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Abstract 

Nephrogenic diabetes insipidus (NDI) provides an excellent model for the 

benefits and insights that can be gained from studying rare diseases. The 

discovery of underlying genes identified key molecules involved in urinary 

concentration, including the type 2 vasopressin receptor AVPR2 and the water 

channel AQP2, which constitute obvious pharmacologic targets. Subsequently 

developed drugs targeting AVPR2 not only provide potential benefit to some 

patients with NDI, but are now used for much more common clinical applications 

as diverse as nocturnal enuresis and heart failure. Yet, the story is still evolving: 

clinical observations and animal experiments continue to discover new ways to 

affect urinary concentration. These novel pathways can potentially be exploited 

for therapeutic gain. Here we review the (patho)physiology of water 

homoeostasis, the current status of clinical management and potential new 

treatments. 
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Introduction 

Nephrogenic diabetes insipidus as an X-linked disease has been recognized for a 

long time. It was first described by McIlraith in 1892 as a familial form of 

polyuria affecting “chiefly males on the female side of the house” [1]. De Lange in 

1935 reported a family with diabetes insipidus and no male-to-male 

transmission unresponsive to injections of posterior lobe extracts [2] and in 

1947 Williams and Henry established the unresponsiveness to arginine-

vasopressin (AVP) in these patients and coined the term nephrogenic diabetes 

insipidus (NDI) [3]. With the advent of molecular genetics our knowledge of this 

disease has much improved: In 1992 the AVPR2 gene encoding the AVPR2 

receptor was cloned and mutations identified in patients with X-linked NDI [4-7].  

Approximately 90% of patients with inherited NDI are found to have mutations 

in this gene. Shortly after, the AQP2 gene encoding the vasopressin-regulated 

water channel aquaporin-2 (AQP2) was cloned [8, 9] and in 1994 mutations in 

AQP2 were found to underlie the rare autosomal forms of DI [10]. The discovery 

of these key molecules allowed the development of targeted drugs. Whilst these 

are of only limited and indirect use in the treatment of NDI, they are used in 

much more common disorders of water, such as heart failure or the syndrome of 

inappropriate antidiuretic hormone [11].  Thus, NDI provides an excellent 

example of how the study of a rare disease can benefit the treatment of common 

problems. Recently, new pathways to affect water handling in the collecting duct 

independent of AVPR2 have been described and these could potentially be 

exploited in the management of X-linked NDI. This review will focus on our 

current understanding of water homoeostasis and how new insights may 

provide new treatments. 
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Physiology of water homoeostasis 

Vasopressin 

Whilst the kidneys are tasked with water homoeostasis, they can only sense 

plasma volume via renal perfusion, but not abnormalities in plasma osmolality 

and sodium, which are the biochemical hallmarks of disorders of water [12]. 

Rather, osmolality is sensed by specialized neurons, so-called magnocellular 

neurosecretory cells, in the supraoptic and paraventricular nuclei of the 

hypothalamus [13]. These cells contain stretch-sensitive ion channels, TRPV1, 

which respond to osmolality-mediated changes in cell volume: hyperosmolality 

leads to cell shrinkage with subsequent depolarization and vasopressin 

secretion, whereas hyposomolality leads to hyperpolarisation with consequent 

inhibition of vasopressin release [13].  Interestingly, activity of these neurons 

can be modified by peptides involved in blood pressure regulation, such as 

angiotensin II (AngII) [13]. There is less suppression of vasopressin release at 

low plasma osmolarity in the presence of AngII (e.g. in hyponatremic 

dehydration) than in states with elevated blood pressure and low AngII (e.g. 

water overload), thus integrating homoeostasis of volume and osmolality. 

Of note, AngII is also involved in thirst perception and there are some data 

suggesting that the use of angiotensin converting enzyme inhibitors may 

ameliorate thirst perception in dialysis patients [14]. 

