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Abstract. A number of spin resonance and zero phonon optical absorption lines 
are broadened by microscopic strains in the lattice containing the centres observed. 
In MgO, for example, the electron spin resonance line of Fe2+, the ENDOR line of 
Co2+ and the zero phonon lines of colour centres all show strain broadening. The 
strains appear to be due to dislocations and other crystal imperfections. It is 
shown that these line shapes can be calculated in terms of the statistical distribu- 
tion of the imperfections and their individual strain fieIds. The approach can be 
generalized to cases where other broadening mechanisms are important, such as 
spin-spin interactions. The method may also be used to obtain information about 
the statistical distribution of the strain sources from the observed Line shape. 
To  illustrate the method the line shape of MgO : Fe2+ is calculated on the simple, 
if rather unrealistic, assumption of an isotropic homogeneous distribution of 
dislocations. The results are in fair agreement with experiment. 

1. Introduction 

In  both spin resonance and optical spectra lines occur which are broadened by micro- 
scopic strains in the lattice containing the centre. The strains themselves are caused by 
the presence of dislocations and other crystal imperfections. It will be shown in this 
paper that in such cases the line shape can be calculated in terms of the properties of the 
individual crystal imperfections responsible €or the strains and the statistical distribution 
of these strain sources. 

Zero-phonon optical absorption lines of colour centres have been observed in a 
m ~ b c r  cf crys+ds, such as MgO (Ludlow and Runciman 1965) and LiF (Hughes and 
Runciman 1965). At low temperatures these lines appear to be broadened solely by the 
microscopic strains. 

Electron spin resonance and ENDOR lines can also be strain broadened, although the 
interactions between the magnetic ions in the crystal may be important. The most 
conspicuous symptoms of strain broadening are that the hewidth is larger than expected 
from spin-spin interactions and independent of the spin concentration, and that, in the 
electron spin resonance of ions with a non-zero nuclear spin, the linewidth is ditferent 
for the different hyperfine lines. In  several cases this broadening mechanism has been 
identified convincingly by assuming a particular distribution in magnitude for the 
microscopic strain components and showing that a variety of features of the observed line 
shape can be obtained consistently from this distribution. Thus Feher (1964) compared 
the linewidths of MgO : Fe3+ and MgO : Mn2+ and their variation with magnetic field 
orientation. McMahon (1964) was able to predict the line shapes of the AA4 = 1, 
A M  = 2 and the double-quantum transition lines for MgO : Fe2+. The present author 
has shown (Stoneham 1964, Ph.D. Thesis, University of Bristol) that for MgO : CO'+ 
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the ENDOR linewidth and the variation of the electron spin resonance linewidth with 
hyperfine line and with spin concentration are consistent with broadening by micro- 
scopic strains. 

In t h i s  article the distribution in magnitude of the microscopic strains will be 
calculated. The observed line shapes can be calculated from this distribution in a straight- 
forward way. The method to be used is the so-called ‘statistical method’ of Markoff 
(Markoff 1912, $5 16 and 33, reviewed by Chandrasekhar 1942). This methcd was first 
applied to line shape problems by Margenau (1935) and has been used more recently by 
Anderson (1951) and by Grant and Strandberg (1964). The method is outlined in 5 2 
where the distribution in magnitude of the local strain is found as a function of the strain 
fields of the individual sources of strain and of the statistical distribution of these Sources 
in the crystal. A number of general features of the result are discussed in 3, in par- 
ticular the moments of the distribution and the case of broadening by both spin-spin 
interactions and strains simultaneously. TO illustrate the main features of the method the 
line shape of the AM = 1 transition for MgO : Fe2+ is calculated in $5 4 and 5, assuming 
that this is broadened by a statistically isotropic and homogeneous distribution of disloca- 
tions. Such a distribution has the advantage of simplicity rather than realism, for I t  

neglects the subgrain structure of the dislocation distribution in MgO crystals as grown 
(Lang and Miuscov 1964). In the circumstances the agreement with experiment is quite 
good. The theory will be applied to a more realistic distribution of dislocations in a later 
publication. 

2. The calculation of the strain distribution 

We consider a transition which has energy &wo in an unstrained crystal. The transi- 
tion energy of one of the centres responsible for this line is altered by the local strain to 

where e,, is a component of the strain tensor e. The coefficients a,, are obtained from 
static stress experiments (for example by Feher 1964). 

