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Abstract. A number of workers have estimated surface tensions of solids from measurements 
of the differences in the lattice parameters of bulk crystals and microcrystals. The data are 
then analysed by an expression valid only for spherical. isotropic microcrystals. Real micro- 
crystals are usually facetted, resulting in a number of possible problems which are discussed 
here. 

The main results given are : 
(i) A general expression for the change in volume of a microcrystal for an arbitrarily 

anisotropic surface tension and arbitrary crystal habit; common special cases are also given; 
and 

(ii) a discussion of the relation between the volume change and the change in x-ray lattice 
parameter. This includes the effects of the dispersions in crystalline sizes and shapes. and 
the possible non-uniformity in internal strain produced. 

The main conclusion is that errors are likely to be modest, almost certainly less than a 
few tens of percent. 

1. Introduction 

Surface effects become particularly important in small microcrystals. One of the simplest 
effects is the reduction in lattice parameter produced by surface tension. Consider, for 
example, an elastically-isotropic sphere of compressibility p and radius r. Its surface 
tension y produces an effective pressure 2y/r .  leading to a fractional volume change 
-2P)lr. The change in radius which results is - $ f l y ,  independent of r ,  so that small 
spheres will show the largest effects on lattice parameter. If the lattice contracts uni- 
formly, the lattice spacing a seen is altered by 

Aa = - $ ( U / r ) f l j J .  (1) 
This expression has been used to estimate ;I. the surface tension (e.g. Nicholson 1955 ; 
a fuller list of references is given by Mortimer 1976). 

The problem with (1) is that it ignores the faceting of many microcrystals. the aniso- 
tropy of surface tension and elasticity, and makes further assumptions about the rela- 
tionship between volume and lattice parameter changes. Generalization of (1) proves 
to be simple in most respects, and is the main point of this note. It is worth stressing 
that y refers to the actual, probably dirty, surface, and not to any imagined ideal surface. 
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2. Volume changes from surface forces 

A convenient general formula, valid for any harmonic system, follows from the Betti 
Reciprocity Theorem (Temkin 1970; see also Stoneham 1975 p 185). Suppose the sur- 
face forces F ,  (however caused, but including all terms which result from the micro- 
crystal not being embedded in an infinite crystal) cause atomic displacements 6,. Like- 
wise, suppose a hydrostatic pressure by itself leads to forces F ,  and displacements d,. 
Then the theorem asserts that 

Temkin has shown that this expression simplifies to give a volume change : 

A V  = 1 1 GijSijkk 3) 
i j  k 

where s is the compliance tensor. The virial G has components : 

Gij = 1 R,iFsj(RJ 
1 

where the vectors to the sites R,  at which the forces are applied are measured from the 
point in the microcrystal which remains fixed when a hydrostatic pressure is applied to 
the body, i.e. the geometric centre in all simple cases. 

These expressions hold for systems of arbitrary symmetry. However, most systems 
of interest have much higher symmetry. We shall concentrate on systems with at least 
tetrahedral symmetry. Thus the elastic properties and surface tension parameters are 
appropriate to cubic crystals, and the crystal habit is assumed to have the same sym- 
metry. Cubic habits are seen, for instance, for MgO (which forms cubes) ; diamond often 
forms octahedra, and many systems (e.g. NiO) form more complex shapes like tetra- 
kaidecahedra. In these systems Gij  reduces to Gdij, and the volume change becomes : 

AV = PG. ( 5 )  

If the crystal volume is I$, and if the strain is homogeneous, then the lattice parameter 
change is 

Aa = &PG/Vo. (9 
These expressions can now be discussed in certain simple cases. Most of the analysis 
concerns equation (9, where the volume change appears. But the step from this to the 
measured Aa/a is not trivial, and this will also be discussed. 

3. Calculation of the virial 

The volume change follows very simple once (4) has been calculated. In essence, the 
virial is like a moment of the surface forces. Some special cases are now considered where 
the surface forces can be found; given these, it is straightforward to find G. 

3.1. Isotropic continuum 

Consider a solid with a surface tension independent of orientation, and a smooth, 
unfaceted surface. Then the surface force at any point is proportional to the curvature 
at that point and directed towards the centre of curvature. If the radius of curvature is 
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p ( R )  and the normal to the surface is n(R), then 

F,(R) = [2”?/p(R)ln(R) (7)  
is the force per unit area. This result obviously reduces to give (1) in an appropriate 
limit, but it is not suited to the faceted systems used in experiments. 

3.2. Faceted systems 

In these systems the surface tension can be represented by a force yndl on each element 
of dl of the edge of each facet. Here n is a vector in the plane of the facet, normal to 
the edge in all simple cases. The surface tension y depends on which facet is considered ; 
it will be different for the hexagonal and square faces of a tetrakaidecahedron, for example. 

