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ABSTRACT 

Telomere functions are tightly controlled throughout the cell cycle to 

allow telomerase access while suppressing a bona fide DNA damage response 

(DDR) at linear chromosome ends. However, the mechanisms that link cell 

cycle progression with telomere functions are largely unknown. Here we show 

that a key S-phase kinase, DDK (Dbf4-dependent protein kinase), 

phosphorylates the telomere binding protein Pot1, and that this 

phosphorylation is crucial for DNA damage checkpoint inactivation, the 

suppression of homologous recombination (HR) at telomeres, and the 

prevention of telomere loss.  DDK phosphorylates Pot1 in a very conserved 

region of its most amino-terminal-proximal OB fold, suggesting that this 

regulation of telomere function may be widely conserved.  

Mutation of Pot1 phosphorylation sites leads to telomerase independent 

telomere maintenance through constant HR, as well as a dependence of 

telomere maintenance proteins involved in checkpoint activation and HR. 

These results uncover a novel and important link between DDR suppression 

and telomere maintenance. The failure in Pot1 phosphorylation and DDR 

inactivation could potentially lead to uncontrolled cell proliferation without a 

requirement for telomerase by switching cells to HR dependent telomere 

homeostasis. In mammals this could result in ALT (Alternative Lengthening of 

Telomeres), a recombination dependent mode of telomere maintenance, 

uncontrolled cell proliferation and cancer. 
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1 Introduction 

The telomere is a specific region at the end of a linear chromosome. 

The existence of telomeres as some kind of structure at the ends of eukaryotic 

chromosomes first was only a theoretical idea. This idea came from two 

completely independent observations; one was the discovery of the genetic 

stability of natural chromosome ends, and the other arose from consideration 

of the chromosome end replication problem – the inability of known DNA 

polymerases to fully copy the ends of linear DNA molecules. These two 

chromosome end puzzles have been resolved by proposing that there is a 

specific structure on the natural chromosome ends that ensures chromosome 

stability and allows them to fully replicate in every cell division cycle.  

After the identification of DNA structure it became clear that replication 

of the end of the DNA lagging strand would not be an easy task.  In 1972, 

Watson mentioned that there is no simple way for 3ʹ to 5ʹ lagging strand 

growth to reach the 3ʹ end of its template (Watson, 1972). He correctly 

predicted that the lagging strand of linear chromosomes copied by the semi-

conservative replication machinery would not be fully replicated, because of 

the removal of the RNA primer of the most distal Okazaki fragment and 

subsequent loss of genetic material every cell doubling. In other words, he 

described a so called “end-replication problem” (Watson, 1972). At the same 

time, A. M. Olovnikov proposed the “marginotomy theory of ageing”, 

suggesting that “telogenes” located at opposite ends of DNA molecules carry 

no genetic information and fulfil a buffer function to solve an end replication 
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problem; these ends could be shortened with each round of replication 

without any consequences for the cell until this shortening reaches an essential 

gene (Olovnikov, 1972, 1973).  He stated that these telogenes are 

stochastically shortened during each mitotic cycle, providing a mechanism for 

ageing. Thus the telomere theory of aging was born. It was used to describe 

why human cells derived from embryonic tissues can only divide about 50 

times. According to Olovnikov, it was determined by the length of the 

telomeres and the rate of telomere shortening; this has later been proved 

experimentally (Harley et al., 1990; Lundblad and Szostak, 1989). But final 

proof that telomere length was rate-limiting for indefinite cell proliferation was 

shown much later in experiments where the inducible elongation of telomeres 

in senescent cells induced indefinite life span (Bodnar et al., 1998).  

The problem of chromosome ends stability was realised even earlier 

than the end replication problem. Muller and McClintock, working with 

Drosophila and maize independently, came to the conclusion that natural 

chromosome ends should differ from X-ray-induced chromosome breaks. After 

subjecting fruit flies and maize to X-rays, different products of modified 

chromosomes were recovered: inversions, translocations, duplications, 

formation of circular chromosomes, and other anomalies. The appearance of 

these genetic rearrangements was explained as the result of rejoining two 

broken chromosome ends, which by becoming joined in aberrant 

arrangements, created the rearranged chromosomes. These observations open 

a new question. Why are the natural chromosome ends stable and not 

involved in such rearrangements, in contrast to chromosome ends generated 
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from chromosome breakage? Muller called these natural chromosome ends 

telomeres –specific genes that cannot be lost and that determine the unique 

stability of natural ends (Muller, 1938). McClintock also explained 

chromosome rearrangements in maize as a natural feature of broken ends, 

differentiating them from natural chromosome ends which were protected from 

such events (McClintock and Hill, 1931). Moreover, McClintock reported that 

a broken end can lose its tendency to fuse with other broken ends, and she 

concluded that the broken end can be permanently “healed”, becoming as 

stable as normal chromosome ends (McClintock, 1939). Thus, she first 

described the idea of de novo telomere addition to chromosome breaks.  

After these observations, it becomes obvious that there is a specific 

structure at the ends of the chromosomes that is very important for genomic 

stability. Nonetheless, the specific nature of this protective structure remained 

unknown until the telomere sequence was determined. The first telomere 

sequence was defined from amplified rDNA-containing minichromosomes 

from the somatic nucleus of the ciliate Tetrahymena thermophila (Blackburn 

and Gall, 1978). This protozoan organism contains about 10,000 21-kb linear 

minichromosomes that greatly facilitate the purification of telomeres and 

determination of their sequence. The telomere sequence of Tetrahymena 

thermophila is composed of tandem GGGGTT repeats with the G-rich DNA 

strand ending with a  3’-OH. Subsequently, similar telomere sequences were 

determined from other organisms.  

The next milestone in understanding telomere biology came from 

discovery of the telomeric DNA synthesizing activity, which was first identified 
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in Tetrahymena thermophila mated cells (Greider and Blackburn, 1985). 

The enzyme responsible for this activity was called telomerase. It was shown 

that telomerase contains a RNA component and uses this RNA as a template 

for the synthesis of telomeric repeats (Greider and Blackburn, 1987, 1989).  

At the same time, the catalytic reverse transcriptase component of 

telomerase, Est2p, was isolated from S. cerevisiae in a genetic screen for 

mutants that would abolish telomerase activity (Lundblad and Szostak, 1989), 

but it would be several years before the realization that Est2p was indeed the 

catalytic subunit.  This realization awaited the biochemical purification of 

telomerase from the ciliate Euplotes aediculatis (Lingner and Cech, 1996).  

These investigators found that the purified protein contained homology to 

Est2p, and that, as predicted by the existence of the telomerase RNA subunit, 

both Euplotes telomerase and Est2p contained reverse transcriptase domains.  

Telomerase deletion in yeast leads to a progressive decrease in telomere length 

as well as an increased frequency of chromosome loss. The mutants were not 

immediately inviable; instead, they had a senescence phenotype, due to the 

gradual loss of sequences essential for telomere function, leading to a 

progressive decrease in chromosomal stability and subsequent cell death. This 

discovery finally confirms that Muller and McClintock were absolutely right  – 

the telomere is an essential component chromosome structure that makes it 

different from the chromosome breaks. Telomere loss in telomerase negative 

cells (ie, most human somatic cells) leads to chromosome de-protection, 

genetic instability and cell death.        
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1.1 Telomere protects natural chromosome ends from DNA 

damage response.  

Telomeres are the specific chromatin structures that protect 

chromosome ends from being recognised as damage induced DNA double 

strand breaks (DSBs). Telomeres suppress a number of mechanisms that would 

normally be connected with processing of DSBs. Telomeres accomplish this 

anti-DNA damage response function by recruiting specific telomeric proteins 

that directly or indirectly interact with telomere DNA sequences. Telomere 

DNA comprises short repetitive sequences with a protruding 3’- single stranded 

overhang at the end of the chromosomes.   Placing a stretch of telomere 

repeats in close proximity to an induced DSB suppresses the ability of that DSB 

to confer a bona fide DNA damage response and checkpoint activation. Thus 

the maintenance of telomere repetitive sequence at the chromosomes ends is 

crucial to ensure genome stability of organisms with linear chromosomes.  

 

1.1.1 Telomeric proteins and their complexes 

The telomeric repeat sequences are essential for many of the key 

biological features of telomeres because of their ability to recruit telomere-

binding factors. A six-protein complex is thought to protect the telomeres of 

human chromosomes and a very similar complex is found at S. pombe 

telomeres. Mammalian TRF1 and TRF2 and their S. pombe homolog Taz1 

directly bind double stranded telomeric DNA (Broccoli et al., 1997; Chong et 

al., 1995; Cooper et al., 1997), and both Taz1 and TRF2 recruit Rap1 
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(Chikashige and Hiraoka, 2001; Kanoh and Ishikawa, 2001; Li et al., 2000). 

POT1 directly binds the single-stranded 3’ overhang at the very chromosome 

end (Baumann and Cech, 2001; Lei et al., 2003; Loayza and De Lange, 2003) 

and forms a complex with TPP1/Tpz1 (Houghtaling et al., 2004; Liu et al., 

2004; Miyoshi et al., 2008; Ye et al., 2004). The TRFs/Taz1 and Pot1 

complexes interact with each other via the linking proteins TIN2 and Poz1: 

mammalian TIN2 interacts with TPP1 and TRF1/2 (Kim et al., 2004; O'Connor 

et al., 2006) and S. pombe Poz1 brings the Taz1/Rap1 complex and the 

Tpz1/Pot1 complex together (Miyoshi et al., 2008). 

In both S. pombe and mammals, Pot1 form a complex with TPP1/Tpz1 

protein (formerly named PTOP/PIP1/TINT1) (Houghtaling et al., 2004; Liu et 

al., 2004; Ye et al., 2004). This complex appears to be very conserved 

throughout evolution and important for Pot1 function and recruitment to 

telomeres. Pot1/TPP1 closely resembles the ciliate TEBPα/TEBPβ complex (Xin 

et al., 2007), which binds to the single stranded overhangs of Oxytricha nova 

telomeres (Gottschling and Zakian, 1986). Pot1 and TEBPα have similar 

domain structures, with multiple OB folds organized in a similar way; likewise, 

TPP1 and TEBPβ have similar crystal structures (Lei et al., 2003; Wang et al., 

2007).  

The telomere protein complex and its integrity are important for the 

ability of telomeres to suppress DNA damage response. Deletion of different 

components of telomere protein complex leads to recognition of chromosome 

ends as a breaks and activation of checkpoint and DNA repair pathways. In S. 

pombe, deletion of the gene encoding Taz1 leads to de-protection of the 
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telomeres. taz1Δ cells experience DNA ligase IV dependent telomere 

fusions in G1, formed by the nonhomologous end-joining repair pathway 

(NHEJ) (Ferreira and Cooper, 2001). Taz1 is also important for telomere 

capping in G2, in which its loss results in increased levels of homologous 

recombination (HR) at telomeres. Surprisingly, taz1Δ cells fail to activate the 

checkpoint response, even though taz1Δ telomeres are clearly recognized as 

DSBs. This means that different facets of the DNA damage response, like DNA 

damage checkpoint activation and the DNA repair pathways (HR and NHEJ), 

are suppressed by different mechanism at S. pombe telomeres.     

Deletion of one of the Taz1 homologs, TRF2, from mouse cells or its 

inhibition with a dominant negative allele in human cells results in a robust 

DNA damage signal that is mediated by the ATM kinase (Celli and de Lange, 

2005; Denchi and de Lange, 2007; Karlseder et al., 1999). In TFR2 -/- cells the 

telomeres are processed by the non-homologous end-joining pathway. Non-

homologous end joining of telomeres can be abrogated in DNA ligase IV-

deficient cells, but telomeres are still recognized as sites of DNA damage, as 

they accumulate the DNA damage response factors 53BP1 and gamma-H2AX 

and activate the ATM kinase. The DNA damage signal generated by telomeres 

lacking TRF2 is completely abrogated when ATM is absent (Denchi and de 

Lange, 2007). This suggests that even in the absence of telomere fusions, TFR2 

-/- telomeres are recognized as DSBs. TRF2 could also play a general role in 

DDR suppression, because overexpression of TRF2 can suppress the activation 

of the ATM kinase, even at nontelomeric sites of DNA damage (Karlseder et al., 

2004).   
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The 3’ overhang binding proteins, like S. pombe and mammalian 

Pot1 and S. cerevisiae Cdc13, also have crucial roles in protecting 

chromosome ends. These factors bind single-stranded DNA through a 

conserved OB (oligonucleotide/oligosaccharide binding) fold domain (Mitton-

Fry et al. 2002; Lei et al. 2003) and believed to play crucial roles in preventing 

the inappropriate triggering of the DDR by the telomere. Indeed, in S. 

cerevisiae lacking functional Cdc13, the CA-rich telomeric strand is rapidly 

degraded, leading to RAD9-dependent cell-cycle arrest (Garvik et al. 1995; see 

below).  

DNA damage response at telomeres also can be induced by deletion of 

POT1 (Denchi and de Lange, 2007; He et al., 2006; Hockemeyer et al., 2005; 

Wu et al., 2006). Simultaneous deletion of both POT1 paralogs from mouse 

cells leads to the accumulation of 53BP1 and gamma-H2AX foci as well as cell 

cycle arrest (Churikov et al., 2006; Jacob et al., 2007). This response is 

dependent on ATR and subsequent phosphorylation of the Chk1, and Chk2 

downstream kinases.  The ability of POT1 to repress the ATR kinase-dependent 

DNA damage response depends on its association with TPP1 (Hockemeyer et 

al., 2007). TPP1 functions to recruit POT1 to telomeres (Wang et al., 2007). 

Inhibition of TPP1 gives rise to a DNA damage response at telomeres that is 

indistinguishable from the response to POT1 deletion (Denchi and de Lange, 

2007; Xin et al., 2007). Likewise, the interaction between Pot1 and Tpz1/TPP1 

in S. pombe is required for telomere protection, and its disruption leads to the 

pot1Δ phenotype (Miyoshi et al., 2008).   
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Telomere proteins that connect the double strand telomere-binding 

complex with telomere proteins on the single stranded 3’-overhang telomere 

region are also important for suppression of DDR. Cells with diminished TIN2 

function activate DDR similarly to TRF2 deficient cells (Kim et al., 2004). TIN2 

may play this role by stabilizing TRF1 and TRF2 at telomeres, or by promoting 

Pot1/Tpp1 complex recruitment to telomeres.  

Although the integrity of the telomere protein complex is clearly 

important for DDR suppression at telomeres, how this suppression occurs is 

not completely understood. Telomere proteins could promote the formation of 

a specific chromatin structure at the end of chromosomes that could hide the 

DNA end from DNA damage response factors like RPA. The Pot1/TPP1 

complex could potentially compete with RPA for telomere 3’-overhang 

binding. Although RPA is much more abundant than POT1/TPP1, the latter has 

greater affinity and sequence specificity for telomeric DNA, which may confer 

efficient competition with RPA for telomere binding. In addition, other 

components of the telomere complex may stabilize or recruit POT1/TPP1 to 

telomeres, or may be involved in the formation of high order telomere 

chromatin structure.       
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1.1.2 Special structures at chromosome ends that could 

suppress DNA damage response  

In addition to binding the proteins described above, there is evidence 

that telomeric DNA may adopt an unusual and specific structure, the so-called 

T-loop. In this structure, the very end of the chromosome is folded back and 

the single-stranded telomeric 3-overhang is tucked into a portion of the 

double-stranded telomeric DNA, resulting in a three-stranded structure (Griffith 

et al., 1999). This conformation has been suggested to prevent telomeric ends 

from being recognized as DNA damage and triggering the DDR. The T-loop 

was proposed to be a conserved telomere structure, and T-loops have been 

described in trypanosomes, ciliates, plants, Caenorhabditis elegans and 

Kluyveromyces lactis (Cesare et al., 2008; Cesare et al., 2003; Munoz-Jordan et 

al., 2001; Murti and Prescott, 1999; Raices et al., 2008; Stansel et al., 2001). 

Nevertheless, it is still unclear whether the structure exists in vivo and whether 

it is protective or is rather an intermediate arising from inappropriate repair 

reactions at the telomere. 

 

1.2 Telomere homeostasis 

The inability of the conventional DNA replication machinery to fully 

replicate linear DNA molecules leads to progressive telomere shortening at 

each cell division. Telomere shortening below a critical threshold eventually 

will result in loss of the telomere protection function.  At this point, the 

chromosome end is recognized as a DSB and triggers a DNA damage 
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response. Thus, the maintenance of telomere length homeostasis becomes a 

crucial task for protecting the genome from genome instability caused by 

dysfunctional critically short telomeres.   

Two telomere-lengthening processes must be controlled to confer 

telomere length homeostasis. One requires telomerase, a cellular reverse 

transcriptase, which uses an internal RNA component as a template for the 

synthesis of telomere repeats. Telomerase elongates the 3′ ends of 

chromosomes, whereas the complementary strand is filled in by conventional 

DNA polymerases. Net telomere synthesis can also occur through certain 

recombination pathways (eg break-induced replication). Recombination based 

telomere maintenance occurs in the absence of telomerase and is characteristic 

of some telomerase negative yeast survivors and so called ALT (alternative 

lengthening of telomeres) surviving mammalian cells.   

   

1.2.1 Telomerase dependent telomere maintenance 

Elongation of telomeres by telomerase is controlled by two levels of 

regulation. First, telomerase acts at chromosome ends only during S phase. 

