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Abstract

In this thesis we formulate sophisticated quasiclassical techniques to describe corre-

lated electron dynamics in atoms and diatomic molecules that are either absorbing a

single photon or are driven by strong infrared laser fields. The first part of this thesis

concerns the multi-electron ionisation in atoms following single-photon absorption. For

excess photon energies close to threshold, the Wannier threshold law predicts that the

electrons escape in the most symmetric way. We describe the single-photon quadru-

ple ionisation from the ground state of beryllium. Surprisingly, we find that close to

threshold the four electrons escape on the apexes of a triangular pyramid, while Wan-

nier threshold law predicts a regular tetrahedron. We explain this unexpected breakup

pattern using non-linear analysis for the fixed points of the Coulomb four-body sys-

tem. We then focus on time-resolving the attosecond collision sequences that underlie

single-photon multi-electron ionisation. We formulate how to time resolve intra-atomic

correlated electron dynamics during the escape of two electrons. Specifically, we show

how to compute the “collision” time, using the inter-electronic angle as a function of the

phase between the triggering and the streaking laser fields. We also demonstrate how

this two-electron streak camera captures the different ionisation dynamics for different

electron energy sharings. We then proceed to generalise the two electron streak camera

to account for realistic experimental conditions. In the final part of this thesis, we ad-

dress correlated electron dynamics during the breakup of diatomic molecules driven by

intense infrared laser fields. We concentrate on the two pathways leading to the forma-

tion of highly excited neutral atoms. In particular, we show how for high ellipticites of

the infrared laser field two-electron effects are “switched” off. Moreover, we find that the

two dimensional momentum distribution of the escaping electron, in the formation of

highly excited neutral atoms, carries the imprint of one-electron effects with increasing

ellipticity of the infrared laser field.
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Chapter 1

Introduction

Ever since the invention of the camera humans have been trying to use light to measure

and time-resolve events that occur faster than the naked eye can observe. Electronic

motion in atoms and molecules takes place on the attosecond time scale. For exam-

ple in the Bohr model of the hydrogen atom it takes an electron in the ground state

approximately 150 as (1as = 10−18 seconds) to orbit the proton [1]. If we wish to time-

resolve electron dynamics within atomic and molecular systems we need laser pulses

whose duration is also on the attosecond time scale. The development of mode-locking

in 1964 [2, 3] resulted in a large reduction of the duration of laser pulses, which then

reached a plateau from the mid-eighties to early 2000, see Fig. 1.1. However, just over

the last decade, utilising the principle of high-order harmonic generation (HHG) [4, 5]

has resulted in producing ultrashort laser pulses with duration of hundreds to tens of at-

toseconds [6]. The field of Attosecond science was born. Attosecond science encompasses

the production and the characterisation of attosecond pulses as well as their theoretical

and experimental applications [1, 7–9].

1.1 High-order harmonic generation

Using the principle of high-order harmonic generation, the first attosecond pulses were

produced in 2001 including a single attosecond pulse [10] and a train of identical attosec-

ond pulses [11]. HHG involves exposing an atom or a molecule to an intense infrared

(IR) pulse normally with femtosecond (1 fs = 10−15 seconds) duration. The principle

10
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of the optical pulse controls the kinetic energy2, amplitude17 and 
phase18 of the recollision electron and therefore the attosecond 
pulse19 that it produces.

In addition to producing attosecond electron and photon pulses, 
the recollision simultaneously encodes all information on the 
electron interference. Once the amplitude and phase of the electron 
interference is encoded in light, powerful optical methods become 
available to ‘electron interferometry’.

Classical trajectory calculations show that ! ltering a limited 
band of photon energies near their maximum (cut-o" ) con! nes 
emission to a fraction of a femtosecond17. Such a burst emerges at 
each recollision of su#  cient energy. $ e result is a train of attosecond 
bursts of extreme ultraviolet (XUV) light spaced by Tosc/2 (ref. 1).

For many applications, single attosecond pulses (one burst per 
laser pulse) are preferred. $ ey emerge naturally from atoms driven 
by a cosine-shaped laser ! eld comprising merely a few oscillation 
cycles (few-cycle pulse)3. $ en only the electron pulled back by 
the central half-wave to its parent ion possesses enough energy to 
contribute to the ! ltered high-energy emission (Fig. 3). Turning 
the cosine waveform of the driving laser ! eld into a sinusoidally 
shaped one (by simply shi% ing the carrier wave with respect to the 
pulse peak8) changes attosecond photon emission markedly: instead 
of a single pulse, two identical bursts are transmitted through the 
XUV bandpass ! lter. Controlling the waveform of light8 has proved 
critical for controlling electronic motion and photon emission on an 
attosecond timescale and permitting the reproducible generation of 
single attosecond pulses19.

$ e shortest duration of a single attosecond pulse is limited by 
the bandwidth within which only the most energetic recollision 
contributes to the emission. In a 5-fs, 750-nm laser pulse this 
bandwidth relative the emitted energy is about 10%. At photon 
energies of ~100 eV this translates into a bandwidth of ~10 eV, 
allowing pulses of about 250 attoseconds in duration17. At a photon 
energy of 1 keV (ref. 20) a driver laser ! eld with the above properties 
will lead to single pulse emission over roughly a 100-eV band, which 

may push the frontiers of attosecond technology near the atomic unit 
of time, 24 attoseconds. Manipulating the polarization state of the 
driver pulse17 enables the relative bandwidth of single pulse emission 
to be broadened21,22 by ‘switching o" ’ recollision before and a% er the 
main event. Together with dispersion control23, this technique has 
recently resulted in near-single-cycle 130-attosecond pulses at photon 
energies below 40 eV (ref. 24). Con! ning tunnel ionization to a single 
wave crest at the pulse peak constitutes yet another route to restricting 
the number of recollisions to one per laser pulse. Superposition of a 
strong few-cycle near-infrared laser pulse with its (weaker) second 
harmonic25,26 is a simple and e" ective way of achieving this goal.

$ is attosecond-pulsed XUV radiation emerges coherently from 
a large number of atomic dipole emitters. $ e coherence is the result 
of the atomic dipoles being driven by a (spatially) coherent laser ! eld 
and the coherent nature of the electronic response of the ionizing 
atoms discussed above. $ e pulses are highly collimated, laser-like 
beams, emitted collinearly with the driving laser pulse. $ e next 
section addresses the concepts that allowed full characterization of 
the attosecond pulses.

MEASUREMENT TECHNOLOGY

Any pulse measurement method must directly or indirectly 
compare the phase of di" erent Fourier components of a pulse. 
Autocorrelation, SPIDER and FROG, three extensively used 
methods to characterize optical pulses27, use nonlinear optics 
to shi%  the frequency of the Fourier components di" erentially 
so that neighbouring frequency components can be compared. 
$ e electron-optical streak camera — an older ultrafast pulse 
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Figure 1 Shorter and shorter. The minimum duration of laser pulses fell continually 
from the discovery of mode-locking in 1964 until 1986 when 6-fs pulses 
were generated. Each advance in technology opened new fi elds of science for 
measurement. Each advance in science strengthened the motivation for making even 
shorter laser pulses. However, at 6 fs (three periods of light), a radically different 
technology was needed. Its development took 15 years. Now attosecond technology 
is providing radically new tools for science and is yet again opening new fi elds for 
real-time measurement. Reprinted in part, with permission from ref. 65.
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Figure 2 Creating an attosecond pulse. a–d, An intense femtosecond near-infrared or 
visible (henceforth: optical) pulse (shown in yellow) extracts an electron wavepacket 
from an atom or molecule. For ionization in such a strong fi eld (a), Newton’s 
equations of motion give a relatively good description of the response of the electron. 
Initially, the electron is pulled away from the atom (a, b), but after the fi eld reverses, 
the electron is driven back (c) where it can ‘recollide’ during a small fraction of the 
laser oscillation cycle (d). The parent ion sees an attosecond electron pulse. This 
electron can be used directly, or its kinetic energy, amplitude and phase can be 
converted to an optical pulse on recollision12. e, The quantum mechanical perspective. 
Ionization splits the wavefunction: one portion remains in the original orbital, the other 
portion becomes a wave packet moving in the continuum. The laser fi eld moves the 
wavepacket much as described in a–d, but when it returns the two portions of the 
wavefunction overlap. The resulting dynamic interference pattern transfers the kinetic 
energy, amplitude and phase from the recollision electron to the photon.
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Figure 1.1: The minimum duration of laser pulses over the past few decades [9].

of HHG can be described by the three-step model formulated by Paul Corkum in 1993

[12]. In Fig. 1.2 we illustrate the three-step model: first, an electron tunnels out of

the field-lowered Coulomb potential; then, the released electron is accelerated by the

IR laser pulse; finally, the electron can return to its parent ion and recombine with the

core emitting photons which are odd harmonics of the IR pulse frequency. A question

naturally arises as to what is the maximum energy an emitted photon can have. This

maximum energy is called the cuff-off energy and for an IR laser with field strength F

and angular frequency ω is given by,

Emax = Ip + 3.17Up, (1.1)

where Ip is the ionisation potential of the electron that tunnel ionises and Up = F 2/4ω2

in atomic units is the ponderomotive energy of the laser field [12]. The second term in

Eq. (1.1) is the maximum kinetic energy the electron that tunnel-ionises can return to

the core with. Electrons with the maximum kinetic energy tunnel ionise roughly when

the phase of the electric field of the laser pulse is 17◦ past the field extremum [12].

These electrons return and recombine with the ion core about 2/3 of an optical cycle

later [9]. Since there are two field extrema in each laser cycle, emission of photons with

the maximum kinetic energy occurs in attosecond bursts half a period apart. A train
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of identical attosecond pulses can therefore be produced by selecting only photons with

the cut-off energy [9]. For time resolution experiments a single attosecond pulse, also

referred to as an isolated attosecond pulse, would be most useful. In order to produce a

single attosecond pulse it is necessary to use an IR pulse short enough such that only one

field extremum contributes to the release of the highest energy photons. The shortest

attosecond pulse to date is only 67 as long [13]. The frequencies of the attosecond pulses

produced using HHG are in the extreme ultraviolet (XUV) to the soft X-ray regime

[13–15]. This implies that attosecond pulses are ideal for triggering ionisation events

involving inner-shell electrons.

PROGRESS ARTICLE
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of the optical pulse controls the kinetic energy2, amplitude17 and 
phase18 of the recollision electron and therefore the attosecond 
pulse19 that it produces.

In addition to producing attosecond electron and photon pulses, 
the recollision simultaneously encodes all information on the 
electron interference. Once the amplitude and phase of the electron 
interference is encoded in light, powerful optical methods become 
available to ‘electron interferometry’.

Classical trajectory calculations show that ! ltering a limited 
band of photon energies near their maximum (cut-o" ) con! nes 
emission to a fraction of a femtosecond17. Such a burst emerges at 
each recollision of su#  cient energy. $ e result is a train of attosecond 
bursts of extreme ultraviolet (XUV) light spaced by Tosc/2 (ref. 1).

For many applications, single attosecond pulses (one burst per 
laser pulse) are preferred. $ ey emerge naturally from atoms driven 
by a cosine-shaped laser ! eld comprising merely a few oscillation 
cycles (few-cycle pulse)3. $ en only the electron pulled back by 
the central half-wave to its parent ion possesses enough energy to 
contribute to the ! ltered high-energy emission (Fig. 3). Turning 
the cosine waveform of the driving laser ! eld into a sinusoidally 
shaped one (by simply shi% ing the carrier wave with respect to the 
pulse peak8) changes attosecond photon emission markedly: instead 
of a single pulse, two identical bursts are transmitted through the 
XUV bandpass ! lter. Controlling the waveform of light8 has proved 
critical for controlling electronic motion and photon emission on an 
attosecond timescale and permitting the reproducible generation of 
single attosecond pulses19.

$ e shortest duration of a single attosecond pulse is limited by 
the bandwidth within which only the most energetic recollision 
contributes to the emission. In a 5-fs, 750-nm laser pulse this 
bandwidth relative the emitted energy is about 10%. At photon 
energies of ~100 eV this translates into a bandwidth of ~10 eV, 
allowing pulses of about 250 attoseconds in duration17. At a photon 
energy of 1 keV (ref. 20) a driver laser ! eld with the above properties 
will lead to single pulse emission over roughly a 100-eV band, which 

may push the frontiers of attosecond technology near the atomic unit 
of time, 24 attoseconds. Manipulating the polarization state of the 
driver pulse17 enables the relative bandwidth of single pulse emission 
to be broadened21,22 by ‘switching o" ’ recollision before and a% er the 
main event. Together with dispersion control23, this technique has 
recently resulted in near-single-cycle 130-attosecond pulses at photon 
energies below 40 eV (ref. 24). Con! ning tunnel ionization to a single 
wave crest at the pulse peak constitutes yet another route to restricting 
the number of recollisions to one per laser pulse. Superposition of a 
strong few-cycle near-infrared laser pulse with its (weaker) second 
harmonic25,26 is a simple and e" ective way of achieving this goal.

$ is attosecond-pulsed XUV radiation emerges coherently from 
a large number of atomic dipole emitters. $ e coherence is the result 
of the atomic dipoles being driven by a (spatially) coherent laser ! eld 
and the coherent nature of the electronic response of the ionizing 
atoms discussed above. $ e pulses are highly collimated, laser-like 
beams, emitted collinearly with the driving laser pulse. $ e next 
section addresses the concepts that allowed full characterization of 
the attosecond pulses.

MEASUREMENT TECHNOLOGY

Any pulse measurement method must directly or indirectly 
compare the phase of di" erent Fourier components of a pulse. 
Autocorrelation, SPIDER and FROG, three extensively used 
methods to characterize optical pulses27, use nonlinear optics 
to shi%  the frequency of the Fourier components di" erentially 
so that neighbouring frequency components can be compared. 
$ e electron-optical streak camera — an older ultrafast pulse 
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Figure 1 Shorter and shorter. The minimum duration of laser pulses fell continually 
from the discovery of mode-locking in 1964 until 1986 when 6-fs pulses 
were generated. Each advance in technology opened new fi elds of science for 
measurement. Each advance in science strengthened the motivation for making even 
shorter laser pulses. However, at 6 fs (three periods of light), a radically different 
technology was needed. Its development took 15 years. Now attosecond technology 
is providing radically new tools for science and is yet again opening new fi elds for 
real-time measurement. Reprinted in part, with permission from ref. 65.
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Figure 2 Creating an attosecond pulse. a–d, An intense femtosecond near-infrared or 
visible (henceforth: optical) pulse (shown in yellow) extracts an electron wavepacket 
from an atom or molecule. For ionization in such a strong fi eld (a), Newton’s 
equations of motion give a relatively good description of the response of the electron. 
Initially, the electron is pulled away from the atom (a, b), but after the fi eld reverses, 
the electron is driven back (c) where it can ‘recollide’ during a small fraction of the 
laser oscillation cycle (d). The parent ion sees an attosecond electron pulse. This 
electron can be used directly, or its kinetic energy, amplitude and phase can be 
converted to an optical pulse on recollision12. e, The quantum mechanical perspective. 
Ionization splits the wavefunction: one portion remains in the original orbital, the other 
portion becomes a wave packet moving in the continuum. The laser fi eld moves the 
wavepacket much as described in a–d, but when it returns the two portions of the 
wavefunction overlap. The resulting dynamic interference pattern transfers the kinetic 
energy, amplitude and phase from the recollision electron to the photon.

nphys620 Krausz Progress.indd   382nphys620 Krausz Progress.indd   382 21/5/07   14:56:2121/5/07   14:56:21

(a) (b) (c) (d)
Atomic and Molecular Dynamics Triggered by Ultrashort Pulses 33

(a) Three-step model (b) HHG spectrum

Fig. 3.9. (a) Illustration of the semiclassical three-step model for HHG. The figure is taken
from Ref. [222]. © 2010 Nature Publishing Group (NPG). (b) A sketch of a typical HHG
spectrum showing the below-threshold harmonics (BTH), the plateau region, and the cut-off
region.

for the SFA (green line), the CCSFA (red line), the TDSE results with the single-
active-electron (SAE) approximation (black line), and the experimental data (black
dots). The SFA does not correctly describes the angular distribution. The CCSFA
significantly improves the results towards the SAE and experimental results.
Other widely used techniques to determine the tunnel ionization rates are numeri-

cal based Floquet theory [207], complex scaling [208,209], and explicit time integration
methods [210–212] discussed in Sect. 3.7.

3.4 High harmonic generation

One of the most fundamental processes in attosecond physics is high harmonic gener-
ation (HHG) (for a review see Ref. [213]). HHG is used to generate sub-femtosecond
pulses with photon energies in the EUV range from NIR femtosecond pulses. HHG
was first observed in the late 1980s in rare gas atoms [214,215]. Rapid develop-
ments have now made it possible to generate isolated attosecond pulses shorter
than 100 as [216,217], and with photon energies up to the x-ray regime [121].
These x-ray pulses can in principle be used to generate subattosecond (zeptosecond)
pulses [218,219].
The mechanism behind HHG is well explained by a semiclassical model called

the three-step model [220,221]. It factorizes the HHG mechanism into three separate
steps. An illustration of the three-step process is shown in Fig. 3.9a. In the first step
the outer-most electron gets tunnel-ionized by the NIR field. In step two, the electron
moves in the presence of the electric field and due to the short cycle period of the NIR
pulse, the electric field drives the electron back towards the ion. In the third step, the
electron can recombine with the ion via emitting a high energy photon. The photon
energy is determined by the ionization potential Ip plus the amount of energy that the
electron gained in the NIR field. The maximum emitted photon energy (commonly
referred to as the cut-off energy) is given by [220]

Ecutoff = Ip + 3.17 Up, (3.23)

where Up =
E2

4ω2 is the ponderomotive potential, i.e., the cycle-averaged quiver energy
of a free electron in an electric field with amplitude E and frequency ω. Characteristic
for HHG is the plateau region, where the harmonics extend up to the cut-off energy
without decreasing in strength (see Fig. 3.9b).

(a) (b) (c) (d)

Tuesday, 25 March 14

Figure 1.2: Illustration of the three-step model [16]. (a) An electron in the atomic
Coulomb potential; (b) the electron tunnel ionises near the maximum of the laser field
and then accelerates in the laser field; (c) the electron accelerates back towards the
parent ion; (d) the electron re-combines with the parent ion roughly 2/3 of an optical
period of the field after the tunnel ionisation and a high energy photon is emitted.

1.2 Attosecond streaking

The principle used for probing electron dynamics involving one electron escaping to

the continuum is called the attosecond streak camera [17]. The underlying idea of the

attosecond streak camera is that the attosecond pulse causes an atom to ionise by single

photon absorption; in addition, this ionisation process occurs in the presence of an IR

field. This IR field is usually the IR femtosecond pulse used to produce the XUV or X-

ray attosecond pulse by HHG. The IR laser field acts as an “attosecond clock” mapping

the asymptotic spectra of the escaping electron to the escaping electron dynamics. This

pump-probe technique, with the XUV or X-ray attosecond pulse being the pump and
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the IR laser field being the probe is often referred to as attosecond streaking. The IR

laser field can be a linearly polarised electric field of the form F̄ (t) = F (t)ε̂ cos(ωt+ φ),

where F (t) is the pulse envelope, φ is the carrier-envelope phase and ε̂ is the polarisation

vector of the IR laser field. In the adiabatic limit [18] the pulse envelope varies slowly

in time compared to the oscillation of the pulse, that is, dF/dt << Fω and the change

in momentum of the electron escaping to the continuum is given by

∆p̄ = −
∫ ∞

tr

F (t)ε̂ cos(ωt+ φ)dt ≈ F (tr)

ω
ε̂ sin(ωtr + φ), (1.2)

where tr is the time the electron is released into the continuum and “feels” the electric

field. Thus, the change in momentum depends on the time the electron enters the

continuum making it an ideal observable for “timing” the ionisation event.

The principle of the attosecond streak camera has been used in many experiments.

Attosecond pulses were first used to measure the lifetime of inner-shell vacancies in kryp-

ton [19]. Other examples of attosecond pulse experiments include: measuring the delay

of photoemission between 4f and valence conduction electrons in a crystal of tungsten

[20]; measuring the delay of photoemission of 2p electrons relative to 2s electrons in the

ionisation of neon [21]; the observation of electron tunnelling in the ionisation of neon

[22]. Attosecond pulses have also been used to completely characterise laser pulses of

femtosecond duration[23]. They have also been used to measure the frequency of the

oscillations of an electron between two states of krypton [24]. Each of these experiments

shows just how much information regarding intra-atomic electron dynamics can now be

accessed using attosecond pulses. Finally the concept of the attosecond streak camera

also underlies methods used in measuring the duration and chirp of attosecond pulses

such as the frequency-resolved optical gating for complete reconstruction of attosecond

bursts (FROG CRAB) [25].

To illustrate the concept of the one-electron streak camera we consider next a specific

example, the measurement of delay between the time of photoemission of inner-shell 4f

electrons compared to the time of photoemission of valence conduction electrons (6s and

5d orbitals) in a tungsten crystal [20]. A 300 as pulse, with a 91 eV central frequency,

triggers the photoemission. As the binding energies of the 4f and conduction electrons

are significantly different, one can infer the type of electron by its final kinetic energy in

the continuum. The photoemission caused by the attosecond pulse occurs while dressed
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in a IR pulse of 5 fs duration. This is repeated multiple times, each time varying the

arrival of the IR pulse relative to the arrival of the attosecond pulse. This produces

different photoelectron spectra. The photoelectron spectra as a function of the relative

delay between the IR pulse and the attosecond pulse can be seen in Fig. 1.3(a). Varying

the relative arrival time is effectively the same as varying φ in Eq. (1.2). Plotting the

photoelectron spectra as a function of the relative arrival time shows clear oscillations in

the energy of the electrons. As stated before, the momentum changes as a function of the

time of release into the continuum and thus so does the energy. Therefore a difference

in the time of photoemission of the 4f electrons relative to the conduction electrons

translates into oscillations in the energy of the electrons that are slightly out of phase

with each other, this can be seen in Fig. 1.3(b). Measuring the phase difference gives

the delay time between the photoemission of conduction and the 4f electrons, which is

found to be 110±70 as in agreement with theory [26].

1.3 Correlated electron dynamics

In this thesis we address multi-electron correlation in ionisation processes triggered by

single-photon and XUV attosecond pulses in atoms and by IR laser pulses in molecules.

These are highly complicated processes involving many degrees of freedom. Given the

current computational capabilities most of these processes are out of reach of quantum

mechanical ab-initio techniques. We thus employ novel quasi-classical and semi-classical

techniques in order to elucidate the physical mechanisms that underly these processes.

We will justify the use of classical techniques separately for each of these two processes

later in this thesis.

The first part of this thesis concerns multi-electron ionisation by single-photon ab-

sorption in atoms. The correlated electron dynamics in single-photon ionisation pro-

cesses is imprinted on the breakup pattern of the electrons escaping to the continuum.

For excess photon energies close to the breakup fragmentation threshold, the celebrated

Wannier threshold law [27] predicts that the electrons escape in the most symmetric way.

That is, the breakup pattern is back-to-back for two-electron escape, an equilateral tri-

angle for three-electron escape, a regular tetrahedron for four-electron escape and so on.

However, for triple ionisation by single-photon absorption from the ground state of Li it

was predicted that the breakup pattern is a T-shape and not an equilateral triangle [28].
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spectra integrated for 60 s at each delay. (For a brief description of the
experiment, see Methods Summary; full details regarding set-up,
measurements and data analysis are provided as Supplementary
Information.) Characteristic spectra obtained with our system are
shown in Fig. 2a, indicating that emission from the conduction band
occurs at a kinetic energy of ,83 eV while emission from the loca-
lized 4f states occurs at ,56 eV. At kinetic energies significantly
below the 4f peak, the measured spectrum is due to NIR-induced
ATI photoelectrons and XUV-generated photoelectrons that have
undergone inelastic scattering.

The two distinct background components were distinguished by
recording an additional photoelectron spectrum without the NIR
streaking field. The ATI component was subsequently subtracted
from the measured data (see Supplementary Information). This sub-
traction is illustrated for a fixed delay in Fig. 2a, andwas performed at
each of the delay steps, resulting in the full spectrogram presented in
Fig. 2b. Here, a positive relative delay corresponds to the XUV pulse
arriving earlier with respect to the streaking field at the surface. Both
the 4f and conduction-band photoemission exhibit a pronounced
periodic upshift and downshift in energy as a function of relative
delay and, as in previous gas-phase experiments, the spectrogram
reveals the waveform (vector potential) of the streaking field5,26,27.
Our ability to resolve the field oscillation indicates that the photo-
emission from the 4f core states and from the conduction band is sub-
femtosecond in duration, and proves that attosecond metrology has
been successfully extended to condensed-matter systems.