In many cases the term quadratic in the strain is negligible. It will be neglected here, 
with the result that it will not be possible to predict the shape for transitions for which the 
linear term vanishes. The A M  = 2 ax!  tw~-ph~nox t:axsitions far MgG : Fe2+ fa11 
into this category (McMahon 1964). We calculate the probability that the scalar 

. .  

lies between E and E + & .  E is the particular linear combination of strain components 
appropriate to the problem considered. We do not assume that the components of e 
are in some sense independent so that we may calculate the distributions of each com- 
ponent separately before performing a convolution appropriate to the problem. Although 
McMahon (1964) and Feher (1964) have shown that this is a useful working assumption, 
it is shown in the next section that the assumption is usually incorrect. 

The position and any internal variables of the ith source of strain will be denoted by 
2,. For simplicity we assume that only one type of source is present; this will be 
generalized in 4 3 to cases where several types of strain source occur. If there are N 
sources then 

E = €(XI, 22 ,  ..., ZN). (3) 
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We further assume that the contributions of the various sources to E add linearly: 
N 

This assumption is fundamental. It should be valid when linear elasticity theory 
1~ valid, so that (4) should hold for strains less than about The widths of observed 
strain-broadened lines correspond to strains of the order of lo-*, roughly two orders of 
magnitude less. 

The variables zl, ..., xN define a phase space. Each point in this phase space 
corresponds to a specific configuration of strain sources in which the position and the 
other parameters which describe every one of the sources have definite values. The 
statistical assumptions about the probability distribution of each of the z, are contained 
in a statistical weight function p(z). The form of p(z) depends on the species of source 
considered, but the functional form of p(z,) does not depend on i. A normalization 
factor 'L' is defined for p(z) by 

v = j dzlp(z1). ( 5 )  

We calculate the fraction of all configurations of the strain sources, consistent with 
our statistical assumptions, which produce a given value of E at the point of observation. 
This is 

N 

] ( E )  = (:) 1 . e 1 dZlp(Z1) S .  dz,&(XN) 8 { E  -E(Z1,  . . , ZN)}. (6 )  

The delta function singles out the regions of the phase space for which e(zl, ..., zN) 
has the value E .  In particular this excludes configurations which produce infinite strains 
at the point of observation. For this reason singularities in E ( Z )  do not cause difficulty; 
such singularities are, however, very important in calculating the moments of I(€), which 
are discussed in 4 3.3. 

I(E) can be calculated directly from (6) with no further physical assumptions. The 
actual procedure constitutes Markoff's method. Equation (6) may be rewritten using 
the spectral representation of the delta function: 

1 "  
2 r  - m  

a(y) = -J dx exp(ixy) 

I (€ )  = ('IN+ j " dz 1 . . .I dz,p(zl)  . . . dzfl$(zN) exp[ix{e - c(zl, . . ., zN)}l (7) 

where the spectral variable x has no particular physical significance. From (4) the con- 
tributions of the sources to E add linearly, so that (7) factorizes into 

givizg 

2 -  

dx exp(ixa) - dzp(z) exp{ - ~ x E ( z ) }  . (8) I(€) = 277 q" - m  t s I N  
Following Markoff (1912) and Margenau (1935) we write 

where 
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We finally obtain, recalling (1 - A/rV)" + exp( -A) in the limit of large N :  
m 

I(€) = - J dx exp(ixc) exp{ - p ~ ( x ) )  
2a ;m 

in which p, the density of the sources, is defined as 

N N  
,=U=- s P ( 4  

in the limit of large Nand v .  Equations (9), (10) and (1 1) give the distribution in mag& 
tude of the microscope strain in terms of the strain field of each individual source €(X I ,  

the statistical distribution of the sourcesp(z) and p ,  the density of the sources. 
The line shape described by (10) may be asymmetric. We conclude this section 

with the formulae equivalent to (9) and (10) in the especially useful case that the line is 
symmetrical about E = 0: 

J(x)  = j dzp(z)[l -cos {X€(Z)}] (9') 

(10') 
W 

I (€)  = 1 1 dx cos (x.1 expi - p J ( x ) ) .  
T o  

3. Discussion of the strain distribution 
In this section we derive a number of results based on (10). Firstly, we generalize (10) 

to the case where there are several distinct types of strain source. Secondly, we find the 
distribution of a sum of strain components E = and show that this is not the 
convolution of the distributions of and c2 separately except in very special cases. The 
result obtained here can be used to calculate spin resonance line shapes which are 
broadened by both strain and by spin-spin interactions. Thirdly, the moments of I (€)  
are calculated ; these emphasize the advantages of calculating I (€)  directly rather than its 
moments. Finally, the line shape is shown to agree with the predictions of the central 
limit theorem in the special circumstances in which this theorem can be applied. 