This restriction may be enabled through cell-dependent changes in telomere 

structure and the cell cycle-restricted assembly of active telomerase. The 

second level of telomere length homeostasis control involves mechanisms to 

measure telomere length in cis, which promote more efficient elongation of 

short telomeres by telomerase or which promote activities to shorten 

preferentially long telomeres. 
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1.2.1.1 Telomerase association with telomeres is cell cycle 

regulated  

Telomere addition by telomerase occurs at S-phase and is coupled with 

semiconservative telomere replication.  In S. cerevisiae, telomere elongation of 

an artificially shortened telomere coincides with semiconservative telomere 

replication, which occurs late in S phase, suggesting coupling between the two 

processes. No elongation occurs in G1 of the cell cycle or in nocodazole-

arrested cells (Marcand et al., 2000). The latter finding contrasts with telomere 

addition to a double-stranded DNA break adjacent to a short telomeric DNA 

tract, which can occur in nocodazole-arrested cells in M-phase (Diede and 

Gottschling, 1999) and depends on functional DNA polymerases α and δ  

(Diede and Gottschling, 1999).  Mutations in DNA polymerase α cause 

telomere lengthening in S. cerevisiae and in mouse cells (Adams and Holm, 

1996; Nakamura et al., 2005). Moreover, The B subunit of DNA polymerase α 

physically and genetically interacts with the Cdc13p-interacting protein Stn1 

(Grossi et al., 2004). In addition, Cdc13p interacts with the catalytic subunit of 

DNA polymerase α (Qi and Zakian, 2000).   

Not only is telomerase activity restricted to late S-phase, but also the 

association between telomerase and telomeres is cell cycle-restricted. In S. 

cerevisiae, two separate pathways of telomerase recruitment appear to exist. 

Cdc13 binds the telomerase associated regulation subunit Est1, and this 

interaction is essential for telomerase activity (Pennock et al., 2001). Est1 

preferential associates with telomeres during S-phase, thus correlating well 
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with the time of telomerase action (Schramke et al., 2004) (Taggart et al., 

2002). A second telomerase recruitment mechanism in S. cerevisiae is 

provided in G1 through the interaction of the telomere-binding protein Ku with 

telomerase (Fisher et al., 2004). Ku recruits telomerase through its specific 

binding of a stem-loop in TLC1 telomerase RNA (Stellwagen et al., 2003). The 

Ku-mediated recruitment of telomerase in G1 may increase the local 

concentration of telomerase near its substrate, thus favoring the assembly of 

telomerase with Cdc13 and the telomere 3′ end in S phase. 

In fission and budding yeast, the ATM and ATR-related homologs, Tel1 

and Mec1, have also been implicated in the assembly of telomerase during S 

phase. Simultaneous deletion of Tel1 and Mec1 in fission or budding yeast 

gives a senescence phenotype (Naito et al., 1998; Ritchie et al., 1999). Mec1 is 

recruited to telomeres during late S phase, whereas Tel1 associates with 

telomeres in G1 (Takata et al., 2004).  It was also shown that Tel1 was highly 

enriched at short telomeres from early S through G2 phase. Tel1 binding was 

required for the preferential binding of telomerase to short telomeres. These 

data suggest that Tel1 targets telomerase to the DNA ends most in need of 

extension (Arneric and Lingner, 2007; Sabourin et al., 2007). 

In humans, semiconservative DNA replication of telomeres occurs 

throughout S phase (Hagen et al., 1990; Wright et al., 1999). Based on in situ 

hybridization studies with oligonucleotide probes, human telomeres are more 

accessible in S phase (Jady et al., 2006) and they seem to lose part of their 

protective structure at the end of S phase, becoming transiently recognized as 

DNA damage in G2 (Verdun et al., 2005).  
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Cytological analyses indicate S-phase-specific assembly of human 

telomerase with telomeres. (Jady et al., 2006; Tomlinson et al., 2006). Human 

telomerase RNA (hTR) was detected during interphase in Cajal-bodies, 

dynamic structures involved in the biogenesis of small ribonucleoprotein 

complexes (RNPs). Human TERT (hTERT), on the other hand, was present in 

nucleoplasmic foci of unknown composition (Tomlinson et al., 2006). During S 

phase, hTERT and hTR both localized to foci adjacent to Cajal bodies. 

Furthermore, some Cajal bodies, hTERT and hTR were also found in 

association with telomeres during S phase. These experiments suggest cell 

cycle-dependent assembly of active telomerase and cell cycle-dependent 

association of telomerase with telomeres.  

 

1.2.1.2 Counting mechanism of telomere length homeostasis 

Evidence for telomere length regulation in cis became apparent in 

experiments in which a linear plasmid containing terminal telomeric repeat 

sequences from Tetrahymena was transformed and maintained in S. cerevisiae 

cells (Szostak and Blackburn, 1982). Approximately 200 bp of new yeast 

telomeric sequence was added de novo to the end of the linear molecule, thus 

giving a telomere length of natural S. cerevisiae chromosomes (Shampay et al. 

1984).  

The telomere length homeostasis was explained by the so-called protein 

counting mechanism (Marcand et al., 1997). This model suggests that telomere 

double stranded binding complexes have an inhibitory effect on the ability of 
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telomerase to elongate telomeres. Telomere length depends on the number 

of targeted molecules, consistent with a feedback mechanism of telomere 

length regulation.  This model was first confirmed in S. cerevisiae. The 

involvement of the Rap1 telomere-binding protein for cis-regulation of 

telomere length was demonstrated by targeting different numbers of Rap1 

carboxyl termini via a heterologous DNA-binding domain to a model telomere 

(Marcand et al., 1997).  

This protein counting mechanism for telomere length regulation was 

also recapitulated in human cells with TRF1.  Moreover, subtelomeric tethering 

experiments showed that TRF1 indeed acts in cis (Ancelin et al., 2002). As 

predicted by the model, increasing the amount of telomere bound TRF1 leads 

to progressive telomere shortening, whereas a dominant-negative form of TRF1 

that removes the endogenous TRF1 from telomeres induces telomere 

elongation (van Steensel and de Lange, 1997). Similarly, mammalian TIN2, 

TPP1, TRF2, Rap1 and POT1 behave as negative regulators of telomerase-

mediated telomere elongation (Houghtaling et al., 2004; Kim et al., 2004; Liu 

et al., 2004; Smogorzewska et al., 2000; Ye et al., 2004).  

An assay that allows analysis of the elongation of single telomere 

molecules in yeast demonstrates that telomerase does not act on every 

telomere in each cell cycle, but rather exhibits an increasing preference for 

telomeres as their lengths decline (Teixeira et al., 2004). This analysis therefore 

suggests that telomere length homeostasis is achieved via a switch between 

‘extendible’ and ‘nonextendible’ states. These states could be regulated by Tel1 

kinase. It was also shown that Tel1 was highly enriched at short telomeres from 
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early S through G2 phase. Tel1 binding was required for preferential 

binding of telomerase to short telomeres. These data suggest that Tel1 targets 

telomerase to the DNA ends most in need of extension (Arneric and Lingner, 

2007; Sabourin et al., 2007). 

 

1.2.2 Telomere maintenance without telomerase 

The majority of cells die in the absence of telomerase after telomere 

shortening leads to senescence. However, a small subpopulation of S. 

cerevisiae escape the lethal consequences of telomerase loss (Lundblad and 

Blackburn, 1993). The survivors recovered from telomerase deleted strains 

display global amplification and rearrangements of both telomeric and sub-

telomeric repeat sequences. These extensive rearrangements are a result of 

recombination in sub-telomeric or telomeric repeats, as the appearance of 

survivors was blocked in cells lacking Rad52, which is responsible for the 

majority of homologous recombination events in S. cerevisiae (Teng and 

Zakian, 1999).  

Recombination-based telomere maintenance in the absence of 

telomerase is also characteristic of S. pombe linear chromosome-containing 

survivors. The frequency of linear survivors is enhanced upon deletion of Taz1, 

suggesting that Taz1 suppresses telomeric recombination (Nakamura et al., 

1998; Subramanian et al., 2008).  Likewise, the appearance of recombination-

based survivors suggests that critically short telomeres are highly 
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recombinogenic (Teng et al., 2000), perhaps due to the loss of binding sites 

for proteins like Taz1.  

In immortalized mammalian cell lines, telomere maintenance in the 

absence of telomerase occurs by a mechanism known as ALT (Alternative 

Lengthening of telomeres) (Bryan et al., 1995). The mechanism of ALT is not 

well understood, but indirect evidence suggests it is also based on 

recombination mechanisms. The ALT telomeres are very heterogeneous, 

display a high rate of post-replicative sister chromatid exchange and show 

higher levels of association with proteins involved in homologous 

recombination, consistent with a recombinational mode of telomere 

maintenance (Bailey et al., 2004; Baird et al., 2000; Dunham et al., 2000). 

 

1.3 Pot1 is an important telomere end-binding protein that 

controls genome stability 

1.3.1 Pot1 is a highly conserved telomere binding protein  

Pot1 (protection of telomeres) was first discovered in 

Schizosaccharomyces pombe using bioinformatics tools as a homolog of the 

ciliate Oxytricha nova telomere ssDNA binding protein TEBPα (Baumann and 

Cech, 2001). In S. pombe, Pot1 has a critical role in telomere capping, and 

Pot1 deletion results in rapid and complete telomere loss and cell death, with 

survival occurring only via chromosome circularization (Baumann and Cech, 

2001), suggesting that Pot1 has an essential function in the maintenance of 
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linear chromosomes structure.  Pot1 was also characterised in mammals 

(Baumann and Cech, 2001; Baumann et al., 2002), chicken (Wei and Price, 

2004), Aspergillus (Pitt et al., 2004), Arabidopsis (Shakirov et al., 2005; Tani 

and Murata, 2005) and C. elegans (Raices et al., 2008) and appears to be 

important telomere component in eukaryotes.  

Characterisation of the phenotypes generated by Pot1 disruption in a 

variety of organisms suggests that the function of Pot1 is highly conserved. Pot1 

deletions cause defects in chromosome end structure (Hockemeyer et al., 

2005), accumulation of G-rich overhang signal (Churikov et al., 2006) and 

massive C-rich strand resection followed by complete loss of telomeres in S. 

pombe (Chris Pitt, unpublished data). Pot1 has also been shown to play roles 

in telomerase recruitment, protecting telomeres from the DNA damage 

response (He et al., 2006; Hockemeyer et al., 2005; Wu et al., 2006) and 

checkpoint activation (Churikov et al., 2006; Jacob et al., 2007).  

Pot1 interacts with G-rich ssDNA telomeric DNA through its N-terminal 

oligonucleotide/oligosaccharide-binding folds (OB folds).  The OB fold 

comprises a five-stranded β sheet coiled to form a closed β barrel and capped 

by an α helix located between the third and fourth β strands (Theobald et al., 

2003). Like TEBPα, Pot1 contains two OB folds in its N terminus (Baumann 

and Cech, 2001; Lei et al., 2004) and probably one OB fold at its C-terminus 

(Theobald and Wuttke, 2004).  This differs from the domain arrangement in 

from the budding yeast ss telomere binding protein Cdc13, which contains two 

C-terminal OB folds.  
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The OB fold is a highly conserved ssDNA-binding motif. Other OB-

fold domain-containing proteins include the three subunits of replication 

protein A (RPA) (Bochkarev et al., 1999), several types of DNA helicases and 

ligases, and the breast cancer susceptibility gene 2 (BRCA2) protein (Bochkarev 

and Bochkareva, 2004; Theobald et al., 2003; Yang et al., 2002). Among other 

telomere proteins, the OB fold is found in the telomerase regulation subunit 

Est3 (Lee et al., 2008; Young Yu et al., 2008), the Pot1 binding partner Tpp1 (a 

homolog of ciliate TEBPβ) (Miyoshi et al., 2008; Wang et al., 2007; Xin et al., 

2007) and the Stn1 and Ten1 like proteins that are important for telomere 

protection in yeast (Martin et al., 2007).  

 

1.3.2 Pot1 suppresses DNA damage response at telomeres 

Pot1 plays an important role in suppressing DNA damage responses at 

telomeres. RNAi-mediated reduction of POT1 levels in human tumor cell lines 

induced a DDR at chromosome ends as evidenced by the appearance of 

telomeric DNA damage foci, yet remain protected from nonhomologous end-

joining (Hockemeyer et al., 2005). 

Disruption of the POT1 gene in chicken DT40 cells leads to similar 

defects (Churikov et al., 2006): a DNA damage response at telomeres as shown 

by telomeric H2AX accumulation, and rapid cell cycle arrest due to an ATM- 

and/or ATR-mediated checkpoint activation. 

Conditional deletion of two mouse Pot1 orthologs POT1a and POT1b 

also results in a DNA damage signal at chromosome ends, endoreduplication, 
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aberrant homologous recombination at telomeres, and p53-dependent 

replicative senescence, although POT1a and POT1b have distinct functions 

(Hockemeyer et al., 2006; Wu et al., 2006). POT1a appears to repress a DNA 

damage signal at telomeres, whereas POT1b regulates the amount of single-

stranded DNA at the telomere terminus. DNA damage response in the absence 

of Pot1 is dependent on ATR and phosphorylation of its downstream kinase 

targets Chk1 and Chk2 (Denchi and de Lange, 2007).  

The ability of POT1 to repress the ATR kinase depends on its association 

with TPP1 (Hockemeyer et al., 2007). Inhibition of TPP1 gives rise to a DNA 

damage response at telomeres that is indistinguishable from the response to 

POT1 deletion (Denchi and de Lange, 2007; Xin et al., 2007). In addition, 

interaction between S. pombe Pot1 and Tpz1/TPP1 is required for telomere 

protection and it destruction yields a pot1Δ phenotype (Miyoshi et al., 2008).  

The mechanism of DNA response inhibition by Pot1 is not understood. 

Pot1 and Pot1/TPP1 complex could block the binding of RPA to single 

stranded telomeric DNA. Alternatively, Pot1/TPP1 may recruit additional 

factors that suppress DNA damage response at telomeres. It was shown that in 

S. pombe, the Pot1-Tpz1/TPP1 complex binds to and recruits Ccq1, a protein 

that suppresses checkpoint activation and homologous recombination at 

telomeres (Miyoshi et al., 2008) and (Tomita, K et al., Genes and Dev., in 

press). 
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1.3.3 Role of Pot1 in telomerase recruitment and processivity 

The role of Pot1 in telomere length regulation is not clear. 

Overexpression of full-length Pot1 resulted in lengthened telomeres in some 

mammalian cell types, suggesting that Pot1 is a positive regulator of telomere 

length (Colgin et al., 2003; Liu et al., 2004). However, overexpression of a 

dominant-negative C-terminal fragment of Pot1, which lacks the ability to bind 

to single-stranded DNA but is still recruited to telomeres through interaction 

with TPP1, leads to extensive telomerase-dependent telomere lengthening, 

implying that Pot1 serves as a negative regulator of telomere length (Loayza 

and De Lange, 2003). This result suggests that Pot1 transduces the negative 

telomere regulatory signal from the TRF1 complex to telomerase. In support of 

this idea, RNAi -mediated knock down of hPot1 resulted in longer telomeres 

(Ye et al., 2004).  

How could Pot1 be both a negative and a positive regulator of telomere 

length? One possible explanation came from in vitro studies. There are two 

types of Pot1-telomere ssDNA interaction, one that sequesters the ssDNA from 

telomerase interaction and another that presents the ssDNA tail to telomerase 

in an accessible form, promoting telomere elongation (Kelleher et al., 2005; Lei 

et al., 2005). It was proposed that other factors could promote the switch 

between different stages in vivo. 

The positive effect on telomerase is enhanced when a POT1-TPP1 

complex is bound to DNA substrates, both when binding occurs at internal and 

3’-terminal positions (Wang et al., 2007). In agreement with a role of TPP1-

POT1 in the modulation of telomerase, an interaction of TPP1 with telomerase 
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through its OB fold domain has been reported (Xin et al., 2007). Thus, in 

vitro results indicate that POT1-TPP1 complex has a stimulatory action on 

telomerase. Because TPP1-POT1 binds terminal overhangs with high affinity 

and stimulates telomerase activity in vitro, it is possible that this dimeric 

complex can act as an on/off switch for telomerase action. In this scenario, an 

inhibitory function of TRF1/2-bound TPP1-POT1 would be reversed by an as 

yet unidentified mechanism, that could involve modification (for example, 

phosphorylation). Consistent with this possibility, the ciliate orthologs of TPP1-

POT1 are phosphorylated in vivo (Paeschke et al., 2005). 

Another explanation for how Pot1-TPP1 could promote telomerase 

recruitment came from the work on fission yeast (Miyoshi et al., 2008). In S. 

pombe, the Pot1-TPP1 interacting factor Ccq1 is implicated in the direct 

regulation of telomerase activity: whereas TPP1/Tpz1 immunoprecipitates 

telomerase activity, it fails to do so in the absence of Ccq1. Cells devoid of 

Ccq1 have short telomeres that are maintained by recombination, suggesting 

that Ccq1 might be necessary for telomerase activity (Miyoshi et al., 2008) and 

(Tomita, K et al., Genes and Dev., in press). 

S. pombe Poz1, on the other hand, inhibits telomere elongation. Taken 

together, these findings point to a model for telomerase regulation in fission 

yeast similar to the one suggested for the human system, with an overhang-

binding Pot1-Tpz1-Ccq1 complex capable of recruiting telomerase and a 

double-stranded binding complex made of Taz1-Rif1-Rap1 playing an 

inhibitory role. Poz1-Pot1-Tpz1-Ccq1 might switch from an overhang-bound 

and telomerase permissive state to a Rap1-anchored state that would be 
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nonconducive to telomerase recruitment/action. Different conformations 

could be regulated by modification of Pot1 or other components of the Pot1 

complex.  