Further examination reveals that the 4f spectrogram is shifted
along the delay coordinate with respect to the conduction-band
spectrogram. This effect is readily apparent upon inspection of the
smoothed spectrograms that are obtained by interpolation of the
measured data and shown in Fig. 3a. We quantify the temporal shift
in themeasured data by evaluating, for each delay step, the centre-of-
mass (COM) of the spectral regions spanning the 4f and conduction-
band peaks that cover the energy intervals 47–66 eV and 66–110 eV,
respectively. Characterizing the periodicmotion of the peaks through
their COM requires no assumptions or fitting parameters, yet yields
timing information that is invariant to fluctuations in the instant-
aneous laser parameters. The approach is also relatively insensitive to
inelastic scattered background photoelectrons, which could not be
subtracted from our measurements. As a result, the COM accurately
describes the streaking-induced time-dependence of the energy shift
of the 4f and conduction-band peaks, as shown in Fig. 3b.

By comparing the COM trajectories of the 4f and conduction band
at the seven zero-crossings of the vector potential, we obtain seven
independent measurements of their relative timing. This yields a
temporal shift of Dt5 1106 70 as between the ATR spectrograms
of the conduction-band and 4f photoelectrons. (The error estimate
results from a straightforward extrapolation of the error in calculat-
ing the COM; see Supplementary Information.) This shift or delay
was observed in different independent measurements made at dif-
ferent locations on the tungsten sample, with the results corroborat-
ing the above value of Dt to within the measurement error. We note
that the rather large error associated with ourDt value could bemost
effectively reduced in future measurements by using higher XUV
photon energies and fluxes.

The shift between the two spectrograms indicates that, on average,
photoelectrons originating from the localized 4f states emerge from
the tungsten surface approximately 100 as later than those origin-
ating from the delocalized conduction band—even though the
photoemission process for both types of electrons is initiated simul-
taneously by the sameXUVpulse. The delay effect thus occurs during
transport of the excited photoelectrons to the surface, illustrating
that our technique provides a means to directly observe features of
electron wave packet propagation towards the surface with attose-
cond precision.

By adapting a quantum mechanical model used in previous gas-
phase streaking experiments28, we are able to reconstruct themeasured

spectra and spectrograms. The modelling of the streaking experiment
requires some assumptions, leaving several parameters (such as dura-
tion of the electron wave packets, their chirp, and their emission time)
for optimization. Figure 2c and d shows the reconstructions that best
agree with experiment. These were obtained for wave packets with a
duration of ,300 as (full-width at half-maximum, FWHM) and
assuming a delay of,100 as between the emission times of the electron
wave packets, which supports the conclusions drawn from the COM
analysis.

Our measurements also indicate that electron wave packets
launched from both the localized 4f and delocalized conduction-band
states are nearly undistorted on propagation to the surface. To explain
the observed delay, we consider the group velocities for the two differ-
ent photoelectronwavepackets travelling in the solid.The crucial point
is that after absorption of an XUV photon, the electron is excited
into an upper conduction band region that depends on the electron’s
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Figure 3 | Evidence of delayed photoemission. a, The 4f and conduction-
band spectrograms, following cubic-spline interpolationof themeasureddata
(but without background subtraction). The spectral region between,65 eV
and,83 eV has been omitted to more easily compare the edges of the 4f and
conduction-band peaks. A small shift in the relative delay is evident, as
indicated by the white dashed lines through the fringes, and can be seen at
each fringemaximumandminimum.Quantificationof the shift of the 4fwith
respect to the conduction-band spectrogram ismade byCOManalysis, and is
summarized in b. The energy intervals, within which the COMs were
calculated, are 47–66 eV for the 4f photoemission peak and 66–110 eV for the
conduction-band photoemission peak. Vertical error bars (61 s.d.) are
calculated from noise in the measured spectra (see Supplementary
Information for details). For ease of visual comparison, theCOMenergy shift
of the 4f spectral region was scaled by a factor of 2.5, to offset the stabilizing
effect of the background plateau underneath the 4f peak (see Supplementary
Information), in order to illuminate the,100 as delay in emission. Rescaling
these COM data points along the energy axis cannot influence the measured
delay. The COM data points were fitted with a damped sinusoid, which
corresponds to the NIR streaking field, to guide the eye.
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spectra integrated for 60 s at each delay. (For a brief description of the
experiment, see Methods Summary; full details regarding set-up,
measurements and data analysis are provided as Supplementary
Information.) Characteristic spectra obtained with our system are
shown in Fig. 2a, indicating that emission from the conduction band
occurs at a kinetic energy of ,83 eV while emission from the loca-
lized 4f states occurs at ,56 eV. At kinetic energies significantly
below the 4f peak, the measured spectrum is due to NIR-induced
ATI photoelectrons and XUV-generated photoelectrons that have
undergone inelastic scattering.

The two distinct background components were distinguished by
recording an additional photoelectron spectrum without the NIR
streaking field. The ATI component was subsequently subtracted
from the measured data (see Supplementary Information). This sub-
traction is illustrated for a fixed delay in Fig. 2a, andwas performed at
each of the delay steps, resulting in the full spectrogram presented in
Fig. 2b. Here, a positive relative delay corresponds to the XUV pulse
arriving earlier with respect to the streaking field at the surface. Both
the 4f and conduction-band photoemission exhibit a pronounced
periodic upshift and downshift in energy as a function of relative
delay and, as in previous gas-phase experiments, the spectrogram
reveals the waveform (vector potential) of the streaking field5,26,27.
Our ability to resolve the field oscillation indicates that the photo-
emission from the 4f core states and from the conduction band is sub-
femtosecond in duration, and proves that attosecond metrology has
been successfully extended to condensed-matter systems.

Further examination reveals that the 4f spectrogram is shifted
along the delay coordinate with respect to the conduction-band
spectrogram. This effect is readily apparent upon inspection of the
smoothed spectrograms that are obtained by interpolation of the
measured data and shown in Fig. 3a. We quantify the temporal shift
in themeasured data by evaluating, for each delay step, the centre-of-
mass (COM) of the spectral regions spanning the 4f and conduction-
band peaks that cover the energy intervals 47–66 eV and 66–110 eV,
respectively. Characterizing the periodicmotion of the peaks through
their COM requires no assumptions or fitting parameters, yet yields
timing information that is invariant to fluctuations in the instant-
aneous laser parameters. The approach is also relatively insensitive to
inelastic scattered background photoelectrons, which could not be
subtracted from our measurements. As a result, the COM accurately
describes the streaking-induced time-dependence of the energy shift
of the 4f and conduction-band peaks, as shown in Fig. 3b.

By comparing the COM trajectories of the 4f and conduction band
at the seven zero-crossings of the vector potential, we obtain seven
independent measurements of their relative timing. This yields a
temporal shift of Dt5 1106 70 as between the ATR spectrograms
of the conduction-band and 4f photoelectrons. (The error estimate
results from a straightforward extrapolation of the error in calculat-
ing the COM; see Supplementary Information.) This shift or delay
was observed in different independent measurements made at dif-
ferent locations on the tungsten sample, with the results corroborat-
ing the above value of Dt to within the measurement error. We note
that the rather large error associated with ourDt value could bemost
effectively reduced in future measurements by using higher XUV
photon energies and fluxes.

The shift between the two spectrograms indicates that, on average,
photoelectrons originating from the localized 4f states emerge from
the tungsten surface approximately 100 as later than those origin-
ating from the delocalized conduction band—even though the
photoemission process for both types of electrons is initiated simul-
taneously by the sameXUVpulse. The delay effect thus occurs during
transport of the excited photoelectrons to the surface, illustrating
that our technique provides a means to directly observe features of
electron wave packet propagation towards the surface with attose-
cond precision.

By adapting a quantum mechanical model used in previous gas-
phase streaking experiments28, we are able to reconstruct themeasured

spectra and spectrograms. The modelling of the streaking experiment
requires some assumptions, leaving several parameters (such as dura-
tion of the electron wave packets, their chirp, and their emission time)
for optimization. Figure 2c and d shows the reconstructions that best
agree with experiment. These were obtained for wave packets with a
duration of ,300 as (full-width at half-maximum, FWHM) and
assuming a delay of,100 as between the emission times of the electron
wave packets, which supports the conclusions drawn from the COM
analysis.

Our measurements also indicate that electron wave packets
launched from both the localized 4f and delocalized conduction-band
states are nearly undistorted on propagation to the surface. To explain
the observed delay, we consider the group velocities for the two differ-
ent photoelectronwavepackets travelling in the solid.The crucial point
is that after absorption of an XUV photon, the electron is excited
into an upper conduction band region that depends on the electron’s
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Figure 3 | Evidence of delayed photoemission. a, The 4f and conduction-
band spectrograms, following cubic-spline interpolationof themeasureddata
(but without background subtraction). The spectral region between,65 eV
and,83 eV has been omitted to more easily compare the edges of the 4f and
conduction-band peaks. A small shift in the relative delay is evident, as
indicated by the white dashed lines through the fringes, and can be seen at
each fringemaximumandminimum.Quantificationof the shift of the 4fwith
respect to the conduction-band spectrogram ismade byCOManalysis, and is
summarized in b. The energy intervals, within which the COMs were
calculated, are 47–66 eV for the 4f photoemission peak and 66–110 eV for the
conduction-band photoemission peak. Vertical error bars (61 s.d.) are
calculated from noise in the measured spectra (see Supplementary
Information for details). For ease of visual comparison, theCOMenergy shift
of the 4f spectral region was scaled by a factor of 2.5, to offset the stabilizing
effect of the background plateau underneath the 4f peak (see Supplementary
Information), in order to illuminate the,100 as delay in emission. Rescaling
these COM data points along the energy axis cannot influence the measured
delay. The COM data points were fitted with a damped sinusoid, which
corresponds to the NIR streaking field, to guide the eye.
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(a)

(b)
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Figure 1.3: (a) The photoelectron spectra for the 4f (bottom) and conduction (top)
electrons of tungsten as a function of the relative delay between the IR pulse and the
attosecond pulse. (b) The energy shift of the 4f and conduction electrons as a
function of the relative delay. [20].

It was later shown [29] that the breakup pattern for three-electron ionisation, close to

threshold, depends on the initial state; this is contrary to what one would expect from

Wannier’s threshold law. This breakup pattern was shown to be consistent with the

three electrons escaping in a sequence of momentum transferring attosecond three-body

collisions involving the nucleus and two electrons at a time. This T-shape prediction,

the result of work performed in a quasi-classical framework, was confirmed seven years

later using quantum mechanical ab-initio techniques for single-photon absorption from

the ground state of Li for 5 eV excess energy [30]. In Chapter 2, we extend our classical
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formulation to the description of quadruple ionisation by single-photon absorption from

the ground state of Be. We show that close to threshold the four electrons escape on the

apexes of a triangular pyramid [31]; this breakup pattern is again different than what

would be expected from the Wannier threshold law. Using non-linear analysis [32], we

explain why this is the case. Moreover, we show that the four-electron escape is con-

sistent with the electrons escaping in a sequence of three-body collisions as is the case

for Li. In Chapter 3, we focus on time-resolving the attosecond collision sequences that

underly multi-electron escape in single-photon ionisation processes. We note that most

of the current research focuses on time-resolving processes involving a single electron

escape to the continuum using the one-electron attosecond streak camera. Since multi-

electron ionisation is quite complex we focus on time-resolving the correlated electron

dynamics during the escape of two electrons. To do so we formulate the two-electron

attosecond streak camera [33] using a model system of the He(1s2s) atom.

First, we only consider a single photon energy. We show that for two-electron escape

the inter-electronic angle of escape as a function of the phase lag between the attosecond

pulse (single-photon) and the IR laser field carries the imprint of the correlated electron

dynamics. That is, we show that the two-electron attosecond camera measures the time

delay between the time of photo-absorption and the time the electron “feels” the IR laser

field. We show that different energy sharings of the two electrons correspond to different

physical processes which the two-electron streak camera successfully captures [34]. For

equal energy sharing the delay time measured by the two-electron streak camera is the

collision time (time of minimum approach) of the two electrons. We then proceed to

formulate the two electron streak camera under realistic experimental conditions. That

is, fully accounting for the broad spread of photon energies of an attosecond pulse, we

propose a method to successfully retrieve the delay time for a given photon energy [35].

As discussed earlier attosecond pulses are generated by intense IR laser fields, thus,

attosecond and strong-field science are inherently intertwined. In Chapter 4 we ad-

dress multi-electron effects during the breakup of diatomic molecules by intense IR laser

fields. Non-sequential double ionisation [36] and enhanced ionisation [37] are some of

the pathways during the breakup of diatomic molecules by IR laser fields that have been

extensively studied over the last two decades. However, this is not the case for the for-

mation of highly excited neutral fragments during the breakup of diatomic molecules by

IR laser fields. This important phenomenon, widely known as “frustrated” ionisation,
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was only recently observed experimentally [38] and described theoretically for linearly

polarised laser fields [39]. In this thesis, we describe the semiclassical framework used to

describe the breakup process in strongly driven molecules accounting simultaneously for

both nuclear and electron motion at the same time. We focus on the main mechanisms

leading to formation of highly excited fragments during the breakup of strongly driven

H2 in linearly and elliptically polarised laser fields. “Frustrated” ionisation during the

breakup of strongly driven H2 roughly accounts for 10% of all possible fragmentation

events. Thus, our description of the mechanisms underlying this important phenomenon

offer a more complete picture of the breakup of H2 in strong IR laser fields.



Chapter 2

Quadruple ionisation of beryllium

in a quasiclassical framework

In this chapter we will investigate multi-ionisation of atoms by single-photon absorption

for photon energies close to threshold, i.e. photon energies just above the fragmentation

threshold of an atom; multi-ionisation close to threshold is reviewed in [40]. Using

only classical arguments Wannier derived a threshold law for multi-ionisation stating

that σ ∝ (Exs)β for Exs → 0, where Exs is the excess energy, σ is the cross section

of the ionisation process and β is the Wannier exponent [27, 41]. For a single-photon

ionisation process the excess energy is defined as Exs = ω − I, where ω is the energy of

the photon and I is the total energy needed to fragment the atom (ionisation energy).

For two electrons, Wannier showed that close to threshold the electrons escape in the

most symmetric way which is back to back [27]. For more than two electrons Wannier

conjectured that electrons escape following the most symmetric break-up geometry [41],

that is, three electrons escape on the apexes of an equilateral triangle and four electrons

escape on the apexes of a regular tetrahedron.

In what follows we address the correlated electron dynamics in single-photon quadru-

ple ionisation from the ground state of beryllium (Be). The correlated electron dynamics

in ionisation processes is imprinted on the breakup patterns of the escaping electrons

for photon energies close to the fragmentation threshold. The general expectation from

Wannier’s threshold law is that the breakup pattern for single-photon quadruple ion-

isation (QI) is a regular tetrahedron [27, 42, 43] independent of the initial state. We

18
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will show that the prevailing breakup pattern from the ground state of Be is instead a

triangular pyramid [31]. The triangular pyramid breakup pattern involves three elec-

trons escaping on the corners of an equilateral triangle with the nucleus at the centre

and the fourth electron escaping perpendicular to the plane defined by the other three

electrons. For three-electron escape from the ground state of Li it was recently found

that the T-shape, which is also not predicted by Wannier’s law, is by far the prevail-

ing breakup pattern [28]. However, we find that this is not the case for four-electron

escape. In particular, for four ionising electrons from the ground state of Be, in ad-

dition to the prevailing triangular pyramid, we find that a regular tetrahedron and a

square also contribute significantly to the escape geometries; the square planar pattern

involves four electrons escaping along the apexes of a square. We will investigate why

the higher symmetry—compared to the triangular pyramid—tetrahedron and square

planar breakup patterns of the five-body Coulomb problem do not prevail while the

triangular pyramid does. Note that the tetrahedron is the breakup pattern predicted by

Wannier’s law to prevail close to threshold. To explore the single-photon four-electron

escape from the ground state of Be, first, in Section 2.1, we use the classical trajectory

Monte Carlo method (CTMC) [44, 45] to obtain the probability for QI as well as the dis-

tribution of inter-electronic angles of escape [31]. Next, to elucidate the multi-electron

escape dynamics we build a model that describes QI in terms of momentum transferring

attosecond collision sequences. This model is consistent with the distribution of inter-

electronic angles of escape. Finally in Section 2.3 we analyse the non-linear properties

of the two fixed points associated with the Coulomb singularity of a four-electron atom

[29, 32].

2.1 Theory and model

The multi-ionisation of atoms is often viewed in terms of two mechanisms, “knock-out”

and “shake-off” [46, 47]. The “shake-off” mechanism is purely quantum mechanical

[48] and relies on the sudden approximation [49, 50]. In the sudden approximation

one electron is suddenly removed from the atom. Then, the probability of a remaining

electron to ionise is given by the overlap of the wave function of this electron in its

initial state with that of the continuum wave function of the Hamiltonian after the

sudden removal of the first electron [50]. On the other hand, the “knock-out” mechanism
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(sometimes called “two-step-one” [51]) can be viewed as half a (e,2e)-like collision [46,

52]. It has been shown that “knock-out” can be modelled classically [48]. The “knock-

out” mechanism prevails for photon energies just above the threshold ionisation while

the “shake-off” prevails for large photon energies [48, 50]. In what follows we only

consider photon energies close to threshold ionisation, therefore, we only compute the

“knock-out” mechanism.

We model “knock out” using CTMC, which was first introduced by Abrines et al. [44].

In what follows we investigate the QI of Be. The steps involved in this classical technique

are selecting initial conditions from a phase space distribution and then propagating

these initial conditions using the classical equations of motion [53–56]. CTMC has been

extensively used in atomic physics to investigate phenomena such as charge transfer and

ionisation [45] as well as electron capture [57].

2.1.1 Justification for the use of classical mechanics

Wannier justified the use of classical mechanics for the description of ionisation processes

in atoms [27] as follows: in order for an electron to ionise, assuming we ignore electron-

electron interactions, the kinetic energy must be greater than the potential energy, that

is,
1

2
p2 ≥ Z

r
, (2.1)

where p is the momentum of the electron, Z is the charge of the nucleus and r is the

distance between the electron and the nucleus. Substituting the de Broglie wavelength

λ = 2π
p in Eq. (2.1) and following some rearrangement we obtain

(
2π2

Zr

)1/2

≥ λ

r
. (2.2)

Inspecting Eq. (2.2) it is clear that as the electron escapes the nucleus the term on the

left becomes very small and therefore the right hand term is also very small. This then

implies that the de Broglie wavelength of the electron is small compared to the distance

of the electron from nucleus. We can thus claim that the motion of the electron during

ionisation is essentially classical.
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Previous quasi-classical studies of single-photon double ionisation from the ground

and excited states of He [48, 50] and triple ionisation from the ground state of Li [58]

yielded results in very good agreement with experiments and previous theories. Specifi-

cally, using the quasiclassical technique also employed in this chapter, it was found that

for single-photon triple ionisation from the ground state of Li (i) the triple ionisation

cross section [28] is in good agreement with experiment [59]; (ii) the computed value of

2.15 for the Wannier exponent [58] is in good agreement with the theoretical value of

2.16 [60]; (iii) the differential cross sections in energy [61] agree well with those calcu-

lated quantum mechanically [62]. Therefore, it is fully justified to extend this classical

formulation to four electrons.

2.1.2 The two step model

We formulate the single-photon quadruple ionisation of Be as a two step process [52, 63]:

first the single photon is absorbed by one of the electrons and then the photo-electron

redistributes the acquired energy to the remaining electrons

σ4+ = σabsP
4+, (2.3)

with σ4+ the cross section for quadruple ionisation, σabs the single-photon absorption

cross section and P 4+ the probability for quadruple ionisation. For σabs we use experi-

mental data [64]. The results presented in this chapter do not involve cross sections so

no more details are given for σabs.

We now outline the formalism we use to calculate P 4+. To set up our initial phase

space distribution we assume that the photon is absorbed at time zero, t = tabs = 0 by

a 1s electron. That is, we assume that the photo-electron is a 1s electron and ignore

absorption from a 2s orbital. This is justified since for photo-absorption at energies just

above the ground-state Be threshold, the cross section from the 1s orbital is roughly 22

time larger than from the 2s orbital [65]. We label the photoelectron (from the 1s orbital)

as electron 1, the other 1s electron as electron 2, and the two 2s electrons as electrons 3

and 4. The photo-electron starts at the nucleus. This is an approximation which is exact

in the high energy limit [66]. We treat the remaining electrons independently, restricting

them to an energy shell. Therefore the initial momentum and position of each electron is

selected from the micro-canonical distribution [44, 67]. Having thus selected the initial
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conditions, we weight each trajectory by the Wigner distribution [68] which for the ith

electron is given by

fi(r̄i, p̄i) =
1

π3

∫ ∞

−∞
ψ∗i (|r̄i − z̄|)ψi(|r̄i + z̄|) exp(2ip̄i · z̄)dz̄, (2.4)

where ψi(r̄i) is the hydrogen orbital for the ith electron experiencing an effective charge

Zi. Since the initial conditions for each electron are assigned independently of the other

electrons the Wigner distribution is a product of Wigner distributions of the one 1s and

two 2s orbitals. The reason we use the Wigner distribution is that it is the closest phase

space distribution to a quantum mechanical wave function (For more details on the

Wigner distribution and how we calculate the values of the Wigner distribution please

see Appendix A). The effective charges are chosen to reproduce the known ionisation

potential, i.e. Ii =
Z2
i

2n2
i

where ni is the principal quantum number of the ith electron.

Therefore the effective charges are given by Z2 = 3.363 (I2 = 5.656 a.u.) for the

1s electron and Z3 = 2.314 (I3 = 0.669 a.u.), Z4 = 1.656 (I4 = 0.343 a.u.) for the 2s

electrons [65]. Given the above considerations, the initial phase space density is therefore

given by,

ρ(γ) = Nδr̄iδ(E1 + I1 − ω)
∏

i=2,3,4

fi(r̄i, p̄i)δ(Ei + Ii) (2.5)

2.1.3 Propagation

We then propagate the five-body Coulomb Hamiltonian by integrating the classical equa-

tions of motion. We do so using regularised coordinates [69, 70] which involve coordinate

and time transformations such that the Coulomb singularities in the Hamiltonian due

to the electron-nucleus interactions are pairwise eliminated. In what follows we briefly

describe the steps involved.

The five-body Coulomb Hamiltonian is given by

H =

4∑

i=1

p2
i

2
−

4∑

i=1

Z

ri
+

i=4∑

i>j=1

1

|r̄i − r̄j |
. (2.6)

We introduce a new coordinate system where the new position R̄i and momentum P̄i

of the ith electron are 4-component vectors [70]. They are related to the 3-dimensional



Chapter 2. Quadruple ionisation of beryllium in a quasiclassical framework 23

coordinates by

(r̄i, 0)T = M̄iR̄i (2.7)

and

(p̄i, 0)T = M̄iP̄i/2R
2
i (2.8)

with

Mi =




Ri1 −Ri2 −Ri3 Ri4

Ri2 Ri1 −Ri4 −Ri3
Ri3 Ri4 Ri1 Ri2

Ri4 −Ri3 Ri2 −Ri1



. (2.9)

This leads to ri = R2
i and p2

i =
P 2
i

4R2
i

[70]. Substituting these new coordinates into

Eq. (2.6) we obtain

H̃ =

4∑

i=1

P 2
i

8R2
i

−
4∑

i=1

Z

R2
i

+

i=4∑

i>j=1

1

|M̄iR̄i − M̄jR̄j |
. (2.10)

Next, we extend the phase space to include two new canonical variables, time t, and

energy of the system E(t). The new Hamiltonian is given by Γ = H̃−E(t). We introduce

the time transform dt = gdτ , where τ is the new time variable and g is a function of

Ri’s. The new Hamiltonian is Γ∗ = gΓ and the equations of motion are given by

dR̄i

dτ = ∂Γ∗

∂P̄i

dP̄i

dτ = −∂Γ∗

∂R̄i

dt
dτ = ∂Γ∗

∂(−E(t))
d(−E(t))

dτ = −∂Γ∗

∂t

(2.11)

It is important that g is chosen so that the new Hamilton, Γ∗, does not contain

singularities. In the simple case of two-body problem g = R2
1 and the new Hamiltonian

takes the form

Γ∗ =
P 2

1

8
− Z, (2.12)

which is no longer singular. The equations of motions in the regularised coordinate sys-

tem in Eq. (2.11) are integrated using the 5th order Runge-Kutta method with adaptive

step size [71].
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2.2 Results

We compute P 4+ for excess energies ranging from 3 to 10 eV. The threshold for QI of

Be is 399 eV so 3 eV excess energy is close to threshold and the time taken to obtain

good statistics using modern day computational power is not prohibitive. 10 eV is an

upper bound estimate of the excess energies where the Wannier exponent β can still be

retrieved. Using our data for P 4+ from 3 to 10 eV in steps of 1 eV we find β to be 94%

of the theoretically predicted value of 3.288 [43]. In the frame work of Wannier’s theory,

in what follows we discuss our results for 3 and 10 eV.

2.2.1 The inter-electronic angle distribution

To identify the four-electron escape pattern we use the probability for two electrons to

escape with an inter-electronic angle θ - we refer to it as angular correlation probability

C(θ). We use this observable as it naturally encompasses electronic correlation. We

calculate the C(θ) distribution for 3 and 10 eV excess energies, see Fig. 2.1. Given that

P 4+ is 1.8 × 10−10 for 3 eV and 7.3 × 10−9 for 10 eV the computational task involved

is immense. Nevertheless, to provide good accuracy, for each excess energy we consider,

our results involve roughly 104 quadruple ionisation events. In Fig. 2.1, we see that for 10

eV C(θ) has two peaks: one around 74◦ and a second one around 100◦−125◦. However,

for 3 eV it is not clear whether there is only one or two less pronounced peaks-compared

to 10 eV-are present in the range 80◦ − 112◦. In Fig. 2.1, C(θ) is plotted using 28 bins

for θ. We choose the bin size so that the double peak structure in C(θ) is best resolved

given the limitations imposed by our statistics.