3.1. Seaeral types of strain source 

In real crystals the microscopic strains may be caused by several different species of 
strain source-for example both point defects and dislocations are important in radiation- 
damaged crystals. We shall assume that the statistical distributions of the various 
species are independent-thus the sources of species A are not correlated in position with 
those of type B. The discussion of 4 2 may be repeated with only minor changes. In 
particular the factorization of (7) to give (8) proceeds as before. I(€) is again given by 
(lo), but pJ(x) is now given by 

PJ(') = PA 1 dzPA(z)[l - cos {xEA(z)}] +pB 1 dzpB(z)[l -cos {xEB(z)}I 

where PA = NA/J'dzPA(x) and pB = NB/J'dzpB(z). In generalpA(x) andpB(z) have different 
functional forms. 
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3.2. The distribution of a sum of strain components 
The detailed analyses of experimental line shapes by Feher and McMahon both 

assumed that the distributions of the various strain components are independent. If 
E12 = E, +eZ, where the distribution of is given by IJ(c,), this assumption implies 

It is straightforward to show from (10) that (12) is only valid if 

J 1 2 ( 4  = J l ( 4  +J&) 

~ , ( x )  = J” d z p ( z ) [ l -  exp{-ixc,(z)}l. 

in which 

In general (13) is satisfied only if the strain components E, and cZ are produced by different 
species of strain source. This result can be seen more intuitively as follows. A large 
value of E, implies that the point of observation is close to one of the strain sources. If 
the source also produces the strain component cZ this suggests that eZ will also be large, 
so that the values of E, and eZ will be correlated. As a more concrete example, screw dis- 
locations produce no dilation in an isotropic crystal; in such a crystal containing only 
these strain sources e,,+e,,+e,, = 0, and it would clearly be incorrect to assume that 
e,,, e,, and e,, were independent. 

Equations (12) and (13) do hold in one case of practical importance. If a spin 
resonance line is appreciably broadened by both microscopic strains and by spin-spin 
interactions, as for Co2+, MnZt and Fe3+ in MgO, the transition energy of one of these 
spins has the form 

hW = hWo+hWIE+hwsEs 

where the shift hs~S is caused by spin-spin interactions. Grant and Strandberg (1964) 
have discussed the case in which there is spin-spin interaction broadening alone in some 
detail. If the magnetic defects produce no strain field then E, E and eZ = oScs/w1 
zre praduced by diEerent species of imperfection and equations (12) and (13) hold. In 
this particularly simple case the resultant line shape is the convolution of the shape due 
to dipolar broadening alone with that due to strain broadening alone. 

3 .3 .  The moments of I(€) 
In $ 2  the distribution of strains was calculated directly. I t  is common in the theory 

of line shapes to calculate the moments of a distribution instead. The moments of ](E) 
are lm de 

(14) -a M ,  = 

&I(€) 
- m  

These are not measured experimentally, their one advantage being that in some cases 
they may be calculated without difficulty. For strain-broadened lines even this advantage 
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is lacking, for the moments are dominated by the regions of large E and are not even finite 
unless great care is taken. The moments can be expressed in terms of integrals S,, where 

by use of a general result of Kubo and Tomita (1954) which gives, in the present case, 

The first four moments are 

M ,  = SI 

M2 = SZ + SI2 

M3 = S3t3SlS2+S,3 
M4 = s4 +4S1S3 - 2SL2 f 3(S, f sly. 

For symmetric lines it is easily shown from (15) that S, is zero iC n is odd. The odd 
moments vanish and the even moments simplify to give, for example, 

M2 = s, 
iM4 = 3S22+S4. 

For a Gaussian line shape hf4 = 3M2,, which would require S,  to be zero. 