 

1.3.4 Regulation of Pot1 functions 

The foregoing observations suggest that Pot1 has multiple functions at 

telomeres. Some of these functions are completely contradictory to others. On 

one hand, Pot1 stimulates the formation of a closed chromatin structure that 

protects telomeres from the DDR and inhibits telomerase, while on the other 

hand, Pot1 stimulates telomerase activity in vitro and in vivo. These completely 

opposite Pot1 functions can be rationalized by proposing that Pot1 can 

regulate different telomeric states: the close telomere conformation protects 

telomere from DNA damage response and is suppressive for telomerase, 

whereas open state favours telomerase action and telomere repeats addition 

(Kelleher et al., 2005; Lei et al., 2005; Miyoshi et al., 2008).  

All these models predict that alternative telomere configuration states 

could be regulated by Pot1 cell cycle regulated modifications, although no 

Pot1 modifications have been detected so far. In our study we report the 

phosphorylation of Pot1 by the conserved DDK kinase. This is the first 

observation that could help to solve the mechanism of Pot1 regulation.       
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1.4 The role of DDK in maintaining genome integrity 

1.4.1 Introduction: DDKs 

DDKs or Dbf4-dependent kinases are cell cycle regulated enzymes that 

share several common features with cyclin-dependent protein kinases (CDKs) 

(Johnston et al., 1999). DDK and CDK regulation is accomplished by the 

controlled expression of their regulatory subunits (cyclins for CDK and Dbf4 

related proteins for DDK), while their catalytic subunits are expressed 

throughout the cell cycle. Both CDKs and DDKs are crucial regulators of 

various processes during cell cycle progression, sometimes regulating the same 

mechanisms (like replication initiation and meiosis) and thereby building a 

highly coordinated architecture of cell cycle regulation control. Both DDK and 

CDK are regulated independently with interplays occurring at different levels, 

including mutual activity regulation and substrate specificity control. 

Cdc7 (Hsk1 is the S. pombe ortholog), the catalytic subunit of DDK 

(Dbf4 dependent kinase) was originally isolated in the Hartwell cell division 

cycle genetic screen in budding yeast (Culotti and Hartwell, 1971). Cdc7 was 

shown to be a serine–threonine kinase that is activated very late in G1 phase 

(Yoon and Campbell, 1991; Yoon et al., 1993) and appears to serve as a final 

trigger for the synthesis of new DNA (Pasero et al., 1999). It was found that cell 

cycle dependent regulation of Cdc7/Hsk1 activity is accomplished by its 

regulatory subunit Dbf4 (Dfp1 is the S. pombe ortholog) (Jackson et al., 1993; 

Kitada et al., 1992). In contrast to the relatively constant levels of Cdc7 

throughout the cell cycle, the amount of Dbf4 fluctuates, with up-regulation in 
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late G1 phase and high levels through S phase that persist until M phase 

when it is degraded by the APC (Weinreich and Stillman, 1999). Numerous 

Cdc7 and Dbf4 orthologs have been identified in other eukaryotic organisms: 

Hsk1 (Masai et al., 1995) and Dfp1 (Brown and Kelly, 1998) in fission yeast 

Schizosaccharomyces pombe; huCdc7 (Jiang and Hunter, 1997) and huDbf4 

(Jiang et al., 1999; Kumagai et al., 1999) from human; muCdc7 and muDbf4 

from mouse (Kim et al., 1998; Lepke et al., 1999); xeCdc7 and xeDrf1/xeDbf4 

from Xenopus (Sato et al., 1997; Takahashi and Walter, 2005), the Drosophila 

Dfb4 ortholog Chiffon (Landis and Tower, 1999) and others. It appears that 

DDK kinase is universally involved in DNA replication control. 

In addition to its replication initiation role, DDK has been implicated in 

several important processes: intra-S phase checkpoint response, recovery from 

replication fork arrest, S phase assembly of centromeric heterochromatin and 

cohesion, and regulation of Spo11 dependent DSB generation in meiosis. In 

our work, we uncovered a new role of DDK in controlling telomere functions 

thought phosphorylation of Pot1. 

 

1.4.2 Hsk1 and Dfp1 form DDK in fission yeast 

As in S. cerevisiae Cdc7, the abundance of the S. pombe catalytic DDK 

subunit, Hsk1, remains constant through the cell cycle whereas levels of the 

regulatory subunit Dfp1 are high in S phase, decrease greatly in G1, and 

suddenly return to maximal levels just prior to the initiation of DNA replication 

(Brown and Kelly, 1999; Takeda et al., 1999). The amount of Dfp1 is tightly 
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controlled on both transcriptional and translational levels. Interestingly, 

despite ongoing transcription, Dfp1 is not detected during G1, because during 

this period the Dfp1 protein is quickly degraded (Brown and Kelly, 1999; 

Takeda et al., 1999). 

 

1.4.3 Mechanism of DDK action and substrate specificity 

The consensus phosphorylation site for DDK is not known. This fact 

makes it much harder to determine phosphorylation sites in DDK substrates. 

Only little information about DDK specificity and mechanism of action is 

available. 

S. cerevisiae Mcm4 is the best studied DDK substrate (Sheu and 

Stillman, 2006). It was proposed that two regions in Mcm4 - NSD (N-terminal 

serine/threonine-rich domain) and DDD (DDK-docking domain) are needed for 

Mcm4 phosphorylation. The kinase-recruitment DDD is the main determinant 

of DDK substrate specificity, while NSD harbors phosphoacceptor sites that are 

phosphorylated by DDK. The sequence of NSD is not conserved and can be 

replaced with any serine- and threonine-containing sequence surrounded by 

negatively charged amino acids (Sheu and Stillman, 2006). 

How DDK substrate specificity is determined remains to be addressed. It 

seems that Dfp1/Dbf4 regulation subunit is responsible for DDK recruitment to 

its substrates. It was shown that Dfp1 interacts with the DDK substrate Swi6 in 

S. pombe (Bailis et al., 2003) and that Dbf4 is needed for DDK recruitment to 

origins in S. cerevisiae (Dowell et al., 1994). 
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1.4.4 Function of DDK in replication initiation 

The initiation of DNA replication, or ‘origin firing’, is a highly controlled 

mechanism that involves a number of different structural and regulatory 

molecules.  In G1, origins of replication are already occupied by pre-

replicative complexes (pre-RC) (Diffley et al., 1994) comprising Cdc6, six 

highly conserved subunits of the origin recognition complex (ORC1-6), and six 

components of minichromosome maintenance (MCM) complex (Mcm2, 

Mcm3, Mcm4, Mcm5, Mcm6, and Mcm7) (Costa and Onesti, 2008). In order 

to activate replication, the pre-replicative complex (pre-RC) is later converted 

to the preinitiation complex (pre-IC) by further recruiting replication factors 

such as Cdc45, Sld2, Sld3, and GINS (Kamimura et al., 2001; Masumoto et al., 

2002; Zou and Stillman, 2000) Cdc45 is often referred as a marker for origin 

activation, because it is important for recruitment of the polymerase α/ primase 

complex to the origin (Zou and Stillman, 2000).  

DDK, together with the S phase CDKs, is required for the transition from 

pre-RC to pre-IC and subsequent activation of DNA replication. Several lines of 

evidence suggest that MCM proteins are prime targets for the DDK. Genetic 

evidence showed that a mutation in the MCM complex, mcm5-bob1, partially 

bypasses the essential role of the DDK (Hardy et al., 1997). Furthermore, an 

allele of Dbf4 has been isolated as an allele-specific suppressor of mcm2-1 (Lei 

et al., 1997). In vitro kinase assays demonstrated that several MCM subunits 

are substrates of the DDK (Lei et al., 1997; Weinreich and Stillman, 1999). It 
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was proposed that DDK is recruited to origins through a DDK-docking 

domain on Mcm4 to facilitate its hyperphosphorylation, which is important for 

stable Cdc45-MCM complex formation on S phase chromatin (Sheu and 

Stillman, 2006) and activation of the MCM replicative helicase complex at 

origins. 

Interestingly, cells harboring a phosphodeficient Mcm4 mutant are 

viable, but have a very long S-phase (Sheu and Stillman, 2006), suggesting that 

instead of functioning as a global switch, DDK-mediated phosphorylation of 

Mcm4 is required for activation of individual origins throughout S phase to 

promote timely progression. Thus, DDK recruitment might be a key 

determinant of both the temporal and spatial control of origin firing. 

 

1.4.5 Intra S-phase checkpoint and recovery from replication fork 

arrest 

There is accumulating evidence that DDK also plays an important role 

during the S-phase checkpoint response. First, DDK mutants display 

hypersensitivity to genotoxic agents like HU, UV light and MMS (Fung et al., 

2002; Takeda et al., 1999). Dfp1 N-terminal truncations (amino acids 154–

193) are viable but result in HU sensitivity and high frequency of the ‘cut’ 

phenotype, which is one of the hallmarks of checkpoint failure (Fung et al., 

2002; Takeda et al., 1999). Unlike other Dfp1/Hsk1 mutants, those with 

alterations in the Dfp1 C-terminus (C-terminal truncation of amino acids 377–

545, called dfp1-376) were found to have an intact intra-S phase checkpoint, 
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and yet were sensitive to MMS. This suggested an additional role for Dfp1, 

in the recovery from the stalled replication forks induced by MMS. Such a role 

is consistent with the high rate of recombination and chromosome loss, and 

the persistent checkpoint activation in MMS-treated dfp1-376 cells (Fung et al., 

2002). Furthermore, an hsk1ts allele is synthetically lethal with a null mutation 

of rqh1, which encodes a RecQ-type helicase implicated in recovery from HU 

arrest (Snaith et al., 2000), again consistent with a role for DDKs in recovery 

from replication fork stalling.  

Another key finding pointing to an S phase checkpoint role for DDKs is 

the hyperphosphorylation of Dfp1 upon treatment with HU, which results in 

replication fork arrest and activation of the checkpoint kinase Cds1. When a 

cds1Δ strain is exposed to HU, there is no longer hyperphosphorylation of 

Dfp1 (Brown and Kelly, 1999). Hsk1 is similarly phosphorylated in a Cds1-

dependent fashion following HU treatment, and in vitro assays using purified 

proteins have shown that it is a direct substrate for Cds1 (Snaith et al., 2000). 

The HU response is probably more complicated, because full activation of 

Cds1 upon HU treatment was found to depend on Hsk1 activity (Takeda et al., 

2001), suggesting Cds1 and Hsk1 may be part of a regulatory loop. 

What is the role of DDK in the intra-S phase checkpoint response? It 

was shown that Rad53-dependent phosphorylation of Dbf4 attenuates DDK 

activity in S. cerevisiae (Kihara et al., 2000; Weinreich and Stillman, 1999). 

Moreover, late origins normally prevented from firing following exposure of 

cells to either HU or MMS are released from this control in a mutant rad53 

background (Santocanale and Diffley, 1998). It was shown that Dbf4 interacts 
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with Rad53 and ORC through the same N-terminal domain (Duncker et al., 

2002), making it possible to suggest that during checkpoint response, Rad53 

prevents Dbf4 from associating with replication origins by directly targeting 

Dbf4 ORC-association domain, resulting in Rad53-dependent dissociation of 

Dbf4 from the chromatin and perhaps from Cdc7, which renders DDK unable 

to phosphorylate its critical targets at late replication origins, thereby 

preventing origin firing. 

 

1.4.6 DDK role in centromeric heterochromatin assembly and 

cohesin loading  

Replication folk passage is not the only factor important for proper 

chromatin structure formation during S-phase. It was shown that DDK is also 

required for Swi6 dependent centromeric heterochromatin formation (Bailis et 

al., 2003) and hence plays a central role in accurate chromosome segregation 

promoting centromeric sister chromatin cohesion (Bernard et al., 2001; 

Nonaka et al., 2002). Both hsk1-1312 and dfp1-376 mutants show loss of 

silencing and cohesion at the centromeres. It was shown that binding of Swi6 

to methylated H3 K9 is not sufficient for heterochromatin function; instead, 

DDK phosphorylation of Swi6 is needed to form silent heterochromatin and 

establish cohesion at centromeres. It was proposed that DDK is targeted to 

centromeres during S phase, where it phosphorylates Swi6 and promotes the 

binding of additional proteins required for silencing, cohesion and assembly of 

the kinetochore (Bailis et al., 2003). 
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DDK has a more general role in cohesin recruitment. As was shown 

in Xenopus egg extracts, DDK is important for pre-RC (pre-replication 

complex) dependent loading of the cohesin loading factors Scc2-Scc4. 

Interestingly, Scc2–Scc4 binding to chromatin requires DDK kinase activity 

(Takahashi et al., 2008). It was demonstrated that egg extracts contain a large 

complex consisting of Scc2–Scc4, cohesin, and DDK, and that Scc2–Scc4 

forms a bridge between DDK and cohesin (Takahashi et al., 2008). Because 

DDK interacts stably with pre-RCs (Takahashi and Walter, 2005) and with 

Scc2–Scc4, DDK could play a structural role in Scc2–Scc4 recruitment. 

 

1.4.7 DDK function during meiotic double-stranded breaks 

formation 

A role for DDK in meiotic progression has been reported in several 

organisms. In mice, reduction of Cdc7 kinase activity results in sterility with 

testicular and ovary atrophy, indicating an essential role for Cdc7 in gamete 

formation (Kim et al., 2003). In fission yeast, Cdc7 kinase activity has an 

essential role in meiotic progression and DSB formation (Ogino et al., 2006). In 

budding yeast, a cdc7ts mutant was shown to undergo premeiotic DNA 

replication but to arrest before meiosis I (Hollingsworth and Sclafani, 1993). 

Moreover, analysis using a cdc7-as (ATP analog sensitive) mutant suggested the 

possibility that Cdc7 is required for meiotic DSB formation in budding yeast 

(Wan et al., 2006).  
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Meiotic recombination involves the formation and repair of DSBs  

generated by the evolutionarily conserved Spo11 protein during meiosis 

prophase. DSB formation requires progression through S-phase, but is not 

depend strictly on replication (Hochwagen et al., 2005). Spo11 is the catalytic 

subunit of the meiotic DSB-forming activity, but other additional factors are 

required for Spo11 activity. It was shown that DDK regulates DSB formation by 

phosphorylation of Mer2 (Sasanuma et al., 2008; Wan et al., 2008), one of the 

proteins that regulates Spo11 activity. Cdc7 influences Mer2 activity by 

modulating Mer2 interactions with other components of the Spo11 complex, 

and thereby controlling the loading of Spo11 on chromatin (Sasanuma et al., 

2008). 

 

1.5 The aim of this study 

In my thesis work, I found that Pot1 interacts and is phosphorylated by 

DDK in a cell cycle dependent manner. This finding provided an opportunity 

to ask whether DDK dependent Pot1 phosphorylation has a role in regulating 

telomere function. The aim of this work was to understand the mechanisms of 

Pot1 regulation and its effect on telomeres. The long-standing goal is to 

understand the dynamic structure of telomeres in different phases of cell cycle, 

and how the dynamism of telomeres regulates their functions and 

maintenance.    
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2 Materials and methods 

2.1 Yeast growth and manipulation 

2.1.1 Yeast strains and media  

All fission yeast strains used in this study are listed in Table 1. All media 

and growth conditions were as previously described (Moreno et al., 1991). 

Cultures were usually grown at 32°C in rich medium (YES) except where 

noted. Strains were constructed either by mating with another mutant and 

selecting on appropriate selective media or by transformation with appropriate 

DNA integration fragment designed for gene knockout or tagging.  Gene 

knockouts were created by one-step gene replacement of the entire ORF with a 

kanMX6, hphMX6 or natMX6 cassette. (Sato et al., 2005). Gene tagging with 

V5, myc and HA epitopes was performed as described in (Sato et al., 2005). 

2.1.2 Yeast mating and tetrad dissection 

Mating was induced by incubating opposite mating type yeast strains or 

diploids on malt-extract (ME) plates at 25˚C for 48 hours. The spore ascis were 

placed on a YES plate and incubated for 5 hours to breakdown the asci walls. 

Four released spores from each asci were placed in a line using a Singer-MSM 

micromanipulator. The spores were incubated at 32˚C (except where noted) 

until colonies formation.
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2.1.3 Yeast transformation 

All yeast transformations were performed as previously described (Sato 

et al., 2005) with minor modifications.  Cells were grown in YES media until 

the cultures reach log phase; 10ml of cell culture were used per one 

transformation. Cells were collected by centrifugation and washed once in 

autoclaved, deionised water and once in LiOAc solution (0.1 M LiOAc, 10 mM 

Tris-HCl (pH 8.0), 1 mM EDTA). Cells were pelleted and resuspended in 50 µl 

of LiOAc solution. 50 µl of the cells were added to a tube containing the mix 

of transformation DNA and 3 µl of previously boiled and iced salmon sperm 

DNA (10 mg/ml from Stratagene).  For the transformation DNA, several µg of 

PCR product were used or ~1 µg of supercoiled plasmid. 280 µl of PEG 

solution (40% polyethylene glycol 3.350 (PEG) in 0.1 M LiOAc, 10 mM Tris-

HCl (pH 8.0), 1 mM EDTA) were added, mixed by inversion and incubated at 

the optimal growing temperature for the strain used for 30 minutes.  35µl of 

DMSO was added and the tube was incubated at 42°C for 5 minutes.  Cells 

were pelleted, washed in 1 ml ddH2O and resuspended in 100 µl of ddH2O.  