We now ask the question to what four-electron escape geometry does the shape of

C(θ) correspond to? A regular tetrahedron pattern would involve all electrons escaping

at 109.5◦ from each other. This would result in a single peak in C(θ). If it was a square

pattern, with two inter-electronic angles being 180◦ and four inter-electronic angles being

90◦, we would see two peaks in C(θ) with the peak at 90◦ twice as high as the peak at

180◦. On the other hand a triangular pyramid pattern with three electrons escaping at

120◦ from each other and the other electron escaping at 90◦ from the three electrons

would result in two peaks in C(θ) of equal height. This is because there are three inter-

electronic angles at 120◦, from the equilateral triangle and three at 90◦ from the fourth



Chapter 2. Quadruple ionisation of beryllium in a quasiclassical framework 25

✓ (degrees)

�

C
(✓

)/
P

4
+

0 30 60 90 120 150 1800

0.2

0.4

0.6

 

 

3eV
10eV

Figure 2.1: Probability for two electrons to escape with an inter-electronic angle θ
for excess energies of 3 eV (black dots with solid line) and 10 eV (blue squares with
dashed line). To guide the eye, for each excess energy, we connect the symbols
representing our data with a line.

electron escaping perpendicular to the plane of the equilateral triangle. Hence, the

double peak in C(θ) (Fig. 2.1) for 10 eV is consistent with a triangular pyramid shape.

For 3 eV the shape of C(θ) does not provide conclusive evidence for the prevailing escape

geometry.

2.2.2 Attosecond collision sequences

To better understand the angular correlation probability in Fig. 2.1 and elucidate the

physical mechanisms of QI we ask the question: how does the photo-electron transfer the

energy it gains from the photon to the other three electrons? This is a natural question in

the framework of classical mechanics where the electrons undergo soft collisions mediated

by Coulomb forces. Does redistribution of energy take place through one simultaneous

collision between all 4 electrons or through a sequence of collisions? To answer this

question we use a classification scheme similar to the one we first introduced in the

context of three-electron escape following single-photon absorption from the ground state

of Li [28]. We define a collision between electrons i and j—labelling it as îj—through

the momentum transfer

Dij =

∫ t2

t1

∇V(rij)dt (2.13)

under the condition that V(rij(tk)) are local minima in time with t2 > t1 while rij = |ri − rj|
and V(rij) = 1/|ri − rj|. During the time interval t1 < t < t2 all five particles interact
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with each other. Hence, the above definition is meaningful if the collision redistributes

energy primarily within the three-body subsystem that includes the nucleus and the

electrons i and j. For automated identification of the collisions, we need sensitivity

thresholds to register only the important collisions for the quadruple events. Due to the

significantly higher complexity of the four-electron problem we introduce two sensitiv-

ity thresholds instead of one for three-electrons [28, 72]. We do so for each individual

quadruply ionising trajectory by forming the maximum D = maxi6=j|Dij| and registering

only collisions with |Dij|/D > δ where i, j = 1, 2, 3, 4. We introduce another sensitivity

threshold for how “sharp” a collision is. Namely, if electron i gains energy through

more than one collisions, we find the maximum ∆Vi = maxi6=j(V(rij)
max −V(rij)

min),

with V(rij)
max/min the max/min value of V(rij(t)) for t1 < t < t2, and register only col-

lisions satisfying (V(rij)
max −V(rij)

min)/∆Vi > δ1. We have checked that our results

and conclusions do not change for different values of δ and δ1; we choose δ = 1/12 and

δ1 = 1/8.

According to this classification scheme we find that electrons 2, 3, and 4 gain sufficient

energy to leave the atom through two prevailing ionisation routes; an ionisation route is

a sequence of momentum transferring collisions. In the first route the photoelectron 1

knocks out first electron 2 and then proceeds to knock out electrons 3 and 4. That is, first

a collision 1̂2 takes place very early in time and roughly 24 as later collisions 1̂3 and 1̂4

occur. With collisions 1̂3 and 1̂4 taking place close in time we find that a fourth collision,

3̂4, can occur in addition to the previous three collisions. We refer to this ionisation route

where the photoelectron transfers energy to both electrons 3 and 4 as s1 = {1̂2, 1̂3, 1̂4}.
In the second route, the photoelectron 1 first knocks out electron 2 through the collision

1̂2. Then, electron 2 becomes the new impacting electron knocking out, roughly 24 as

later, electrons 3 and 4 through the collisions 2̂3 and 2̂4. With collisions 2̂3 and 2̂4

taking place close in time a fourth collision, 3̂4, can occur in addition to the previous

three collisions. We refer to this ionisation route where electron 2 transfers energy to

both electrons 3 and 4 as s2 = {1̂2, 2̂3, 2̂4}. s1 accounts for 41%,both for 3 eV and 10

eV, and s2 for 24% for 3 eV and 26% for 10 eV of all QI events. Using this scheme of

momentum transferring attosecond collision sequences we have thus obtained a physical

picture of the correlated electronic motion in an intra-atomic ionisation process. Further,

this scheme offers insight in choosing the appropriate asymptotic observables for inferring

the temporal profile of electron-electron collision dynamics [33]. This is important since
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developing pump-probe schemes to time-resolve correlated multi-electron escape is one

of the current challenges facing attoscience [73].

Using our classification scheme we find that two more ionisation routes are present

which are less prominent compared to s1 and s2; we refer to them as s3 and s4. The s3

ionisation route involves at least four distinct collisions: one collision is 1̂2 while two of

them involve electron 3 and/or 4 each gaining energy by both electrons 1 and 2. We

find that the most prominent s3 collision sequences are {1̂2, 1̂3, 1̂4, 2̂3}, {1̂2, 1̂3, 1̂4, 2̂4},
{1̂2, 1̂3, 2̂3, 2̂4}, {1̂2, 1̂4, 2̂3, 2̂4} each one of them contributing less than 2%. The %

contribution of s3 to all quadruply ionising events increases with decreasing excess energy

from 7% for 10 eV to 11% for 3 eV. Regarding the s4 ionisation route, it involves mainly

three distinct collisions. One collision is 1̂2 while the other two collisions involve electron

3 and 4 each gaining energy by different electrons, i.e., if electron 3 gains energy from

electron 1 then electron 4 gains energy from electron 2. We find that the most prominent

s4 collision sequences are {1̂2, 1̂3, 2̂4}, {1̂2, 2̂3, 1̂4}, with the former accounting for roughly

5.9 % and the latter for 4.1 % for 3 eV excess energy. The s4 ionisation route accounts

for roughly 10 % of all QI events for 3 eV and 10 eV excess energies.

We have now established the presence of four collision sequences each corresponding

to a different ionisation route. We illustrate the collision sequences by plotting in Fig. 2.2

the probability density [72] for all inter-electronic angles as a function of time for 3 eV

excess energy for the s1 and the s4 = {1̂2, 1̂3, 2̂4} ionisation routes. We do not plot s3

since each one of the main four s3 collisions sequences contributes less than 2% rendering

insufficient statistics. We do not plot s2 as it provides the same insight as the s1 pathway.

To identify the collisions in the probability density we use the same two principles as

for triple photo-ionisation of Li [72]. That is (i) a collision between two electrons i and

j leads to a “sharp” minimum of the inter-electronic angle as a function of time, θij ≈ 0

(if the collision takes place almost as soon as the photo-electron is launched then the

inter-electronic angle has to start with a zero value, as is the case for the 1̂2 collision)

and (ii) after the collision, electrons tend to move away from each other minimising their

mutual repulsive interaction; this leads to θij = 180◦ unless either electron i or j suffers

another collision through any of the other two electrons.

Using these two principles, Fig. 2.2 (left column) shows that indeed in the s1 ioni-

sation route electron 1 knocks-out first electron 2 very early in time while roughly 24
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Figure 2.2: Probability density of the inter-electronic angles θij for the collision

sequences s1 = {1̂2, 1̂3, 1̂4} (left column) and for s4 = {1̂2, 1̂3, 2̂4} (right column).

attoseconds latter the same electron proceeds to knock-out electrons 3 and 4. Electrons

3 and 4 gain energy from electron 1 very close in time giving rise, immediately after the

last collision, to the spatial distribution r1 ≈ r3 ≈ r4. As a result the three electrons

1, 3, and 4 interact strongly and finally escape on a plane at 120◦ from each other. To

minimise the potential energy, electron 2 escapes perpendicular to the plane of electrons

1,3 and 4 giving rise to a triangular pyramid [31]. Similarly, the s2 collision sequence

also gives rise to a triangular pyramid. The probability density of the θ34 in the s1

collision sequence indicates that the quadruple trajectories labeled as s1 are such that

initially electrons 3 and 4 are situated close to each other thus maximising the inter-

action of electrons 1, 3, and 4 after electrons 3 and 4 are knocked-out by electron 1.
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Although not shown here, in the s3 collision sequence the collisions where electrons 3

and 4 each gain energy both from electrons 1 and 2 are all close in time resulting in the

spatial distribution r1 ≈ r2 ≈ r3 ≈ r4 immediately after the last collision. Enhancing

this spatial distribution we find, but not shown here, that for the quadruply ionising

trajectories labeled as s3 electrons 3 and 4 are initially situated close to each other (as

for s1). This spatial distribution immediately after the last collision results in all four

electrons escaping symmetrically on the apexes of a regular tetrahedron.

Focusing next on the s4 = {1̂2, 1̂3, 2̂4} ionisation route we indeed see from Fig. 2.2

(right column) that electron 1 knocks-out first electron 2 very early in time and then

proceeds to knock out electron 3 roughly 24 attoseconds later. This is the last collision

that electrons 1 and 3 undergo and thus escape at 180◦ from each other. Similarly,

electron 2 knocks-out, roughly at 48 attoseconds, electron 4; this being the last collision

for electrons 2 and 4 they escape at 180◦ from each other. Minimising the potential

energy the 1-3 subsystem with θ13 = 180◦ and the 2-4 subsystem with θ24 = 180◦

finally escape perpendicular to each other giving rise to θ12 = θ14 = θ23 = θ34 = 90◦

which is consistent with a square planar geometry. Note that the probability density of

the inter-electronic angle between electrons 3 and 4, θ34, in the s4 collision sequence in

Fig. 2.2 (right column) shows that electrons 3 and 4 are initially situated far from each

other, in contrast to the s1 and s3 pathways. This initial configuration minimizes the

interaction of electrons 3 and 4 thus enhancing two separate 180◦-escape geometries: one

corresponds to the electrons in the colliding pair 1̂3 and the other one corresponds to the

colliding pair 1̂4. From the above, as already discussed in [29] for three-electron escape,

we infer that what determines the final breakup geometry is the spatial distribution of

all escaping electrons at the moment in time when all electrons have received enough

energy (through collisions) to leave the atom, i.e., the time immediately after the last

collision.

2.2.3 Prevailing breakup pattern: triangular pyramid

As discussed above, Fig. 2.2 shows that the s1 collision sequence is consistent with a

triangular pyramid breakup pattern. This is illustrated even more clearly by plotting

in Fig. 2.3 the angular correlation probabilities for s1 and s2 at 3 eV and 10 eV. For s1,

at the time when all electrons to be ionised have received enough energy to leave the
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Figure 2.3: Same as Fig. 2.1 but for each interelectronic pair θij for the ionisation
routes s1 (top row) and s2 (bottom row).

atom, the spatial electron distribution, we refer to it as transient threshold configuration

(TTC) [29], is r1 ≈ r3 ≈ r4 6= r2. That is, the last colliding electrons 1, 3, and 4 have

r1 ≈ r3 ≈ r4, which is close to the fixed point [29] of the four-body Coulomb problem -

three electrons and the nucleus. Thus, one expects that electrons 1, 3, and 4 will escape

symmetrically on a plane at 120◦ from each other. In Fig. 2.3 (top row) we plot C(θ) for

each of the six inter-electronic angles of escape using only the QI events that correspond

to the s1 pathway; i.e, we plot Cs1(θ). Indeed, we see that Cs1(θ) for θ13, θ14, and θ34

peaks around 115◦, for both 3 and 10 eV, corresponding to electrons 1, 3, and 4 escaping

on the vertices of a triangle. (We note that the distributions in Fig. 2.1 and Fig. 2.3

are convoluted by the polar angle volume element sinθ resulting in a peak at 120◦ being

shifted to slightly smaller angles while a peak at 90◦ is not affected). In addition, we

see that Cs1(θ), for θ12, θ23 and θ24 peaks around 65◦ − 75◦ and 75◦ − 85◦ for 10 and 3

eV, respectively. Note that the shifting of the peak at smaller angles from 65◦ − 75◦ for

10 eV to 75◦−85◦ for 3 eV shows a tendency towards the triangular-pyramid-consistent

angle of 90◦. Thus, the distributions in Fig. 2.3 (top row) for the s1 ionisation route

are consistent with the triangular pyramid shape shown in Fig. 2.4(a). Similarly for the

ionisation route s2 , Cs2(θ) for θ23 , θ24 , and θ34 peaks around 115◦ while Cs2(θ) for

θ12 , θ13 and θ14 peaks around 65◦ − 75◦ and 85◦ for 10 and 3 eV, respectively (Fig. 2.3

bottom row). Each of these distributions are consistent with the triangular pyramid

shape shown in Fig. 2.4(b). Therefore, for the majority (65%) of QI events the four

electrons escape on the vertices of a triangular pyramid.
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Figure 2.4: The triangular pyramid escape geometry for four electrons
corresponding to collision sequences s1 (a) and s2 (b).

2.2.4 Additional breakup patterns: tetrahedron and square planar

For s3 the TTC is r1 ≈ r3 ≈ r4 ≈ r2. This spatial distribution is close to the fixed

point of the five-body Coulomb problem, see Section 2.3. This fixed point corresponds

to all four electrons escaping on the vertices of a regular tetrahedron at 109.5◦ from

each other. Indeed, in Fig. 2.5(a) we find that Cs3(θ) has a single peak consistent with

a regular tetrahedron geometry. As expected this single peak becomes sharper with

decreasing excess energy; compare Cs3(θ) for 10 and 3 eV in Fig. 2.5(a). So even though

the regular tetrahedron is not the prevailing breakup geometry, as generally expected,

it is nevertheless present.
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Figure 2.5: C(θ) for the ionisation routes s3 (a), s4 (b), and s1 + s2 (c). The lower
statistics in panels (a) and (b) compared to those in panel (c) dictate using 18 bins
[(a) and (b)] instead of 28 bins (c).

In Fig. 2.5(b) we see that there are two peaks in Cs4(θ) for 3eV. One at 90◦ and one at

150◦, the peak at 90◦ being twice as high as that at 150◦. This is consistent with each of

the four electrons escaping along the apexes of a square, with four inter-electronic angles

equal to 90◦ and two equal to 180◦. The peak at 180◦ is shifted to 150◦ in Fig. 2.5(b)

due to convolution with sin θ.

We are now in a position to explain why in Fig. 2.1 the double peak in C(θ) for 10
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eV is more pronounced than the one for 3 eV. Focusing on how the individual inter-

electronic angles of Cs1(θ) and Cs2(θ) (Fig. 2.3) contribute to Cs1+s2(θ) (Fig. 2.5(c)) we

find that the two peaks are closer for 3 eV (at 85◦ and 115◦) than for 10 eV (at 65◦ -75◦

and 115◦). This results in a stronger overlap and a less pronounced double peak for 3 eV

in Cs1+s2(θ) which, since s1 +s2 contribute 65% of all QI events, is also seen in the total

angular correlation probability C(θ) in Fig. 2.1. Another reason for the less pronounced

double peak for 3 eV compared to 10 eV is that the contribution of s3, which has only

one peak in Cs3(θ) at 109.5◦, is smaller for 10 eV (7%) than for 3 eV (11%).

2.3 Non-linear analysis with normal modes

We now focus on the higher symmetry—compared to the triangular pyramid—breakup

patterns of the five-body Coulomb problem, namely, the regular tetrahedron and the

square planar and analyse the non-linear properties of the fixed points corresponding

to these two breakup geometries. The fixed points are associated with the Coulomb

singularity of the five-body problem. In [29] it was shown how for three-electron escape

the unstable modes of the fixed point at Exs → 0 account for the breakup patterns being

initial state dependent. We next show that for four-electron escape the normal modes

of the two fixed points at Exs → 0 have properties similar to the three-electron case.

2.3.1 Five-body Coulomb Hamiltonian

We start by expressing the five-body Coulomb Hamiltonian of a four-electron atom

in hyperspherical coordinates, using the radial variable w instead of the hyperradius

R = w2

h =
P 2
w

8w2
+

Λ2

2w4
+
C(Ω)

w2
, (2.14)

where Ω = (α1, α2, α3, ξ1, ξ2, ξ3, ξ4, χ1, χ2, χ3, χ4)† contains all angular variables de-

scribing the positions of the electrons on the hypersphere of radius R. The hyperspherical

coordinates are given by

R =
√
r2

1 + r2
2 + r2

3 + r2
4 α1 = Arctan( r1r3 )

α2 = Arctan(

√
r21+r23
r4

) α3 = Arctan(

√
r21+r23+r24
r2

)
, (2.15)
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while the relative azimuthal angles are given

χ1 = φ3 − φ1 χ2 = φ4 − φ1

χ3 = φ2 − φ1 χ4 = φ1 + φ2 + φ3 + φ4

, (2.16)

with φi, ξi the azimuthal and polar angles of the ith electron. Λ is the so-called grand

angular momentum operator [74], is a function of Ω and all conjugate momenta given

by

Λ2 = P 2
α3

+
P 2
α2

sin2 α3
+

P 2
α1

sin2 α3 sin2 α2
+

P 2
ξ1

sin2 α3 sin2 α2 sin2 α1

+
P 2
ξ2

cos2 α3
+

P 2
ξ3

sin2 α3 sin2 α2 cos2 α1
+

P 2
ξ4

sin2 α3 cos2 α2
+

(Pχ4−Pχ1−Pχ2−Pχ3 )2

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1

+
(Pχ4+Pχ3 )2

cos2 α3 sin2 ξ2
+

(Pχ4+Pχ1 )2

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
+

(Pχ4+Pχ2 )2

sin2 α3 cos2 α2 sin2 ξ4
.

.

(2.17)

The total Coulomb interaction V = C(Ω)/R acquires in this form simply an angular

dependent charge C(Ω) given by

C(Ω) = − Z
sinα3 sinα2 sinα1

− Z
cosα3

− Z
sinα3 sinα2 cosα1

− Z
sinα3 cosα2

+ 1√
sin2 α3 sin2 α2 sin2 α1+cos2 α3−sin 2α3 sinα2 sinα1(sin ξ1 sin ξ2 cos(χ3)+cos ξ1 cos ξ2)

+ 1

sinα3 sinα2

√
1−sin 2α1(sin ξ1 sin ξ3 cos(χ1)+cos ξ1 cos ξ3)

+ 1

sinα3

√
sin2 α2 sin2 α1+cos2 α2−sin 2α2 sinα1(sin ξ1 sin ξ4 cos(χ2)+cos ξ1 cos ξ4)

+ 1√
cos2 α3+sin2 α3 sin2 α2 cos2 α1−sin 2α3 sinα2 cosα1(sin ξ2 sin ξ3 cos(χ3−χ1)+cos ξ2 cos ξ3)

+ 1√
cos2 α3+sin2 α3 cos2 α2−sin 2α3 cosα2(sin ξ2 sin ξ4 cos(χ3−χ2)+cos ξ2 cos ξ4)

+ 1

sinα3

√
sin2 α2 cos2 α1+cos2 α2−sin 2α2 cosα1(sin ξ3 sin ξ4 cos(χ2−χ1)+cos ξ3 cos ξ4)

(2.18)

where the nuclear charge Z = 4 for Be. For details to obtain the Hamiltonian in

Eq. (2.14) see Appendix B.

2.3.2 Normal modes

We next write the Hamiltonian as

H = (h− E)w2 (2.19)
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to ensure that the equations of motion remain regular while approaching the fixed point

radially, i.e. w → w∗ = 0, where * denotes the fixed point value of a variable for the rest

of this chapter. It was shown in [75] that the threshold dynamics is governed by motion

along the normal modes of the Hamiltonian given in Eq. (2.19). To find the fixed point

Ω∗ we solve the equations

∇ΩC(Ω)|Ω=Ω∗ = 0. (2.20)

Doing so results in two sets of fixed point solutions: one set corresponds to a regular

tetrahedron (T) and the other one to a square planar (SP) escape geometry. Invariance

under rotation renders the values of the χ∗’s and ξ∗’s not unique and therefore we only

show the values of the α∗’s in Table 2.1 which are the same for both fixed points. Next,

α∗1 = π/4 α∗2 = arctan(
√

2) α∗3 = arctan(
√

3)

Table 2.1: The values of the α hyperangles corresponding to the two fixed points.

we find the eigenvalues and eigenvectors (normal modes) corresponding to the fixed

points. We do so, by expressing the equations of motion as a system of first order

differential equations Γ̇ = G∇ΓH for the phase space vector Γ = (Pw,PΩ, w,Ω)†, where

G =


 0 −1f

1f 0


 (2.21)

is a block matrix composed of zeroes and unity matrices of dimension f × f , where f

is the appropriate number of degrees of freedom; f is 12 for the regular tetrahedron (in

3-d space) fixed point and 8 for the square planar (restricted on a plane) fixed point.

Since the differential equations are still singular at the fixed point w∗ = 0 a change of

the momentum variables PΩ conjugate to Ω is needed

pΩj = PΩj/w (2.22)

as well as a new time variable τ related to the original time t through dt = w3dτ ;

t is conjugate to the Hamiltonian given in Eq. (2.14). We thus arrive at the final

equations of motion dγ/dτ = G∇γH̃ where γ refers to the new phase space variables

with the (noncanonical) momenta given by Eq. (2.22). Diagonalizing the stability matrix

∂2GH̃/(∂γ∂γ)|γ=γ∗ we obtain the eigenvalues and eigenvectors for the fixed points. The

eigenvalues are the Liapunov exponents λj while the eigenvectors are the normal modes
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δuj(0), with the unit vector uj defined as

uj = δuj(0)/|δuj(0)|. (2.23)

We find that the regular tetrahedron fixed point has a triply degenerate eigenvalue

λT1 = λT2 = λT3 = 7.6952645 and each eigenvalue corresponds to an unstable mode,

see Table 2.2. We find that the fixed point has one more unstable mode which spans

only the δw subspace and has an eigenvalue equal to λTw = 3.5108069; we refer to this

mode as radial. The square planar fixed point has one doubly degenerate eigenvalue

λSP2 = λSP3 = 7.6705391 with each eigenvalue corresponding to an unstable mode and

one more unstable mode with an eigenvalue λSP1 = 7.9014853, see Table 2.3. The

eigenvalue corresponding to the radial (unstable) mode is λSPw = 3.4887781. It was shown

in [76] that the Wannier exponent β can be obtained from the non-linear properties of

the fixed points associated with the Coulomb singularity. More specifically it was shown

in [76] that β = Λ
2λw

where Λ is the sum of the eigenvalues corresponding to the unstable

modes and λw is the eigenvalue corresponding to the w radial unstable mode. Using

β = (λ
T/SP
1 + λ

T/SP
2 + λ

T/SP
3 )/(2λ

T/SP
w ) from [76] we find that the Wannier exponent

is equal to 3.287819 and 3.331046 for the regular tetrahedron and square planar escape

geometries, respectively, in agreement with previous results [43].