 

Vasopressin receptor 
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There are different types of vasopressin receptors, the most common one being 

AVPR1a, present mostly in the vascular smooth muscle cell, where it mediates 

vasoconstriction. The AVPR2 receptor is primarily expressed in the connecting 

tubule and collecting duct, although observations in patients with X-linked NDI 

(i.e. loss-of-function mutations in AVPR2) demonstrate a role also in the 

vasculature, where it mediates vasodilatation and the release of factor VIIIc and 

von-Willebrand factor [15]. 

AVPR2 is a G-protein coupled receptor, which localizes to the basolateral 

membrane of principal cells in the collecting duct (Figure 1). Upon activation 

AVPR2 stimulates adenylyl cyclase and thus the production of cyclic adenosine 

monophosphate (cAMP). This, in turn, activates protein kinase A (PKA), which 

phosphorylates AQP2 molecules, leading to insertion of these molecules in the 

apical membrane of the principal cells [16]. The cAMP molecules are 

metabolized by phosphodiesterases in the cell to prevent ongoing activation.  

Recently, it was shown that AVPR2 is also expressed on apical cilia, where it also 

colocalizes with adenylyl cyclase [17]. This ciliary localization could help explain 

the urinary concentrating defect often seen in patients with ciliopathies. Indeed, 

renal epithelial cells from patients with Bardet-Biedl syndrome were shown to 

not respond to luminal vasopressin administration [18]. However, the clinical 

relevance of this apical vasopressin pathway has yet to be clearly established. 

 

The most obvious other important molecule for water permeability in the 

connecting tubule and collecting duct is AQP2, the final player in the signaling 

cascade. The importance of this water channel is clearly highlighted by the fact 

that loss-of-function mutations lead to the autosomal forms of NDI [10].  
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Aquaporines 

Once AQP2 is inserted into the apical membrane, water can pass the epithelial 

cell layer from the tubular lumen into the interstitium following the osmotic 

gradient. On the basolateral side of the prinicipal cells the water channels AQP3 

and AQP4 provide the exit pathway (figure 1). Whilst they are constitutively 

expressed, AQP3 appears to be more relevant, at least in mice, as genetic ablation 

of this channel leads to a severe NDI phenotype, whereas loss-of-function of 

AQP4 results only to mildly impaired urinary concentrating ability [19]. 

 

AVPR2-independent effects on water permeability  

Whilst AVPR2 clearly is the most important pathway for insertion of AQP2 into 

the apical membrane, there are several other pathways that can influence this 

process and may be exploitable for therapeutic gain. 

 

Calcium Sensing Receptor 

AVPR2 is not the only receptor in the principal cell that can raise cAMP. On the 

apical side of principal cells is also expressed another G-protein-coupled 

receptor, the calcium-sensing receptor CaSR. Animal experiments demonstrate 

that raised luminal calcium concentrations blunt the antidiuretic response of 

AVP, i.e. that the CaSR inhibits movement of AQP2 into the membrane [20]. It has 

been speculated that this might be a protective mechanism against stone 

formation. Moreover, this pathway may be involved in some of the secondary 

forms of NDI, seen in disorders with hypercalciuria, such as Bartter syndrome 

[21, 22]. However, luminal calcium concentrations in concentrated urine are 

typically much higher than those seen in the dilute urine of patients with 
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secondary NDI, raising questions about the clinical relevance of this pathway 

[23, 24]. 

 

Secretin receptor  

Another G-protein coupled receptor expressed in the collecting duct with the 

potential to increase cAMP is the secretin receptor [25, 26]. Indeed, mice deleted 

for the secretin receptor show an impaired urinary concentrating ability with 

decreased Aqp2 expression [26].  

 

Secretin is a gastrointestinal signaling peptide and its role in the kidney is 

unclear. Nevertheless, there is emerging evidence that secretin and perhaps 

oxytocin are involved in the regulation of water permeability in the collecting 

duct [27]. 