Cells were plated on the appropriate media and incubated at the appropriate 

temperature for selection. 
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2.1.4 Cytological analysis 

For cellular morphology analysis we collected cells from log phase 

cultures grown at the indicated temperatures and visualized the cells by light 

microscopy or by differential interference microscopy (DIC) using ZEIZZ 

Axioplan2 fluorescence microscope. All images were captured on a 

HAMAMATSU ORCA-ER digital camera. The images were analysed using 

Volocity 4.3.1 software (Improvision Company Ltd). 

 

2.1.5 Cell synchronization using cdc25-22 temperature sensitive 

mutant 

Asynchronous cultures were grown at the permissive temperature (25°C) 

until mid-log phase.  To block cells in G2 the cell cultures were shifted to 

36.5°C for 3 hours.  For the block release, cells were shifted back to 25°C.  

Samples were then taken at the indicated time intervals. Mitotic index (as a 

measurement of cell synchronisation and cell cycle progression) was 

calculated as a percentage of the cells with formed septum. 

 

2.2 General molecular biology techniques 

All standard molecular biology techniques, like DNA purification, PCR, 

restriction endonuclease digestion, bacterial plasmid purification were carried 

out as described in (Sambrook and Russell, 2001) or in corresponding kit 

manufacturer protocol.  
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2.3 Protein analysis techniques 

2.3.1 Protein extract preparation with trichloroacetic acid (TCA) 

Yeast cells were grown in 15 ml of appropriate media until mid-log 

phase. Cells were than collected by centrifugation, resuspended in 1 ml of 

20% trichloroacetic acid (TCA) and kept on ice for 15 minutes. We washed the 

cells with 1 ml of 1M Tris-Base and finally cell pellets were resuspended in 

100 µl of 2X SDS-PAGE loading buffer in the tubes containing 100 µl of 

0.5mm glass beads (BioSpec Products, Inc). The cells were lyzed using 

FastPrep FP120 cell breaker (Bio101). Protein extract was moved to another 

tube boiled for 5 minutes and cleared by centrifugation at 16.000g for 5 

minutes. 

 

2.3.2 Analysis of protein-protein interaction 

Protein-protein interaction were analysed using yeast two-hybrid system 

and co-immunoprecipitation technique.  

 

2.3.2.1 Yeast two-hybrid screen  

The yeast two-hybrid screen analysis was carried out according to the 

manufacturer’s protocol (Matchmaker Two-Hybrid System, Clontech). The bait 

construct was constructed by fusing full-length Pot1 to the GAL4 DNA-binding 
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domain (DBD) into a pBGKT7 vector (Clontech). The yeast AH109 

transformant expressing the Pot1-GAL4 DBD fusion protein was transformed 

with Schizosaccharomyces pombe cDNA library expressing the GAL4 

activation domain (AD) fusion proteins (America Type Culture Collection, 

Manassas, VA, USA). The positive clones were selected as a clones that were 

able to grow on minimal media lacking tryptophan, leucine, histidine and 

containing 5 mM of 3-amino-1,2,4-triazole (Sigma). The positives were then 

screened for β-galactosidase activity using X-Gal as a substrate (Roche). The 

cDNA clones that represented potential Pot1 binding proteins were sequenced 

and compared with the GenBank database using a Blast Search. 

 

2.3.2.2 Protein immunoprecipitation 

For immunoprecipitation of the Pot1-13xmyc, Pot1-6xV5 or Dfp1-3xHA 

100 ml of exponentially growing cells was harvested. Cell lysates were 

extracted with 0.5mm glass beads (BioSpec Products, Inc) and lysis buffer (50 

mM HEPES-KOH (pH 7.5), 10 mM MgCl2, 0.1% NP-40, 250 mM NaCl, 1 mM 

DTT, 60 mM β-glycerophosphate, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl 

fluoride, and 1x complete inhibitor (Roche)) using FastPrep FP120 cell breaker 

(Bio101) at 4°C. Soluble fractions were recovered by centrifugation for 10 min 

at 16.000 g and pre-cleared with 100 µl of protein-A agarose (Sigma) for 1 h at 

4°C. Then, the supernatants were incubated for 1 hour with 70 µl of protein-A 

Dynabeads (Invitrogen) preincubated with anti-V5 (Serotec), anti-HA.11 

(Covance) or anti-myc 9E10 (Covance) antibodies.  The resin was washed six 
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times with lysis buffer. The proteins were eluted with SDS-PAGE loading 

buffer. 

 

2.3.3 Two-dimensional protein gel electrophoresis 

Two-dimensional protein gel electrophoresis (2D-PGE) was perform as 

described previously (Raggiaschi et al., 2006; Yamagata et al., 2002) and in 2-

D Electroohiresis handbook, Principles and Methods (GE Healthcare) with 

some modifications. For separation by 2D-PGE, proteins are subjected to 

isoelectric focusing and then separated by size. The phosphorylation of a 

protein leads to a decrease in its pI and consequently changes its coordinates 

in a 2-D gel. To map Pot1 phosphoisoforms the samples were treated with λ 

Protein Phosphatase (λPpase). Phosphatase treated and untreated samples were 

analyzed by 2-DGE and the resulting 2-D maps compared in order to detect 

differences in migration corresponding to presence of Pot1 phosphorylated 

forms. Selectivity and sensitivity of 2-DGE were improved by combining 2-

DGE with western blot protein detection.  

 

2.3.3.1 Protein extract preparation for 2D-PGE 

Cells were grown in YES media; 10ml of the mid-log phase culture were 

collected by centrifugation and washed twice with ultrapure deionized water. 

Cells were resuspended in equal volume of the lysis solution (7 M urea, 2 M 

thiourea, 4% CHAPS, 0.5% of appropriate IPG buffer (GE Healthcare), 40mM 

DTT, 1X Protease Inhibitor Mix (GE Healthcare), 1X Nuclease Mix (GE 
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Healthcare). The 0.5mm glass beads (BioSpec Products, Inc) were added 

and the cells were lyzed using FastPrep FP120 cell breaker (Bio101). Protein 

extract were moved to another tube and cleared by centrifugation at 16.000g 

for 10 minutes at +4˚C.  Protein concentration was measured using the 2-D 

Quant kit (GE Healthcare). On average, protein concentration was about 20 

µg/µl. 

 

2.3.3.2 Phosphatase treatment 

Phosphatase treatment with λ Protein Phosphatase (λ Ppase) was 

performed with slight modifications as described previously (Yamagata et al., 

2002).  In brief, two aliquots of 20 µl were mixed with 5 µl of 10% SDS and 

vortexed vigorously for 10 seconds. To each sample, 373 µl of deionised 

water, 50 µL of 20 mM MnCl2 and 50 µl of λ Ppase buffer (New England 

Biolabs) were added sequentially. One aliquot was incubated with 800 units of 

λ Ppase enzyme (New England Biolabs) and both samples were left for 2 hours 

at 30˚C. The protein were cleared from interfering material by precipitation 

using the 2-D Clean-Up Kit (GE Healthcare) and then resuspended in 100 ml of 

DeStreak Rehydradion Solution (GE Healthcare). 

 

2.3.3.3 First-dimension isoelectric focusing (IEF) 

Protein samples were prepared by mixing 200 µg of protein extract with 

100 µl of DeStreak Rehydradion Solution (GE Healthcare). Mixed protein 

samples were separated on 24-cm-long Immobiline DryStrip gel strips (GE 
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Healthcare) with an indicated immobilized pH gradient (IPG), which were 

dehydrated for 12 hours with 450 µl of DeStreak Rehydradion Solution (GE 

Healthcare) containing 0.5% of appropriate IPG buffer (GE Healthcare). 

Samples were cup-loaded at the middle of the strips. The first dimension (IEF) 

of the 2-DGE separation was carried out on Ettan IPGphor II Manifold 

instrument (GE Healthcare) using the following running protocol for the strips 

with a liner range of pH 4-7: 0.5 kVh at 500 V, 5.2 kVh gradient up to 1000 V, 

13.5 kVh up to 8000 V, and a final step for 45 kVh at 8000 V. For the strips 

with a liner range of pH 6-9 we used the following settings: 0.5 kVh at 500 V, 

3.8 kVh gradient up to 1000 V, 13.5 kVh up to 8000 V, and 70 kVh at 8000 V. 

 

2.3.3.4 Second-dimension SDS-PAGE 

Once the IEF was finished the IPG strips were equilibrated in SDS 

equilibration buffer solution (6 M urea, 30% glycerol, 2% SDS, 75 mM Tris-

HCl pH 8.8, 0.002% w/v bromophenol blue) containing 65 mM DTT for 15 

min, followed by a second equilibration step of 15 min with the same solution 

containing 135 mM iodoacetamide instead of DTT. IPG strip regions 

corresponding to pH range of 5.5-6.5 (for the 24-cm long IPG strips with the 

liner range of pH 4-7) or 6-7 (for the strips with liner range of pH 6-9) were cut 

out and subjected to the second dimension (SDS-PAGE) on NuPAGE 4-12% 

Bis-Tris Zoom IPG well polyacrylamide gradient gels with MOPS SDS running 

buffer (Invitrogen) using XCell SureLock electrophoresis system (Invitrogen).  
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Separation was carried out at 200 V, until the bromophenol blue reached 

the bottom of the gel. 

 

2.3.3.5 Western Blotting 

Proteins were transferred to Polyvinylidene fluoride (PVDF) membrane 

(Bio-Rad) in a Mini Trans-Blot Cell (Bio-Rad) at 25mA for 1 h. The membrane 

was blocked in PBST buffer (10 mM Na2HPO4, 2mM KH2PO4, 137 mM NaCl, 

2.7 mM KCl, 0.1% Tween) with 5% MARVEL skimmed milk for 1hour. The 

antibodies were added and the incubation was continued for 2 hour at room 

temperature of at +4˚C over night. We used the following dilutions of 

monoclonal antibodies: anti-V5 (Serotec) at 1:4,000 dilution, anti-HA.11 

(Covance) at 1:1,000, anti-myc 9E10 (Covance) at 1:2,000 and anti-FLAG M2 

(Sigma) at 1:1,000. The membranes were incubated with sheep anti-mouse IgG 

Horseradish peroxidase conjugates in PBST containing 5% milk for 40 minutes.   

Proteins were detected using ECL Plus™ Western Blotting Detection Systems 

(GE Healthcare). 

 

2.3.4 Expression and purification of Pot1 OB fold 

The procedure of purification of S. pombe Pot1 OB fold expressed in 

Escherichia coli was described previously (Lei et al., 2002).  We used this 

protocol with some modifications. Briefly, Pot1 OB fold mutants were 

expressed in Rosetta pLysS E. coli cells (Novagen) harboring plasmid pET30-

Pot1-wt OB fold, pET30-Pot1-(T68A, T75A) OB fold or pET30-Pot1-(T68D, 
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T75D) OB fold.  Cells were grown in 1 L of LB media containing 30 µg/ml 

kanamycin and 34 µg/ml chloramphenicol at 37 °C. Cells were grown in a 

shaker incubator to an optical density of OD600 ∼0.6 and were then cooled to 

room temperature and grown to an OD600 of ∼1.0. Production of the protein 

was induced by addition of isopropyl thiogalactoside (IPTG) to 1 mM, and the 

cells were grown for an additional 6 h at 25 °C. The cells were harvested by 

centrifugation and stored at -20 °C. Approximately 20 g of cells were 

resuspended in 50 mL of lysis buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 

2 mM 2-mercaptoethanol, 5 mM benzamidine, and 1 mM PMSF) and 

incubated on ice for 40 min. Then DNase I and 15 mM MgCl2 were added to 

the cells, which sat on ice for another 20 min. The cells were lysed by 

sonication, and cell debris was removed by centrifugation. The supernatant 

was incubated with 5 mL of Ni-NTA agarose beads (Qiagen) at 4 °C for 2 h. 

The beads were loaded on a column and wash with the lysis buffer. Pot1 OB 

fold was eluted with lysis buffer containing 50 mM imidazole. Protein was 

concentrated to 20 mg/mL by Centricon 10 (Millipore), dialyzed against 

appropriate buffer and stored at -80 °C after addition of 15% glycerol.  

 

2.3.5 Gel mobility shift assay 

Gel mobility shift assay with Pot1 OB fold was previously described in 

(Lei et al., 2002). Pot1 OB fold wild type or mutant dialyzed against binding 

buffer (25 mM HEPES/NaOH, pH 7.5, 50 mM NaCl, 40 mM KCl, 7% glycerol, 

1 mM EDTA, and 0.1 mM DTT) was mixed with 0.5 µM 32P-labeled telomeric 
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single-stranded oligonucleotide  5’-

GGTTACACGGTTACAGGTTACAGGTTACAGGGTTACGGTTACGSS-3’ in a 

total volume of 20 μL. The reaction mixtures were incubated at room 

temperature for 10 min. Then the mixtures were directly loaded onto a 4-20% 

nondenaturing polyacrylamide gel. Electrophoresis was carried out in TBE 

buffer at 150 V for 85 min at 4 °C. The gels were dried, and radiolabeled 

telomeric ssDNA was visualized using a PhosphorImager (GE Healthcare). 

 

2.3.6 Protein sequence alignment 

Multiple protein sequences were aligned using ClustalW software.  

 

2.3.7 In vitro kinase assay 

For the in vitro kinase assay, Dfp1-3HA was immunoprecipitated as 

described earlier, the beads were washed twice more with kinase buffer (50 

mM Tris/HCl pH 7.5, 10 mM MgCl2, 1 mM DTT, 5 mM β-glycero-phosphate). 

Beads were incubated with 20 µl reaction mix (kinase buffer supplemented 

with 10 µM ATP and 5 µg of purified recombinant Pot1-OB-fold (amino acids 

1-185), including 0.25 µCi/µl γ-32P-ATP) for 20 min at 32°C. The reaction was 

stopped by adding SDS-PAGE loading buffer. The proteins were separated by 

NuPAGE 4-12% Bis-Tris polyacrylamide gradient gel with MOPS SDS running 

buffer (Invitrogen). Gel was dried out and exposed to PhosphorImaging screen 
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(GE Healthcare); the screen reading was carried out using STORM 840 

PhosphorImager scanner (GE Healthcare). 

 

2.4 DNA analysis and manipulation techniques 

All cloning and standard DNA manipulation procedures were carried 

out as described in (Sambrook and Russell, 2001).  

 

2.4.1 Oligonucleotides and vector 

All plasmids that were created in this thesis are listed in Table 2. 

 

2.4.1.1 Cloning Pot1 bait construct for yeast two-hybrid screen 

For Pot1 bait construct (pGBKT7-Pot1) construction full-length Pot1 

cDNA was amplified by PCR from S. pombe cDNA library (America Type 

Culture Collection, Manassas, VA, USA) using primers: forward 5’-

ATCGGTCGACTCATGGGAGAGGACGTTATTGACAGTCTTCAG-3’ and 

reverse 5’-ACGCTGCAGTCAAACAATTTTCGTGCCAAATCCTCGC-3’. The 

PCR fragment was cloned into SalI and PstI digested bait expression vector 

pGBKT7 (Clontech). 
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Table 2 Plasmids that were created in this study 

Plasmid number Plasmid construct 

VKP 137  pGBKT7-Pot1 

VKP 203 pCST159-Pot1-(T58A-S89A)-6xV5 

VKP 205 pCST159-Pot1-(T111A-T154)-6xV5 

VKP 209 pCST159-Pot1-(T58A-T154A)-6xV5 

VKP 221 pCST159-Pot1-(T58A-S89A, A68T)-6xV5 

VKP 229 pCST159-Pot1-(T58A-S89A, A68T, A75T)-6xV5 

VKP 233 pCST159-Pot1-6xV5-wt 

VKP 235 pCST159-Pot1-(T173A-S252A)-6xV5 

VKP 237 pCST159-Pot1-(S420A-T517A)-6xV5 

VKP 246 pCST159-Pot1-T75A-6xV5 

VKP 249 pCST159-Pot1-(T68A, T75A)-6xV5 

VKP 250 pCST159-Pot1-T68A-6xV5 

VKP 253 pCST159-Pot1-(T58A-S89A, A58S)-6xV5 

VKP 257 pCST159-Pot1-(T58A-S89A, A89S)-6xV5 

VKP 258 pCST159-Pot1-T68D-6xV5 

VKP 260 pCST159-Pot1-(T68D, T75D)-6xV5 

VKP 262 pCST159-Pot1-(T68A, T75A, T78A, T79A, S80A)-6xV5 

VKP 268 pCST159-Pot1-(T68A, T75A, T78A)-6xV5 

VKP 273 pCST159-Pot1-(T68A, T75A, T78A, T79A)-6xV5 

VKP 305 pET30-Pot1-wt OB fold 

VKP 308 pET30-Pot1-(T68A, T75A) OB fold 

VKP 311 pET30-Pot1-(T68D, T75D) OB fold 

VKP 314 pCST159-Pot1-(T68A, T75A)-natMX6 
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2.4.1.2 Creation of Pot1 serine and threonine replacement 

mutants 

Pot1 integration expression construct (pCST159-Pot1-6xV5-wt) was 

created as follows. Pot1 genomic fragment containing ~800bp of Pot1 

promoter region, 6xV5 C-terminal tag followed by TEF terminator was 

amplified by PCR from genomic DNA obtained from JCF 6369 strain using 

primer set: forward 5’-AATTCCTGCAGGAGCAAACTACTGTCAAAACTTAG-3’ 

and reverse 5’- GATCCGTCGACAGTTTCATTTGATGCTCGATGAG-3’. The 

amplified fragment was inserted into pCST159 vector (Chikashige et al., 2006) 

using PstI and SalI restriction sites. 

