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BACKGROUND: Previous studies reporting on the interaction between physical activity and genetic susceptibility on obesity have
been cross-sectional and have not considered the potential influences of other lifestyle behaviours. The aim of this study was to
examine modification of genetic influences on changes across age in adiposity during mid-adulthood by physical activity and
smoking.

METHODS: The sample comprised 2444 participants who were genotyped for 11 obesity variants and had body mass index
(BMI), waist circumference-to-height ratio (WHtR), physical activity and smoking measures at 36, 43, 53 and 60-64 years of age.
A genetic risk score (GRS) comprising the sum of risk alleles was computed. Structural equation models investigated modification
of the longitudinal GRS associations by physical activity (active versus inactive) and smoking (non-smoker versus smoker), using a
latent linear spline to summarise BMI or WHtR (multiplied by 100) at the age of 36 years and their subsequent rates of change
over age.

RESULTS: Physical activity at the age of 36 years attenuated the GRS associations with BMI and WHtR at the same age (P-interaction
0.009 and 0.004, respectively). Further, physical activity at the age of 53 years attenuated the GRS association with rate of change in
BMI between 53 and 63 years of age (by 0.012 kg m~?2 per year (95% confidence interval (Cl): 0.001, 0.024), P-interaction 0.004).
Conversely, smoking at the age of 43 years showed a trend towards augmenting the GRS association with rate of change in WHtR
between 43 and 63 years of age (by 0.012 (95% Cl: 0.001, 0.026), P-interaction 0.07). Estimated GRS effect sizes were lowest at all
ages in the healthiest group (e.g., active non-smokers).

CONCLUSIONS: Healthy lifestyle behaviours appeared to attenuate the genetic influence on changes across age in BMI and central

adiposity during mid-adulthood. An active lifestyle and not smoking may have additive effects on reducing the genetic

susceptibility to obesity in adults.
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INTRODUCTION

Genome-wide association studies have identified common
genetic variants robustly associated with anthropometric indica-
tors of adiposity."™ To date, there are 32 well-established genetic
loci for body mass index (BMI) in middle-aged adults of European
descent,"**% and the strongest loci for BMI are the same as those
for indictors of central adiposity such as waist circumference.®
Ravussin and Bouchard® have suggested that strong genetic
susceptibility to obesity, however, is not ‘unmasked’ unless
individuals are exposed to obesogenic environments. The
pertinent public health question is whether or not an individual
can attenuate the influence of their genetic risk for adiposity by
healthy lifestyle behaviours?

Physical activity is one of the most promising behavioural
candidates for obesity prevention and intervention
programmes,””'" and smoking is a key risk factor for obesity-
related chronic disease;'? thus, these lifestyle behaviours have
been logical targets for gene-environment interaction studies.
Most of the publications have investigated how single-nucleotide
polymorphisms (SNPs) in or near FTO, the strongest genetic

susceptibility locus, interact with physical activity to influence BMI
and obesity in cross-sectional analyses.'>' A recent meta-analysis
reported that the odds of obesity associated with the FTO risk
allele was attenuated in active adults compared with inactive
adults by 27%, and that there was no such attenuation in
children.'” The only gene-by-smoking publication in our literature
review investigated modification of individual SNP influences on
BMI*2 Only weak evidence was observed for two SNPs: the
influence of rs9939609 (FTO) on BMI was attenuated in never/
former smokers, but the influence of rs6548238 (TMEM18) was
accentuated. As smokers tend to have greater central adiposity
and actually lower BMI than non-smokers,”>*’ a clearer pattern of
modification might be expected when using an indicator of
central adiposity. Other gaps in the literature comprise (1) lack of
knowledge about the combined influences of physical activity and
smoking on modifying genetic susceptibility for obesity and (2) a
longitudinal perspective to understand whether or not improving
physical activity levels or reducing smoking rates will impact on
how much adiposity people subsequently accumulate over a
substantial period of the life course due to genetic risk.
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Using data covering 36 to 60-64 years of age, this is the first
paper to investigate modification of a genetic risk score (GRS) that
indicates total genetic susceptibility on total body adiposity
(indicated by BMI) and central adiposity (indicated by waist
circumference-to-height ratio (WHtR)) across adulthood by physi-
cal activity and smoking across adulthood. Our aims were (1) to
examine how being active versus inactive modifies GRS influences
on BMI/WHtR at baseline and subsequent rates of change across
age in BMI/WHtR during different periods of adulthood, (2) to
examine how being a non-smoker versus smoker modifies GRS
influences on the same traits and (3) to investigate the extent to
which any modification by physical activity varies according to
smoking (and vice versa).