The excursion from the fixed point δγ(τ) = γ − γ∗ is given by a linear combination

of the normal modes

δγ(τ) =
∑

j

cjexp(λjτ)uj. (2.24)

From Eq. (2.24) we see that the components of the phase space vector γ(τ) whose ex-

cursion from the fixed point is expressed as a linear combination of only stable modes

(negative Lyapunov exponents) preserve their initial (τ = 0) value; these initial values

determine the fixed point escape geometry; however, the components whose excursion

from the fixed point is expressed in terms of unstable modes (positive Lyapunov expo-

nents) do not necessarily preserve their initial value. From Table 2.2 and Table 2.3 we

notice that for both the regular tetrahedron and the square planar the excursion of the

α’s, ξ’s and χ’s from the fixed point are expressed as a linear combination of unstable

modes:

δγT (τ) = exp(λT1 τ)(cT1 uT
1 + cT2 uT

2 + cT3 uT
3 ), (2.25)
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Basis uT1 uT2 uT3
δα1 9.55×10−2 -1.09×10−1 -1.60×10−1

δpα1 3.67×10−1 -4.19×10−1 -6.17×10−1

δα2 6.60×10−2 1.54×10−1 -5.98×10−3

δpα2 3.81×10−1 8.88×10−1 -3.45×10−2

δα3 -1.08×10−1 0 -9.92×10−2

δpα3 -8.33×10−1 0 -7.63×10−1

δξ1 -2.93×10−3 0 -1.34×10−3

δpξ1 -5.64×10−3 0 -2.58×10−3

δξ2 -1.95×10−3 0 2.25×10−3

δpξ2 -3.75×10−3 0 4.34×10−3

δξ3 -2.64×10−3 -1.99×10−3 -2.18×10−4

δpξ3 -5.09×10−3 -3.82×10−3 -4.19×10−4

δξ4 -2.24×10−3 1.99×10−3 1.13×10−3

δpξ4 -4.30×10−3 3.82×10−3 2.18×10−3

δχ1 -6.14×10−4 4.22×10−3 -2.38×10−3

δpχ1 -1.34×10−3 0 -4.89×10−3

δχ2 1.47×10−3 4.22×10−3 5.24×10−3

δpχ2 1.34×10−3 0 4.89×10−3

δχ3 8.64×10−4 8.44×10−3 2.86×10−3

δpχ3 5.54×10−4 5.41×10−3 1.83×10−3

δχ4 0 0 0
δpχ4 0 0 0

Table 2.2: The unstable modes for the regular tetrahedron escape geometry for
ξ∗1 = ∆/2, ξ∗2 = ∆/2, ξ∗3 = π −∆/2, ξ∗4 = π −∆/2, χ∗1 = 3π/2, χ∗2 = π/2, χ∗3 = π
which is one possible solution of Eq. (2.20). Here ∆ ≈ 109.5◦.

Basis uSP1 uSP2 uSP3

δα1 1.48×10−1 4.88×10−2 -1.52×10−1

δpα1 5.84×10−1 1.87×10−1 -5.83×10−1

δα2 -6.97×10−2 1.53×10−1 -7.17×10−2

δpα2 -4.13×10−1 8.82×10−1 -4.12×10−1

δα3 8.53×10−2 5.17×10−2 8.78×10−2

δpα3 6.74×10−1 3.97×10−1 6.73×10−1

δχ1 0 -8.14×10−3 0
δpχ1 0 -1.05×10−2 8.58×10−3

δχ2 0 -5.27×10−3 -8.95×10−3

δpχ2 0 -5.06×10−3 -8.58×10−3

δχ3 0 2.87×10−3 -8.95×10−3

δpχ3 0 1.06×10−3 -8.58×10−3

δχ4 0 0 0
δpχ4 0 0 0

Table 2.3: The unstable modes for the square planar escape geometry for χ∗1 = π/2,
χ∗2 = π, χ∗3 = 3π/2 which is one possible solution of Eq. (2.20).
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and

δγSP (τ) = exp(λSP1 τ)cSP1 uSP
1 + exp(λSP2 τ)(cSP2 uSP

2 + cSP3 uSP
3 ). (2.26)

The ξ’s and the χ’s determine the inter-electornic angles and thus the escape geometry.

As a result, the final value of the hyperangles is not necessarily equal to their initial

value and therefore the final escape geometry is not necessarily the highest symmetry

fixed point geometry (with the latter geometry corresponding to τ = 0).

2.3.3 Fixed points and normal modes for a two-electron system

The behaviour of the four-electron fixed points is in contrast to the two-electron case

where the inter-electronic angle preserves its initial value. To illustrate this we make

a quick digression to the stability analysis of the two-electron ionisation in the three-

body Coulomb problem. For the two-electron case only three degrees of freedom are

involved, namely, the hyperradius of the two electrons R2e, the hyperangle α1 and the

inter-electronic angle θ1. The angular dependent charge C(Ω)2e is given by

C(Ω)2e = − Z2e

sinα1
− Z2e

cosα1
+

1√
1− sin 2α1 cos(θ1)

. (2.27)

The fixed point corresponding to the two-electron case is R2e∗ = 0, α∗1 = π/4 and θ∗1 = π.

The corresponding normal modes and Liapunov exponents are listed in Table 2.4. The

eigenvectors uj reveal orthogonal motion along θ1 and α1, that is, the phase space vector

δγα1
(τ) is expressed as δγα1

(τ) = aα1e
λ1τu1 + bα1e

λ2τu2, with u1 and u2 (Table 2.4)

spanning the subspace of pα1 , α1. We also find that δγθ1(τ) = aθ1e
λ3τu3 + bθ1e

λ4τu4,

with u3 and u4 spanning the subspace of pθ1 , θ1. Thus δγα1
(τ) · δγθ1(τ) = 0 for all

times τ . The fact that δθ1 is expressed in terms of two stable modes u3 and u4 implies

that the value of θ1 = π at τ = 0, which corresponds to the highest symmetry escape

geometry, is preserved for all times τ .

We have thus shown that the excursion from the fixed point of the hyperangles

associated with the breakup pattern are expressed in terms of stable modes for a two-

electron atom but in terms of unstable modes for a four-electron atom.
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Exponent -4.895 3.322 -0.7866 + 0.2973 i -0.7866 - 0.2973i

Basis u1 u2 u3 u4

δα1 -0.2 0.29 0 0
δpα1 0.98 0.96 0 0
δθ1 0 0 0.98 0.98
δpθ1 0 0 -0.19 + 0.073i -0.19 - 0.073i

Table 2.4: The Liapunov exponents and corresponding eigenvectors for the fixed
point of a two electron system with Z2e = 2. The Liapunov exponent corresponding to

the radial eigenvector (not shown) is 1.57317.

2.3.4 Minimization of the potential energy

We now show how the triangular pyramid is obtained from symmetry considerations

in the Hamiltonian. In 2.2.2 we provided evidence that what determines the breakup

pattern of the four escaping electrons is the spacial distribution (TTC) of the electrons

immediately after the last collision. For the case of s1 the TTC is r1 ≈ r3 ≈ r4 6= r2, we

assume r1 ≈ r3 ≈ r4 � r2, leading to α3 ≈ 0, (the opposite case would lead to the same

result). We then expand C(Ω) in powers of α3:

C(Ω) ≈ α−1
3

3∑

n=0

cnα
n
3 . (2.28)

The lowest-order term in α3 is

c0 = − Z
sinα2 sinα1

− Z
sinα2 cosα1

− Z
cosα2

+ 1

sinα2

√
1−sin 2α1(sin ξ1 sin ξ3 cos(χ1)+cos ξ1 cos ξ3)

+ 1√
sin2 α2 sin2 α1+cos2 α2−sin 2α2 sinα1(sin ξ1 sin ξ4 cos(χ2)+cos ξ1 cos ξ4)

+ 1√
sin2 α2 cos2 α1+cos2 α2−sin 2α2 cosα1(sin ξ3 sin ξ4 cos(χ2−χ1)+cos ξ3 cos ξ4)

. (2.29)

But c0 is the potential term of the four-body Coulomb problem with Z = 4. Thus, the

problem of finding a stable configuration is that of the three-electron problem with the

solution α∗1 = π/4, α∗2 = arctan
(√

(2)
)

, χ∗1 = 2π/3, χ∗2 = 4π/3, and ξ1 = ξ3 = ξ4 = 90◦

[29]. These values minimise c2 for any value of ξ2. Minimising c3 with respect to ξ2,

we find two solutions. One is ξ2 = 0◦ and the other ξ2 = 90◦. However only ξ2 = 0◦ is

stable, which indeed corresponds to a triangular pyramid breakup geometry, which is of

lower order symmetry than a regular tetrahedron.

From the above, it follows that if the excursion from the fixed point of the phase
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space variables that determine the breakup geometry is expressed in terms of unstable

modes then their initial value at τ = 0 is not preserved at all times. As a consequence

the observable (final) breakup geometry can be different than the highest symmetry

breakup geometry that corresponds to the fixed point (initial value of the relevant phase

space variables). This was shown to be the case for three-electron escape in [29] and in

this work for four-electron escape. We have already shown that the three-electron escape

geometry is initial state dependent [29], that is, it can be an equilateral triangle (the

highest symmetry breakup geometry corresponding to the fixed point of the four-body

Coulomb problem) or a T-shape. We can thus safely conjecture that the four-electron

escape geometry is also initial state dependent. We have shown that the prevailing

breakup geometry for single-photon quadruple ionisation from the ground state of Be is

a triangular pyramid and not the highest symmetry regular tetrahedron. Thus, for three

or more escaping electrons the time during ionisation that determines the final breakup

geometry is not the initial one that corresponds to the fixed-point highest symmetry

break–up geometry but the time immediately after the last collision.

2.4 Summary

In this chapter, we have shown that a triangular pyramid is the prevailing breakup

pattern for quadruple ionisation by single-photon absorption from the ground state of

Be for excess energies as low as 3 eV above threshold. Employing the non-linear analysis

of the fixed points of the five-body Coulomb problem we have shown why it can be the

case that the highest-symmetry breakup patterns are not the prevailing ones. Our

analysis of the collision sequences in four-electron ionisation re-enforces our finding in

[29] that the final breakup geometry is determined by the spatial distribution of all

escaping electrons at the instance in time when these electrons have received enough

energy to ionise through collisions. These momentum transferring attosecond collisions

are the cornerstone of our understanding of the breakup patterns for the ionisation

of multi-electron atoms. In the following chapter we investigate how these collisions,

that is, how the correlated electron dynamics expressed in terms of collisions can be

time-resolved using the technique of atto-second streaking.



Chapter 3

Streaking of the single-photon

double ionisation of metastable

helium

Time-resolving correlated electron processes is a driving force behind the efforts to push

the frontiers of attosecond science. Double ionisation in atoms via absorption of a sin-

gle photon—photon energy above the double ionisation threshold— is an ideal process

for studying correlated electron dynamics. Experimental studies of such single photo-

absorption processes are traditionally performed with synchrotron radiation. While such

sources offer access to the initial and final states of the fragments, they do not allow

access to the intermediate states. Thus, traditional light sources leave the underlying

attosecond dynamics obscure. Attosecond science fills this gap, offering time resolu-

tion through extreme ultraviolet (XUV) pulses which are temporally confined. How-

ever, pump-probe experiments using attosecond pulses are technically very challenging.

Therefore, streaking of photo-electrons with an infrared (IR) laser field has become a

widely used technique for bringing time resolution to photo-ionisation. The paradig-

matic attosecond streak camera [17, 18], originally developed to characterize attosecond

XUV pulses, has been successfully applied to resolve time-delayed emission from atoms

[21, 22, 77] and solids [20]. Recently, to address electron correlation in single-photon dou-

ble ionisation [33, 34], the concept of the one-electron streak camera has been extended

to two electrons.

40
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As we have seen in the previous chapter multi-electron ionisation processes in atoms

can be understood in terms of momentum transferring attosecond collisions. So it is de-

sirable to develop an experimental method that measures the timings of these collisions.

Individual collisions concern two electrons and the nucleus—three-body Coulomb prob-

lem [72]. Therefore, the complete ionisation of a two-electron atom is the ideal starting

point for working out how to time-resolve these attosecond collisions. We choose the

single-photon absorption of He (1s2s) as a prototype system to clearly formulate the

concept of streaking two-electron dynamics while avoiding the unnecessary complexity

of many-electron systems. However, the scheme is not system specific. The same scheme

could time-resolve, for instance, the collision between 1s and 2s electrons in the ground

state of Li.

3.1 Theory and model

Using, again, the Classical Trajectory Monte Carlo method [44], we model the “knock-

out” mechanism [48, 50, 63] of the double photo-ionisation (DPI) process in He (1s2s).

This “knock-out” process, where the photo-electron (1s) transfers energy to the 2s elec-

tron, is depicted in Fig. 3.1. Note that, as a first step, we model the absorption of the

attosecond XUV-pulse as a single-photon absorption at time t = 0. Later, in Section

3.4, we discuss how we account for a realistic XUV-pulse. In order to time-resolve the

correlated electron dynamics in He(1s2s) following single-photon absorption we apply

an infrared (IR) laser field. We model the IR laser field as an electric field polarised in

Figure 3.1: Sketch of the intra-atomic knock-out mechanism to be time-resolved with
the two-electron streak camera [33].



Chapter 3. Streaking of the single-photon double ionisation of metastable helium 42

the ẑ direction, which is of the form

F̄ IR(t) = F IR0 f(t) cos(ωIRt+ φ)ẑ, (3.1)

where F IR0 is the electric field strength, ωIR is the angular frequency and φ is the phase

of the IR laser field relative to the XUV pulse. When the maximum of the streaking

laser field coincides with the time when the single photon is absorbed, which is t = 0,

the steaking phase φ is defined to be φ = 0◦ or 180◦. The function f(t) is given by

f(t) =





2T > t > 0 1

4T > t > 2T cos2((t− 2T )ωIR/8)),

t > 4T 0

(3.2)

where T is the period of the IR laser field. In what follows we focus on time-resolving

the correlated electron dynamics for two discrete excess energies, 10 eV and 60 eV. We

define the excess energy for this system as Exs = ω− I1s2s. Where ω is the energy of the

photon and I1s2s is the potential for double ionisation of He(1s2s), 2.175 a.u./59 eV [78].

The value of F IR0 is equal to 0.007 a.u. and 0.009 a.u. for 10 eV and 60 eV, respectively.

These strengths are chosen so that the field is weak enough to not significantly disturb

the correlated electron dynamics we wish to time-resolve but is strong enough to have

an affect on the asymptotic observables. The value of ωIR is equal to 0.028475 a.u.

(1600 nm). The extended-phase-space Hamiltonian in regularised coordinates [69, 70],

Γ∗, which was first discribed in Section 2.1.3 for conservative systems, now has an

additional term due to the IR laser field

Γ∗ = 1
R2

1+R2
2

(
R2

2P
2
1

8
+

R2
1P

2
2

8

)
− Z +

R2
1R

2
2

R2
1+R2

2

1
|M̄1R̄1−M̄2R̄2|

+
R2

1R
2
2

R2
1+R2

2
(M̄1R̄1 + M̄2R̄2)·F̄ IR(t)− R2

1R
2
2

R2
1+R2

2
E(t)

, (3.3)

where R̄i and P̄i are the 4-component position and momentum vectors of the ith electron,

M̄i is the transform matrix of the ith electron defined in Section 2.1.3, Z is the nuclear

charge and E(t) is the energy of the system. The time-transform g, first described in

Section 2.1.3, is given by

g =
R2

1R
2
2

R2
1 +R2

2

. (3.4)

In the single-photon absorption of this He(1s2s) model system, the initial conditions
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are very similar to those in the previous chapter. The difference is that we currently

treat two instead of four electrons. Specifically, the 1s electron absorbs the photon at the

nucleus [66]. The initial state of the 2s electron is modeled by the Wigner distribution

of a hydrogenic orbital on a fixed energy shell. We take the ionisation potential for the

2s electron to be

I2s = I1s2s − I1s, (3.5)

where I1s is the ionisation potential of the 1s electron in He+, 2 a.u.. Thus, the effective

charge for the 2s hydrogenic orbital is Z2s=1.184. Unlike our studies for beryllium where

the initial distribution of each electron has spherical symmetry, in the current case, this

symmetry is broken by the presence of the IR laser field. We account for this by weighting

each trajectory with the factor cos2(θp1s) in addition to the Wigner distribution; θp1s is

the angle between the polarisation of the XUV pulse (the ẑ direction) and the initial

momentum vector of the 1s electron [79].

3.2 The two-electron streak camera

We briefly describe the idea underlying the two-electron streak camera, first formulated

by Emmanouilidou et al. [33]. In Fig. 3.2 we illustrate the correlated electron dynamics

that we aim to time-resolve. In particular, Fig. 3.2 shows how the excess energy is

transferred from the 1s photo-electron to the 2s electron. The collision that takes place

(in the three-body system) is identified by the rapid change in the inter-electronic angle,

θ12, for both 10 eV and 60 eV excess energies. Here, the inter-electronic angle is defined

as the angle between the momentum vectors of the electrons. This rapid change occurs

between 3-6 a.u. for 10 eV excess energy and 2-3 a.u. for 60 eV excess energy. We

(a) (b)

Friday, 16 May 14

Figure 3.2: The probability density for the inter-electronic angle as a function of
time in the field-free case at (a) 10 eV excess energy and (b) 60 eV excess energy.



Chapter 3. Streaking of the single-photon double ionisation of metastable helium 44

�

(b)(a)

�

✓112 ✓112

Wednesday, 21 May 14

Figure 3.3: The probability distribution for the inter-electronic angle as a function
of φ at (a) 10 eV excess energy and (b) 60 eV excess energy.

find that the time of minimum approach—maximum in the inter-electronic potential

energy—is 2.7 a.u. for 10 eV excess energy and 1.9 a.u. for 60 eV excess energy. Thus,

the time when the inter-electronic angle starts to rapidly change coincides with the time

of minimum approach. Attosecond science gives us the means to monitor these collisions

in real time. The aim of the two-electron streak camera is to infer the collision time

from asymptotic spectra. Since, the inter-electronic angle θ12 is a natural measure of

electronic correlation, we use the asymptotic inter-electronic angular distribution in the

formulation of the two-electron streak camera.

In Fig. 3.3 we calculate the inter-electronic angle as a function of φ for 10 eV and

60 eV excess energy. It is clear that the distribution of the inter-electronic angle as

a function of φ, θ12(φ), splits into two branches: one branch corresponds to values of

θ12(φ) larger than θ∞12, while the other branch to values smaller than θ∞12; θ∞12 is the

asymptotic inter-electronic angle in the field-free case (F IR0 = 0), see Fig. 3.1.

To understand the reason for the splitting seen in Fig. 3.3 we introduce a simple

Figure 3.4: The streaking laser field causes a decrease in θ∞12 when the
photo-electron is launched along the +ẑ direction, since adding ∆pIR to each of the
electron momenta results in θ12(φ) < θ∞12
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model. The momentum vectors of the two electrons, both in the absence and the presence

of the IR laser field, can be seen in Fig. 3.4. The asymptotic momentum vector of each

electron in the presence of the IR laser field is the sum of the asymptotic momentum

vector in the field-free case plus the change in momentum due to the IR laser field. In

the following, the momentum and energy of each electron when the IR laser field is also

present is referred to as streaked. We assume that the transfer of energy between the

two electrons is sudden and that the electron motion is not affected by the IR laser field

before a time tdelay. The change in momentum due the IR laser field given by Eq. (3.1)

and Eq. (3.2) is

∆p̄IR(tdelay, φ) = −
∫ ∞

tdelay

F̄ IR(t) dt ≈ F IR0

ωIR
sin(ωIRtdelay + φ)ẑ (3.6)

For the rest of this thesis we refer to tdelay as the delay time.

From Fig. 3.4 and Eq. (3.6) the splitting of the inter-electronic angle can be under-

stood as follows: if the momentum of the centre-of-mass of the two electrons in the

field-free case points in the same direction as the IR laser field then the streaked inter-

electronic angle is smaller than θ∞12. Note, that in the field-free case, for the majority

of DPI events the direction of the momentum of the centre-of-mass of the two elec-

trons coincides with the direction the photo-electron is initially ejected. Similarly, if the

momentum of the centre-of-mass of the two electrons in the field-free case points in a

direction opposite to the IR laser field then the streaked inter-electronic angle is larger

than θ∞12. In the absence of a collision, the maximum splitting occurs at φ0 corresponding

to the maximum change in momentum due to the IR laser field; for the IR laser field

currently under consideration, φ0 = 90◦. However, the collision shifts the maximum

splitting to ωIRtdelay + φ0 = 90◦. Therefore tdelay = ∆φ/ωIR, where ∆φ = 90◦ − φ0.

We, now, describe how to obtain φ0. We restrict the analysis of the angular correlation

to the smaller angles - the lower branch, see Fig. 3.5. First, the most probable value

of θ12(φ) is determined for each value of the streaking phase φ. This yields a singly

differential distribution θmax12 (φ), see Fig. 3.5, which is used to determine the phase φ0.

We find that the value of φ0 is sensitive to our choice of the bin size for θ12 in Fig. 3.5. In

order to increase the robustness of this retrieval algorithm we determine φ0 for a range

of bin sizes dθ12 = 4◦ − 9◦. We define the average of ∆φ(dθ12) as the delay time. We

find that tdelay is equal to 4 a.u. and 2.1 a.u. for 10 eV and 60 eV, respectively. These



Chapter 3. Streaking of the single-photon double ionisation of metastable helium 46

values are in very good agreement with our predicted collision times of 3-6 a.u. and 2-3

a.u. for 10 eV and 60 eV excess energy, respectively.
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Figure 3.5: The inter-electronic angle with maximum probability as a function of φ
at (a) 10 eV excess energy and (b) 60 eV excess energy for bin size in θ12 equal to 6◦.
Also shown is ∆φ = 90◦ − φ0.

3.3 Energy sharings

We, next, expand the concept of the two-electron streak camera in order to see the effect

of the energy sharing between the two escaping electrons on the measured delay time. We

define the energy sharing ε = |ε1− ε2|/(ε1 + ε2) as the dimensionless asymmetry between

the observable kinetic energies ε1 and ε2 of the two electrons. Using the same parameters

as in the previous section, we first show that different energy sharings correspond to

different double ionisation dynamics.

Our aim is to time-resolve the field-free, single-photon double ionisation process with

the two-electron streak camera. We thus need to first establish a correspondence between

the field-free observables and the ones modified by the streaking laser field. In Fig. 3.6,

we plot the final kinetic energy sharing, KES, for every trajectory in the field-free case

against its KES when subjected to the streaking laser field at (a) 10 eV and (b) 60 eV

excess energy. The figure shows that the streaked energy sharing correlates with the field-

free KES. Further, in agreement with experimental observations [80], the distribution of

the KES shifts to more asymmetric values for higher excess energy.

After establishing a correspondence between the energy sharing in the presence and

the absence of the streaking laser field, we now show that for the problem of interest,

the field-free case, different energy sharings correspond to different ionisation dynamics.
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Figure 3.6: Correlation map of the kinetic energy sharing (KES) |ε1 − ε2|/(ε1 + ε2)
for two electrons produced by the absorption of a single photon with excess energy (a)
Exs = ε1 + ε2 = 10 eV and (b) Exs =60 eV with and without the streaking IR laser
field. Also shown is the integrated energy sharing in the presence of a streaking laser
field.
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Friday, 16 May 14

Figure 3.7: Time-dependent probability density of the inter-electronic angle θ12 of
double ionisation without a streaking IR laser field. Shown are the trajectories with
the most symmetric energy sharing ((a), (c)) and the most asymmetric energy sharing
((b), (d)) at 10 eV ((a), (b)) and 60 eV ((c), (d)) excess energy.

Indeed, in Fig. 3.7 we show that the temporal evolution of the correlation parameter

θ12 for symmetric (ε < 0.14) and asymmetric (ε > 0.86) energy sharings is different. In

Fig. 3.7, panels (a), (c) and (b), (d) correspond to the most symmetric and asymmetric
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energy sharings, respectively, whereas panels (a), (b) and (c), (d) correspond to an

excess energy of 10 and 60 eV, respectively. In the case of symmetric energy sharing,

the inter-electronic angle has only one temporal region of rapid and large change, which

will, henceforth, be referred to as the “collision” time; the asymptotic value for the

inter-electronic angle θ12 is attained rapidly within 6 and 3 a.u., for 10 and 60 eV excess

energy, respectively. On the other hand, for the most asymmetric energy sharing the

inter-electronic angle has two regions: a temporal region of rapid and large change, the

same as that for the symmetric energy sharing, and a region of gradual change and

spread into the observable asymptotic distribution. The latter region is absent in the

symmetric energy sharing. These two temporal regions can be clearly seen in Fig. 3.8

for 10 eV excess energy.
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Figure 3.8: Enlargement of figure Fig. 3.7(b) with (a) showing the first temporal
region and (b) the second one.

3.3.1 Ionisation times for different energy sharings

Besides the above shown difference in the asymptotic θ12, we further quantify the dif-

ference in the two-electron ionisation dynamics for symmetric and asymmetric energy

sharings. To do so, we examine the time delay between the instant of photon absorption

and the time of ionisation of the slowest electron as a function of energy sharing; see

Fig. 3.9. (Note that for the majority of double ionising trajectories the 2s electron is the

slowest one). In Fig. 3.9(a), we plot the data for 10 eV, and in (b) for 60 eV excess energy,

in the absence of a streaking laser field. The time of ionisation of the slowest electron is

determined when the potential plus kinetic energy of the electron becomes permanently

positive. For 10 eV excess energy (Fig. 3.9(a)), the ionisation time varies strongly with

energy sharing. The delay increases roughly from 5 to 24 a.u. when the asymmetry in
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the final energy changes from 0-0.14 to 0.86-1. For 60 eV excess energy (Fig. 3.9(b)),

the ionisation time changes roughly from 1.9 to 4.6 a.u. We also find, common to all

energy sharings, that the time of minimum approach of the two electrons—maximum

in the inter-electronic potential energy—is 2.7 au for 10 eV and 1.9 au for 60 eV excess

energy.

(c)

(a) (b)

(d)

Monday, 19 May 14

Figure 3.9: Time of ionisation of the slowest electron versus the asymptotic KES in
the absence of a streaking IR laser field for (a) Exs = 10 eV and (b) Exs = 60 eV and
in the presence of a streaking IR laser field for (c) Exs = 10 eV and (d) Exs =60 eV.