 

Hypokalaemia 

Another potential explanation for the presence of a secondary NDI in Bartter 

syndrome has been hypokalemia. Indeed, potassium deprivation in rats is 

associated with polyuria and decreased Aqp2 expression, through yet 

unidentified mechanisms [28]. But yet again, the clinical relevance in man is 

unclear, considering that patients with Gitelman syndrome have hypokalemia, 

but an apparent normal urinary concentrating ability [23]. 

 

Lithium 
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Lithium is probably the most common cause of NDI, although rarely seen in 

pediatrics. The molecular mechanisms of the Li+-related urinary concentration 

defect involve a dysregulation of the aquaporin system in principal cells of the 

collecting duct. ENaC is crucial as the luminal entry route for intracellular Li+ 

accumulation. The basolateral exit route is not clearly identified, but some 

evidence suggests Na+/H+ exchanger 1 (NHE1) as a potential candidate. Li+ 

promotes polyuria mainly by counteracting the intracellular vasopressin 

signaling, although the exact mechanisms remain to be elucidated [29]. Recent 

mouse data suggests that lithium mainly affects water permeability in the 

collecting duct, as mice with a segment specific knock-out in the connecting 

tubule are just as susceptible to lithium toxicity, as control mice [30]. 

 

Prostaglandins 

The variety of prostaglandins and their receptors and the resultant divergent 

actions makes understanding their role in urinary concentration difficult. 

Prostaglandine E2 (PGE2) was noted early on to antagonize vasopressin in the 

collecting duct by inhibiting cAMP formation. Conversely, inhibition of 

prostaglandine synthesis by indomethacine enhances the effect of vasopressin 

[31, 32].  Recently, data for the role of PGE2 in urinary concentration were 

published that conflict with the earlier results of an antagonism between PGE2 

and vasopressin [33]: these data show a vasopressin-independent direct 

increase in cAMP and consequent Aqp2 phosphorylation and membrane 

insertion after treatment with PGE2 or related agonists for the E-prostanoid 

receptors EP2 or EP4. Indeed, rats treated with a blocker of Avpr2 develop a 

pharmacologically induced NDI and the phenotype could be significantly 
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alleviated by treatment with an EP2 agonist [33]. Similarly, the NDI in mice 

deleted for the Avpr2 gene could be ameliorated by selective EP4 agonists [34]. 

At this point it is unclear, whether these apparently conflicting results with 

regards to the benefits of prostaglandin synthesis inhibitors and prostaglandin 

receptor agonists can be explained by differential actions of the various 

prostaglandins on their receptors. Yet these animal data suggest that selective 

targeting of the EP2 and 4 receptors may provide a novel mode for the treatment 

of X-linked NDI. 

 

 

Clinical aspects of NDI 

So, how does this knowledge of the physiology of urinary concentration help us 

understand and manage NDI? 

 

Clinical manifestations 

Affected patients typically present in the first year of life with failure-to-thrive, 

vomiting and hypernatremic dehydration. Biochemistries obtained at the time 

show an inappropriately dilute urine (Uosm <Posm) in the context of elevated 

plasma sodium/osmolality, which establishes the diagnosis of DI. The 

nephrogenic aspect is proven, if there is no response to 1-Desamino-8-D-

Arginine Vasopressin (DDAVP). However, some other disorders, such as Bartter 

syndrome can present similarly and should be considered if there are unusual 

features, such as a history of polyhydramnios or hypokalemia [23]. Molecular 

testing should establish a definitive diagnosis in the majority of cases, which is 

important, as treatment is different: patients with NDI typically receive thiazides, 
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which could be dangerous in Bartter syndrome, as it would compound the 

impaired tubular sodium reabsorption. 

