densities of these parameters are shown in

Appendix Fig. 5).

5. DISCUSSION

We considered sequence data that originates from a rooted binary tree (ch. 1 of Felsenstein, 2004) of

known topology and branch lengths but unknown sequence states at internal nodes, and the substitution

rates in the DNA evolution model allowed to have change-points. We detailed Bayesian parameter in-

ference from such a model with an unknown number of change-points, implying a transdimensional

posterior density. Computational inference from this model is challenging, and we introduced two novel

contributions to facilitate sampling.

Firstly, based on the time machine principle of Jasra et al. (2011), we showed how the top-most nodes of

the binary tree can be replaced with a probability distribution of the sequence evolution model to reduce the

cost of computing the likelihood linearly in n (the number of sequences). This approach introduces a bias,

but this was found in practice to have a small effect on inferences.

Secondly, we developed a particle marginal Metropolis-Hastings (PMMH) algorithm (section 3.2) that

mitigates having to construct transdimensional proposals that need to mix well. We first developed a

sequential Monte Carlo (SMC) sampler that only samples on a fixed-dimensional subspace of the full

transdimensional state-space. We then showed how that SMC sampler can be embedded within the PMMH

algorithm to target the full posterior. By employing the time machine within this PMMH, we attained an

algorithm that could run with a reduced computational cost and easily jump between models with different

numbers of change-points.

We successfully implemented our PMMH to perform inference from the model in a reliable fashion for

small to moderately sized data sets. We empirically demonstrated that our PMMH can outperform ap-

proximate Bayesian computation (ABC) techniques (Tavare et al., 1997) in terms of precision and accu-

racy, and we showed that our algorithm can successfully be used to carry out reliable inference on real data.

The success of our PMMH algorithm is largely due to the time machine, which, as we witnessed in section

4.1, reduces the variance of the acceptance probability and enables the algorithm to jump easily between

models. However, based on the output of section 4.1, it seems that bias introduced by the time machine

reduces the accuracy of the inferred substitution rates.

In future work, one might want to extend the methodology to allow for unknown tree topologies,

similar to Suchard et al. (2003). Also, a future work could attempt to use a more appropriate distribution

to approximate the distribution at the top of the tree. We attempted to find approximations in the point

processes and coalescent literature, but we were unable to find a better approximation than that, which

we employed here. From the computational point of view, it will certainly be important to further speed

up the algorithm, and great savings could be made by parallelizing calculations within the SMC particle

method and carefully investigating adaptive procedures for fine-tuning the temperatures and the MCMC

kernels. All such efforts could have a big effect on reducing the variance of the estimate of p(x1:n,1:mjk),

thus further improving the mixing of PMMH, even with fewer removed nodes. Also, there could then be

great scope to apply the method for larger numbers of potential change-points compared to the relatively

small one we tried here.
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APPENDIX A. FIGURES

Real data case: Phylogeny of a subset of the Saccharomycotina subphylum

Sim. database data set: Variability of log [pN(x1:n,1:mjk)] for g = 1 versus g = 4

FIG. 2. The top box plot illustrates the variability of log [pN(x1:n,1:mjk)] for the g = 1 version of our algorithm, and the

bottom plot gives the same for the g = 4 version of our algorithm; log [pN(x1:n,1:mjk)] runs along the horizontal axis of

each plot. One can see that the variability in the bottom plot is much less than that of the top plot.

FIG. 1. This tree is provided by Weiss et al. (2013). The labels on the leaves at the far right are in the format

STRAIN_taxa_GENE; for example, CBS_6420_Candida_boleticola_ACT1 is the label for the ACT1 gene of Candida

boleticola, strain CBS 6420. The edge at the bottom of the figure with the number 0.2 shows the branch length that

represents an amount of genetic change equal to 0.2 nucleotide substitutions per site. The red numbers represent a

measure of evidence for the node, with values closer to 1.0, meaning that there is stronger evidence for the genes to the

right of the node clustering together; in this case, those values are computed using a bootstrapping method.
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Real data case: Autocorrelation and trace plot of sampled k

FIG. 3. We monitored the convergence of the PMMH implemented in section 4.2 via autocorrelation and trace plots.

The plots illustrate a nonsticky algorithm and low autocorrelation. PMMH, particle marginal Metropolis-Hastings.
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Real data case: Histogram of sampled s1 given k = 1

Real data case: Kernel density plots of sampled substitution rates given k = 1

FIG. 4. The histogram

strongly indicates the

position of the single

change-point in the nu-

merical example of sec-

tion 4.2.

FIG. 5. At top, we have

the kernel density plot of

h1, which is obtained using

all samples from the

PMMH implemented in

section 4.2, where k = 1.

Values for h1 run along the

horizontal axis. We have

the same plot for h2 on the

bottom.
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