The above findings suggest that the first temporal region of rapid change, common

to all energy sharings, corresponds to the photo-electron fast approaching the bound

electron transferring part of its energy. In the symmetric energy sharing, the photo-

electron transfers a large amount of energy to the other electron. As a result both

electrons ionise soon after their time of minimum approach. Thus, the time delay for

equal energy sharing (see Fig. 3.9) is very similar to the time of minimum approach

or “collision time”, more so for 60 eV excess energy. Note that the ionisation of both

electrons soon after the “collision” time is consistent with our finding of θ12 quickly

reaching its asymptotic distribution for equal energy sharing.
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(a)
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(b)
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(c)
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Monday, 19 May 14

Figure 3.10: Streak camera plots for different energy sharings: observable inter-
electronic angle θ12 versus the streaking phase φ. Shown are scans for Exs = 10 eV
and an energy sharing (a) 0.0-0.14, (b) 0.43-0.57 and (c) 0.86-1.0.

For unequal energy sharing, the photo-electron first rapidly approaches the 2s elec-

tron; this is consistent with the first temporal region being common to all energy shar-

ings. Unlike the equal energy sharing case, the photo-electron transfers only a very small

amount of energy to the other electron and escapes soon after the “collision” time. In

contrast, the slowest electron (mostly the 2s electron) continues its bound motion in the

ion’s Coulomb potential, almost independently of the photo-electron. It finally ionises

with a wide spread in time delay, see Fig. 3.9(a) and (b) for asymmetric energy sharing,

reflecting the strong influence of the ion’s Coulomb potential. This wide spread in time

delay is consistent with the second temporal region of gradual change and spread in the

asymptotic θ12, which is discussed above.

In summary, for equal energy sharing the time of ionisation is roughly the “collision”

time corresponding to minimum approach of the two electrons, more so for 60 eV. For

asymmetric energy sharing, after the “collision” time the slow electron moves roughly

independently of the fast escaping photo-electron and almost solely under the influence

of the ion’s Coulomb potential. The large ionic Coulomb influence for asymmetric energy

sharing causes a large spread in the time delay and consequently in the asymptotic θ12;

see Fig. 3.7(b) and (d). This spread is much larger for 10 eV compared to 60 eV since

the slowest electron has much larger kinetic energy for 60 eV, making it less susceptible

to the ion’s Coulomb potential.

3.3.2 Attosecond streak camera for different energy sharings

We next show that the two-electron streak camera time-resolves the above-discussed

time delays that correspond to different energy sharings. To compute these delay times,
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we follow the process described in Section 3.2 where we computed the delay time for all

trajectories independent of energy sharing. In Fig. 3.10, we show the correlation plot

for three different energy sharings for 10 eV excess energy.

We obtain the time delay corresponding to different energy sharings from the angular

correlation plots in Fig. 3.10, in a fashion similar to the one discussed in Section 3.2. We

extract the phase shift ∆φ systematically in Fig. 3.11 for different energy sharings. For

10 eV excess energy, for an energy sharing of 0-0.14, the shift in the streaking phase ∆φ

is determined to be 4.5◦; see figure Fig. 3.11(a). At a wavelength of 1600 nm a phase

shift 4.5◦ corresponds to a delay in ionisation of 68 as or 2.8 au. At an energy sharing of

0.43-0.57, a similar lag between photo-absorption and double electron emission is found.

It is only for the most asymmetric energy sharing of 0.86-1.0, (see figure Fig. 3.11(b)),

that a considerably larger shift is found. The shift is about 17◦, corresponding to 251

as or 10.4 au. Similarly, for 60 eV we find that the phase shift ∆φ corresponds to a

delay time of 0.3 and 4.3 au for the most symmetric and asymmetric energy sharings,

respectively.
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Figure 3.11: Fit (depicted as a dashed line) of the analytical model to the results of
simulation in Fig. 3.10 (depicted as segments) for the most symmetric ((a), (c)) and
most asymmetric ((b), (d)) energy sharing for 10 eV (top row) and 60 eV (bottom
row) for bin size in θ12 equal to 6◦.
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We next show that we can reproduce the θ12(φ) in Fig. 3.11, by building on the

simple analytical model introduced in Eq. (3.6). This way, we further confirm our

interpretation of the different electron ionisation dynamics for the two extreme energy

sharings. We take the x-axis on the plane defined by the z-axis and the momentum

vector of one of the two electrons (due to cylindrical symmetry); let us call it electron 1.

The streaked momentum vector of electron 1 is given by ~P1(φ) = (p1 sin θ1, 0, p1 cos θ1 +

∆pIR(tdelay, φ)). Then, the streaked momentum vector of the second electron is given

by ~P2(φ) = (p2 sin θ2 cos γ, p2 sin θ2 sin γ, p2 cos θ2 + ∆pIR(tdelay, φ)), where θ1/θ2 is the

angle between the momentum vector of the first/second electron and the z-axis, p1/p2

is the magnitude of the first/second electron and θ12 is the inter-electronic angle, with

all variables defined in the field-free case; γ is given by

γ = cos−1

(
cos θ12 − cos θ1 cos θ2

sin θ1 sin θ2

)
, (3.7)

see Fig. 3.12. Then, the inter-electronic angle as a function of φ is given by

θ12(φ) = cos−1

(
~P1(φ) · ~P2(φ)

|~P1(φ)||~P2(φ)|

)
. (3.8)

Apart from tdelay the values of the other variables, namely θ1, θ2 and θ12, are known

and chosen to be equal to their most probable values, in the field-free case, for trajec-

tories corresponding to the lower branch. We now fit Eq. (3.8) to our results for the

inter-electronic angle as a function of φ shown in Fig. 3.11 with tdelay being the only

fitting parameter. We find that the analytical model fits the results better for the most

symmetric energy sharing than the most asymmetric one. Indeed, not included in our

model, the ion’s Coulomb potential significantly influences the two-electron dynamics

for asymmetric energy sharing. Moreover, our simple analytical model fits the asym-

metric energy sharing for 60 eV better than for 10 eV; see Fig. 3.11(b) and (d). This

is consistent with the influence of the ion’s potential being less for asymmetric energy

sharing for 60 eV compared with 10 eV due to the slow electron’s larger final momentum

for 60 eV.

Next, we discuss the time delay between the photo-absorption and the emission of

both electrons as predicted by the two-electron streak camera and how it compares with

the ionisation time in the field-free case, see Fig. 3.9(a) and (b). We find that there is

good agreement for the symmetric energy sharing for 10 eV and the asymmetric one for
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60 eV, while there is a difference of roughly 10 a.u. for the asymmetric energy sharing

for 10 eV. (Note that the difference observed for the symmetric energy sharing for 60 eV

is most probably due to our lower statistics for this case-for 60 eV most of the double

ionisation events share the energy unequally; see Fig. 3.6.) Namely, for asymmetric

energy sharing for 10 eV the streaking phase corresponds to a time delay of 10.4 a.u.,

while the ionisation time in the field-free case is 24 a.u. This difference can be easily

understood if we also compute the ionisation times for different energy sharings in the

presence of the streaking laser field; see Fig. 3.9(c) and (d) for 10 and 60 eV, respectively.

Using the compensated energy as detailed in [81], we find the IR-field-present ionisation

times to be very similar to the field-free ones except for asymmetric energy sharing at

10 eV excess energy. In the latter case, the ionisation time reduces from 24 a.u. in the

field-free case to 13 a.u. in the presence of the IR field. The two-electron streak camera

predicts a time delay of 10.4 a.u. close to the IR-field-present ionisation time of 13 a.u.

This suggests that the two-electron streak camera predicts time delays similar to the

ionisation time of both electrons in the presence of the IR laser field. Thus, our choice

of the magnitude of the streaking laser field has to be such that the IR laser field does

not significantly influence the ionisation times, as is indeed the case for 60 eV excess

energy with Fig. 3.9(b) and (d) being almost identical.







Figure 3.12: A three-dimensional model of the DPI of helium showing the
asymptotic momentum vectors of the electron in the field-free case, p1, p2, the change
in momentum due to the IR laser field, ∆pIR(tdelay, φ), and the asymptotic
inter-electronic angle as a function of φ, θ12(φ).
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3.4 The two-electron streak camera with a realistic at-

tosecond pulse

We have seen that the two-electron attosecond streak camera is capable of time resolving

the attosecond collisions involved in the double ionisation of helium. The work presented

in the previous section considered only discrete photon energies and instantaneous pho-

ton absorption [33, 34]. However, an attosecond pulse would in fact have a broad spread

of photon energies. This spread could be a few eV to hundred eV— shorter pulses in

time have a broader minimum spread in photon energies [82]. For single-photon double

ionisation, in the absence of the IR laser field and for this case of He(1s2s), the photon

energy can be simply retrieved from the asymptotic energies of the two electrons by the

relation ε1 +ε2 = ω−I1s2s = Exs. However if the IR laser field is present, then the energy

of the two electrons is not conserved. This means there is no longer a trivial relationship

between the asymptotic energies of the electrons and the energy of the triggering photon.

Here, we remove this limitation and extend the two-electron streak camera technique

to realistic attosecond pulses [35]. By resolving the bandwidth of an XUV-pulse in

the sum energy of two emitted electrons we construct the two-electron equivalent of

the frequency-resolved optical gating technique (FROG) to obtain a complete picture

of the single-photon double ionisation process. Specifically, in FROG [83] one extracts

from a two-dimensional data set (FROG-trace) the complete characteristics of an optical

pulse. In a similar manner in FROG CRAB [25] one retrieves the spectral phases and

amplitudes of an attosecond pulse. Here, we assume a transform limited XUV attosecond

pulse, to obtain information about the delay of two-electron emission after absorption

of a photon from the attosecond pulse. We use the inter-electronic angle of escape as

a function of the phase of the IR laser field as FROG-like trace for double ionisation.

In what follows, we discuss a simple algorithm we have devised for extracting the two-

electron delays for different excess energies.

We use the same IR laser field given in Eq. (3.1) and Eq. (3.2) with ωIR = 0.0285 au

(1600 nm) and FIR
0 = 0.007 a.u. (< 1.8× 1012 W/cm2) so that the streaking laser field

does not alter the attosecond collision significantly, but still has an observable effect on

θ12. Here, FIR
0 = 0.007 a.u. is chosen to efficiently streak excess energies from 10 eV to

60 eV.
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3.4.1 Modelling a realistic attosecond pulse

Now we describe how we model the XUV attosecond pulse and how its spectral intensity

needs to be reflected in the initial distribution of classical trajectories corresponding to

different excess energies. We model the electric field of the XUV-pulse by

F̄XUV(t) = FXUV
0 e−t2/4σ2

cos(ωXUV
0 t)ẑ, (3.9)

with σ the standard deviation of the temporal intensity envelope I(t). The temporal

intensity envelope I(t) of the transform limited pulse has a full width at half maximum

(FWHM) of 1 a.u., see inset Fig. 3.13. For the current calculations, the spectral intensity

Ĩ(ω) of the XUV-pulse has a FWHM of 75 eV, centred at ωXUV0 = 120 eV, see Fig. 3.13.

In what follows, we focus on the effect the large energy bandwidth of the XUV-pulse

has on the streaking process and we neglect the effect of the finite FWHM of I(t).

The uncertainty of the time of photo-absorption will be taken into account after the

application of the streak camera algorithm as an uncertainty in the retrieved delay-

times.

Using first order perturbation theory, in Appendix C, we compute the photo-absorption

probability to transition from the initial ground state of He(1s2s) to the final state of

double electron escape [84]

Wi→f ∝
1

ω
σ++(ω)̃I(ω) (3.10)

with the cross section for double ionisation, σ++(ω), being equal to σabs(ω)P++(ω).

σabs(ω) is the cross section for photo-absorption which we calculate in the single electron

approximation assuming that the 1s electron absorbs the photon [85]. P++(ω) is the

probability for double ionisation obtained through our classical simulation described in

Section 3.1. Finally, we weight each classical trajectory for a given photon energy ω

by the additional factor σabs(ω)̃I(ω)/ω compared to the weighting factor discussed in

Section 3.1.

3.4.2 “Modified” energy

Our goal is to retrieve the delay time between photo-absorption and ionisation of both

electrons. Since the delay depends on the sharing of the final energy among the two
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Figure 3.13: Spectral intensity of the XUV-pulse scaled by (FXUV
0 )2. Dotted curve:

Wi→f in the presence of the XUV and IR laser field averaged over all φ′s. Inset the
temporal intensity envelope.

electrons [34], we will consider in the following only symmetric energy sharing of ε < 0.14.

The delay times for the most symmetric energy sharing correspond roughly to the time of

minimum approach of the two electrons, i.e. to the “collision” time. In what follows, we

consider the symmetric sharing with respect to the streaked or the “modified” electron

energy, as defined below. The analysis of different energy sharings as described in the

previous section can be applied to the following analysis without any restrictions. In

Fig. 3.14 we plot, a FROG-like trace for two-electron ejection, the observable total

electron energy in the presence of the XUV plus IR laser field, Estr (streaked energy),

as a function of φ for excess energies ranging from 4 eV to 60 eV in steps of 2 eV.

Fig. 3.14 is plotted for symmetric streaked energy sharing. In what follows, we describe

how we extract from Fig. 3.14 the delay times of the intra-atomic two-electron collisions

for different triggering excess energies.

We first study the effect of the large energy bandwidth of the XUV-pulse on streaking

the two-electron collision dynamics. In Fig. 3.15(a) we plot the correlation map of the

excess energy of the XUV-photon and the observable sum energy Estr of both electrons.
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Figure 3.14: Observable Estr total electron energy, for the most symmetric energy
sharing, as a function of φ considering excess energies from 4 eV to 60 eV in steps of 2
eV and double ionisation events corresponding to launching of the photo-electron (1s)
in the ±ẑ direction for φ ranging from 0◦ to 180◦. To illustrate the difference between
launching of the photo-electron in the + ẑ versus the -ẑ direction we plot the Estr

corresponding to + ẑ for φ ranging from 0◦ to 180◦ and the Estr corresponding to - ẑ
for φ ranging from 180◦ to 360◦.

We see that a large range of excess energies maps to the same streaked total electron

energy. Hence, the final electronic state does not correspond unambiguously to the

triggering excess energy. For instance, the 20 eV streaked energy maps to excess energies

ranging from 12 eV to 26 eV. The reason for the weak correlation between the streaked

and the excess energy becomes clear in Fig. 3.15(c) for 10 eV excess energy: the streaked

energy changes significantly with φ.

To retrieve the excess energy from the final electronic state with improved accuracy,

we introduce a “modified” total electron energy, where the effect of the streaking IR

laser field is reduced. Therefore, we define a “modified” electron momentum pmod
i by

subtracting the momentum change ∆p̄IR due to the streaking IR laser field, i.e.

p̄ mod
i = p̄ str

i −∆p̄IR(tdelay, φ), (3.11)

where the index i = 1, 2 labels the two electrons. The change in momentum due to the

streaking laser field (neglecting the Coulomb potential) is given in Eq. (3.6). Since we

want to retrieve tdelay we set ∆φ = 0 when computing the “modified” electron momen-

tum pmod
i . Hence, ∆p̄IR ≈ F IR0

ωIR
sinφ ẑ. Thus, the “modified” energy Emod corresponding
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Figure 3.15: Correlation map of the excess energy Exs (a) with the observable
electron energy Estr and (b) with the “modified” electron energy Emod. The color scale
in (a) and (b) is such that the sum of Exs contributing to a certain Estr is normalized
to 100. (c) Streaked electron energy and (d) “modified” electron energy as a function
of φ for Exs = 10 eV excess energy. Fig. 3.15(a) and (c) are plotted for symmetric
streaked energy sharing while (b) and (d) for symmetric “modified” energy sharing.

to a certain triggering photon excess energy is given by

∑

i=1,2

((pstr
x,i)

2 + (pstr
y,i)

2)

2
+
∑

i=1,2

(pmod
z,i )2

2
= Emod. (3.12)

Fig. 3.15(d) shows that the “modified” electron energy varies significantly less with φ

compared to the unmodified, observable energy Estr (Fig. 3.15(c)). Consequently, Emod

is strongly correlated with the excess energy, see Fig. 3.15(b). The improved correlation

at higher excess energies is likely due to the faster collision, i.e. the approximation

∆φ ≈ 0 is better at higher excess energies.

We next explain why at φ = 0◦/180◦ the streaked electron energy and as a conse-

quence the “modified” electron energy is smaller/larger than the corresponding excess

energy for photo-electrons ejected in the +ẑ direction (it is the other way around for

photo-electrons ejected in the -ẑ direction). At φ = 0◦ each electron experiences a force

from the IR laser field in the direction opposite to the electron’s direction of escape. As
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Figure 3.16: (a) Emod for one-electron as a function of φ for 5 eV excess energy. (b)
Emod for two electrons as a function of φ for 10 eV excess energy; white solid line
shows the average of the distribution Emod in (a) times two. (c) Emod for two
electrons as a function of φ for excess energies between 4 and 14 eV. The white
dashed lines enclose the doubly ionising events with Emod = 10 eV. Fig. 3.16(b) and
(c) are plotted for symmetric “modified” energy sharing.

a result, each electron slows down and escapes with a streaked energy, Estr, smaller than

the electron’s final energy in the absence of the IR laser field. In contrast, at φ = 180◦

each electron experiences a force from the IR laser field in the same direction as the

electron’s direction of escape. As a result, each electron escapes with a streaked energy

larger than the electron’s final energy in the absence of the IR laser field. To verify

that the overall change of the “modified” total electron energy with φ is a one-electron

effect, we run our simulation in the presence of the XUV plus IR laser field only for the

photo-electron (the 2s electron is absent). Since for the two-electron case we only con-

sider symmetric energy sharing, we compare the two-electron case for a certain excess

energy with the one-electron case for half that excess energy. Indeed, multiplying by two

the distribution of the one-electron “modified” energy as a function of φ for an excess

energy of, for example, 5 eV (Fig. 3.16(a)) and taking the average we find that there is

excellent agreement with the two-electron “modified” energy at 10 eV excess energy as

a function of φ, see Fig. 3.16(b). Note that in Fig. 3.16 and in what follows (Fig. 3.17(b)

and (d) and Fig. 3.18) we focus on double ionisation events where the photo-electron is

ejected in the +ẑ direction.

3.4.3 Isolating individual photon excess energies

For a certain excess energy, we have shown that the “modified” electron energy increases

with φ, see Fig. 3.16(b). This forms the basis for the simple algorithm we develop to

determine, for the case when many excess energies are considered (XUV attosecond
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Figure 3.17: θ12 as a function of φ for “modified” energies around 10 eV (a) and 20
eV (c) in the presence of the XUV and IR laser field. ∆φ is the shift of the maximum
of the vector potential of the IR laser field, corresponding to a maximum of the split
of θ12 as a function of φ. (b) Excess energies as a function of φ that contribute to the
“modified” energy around 10 eV enclosed by the white dashed lines in Fig. 3.16(c)
and similarly (not shown) for the “modified” energy centred around 20 eV. Fig. 3.17
is plotted for symmetric “modified” energy sharing

pulse), the range of “modified” electron energies that pertain to a certain excess energy

Exs. Our goal is to select that range of “modified” electron energies that includes all

double ionising events that are triggered by a narrow set of excess energies centred

around Exs. The reason is that it is the double ionisation events triggered by a single

Exs whose collision time we aim to streak. We label the set of double ionisation events

thus selected by Emod.

If our algorithm is dictated mainly by experimentally accessible observables, we com-

pute the collision time corresponding to Exs by selecting the doubly ionising events

whose “modified” electron energy changes from [Exs −∆E/2,Exs] eV for φ = 0◦ to

[Exs,Exs + ∆E/2] for φ = 180◦. We choose ∆E to be roughly 8 eV for all excess energies

(method 1). With this selection criterion, the double ionisation events with Emod = 10

eV, enclosed by the white dashed lines in Fig. 3.16(c), are the events triggered by excess

energies ranging from 7 eV to 13 eV, see Fig. 3.17(b); these excess energies are indeed
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roughly centred around Exs = 10 eV for all φ’s. Similarly, the double ionisation events

we label by Emod = 20 eV are triggered by excess energies ranging from 17 eV to 23 eV,

see Fig. 3.17(d); these excess energies are roughly centred around Exs = 20 eV for all

φ’s.

To then determine the collision time corresponding to a certain excess energy, for

instance, Exs =10 eV/20 eV the best we can do, according to method 1, is to com-

pute the two-electron collision time of the double ionisation events corresponding to

Emod =10 eV/20 eV. We do so and determine the collision time for Emod =10 eV/20 eV

in Fig. 3.17(a) and (c) by extracting ∆φ from the lower branch of the inter-electronic

angle of escape θ12(φ); the exact procedure for doing so is described in the previous sec-

tion. We find that ∆φ is 4.1◦/1.9◦ corresponding to a collision time of 2.5 a.u./1.2 a.u.

for Emod =10 eV/20 eV, respectively.

Figure 3.18: � the collision times for “modified” electron energies Emod from 10 eV
to 56 eV; • the collision times for pure excess energies Exs ranging from 10 eV to 56
eV. Collision time was retrieved by (a) method 1 and (b) method 2. The error bars
show the uncertainty in the delay times of 0.6 a.u. since we change φ every one degree.

In Fig. 3.17(a) and (c) we have shown how to obtain the collision time for Emod equal

to 10 eV and 20 eV respectively. Repeating the process, we obtain the collision time for

Emod ranging from 10 eV to 56 eV energies in Fig. 3.18(a). We compute the delay time

using a bin size for φ of 1 ◦. Therefore, we introduce an uncertainty in the delay times of

±0.6 a.u; this is larger than the standard deviation of the XUV pulse in Eq. (3.9), which

is 0.4 a.u.. We find that the collision time decreases with increasing excess energy, that is,

increasing Emod. Since in our computation (but not experimentally) we can identify the

double ionisation events in the presence of the XUV and IR laser field which are triggered

by only a single excess energy, Exs, we also compute the collision time corresponding
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to this excess energy, see Fig. 3.18(a). Fig. 3.18(a) shows that the retrieval algorithm

for the collision time based on Emod works better at lower excess energies. The reason

is that we compute the delay times corresponding to a certain Emod using ∆E ≈ 8 eV

independent of the excess energy. This choice of ∆E describes best the rate of increase

of the “modified” electron energy with φ for smaller excess energies. However, ∆E

decreases with increasing excess energy. As a result, the agreement is worse for higher

excess energies.

Figure 3.19: Correlation map of the excess energy with the “modified” energy
sharing for the doubly ionising events with equal energy sharing in the absence of the
IR laser field. The color scale is such that the sum of “modified” energy sharings
contributing to the equal energy sharing double ionisation events for a certain Exs is
normalized to 100.

To account for the fact that ∆E changes with excess energy, we introduce a different

method (method 2) that labels as Emod the doubly ionising trajectories with Emod within

± 1 eV of twice the average Emod for the one-electron problem, see Fig. 3.16(a) and (b).

Therefore, in this algorithm we use the calculated Emod as input for each excess energy

whereas the previously described algorithm uses only experimentally accessible data.

We find that we obtain a much better agreement between the two sets of collision time

using method 2, see Fig. 3.18(b). In both algorithms the collision times are computed

for symmetric “modified” energy sharing. The reason we choose the symmetric energy

sharing in terms of the “modified” energy is that the symmetric “modified” energy

sharing is strongly correlated to the symmetric energy sharing in the absence of the

IR laser field (Fig. 3.19); it is the “collision” time corresponding to this latter energy

sharing that we aim to streak.
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3.4.4 Charge dependence

Finally, we note that the algorithms described above for obtaining the collision time,

including Eq. (3.6) and Eq. (3.12), are applicable to atoms with higher nuclear charge

as well. The only difference is that the change of the “modified” electron energy with

φ gets larger with increasing charge. This is illustrated in Fig. 3.20 for the one-electron

case. For higher charges, in method 2 one would follow the exact same steps as for the

case of charge equal to two described above. However, for method 1 one would need to

consider a larger interval ∆E to correctly account for Emod being steeper as a function

of φ for larger nuclear charges.
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Figure 3.20: Average of Emod as a function of φ for the one-electron case for
Exs = 5 eV for charges Z = 2, 5, 10.

3.5 Summary

We have shown that the two-electron streak camera for symmetric energy sharing

“probes” roughly the “collision” time in the two-electron ionisation dynamics; for asym-

metric energy sharing it “probes” the motion of the slowest electron in the presence

of the ion’s Coulomb potential. We have shown that the two-electron streak camera

is capable of resolving the dynamics of momentum transferring attosecond collisions.

Moreover, we have demonstrated that the two-electron streak camera can be realised for

realistic XUV attosecond pulses.



Chapter 4

Formation of highly excited

neutral atoms in strongly driven

diatomics

While in the previous part of this thesis we considered single-photon ionisation processes

in atoms, in what follows we study attosecond phenomena in diatomic molecules driven

by intense infrared laser fields (strongly driven). Some of the phenomena that have been

addressed during the breakup of strongly driven diatomics are non-sequential double

ionisation (NSDI) [36] and enhanced ionisation [37]. Another very interesting process,

which has only very recently being observed, is the formation of highly excited neutral

atoms [38]. This process is mediated by “frustrated” ionisation, first discussed in the

context of the He atom [86]: an electron tunnel ionises in the presence of the strong laser

field, however, when the laser field is switched off the electron does not have enough

energy to ionise and remains bound in an exited state (Rydberg state). In strongly

driven H2 the “frustrated” ionisation [38] pathway leads to the production of an excited

H atom, along with a proton and a free electron.