Mutants with serine and threonine mutations in different regions of Pot1 

was constructed by replacing BstEII/SapI, SapI/ApaI and MluI/NcoI Pot1 

fragments in pCST159-Pot1-6xV5-wt with chemically synthesised 

oligonucleotides (IDT, Integrated DNA technologies, Belgium) where all 

serines and threonines in corresponding Pot1 sequences were replaced with 

alanines. We used the following synthetic oligonucleotides: for pCST159-Pot1-

(T58A-T154A)-6xV5 construct: 5’-

AGATTGGGTAACCGCTGTATATTTGTGGGATCCAGCTTGTGATGCTGCTGC

TATCGGACTACAGATACACTTGTTCGCTAAACAGGGAAATGATTTGCCTGT

AATCAAGCAGGTGGGGCAACCGCTTTTGCTTCATCAAATCGCTTTAAGAGC

TTATAGAGACAGGGCTCAAGGTTTGGCTAAGGATCAATTTCGATATGCACT

TTGGCCAGACTTTGCTGCTAATGCTAAAGATGCTCTCTGTCCTCAACCAATG

CCTCGTTTAATGAAAGCTGGAGACAAGGAAGAGCAATTCG-3’; for 
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pCST159-Pot1-(T58A-S89A)-6xV5: 5’-

AGATTGGGTAACCGCTGTATATTTGTGGGATCCAGCTTGTGATGCTGCTGC

TATCGGACTACAGATACACTTGTTCGCTAAACAGGGAAATGATTTGCCTGT

AATCAAGCAGGTGGGGCAACCGCTTTTGCTTCATCAAATCACATTAAGAAG

TTATAGAGACAGGACTCAAGGTTTGTCTAAGGATCAATTTCGATATGCACTT

TGGCCAGACTTTTCTTCTAATTCCAAAGATACTCTCTGTCCTCAACCAATGCC

TCGTTTAATGAAAACGGGAGACAAGGAAGAGCAATTCG-3’; for pCST159-

Pot1-(T111A-T154)-6xV5: 5’-

AGATTGGGTAACCACCGTATATTTGTGGGATCCAACATGTGATACATCAAG

CATCGGACTACAGATACACTTGTTCAGCAAACAGGGAAATGATTTGCCTGT

AATCAAGCAGGTGGGGCAACCGCTTTTGCTTCATCAAATCGCTTTAAGAGC

TTATAGAGACAGGGCTCAAGGTTTGGCTAAGGATCAATTTCGATATGCACT

TTGGCCAGACTTTGCTGCTAATGCTAAAGATGCTCTCTGTCCTCAACCAATG

CCTCGTTTAATGAAAGCTGGAGACAAGGAAGAGCAATTCG-3’; for 

pCST159-Pot1-(T173A-S252A)-6xV5: 5’-

GCTGGAGACAAGGAAGAGCAATTCGCCTTGTTGTTAAATAAAATTTGGGAT

GAGCAAGCTAATAAACATAAAAATGGCGAATTATTGGCTGCTGCTGCTGCT

CGTCAAAATCAAGCTGGATTGGCTTACCCTGCTGTCGCTTTTGCTCTGCTAG

CTCAAATAGCTCCACATCAACGTTGTGCTTTTTACGCTCAGGTAATTAAAGC

TTGGTACGCTGATAAAAACTTTGCTCTTTATGTCGCTGATTATGCTGAAAAT

GAGCTTTTTTTTCCAATGGCTCCGTATGCTGCTGCTGCTAGATGGAGGGGC

CCTTTTGGT-3’; for pCST159-Pot1-(S420A-T517A)-6xV5: 5’-

AGGCTACGCGTTCAGGTGGTAGATTTTTGGCCAAAGGCTTTGGCTCAGTTT

GCTGTGCTAGCTCAACCACCAGCTGCTTATGTTTGGATGTTTGCCTTGCTCG
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TAAGGGATGTAGCTAATGTGGCTTTACCGGTCATATTTTTTGATGCTGA

CGCTGCGGAACTTATTAACGCTGCTAAAATCCAACCTTGCAATTTAGCTGAT

CACCCGCAGATGGCTCTTCAGCTTAAAGAAAGATTATTTCTGATTTGGGGG

AACTTGGAAGAACGCATTCAGCATCACATAGCTAAGGGTGAAGCTCCAGC

TCTGGCTGCTGAAGATGTTGAAGCTCCATGGTTTGAT-3’. 

Integration plasmid with natMX6 selection marker, pCST159-Pot1-

(T68A, T75A)-natMX6, was contracted by subcloning BglII/EcoRV natMX6 

fragment from pFA6a-3xHA-natMX6 plasmid (Sato et al., 2005) into BglII/PmlI 

digested pCST159-Pot1-(T68A, T75A)-6xV5 vector. 

 

2.4.1.3 Cloning of E. coli Pot1 OB fold expression constructs 

Pot1 expression construct (pET30-Pot1-wt OB fold) was created by 

inserting PCR amplified Pot1 OB fold (corresponding to Pot1 amino acids 1-

185) into E. coli expression vector pET30 (Novogen) digested with SalI and 

NotI. Pot1 OB fold was amplified from S. pombe cDNA library (America Type 

Culture Collection, Manassas, VA, USA) using forward primer 5’-

CTCCGTCGACAAATGGGAGAGGACGTTATTGACAG-3’ and reverse primer 

5’- GAGTGCGGCCGCTCAAGAGGTACTCAATAATTCGCCATTTTTATG-3’. 

Pot1 OB fold mutants for pET30-Pot1-(T68A, T75A) OB fold and pET30-Pot1-

(T68D, T75D) OB fold expression constructs were amplified by RT-PCR. RNA 

was obtained from JCF 6614 and JCF 6635 strains respectively using 

AccuScript™ High Fidelity RT-PCR Kit (Stratagene). All procedures were 

carried out according to manufacturer protocol. 
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2.4.2 Site-direct DNA mutagenesis 

Site-specific mutagenesis was carried out using QuikChange® XL Site-

Directed Mutagenesis Kit (Stratagene) according to manufacturer protocol. All 

oligonucleotides were synthesized by Sigma and were purified by HPLC. Pot1-

(T58A-S89A, A58S)-6xV5 was created from pCST159-Pot1-(T58A-S89A)-6xV5 

using following primer sets: 5’-

GATTTTACCCCTAGTCGCCAAAGTCTACATGGAACTAAGGGTATG-3’ and 

5’-CATACCCTTAGTTCCATGTAGACTTTGGCGACTAGGGGTAAAATC-3’; 

pCST159-Pot1-(T58A-S89A, A89S)-6xV5 was created from pCST159-Pot1-

(T58A-S89A)-6xV5 using primers: 5’-

CGGACTACAGATACACTTGTTCAGCAAACAGGGAAATGATTTGCCTG-3’ 

and 5’-

CAGGCAAATCATTTCCCTGTTTGCTGAACAAGTGTATCTGTAGTCCG-3’; 

pCST159-Pot1-(T58A-S89A, A68T)-6xV5 was created from pCST159-Pot1-

(T58A-S89A)-6xV5 using primer set: 5’-

CATGTTTTTAGATTGGGTAACCACCGTATATTTGTGGGATCCAGCTT-3’ and 

5’-AAGCTGGATCCCACAAATATACGGTGGTTACCCAATCTAAAAACATG-3’; 

pCST159-Pot1-(T58A-S89A, A68T, A75T)-6xV5 was created from pCST159-

Pot1-(T58A-S89A, A68T)-6xV5 using primer set: 5’-

CCGTATATTTGTGGGATCCAACATGTGATGCTGCTGCTATC-3’ and 5’-

GATAGCAGCAGCATCACATGTTGGATCCCACAAATATACGG-3’; pCST159-

Pot1-T68A-6xV5-wt was created from pCST159-Pot1-6xV5-wt using following 
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primer set: 5’-

CATGTTTTTAGATTGGGTAACCGCTGTATATTTGTGGGATCCAACATG-3’ 

and 5’-

CATGTTGGATCCCACAAATATACAGCGGTTACCCAATCTAAAAACATG-3’; 

pCST159-Pot1-T75A-6xV5 was created from pCST159-Pot1-6xV5-wt using 

following primer set: 5’-

GTATATTTGTGGGATCCAGCATGTGATACATCAAGCATCGG-3’ and 5’-

CCGATGCTTGATGTATCACATGCTGGATCCCACAAATATAC-3’; pCST159-

Pot1-(T68A, T75A)-6xV5 was created from pCST159-Pot1-T75A-6xV5 using 

primer set: 5’-

CATGTTTTTAGATTGGGTAACCGCTGTATATTTGTGGGATCCAGCAT-3’ and 

5’-ATGCTGGATCCCACAAATATACAGCGGTTACCCAATCTAAAAACATG-3’; 

pCST159-Pot1-(T68A, T75A, T78A)-6xV5 was created from pCST159-Pot1-

(T68A, T75A)-6xV5 using primer set: 5’-

GGGATCCAGCATGTGATGCTTCAAGCATCGGACTAC-3’ and 5’-

GTAGTCCGATGCTTGAAGCATCACATGCTGGATCCC -3’; pCST159-Pot1-

(T68A, T75A, T78A, T79A)-6xV5 was created from pCST159-Pot1-(T68A, 

T75A, T78A)-6xV5 using primer set: 5’-

CCAGCATGTGATGCTGCTAGCATCGGACTACAGATAC-3’ and 5‘-

GTATCTGTAGTCCGATGCTAGCAGCATCACATGCTGG-3’; pCST159-Pot1-

(T68A, T75A, T78A, T79A, S80A)-6xV5 was created from pCST159-Pot1-

(T68A, T75A, T78A, T79A)-6xV5 using primer set: 5’-

CCAGCATGTGATGCTGCTGCTATCGGACTACAGATAC-3’ and 5’-

GTATCTGTAGTCCGATAGCAGCAGCATCACATGCTGG-3’; pCST159-Pot1-
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T68D-6xV5 was created from pCST159-Pot1-6xV5-wt using primer set: 5’-

CATGTTTTTAGATTGGGTAACCGATGTATATTTGTGGGATCCAACATG-3’ 

and 5’-

CATGTTGGATCCCACAAATATACATCGGTTACCCAATCTAAAAACATG-3’; 

pCST159-Pot1-(T68D, T75D)-6xV5 was created from pCST159-Pot1-T68D-

6xV5 using following primer set: 5’-

CATGTTTTTAGATTGGGTAACCGATGTATATTTGTGGGATCCAGATTG-3’ 

and 5’-

CAATCTGGATCCCACAAATATACATCGGTTACCCAATCTAAAAACATG-3’. 

 

2.4.3 DNA sequencing 

For DNA sequencing 200 ng of plasmid DNA were added to 20 µl 

reaction mixed containing 3.2 pmol of appropriate sequencing primer (Table 3) 

and 8 µl of BigDye Terminator 3.1 (Applied Biosystems). We used the 

following thermal cycling conditions: 96 ˚C for 1 minute; 25 cycles of 96 ˚C for 

10 seconds, 50 ˚C for 5 seconds and 60 ˚C  for 4 minutes. 

 

Table 3 Pot1 sequencing primers 

Primer name Primer sequence 

pot1 seq-F 5'-AGGCTAAAACTCATTTGTTGTTC-3' 

pot1-seq-int--F 5'-CTGGATTGAGTTACCCTTCTGTCTC-3' 

pot1-seq-C-ter-F 5'-CAAACCGAGGAAACATAGGCTAC-3' 

pot1-seq-int-R 5'-GTCGTGCTCATCCCATAAAATG-3' 

pot1-seq-R 5'-CTTCGATATGTGATGCTGAATGC-3' 
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2.4.4 Telomere Southern blotting analysis 

After phenol, chloroform extraction DNA was digested with EcoRI or 

ApaI restriction enzymes and separated in 1xTAE, 1% agarose gels containing 

0.03 mg/ml ethidium bromide. The gels were first incubated in 0.25N HCl for 

15 min, followed by 30 minutes incubation in Blot 1 solution (20g NaOH, 

87.6g NaCl in 1L H2O), then 60 minutes in Blot 2 solution (77g NH4Ac, 0.8g 

NaOH in 1L H2O). During this time, the membrane (Hybond-N, GE 

Healthcare) was prepared for transfer by incubating in Blot 2 solution for 5 

min.  To set up the dry transfer, on a top of a stack of dry paper towels three 

pieces of 3MM Whatman paper were placed, followed by membrane and gel. 

The stack was then covered with saran wrap and glass plate was put on a top 

to ensure even distribution of weight. The gel was allowed to transfer 

overnight. The membrane was then crosslinked using a Stratagene crosslinker 

and pre-hybridized for 1 hour in Church-Gilbert buffer (1% BSA, 1 mM EDTA, 

7% SDS, 0.5 M NaHPO4 pH 7.2) at 65 ˚C following with addition of telomere 

probe; the incubation was continued overnight. The membrane was washed in 

washing solution (2X SSC, 0.1% SDS) for 40 minutes at room temperature and 

was exposed to PhosphorImaging screen (GE Healthcare); the screen reading 

was carried out using STORM 840 PhosphorImager scanner (GE Healthcare). 

The telomere probe was prepared by labelling synthetic telomere 

fragment using a random prime labelling kit (Stratagene). Briefly, 25 ng of 

purified telomere fragments (per probe) were labelled with α-32PdCTP and 

purified using G-25 spin columns (GE Healthcare). 
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2.4.5 In-gel hybridisation analysis for the detection of telomere 

3’ overhangs 

In-gel hybridization analysis was performed as previously described 

(Dionne and Wellinger, 1996; Tomita et al., 2003). After phenol, chloroform 

extraction 1 µg of genomic DNA was digested with EcoRI restriction enzyme 

and separated in 0.5xTAE, 0.5% agarose gels containing 0.01 mg/ml ethidium 

bromide. The gel was vacuum dried at 45°C (45-60 min).  Single-stranded 

telomeric DNA probe was labelled with [γ-32P] ATP using T4 polynucleotide 

kinase. G-rich probe sequence: 5’-

GATCGGGTTACAAGGTTACGTGGTTACACG-3’, C-rich telomere probe: 5’-

CGTGTAACCACGTAACCTTGTAACCCGATC-3’. The dried gel was pre-

hybridized in hybridization buffer (AlkPhos DirectTM, GE Healthcare), 

containing 4% of blocking reagent (AlkPhos DirectTM, GE Healthcare) and 0.5 

M NaCl at 37°C for 15min, and then the probe was added and the incubation 

was continued overnight at 37°C.  The gel was washed twice with primary 

wash buffer (0.05 M Na2HPO4, pH 7.0, 0.01 M MgCl2, 0.1% SDS, 2M Urea, 

0.2 % blocking reagent (AlkPhos DirectTM, GE Healthcare), 1.5 M NaCl) at 

37°C for 10 min and then washed with secondary wash buffer (50 mM Tris 

base, 100 mM NaCl, 2mM MgCl2) at room temperature for 15 min.  The gel 

was placed on two layers of Whatman 3mm paper and overlaid with Saran 

Wrap.  Detection of the signal was obtained by using a phosphoimager system 

(GE Healthcare).  To detect total telomere signal (both double-stranded and 

single-stranded telomeric DNA), gels were treated with denaturing solution 
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(0.5 M NaOH, 150 mM NaCl) for 30 min at room temperature, and then 

treated with neutralizing solution (0.5 M Tris-HCl pH 8.0 150 mM NaCl) for 45 

min (room temp).  The gel was then re-probed with both the C and G-strand 

probes using the same protocol as stated above 
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3 Pot1 interacts with Dfp1, a regulatory subunit of 

DDK  

Telomeres are specific chromatin structures that protect chromosome 

ends from been recognised as DNA double stranded breaks (DSB). Telomeres 

accomplish their anti-DNA damage response function by recruiting specific 

telomeric proteins that directly or indirectly interact with repetitive telomere 

DNA sequences. Pot1 interacts with ssDNA telomere overhang through its N-

terminal ssDNA binding domains - OB folds. Pot1 has important functions in 

telomere protection: it controls telomeric C-strand resection (Churikov et al., 

2006), protects telomere from DNA damage response (He et al., 2006; 

Hockemeyer et al., 2005; Wu et al., 2006) and checkpoint activation 

(Churikov et al., 2006; Jacob et al., 2007). Pot1 could accomplish these 

functions by forming a complex with Tpz1/TPP1, a Pot1-interacting protein 

that is important for telomere protection and telomerase recruitment 

(Hockemeyer et al., 2007; Miyoshi et al., 2008; Wang et al., 2007; Xin et al., 

2007). But the precise mechanisms of Pot1 function and regulation are not well 

understood. Our starting premise was that by identifying new proteins that 

interact with Pot1, we would generate tools for understanding more precisely 

the mechanisms of Pot1 function and regulation.  
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3.1 Yeast two-hybrid screen identifies Pot1 interacting 

partners 

In order to understand more about Pot1 function and regulation we 

performed a yeast two-hybrid screen to identify new proteins that interact with 

Pot1. Among 8 million clones screened, we isolated several potential 

candidates that showed strong interaction with Pot1 in the two-hybrid system 

(Table 4). Two positive candidates were particularly interesting for us.  