SUBJECTS AND METHODS
Sample

The Medical Research Council (MRC) National Survey of Health and
Development (NSHD) is based on a representative sample of 5362
singletons born to married women in 1 week in March 1946 in England,
Scotland and Wales.?®?° Data collections have taken place at the age of 36
years in 1982 (N=3322), 43 years in 1989 (N=3262), 53 years in 1999
(N=3035) and 60-64 years in 2006-2010 (N=2229). The participants
remain broadly representative of native-born British men and women of
the same age.>®3! At 53 years of age, the majority (N =2989) of participants
were interviewed and examined in their homes by research nurses, with
others completing a postal questionnaire (N=46). Contact was not
attempted for individuals who refused to take part (N=950), were living
abroad (N=585), were untraced (N=316) or had died (N=476). Blood
samples for DNA extraction were collected from 2756 of the participants
who had a home visit. After deducting participants who were not
successfully genotyped (N=304) and then participants without a measure
of BMI or WHtR (N=28), the sample of the present study comprised 2444
participants (1220 males and 1224 females).

Ethics

The study received Multi-Centre Research Ethics Committee approval
(07/H1008/168) and informed consent was given by participants.

Adiposity indicators

Weight, height and waist circumference were measured using standard
protocols at 36, 43, 53 and 60-64 years of age; BMI (weight (kg)/height
(m)?) and WHtR (waist circumference (m)/height (m)) were computed. The
WHTtR is used because it is a better screening tool than waist circumference
or waist circumference-to-hip ratio for cardiometabolic risk factors and
because it places both sexes and all ethnic groups on the same scale3**3
Internal Z-scores for BMI and WHtR were calculated using the Lambda-
Mu-Sigma method.>* Overweight was defined as a BMI > 25 kgm~2 but
<30kgm~2, obesity was defined as a BMI >30kgm 2 and central
obesity was defined as a WHtR > 0.5.

Genetic risk score

The GRS is the same as that used in a previous MRC NSHD publication in
2012, thereby allowing comparison between publications, and is based on
11 SNPs that had been genotyped at that time.>® In Speliotes et al.’s
paper,' these 11 SNPs accounted for approximately two-thirds of the
1.45% variance in BMI that was explained by all 32 SNPs. Further, the GRS
includes the strongest loci for indicators of both total body and central
adiposity (i.e., in or near FTO and MC4R) and as such is suitable for use in
the investigation of gene-environment interactions on BMI and WHtR in
the present paper.

DNA was extracted and purified from whole blood using the Puregene
DNA lIsolation Kit (Flowgen, Hessle, UK) according to the manufacturer’s
protocol 3¢ Rs1421085 (FTO) and rs17782313 (MC4R) were genotyped by
Source Bioscience PLC with the use of Applied Biosystems SNPlex
Technology (Applied Biosystems, Foster City, CA, USA), which is based
on an Oligonucleotide Ligation Assay combined with multiplex PCR
amplification and capillary electrophoresis. Rs6548238 (TMEM18),
rs8055138 (SH2BT), rs11084753 (KCTD15), rs10838738 (MTCH?2), rs2815752
(NEGRT), rs925946 (BDNF) and rs10913469 (SEC16B) were genotyped using
the Sequenom iPLEX platform (Sequenom, San Diego, CA, USA), and
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rs10938397 (GNPDA2) and rs7647305 (ETV5) were genotyped using custom
TagMan SNP genotyping assays according to the manufacturer’s protocol
(Applied Biosystems). Call rates for all SNPs were >0.95%, and allelic
distributions were in Hardy-Weinberg equilibrium (P-values >0.05).

For each of the 11 SNPs, the allele known to be associated with obesity
was considered the risk allele and then the number of risk alleles for each
SNP (0, 1 or 2) was counted. The GRS was computed for each participant as
the summation of risk alleles across the 11 SNPs, so that a one-unit
increase corresponded to an increase of one risk allele. The GRS was
normally distributed and centred about the mean of 12 risk alleles.
A separate weighted GRS was similarly computed by first multiplying the
number of risk alleles for each SNP by the appropriate estimated risk allele
effect size on BMI from Table 1 in Speliotes et al's' paper before
summation. The weighted GRS was tested in sensitivity analyses for BMI,
but these sensitivity analyses for WHtR were not conducted owing to a lack
of established SNP effects sizes on WHtR.