3.4. Relation to the central limit theorem 
It is sometimes believed that a strain-broadened line shape should be Gaussian, a 

belief which ultimately stems from the central limit theorem which is fundamental in the 
theory of errors (Kendall and Stuart 1958, p. 193). In this subsection we show that 
I(€) given by (9) and (10) indeed gives a Gaussian shape in the circumstances in which the 
theorem is applied. 

The theorem is usually based on two assumptions. Firstly, the contributions of each 
of the sources should be equal in magnitude, having positive and negative signs with 
equal probability: 

Secondly, the local strain at  the point of observation must be produced by a large 
number of sources. Thus eo will be much smaller than the half-width of the distribu- 
tion cW. Although results similar to the central limit theorem hold in more general 
circumstances than these (Chandrasekhar 1943) we shall only consider the case commonly 
considered in the theory of errors. 

For a Gaussian shape we see from (10) that pJ(x) must be proportional to x2. The 
first condition, (16), shows that the line is symmetrical and, by (9') and (ll), 

E(ZJ = k:E0. (16) 

J ( X )  = N(1 -cos(xro)}. 

The values of x which are of dominant importance in (IO) are of order l/ew, for which 
is small by the second assumption. Thus 

J(x) = 4N6,2x2 

confirming the Gaussian shape under the rather restrictive conditions assumed. 
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4. A statistically isotropic and homogeneous distribution of dislocations 

As a specific example we consider an elastically isotropic crystal in which the only 
strain sources are straight edge or screw dislocations. Each of the dislocations is des- 
cribed by five variables r, b, 8, + and M which correspond to the z, used earlier. These 
variables are shown in figure 1. r is the distance from the point of observation to the 

btDls locat lon 
I \ o x l s ( e , + )  

\ - - -  I \ 
I \  

2 0x15 

Figure 1. The notation of 5 4 for a screw dislocabon. 

nearest point of the dislocation line, b the magnitude of the Burgers vector, and the 
dislocation axis t is specified by the angles 8 and +. For edge dislocation E is the angle 
between b and r, whereas for screw dislocations CI is shown in figure 1. 

We assume that the distribution of the defects whose transitions are observed is 
completely uncorrelated with the dislocation distribution. The statistical distribution of 
dislocations will be assumed to be isotropic and homogeneous. By this we mean that 
both the axes and Burgers vectors of the dislocations are distributed isotropically and 
that, for dislocations of given b and t, the points of intersection of the dislocations with 
an arbitrary plane are distributed homogeneously on the plane. For an isotropic distribu- 
tion the probability that the dislocation axis lies within a particular solid angle is simply 
proportional to the solid angie, i.e. to d8 sin 84. For a distribution which is homo- 
geneous the probability of given values of r and CI is proportional to dr Y du. Thus integrals 
of the form Jdzp(z)f(z), wherefis an arbitrary function of z, should here be interpreted 
as 

A constant of proportionality has been omitted, but this simply cancels in calculating the 
line shape. 

The lower limit R, on the radial integral takes account of the atomic structure of the 
lattice. In calculating I (€)  it is a good approximation to put RI = 0; this would not be 
possible if the moments of I(€) were needed as the strain field of the dislocation diverges 
as l / r  as Y becomes small. The upper limit Rz simply means that we consider a finite 
crystal; as R, becomes infinite the usual logarithmic divergences met in dislocation 
theory occur. As a finite crystal is used the distribution I(€) will depend on the geometry 
of the surface for the very small values of E for which the dislocations near the surface are 
important. Thus I(€) should be unreliable when E is less than about b[Rz, or about 
or lo-?. Recalling that (4) is only valid for strains E less than about lo-', as h e a r  
theory of elasticity has been assumed, we see that the calculated distribution of strains 
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I(€) will only be reliable for 
10-2 2 E 2 10-6. 

As the observed half-widths of I(€) are of order lob4 the inequality (18) does not provide 
any real restriction in practice. 

We now outline the calculation of p ,  J(x)  and I(€). Throughout we will assume R, 
to be zero. The value of (17) for a sphere of radius R andf = 1 is 

J” d z p ( z )  = 4?r2R2. 