Our screen identified three independent clones of Dfp1, the regulatory 

subunit for Hsk1 kinase. A retransformation assay shows that two-hybrid 

reporter activity is dependent on the presence of both Dfp1 prey and Pot1 bait 

constructs (Figure 1); neither Pot1 nor Dfp1 alone were able to activate the 

yeast two-hybrid system reporter expression. A holoenzyme formed of Dfp1 

and Hsk1 (homologs of mammalian and S. cerevisiae Dbf4 and Cdc7, 

respectively) is known as DDK (Dbf4-dependent protein kinase). DDK is active 

during the S and G2 phases of the cell cycle. This regulation is accomplished by 

cell cycle dependent regulation of Dfp1 expression, which peaks during S and 

G2 phases, following by APC dependent degradation in anaphase (Brown and 

Kelly, 1999). In contrast, the kinase catalytic subunit Hsk1 is constitutively 

expressed throughout the cell cycle (Brown and Kelly, 1998; Takeda et al., 

1999). DDK was implicated in several important processes during S phase. 

Among them are: initiation of replication by phosphorylation of the Mcm2 

protein (Brown and Kelly, 1998; Masai et al., 1995); intra-S phase checkpoint 

response (Fung et al., 2002; Takeda et al., 2001), recovery from replication fork 
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arrest (Takeda et al., 1999) and S phase assembly of centromeric 

heterochromatin and cohesion (Bailis et al., 2003; Snaith et al., 2000).  

In general, the functions of DDK are consistent with a modulation of 

chromatin structure during S phase. This prompted us to consider whether 

DDK plays a role in telomere maintenance by changing telomere chromatin 

structure in S phase via Pot1 phosphorylation. Hence, further in our study we 

concentrated on the function of DDK in regulation of Pot1 functions and 

telomere maintenance. 

Among the other positive hits in the two-hybrid screen, two 

independent clones of Teb1/SpX were identified. Interestingly, Teb1 protein 

contains two Myb-like DNA-binding domains (Spink et al., 2000; Vassetzky et 

al., 1999).  The Myb-like domains of Teb1 show high homology to the human 

TRF1 telomere protein. The fact that Teb1 has two N-terminal Myb-like 

domains makes it more similar to the Rap1 telomere protein (Kanoh and 

Ishikawa, 2001). It was shown previously that Teb1 binds to the human 

telomere sequence in vitro in gel shift binding assays (Vassetzky et al., 1999).  

These sequences are absent from fission yeast telomeres and subtelomeres, but 

present in the promoter sequences of numerous genes, including all the fission 

yeast histone genes (Vassetzky et al., 1999).  We found that GFP tagged Teb1 

localized throughout the nucleus, without telomere specific foci. Furthermore, 

Teb1 is essential (unlike other telomeric proteins), suggesting that Teb1 plays 

another function in addition to any telomere function (as telomeres are 

ultimately dispensable in fission yeast, which survives the absence of 

telomerase by circularizing all three chromosomes.
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Figure 1 Pot1 interacts with Dfp1 in yeast two-hybrid system.  

Pot1 bait construct Pot1-Gal4-BD interacts with prey Dfp1-Gal4-AD; β-

galactosidase assay were performed on X-Gal containing media.  
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In our screen we also identified the product of open reading frame 

SPAC6F6.16c. This protein was later biochemically purified as a Pot1 

interacting protein and was named Tpz1 (Miyoshi et al., 2008).  Tpz1 is a 

structural homolog of mammalian TPP1 and telomere binding protein TEBPβ 

from Oxytricha nova. TEBPβ forms a complex with TEBPα that is important for 

ciliate telomere capping (Gottschling and Zakian, 1986). Importantly, the DNA 

binding domains of Pot1, TEBPα, TPP1 and TEBPβ have very similar crystal 

structures and contain multiple OB folds organized in a similar way (Lei et al., 

2003; Wang et al., 2007). The fact that we identified Tpz1/TPP1 as a Pot1 

interacting protein together with the later study (Miyoshi) confirm the validity 

of our screen and alludes to the potential for important information to be 

gleaned about other Pot1 interacting proteins.  

Additional potential Pot1 interaction partners that we found in our two-

hybrid screen are summarized in Table 4 
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Table 4 Results of yeast two-hybrid screen   

Number 
of 
indepen-
dent 
clones 

Gene accession number and 
possible functions 

General 
role 

Nuclear 
localization, 
predicted 

Pot1 
interact-
ion 
strength 
in two-
hybrid 
system  

6 
SPBC19F5.04 Aspartate kinase 
(predicted) 

kinase 
21.7 %: 
cytoplasmic 

+++ 

4 

SPBC354.01 S. pombe GTP-binding 
protein Gtp1. Homolog of S. 
cerevisiae GIR1 which may be 
involved in RNA processing. 

RNA 
process-
ing 

17.4 %: 
mitochondri
al 

+++ 

3 
SPAC6F6.16c Pot1 binding partner 
Tpz1 

telomere 
17.4 %: 
nuclear 

+++ 

3 
SPCC550.13 Dfp1, regulation 
subunit of Hsk1 kinase. Dfp1 and 
Hsk1 form a kinase known as DDK 

replicat-
ion, cell 
cycle 
regulated 
kinase 

82.6 %: 
nuclear 

+++ 

2 
SPAC13G7.10, Q10274 SpX/Teb1p 
protein containing two Myb-like 
DNA-binding domains 

telomere, 
transcrip-
tion factor 

60.9 %: 
nuclear 

+++ 

2 

SPAC3H8.02 sec14 cytosolic factor. 
Has moderate similarity to S. 
cerevisiae Csr1p, which is a 
phosphatidylinositol transfer protein 
that is involved in regulation of 
phospholipase D 

cytosolic 
protein 

60.9 %: 
mitochon-
drial 

+++ 
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2 

SPCC1259.12c Member of the 
SPRY (SPla and the RYanodine 
Receptor) domain containing 
family, has a region of moderate 
similarity to a region of human 
RANBP9, which acts in microtubule 
nucleation 

unknown 
21.7 %: 
nuclear 

+++ 

1 
SPCC285.03 ATP-dependent RNA 
helicase, role inferred from 
homology 

helicase 
26.1 %: 
mitochond-
rial 

+++ 

14 

SPBC29A10.03c S. pombe 
conserved protein. S. cerevisiae 
homolog Rlf2p (CAC1; LRS8; 
PAX14) required for formation of 
telomeric heterochromatin-like 
state. 

chromatin 
82.6 %: 
nuclear 

++ 

6 

SPAC2F7.07c S. pombe 
hypothetical zinc finger protein. S. 
cerevisiae homolog is a catalytic 
component of the RPD3C(S) histone 
deacetylase complex. Member of 
the PHD-finger containing family, 
which may be involved in 
chromatin-mediated transcription 
regulation. 

histone 
deacetyl-
ase 

43.5 %: 
nuclear 

++ 

5 

SPAC23C4.20c S. pombe 
conserved hypothetical zinc finger 
protein. Homolog of TRIP4 Thyroid 
hormone receptor interactor 4. 

zinc 
finger 
transcripti
on factor 

30.4 %: 
cytoplasmic 

++ 

4 

SPAC12B10.13 S. pombe 
conserved hypothetical protein, 
homolog of GID8 (DCR1), which is 
involved in acceleration of the 
initiation of DNA replication 

DNA 
replicati-
on 

65.2 %: 
nuclear 

++ 
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4 
SPCC663.11 S. pombe hypothetical 
protein, sequence orphan  

unknown 
56.5 %: 
cytoplasmic 

++ 

1 
SPAC1A6.10 Moeb/ThiF domain, 
conserved hypothetical protein 

ubiquitina
tion 

26.1 %: 
cytoplasmic 

++ 

4 

SPAC6B12.15 cpc2, rkp1, WD 
repeat protein. Protein required for 
normal mating, sporulation, and 
protein translation 

 

mating, 
sporula-
tion 

69.6 %: 
nuclear 

+ 

3 

SPBC354.14c vac8, S. pombe 
hypothetical protein, armadillo 
repeat protein, role inferred from 
homology 

unknown 

52.2 %: 
cytoplasmic, 
21.7 %: 
nuclear 

+ 

3 

SPCC1672.07 S. pombe 
hypothetical WD repeat protein, 
has low similarity to C. elegans 
Y45F10D.7, which is involved in 
positive growth regulation 

unknown 
73.9 %: 
nuclear 

+ 

2 
SPAC9.07c Putative GTP-binding 
protein, role inferred from 
homology 

GTP-
protein 

17.4 %: 
mitochondri
al 

+ 

2 

SPAP8A3.12c tripeptidylpeptidase 
(predicted), role inferred from 
homology 

 

peptidase 
34.8 %: 
cytoplasmic 

+ 
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2 

SPBP23A10.11c glycoprotein, 
protein of unknown function, has 
moderate similarity to 
uncharacterized S. cerevisiae Tos1p 

unknown 
21.7 %: 
mitochondri
al 

+ 

2 
SPCC320.06 S. pombe protein of 
unknown function 

unknown 
78.3 %: 
nuclear 

+ 

2 
SPCC736.16 S. pombe protein of 
unknown function, sequence 
orphan 

unknown 
73.9 %: 
nuclear 

+ 

1 
SPAC19A8.10 Zinc finger protein, 
protein ubiquitination, ubiquitin-
protein ligase activity 

Ubiquiti-
nation 

30.4 %: 
endoplasmic 
reticulum 

+ 

1 
SPAC637.07 Moe1, Protein 
required for generation of a mitotic 
spindle and microtubule dynamics. 

Microtu-
bule 
dynamics 

8.7 %: 
nuclear 

+ 
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3.2 Pot1 interacts with Dfp1 in vivo   

DDK has an important role in cell cycle control, particularly for the 

regulation of replication origin firing in S-phase and replication folk 

progression and stability. Telomerase recruitment also occurs in S-phase and is 

tightly coupled with semi-conservative DNA replication. Furthermore, the 

maintenance of replication folk stability is an important issue for highly 

repetitive telomere sequences (Miller et al., 2006). Thus, we decided to 

concentrate on DDK and address the possible role of DDK kinase in telomere 

maintenance and regulation.  

First, we decided to confirm the interaction between Pot1 and Dfp1 in 

vivo. We tagged Pot1 and Dfp1 endogenously with Myc and HA epitopes, 

respectively; both tagged Pot1 and Dfp1 were expressed from their native 

promoters. We immunoprecipitated Pot1-myc with anti-myc antibodies and 

were able to detect Dfp-HA in anti-HA Western blots  (Figure 2). Dfp1-HA co-

immunoprecipitates with Pot1-myc in a specific manner, as when we 

performed the same experiment using a strain harboring untagged Pot1, we 

were not able to detect Dfp1-HA in the immunoprecipitation reaction  (Figure 

2). 
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Figure 2 Pot1 interacts with Dfp1 in vivo.  

Pot1-myc co-immunoprecipitates Dfp1-HA from the whole cell extract. Pot1-

myc and Dfp1-HA were tagged endogenously and are under control of their 

own promoters.  
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4 Pot1 is phosphorylated by DDK kinase in a cell cycle 

dependent manner 

4.1 Pot1 is a phosphoprotein 

Identification of Dfp1 as a Pot1 interaction protein suggested that DDK 

can phosphorylate Pot1 and thus regulate Pot1 and telomere functions in a cell 

cycle dependent manner. Unfortunately, nothing was known about any 

posttranslationally modified forms of Pot1. Hence, the first challenge for us was 

to establish an experimental system for the detection of Pot1 modification 

forms, presumably phosphorylation isoforms of Pot1. We found that the most 

reproducible and easiest way to detect Pot1 phosphorylated forms was a two-

dimensional protein gel electrophoresis (2D-PGE). 

During the 2D-PGE procedure, proteins are first separated in a 

denaturing gel along an immobilized pH gradient; hence proteins migrate 

according to their isoelectric point.  In the second dimension of 

electrophoresis, proteins are subjected to standard SDS-PAGE to separate the 

proteins according to their molecular mass. At the end of the 2D-PGE 

procedure, each protein can be identified as a spot, or a number of spots if a 

particular protein is represented by several posttranslational covalently 

modified isoforms that affect either its isoelectric point or/and molecular mass. 

Phosphorylation makes protein isoelectric point more acidic, which can be 

discerned as a shift to the more acidic region of the pH gradient in the first 

dimension of 2D-PGE; molecular mass of phosphorylated forms will be only 
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slightly different from the unphosphorylated form, or may remain virtually 

unchanged vis a vis the resolution of the gel. Sensitivity to phosphatase 

treatment is another criteria for identification of phosphorylated forms.   

To identify Pot1 modification forms, we prepared whole cell extracts 

from strains carrying Pot1 endogenously tagged with a 6xV5 epitope. Protein 

extracts were prepared in denaturing conditions (containing 7M urea) to 

preserve Pot1 modification forms. The whole cell extract was then subjected to 

2D-PGE. Pot1-6xV5 was subsequently detected using anti-V5 antibodies.  

Using 2D-PGE we were able to identify several isoforms of Pot1 (Figure 3a). 

One of these forms was a phosphorylated isoform, as it disappears after 

phosphatase treatment (Figure 3b). Using first dimension gel strips with 

different immobilized pH gradients, we were able to identify another 

phosphorylated form of Pot1 (Figure 4a).   Hence, we think that Pot1 is present 

as two phosphorylated forms, represented by the first and the third spots if 

counting from the left on Figure 4a. The other three Pot1 isoforms were 

resistant to phosphatase treatment and could represent acetylated forms of Pot1 

or some other modification. 
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Figure 3 Pot1 phosphorylation depends on DDK activity.  

Two-dimensional protein gel electrophoresis; endogenously tagged Pot1-6xV5 

was detected by Western blotting. (a) wild type. (b) wild type, after λ-protein 

phosphatase treatment (λ-PPase). (c) dfp1-376 (d) dfp1-376, λ-PPase treatment. 

(e) hsk1-89 temperature sensitive mutant at 25˚C (permissive temperature). (f) 

hsk1-89 ts mutant after 4 hrs incubation at 30˚C (restrictive temperature). (a-f) 

The first dimension was performed using 24cm Immobiline DryStrip pH 6-9. 
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4.2 Pot1 phosphorylation depends on DDK 

Identification of Pot1 phosphoforms by 2D-PGE made it possible to 

check whether Pot1 phosphorylation is dependent on DDK. For this purpose, 

we analyzed the presence of Pot1 phosphorylated forms in mutants of both the 

regulatory and catalytic components of DDK. In dfp1-376 mutants, which have 

very low DDK activity (Fung et al., 2002), we were not able to detect any 

phosphorylated forms of Pot1 (Figure 3c). We confirmed this by treating dfp1-

376 extracts with phosphatase; as expected, all Pot1 isoforms were resistant to 

phosphatase treatment (Figure 3d). 

After determination that the phosphorylated state of Pot1 depends on 

Dfp1, a regulatory subunit of DDK, we sought to determine whether the 

catalytic subunit of DDK, Hsk1, is also essential for Pot1 phosphorylation. We 

were not able to detect any Pot1 phosphorylation isoforms in hsk1-89 

temperature sensitive mutant (Takeda et al., 2001) in extracts of cells grown at 

both permissive and restrictive temperatures (Figure 3e, f). We conclude that 

Pot1 is a phosphoprotein, and that its phosphorylation status is dependent on 

DDK activity, as mutating either the Dfp1 or Hsk1 components of DDK results 

in disappearance of Pot1 phosphorylation isoforms. 

It was important to determine whether the effect on Pot1 

phosphorylation that we saw in DDK mutants is specific only to this kinase. 

Pot1 contains several consensus sites (TQ, SQ) for the Rad3 (fission yeast ATR) 

and Tel1 (fission yeast ATM) kinases; thus, Pot1 potentially could be 

phosphorylated by these kinases. Moreover, it was shown that Mec1 (the 
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budding yeast Rad3 homolog) and budding yeast Tel1 phosphorylate 

Cdc13 (Tseng et al., 2006), a presumed S. cerevisiae functional homolog of 

Pot1. Deletion of both rad3 and tel1 simultaneously in S. pombe results in 

complete telomere loss, followed by the appearance of survivors with circular 

chromosomes. Interestingly, simultaneous deletion of both rad3 and tel1 fails 

to affect the presence of Pot1 phosphorylated forms (Figure 4c). Thus, the 

phosphorylation status of Pot1 specifically depends on DDK kinase, and not on 

the Rad3 and Tel1 kinases.  

Pot1 phosphorylated forms were also present in strains with circular 

chromosomes that were created by deleting the gene encoding the catalytic 

protein subunit of telomerase, trt1+ (Figure 4b), despite the fact that these 

strains completely lack telomere sequences. This result indicates that the 

phosphorylation status of Pot1 is independent of Pot1 binding to telomeric 

DNA.  
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Figure 4 Pot1 phosphorylation is independent on Pot1 telomere localization 

and activities of Rad3 and Tel1 kinases.  

(a) wild type. (b) trtΔ  survivals with circular chromosome and without 

telomere sequences (c) rad3Δ tel1Δ  circular chromosome survivors. Here for 

firs dimension we used 24cm Immobiline DryStrip with a pH gradient 4-7. 
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4.3 DDK can phosphorylate Pot1 directly in vitro 

The fact that Pot1 phosphorylation depends on DDK may mean that 

DDK can phosphorylate Pot1 directly; alternatively, DDK may effect Pot1 

phosphorylation indirectly by regulating the activities of other kinase(s). In 

order to distinguish between these two possibilities, we determined whether 

DDK could phosphorylate Pot1 directly in vitro. We did so by incubating 

bacterially expressed Pot1 with immunoprecipitated DDK from a S. pombe 

extract. (Unfortunately, we were not able to produce bacterially express full-

length Pot1, we were able to purify only Pot1 OB fold). Indeed, the Pot1 OB 

fold was specifically phosphorylated in vitro by immunoprecipitated DDK 

(Figure 5).  This data suggests that DDK directly phosphorylates Pot1, 

presumably within the OB fold.  