Lifestyle behaviours

Participation in leisure time physical activity was ascertained at 36, 43, 53
and 60-64 years of age during interviews with research nurses. At age 36
of years, this was based on the Minnesota leisure time physical activity
guestionnaire on the frequency and duration of participation in 27
different activities in the preceding month.*’8 At 43, 53 and 60-64 years
of age, this was based on more basic questions about participation in any
sports and vigorous leisure time activities or exercises.>® At 43 years of age,
participants reported how many months in the preceding year and how
often in these months each activity was performed. At 53 and 60-64 years
of age, participants reported the number of occasions on which activities
were undertaken in the preceding 4 weeks. For the purpose of this study,
physical activity at each age was categorised as ‘inactive’ if the participant
reported no participation or ‘active’ if they reported participating at least
once in the previous month (aged 36 years), at least once per month
during the 1-year recall period (aged 43 years), or at least once in the
previous 4 weeks (aged 53 and 60-64 years). Smoking status was also
reported at each age and participants were categorised as being a ‘smoker’
if they currently smoked or a ‘non-smoker’ if they had never smoked or
were an ex-smoker. Further, a composite variable at each age with the
categories ‘inactive/smoker’, ‘active/smoker’, ‘inactive/non-smoker’ and
‘active/non-smoker’ was computed.

Statistical analysis

BMI and WHtR Z-scores at each age were regressed on GRS to confirm that
it was measuring genetic risk for adiposity in our sample. In addition, BMI
and WHtR Z-scores were regressed on concurrent physical activity and
separately on concurrent smoking to confirm that the associations were in
the expected directions.

Two structural equation models (SEMs), one for BMI and one for WHtR,
were built to address each study aim. Each SEM summarised the
longitudinal BMI or WHtR (multiplied by 100 for presentation purposes)
data as a latent linear spline with one knot. The knot was positioned at the
age of 53 years for BMI, thus the latent spline parameters were (1) an
intercept representing size at the age of 36 years, (2) a first slope
representing rate of change from 36 to 53 years of age and (3) a second
slope representing rate of change from 53 to 63 years of age. The knot was
positioned at the age of 43 years for WHtR, so the latent spline parameters
were (1) an intercept representing size at the age of 36 years, (2) a first
slope representing rate of change from 36 to 43 years of age and (3) a
second slope representing rate of change from 43 to 63 years of age.

In each SEM, (1) the latent intercept is regressed on sex and GRS-by-the
lifestyle behaviour variable (and the components of this interaction) at the
age of 36 years to test for modification of GRS influences on size at
baseline by the lifestyle behaviour variable at baseline, conditional on sex;
(2) the first latent slope is regressed on sex and GRS-by-the lifestyle
behaviour variable (and the components of this interaction) at the age of
36 years to test for modification of GRS influences on rate of change before
the knot by the lifestyle behaviour variable at baseline (conditional on sex);
and (3) the second latent slope is regressed on sex and GRS-by-the lifestyle
behaviour variable (and the components of this interaction) at the knot to
test for modification of GRS influences on rate of change after the knot by
the lifestyle behaviour variable at the knot (conditional on sex). Figure 1
provides a visual representation of the SEM for BMI and physical activity.
The SEMs were estimated in Mplus*® and were used to estimate GRS effect
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Table 1. Description of study sample of 2444 adults

36 Years

43 Years

53 Years

60-64 Years

Exact age (years), median (range)

BMI (kg m~<), mean (s.d.)
Normal weight®, N (%) (valid %)°
Overweight®, N (%) (valid %)°
Obese®, N (%) (valid %)°
Missing, N (%)

WHtR, mean (s.d.)
No central obesity, N (%) (valid %)
Central obesity”, N (%) (valid %)®
Missing, N (%)

b

pAd
Inactive, N (%) (valid %)
Active, N (%) (valid %)°
Missing, N (%)

sme
Smoker, N (%) (valid %)®
Non-smoker, N (%) (valid %)°
Missing, N (%)

PA/SM®
Inactive/smoker, N (%) (valid %)°
Active/smoker, N (%) (valid %)°

36.3 (36.0, 37.2)

24.1 (3.5)

1457 (59.6) (66.0)
629 (25.7) (28.5)
123 (5.0) (5.6)
235 (9.6)

0.49 (0.06)

1295 (53.0) (58.5)
917 (37.5) (41.5)
232 (9.5)

804 (32.9) (36.2)
1414 (57.9) (63.8)
226 (9.2)

719 (29.4) (32.3)
1505 (61.6) (67.7)
220 (9.0)

301 (12.3) (13.6)
415 (17.0) (18.7)

43.5 (42.8, 44.3)

25.4 (4.0)

1203 (49.2) (52.5)
825 (33.8) (36.0)
264 (10.8) (11.5)
152 (6.2)

0.50 (0.07)

1207 (49.4) (52.8)