Diagnostic difficulties can also arise in those patients with milder mutations, that 

retain some functionality of AVPR2; so-called partial NDI [35].  Urine osmolality 

either spontaneously or after DDAVP can be above that of plasma, consistent 

with some urinary concentrating ability, but are below the normal response to 

DDAVP (Uosm>800 mosm/kg). Again, molecular diagnosis can be helpful, as 

several of these milder mutations are known [36]. The presence of some residual 

receptor function allows the use of DDAVP for treatment purposes, by 

stimulating AVPR2 with supraphysiologic doses of the agonist [35].  

Clinical manifestations typically become easier to manage beyond infancy, when 

fluid and caloric intake can be separated and the patient can self-regulate fluid 

intake. Growth is usually within the normal range. However, life of these patients 

is clearly marked by the polyuria (10-12 l/d in adults) and some problems, such 

as nocturnal enuresis or urinary obstruction are amplified by it [37]. 

Previously reported mental impairment in patients with NDI has been attributed 

to recurrent episodes of hypernatremic dehydration and is fortunately rarely 

seen with early diagnosis and good management [38, 39]. 

 

Treatment 

Diet  

The mainstay of treatment is still diet modification. The total urine volume 

excreted depends on the osmotic load and this can be roughly estimated by the 

following formula: twice the millimolar amount of sodium and potassium (to 

account for the accompanying anions) plus protein (g) times 4 [40]. A reasonable 
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goal is a diet containing about 15 mosm/kg/d. A child with a urine osmolality of 

100 mOsm will need a fluid intake of 150 ml/kg/d to be able to excrete that load, 

which is achievable. This demonstrates the importance of limiting salt intake, as 

12 mosm/kg/d are already provided by the recommend daily protein intake of 

3g per kg bodyweight. 

 

Thiazides 

The use of a diuretic in a polyuric disorder appears at first glance 

counterintuitive, but does make physiologic sense. The successful use of 

thiazides in NDI with a subsequent increase in urine osmolality and concomitant 

decrease in urine output was first reported in 1959 [41, 42]. Thiazides inhibit 

reabsorption of sodium and chloride in the DCT (part of the urinary dilution 

mechanism-see above) and thus increase the salt concentration and osmolality 

of the urine. The increased salt losses decrease intravascular volume with a 

subsequent up-regulation of proximal tubular reabsorption of salt and water. 

Consequently, less volume is delivered to the collecting duct and lost in the urine 

[43].   

 

Indomethacine 

The apparent antagonism between vasopressin and PGE2 [44] led to trials of 

indomethacine in NDI, which demonstrated a modest reduction in urine volume, 

which was additive to the effect of thiazides alone [45-47]. Since then, 

prostaglandine synthesis inhibitors (NSIAD) are commonly used in the 

treatment of NDI, yet it is unclear whether the therapeutic effect is actually 

mediated in the collecting duct or rather via the stimulatory effect of NSIAD on 
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proximal epithelial transport. Prostaglandins are saluretic by impairing proximal 

epithelial salt reabsorption [48]. Therefore, inhibition of prostaglandins 

enhances proximal sodium re-uptake and thus water reabsorption, as the 

proximal tubule is water permeable. In this way, the mechanism of NSIAD in 

urine volume reduction is actually very similar to thiazides. 

  

New potential treatment options 

The improved understanding of the molecular basis of renal water handling has 

opened up some intriguing new ways to potentially treat NDI. One of these has 

already demonstrated efficacy in a clinical trial [49]. 

 

Vaptans/Chaperones 

The majority of patients with NDI have mutations on AVPR2 and these are 

overwhelmingly missense in nature leading to misfolding and consequent 

retention of the otherwise functional receptor in the endoplasmatic reticulum 

[50]. With advent of the AVPR2 blockers, it was recognized that these drugs, 

when membrane permeable, could bind to the mutant receptor and stabilize it 

sufficiently to allow proper routing to the cell surface [51]. The problem, of 

course, is that these drugs are blockers of the receptor and the higher the affinity 

to the receptor, the better the stabilization and membrane expression, but less 

likely the drug is to diffuse off and provide the binding site for vasopressin. 