 



 89 

 

 

 

 

 

 

 

Figure 5 DDK phosphorylates Pot1 OB fold in vitro 

Dfp1-HA was immunoprecipitated as described in Material and Methods 

section. Beads were incubated with 20 µl of reaction mix (kinase buffer 

supplemented with 10 µM ATP and 5 µg of purified recombinant Pot1-OB-fold 

(amino acids 1-185), including 0.25 µCi/µl γ-32P-ATP) for 20 min at 32°C. The 

proteins were separated by NuPAGE 4-12% Bis-Tris polyacrylamide gradient 

gel with MOPS SDS running buffer (Invitrogen).  
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4.4 Pot1 phosphorylation status is regulated through the cell 

cycle 

Our Pot1 phosphorylation data suggest that Pot1 is phosphorylated by 

DDK directly. Thus, the Pot1 phosphorylation state should be regulated 

throughout the cell cycle in a manner that correlates with the activity of DDK. 

DDK is activated at the beginning of S-phase and its activity remains present 

for the majority of the G2-phase of cell cycle (Brown and Kelly, 1999).  

To synchronize cells, we employed the conditional mutant cdc25-22, 

whose incubation at restrictive temperature arrests cells at the G2/M transition. 

Pot1-6V5 cdc25-22 cells were arrested in G2/M by shifting the incubation 

temperature to 36˚C for 3.5 hrs. The block was released by shifting the 

temperature down to 25˚C, and samples were collected every 15 min and 

processed for 2D-PGE; Pot1 modification forms were then detected by Western 

blot. Strikingly, Pot1 phosphoforms were indeed cell cycle regulated. They 

appear at the beginning of S-phase and are maintained throughout G2 (Figure 

6), correlating with the Dfp1 expression profile and the activity of DDK. Base 

on this data, we conclude that DDK kinase directly phosphorylates Pot1 in a 

cell cycle dependent manner. 
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Figure 6 Phosphorylation of Pot1 is cell cycle regulated.  

Pot1 is phosphorylated in the beginning of S phase and then remains 

phosphorylated throughout G2. (B) Analysis of synchronicity of the cell cycle 

progression. The peak of septation represents the middle of S-phase. (C) 

Modified form of Pot1 that appears at the beginning of S-phase (60min) is a 

phosphoform. (a) 60 min time point (beginning of S-phase). (b) 60 min time 

point treated with λ-PPase . (c) 75 min time point, (d) 75 min time point after 

λ-PPase treatment. The first dimension IEF was performed using 24cm 

Immobiline DryStrip pH 6-9. 
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5 Pot1 is phosphorylated in a conserved region of the 

OB fold 

The finding that Pot1 is phosphorylated by DDK in a cell cycle 

dependent manner was extremely exciting. This discovery opens a great 

opportunity for investigation of how Pot1 and telomere function are regulated 

through the cell cycle. In order to address this issue, the identification of Pot1 

phosphorylation sites became tantamount.   

 

5.1 Pot1 is phosphorylated in N-terminal region of Pot1 

Although DDK is known to be a serine- and threonine-specific kinase, it 

has not been possible to discern a consensus site for DDK (Sheu and Stillman, 

2006). Thus, we used a systematic mutation approach to identify serines and 

threonines that are phosphorylated in Pot1. We constructed Pot1 mutants 

where in different regions of Pot1, all serines and threonines were replaced 

with alanines (Figure 7). These mutant pot1 alleles were integrated in the aur1 

locus on Chromosome I in a strain expressing endogenous Pot1; expression of 

the ectopically integrated pot1 alleles was controlled by the endogenous pot1+ 

promoter sequence. Mutation of all serines and threonines in the Pot1 C-

terminus (between residues S420 and T517) and central region (between T173 

and S252) failed to diminish Pot1 phosphorylation, although the amount of 

Pot1 phosphoisoforms in protein harboring C-terminal mutations was reduced, 

suggesting that this region is important for the efficient phosphorylation of 
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Pot1. More interestingly, mutation of all serines and threonines in the N-

terminal region of Pot1 (residues between T58 and T154) completely abolished 

Pot1 phosphorylation. Serines and threonines in the region between T58 and 

T89 were essential for Pot1 phosphorylation (Figure 7); hence, we 

concentrated on this region of the protein (Pot1 T58A-S89A) to find the exact 

phosphorylation sites. 
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Figure 7 Pot1 is phosphorylated in N-terminal part of OB-fold between Thr58 

and Ser89.  

Several Pot1 mutations were constructed; red rectangles indicate the areas 

where all serines and threonines were mutated to alanines. Pot1 mutants were 

expressed from Pot1 promoter and contain C-terminally fused 6xV5 tag. 2D 

PAGE was followed by Western blotting with ani-V5 anybodies to detect Pot1 

mutants. For first dimension IEF we used 24cm Immobiline DryStrip pH 4-7. 
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5.2 Identification of Pot1 phosphorylation sites 

In the Pot1 T58A-S89A mutant, seven serines and threonines were 

mutated to alanines, resulting in the absence of Pot1 phosphorylated forms 

(Figure 8). To find the exact phosphorylation site, we used the following 

strategy. As a starting point for our mutational analyses, we chose the fully 

substituted Pot1 T58A-S89A mutant. We mutated individual alanines back to 

their wild type state (to serines or threonines as appropriate). Then we checked 

the phosphorylation status of the partially S/T-restored mutants to determine 

which serines and threonines could confer phosphorylation in vivo. When we 

mutated A58 and A89 of the Pot1 T58A-S89A mutant back to S58 and S89 

respectively, the resulting Pot1 mutants were still not phosphorylated (Figure 

8). In contrast, when A68 and A75 of Pot1 T58A-S89A mutant were mutated to 

T68 and T75, all Pot1 phosphorylated forms were restored (Figure 8), 

suggesting that T68 and T75 are the relevant phosphorylated residues in vivo.  

If T68 and T75 are the only phosphorylated amino acids in Pot1, we 

would not expect to detect Pot1 phosphorylated forms in Pot1 harboring the 

T68A and T75A mutations.  However, in Pot1 T68A, T75A the amount of 

phosphorylated forms is reduced rather than abolished (Figure 9); in order to 

completely remove Pot1 phosphorylated forms, mutations T68A, T75A along 

with T78A, T79A and S80A are required (Figure 9). These data suggest that 

although T68 and T75 are phosphorylated in vivo and are presumably the most 

important phosphorylation sites (see below), T78, T79 and S80 can be 

phosphorylated as alternative sites.  
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Figure 8 Pot1 Thr68 and Thr75 are phosphorylated in vivo.  

Individual residues in Pot1 T58A-S89A mutant were mutated back to wild type, 

to check whether individual serines and threonines will restore wild type state 

of Pot1 phosphorylation. Green stars correspond to wild type amino acids, red 

stars corresponds to serines or threonines mutated to alanine.      



 97 

   

 

 

 

 

Figure 9 Pot1 T68A, T75A, T78A, S79A, S80A lose all phosphorylated forms.  

Serines and threonines in wild type Pot1 (green stars) were replaced by 

alanines (red stars).      
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5.3 Pot1 phosphorylation sites are highly conserved  

T68, T75 are located in a very conserved region of the Pot1 OB fold and 

these amino acids are present in Pot1 from different species (Figure 10). 

 

 

 

 

 

Figure 10 S. pombe Pot1 T68 and T75 are highly conserved in eukaryotes that 

have Pot1.  

Ec, Euplotes crassus; Sm, Stylonychia mytilis; Ot, Oxytricha trifallax; On, O. 

nova; Hs, Homo sapiens; Sp, S. pombe. 
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5.4 Pot1 purification and identification of Pot1 

phosphorylation sites by mass spectrometry 

Mutational analysis of Pot1 phosphorylation sites suggests that residues 

T68A, T75A, T78A, S79A, S80A could be phosphorylated. Only by mutating 

all these sites to alanines can one completely abolish Pot1 phosphorylation 

and observe the absence of Pot1 phosphorylated forms in (2D-PGE). This 

genetic analysis provides us with important information about Pot1 

phosphorylation sites.  However, the direct identification of Pot1 

phosphorylation sites by physical methods like mass spectrometry would be 

the ideal confirmation of our genetic data.  

In order to generate enough material for mass spectrometry analysis of 

Pot1 modification forms, we purified endogenously tagged Pot1-6xV5 protein 

from 20L of yeast culture. We used a two-step purification strategy. First, Pot1 

was immunoprecipitated using ani-V5 antibodies coupled with protein A-

sepharose beads and eluted by V5 peptide. The eluant was then loaded on a 

heparin column for the second step, and the purified Pot1 complex was eluted 

by increasing salt concentration. The protein was then concentrated and 

separated by either regular SDS-PAGE or 2D-PGE (Figure 11).  

Using our two-step purification strategy, we purified sufficient quantities 

of Pot1 complex that it was possible to identify different components of the 

Pot1 complex on a Coomassie stained gel. Then we used tandem mass 

spectrometry to identify Pot1 interacting partners and Pot1 phosphorylation 

sites. This was done in collaboration with two different groups, first, with Dr. 
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Richard Jones from FDA, Alabama and second, the group of Dr. Steven 

Gygi at Harvard University.  We confirmed our purification results by 

identifying Tpz1, which we had also found in our two-hybrid screen as a Pot1 

interacting partner.  Two other known Pot1 interacting proteins, Poz1 and 

Ccq1 (Figure 11a) (Miyoshi et al., 2008), were also present in our purifications. 

Separating purified Pot1 by 2D-PGE followed by Coomassie staining revealed 

all the Pot1 modification forms we had seen previously (Figure 11a). This 

suggests that the modification status of Pot1 is preserved during our purification 

procedure.  

 We identified several possible phosphorylation sites by tandem mass 

spectrometry in collaboration with Steven Gygi’s laboratory, although the 

amount of purified Pot1 material was insufficient for complete analysis of Pot1 

phosphorylation sites. The identified possible phosphorylation sites were: S55, 

T78, S79, S80, S89, S183, T184, S352, S354. This is only preliminary data and 

further Pot1 purifications and mass spectrometry analysis are required to 

identify the exact Pot1 phosphorylation sites. Interestingly, three out of the five 

Pot1 phosphorylation sites that we identified using our genetic mutational 

approach, T78, S79 and S80, were also identified by mass spectrometry, 

suggesting that the phosphorylation sites that we found in our mutational 

analysis are actually phosphorylated in vivo.  
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Figure 11 Purification of Pot1 complex.   

(A) Pot1-6xV5 was purified from 20L of S. pombe culture in two-step 

purification procedure. The half of resulting purified proteins was separated on 

SDS-PAGE and stained with coomassie. The rest of protein was subjected to 

2D-PGE (B) to confirm the presence of all Pot1 modification forms in purified 

Pot1. 
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6 The function of Pot1 phosphorylation 

6.1 Pot1 phosphorylation suppresses DNA damage response at 

telomeres  

After identification of DDK phosphorylation sites in Pot1, we focused on 

whether and how these phosphorylation events regulate Pot1 functions. We 

constructed diploid strains expressing various Pot1 phosphomutants in a 

heterozygous pot1+/Δ background. Pot1 phosphomutants were inserted in 

aur1 locus and were under the control of Pot1 native promoter. After these 

diploids were sporulated, we performed tetrad dissections and analyzed 

colonies that expressed only the exogenous copy of Pot1. The Pot1 

phosphodeficient mutant Pot1-5A (Pot1 T68A, T75A, T78A, S79A, S80A), which loses all 

phosphorylated forms, formed colonies distinct from those arising from 

pot1Δ spores (Figure 12): they were larger, but not as large as wild type. In 

contrast to the wild type colonies, the edges of Pot1-5A colonies were not 

round but instead were wrinkled and irregular, suggesting that these colonies 

contained dying cells. Moreover, Pot1-5A expressing cells were elongated 

(Figure 13) indicating that a cell cycle checkpoint arrest was activated. 

Mutations in the two highly conserved Pot1 phosphorylation sites identified as 

most important, T68A and T75A (hereafter referred to as the Pot1-2A mutant), 

have the same effect as the Pot1-5A mutations (Figure 12 and Figure 13).  

Interestingly, the converse Pot1phosphomimetic mutations T68D and 

T75D (Pot1-2D) do not activate the checkpoint response (Figure 12 and Figure 
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13), as cell lengths were normal. This allowed us to conclude that 

phosphorylation of two Pot1 threonines, T68 and T75, is a minimal 

requirement for suppression of checkpoint activation at telomeres. The cell 

elongation in Pot1-2A and Pot1-5A depends on the presence of Chk1, a key 

component of the G2/M DNA damage checkpoint pathway and downstream 

target of ATR (Figure 13), suggesting that cell elongation was due to activation 

of the G2/M DNA damage checkpoint. We conclude that Pot1 

phosphorylation by DDK prevents telomeres from activating a DNA damage 

checkpoint response, and this requirement could be overcome by introducing 

the Pot1-2D phosphomimetic mutations. 
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Figure 12 Tetrad analysis of Pot1 phosphomutants.  

Heterozygous pot1+/Δ diploids containing Pot1 wt or different Pot1 

phosphomutants Pot1-5A, Pot1-2A and Pot1-2D integrated in aur1 locus on 

chromosome I were sporulated and subjected to tetrad dissection.  

 

 



 105 

 

 

 

 

 

Figure 13 Cell morphology analysis of Pot1 mutants.  

Cells were taken from colonies arising from sporulated and tetrad-dissected 

diploids on Figure 12. They were pot1Δ with corresponding Pot1 mutant 

integrated in aur1 locus. The chk1Δ Pot1 double mutants were obtained from 

chk1+/Δ pot1+/Δ heterozygous diploid with Pot1 mutants integrated at the 

aur1 locus. 
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6.2 Telomere maintenance in strains harbouring Pot1 

phosphomutants depends on DNA damage checkpoint 

Next we checked whether DDK dependent Pot1 phosphorylation 

controls telomere length and telomere maintenance. The telomere length in 

cells harbouring Pot1-5A or Pot1-2A was longer than in wt strains, while Pot1-

2D conferred the same telomere length as Pot1 wt, indicating that Pot1-2D was 

mimicking the wild type phosphorylation state of Pot1 in terms of telomere 

length homeostasis (Figure 14).  Interestingly, we didn’t observe any differences 

in G-rich overhang signal between Pot1 wt and Pot1 phospho mutants 

indicating that the Pot1 phospho-mutations specifically affect telomere length 

homeostasis and telomere checkpoint suppression, whereas Pot1 still control 

telomere C-strand resection Figure 16.   

Surprisingly, the maintenance of Pot1-2A elongated telomeres was 

dependent on Chk1. Pot1-2A chk1Δ double mutant lose all telomeric signal 

immediately after sporulation (Figure 15), whereas deletion of chk1Δ alone had 

no effect on telomere maintenance. Thus, the activation of the DNA damage 

checkpoint is critical for telomere maintenance in Pot1-2A. Phosphomimetic 

Pot1-2D chk1Δ double mutant also lose telomeres, suggesting Chk1 function in 

maintenance of Pot1-2D telomeres. The simple picture of phosphorylation-

deficient mutants displaying telomeric defects and phosphomimetic mutants 

displaying wt phenotypes turned out to be misleading (see below), suggesting 

an intriguing and more complex system in which cycles of phosphorylation are 
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important, with both phosphorylated and unphosphorylated states playing 

crucial roles.  

The importance of Chk1 for telomere maintenance was very surprising. 

It was known that upstream components of DNA damage response like the 

Rad3 and Tel1 kinases are important for telomere maintenance. Telomeres in 

rad3Δ are very short, and telomeres completely disappear in 

rad3Δ tel1Δ double mutants resulting in survivors with circular chromosomes 

(Naito et al., 1998). However, a role for Chk1, a downstream component of the 

DNA damage response, in telomere regulation was previously unknown. As 

the known Chk1 functions involve its kinase activity, Chk1 could be directly 

involved in the maintenance of unprotected Pot1-2A telomeres via 

phosphorylating telomeric proteins or indirectly by controlling cell cycle 

progression. 
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Figure 14 Telomeres in Pot1 phosphodeficient mutants are elongated 

compare to Pot1 wt and Pot1 phosphomimetic mutant. 

Cells were taken from colonies arising from sporulated and tetrad-dissected 

diploids on Figure 12. They were pot1Δ with corresponding Pot1 mutant 

integrated in aur1 locus. The liquid cultures were growing overnight and cells 

were collected for Southern blot analysis. 
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Figure 15 Telomere maintenance in Pot1 wt, Pot1-2A and Pot1-2D mutants in 

the presence and absence of chk1. 