1079 (44.1) (47.2)
158 (6.5)

1191 (48.7) (51.5)
1120 (45.8) (48.5)
133 (5.4)

665 (27.2) (28.9)
1640 (67.1) (71.1)
139 (5.7)

425 (17.4) (18.4)
240 (9.8) (10.4)

53.5 (53.0, 54.2)

27.4 (4.6)
793 (32.5) (32.7)
1071 (43.8) (44.1)
564 (23.1) (23.2)

16 (0.7)

0.54 (0.07)

660 (27.0) (27.1)

1772 (72.5) (72.9)
12 (0.5)

1189 (48.6) (48.7)
1253 (51.3) (51.3)
2 (0.1)

595 (24.3) (24.3)
1848 (75.6) (75.6)
1 (0.0)

386 (15.8) (15.8)
209 (8.6) (8.6)

63.3 (59.8, 64.9)

0.58 (0.07)
249 (10.2) (14.1)
1517 (62.1) (85.9)
678 (27.7)

1138 (46.6) (65.3)
606 (24.8) (34.7)
700 (28.6)

237 (9.7) (12.7)
1636 (66.9) (87.3)
571 (23.4)

157 (6.4) (9.7)
35(1.4) (2.2)

Inactive/non-smoker, N (%) (valid %)°
Active/non-smoker, N (%) (valid %)°
Missing, N (%)

)

)
503 (20.6) (22.7)
998 (40.8) (45.0)
227 (9.3)

(

762 (31.2) (33.1) 803 (32.9) (32.9) 889 (36.6) (55.0)
878 (35.9) (38.1) 1044 (42.7) (42.8) 534 (21.8) (33.1)
139 (5.7) 2 (0.1) 829 (33.9)

Abbreviations: BMI, body mass index; PA, physical activity; SM, smoking; WHtR, waist circumference-to-height ratio. °Normal weight: BMI <25kgm™%;
overweight: BMI > 25 kg m ™2, but < 30 kg m~2 obese: BMI > 30 kg m ~2 Valid % excludes missing data and is calculated as the N in that cell divided by the N
who had data for that particular variable at that particular age multiplied by 100. “No central obesity: WHtR < 0.5; central obesity: WHtR > 0.5. “Participation in
leisure time PA and smoking status were ascertained at each age during an interview with a research nurse. Participants were categorised as being a ‘smoker’ if
they currently smoked or a ‘non-smoker’ if they had never smoked or were an ex-smoker. Leisure time PA assessment was based on the Minnesota leisure time
PA questionnaire at 36 years of age and on more basic questions at 43, 53 and 60-64 years of age. At each age, participants who reported no leisure time
physical activity were classified as ‘inactive’ and those who reported any relevant activity (in the previous month at 36 years of age, in the previous year at 43
years of age and in the previous 4 weeks at 53 and 60-64 years of age) were classified as ‘active’

2

sizes at each age within each physical activity or/and smoking group and
these were plotted.

In secondary analyses, SEMs including a GRS-by-physical activity-by-
smoking interaction term were used to formally test whether or not any
modification by physical activity varied according to smoking (or vice
versa). Sensitivity analyses included SEMs stratified by sex, SEMs stratified
by weight status at the age of 36 years (i.e, normal weight or overweight
or obese) or central obesity status at the age of 36 years (i.e, no central
obesity or central obesity), and for BMI an SEM that included physical
activity or/and smoking at 43 years of age instead of 53 years of age.
Further, the SEMs for BMI were re-run using the weighted GRS to confirm
that constraining each SNP to have an equal contribution to genetic risk in
the main analyses was not inappropriate.

RESULTS
Both BMI and WHtR increased across adulthood so that by 60-64
years of age 72% of the sample was overweight or obese and 86%
had central obesity (Table 1). The percentage of participants
categorised as active decreased from 64% at the age of 36 years to
35% at the age of 60-64 years, whereas the percentage of
smokers decreased from 32% at the age of 36 years to 12% at the
age of 60-64 years.

The GRS was positively associated with BMI and WHtR Z-scores
at all ages (data not shown). Further, active participants tended to
have lower BMI and WHtR Z-scores than inactive participants, and
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non-smokers tended to have higher BMI but lower WHtR Z-scores
than smokers (data not shown).