The total length of dislocation per unit volume will be denoted L. The total length of 
dislocation within the sphere is thus &R3L. It  is easily shown that for an isotropic homo- 
geneous distribution the mean of the lengths of each dislocation within the crystal is 
QR, so that N = 7R2L dislocations cut the sphere. Thus 

which is, of course, independent of R. 

written 
The strain field of a straight dislocation in an elastically isotropic crystal can be 

where + depends on the particular combination of strain components required and on the 
edge or screw nature of the dislocation. J(x) is given by 

J(x)  = 1 d8 sin 0 Jr d+ Jr dor JIl dr r{ 1 - COS ( x i  $)) . (21) 

I t  is shown in the appendix that, if we again assume RI zero, (19) and (20) together lead to 

pJ(x )  = x2Lb2(A-BlnJxl). (22) 
The line shape is given by (10’) and (22) as 

.qsf = - r “ r ~ x  cos (ex) exp( - x2 ib2(A - B in x)). (23) 
V J  0 

If B were zero this would describe a Gaussian shape, for which pJ(x) is proportional 
to x2; the width of this Gaussian would be proportional to the square root of the dis- 
location density L. The term B In(x) has the effect of reducing ]((E) at larger values of c. 

I(€) is determined qualitatively by the innermost (radial) integral in J(x),  and not by 
the subsequent angular integrals over 0 , $  and U. Although the magnitudes of A and B 
depend on the edge or screw nature of the dislocations considered and on the par- 
ticular sum of strain components constituting E, the functional forms of (22) and (23) 
do not depend on these factors. Thus if an observed line shape, apparently caused by 
dislocations alone, has a shape qualitatively different from (23), either the dislocation 
distribution is inhomogeneous or the centres observed (which sample the strain field) 
are correlated in position with the dislocations. In practice dislocations are often con- 
centrated in subgrain boundaries, giving a strongly inhomogeneous distribution. Further, 
point defects, analogous to the centres observed, are quite often found to be bound to 
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dislocations; examples of this are given in the review by Newman and Bullough (1963). 
If the centres are magnetic ions of the correct charge and crystal radius (e.g. Co2+ in 
MgO) then they will presumably be distributed very nearly at random, and the in- 
homogeneity of the dislocation distribution will be more important. On the other hand, 
colour centres produced by irradiation, especially vacancies with trapped electrons and 
holes, may have zero phonon lines broadened largely by the strain fields of other point 
defects produced at the same time. Some correlation between the positions of the centres 
observed and the strain sources would be expected in this case. If the correlation is 
important both the line shape and its width should differ from values predicted neglecting 
correlation. 

The assumption of isotropy can also be checked, although less directly. I(€) can 
sometimes be measured for two different sums of strain components, el and ea. The 
relative widths of I1(e1) and 12(e2) depend on the relative values of A and B in the two 
cases; these in turn are sensitive to the extent to which the distribution of dislocations is 
anisotropic. 

5. The AM = 1 line of MgO : Fe2+ 

The broad AM = 1 line of the spin resonance spectrum of Fe2+ in MgO has been 
shown by McMahon to be broadened by the microscopic strain mechanism under 
discussion. The line is several hundreds of gauss wide, varying with the magnetic field 
orientation (Lewis 1965) and roughly Lorentzian in shape (McMahon 1964). A near 
Lorentzian shape is also found for the ENDOR line of Co2' in MgO (Fry and Llewellyn 
1962) which is again almost entirely strain broadened. The shape is thus different from 
that expected from (23). This difference can be attributed to the subgrain structure of 
the distribution of dislocations in MgO (Lang and Miuscov 1964), a feature which was 
entirely neglected in the simple distribution assumed in deriving (23). The line shape due 
to a distribution with subgrain structure is to be treated in a later publication; here we 
will continue to discuss the isotropic homogeneous distribution. 

The analogue of (1) for MgO : Fe2* with the magnetic field along the (001) axis is 

&U = A~o+$G11~001 (24) 
where cool = 2e,,-e,,-ey,; with the field in the (111) direction the corresponding 
result is 

in which elll = ezy + e,, + e,,. We do not adopt the engineering convention for strains. 
Gll and G44 are coupling coefficients (Shiren 1962, Watkins and Feher 1962). 