Conversely, a drug with less affinity provides less stabilization and membrane 

expression, but will diffuse off more easily. In the end, those drugs with medium 

affinity seemed to work best and a clinical trial in patients with suitable 

mutations indeed showed a modest reduction in urine output [49].  
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PGE agonists 

The recent data on AVPR2-independent activation by agonists for the EP2 and 

EP4 receptors raises the intriguing possibility of a new therapeutic pathway for 

patients with X-linked NDI [33]. However, at this point it is unclear how to 

resolve the contradiction between giving prostaglandins to reduce urine output, 

when the blockade of their synthesis by indomethacine has actually proven 

clinical efficacy. And unfortunately, Fenton et al do not address this apparent 

conundrum at all in their paper. Could it be that different pathways in the 

complex system of the various prostaglandins and their receptors mediate the 

beneficial effects of PGE2 and NSIADs, respectively? In that case a clever 

combination of specific agonists and blockers could combine the efficacy of these 

pathways. Yet, clearly, more research is needed to ensure that the PGE2 effect is 

not just observed in mice, but also in humans.  

 

Secretin  

Stimulation of the secretin receptor may be yet another possibility to increase 

cAMP in the principal cells of the collecting duct independent of AVPR2 and thus 

provide a potential treatment for X-linked NDI. Ideally, one would want to use a 

receptor agonist that is specific for the kidney to avoid the gastrointestinal and 

other extrarenal effects of this hormone. Moreover, as with the prostaglandins 

above, existing evidence is only from animal experiments and confirmation for 

the efficacy with respect to increasing water permeability in humans is missing. 

 

 Statins 
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Statins are well known and commonly used inhibitors of cholesterol 

biosynthesis. New evidence suggests that they also have off-target effects, 

including modulation of the actin cytoskeleton, which in turn affects AQP2 

trafficking [52].  In a rat model of (central) DI, high-dose simvastatin increased 

membrane expression of Aqp2, associated with increased urine osmolality and 

decreased urine output [53]. Again, human data are missing, although it is quite 

possible that some patients with NDI may have been prescribed statins at some 

point. 

 

Phosphodiesterase inhibitors 

Inhibition of phosphodiesterases to prevent breakdown of cAMP has been 

another approach to try to ameliorate the polyuria. Specific inhibitors of the 

phosphodiesterase type 3 isoenzyme are available: rolipram and cilostamide. 

Indeed, in a mouse model of NDI, rolipram increased cAMP concentration in 

collecting duct cells [54]. Unfortunately, application in humans resulted in no 

change in urine osmolality [55]. Yet, recent data from a mouse model of 

autosomal dominant NDI suggests that rolipram may be effective in patients 

with heterozygous frame-shift mutations in the carboxy-terminus of AQP2 [56]. 

 

  

Conclusion 

NDI provides an excellent example of how the study of a rare disease can provide 

important insight into human physiology and how in turn, this knowledge can be 

harnessed to develop new and specific treatments. For now, no “golden bullet” 

has been found to completely treat symptoms and complications, but there are 
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exciting new potential treatments that may improve management of these 

patients in the future.  
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Figure 1: Schematic of a principle cell in the collecting duct 

Shown are the key players involved in water reabsorption in the collecting duct. 

Whereas the water channels AQP3 and AQP4 are constitutively present in the 

basolateral side, the insertion of AQP2 into the apical membrane is regulated. 

Key signal for the insertion of AQP2 into the apical membrane is phosphorylation 

by protein kinase A (PKA), which, in turn, is activated by cyclic AMP (cAMP), 

produced by adenylyl cyclase, present on the basolateral side. Adenylyl cyclase is 

activated by the G-protein Gαs, released by AVPR2. Other G-protein coupled 

receptor, such as EP2, EP4 and the secretin receptor may also contribute. 