As we discuss in what follows, “frustrated” ionisation in strongly driven H2 accounts

for about 10% of all breakup events. Thus, it is necessary to accurately describe “frus-

trated” ionisation, if one is to fully understand the breakup of strongly driven H2. The

theoretical modelling of “frustrated” ionisation is a highly complex task due to the large

number of degrees of freedom involved. In this work, we account for both electronic and

64
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nuclear motion on the same footing, i.e. we do not use the Born-Oppenheimer approx-

imation. Nuclear motion was not accounted for in previous semiclassical 3-d models of

molecules in strong fields; these models used “fixed” centres instead to elucidate NSDI

in strongly driven diatomic molecules [87–89]. The first theoretical treatment of “frus-

trated” ionisation in H2 was performed in [39]. In the following we discuss how we

have significantly expanded this latter work to also account for the effect of elliptically

polarised laser fields on “frustrated” ionisation in H2.

4.1 Theory and model

First, we set up the initial electronic phase space distribution. We consider the molecular

axis to be along the z axis. We model the strong laser field as an electric field of the

form

F̄L(t) = FL0 f(t) [cos(ωLt)ẑ + ε sin(ωLt)x̂] , (4.1)

where FL0 is the electric field strength, ωL is the angular frequency of the laser field and

ε is the ellipticity of the laser pulse which can take values from 0 to 1. The function

f(t) is given by

f(t) =





10T > t > 0 1

12T > t > 10T cos2((t− 2T )ωL/8)),

t > 12T 0

(4.2)

where T is the period of the laser pulse. For our simulation ωL = 0.057 a.u. (800

nm) and FL0 = 0.065 a.u. (1.5×1014 Watts/cm2). We start the time propagation at

ωLt0 = φL, where the initial phase of the laser field φL is chosen randomly, see [89–92].

For field strengths, FL0 , smaller than the threshold field strength for over-the-barrier

ionisation, we assume that one electron (electron 1) tunnel ionises through the field-

lowered Coulomb potential to the continuum, see Section 4.1.1 for details; the initially

bound electron (electron 2) is described by a one-electron microcanonical distribution,

see Section 4.1.3 for details. The initial conditions of the two nuclei are described by

the Wigner distribution using the Morse potential [93], see Section 4.1.4 for details. We

weight each trajectory using the tunnelling rate provided by the semiclassical formula
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[94] with field strength equal to that at time t0, see 4.1.5. We use 0.57 a.u. (1.28 a.u.)

as the first (second) ionisation potentials.

In previous work [39], the Coulomb singularity was accounted for analytically using a

global regularisation scheme formulated for gravitational systems in [95]. In the current

work, we have developed a new technique that accounts for the Coulomb singularity

numerically: we first transform into relative coordinates using the global regularisa-

tion scheme in [95], and then propagate numerically using a time-transformed leapfrog

method [96, 97] in conjunction with the Bulirsch-Stoer method [98]. This is a much

more stable technique for large mass ratio systems—electron versus nucleus in our case.

More details on the propagation technique can be found in Section 4.1.7.

4.1.1 Exit point of the tunnel ionising electron

Our model starts with one electron (electron 1) tunnel-ionising through the field-lowered

Coulomb barrier. We assume that the electron tunnels in a direction opposite to the

field. In what follows, we determine the position of the electron at the time it exits from

the field-lowered Coulomb barrier; this is also the initial position of electron 1 in the

propagation. The potential electron 1 feels while it tunnel ionises is given by [88]

Vexit(r) = − Zn1

|r̄1 − R̄n1 |
− Zn2

|r̄1 − R̄n2 |
+ k

∫
d3r2
|ψ2(r̄2)|2
|r̄1 − r̄2|

+ r̄1 · F̄L(t0), (4.3)

where Zn1 and Zn2 are the charges of the two nuclei, while r̄1, r̄2, R̄n1 and R̄n2 are the

position vectors of electron 1, of electron 2 and of the two nuclei, respectively. Since,

we assume that the electron 1 tunnels in a direction opposite to the field it’s position

vector is given by r̄1 = −rF̂L(t0). ψ2(r̄2) is the wave function of the initially bound

electron 2 after the removal of electron 1, i.e. the wave function of the electron in H+
2

at the inter-nuclear equilibrium distance of H2. Therefore, the potential term

k

∫
d3r2
|ψ2(r̄2)|2
|r̄1 − r̄2|

(4.4)

represents the average Coulomb repulsion between electrons 1 and 2. To find the position

where electron 1 exits the barrier, we solve the following equation for r

Vexit(r) = −I1, (4.5)
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where I1 is the first ionisation potential. We solve Eq. (4.5) numerically to obtain r for

different strengths of the field at initial times t0, i.e. F̄L(t0).

4.1.2 Perpendicular momentum of the tunnel ionising electron at the

exit point

After having determined the initial position of electron 1 we now determine its initial

momentum. We assume that electron 1 tunnels with zero momentum along the direction

of the field [99]. The probability distribution for the perpendicular component of the

momentum [88, 100], p⊥, of electron 1 is given by

W (p⊥)dp⊥ =
p⊥

FL(t0)
exp

(
−p

2
⊥
√

2|I1|
FL(t0)

)
dp⊥. (4.6)

The maximum value of the probability distribution is:

Wmax =
exp(−1/2)

2
√

2|I1|FL(t0)
. (4.7)

We now sample the perpendicular momentum as follows: we select a random number,

ptest⊥ , uniformly distributed in the interval [0, pmax] where pmax is the value beyond

which W (p⊥) is essentially zero. We, also, select a random number, Wtest, uniformly

distributed in the interval [0, Wmax]. If W (ptest⊥ ) > Wtest, then, ptest⊥ is accepted and

assigned as the value of the perpendicular momentum, otherwise we repeat the process.

Finally, the momentum of electron 1 is given by

px = p⊥ cosφp⊥ cos θL

py = p⊥ sinφp⊥

pz = −p⊥ cosφp⊥ sin θL

, (4.8)

where φp⊥ is a uniform random number selected in the interval [0, 2π] and θL is the

angle between the electric field and the molecular axis.
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4.1.3 One-electron microcanonical distribution for a two centre molecule

We now focus on creating the initial conditions of electron 2, which is bound, for our

formulation of the initial state. The one-electron microcanonical distribution for a two-

centre molecule [101] is

M(r̄2, p̄2) = kδ
(
−I2 − p2

2/2− Vn(rA, rB)
)
, (4.9)

where

Vn(rA, rB) = −Zn1

rA
− Zn2

rB
, (4.10)

with rA = |r̄2 − R̄n1 |, rB = |r̄2 − R̄n2 |, while I2 is the second ionisation potential and p̄2

is the momentum of electron 2; k is a normalisation constant. We make the coordinate

transformations:

ξ = 1
R0

(rA + rB) η = 1
R0

(rA − rB) φr = arctan(y2/x2)

νp = p2z
p2

φp = arctan(p2y/p2x) E =
p22
2 −

Zn1
rA
− Zn2

rB

, (4.11)

where ξ, η and φr denote the elliptical coordinates and cos θp = νp, with θp and φp the

polar and azimuthal angles in spherical coordinates. The new variables are defined in

the intervals

E ∈ [−∞, 0], ξ ∈ [1,∞], η ∈ [−1, 1]

νp ∈ [−1, 1], φp ∈ [0, 2π], φr ∈ [0, 2π]

(4.12)

with the constraint that
p2

2
= −I2 − Vn(ξ, η) > 0, (4.13)

where

Vn(ξ, η) = − 2Zn1

R0(ξ + η)
− 2Zn2

R0(ξ − η)
(4.14)

The Jacobian of this transformation is [101]

J =

(
R0

2

)3

(ξ2 − η2)(2(E − Vn(ξ, η)))1/2. (4.15)

Therefore the probability density in terms of the new coordinates takes the form

M(E, ξ, η, φr, νp, φp) = kδ(E + I2)

(
R0

2

)3

(ξ2 − η2)(2(E − Vn(ξ, η)))1/2. (4.16)
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The above probability distribution does not depend on the variables φr, νp and φp, and

thus we assign to these variables values obtained from uniform random numbers in the

intervals defined above. To determine the variables ξ and η we follow a different process.

Integrating Eq. (4.16) over E, φr, νp and φp, we find that the probability density for

these variables is given by

ρ(ξ, η) =





k′(ξ2 − η2){2[−I2 − Vn(ξ, η)]}1/2 if − I2 > Vn(ξ, η)

0 if − I2 ≤ Vn(ξ, η)
(4.17)

We next discuss how we sample ξ and η [53, 101]. Let ξmax be the maximum value

of ξ for all η that satisfies the constraint in Eq. (4.13), while ρmax is the upper bound of

ρ(ξ, η). Then, we select three random numbers ξtest, ηtest and χtest uniformly distributed

in the intervals [0, ξmax], [-1, 1] and [0, ρmax], respectively. If ρ(ξtest, ηtest) > χtest then

the selected values of ξtest and ηtest are accepted. If not, three numbers are randomly

selected again and the process is repeated.

4.1.4 Initial phase space distribution of the nuclei

We take the initial vibrational state of the nuclei to be the ground state of the Morse

potential

VM (R) = D(1− e−β(R−R0))2, (4.18)

with R the internuclear distance, D = 0.174 a.u., β = 1.029 a.u., and R0 = 1.4 a.u.

(equilibrium distance of H2) [93]. The relative momentum of the nuclei satisfies:

p2
rel

2µ
+ VM (R) = E0, (4.19)

where E0 ≈ 0.01 a.u is the vibrational ground state of the nuclei and

µ =
mn1mn2

mn1 +mn2

, (4.20)

where mn1 and mn2 are the masses of the nuclei. We choose the Wigner distribution

of the ground state of the Morse potential [93] to describe the initial phase space of

the nuclei. The intensity we consider is high enough to justify restricting the initial

distance of the nuclei to R0 [102]. Concerning the relative momentum of the nuclei ,
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prel, we assign to it a random number uniformly distributed in the interval [0, 10]; for

values greater than 10 the Wigner distribution is essentially zero. After determining the

relative momentum, we determine the momenta of the two nuclei. Following [103] the

relative momentum vector is given by

p̄rel = µ ˙̄R (4.21)

and the positions of the nuclei from the centre of mass are

R̄n1 = − mn2

mn1 +mn2

R̄ (4.22)

and

R̄n2 =
mn1

mn1 +mn2

R̄. (4.23)

Therefore the magnitude of the initial momenta of the two nuclei is given by the mag-

nitude of the relative momentum.

Instead of the Wigner distribution we can use the classical value of the relative

momentum which is given in Eq. (4.19). We find that both the Wigner and classical

distributions yield the same results for the processes under consideration in this chapter.

4.1.5 Ionisation rate

For the tunnelling rate we use a semiclassical formula that was derived in [94]

Γ = 2πκ2C2
κ

(
2κ3

|FL(t0)|

)2Q/κ−1

exp

(
− 2κ3

3|FL(t0)|

)
R(θL), (4.24)

where |FL(t0)| is the instantaneous field strength, κ =
√

2I1, and Q is the asymptotic

charge. For H2 the asymptotic charge is one. The coefficient Cκ is obtained by fitting

the Dyson orbital to the following asymptotic form of the wave function

Ψ(r̄1) ≈ Cκκ3/2(r1κ)Q/κ−1e−κr1T (cos θ, sin θ cosφ). (4.25)

The Dyson orbital [104] is the overlap integral of the two-electron wave function of the

molecule with the one-electron wave function of the molecular ion; for the current work

the overlap integral is that of the ground state of H2 with the 1σ state of H+
2 calculated
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at the internuclear distance of H2. We obtain both wave functions with the Hartree-Fock

method [105], using MOLPRO—a standard quantum chemistry package [106].

The function T (cos θ, sin θ cosφ) depends on the molecular orbital that the electron

occupies before tunnelling. In what follows, we derive the expression for T (cos θ, sin θ cosφ)

for the H2 molecule, where the electron occupies a 1σg orbital [105], which we can ap-

proximately express as a LCAO (linear combination of atomic orbitals) of two 1s orbitals

Φ1σg(r̄1) ∝ e−κ|r̄1−R̄n1 | + e−κ|r̄1−R̄n2 |. (4.26)

Taking the asymptotic expansion for r1 � R0, we derive an expression for T (cos θ, sin θ cosφ)

T (cos θ) = cosh

(
κR0

2
cos θ

)
, (4.27)

with R0 the equilibrium distance between the nuclei. By fitting the wave function in

the interval 3 ≤ r1 ≤ 6 a.u., we find Cκ = 0.51 for H2. The interval was chosen so that

for r1 > 3 a.u., the Coulomb potential from the H+
2 molecular ion has the form of a

single-centre Coulomb potential, i.e. −Q/r1, whereas the upper limit is chosen so that

for r1 > 6 a.u. the Dyson orbital is zero.

As discussed in [94] (shown also here for completeness), the function R(θL) is ex-

pressed as follows

R(θL) =

[
T0(θL)− 4|FL(t0)|

3κ3
T2(θL) +

2|FL(t0)|
3κ3

T3(θL)

]2

(4.28)

+
2|FL(t0)|

9κ3
T 2

1 (θL),
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where

T0(θL) = T (cos θL, sin θL),

T1(θL) = Tv cos θL − Tu sin θL,

(4.29)

T2(θL) = Tu cos θL + Tv sin θL,

T3(θL) = Tvv cos2 θL + Tuu sin2 θL − Tuv sin2 θL,

with Tu, Tv, Tuu, Tvv, and Tuv being the first and second order partial derivatives of

T (u, v) with respect to u and v, calculated at u = cos θL and v = sin θL.

4.1.6 Tunnelling during time-propagation

During time-propagation, we allow the electrons to tunnel at the classical turning points

along the field axis using the WKB approximation - for details see [107]. Once a classical

turning point is encountered we compute at the time, ttp, of the encounter:

Vtun(r) = − Zn1

|r̄tun(r)− R̄n1 |
− Zn2

|r̄tun(r)− R̄n2 |
+ r̄tun · F̄L(ttp)− Etp, (4.30)

where Etp is the potential energy of the electron at the turning point (ignoring the

electron-electron interaction) and

r̄tun(r) = r̄tp − rF̂L(ttp), (4.31)

where r̄tp is the position vector of the electron at the classical turning point and F̂L(tt)

is the unit vector of the laser field. We next identify the roots of Vtun(r); by definition

one root is at r = 0, which is the turning point, while the other root rex identifies

the position of the electron when it exits the potential barrier. We next compute the

transmission coefficient, using the WKB formula [108]:

Ttun = e−2Wint , (4.32)
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where

Wint =

∫ rex

0

√
2Vtun(r)dr. (4.33)

If Ttun is greater than Ttest
tun , a random number uniformly distributed in [0, 1], then

we consider that the electron has tunnelled; the next step of the propagation starts at

r̄tun(rex) with zero momentum in the direction of tunnelling.

4.1.7 Propagation technique

Next, we describe the technique we follow to propagate the full four-body Hamiltonian

in time, i.e. including both electronic and nuclear motion, in the context of N Coulomb

interacting particles. Previously, in [39, 89], the equations of motion were formulated

using the global regularisation scheme described in [95]. In this latter work, the resulting

equations of motion were propagated using the 5th order Runge-Kutta method [98]. In

the current work, we use a time-transformed leapfrog propagation technique [96] in

conjunction with the Bulirsch-Stoer method [98, 109]. Combining these two techniques

has been used successfully to describe gravitational few-body systems where large mass

ratios are involved [96, 97, 110].

Transforming to a new coordinate system

The Hamiltonian for N Coulomb interacting particles in the presence of a laser field is

given by

H =
N∑

i=1

p2
i

2mi
+
N−1∑

i=1

N∑

j=i+1

QiQj
|r̄i − r̄j |

−
N∑

i=1

Qir̄i · F̄ (t), (4.34)

where Qi is the charge, mi is the mass, p̄i is the momentum vector and r̄i is the position

vector of particle i and F̄ (t) = (F1(t), F2(t), F3(t)) is the laser field vector. Next, we

transform to a new coordinate system that involves the relative coordinate vectors q̄ and

the corresponding conjugate momenta ρ̄, which are given by [95]

q̄ij = r̄i − r̄j , (4.35)

ρ̄ij =
1

N

(
p̄i − p̄j −

mi −mj

M
< ρ̄ >

)
, (4.36)
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where 〈ρ̄〉 =
∑N

i=1 p̄i and M =
∑N

i=1mi. Expressing r̄ and p̄ in terms of q̄ and ρ̄ we

obtain

r̄i =
1

M

N∑

j=i+1

mj q̄ij −
1

M

i−1∑

j=1

mj q̄ji + 〈q̄〉 , (4.37)

and

p̄i =
N∑

j=i+1

ρ̄ij −
i−1∑

j=1

ρ̄ji +
mi

M
〈ρ̄〉 (4.38)

where 〈q̄〉 = 1
M

∑N
i=1mir̄i. Next, we define a fictitious particle for each ij pair replacing

the ij with the k index as follows

k(i, j) = (i− 1)N − i(i+ 1)/2 + j, (4.39)

with i < j for a total of K = N(N−1)
2 fictitious particles. Using this notation Eq. (4.38)

takes the form

p̄i =

[
K∑

k=1

aikρ̄k

]
+
mi

M
< ρ̄ >, (4.40)

where aik = 1 and ajk = −1 when k = k(i, j), else aij = 0.

Expressing the Hamiltonian in Eq. (4.34) in terms of the relative coordinates and

conjugate momenta we obtain

H =
K∑

k,k′=1

Tkk′ ρ̄kρ̄k′ +
1

2M
〈ρ̄〉2 +

K∑

k=1

Uk
qk

−
(

K∑

k=1

Lkq̄k +

N∑

i=1

Qi 〈q̄〉
)
· F̄ (t) (4.41)

with

Tkk′ =
N∑

i=1

aikaik′

2mi
, Uk = QiQj , Lk =

Qimj −Qjmi

M
(4.42)

The equations of motion are, then, given by

dq̄k
dt

= 2

K∑

k′=1

Tkk′ ρ̄k′
d 〈q̄〉
dt

=
1

M
〈ρ̄〉 (4.43)

(4.44)

dρ̄k
dt

=
Ukq̄k
q3
k

+ LLkF̄ (t)
d 〈ρ̄〉
dt

=

N∑

i=1

QiF̄ (t) (4.45)
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Time-transformed leapfrog

For close encounters between two particles the Hamiltonian in Eq. (4.41) is singular.

Previously, in [39, 89], this issue was addressed by transforming to regularised coordi-

nates [95]. In the current work, to address the singularity, we use the time-transformed

leapfrog method that is described in [96]; we can do so, since in Eq. (4.45) the derivative

expressions are independent of the quantities themselves. In the leapfrog method two

sets of first order differential equations are identified. In our case, these two sets cor-

respond to the relative coordinates q̄ and the corresponding conjugate momenta ρ̄. In

addition, we consider the time transform ds = Ω(q̄)dt [96]; Ω(q̄) is an arbitrary positive

function of the relative position vectors. Introducing a new auxiliary variable W = Ω

the equations of motion take the form q̄′ = ˙̄q(ρ̄)/W , t′ = 1/W and ρ̄′ = ˙̄ρ(q̄)/Ω; prime

denotes the derivate with respect to the new time variable s. To obtain W as a function

of time we solve the differential equation [96]

dW

dt
= ˙̄q(ρ̄) · ∂Ω(q̄)

∂q̄
. (4.46)

Applying the leapfrog method we now propagate q̄, t, ρ̄ and W over a time-step h as

follows: (i) we propagate q̄ and t over half a time-step, h/2; (ii) we propagate ρ̄ and W

over a time-step h using the values of q̄ and t at half the time step h/2. For each pair of

relative coordinate q̄ and corresponding conjugate momentum ρ̄ the time-transformed

leapfrog set of equations take the form:

q̄1/2 = q̄0 + h
2

˙̄q(ρ̄0)
W0

t1/2 = t0 + h
2

1
W0

ρ̄1 = ρ̄0 + h
˙̄ρ(q̄1/2)

Ω(q̄1/2)

W1 = W0 + h
˙̄q(ρ̄0)+ ˙̄q(ρ̄1)
2Ω(q̄1/2) ·

∂Ω(q̄)
∂q̄

∣∣∣
q̄=q̄1/2

q̄1 = q̄0 + +h
2

˙̄q(ρ̄1)
W1

t1 = t0 + h
2

1
W1

(4.47)

where the subscripts 0, 1/2, 1 denote the values of the variables at the initial time,

at half a time-step and at the end of a time-step. Note that we have K such sets of

equations, as many as the number of the fictitious particles. The form of Ω is chosen so
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that if any of the relative coordinates becomes small (two-body close encounter) then

the time-step reduces accordingly:

Ω =

K∑

k=1

1

|q̄k|
. (4.48)

Bulirsch-Stoer method

The final step in the integration of the equations of motion, involves incorporating

the leapfrog method into the Bulirsch-Stoer method [98, 109]. In this latter method,

the propagation over a time-step H takes place by splitting it into n time-step substeps

of size h = H/n. For the propagation over each one of these substeps, we use the

time-transformed leapfrog technique. The algorithm we follow to propagate is given by

[97, 110]

q̄1/2 = q̄0 + h
2

˙̄q(ρ̄0)

t1/2 = t0 + h
2

1
W0

ρ̄1 = ρ̄0 + h
˙̄ρ(q̄1/2)

Ω(q̄1/2)

W1 = W0 + h
˙̄q(ρ̄0)+ ˙̄q(ρ̄1)
2Ω(q̄1/2) ·

∂Ω(q̄)
∂q̄

∣∣∣
q̄=q̄1/2

q̄m−1/2 = q̄m−3/2 + h ˙̄q(ρ̄m−1)

tm−1/2 = tm−3/2 + h
2

1
Wm−1

...

ρ̄m = ρ̄m−1 + h ˙̄ρ(q̄m−1/2)

Wm = Wm−1 + h
˙̄q(ρ̄m−1)+ ˙̄q(ρ̄m)

2Ω(q̄m−1/2) · ∂Ω(q̄)
∂q̄

∣∣∣
q̄=q̄m−1/2

...

q̄n = q̄n− 1
2

+ h
2

˙̄q(ρ̄n)

tn = tn−1/2 + h
2

1
Wn

(4.49)

where m = 2, ..., n. This process of integrating from q̄0, ρ̄0 to q̄n and ρ̄n is repeated with

increasing values of n until extrapolation to zero time-step, i.e. q̄n and ρ̄n for n→∞, is

achieved with satisfactory error. Using the techniques described above we obtain results

similar to those in [39] for H2 strongly driven by linearly polarised laser fields. The
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current technique is numerically more robust than the one used in [39] and we, thus,

adopt it in what follows.

4.1.8 Identifying Rydberg states in neutral atoms

In what follows, we adopt a CTMC method that involves all the techniques discussed

in this section. We use this CTMC method to describe the formation of highly excited

neutral atoms, through Coulomb explosion, in strongly driven H2. After propagating

the trajectories to the asymptotic limit we select trajectories that produce, H+, a free

electron and H∗ (where ∗ denotes that the electron is in a n > 1 quantum state). To

identify the trajectories when the electron is captured in an excited state, we first find

the classical principal number nc = 1/
√

2|ε|, where ε is the total energy of the trapped

electron. Next, we assign a quantum number n so that the following criterion, which is

derived in [111], is satisfied:

[(n− 1)(n− 1/2)n]1/3 ≤ nc ≤ [n(n+ 1/2)(n+ 1)]1/3. (4.50)

4.2 Results

We first describe H∗ formation in strongly driven H2 in a linearly polarised laser field

along the molecular axis. In Fig. 4.1(a) we show the distribution for the quantum number

n in H∗ formation. The peak of the distribution is at n = 8, similar to results obtained

for atoms [86]. In Fig. 4.1(b) we show the distribution for the energy of the H+ and H∗

fragments; the peak at around 3.5 eV is in good agreement with experimental results

[38].

In Fig. 4.2, we also show the distribution for the internuclear distance when electron

2 tunnel ionises for the last time. We find that this distribution peaks at about 4 a.u.

Assuming that this energy is available to just the two nuclei, in the form of potential

energy, we can estimate the final kinetic energy of the nuclei due to Coulomb explosion;

we find that this energy is 3.4 eV—in very good agreement with the peak value of the

energy distribution in Fig. 4.1(b).
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Figure 4.1: (a) The final energy distribution of the H+ or H∗ (b) The quantum
number n of the electron in H∗.

4.2.1 Pathways for “frustrated” ionisation

We find that two distinct pathways contribute to the formation of H∗. In pathway A,

the electron that initially tunnel ionises (electron 1) escapes very quickly. Later in time,

the initially bound electron (electron 2) tunnel ionises and quivers in the laser field.