The elastic constants of the crystal are altered near to the impurities whose transition 
energies measure the strain field. The strains we have been discussing are, however, 
those which would occur if the local elastic constants were unaltered. This is an apparent, 
rather than a real, difficulty, for transition energies and not strains are measured directly. 
The Gt, used in (24) and (25) are found from static stress experiments, using the perfect 
crystal elastic constants to convert stresses to strains. To use the Gij consistently to 
calculate changes in transition energies we must therefore make no allowance for changes 
in the local elastic properties when discussing microscopic strain broadening. It is 
convenient to quote all results in terms of strains for purposes of comparison; in all 
cases these will be reduced to values appropriate to a lattice with the elastic moduli of a 
perfect crystal. To convert these strains into actual atomic positions near the defect the 
altered local force constants must, of course, be included. 
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The full-widths at half intensity of the distributions of €001 and elll can be found 
from an analysis of the various spin resonance line shapes. These are shown in 
the table; in all cases the analysis is that of the author. For Co2+ the coupling co- 
efficients of Tucker (1966) were used. There are, unfortunately, large errors in the 
coupling coefficients Glland G44 and in estimating the strain contribution to the observed 
linewidth. The cool width is about 2 x Clearly 
there will be differences from specimen to specimen, depending on the method of form- 
ation and on the mechanical history of the crystal used. 

and that of €111 about 0.6 x 

The magnitudes of the  full-widths a t  half intensity of I ( E ) ~  

Experiment Reference 

Fe2+ ESR a 
b 

Fe3+ ESR C 

Mn2+ ESR C 
b 

CO2’ ESR d 

Theory f 
CO2’ ENDOR e 

€001 €111 €001/€lll 

2 0  0 60 3.2 
1 7  0 69 2 5  
2 1  0 53 4 0  
2.0 0 64 3.1 
1 8  
2 3  
2 8  2 8  1 .o 
0.7 0 3  2.3 

The strains are in units of 
The experimental sources are: a, Lewis 1965; b, McMahon 1964; 

c, Feher 1964; d, Whittlestone 1964, Ph.D. Thesis, University of 
Bristol; e, Fry and Llewellyn 1962; f, present paper. 

ESR, electron spin resonance. 
-f Calculated from a variety of spin resonance data for ions in 

MgO for 
cool = 2eZz - esz - eyy 
€111 = e,, +e,, +ezz 

in which we do not use engineering notation. 

In  calculating the strain distributions we assume that the Burgers vectors are equally 
divided among the (110) and equivalent directions, and that the dislocation axes are iso- 
tropically distributed. This is a simple generalization of $4, where the Burgers vectors 
were also isotropic. Thus the strain field of a dislocation whose axis makes an angle 7 
with its Burgers vector is expressed in terms of the strain fields of screw and edge dis- 
locations with the same Burgers vector and corresponding axes as 

er j  = elj(screw) cos 7 + e l , ( e d g e )  sin 7 .  (26) 
The calculated distributions are shown in figure 2 for a dislocation density of 

5 x 10’cm per cm3. The  eOOl and clll widths are 0.7 x and 0.3 x respectively, 
which would correspond to linewidths at X band of 250 and 175 gauss. Although these 
are of the right order of magnitude they are rather less than the observed widths of about 
600 and 350gauss. T o  give the same half-widths a dislocation density L of about 
3 x IO6 cm per cm3 would be required, as the linewidth varies roughly as 2/L. This is 
about an order of magnitude larger than that observed by Lang and Miuscov. Certainly a 
part (and probably most) of the discrepancy can be attributed to the neglect of the sub- 
grain structure, which is also responsible for the differences of the observed and tal- 
culated line shapes, mentioned earlier. It should also be recalled, however, that the 
measured densities were for crystals of high perfection, and may not be typical of the 
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crystals used here. Further, the observed densities are particularly high in the subgrain 
boundaries, so that limits of experimental resolution may have led to low estimates. 

Despite the differences between the observed and calculated widths, the ratio 
E O O 1 / ~ l l l  is about 2.3, and is within the rather broad limits set by experiment. Thus the 
assumption of (110) Burgers’ vectors and isotropic distribution of axes of dislocation 
Seems to be verified. 

Stroin 

Figure 2. The form of I(<) in t w o  cases, viz. 
€001 = 2e , , -e , , -e , ,  andElll = e,,te,,+eSr. 

These curves assume for the dislocations a homogeneous distribution in space with 
L = 5 x lo5 cm per cm3. The dislocation axes are isotropically distributed and the 

Burgers vectors lie in the ( 110) and equivalent directions. 