It is easy to write down general expressions for the virial. They are complicated, so 
we show later that it is easier to make more direct calculations for especially simple 
structures. First, consider a straight edge of a facet. Then the force is constant along the 
length, and terms like C ,RliFSj(RJ summed along the edge reduce to the contribution of 
the total force acting at the centre of the edge. Secondly, if the force is indeed normal to 
the edge, its direction cosines (Al, A z ,  A,) can be expressed in terms of those of the edge 
itself, (1, m, n) and those of the normal to the facet, ( L ,  M, N) : 

(Al, lz, A,) = (mN-nM, nL-lN, 1M-mL). (8) 

Thus, if RdJ corresponds to the centre of edge J of face I ,  the edge having length A$ and 
the face a surface tension yr.  the contribution to the virial is G!! 

Gf/ = RfJiy,A;i.fJ. (9) 
and the total from all faces is 

G,, = 1 1 G$ 
faces I edges J 

Note that a given edge contributes to the two faces it bounds. These expressions are 
purely for surface tension and ignore the ‘edge’ tension itself, although this can be built 
in, as above, in any case it is believed important. 

3.3. Results for simple systems 

The simple isotropic sphere discussed in 9 1 had a fractional change in volume 

where f l  is the compressibility and R the radius. Similar results are now given for a 
cube of side 2a and for an octahkdron with distance 2b between opposite vertices. Only 
G = G,, is needed in these cases. 

For the cube, only the eight edges normal to the x axis contribute to G,,, and each 
contributes 2a2y. Thus G,, is 16 a’?, and 

This is exactly equivalent to (1 1) : if y is the same in both cases, AVIV, is the same for 
both a cube and its inscribed sphere. 
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The octahedron is more complex, but the six faces each have two edges which 
contribute to G. After simplification, G is 6 rb2 / j3 :  

Again, the expression is very similar to those for cube or sphere. 

4. Relation to lattice parameter changes 

The expressions (1 1)-(13) show that the formal values for (AVIV,) depend rather little 
on crystallite shape. For any given material, the dependence of y on facet will probably 
give a larger effect. Likewise, the effect of impurities and defects can have a profound 
effect. Experimentally, it is normal to measure the change in the position of an x-ray 
diffraction peak, which gives a change in lattice parameter, Aula, rather than a volume 
change. There need be no simple relationship between Aula and AVIV,. It is well known, 
for example, that defects like vacancies have entirely different effects on the two values 
in bulk crystals (Simmons and Balluffi 1960). Suppose the effect of the surface is to pro- 
duce displacements ui from sites rio appropriate to the perfect bulk crystal. Then the 
diffraction peak at scattering vector k ,  is shifted to k ,  + Ak where (see e.g. Willis et al 
1977 for a fuller discussion) 

with the tensors A, B defined by 

Equations (14)-( 16) are fundamental in determining the apparent change in lattice 
parameter. Then the following comments can be made : 

(i) Suppose the microcrystals all have the same shape, but a distribution of sizes. 
Then, even if the strain in the microcrystals in non-uniform. the apparent change in 
lattice parameter is proportional to ( a - ’ ) .  i.e. the average over the reciprocal of the 
mean dimension a. This follows from (6), bearing in mind that V, - a3 and G - a’. Now 
estimates of a from x-ray line broadening also measure ( a - ’ ) .  Thus the distribution of 
sizes has no important effects provided the mean size is estimated from line-broadening 
and provided the shape and size are uncorrelated. 

(ii) Suppose the microcrystals have some very complex shape, but are free from 
vacancy aggregates. Then, provided they are randomly oriented and provided the strain 
field is uniform within each microcrystal, Aula and 4AV/V, are identical. Even if the 
strain is non-uniform, we may still show : 

where the axes i are the principal axes of the A tensor, 
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(iii) The source of most difficulty is the possible, non-uniformity of the strain : one 
expects the strain to be altered close to edges, for example. There seem to be no calcula- 
tions of the strain distribution inside faceted crystallites, although some special cases 
deserve comment. First, in an elastically-isotropic ellipsoid, the strain may be expected 
to be uniform (Eshelby 1957). Secondly, some authors have assumed that most of the 
distortion takes place in a region close to the surface. This is true of the model calcula- 
tions of Anderson and Scholz (1968), for example. In such cases Aula will be much less 
than iAV/Vo: the position of the diffraction peak is dominated by the relatively un- 
distorted bulk of the microcrystal. However, effects are likely to be small in reality. For 
uniform strain, the displacements increase linearly from the origin : U - P with N = 1. 
For a more general N we find for a spherical particle : 

so that modest changes in N produce only slight errors from non-uniformity. 

5. Conclusion 

Attempts to measure surface tensions by observing the crystal size dependence of the 
lattice parameter have been based on (l), valid for spherical microcrystals. The effects of 
facetting and other aspects of real microcrystal shapes have been discussed, and shown 
to require only small corrections in most cases. But the distinction between measure- 
ments of volume change and lattice parameter change is important in principle, and it 
may be necessary to make experimental tests of its importance, for example by measuring 
the apparent change in lattice parameter using a range of different x-ray scattering 
vectors. 

Changes in lattice parameter can also be inferred from other measurements. A recent 
example is given by the recent resonance work of Rappaz et a/ (1976) on small crystallites 
of SrCl, : Gd3 + . The advantage ofthese methods is that the lineshape contains information 
about the distribution of strain inside the crystallite, at least when there is no surface 
segregation of the impurity ions. 
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