However, when the laser field is turned off electron 2 does not have enough energy to

escape. Instead, it gets trapped by one of the protons and occupies a Rydberg state

of the H atom. An illustration of pathway A can be seen in Fig. 4.3(a). In pathway

B, electron 1, after tunnel ionising, returns to the H+
2 ion. After a few periods of the

laser field, electron 2 tunnel ionises and escapes to the continuum. However, when the

laser field is turned off electron 1 remains trapped in a Rydberg state, as illustrated in

Fig. 4.3(b). For a laser field polarised along the direction of the molecule and a laser
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Figure 4.2: The internuclear distance, R, at the time the initially bound electron
tunnel ionises.
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velope E0(t) is defined as E0(t) = E0 for 0 < t < 10T and
E0(t) = E0 cos2(!(t � 10T)/8) for 10T < t < 12T, with
T the period of the field. We start the time propaga-
tion at !t0 = �0 where the phase of the laser field �0 is
chosen randomly. In the current study we consider an
intensity of 1.5⇥1014 W/cm2 which is in the tunneling
regime. That is, the instantaneous field strength at phase
�0 is smaller than the threshold field strength for over-
the-barrier ionization. We assume one electron (electron
1) tunnel ionizes, i.e., tunnels through the field-lowered
Coulomb potential to the continuum with an initial veloc-
ity distribution that is perpendicular to the direction of
the field [19]. The initially bound electron (electron 2) is
described by a one-electron microcanonical distribution
[20]. We use the tunneling rate provided in [21] with field
strength the instantaneous one at �0. We use 0.57 a.u.
(1.28 a.u.) as the first (second) ionization potentials.

Second, we take the initial vibrational state of the nu-
clei to be the ground state (E0 ⇡ 0.01 a.u) of a Morse
potential and restrict the initial distance of the nuclei to
R0 = 1.4 a.u. (equilibrium distance) [22]. We choose the
Wigner distribution of the above state [23] to describe
the initial state of the nuclei. Finally, we propagate the
full four-body Hamiltonian in time, i.e., including both
electronic and nuclear motion, using the Classical Tra-
jectory Monte Carlo method [24]. During time propaga-
tion, we allow the initially bound electron to tunnel at
the classical turning points along the field axis using the
WKB approximation, for details see [25]. We finally se-
lect those trajectories leading to a break-up of H2 with
H+, H⇤ (where ⇤ denotes an electron in a n > 1 quantum
state) and a free electron as fragments. We identify the
electrons captured in a Rydberg n quantum state of H⇤

following the process outlined in [26].

We first investigate the dependence of the two path-
ways of H⇤ formation on the degree of ellipticity of the
laser field. These pathways can be categorized as to
which one of the two ionization steps, i.e., the earlier tun-
nel ionization of electron 1 or the later tunnel ionization
of electron 2 is “frustrated” [15]. In Fig. 1 a) we show
pathway A where electron 1 tunnel ionizes, subsequently
escaping very quickly. Electron 2, later, tunnel ionizes
and quivers in the laser field; however, when the field is
turned o↵, electron 2 does not have enough drift energy
to escape and occupies a Rydberg state of the H-atom
instead. Hence, in Pathway A the later ionization step is
“frustrated”. In Fig. 1 b) we show pathway B where elec-
tron 1 tunnel ionizes very quickly, quivering in the field,
while electron 2 tunnel ionizes and escapes after a few
periods of the laser field. When the laser field is turned
o↵, electron 1 does not have enough energy to escape and
remains in a Rydberg state of the H-atom instead, i.e.,
the earlier ionization step is “frustrated”.

In Fig. 2 we show how the probability of pathway A
and B (out of all trajectories) changes with the degree of
ellipticity of the laser field. We find that as ✏ increases the
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FIG. 1. (Color online) Schematic illustration of the two routes
leading to formation of H⇤: a) Pathway A, b) Pathway B.
Shown is the time-dependent position along the laser field
for electrons (black lines) and ions (gray broken lines). This
figure appears in [15]; we also include it here for completeness.

probability of pathway B drops more sharply than that
of A. For instance, for ✏ = 0 pathway B is 1.6 times more
probable than pathway A, while for ✏ = 0.45 pathway B
is roughly 6 times less probable than A. Thus, for ✏ > 0.4
pathway B is practically “switched-o↵” with pathway A
prevailing.

The question that naturally arises is why pathway B
is more sensitive to the ellipticity of the laser field. It is
known that double ionization events where re-collisions
prevail are very sensitive to ✏ [27]. The reason is that
a slight ellipticity of the laser field o↵sets the electron
from the ion roughly by 5✏E/!2 making a re-collision
less probable [28]. We find that the dependence on ✏
of double ionization events, see [27], strongly resembles
the dependence on ✏ of our “frustrated” double ioniza-
tion events shown in Fig. 2. Namely, we find that double
ionization events where re-collisions/enhanced ionization
prevail change with ✏ in a similar way as the probability
for pathway B/A does, respectively. This strongly sug-
gests that two-electron e↵ects in the form of re-collisions
underly pathway B and not pathway A.

Indeed, in [15] we have provided evidence that one-
electron e↵ects prevail in pathway A, while two-electron
e↵ects prevail in pathway B. That is, we have shown
that in pathway A electron 2 transitions from the ground
state of the H2 molecule to a high Rydberg state of the
H-atom by gaining energy through a strong interaction
with the laser field. This gain of energy resembles en-
hanced ionization in H+

2 [7]. We have also provided evi-
dence that in pathway B electron 2 gains energy to ionize
mainly through two-electron e↵ects resembling Delayed
NSDI (non-sequential double ionization) which is a ma-
jor pathway of double electron escape (also referred to as
re-collision-induced excitation with subsequent field ion-
ization, RESI [29]). In Delayed NSDI (weak re-collision)
the re-colliding electron returns to the core close to a zero
of the field, transfers energy to the second electron and
one electron escapes with a delay after re-collision. For
pathway B the electron-electron correlation is in the form
of “frustrated” delayed NSDI since one electron eventu-

(a) (b)

Tuesday, 27 May 14

Figure 4.3: Illustration of the two routes in “frustrated” ionisation : (a) pathway A,
(b) pathway B. Shown is the time-dependent position along the laser field for
electrons (black solid lines) and nuclei (grey dashed lines)[39].

field intensity of 1.5×1014 Watts/cm2, we find that the probability for pathway A and

B is 3.3% and 5.4%, respectively.

The two pathways have very different momentum distributions. Fig. 4.4(a) shows

the momentum distribution for pathway A, which is very confined along the z axis. On

the other hand, the momentum distribution for pathway B, shown in Fig. 4.4(b), has a

large spread. The reason for this difference is that in pathway B the escaping electron is

the initially bound electron which interacts strongly with the nucleus before it escapes.

In contrast, in pathway A the escaping electron is the initially tunnel ionising electron

which escapes without returning to the molecular ion—no strong interaction with the

nucleus. The momentum distribution in pathway B is therefore more spread out.
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Figure 4.4: A 2-d (x-z plane) momentum distribution for the escaping electron (a)
pathway A and (b) pathway B. The momentum is expressed in units of

√
Up.

Up = (FL
0 /2ωL)2 .
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4.3 “Frustrated” ionisation in an elliptically polarised laser

field

We now study the effect of elliptically polarised laser fields on the formation of highly

excited neutral fragments in strongly driven H2. In Fig. 4.5, we show that as the ellip-

ticity, ε, increases the probability of H∗ formation decreases. Interestingly, pathway B

decreases at a much faster rate than pathway A. In particular, for linear polarisation,

pathway B is roughly 1.6 times more probable than pathway A. However, for ε=0.45,

the probability of pathway B is 6 times smaller than that of pathway A. Thus, by in-

creasing the ellipticity, we are affectively switching off the contribution of pathway B

in “frustrated” ionisation. For ε >0.4, effectively, the only contribution to “frustrated”

ionisation is from pathway A.

The natural question that follows is: why does pathway A respond so differently to

increasing ellipticity compared to pathway B? First, we note that the different response,

of the two pathways, to increasing ellipticity is similar to the difference observed between

double ionisation due to re-collisions and enhanced ionisation of diatomic molecules. It

is known that double ionisation events where re-collions prevail are sensitive to ellipticity

[112]. The reason is that the ellipticity of the laser field offsets the electron from the

ion by 5εFL0 /ω
2
L [113]. We find that the dependence on ε of double ionisation events,

see [112], strongly resembles the dependence on ε of our “frustrated” double ionisation
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Figure 4.5: The probability (given in percentage) of pathway A ( grey dashed
circles) and pathway B (black solid squares) out of all events that occur in strongly
driven H2 as a function of the ellipticity.
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events shown in Fig. 4.5. Namely, we find that double ionisation events where re-

collisions/enhanced ionisation prevail change with ε in a similar way as the probability

for pathway B/A does, respectively. This strongly suggests that two-electron effects in

the form of re-collisions underly pathway B and not pathway A.

In what follows, we briefly explain why pathway A also decreases with increasing

ellipticity of the laser field. The change in momentum, due to the laser field, of electron

2 from the time it tunnels until the end of the pulse is given by

∆p̄tun ≈
FL0
ωL

(ẑ sinφtun − εx̂ cosφtun) , (4.51)

where φtun is the phase of the laser field when electron 2 tunnels. An electron mostly

tunnels at a peak of the laser field, that is, φtun ≈ 0◦ or 180◦. As a result we obtain

∆ptun ≈
εFL0
ωL

, (4.52)

which implies that the change in momentum of electron 2 increases with increasing

ellipticity. That is, electron 2 is less likely to be captured leading to increased double

ionisation and decreased “frustrated” ionisation.

Evidence was provided in [39] that one-electron effects prevail in pathway A, while

two-electron effects prevail in pathway B. That is, it was shown that in pathway A elec-

tron 2 transitions from the ground state of the H2 molecule to a high Rydberg state of

the H-atom by gaining energy through a strong interaction with the laser field. This

gain of energy resembles enhanced ionisation in H+
2 [114]. Evidence was also provided

that in pathway B electron 2 gains energy to ionise mainly through two-electron effects

resembling Delayed NSDI (non-sequential double ionisation) which is a major path-

way of double electron escape (also referred to as re-collision-induced excitation with

subsequent field ionisation, RESI [115, 116]). In Delayed NSDI (weak re-collision) the

re-colliding electron returns to the core close to a zero of the field, transfers energy to

the second electron and one electron escapes with a delay after re-collision. For pathway

B the electron-electron correlation is in the form of “frustrated” delayed NSDI since one

electron eventually does not escape. From the above, it follows that the dependence

of the probability of pathways A and B on ε (Fig. 4.5) provides strong support that

re-collisions underly pathway B.
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Figure 4.6: The total 2-d momentum distributions for different ellipticities (a)
ε = 0, (b) ε = 0.45 , (c) ε = 0.75. The distribution is the momentum of the electron in
the x direction against the momentum in the z direction. The momentum is expressed
in units of

√
Up.

4.3.1 Momentum distribution of escaping electron

Fig. 4.5 shows that two-electron effects are essentially “switched-off” in H∗ formation for

ε >0.4 with pathway A prevailing. This prevalence of one-electron effects with increasing

ε is also evident in the observable momentum space of the escaping electron. In Fig. 4.6

we plot the total x-z momentum distribution of the escaping electron for ellipticities 0,

0.45 and 0.75, with x-z the plane of the laser field. The total 2-d distributions account for

both pathways and all initial tunnelling directions of electron 1. For ε = 0 (Fig. 4.6(a))

the traces of both pathways A and B (Fig. 4.5) are present in the 2-d momentum distri-

bution. The trace of pathway B is the large spread in momentum. However, for larger

values of ε this large spread disappears, see Fig. 4.6(b) and (c); this is a clear signature

of the prevalence of pathway A. In addition, for larger values of ε, see Fig. 4.6(b) and

(c), we obtain an asymmetric two-lobe momentum distribution. This asymmetry, first

observed in [117], has sparked a lot of studies in single ionisation of atoms in elliptical

fields. It has been, mainly, attributed to the effect of the Coulomb potential [118]. Since

our 3-d semiclassical model fully accounts for the Coulomb potential the asymmetry in

the momentum distribution is also evident in our results in Fig. 4.6(b) and (c). However,

besides the current study, studies of this asymmetry for molecular systems are few; they

include a theoretical one of strongly driven H+
2 [119] and an experimental one on double

ionisation of H2 [120]. Our results for H∗ formation in Fig. 4.6(b) and (c) show that

with increasing ε the two-lobe structure tends to align closer to the minor axis of the

field (x-axis in our case) [119, 120]. With one-electron effects (pathway A) prevailing for
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ε = 0.75, the observed asymmetry is due to the Coulomb potential of the molecular ion.

4.4 Summary

In summary, we have found that with increasing ellipticity we “switch-off” two-electron

effects for H∗ formation and the observable momentum space of the escaping electron

clearly bears the imprints of one-electron effects.



Chapter 5

Conclusions

In what follows we give a summery of how the work in this thesis has contributed to-

wards increasing our understanding of correlated electron dynamics triggered in complex

systems using novel 3-d quasiclassical techniques.

We have first addressed the correlated electron dynamics in single photon multi-

electron ionization of beryllium. The breakup pattern of the escaping electrons strongly

depends on correlated electron dynamics. The general expectation from Wannier’s law

[27] is that for excess photon energies close to the ionisation threshold the electrons

escape in the most symmetric fashion. That is, for four-electron ionisation in Be, the

expected breakup pattern is a regular tetrahedron. However, we have shown that, for

four-electron escape from the ground state of Be (1s2 2s2) a triangular pyramid is the

prevailing breakup pattern for excess energies as low as 3 eV above threshold; this is

the case even though we accurately reproduce the Wannier exponent. In particular,

roughly 65% of all quadruply ionising trajectories, give rise to a triangular pyramid

pattern. Future quantum mechanical and experimental studies can verify the validity

of our surprising finding. Such studies have already been performed for three-electron

atoms, see for example[30, 121–123]).

We have shown that this surprising triangular pyramid is in accord with a classifi-

cation scheme of a sequence of momentum transferring attosecond collisions. Each of

these momentum transferring collisions takes place between the nucleus and two elec-

trons and explains how energy is transferred from the photon electron to the other three

electrons leading to quadruple ionization. We find that the two ionisation pathways that

84
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contribute the most are the ones giving rise to the triangular pyramid breakup pattern.

In one of these pathways the photo-electron (1s) transfers energy to all remaining bound

electrons; in the other prevailing pathway, after the 1s photo-electron transfers energy

to the other 1s electron, this latter electron becomes the new impacting electron that

transfers energy to the remaining two electrons. In addition, we have found that another

pathway, which contributes roughly 10% to quadruple ionization, concerns the two 2s

electrons each gaining energy by a different 1s electron; in this pathway the two 2s elec-

trons are spatially apart. This ionisation route gives rise to the square planar breakup

geometry predicted in [43]. Finally, one more ionisation route, which contributes roughly

10% to quadruple ionization, concerns four distinct collisions, with the two 2s electrons

being spatially close. This latter ionisation route gives rise to the regular tetrahedron

breakup geometry predicted in [43] and expected to prevail from Wannier’s law. From

previous results on triple ionisation [29] and our current work on quadruple ionisation

we conjecture that four-electron breakup patterns are initial state dependent. As for

three-electron escape, we have found that for four-electron escape the final breakup ge-

ometry is determined by the spatial distribution of the escaping electrons at the time

when sufficient energy to ionise has been transferred through collisions to all four elec-

trons. To better understand why the less symmetric triangular pyramid prevails over the

higher symmetry regular tetrahedron, we have also analysed the non-linear properties

of the fixed points of the five-body Coulomb problem. These fixed points correspond to

the regular tetrahedron and square planar geometries. We have shown that the excur-

sion from the fixed points of the hyperangles that determine the breakup patterns are

expressed in terms of unstable modes. As a result, the initial values of the hyperangles

are not preserved, i.e. the highest symmetry breakup geometry of the fixed point is

not preserved at all times possibly resulting to final breakup geometries different than

the highest symmetry ones. This was previously shown [29] to be the case, also, for

three-electron ionisation in an atom.

Previous studies on Li and the work in this thesis on Be show that as the number of

electrons increases the highest-symmetry breakup patterns are also present even though

it is the non-highest symmetry breakup pattern that prevails. That is, for three-electron

ionisation from the ground state of Li the T-shape contributes roughly 85% to triple

ionisation [28]. In this work, we have shown that for quadruple ionisation from the
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ground state of Be the triangular pyramid contributes 65%, however, the regular tetra-

hedron and the triangular pyramid, which are the highest symmetry breakup patterns,

contribute roughly 20%. This suggests the possibility that as the number of electrons

increases the prevailing breakup patterns are more consistent with those predicted by

Wannier [27]. A future study could investigate whether this is the case or not.

A current challenge in Attosecond Science is time-resolving correlated electron dy-

namics. In this thesis we have developed a scheme for probing the electron-electron

correlation in the momentum transferring attosecond collisions that we have shown to

underlie the redistribution of energy from the photo-electron to the remaining electrons

in single photon multi-electron ionisation of atoms. In particular, the two-electron streak

camera [33] time-resolves correlated electron dynamics during single-photon double ion-

isation. It does so using the asymptotic inter-electronic angle as a function of the phase

delay, φ, between the triggering attosecond XUV-pulse (single photon) and the streaking

infrared laser field.

In this thesis, we have expanded the concept of the two-electron streak-camera to

time-resolve the different ionisation dynamics associated with different electron energy

sharings during single-photon double ionisation in a He (1s2s) model system. Specifically,

we have focused on the two extreme energy sharings, i.e. the most symmetric and the

most asymmetric ones, which lead to different ionisation dynamics. The most symmetric

energy sharing involves both electrons ionising soon after the collision takes place. In

the case of the most asymmetric energy sharing, one electron escapes quickly after the

collision, while the other electron moves under the strong influence of the nucleus before

it escapes as well. This leads to this latter electron ionising with a large spread in

time and a large spread in inter-electronic angles. We have shown how this different

ionisation dynamics is successfully time-resolved by the two-electron streak camera. In

particular, we have shown that the two-electron streak camera for symmetric energy

sharing “probes” roughly the “collision” time in the two-electron ionisation dynamics, i.e.

the time of minimum approach of the two electrons. Moreover, the two-electron streak

camera for asymmetric energy sharing “probes” the motion of the slowest electron in the

presence of the ion’s Coulomb potential. These time delays between photo-absorption

and ionisation of both electrons are manifested as a shift between the maximum of the

vector potential (90◦ for the IR laser field considered in our study) and the streaking
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phase corresponding to the minimum in the inter-electronic angle of escape as a function

of φ.

Moreover, we have demonstrated that the two-electron streak camera can be ex-

perimentally realised. Instead of considering just a single-photon absorption, we have

modelled a realistic attosecond pulse with a broad spread in photon energies and fully

accounted for the effect of this large energy spread on time-resolving correlated electron

dynamics. The problem is that while in the absence of the IR laser field the triggering

photon excess energy is equal with the sum of the asymptotic energies of the escaping

electrons this is no longer the case in the presence of the IR laser field. That is, in the

presence of the IR laser field the sum of the asymptotic energies of the electrons corre-

sponds to many different excess energies. We have succeed in finding a correspondence,

to a good approximation, between the final energies and the triggering excess energy

of the attosecond pulse by introducing the “modified” electron energy. The “modified”

electron energy partially removes the effect of the IR laser field on the final energy of

the electrons. We have shown that we can successfully isolate an individual photon

excess energy by selecting trajectories with the corresponding “modified” energy and

computing the delay time. The algorithm we have formulated to do so can be applied

to atoms with different nuclear charges.

While the two-electron attosecond streak camera has been formulated for two-electron

escape in atoms, it paves the way for future time-resolved studies in more complex

systems. For instance, a future study could involve Li and how to time-resolve a sequence

of two collisions; in this thesis we have time-resolved one collision in the context of a

He (1s2s) model system. Time-resolving a sequence of two collisions is a much more

challenging problem and remains to be seen what would be an appropriate asymptotic

quantity that would naturally capture the correlated dynamics of the three electrons;

we have shown in this work that the inter-electronic angle is an appropriate asymptotic

quantity for streaking the correlated dynamics of two electrons.

Transitioning from correlated electron dynamics triggered by single-photon in atoms,

in the last part of this thesis, we have addressed correlated electron dynamics in di-

atomic molecules driven by infrared and intense laser fields (strongly driven). This is

yet another challenging problem in Attosecond Science since it involves many degrees of

freedom and the coupled motion of electrons and nuclei. We have developed a novel 3-d
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semiclassical technique that tackles strongly-driven molecules treating the electron and

nuclear dynamics at the same time while fully addressing the Coulomb singularity. This

technique allowed us to offer a physical picture of the formation of highly excited neutral

atoms and in particular of H∗ formation during the breakup of strongly driven H2 by

elliptically polarised laser fields. We have shown that the ellipticity of the IR laser field

affects the main two pathways of H∗ formation in different ways. Specifically, the path-

way where two-electron effects prevail decreases much faster with increasing ellipticity

compared to the pathway where one-electron effects prevail. We have shown that the

observable momentum space of the escaping electron clearly bears the imprints of one-

electron effects with increasing ellipticity. In addition, we have identified an asymmetric

lobe structure in the momentum distribution which has been attributed, in previous one

electron studies in atoms, to the Coulomb potential.

The computational technique we have developed to address the Coulomb singular-

ity and to account for both electron and nuclear motion for strongly driven diatomic

molecules is a powerful one. That is, it can be used as a stepping stone for future stud-

ies of strongly driven multi-centre molecules. These studies will address the interplay

of enhanced and non-sequential double ionisation during the breakup of strongly driven

triatomic molecules. They will also address the interplay of different mechanisms in

forming highly excited neutral atoms. Future studies could also address the effect of the

intensity and of the degree of ellipticity of the laser field on the above processes.