The chk1Δ Pot1 double mutants were obtained from chk1+/Δ pot1+/Δ 

heterozygous diploid with Pot1 mutants integrated at the aur1 locus. 
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6.3 Telomere maintenance is telomerase independent in Pot1 

phosphodeficient mutants 

Telomeres in Pot1-5A and Pot1-2A mutants are elongated compare to 

Pot1-wt and Pot1-2D. Moreover, telomere maintenance in Pot1 

phosphomutants depends on checkpoint activation. These data led us to 

suspect that telomere maintenance in the phosphodeficient mutants might be 

independent of telomerase and could be through recombination-based 

mechanisms.  We checked this possibility by deleting telomerase (trt1) in the 

Pot1 phosphomutant diploid strains and monitoring telomere state over several 

ensuing generations.  Cells harbouring endogenously tagged Pot1-6xV5 

contain stably mildly elongated telomeres.  This mild elongation depends on 

telomerase, as it is not observed in trt1Δ cells containing Pot1-6xV5.  Gradual 

telomere shortening ensues upon trt1 deletion in wild type cells (Figure 17), as 

is characteristic for telomerase dependent telomere maintenance.  

However, we observed a very different telomere maintenance 

phenotype in Pot1-5A trt1Δ and Pot1-2A trt1Δ double mutants. There was no 

gradual telomere shortening as is usual for telomerase-deleted strains. Instead, 

telomere length remains constant following trt1 deletion (Figure 17). This 

indicates that telomere retention in Pot1-5A and Pot1-2A mutants is telomerase 

independent.  

Telomere maintenance in the phosphomimetic Pot1-2D trt1Δ double 

mutant depends on telomerase as in wild type cells: telomerase deletion in 

Pot1-2D leads to gradual telomere shortening (Figure 17).   
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Figure 16 Detection of 3’-overhang in different Pot1 phosphomutants using in 

gel hybridization technique 

The upper gel was running in the native conditions, the DNA was denatured 

and the gel was re-probed with C-probe (the bottom gel). Native and denature 

pIRT2-telo plasmid were used as a negative and positive control 

correspondently for single stranded telomere DNA   
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This suggests that the DDK dependent phosphorylation of Pot1, 

which we were able to mimic by creating Pot1-2D mutant, is crucially 

required for telomerase dependent telomere maintenance.  

The telomere maintenance in Pot1-5A trt1Δ and Pot1-2A trt1Δ double 

mutants probably involved alternative recombination dependent mechanisms 

that are normally not active in wild type cells. The recombination dependent 

telomere maintenance becomes important in telomerase deleted yeast survives 

with linear chromosomes and ALT surviving mammalian cell lines with 

constant recombination at their telomeres (Bryan et al., 1997; Lundblad and 

Blackburn, 1993; Nakamura et al., 1998; Reddel, 2003; Teng and Zakian, 

1999). In contrast Pot1-5A and Pot1-2A phosphodeficient mutants have 

functional telomerase, but were not able to use it for telomere maintenance, 

probably because of constant activation of DNA damage response at Pot1-5A 

and Pot1-2A telomeres. Activation of DNA damage response at telomeres 

could inhibit telomerase recruitment by recruiting RPA, Rhp51 and other repair 

factors to telomere single stranded overhangs during DDR. A similar 

mechanism was described for preventing de novo telomere addition at a 

double stranded break site by competition for resected single stranded DNA 

ends with homologues recombination factors (Cullen et al., 2007). Thus Pot1-

5A and Pot1-2A telomeres behave like double stranded breaks by activating 

DDR and preventing telomere addition in the presence of functional 

telomerase.  



 113 

 

 

 

 

Figure 17 Telomere maintenance in Pot1 phosphomutants in the absence of 

telomerase.  

Trt1+ and trt1Δ Pot1 doubles mutants were obtained from the same Pot1 

phosphomutant diploids. The cell were growing for 16 days on plates, every 3 

days single colonies were restreaked to the new plates and liquid cultures were 

inoculated, then the cultures were growing overnight and cells were collected 

for Southern blot analysis.  
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6.4 Pot1 phosphodeficient mutants maintain their telomeres 

by activating constant homologous recombination at 

telomeres 

The fact that maintenance of Pot1-5A and Pot-2A telomeres is 

independent of telomerase led us to predict that telomere maintenance in these 

mutants would be due to constant homologous recombination events.  In this 

case, we would expect to see ongoing rearrangements of the subtelomeric 

regions, an often-used readout for telomeric recombination. Figure 18 shows a 

restriction map of the fission yeast subtelomeric regions. These regions are 

heterogeneous, so the exact locations of subtelomeric restriction vary between 

different telomeres. In order to examine the stability of this region, we digested 

genomic DNA with NsiI restriction enzyme and performed Southern blotting 

using a subtelomeric probe (Figure 18). In Pot1-wt cells, the subtelomeric 

restriction pattern remains constant over time (Figure 19). In contrast, in Pot1-

5A and Pot-2A mutants the subtelomeric regions undergo substantial 

rearrangement, leading to a homogenization of fragment sizes.  This likely 

reflects progressive loss and/or rearrangement of subtelomeric restriction sites, 

due to hyper-recombination in the area. The Pot1-2D phosphomimetic mutant 

conferred a mild de-regulation of subtelomeric recombination, but this is 

clearly less dramatic than that conferred by Pot1 phosphodeficient mutants 

(Figure 19).     

In order to confirm that the instability of the subtelomeric restriction 

pattern in Pot1-5A and Pot-2A mutants stems from elevated homologous 
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recombination, we compromised homologous recombination by deleting 

rhp51+  (Figure 20).  This led to the complete loss of telomeres in Pot1-2A 

rhp51Δ and Pot1-5A rhp51Δ double mutants. These results suggest that 

checkpoint activation in the absence of Pot1 phosphorylation changes the 

mode of telomere maintenance from telomerase dependent to recombination 

dependent.  

Surprisingly, Pot1-2D rhp51Δ cells also lose telomeres at an even faster 

rate than the telomere loss seen in Pot1-2A rhp51Δ and Pot1-5A rhp51Δ strains 

(Figure 20). Hence, we suspect that the reason for Pot1-2D rhp51Δ telomere 

loss is different from that observed in the phosphodeficient mutant 

backgrounds, and may be connected with some Rhp51 dependent telomere 

protection function that becomes important in the absence of 

unphosphorylated Pot1.  
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Figure 18 The restriction map of S. pombe subtelomeric region 

 

 

 

Figure 19 Massive subtelomeric rearrangements in Pot1 phosphodeficient 

mutant 

Cells were taken from colonies arising from sporulated diploids on Figure 12. 

They were pot1Δ with corresponding Pot1 mutant integrated in aur1 locus. The 

cell were growing for 16 days on plates, every 3 days single colonies were 

restreaked to the new plates and liquid cultures were inoculated, then the 

cultures were growing overnight and cells were collected for Southern blot 

analysis.  
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Figure 20 In Pot1 phospho mutants telomere maintenance depends on Rhp51 

rhp51+ and rhp51Δ Pot1 doubles mutants were obtained from the same Pot1 

phosphomutant diploids. The cell were growing for 16 days on plates, every 3 

days colonies were restreaked to the new plates and liquid cultures were 

inoculated, then the cultures were growing overnight and cells were collected 

for Southern blot analysis.  
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7 How does DDK dependent Pot1 phosphorylation 

regulate telomere homeostasis? 

 

7.1 Pot1 phosphorylation does not obviously alter the ssDNA 

binding properties of the Pot1 OB fold 

What biochemical mechanisms might underlie checkpoint inactivation 

and HR suppression in response to Pot1 phosphorylation? As Pot1 

phosphorylation sites are located in the ssDNA-binding OB-fold region, we 

wondered whether phosphorylation could regulate Pot1 OB binding affinity for 

the telomeric 3’-overhang.  In order to check this hypothesis, we exploited the 

fact that phosphomimetic Pot1-2D mutant have very similar properties to wild 

type Pot1 with respect to suppression of HR, DNA damage checkpoint 

inactivation and ensuring telomerase dependant telomere maintenance. 

Hence, we used the Pot1-2D OB fold to represent constitutively 

phosphorylated Pot1 and the Pot1-2A OB fold as unphosphorylated Pot1. We 

failed to observe any significant difference in telomeric ssDNA binding 

between Pot1 wt, Pot1-2A and Pot1-2D mutant OB folds (Figure 21). 
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Figure 21 Pot1 phosphorylation does not drastically affect Pot1 OB fold 

ssDNA binding affinity. 

Indicated amounts of Pot1 OB fold were incubated with 0.5 µM 32P-labeled 

telomeric single-stranded oligonucleotide 5’-

GGTTACACGGTTACAGGTTACAGGTTACAGGGTTACGGTTACGSS-3’. Pot1 

OB mutants were expressed in bacteria using the pET30 expression system. 

The purified proteins were quantified and their concentrations were equalized 

as assessed by Coomassie staining.  
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7.2 Pot1 phosphorylation affects its interaction with 

Tpz1/Tpp1   

In S. cerevisiae and C. albicans, the OB fold of the telomerase regulatory 

subunit Est3 does not mediate DNA interaction (Lee et al., 2008; Young Yu et 

al., 2008), but rather plays a role in interaction with other proteins of the 

telomerase complex. Moreover, Tpz/1TPP1, the S. pombe Pot1 interacting 

partner and Est3 structural homolog, also contains an OB fold but does not 

bind DNA (Miyoshi et al., 2008; Wang et al., 2007; Xin et al., 2007). These 

observations suggest that the OB fold is not only a single stranded DNA 

binding domain, but is also a complex structure that can mediate protein-

protein interactions. Thus, in preliminary experiments, we checked the 

interaction between Pot1 phosphomutants and Tpz/1TPP1.  

Interestingly, we found that the interaction between Pot1 and 

Tpz1/Tpp1 is less stable in Pot1-2A and Pot1-5A phosphodeficient mutants 

than in Pot1 wt (Figure 22).  Curiously, however, we did not observe wild type 

levels of Tpz1/Tpp1-Pot1 interaction in the Pot1-2D phosphomimetic strain. 

These observations require further substantiation.  However, they raise the 

possibility that Pot1 phosphorylation promotes its interaction with Tpz1/Tpp1 

or changes the mode of Pot1-Tpz1/Tpp1 complex assembly such that 

checkpoint activation and HR at telomeres regulated. 
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Figure 22 Pot1 phosphorylation stabilises the Pot1-Tpz1 complex. 

The co-immunoprecipitated Tpz1 band intensities were quantified using 

ImageJ software and normalised to immunoprecipitated Pot1 band signals.   
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8 Pot1 phosphorylation and regulation of telomere 

functions  

8.1 How could Pot1 phosphorylation suppress the DNA damage 

response at telomeres? 

We showed that Pot1 phosphorylation has an important role in 

controlling the DNA damage response at telomeres. Mutations in Pot1 

phosphorylation sites lead to activation of the DNA damage checkpoint and 

homologous recombination at telomeres. Hence, the chromosome ends in 

Pot1 phosphomutants become unprotected and appear to be treated as DNA 

double stranded breaks despite the presence of terminal telomere sequences. 

DDK phosphorylates Pot1 in its OB-fold – the domain previously characterized 

as a single stranded DNA binding motif. Interestingly, we found that mutations 

in Pot1 phosphorylation sites do not dramatically interfere with its single 

stranded DNA binding activity, but may affect Pot1 interaction with 

Tpz1/Tpp1. The Pot1-Tpz1/Tpp1 complex is widely conserved throughout 

evolution from ciliates to human as is its importance for telomere regulation 

and protection. Thus, it is perhaps not surprising that Pot1-Tpz1/Tpp1 complex 

stability is regulated by DDK to ensure the proper telomere function.  

We do not yet know how the decrease in stability of the Pot1-

Tpz1/Tpp1 complex could lead to all phenotypes that we observe in Pot1 

phosphodeficient mutants. Phosphorylation of Pot1 could stabilize the Pot1-

Tpz1/Tpp1 complex and/or change its 3’-overhang binding activity in a way 
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that allows Pot1-Tpz1/Tpp1 to win the competition with RPA for 

overhang binding.  This could lead to suppression of the DNA damage 

response by preventing RPA from accumulating at the telomeres, thus 

suppressing the activation of the DNA damage response. These ideas should be 

addressed in future studies. 

 

8.2 Why does DDK phosphorylate Pot1 in the S and G2 phases of 

cell cycle? 

Another question that arises from our studies centers on why such tight 

control of homologous recombination and DNA damage checkpoint is so 

important for telomeres that they employ control by the DDK. As a corollary to 

this question, why is this mechanism specifically activated in S and G2?  While 

HR is an often beneficial pathway of DNA repair, excessive HR, particularly in 

repeated sequences, can lead to genetic rearrangements. Thus, keeping HR 

inactive at telomeres may be very important for genomic stability. This task 

becomes more crucial during S and G2 when HR is specifically upregulated by 

CDK activity and becomes the main mechanism of DSB repair, replacing 

nonhomologous end-joining (NHEJ) which is predominant in G1 (Aylon et al., 

2004; Ferreira and Cooper, 2001, 2004; Ira et al., 2004; Moore and Haber, 

1996; Takata et al., 1998). S- and G2- specific phosphorylation of Pot1 by DDK 

could be a mechanism to inactivate HR specifically at telomeres just at the 

time when the overall level of HR increases. By specifically inhibiting HR at 

telomeres, DDK could promote the advantageous use of HR as an efficient 
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mode of postreplicative DNA damage repair while at the same time 

protecting cells from dangerous and uncontrolled HR at highly repetitive 

telomere sequences. Such coordination between CDK dependent HR 

activation and DDK dependent telomeric specific HR suppression may allow 

the cell to use HR most efficiently to promote overall genome stability.       

 

8.3 A new role of Rhp51 in telomere protection 

In our study, we also uncovered a new role for Rhp51 in telomere 

protection (Figure 23), as it appears to act redundantly with the 

unphosphorylated form of Pot1 in allowing telomeres to be maintained. In wt 

cells, two forms of Pot1 are present: phosphorylated and unphosphorylated. 

The phosphorylated form of Pot1 plays an important role in suppressing 

homologous recombination and checkpoint activation at telomeres as 

described above. When the DNA damage response at telomeres is thus 

suppressed, telomere maintenance is telomerase dependent. Under these 

circumstances, neither Rhp51 nor homologous recombination are required for 

telomere maintenance.  

In cells harbouring Pot1-5A and Pot1-2A phosphodeficient mutants, 

only the unphosphorylated form of Pot1 is present (Figure 23). 

Unphosphorylated Pot1 cannot suppress homologous recombination or 

checkpoint activation at telomeres, as evidenced by the massive subtelomeric 

rearrangements and cell elongation seen at Pot1-5A and Pot1-2A telomeres.  

These telomeres resemble those of trt1Δ survivors that maintain linear 
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chromosomes by telomeric recombination. Correlating with this 

observation, telomere maintenance in Pot1-5A and Pot1-2A mutants was 

independent of telomerase, but dependent on Rhp51. Indeed, our data also 

suggest that Pot1 phosphorylation is required for telomerase activity – perhaps 

the telomeric recruitment of telomerase is controlled by Pot1 phosphorylation.  

This would be an ideal mechanism for reinforcing the connection between 

semi-conservative DNA replication and telomerase-mediated telomere 

synthesis.  Future experiments will explore this possibility.  

The Pot1-2D phosphomimetic mutant was able to suppress both 

homologous recombination and checkpoint activation at telomeres. The 

maintenance of Pot1-2D telomeres depends on telomerase, as in wild type 

cells: deletion of telomerase leads to gradual telomere shortening in the Pot1-

2D strain. Surprisingly, however, Pot1-2D telomeres are also dependent on the 

presence of Rhp51. The Pot1-2D rhp51Δ double mutant strain loses its 

telomeres immediately after germination, in contrast to rhp51Δ Pot1-5A and 

rhp51Δ Pot1-2A double mutants that lose telomeres after several generations. 

This extremely fast telomere loss resembles that seen upon Pot1 deletion, 

which also triggers the immediate disappearance of telomeres due to massive 

telomere C-strand resection; all resulting pot1Δ  colonies contain only cells 

with circular chromosomes lacking telomere sequences. I think that in the 

Pot1-2D rhp51Δ double mutant, telomere protection is abolished as in pot1Δ. 

The possible explanation is that unphosphorylated Pot1 together with Rhp51 

plays an important role in telomere protection. Only by deleting both factors 
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do telomeres become completely de-protected, leading to their 

disappearance in the first cell divisions (Figure 23).  

In Pot1-wt, Pot1-5A and Pot1-2A strains, deletion of Rhp51 does not 

have such a profound effect on telomere protection.  Hence, the following 

model postulates the existence of an Rhp51 function in telomere protection 

that may be distinct from its role in homologous recombination (Figure 23).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Model representing the role of Pot1 phosphorylation in 

suppressing homologous recombination and protecting telomeres.  

(See next page) 
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8.4 Pot1 phosphorylation ensures telomerase dependent 

telomere maintenance  

These studies also suggest the importance of DDK phosphorylation of 

Pot1 to ensure telomerase dependent telomere maintenance. Why would the 

system evolve to favor telomerase over HR for telomere maintenance? The 

answer could be that telomerase dependent telomere maintenance has one 

important advantage over HR: the ability to confer senescence when 

telomerase is inactive or is not expressed. This could restrict cell proliferative 

potential and suppress the uncontrolled cell division that leads to cancer. 

Arising cancer cells deal with this problem by expressing telomerase or by 

choosing the recombination dependent ALT mode of telomere maintenance.  

In our experiments, we were able to avert cellular senescence by replacing 

Pot1 with a phosphodeficient form of Pot1, which makes cells unable to 

inactivate HR at telomeres. Constant HR events make telomerase unnecessary 

for telomere maintenance. Pot1 phosphorylation by DDK could play a critical 

role in ensuring that telomeres are subject to the highly controlled replication 

conferred by telomerase. 
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