Conclusion 

A general method for calculating strain-broadened line shapes has been outlined. The 
line shape is expressed in terms of the density and statistical distribution of the sources of 
strain, and in terms of the strain fields of the individual strain sources. The method is 
capable of direct extension to cases where the line broadening has other contributions, 
such as those from spin-spin interactions. The present work does not assume any 
arbitrary form for the distribution of the microscopic strains, nor does it assume that the 
components of the microscopic strain tensor are statisticany independent; previous 
workers make both these assumptions (Feher 1964, McMahon 1964). 

To illustrate the method the line shape and linewidth for the electron spin resonance 
of Fe2+ in MgO was calculated, assuming an isotropic homogeneous distribution of 
dislocations. Although the results are generally in fair agreement with experiment the 
neglect of the subgrain structure in MgO affects both the width and the shape noticeably. 
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CaIculations taking account of the subgrain structure are in progress. This sensitivity 
to the dislocation structure is in fact a real advantage, for it suggests that the observation 
of spin resonance and zero phonon line shapes can give useful information on the 
statistical distribution of dislocations and other imperfections in crystals. 
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Appendix. The evaluation of J(x) 

2; = r/Rz and U = x(b/TR2)$ as 
J(x) is given by (21). The innermost integral over r may be rewritten in terms of 

where 
1-cos t  sint  + - -Ci(t). 

t f(t> = 7 
It is easy to show that it is a good approximation to take RI = 0. In this case (Al) 
may be simplified using the asyhptotic form of the cosine integral Ci(t) (Jahnke and 
Emde 1945) for small t. (Al) becomes 

fR22U2(0.9228 +In- 7 . (-42) 
IUI 

Combining (19), (21) and (A2) 

where 
J(x) = x2Lb2(A-BIn[x[) (-43) 

A = [!0*9228+1n 

1 2  B=-. 
8T3 

The angular integrals I ,  and I3  are 

l2 = /: do sin e J?+ d.p(e, 4, E) 12 
0 

and 

I3 = - /:do sin 0 1: d+ J z n  d4$12 Inl+l. 
0 

The integrals I2 and I3  were evaluated on the Atomic Energy Authority STRETCH 
computer system. 



The theory of strain broadened line shapes 921 

References 
AVDERSON, P. W., 1951, Phys. Rev., 82,342. 
CHANDRASEKHAR, S., 1943, Rev. Mod. Phys., 15, 1-89. 
FEHER, E. R., 1964, Phys. Rev., 136, A145-57. 
FRY, D. J. I., and LLEWELLYN, P. M., 1962, Proc. Roy. Soc. A, 226, 84-94. 
GRANT, W. J. C., and STRANDBERG, M. W. P., Phys. Rev., 135, A715-26. 
HUGHES, A. E., and RUNCIMA~., W. A., 1965, Proc. Phys. Soc., 86, 615-27. 
JAH~UXE, E., and EIWDE, F., 1945, Tables of Functions (New York: Dover Publications). 
KE~UDALL, M. F., and STUART, A., 1958, Advanced Theory of Statistics, Vol. I (London: Griffin). 
Kmo, R., and TOMITA, K., 1954, J .  Phys. Soc. Japan, 9, 888-919. 
LAUG, A. R., and MIUSCOV, V. F., 1964, Phil. Mag., 10, 263-8. 
LEWIS, M. F., 1965, Phys. Letters, 19,459-60. 
LUDLOW, I. K., and RUNCIMAN, W. A., 1965, Proc. Phys. Soc., 86,1081-6. 

WGENAU, H., 1935, Phys. Rev., 48, 755-65. 
MARKOFF, A. A., 1912, Wahrscheinlichk~ts~echnung (Leipzig: Teubner). 
SEWMAN, R. C., and BULLOUGH, R., 1963, Prop. in Semicond., 7,101-34. 
SHIREN, N. S., 1962, Bull. Amer. Phys. Soc., 7, 29. 
TUCKER, E. B., 1966, Phys. Rev., 143,26474. 
WATKISS, G., and FEHER, E., 1962, Bull. Amw. Phys. Soc., 7, 29. 

MCMAHON, D. H., 1964, Php.  Rw., 134, A128-39. 