Appendix A

Wigner distribution

The Wigner distribution [68] is defined as

f(r̄, p̄) =
1

π3

∫ ∞

−∞
ψ∗(|r̄ − z̄|)ψ(|r̄ + z̄|) exp(2ip̄ · z̄)dz̄, (A.1)

where ψ(r̄) is the quantum wave function and r̄, p̄ are the position and momentum

vectors. The Wigner distribution has the following properties [124]:

∫ ∞

−∞
f(r̄, p̄)d3p = |〈r̄|ψ〉| (A.2)

∫ ∞

−∞
f(r̄, p̄)d3r = |〈p̄|ψ〉| . (A.3)

The Wigner distribution is computed numerically for the 1s hydrogen wave function

in [125]. However, it is possible to obtain an analytical expression for the Wigner

distribution by approximating the wave function as a sum of Gaussians [126, 127]. In

what follows, we describe one way for expressing the hydrogenic wave function in terms

of Gaussians. First, we express the wave function in terms of Slater orbitals [128, 129],

which are given by

Φns,l,m(r̄) = Ylm(θ, φ)[(2ns)!]
−1/2(2ζ)ns+1/2rns−1 exp(−ζr). (A.4)

89
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Ylm(θ, φ) are spherical harmonics, ns is the principal quantum number of the Slater

orbital and ζ = Zeff/n. Zeff is the effective charge and n is the principal quantum

number of the hydrogenic wave function. Using Eq. (A.4), we can express the 1s and 2s

wave functions in terms of Slater orbitals as follows

ψ1s(r̄) = Φ100(r̄), (A.5)

and

ψ2s(r̄) = Φ100(r̄)−
√

3Φ200(r̄). (A.6)

Note that ζ is different for the Slater orbitals Φ100(r̄) in ψ1s(r̄) and ψ2s(r̄). Next, we

express the Slater orbitals as a sum of Gaussians [129]

Φns,l,m(r̄) =

m∑

j=1

cjχj(r), (A.7)

where

χj(r̄) = Ylm(θ, φ)

[
22ng+ 3

2

(2ng − 1)!!
√
π

]1/2

(αjζ
2)ng+1/2rng−1 exp(−αjζ2r2), (A.8)

and ng is the number of the Gaussian, while cj and αj are parameters chosen to best fit

the Slater orbital. It is sufficient to express Φ100(r̄) and Φ200(r̄) in terms of Gaussians

with ng = 1:

χj(r) =

(
2αjζ

2

π

)3/4

exp
(
−αjζ2r2

)
, (A.9)

The coefficients ci and αi used in this work are given in Tables A.1 and A.2. Once we

express the wave functions in terms of Gaussians, we substitute them into Eq. (A.1) and

integrate to analytically obtain the Wigner distribution:

f(r, p, η) =
[

1
π3

∑m
j=1 c

2
j exp

(
−2αjζ

2r2
)

exp
(
− p2

2αjζ2

)]
+[

2
π3

∑m
j>k=1 cjck

(
γjk

αj+αk

)3/4
exp

(
−γjkζ2r2

)

× exp
(
− p2

(αj+αk)ζ2

)
cos (2τjk cos η)

]
,

(A.10)

where η is the angle between the position and momentum vectors and
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γjk =
4αjαk
αj + αk

τij =
αj − αk
αj + αk

. (A.11)

i ci αi

1 0.107330 0.062157
2 0.339658 0.138046
3 0.352349 0.304802
4 0.213239 0.710716
5 0.090342 1.794924
6 0.030540 4.915078
7 0.008863 15.018344
8 0.002094 54.698039
9 0.000372 254.017712
10 0.000044 1776.775559

Table A.1: A list of the coefficients ci and αi that correspond to the orbital
Φ100(r̄), which is used to express ψ1s.

i ci αi

1 0.1303340841 0.06510953954
2 0.4164915298 0.1580884151
3 0.3705627997 0.4070988982
4 01685383049 1.185056519
5 0.04936149294 4.235915534
6 0.009163596280 23.10303149

7 0.1712994697 0.04416183978
8 0.5621061301 0.09260298399
9 0.3346271174 0.2040335729
10 -0.05150303337 1.426786050
11 -0.02067024148 5.077140627
12 -0.004151277819 27.68496241

Table A.2: A list of the coefficients ci and αi for i varying from 1 to 6 that
correspond to Φ100(r̄), which is used to express ψ2s; ci and αi for i varying from 7 to
12 correspond to Φ200(r̄), which is used to express ψ2s.
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Non-linear analysis of normal

modes

In what follows we show how to obtain the normal modes and eigenvalues for four

electrons interacting with a nucleus. We start with the Hamiltonian of the five-body

problem in 3-dimensions in cartesian coordinates:

h =
1

2

4∑

i=1

P 2
i −

4∑

i=1

Z

ri
+

i=4∑

i>j=1

1

|r̄i − r̄j |
(B.1)

where P̄i and r̄i are the momentum and position vectors, respectively, of the ith electron,

Z is the nuclear charge and the nucleus is fixed at the origin. We wish to write the

Hamiltonian in terms of hyperspherical coordinates, polar angles ξi and the relative

azimuthal angles χi. The hyperspherical coordinates are given by

R =
√
r2

1 + r2
2 + r2

3 + r2
4 α1 = Arctan( r1r3 )

α2 = Arctan(

√
r21+r23
r4

) α3 = Arctan(

√
r21+r23+r24
r2

)
, (B.2)

where ri is the radial coordinate of the ith electron. The relative azimuthal angles are

given by

χ1 = φ3 − φ1 χ2 = φ4 − φ1

χ3 = φ2 − φ1 χ4 = φ1 + φ2 + φ3 + φ4

, (B.3)

where φi is the azimuthal angle of the ith electron. To find the conjugate momenta for

the hyperspherical coordinates, the polar angles and the relative azimuthal angles we
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write the Lagrangian for the five-body Coulomb problem in spherical coordinates:

L =
1

2

(
4∑

i=1

ṙi
2 +

4∑

i=1

r2
i ξ̇i

2
+

4∑

i=1

+r2
i sin2 ξiφ̇i

2

)
+

4∑

i=1

Z

ri
−

i=4∑

i>j=1

1

|r̄i − r̄j |
, (B.4)

where ṙi, ξ̇i and φ̇i are the radial, polar and azimuthal velocities of the ith electron. The

inter-electronic distance is given by

|r̄i − r̄j | =
√
r2
i + r2

j − 2rirj(sin ξi sin ξj cos(φj − φi) + cos ξi cos ξj). (B.5)

The radial coordinates expressed in terms of hyperspherical coordinates are given as

r1 = R sinα3 sinα2 sinα1 r3 = R sinα3 sinα2 cosα1

r4 = R sinα3 cosα2 r2 = R cosα3

. (B.6)

By differentiating the ri’s with respect to time in Eq. (B.6) we can obtain

ṙ1
2 + ṙ2

2 + ṙ3
2 + ṙ4

2 = Ṙ2 +R2α̇2
3 +R2 sin2 α3α̇

2
2 +R2 sin2 α3 sin2 α2α̇

2
1. (B.7)

Re-arranging Eq. (B.3) we obtain the φi’s in terms of χi’s:

φ1 = 1
4(χ4 − χ1 − χ2 − χ3) φ2 = 1

4(χ4 − χ1 − χ2 + 3χ3)

φ3 = 1
4(χ4 + 3χ1 − χ2 − χ3) φ4 = 1

4(χ4 − χ1 + 3χ2 − χ3)
(B.8)

and

φ̇1 = 1
4(χ̇4 − χ̇1 − χ̇2 − χ̇3) φ̇2 = 1

4(χ̇4 − χ̇1 − χ̇2 + 3χ̇3)

φ̇3 = 1
4(χ̇4 + 3χ̇1 − χ̇2 − χ̇3) φ̇4 = 1

4(χ̇4 − χ̇1 + 3χ̇2 − χ̇3)
. (B.9)

Substituting Eq. (B.6), Eq. (B.7), Eq. (B.8) and Eq. (B.9) into Eq. (B.4) we obtain

the Lagrangian in terms of hyperspherical coordinates, polar angles and the relative

azimuthal angles:
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L = 1
2

[
Ṙ2 +R2α̇2

3 +R2 sin2 α3α̇
2
2 +R2 sin2 α3 sin2 α2α̇

2
1

+R2 sin2 α3 sin2 α2 sin2 α1ξ̇
2
1 +R2 cos2 α3ξ̇

2
2 +R2 sin2 α3 sin2 α2 cos2 α1ξ̇

2
3 +R2 sin2 α3 cos2 α2ξ̇

2
4

+R2 sin2 α3 sin2 α2 sin2 α1 sin2 ξ1(χ̇4 − χ̇1 − χ̇2 − χ̇3)2/16

+R2 cos2 α3 sin2 ξ2(χ̇4 − χ̇1 − χ̇2 + 3χ̇3)2/16

+R2 sin2 α3 sin2 α2 cos2 α1 sin2 ξ3(χ̇4 + 3χ̇1 − χ̇2 − χ̇3)2/16

+R2 sin2 α3 cos2 α2 sin2 ξ4(χ̇4 − χ̇1 + 3χ̇2 − χ̇3)2/16
]

+Z/R sinα3 sinα2 sinα1 + Z/R cosα3 + Z/R sinα3 sinα2 cosα1 + Z/R sinα3 cosα2

− 1

R
√

sin2 α3 sin2 α2 sin2 α1+cos2 α3−sin 2α3 sinα2 sinα1(sin ξ1 sin ξ2 cos(χ3)+cos ξ1 cos ξ2)

− 1

R sinα3 sinα2

√
1−sin 2α1(sin ξ1 sin ξ3 cos(χ1)+cos ξ1 cos ξ3)

− 1

R sinα3

√
sin2 α2 sin2 α1+cos2 α2−sin 2α2 sinα1(sin ξ1 sin ξ4 cos(χ2)+cos ξ1 cos ξ4)

− 1

R
√

cos2 α3+sin2 α3 sin2 α2 cos2 α1−sin 2α3 sinα2 cosα1(sin ξ2 sin ξ3 cos(χ3−χ1)+cos ξ2 cos ξ3)

− 1

R
√

cos2 α3+sin2 α3 cos2 α2−sin 2α3 cosα2(sin ξ2 sin ξ4 cos(χ3−χ2)+cos ξ2 cos ξ4)

− 1

R sinα3

√
sin2 α2 cos2 α1+cos2 α2−sin 2α2 cosα1(sin ξ3 sin ξ4 cos(χ2−χ1)+cos ξ3 cos ξ4)

.

(B.10)

Using the Lagrangian given in Eq. (B.10) we obtain the conjugate momenta to the

hyperspherical coordinates, the polar and the relative azimuthal angles from

PXj =
∂L

∂Ẋj

, (B.11)

where Xj is the jth competent of X = (R,α1, α2, α3, ξ1, ξ2, ξ3, ξ4, χ1, χ2, χ3, χ4). We can

now write the Hamiltonian in terms of hyperspherical coordinates, polar angles, relative
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azimuthal angles and their conjugate momenta:

h = 1
2(P 2

R +
P 2
α3
R2 +

P 2
α2

R2 sin2 α3
+

P 2
α1

R2 sin2 α3 sin2 α2

+
P 2
ξ1

R2 sin2 α3 sin2 α2 sin2 α1
+

P 2
ξ2

R2 cos2 α3
+

P 2
ξ3

R2 sin2 α3 sin2 α2 cos2 α1
+

P 2
ξ4

R2 sin2 α3 cos2 α2

+
(Pχ4−Pχ1−Pχ2−Pχ3 )2

R2 sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(Pχ4+Pχ3 )2

R2 cos2 α3 sin2 ξ2
+

(Pχ4+Pχ1 )2

R2 sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
+

(Pχ4+Pχ2 )2

R2 sin2 α3 cos2 α2 sin2 ξ4
)

− Z
R sinα3 sinα2 sinα1

− Z
R cosα3

− Z
R sinα3 sinα2 cosα1

− Z
R sinα3 cosα2

+ 1

R
√

sin2 α3 sin2 α2 sin2 α1+cos2 α3−sin 2α3 sinα2 sinα1(sin ξ1 sin ξ2 cos(χ3)+cos ξ1 cos ξ2)

+ 1

R sinα3 sinα2

√
1−sin 2α1(sin ξ1 sin ξ3 cos(χ1)+cos ξ1 cos ξ3)

+ 1

R sinα3

√
sin2 α2 sin2 α1+cos2 α2−sin 2α2 sinα1(sin ξ1 sin ξ4 cos(χ2)+cos ξ1 cos ξ4)

+ 1

R
√

cos2 α3+sin2 α3 sin2 α2 cos2 α1−sin 2α3 sinα2 cosα1(sin ξ2 sin ξ3 cos(χ3−χ1)+cos ξ2 cos ξ3)

+ 1

R
√

cos2 α3+sin2 α3 cos2 α2−sin 2α3 cosα2(sin ξ2 sin ξ4 cos(χ3−χ2)+cos ξ2 cos ξ4)

+ 1

R sinα3

√
sin2 α2 cos2 α1+cos2 α2−sin 2α2 cosα1(sin ξ3 sin ξ4 cos(χ2−χ1)+cos ξ3 cos ξ4)

.

(B.12)

The Hamiltonian is still singular. As a first step in removing this singularity, we make

the substitution of R = w2 and of it’s conjugate momentum PR = Pw
2w . The resulting

Hamiltonian is

h =
P 2
w

8w2
+

Λ2

2w4
+
C(Ω)

w2
, (B.13)

where Λ2 and C(Ω) are given in Eq. (B.15) and Eq. (B.16) respectively. As a second

step in removing the singularity, we introduce a new hamiltonian H = f(h − E) = 0,

where f = w2 and E is the energy of the system. The corresponding time transform is

dt = w2dtw and the Hamiltonian takes the form

H =
P 2
w

8
+

Λ2

2w2
+ C(Ω)− w2E, (B.14)

where Ω = (α1, α2, α3, ξ1, ξ2, ξ3, ξ4, χ1, χ2, χ3, χ4)†, which contains all the angular vari-

ables, while

Λ2 = P 2
α3

+
P 2
α2

sin2 α3
+

P 2
α1

sin2 α3 sin2 α2
+

P 2
ξ1

sin2 α3 sin2 α2 sin2 α1

+
P 2
ξ2

cos2 α3
+

P 2
ξ3

sin2 α3 sin2 α2 cos2 α1
+

P 2
ξ4

sin2 α3 cos2 α2
+

(Pχ4−Pχ1−Pχ2−Pχ3 )2

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1

+
(Pχ4+Pχ3 )2

cos2 α3 sin2 ξ2
+

(Pχ4+Pχ1 )2

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
+

(Pχ4+Pχ2 )2

sin2 α3 cos2 α2 sin2 ξ4

(B.15)
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and

C(Ω) = − Z
sinα3 sinα2 sinα1

− Z
cosα3

− Z
sinα3 sinα2 cosα1

− Z
sinα3 cosα2

+ 1√
sin2 α3 sin2 α2 sin2 α1+cos2 α3−sin 2α3 sinα2 sinα1(sin ξ1 sin ξ2 cos(χ3)+cos ξ1 cos ξ2)

+ 1

sinα3 sinα2

√
1−sin 2α1(sin ξ1 sin ξ3 cos(χ1)+cos ξ1 cos ξ3)

+ 1

sinα3

√
sin2 α2 sin2 α1+cos2 α2−sin 2α2 sinα1(sin ξ1 sin ξ4 cos(χ2)+cos ξ1 cos ξ4)

+ 1√
cos2 α3+sin2 α3 sin2 α2 cos2 α1−sin 2α3 sinα2 cosα1(sin ξ2 sin ξ3 cos(χ3−χ1)+cos ξ2 cos ξ3)

+ 1√
cos2 α3+sin2 α3 cos2 α2−sin 2α3 cosα2(sin ξ2 sin ξ4 cos(χ3−χ2)+cos ξ2 cos ξ4)

+ 1

sinα3

√
sin2 α2 cos2 α1+cos2 α2−sin 2α2 cosα1(sin ξ3 sin ξ4 cos(χ2−χ1)+cos ξ3 cos ξ4)

(B.16)

The equations of motion for the above Hamiltonian are given as follows:

dw
dtw

= ∂H
∂Pw

= Pw
4

dPw
dtw

= −∂H
∂w

= 1
w3 Λ

2 + 2wE

dα1

dtw
= ∂H

∂Pα1
= 1

w2

Pα1
sin2 α3 sin2 α2

dPα1
dtw

= − ∂H
∂α1

= − 1
2w2

∂Λ2

∂α1
− ∂C

∂α1

dα2

dtw
= ∂H

∂Pα2
= 1

w2

Pα2
sin2 α3

dPα2
dtw

= − ∂H
∂α2

= − 1
2w2

∂Λ2

∂α2
− ∂C

∂α2

dα3

dtw
= ∂H

∂Pα3
= 1

w2Pα3

dPα3
dtw

= − ∂H
∂α3

= − 1
2w2

∂Λ2

∂α3
− ∂C

∂α3

dξ1
dtw

= ∂H
∂Pξ1

= 1
w2

Pξ1
sin2 α3 sin2 α2 sin2 α1

dPξ1
dtw

= − ∂H
∂ξ1

= − 1
2w2

∂Λ2

∂ξ1
− ∂C

∂ξ1

dξ2
dtw

= ∂H
∂Pξ2

= 1
w2

Pξ2
cos2 α3

dPξ2
dtw

= − ∂H
∂ξ2

= − 1
2w2

∂Λ2

∂ξ2
− ∂C

∂ξ2

dξ3
dtw

= ∂H
∂Pξ3

= 1
w2

Pξ3
sin2 α3 sin2 α2 cos2 α1

dPξ3
dtw

= − ∂H
∂ξ3

= − 1
2w2

∂Λ2

∂ξ3
− ∂C

∂ξ3

(B.17)
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dξ4
dtw

= ∂H
∂Pξ4

= 1
w2

Pξ4
sin2 α3 cos2 α2

dPξ4
dtw

= − ∂H
∂ξ4

= − 1
2w2

∂Λ2

∂ξ4
− ∂C

∂ξ4

dχ1

dtw
= 1

w2 (
−(Pχ4−Pχ1−Pχ2−Pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(Pχ4+Pχ1 )

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
)

dPχ1
dtw

= − ∂C
∂χ1

dχ2

dtw
= 1

w2 (
−(Pχ4−Pχ1−Pχ2−Pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(Pχ4+Pχ2 )

sin2 α3 cos2 α2 sin2 ξ4
)

dPχ2
dtw

= − ∂C
∂χ2

dχ3

dtw
= 1

w2 (
−(Pχ4−Pχ1−Pχ2−Pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(Pχ4+Pχ3 )

cos2 α3 sin2 ξ2
)

dPχ3
dtw

= − ∂C
∂χ3

dχ4

dtw
= 1

w2 (
(Pχ4−Pχ1−Pχ2−Pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(Pχ4+Pχ3 )

cos2 α3 sin2 ξ2
+

(Pχ4+Pχ1 )

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
+

(Pχ4+Pχ2 )

sin2 α3 cos2 α2 sin2 ξ4
)

dPχ4
dtw

= 0

(B.18)

However, the equations of motion are still singular at the fixed point w∗ = 0. As a

third step to remove the singularity, we make a new transformation of the momentum

variables PΩ which are conjugate to Ω:

pΩj = PΩj/w (B.19)

where Ωj represents the jth component of the Ω vector. As a result

Λ2(PΩ) = w2Λ2′(pΩ) (B.20)

Therefore the new Hamiltonian is given by

H̃ =
P 2
w

8
+

Λ2′

2
+ C(Ω)− w2E. (B.21)

As a fourth step in removing the singularity, we make the time transform dt = w2dtw =

w3dτ resulting in d
dτ = w d

dtw
. In order to write the equations of motion in terms of the

new time τ we simply multiple the equations of motion for the position coordinates by
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w. To find the equations of motion of the new non-canonical momenta we use

d

dtw
(Pwj ) =

d

dtw
(
wPwj
w

) = w
d

dtw
(
Pwj
w

) +
Pwj
w

d

dtw
(w) =

d

dτ
(pwj ) +

Pwpwj
4

, (B.22)

i.e.
d

dτ
(pwj ) =

dPwj
dtw

− Pwpwj
4

. (B.23)

Our new equations of motion are given by

dw
dτ

= wPw
4

dPw
dτ

= Λ2′ + 2w2E

dα1

dτ
=

pα1
sin2 α3 sin2 α2

dpα1
dτ

= −1
2
∂Λ2′

∂α1
− ∂C

∂α1
− Pwpα1

4

dα2

dτ
=

pα2
sin2 α3

dpα2
dτ

= −1
2
∂Λ2′

∂α2
− ∂C

∂α2
− Pwpα2

4

dα3

dτ
= pα3

dpα3
dτ

= −1
2
∂Λ2′

∂α3
− ∂C

∂α3
− Pwpα3

4

dξ1
dτ

=
pξ1

sin2 α3 sin2 α2 sin2 α1

dpξ1
dτ

= −1
2
∂Λ2′

∂ξ1
− ∂C

∂ξ1
− Pwpξ1

4

dξ2
dτ

=
pξ2

cos2 α3

dpξ2
dτ

= −1
2
∂Λ2′

∂ξ2
− ∂C

∂ξ2
− Pwpξ2

4

dξ3
dτ

=
pξ3

sin2 α3 sin2 α2 cos2 α1

dpξ3
dτ

= −1
2
∂Λ2′

∂ξ3
− ∂C

∂ξ3
− Pwpξ3

4

dξ4
dτ

=
pξ4

sin2 α3 cos2 α2

dpξ4
dτ

= −1
2
∂Λ2′

∂ξ4
− ∂C

∂ξ4
− Pwpξ4

4

(B.24)
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dχ1

dτ
=

−(pχ4−pχ1−pχ2−pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(pχ4+pχ1 )

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3

dpχ1
dτ

= − ∂C
∂χ1
− Pwpχ1

4

dχ2

dτ
=

−(pχ4−pχ1−pχ2−pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(pχ4+pχ2 )

sin2 α3 cos2 α2 sin2 ξ4

dpχ2
dτ

= − ∂C
∂χ2
− Pwpχ2

4

dχ3

dτ
=

−(pχ4−pχ1−pχ2−pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(pχ4+pχ3 )

cos2 α3 sin2 ξ2

dpχ3
dτ

= − ∂C
∂χ3
− Pwpχ3

4

dχ4

dτ
=

(pχ4−pχ1−pχ2−pχ3 )

sin2 α3 sin2 α2 sin2 α1 sin2 ξ1
+

(pχ4+pχ3 )

cos2 α3 sin2 ξ2
+

(pχ4+pχ1 )

sin2 α3 sin2 α2 cos2 α1 sin2 ξ3
+

(pχ4+pχ2 )

sin2 α3 cos2 α2 sin2 ξ4

dpχ4
dτ

= −Pwpχ4
4

(B.25)

The fixed points of the five-body system correspond to the values of the coordinates

and momenta that result in the right hand side of the equations of motion in Eq. (B.24)

and Eq. (B.25) being zero, i.e., the system does not evolve in time. By inspection of

Eq. (B.24) and Eq. (B.25) we find that w∗ = p∗Ωj = 0 at the fixed points. The values of

the angular coordinates at the fixed points are obtained by

∇ΩC(Ω)|Ω=Ω∗ = 0. (B.26)

Since Λ2′ and w are zero at the fixed point and H̃ = P 2
w
8 + Λ2′

2 + C(Ω) − w2E = 0 it

follows that P ∗w =
√
−8C(Ω∗). We next linearise the equations of motion around the

fixed points. We denote the displacement of the γ vector, where γ = (Pw,pΩ, w,Ω)†,

from the fixed point γ∗ by

δγ = γ − γ∗. (B.27)

Then the linearised equations of motion take the form

dδγ

dτ
= M · δγ (B.28)
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where

M =




∂
∂γ1
· dγ1dτ ∂

∂γ2
· dγ1dτ · · · ∂

∂γn
· dγ1dτ

∂
∂γ1
· dγ2dτ ∂

∂γ2
· dγ2dτ · · · ∂

∂γn
· dγ2dτ

...
...

. . .
...

∂
∂γ1
· dγndτ ∂

∂γ2
· dγndτ · · · ∂

∂γn
· dγndτ




(B.29)

and all elements of matrix M are evaluated at γ = γ∗; γj denotes the jth component of

γ. The eigenvalues and eigenvectors of M are the Liapunov exponents and the normal

modes of the five-body Coulomb problem.



Appendix C

Transition probability by

photo-absorption from an

attosecond XUV-pulse

We model the attosecond XUV-pulse as a cosine electric field with a Gaussian envelope

given by

F̄ (t) = ε̂F0 exp(−t2/4σ2) cos(ω0t), (C.1)

where σ is the standard deviation of the temporal-intensity envelope of the pulse, while

F0 and ω0 are the strength and the angular frequency of the electric field, respectively;

ε̂ is the polarisation vector. Note that, instead of the notation FXUV0 and ωXUV0 , used

in Section 3.4.1, in what follows, for convenience, we adopt the notation F0 and ω0.

The spectral distribution of the electric field is given by the Fourier transform of the

temporal distribution of the electric field [82]:

F̃ (ω) =

∫ ∞

−∞
F (t) exp(−iωt)dt. (C.2)

We find that F̃ (ω), for frequencies greater than zero, is given by

F̃+(ω) = F0σ
√
π exp(−(ω − ω0)2σ2). (C.3)

101
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The spectral intensity is given by [82]

Ĩ(ω) =
1

4π2
c
∣∣∣F̃+(ω)

∣∣∣
2
, (C.4)

and by combining Eq. (C.3) and Eq. (C.4) we obtain

Ĩ(ω) =
1

4π
cF 2

0 σ
2 exp(−2(ω − ω0)2σ2). (C.5)

The probability to transition from an initial state i to a final state f , due to the absorp-

tion of a single photon, can be expressed as Wi→f = W abs
i→fP

++(ω). P++(ω), which we

computed by using CTMC, is the double ionisation probability following the absorption

of a single photon ω. In what follows we describe how to obtain W abs
i→f .

We assume that the electric field of the pulse is weak compared to the Coulomb

forces, since the electron absorbs the photon at the nucleus. Therefore, using first order

perturbation theory [84], we obtain

W abs
i→f =

∣∣∣∣
∫ t

−∞

〈
f
∣∣V (t′)

∣∣ i
〉

exp(iωt′)dt′
∣∣∣∣
2

, (C.6)

where

V (t′) = ε̂ · r̄F0 exp(−t2/4σ2) cos(ω0t
′). (C.7)

Substituting Eq. (C.7) in Eq. (C.6) we obtain

W abs
i→f =

F 2
0

4
|〈f |ε̂ · r̄| i〉|2 exp(−2(ω − ω0)2σ2))

∣∣∣∣
∫ t

−∞
exp(−[t′ − 2i(ω − ω0)σ2]2/4σ2dt′

∣∣∣∣
2

.

(C.8)

Using the definition of the “error function” [130] (erf(x)):

∫ t

−∞
exp(−[t′ − 2i(ω − ω0)σ2]2/4σ2dt′ = σ

√
π

[
1 + erf

(
t

2σ
− i(ω − ω0)σ

)]
, (C.9)

we obtain

W abs
i→f =

F 2
0 σ

2π

4
|〈f |ε̂ · r̄| i〉|2 exp(−2(ω − ω0)2σ2))

∣∣∣∣1 + erf

(
t

2σ
− i(ω − ω0)σ

)∣∣∣∣
2

.

(C.10)
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Substituting the spectral intensity given by Eq. (C.5) in Eq. (C.10) and using that the

fine structure constant α = 1
c in atomic units we obtain

W abs
i→f = π2α |〈f |ε̂ · r̄| i〉|2 Ĩ(ω)

∣∣∣∣1 + erf

(
t

2σ
− i(ω − ω0)σ

)∣∣∣∣
2

. (C.11)

For small values of σ, erf
(
t

2σ − i(ωfi − ω0)σ
)
→ 1; we substitute into Eq. (C.11) to

obtain

W abs
i→f = 4π2α |〈f |ε̂ · ~r| i〉|2 Ĩ(ω). (C.12)

Using that the photo-absorption cross section is given by [131]

σabs(ω) = 4π2αω |〈f |ε̂ · ~r| i〉|2 , (C.13)

we finally obtain

W abs
i→f =

1

ω
σabs(ω)Ĩ(ω). (C.14)

Note, that the photo-absorption cross section for a single electron, σabs(ω), in an

initial state given by the 1s hydrogenic wave function [85] is

σabs(ω) =
32π2α

3

Z6

ω4

exp(−4n′arccot(n′))

1− exp(−2πn′)
, (C.15)

with

n′ =
Z√

2ω − Z2
, (C.16)

where Z the nulear charge.
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