Using the SEM for BMI and physical activity as an example,
Figure 1 is a visual representation of the model and Table 2 gives
the corresponding parameter estimates (labelled A-l). At 36 years
of age, the GRS and BMI were positively associated (A) and the
active group was estimated to have a lower mean BMI than the
inactive group (B). Further, the estimated GRS effect size on BMI
was 0.189kgm 2 (95% confidence interval (Cl): 0.047, 0.331)
lower in the active group compared with the inactive group (C).
There was no such effect modification on rate of change in BMI
between 36 and 53 years of age (F), but the GRS association with
rate of change in BMI between 53 and 63 years of age was
0.012 kg m ™2 per year (95% Cl: 0.001, 0.024) lower in participants
who were active at age 53 years of age compared with those who
were inactive (I).

The parameter estimates in Table 2 were used to estimate GRS
effect sizes at each age (i.e., 36, 43, 53 and 63 years) within each
physical activity group, and these results are shown in Figure 2a.
The estimated GRS effect sizes on BMI were consistently lower in
active compared with inactive participants. At 36 years of age, the
difference between the two groups of 0.189 kg m ~2 corresponds
to the estimate of the GRS-by-physical activity interaction on the
intercept in Table 2. Similarly, the widening of differences in
estimated GRS effect sizes between the two groups after 53 years
of age occurs at 0.012kgm ™2 per year, corresponding to the
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BMI BMI BMI BMI
36 43 53 63
years years years years
1 ) 7 17 0 10
Intercept Slope 17 Slope
36 36-53 0 53-63
years years years

GRS

Figure 1.

PA PA
36 53
years years

A latent linear spline SEM to test modification of GRS associations with BMI trajectories by physical activity (PA). GRS was computed

for each individual as the summation of risk alleles across 11 obesity variants and PA was ascertained at 36 and 53 years of age during
interviews with a research nurse. Leisure time PA assessment was based on the Minnesota leisure time PA questionnaire at the age of 36 years
and on more basic questions at the age of 53 years. At each age, participants who reported no leisure time PA were classified as ‘inactive’ and
those who reported any relevant activity (in the previous month at the age of 36 years and in the previous 4 weeks at the age of 53 years)
were classified as ‘active’ Thin arrows are used for the latent linear spline that summarises the serial BMI data for each individual as an
intercept (i.e., kg m~2 at the age of 36 years) and two slope terms (i.e., kg m~2 per year between 36 and 53 and between 53 and 63 years of
age). Solid thick arrows are used for main associations of GRS and PA with the intercept and slope terms. Dashed thick arrows are used for
GRS-by-PA interaction associations with the intercept and slope terms. Each thick arrow is labelled with a letter that corresponds to an

estimated parameter in Table 2.

estimate of the GRS-by-physical activity interaction on the slope
between 53 and 63 years of age in Table 2.

Figure 2 also shows the pertinent results for the other SEMs;
the parameter estimates and model fit statistics for all
SEMs can be found in Supplementary Tables 1. Overall model
fits showed that each hypothesised SEM was different to a fully
saturated model (P-values < 0.001). With a sample size of
over 2000, this was to be expected because of the large power
to detect even minor discrepancies. The other fit statistics
indicated good to excellent model fit because all values
were >0.95.*

The estimated GRS effect sizes on WHtR (multiplied by 100)
were consistently lower in active compared with inactive
participants (Figure 2b). The magnitude of this difference,
estimated to be 0.370 (95% Cl: 0.116, 0.625) at 36 years of age,
remained relatively constant across the age range studied.

For smoking (Figures 2c and d), the estimated GRS effect sizes
were lower in non-smokers compared with smokers, but the
differences were not nominally significant at P-value < 0.05 at 36
years of age. Over age, the estimated GRS effect sizes continued to
widen between non-smokers and smokers on BMI (between 53
and 63 years of age; interaction P-value 0.1) and WHtR (between
43 and 63 years of age; interaction P-value 0.07).

Considering the combination of physical activity and smoking
(Figure 2e and f), the estimated GRS effect sizes were lowest in the
healthiest lifestyle group (e.g., active/non-smokers). For BMI, the
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estimated GRS effect size at 36 years of age was 0.258 kgm ™2

(95% Cl: 0.037, 0.480) lower in active/non-smokers compared with
the least healthy lifestyle group (e.g., inactive/smokers), and this
difference widened between 53 and 63 years of age by 0.022
kg m~2 per year (95% Cl: 0.003, 0.042). However, GRS-by-physical
activity-by-smoking interaction terms in secondary SEMs were not
nominally significant (all P-values >0.2) (data not shown), thereby
indicating that the combined modifying effects of physical activity
and smoking on GRS effect sizes were not more than additive.

Sensitivity analyses did not produce any estimates that were
fundamentally different to those reported here from the main
analyses (data not shown).

DISCUSSION

This study provides novel longitudinal evidence in adulthood that
an active lifestyle may attenuate total body adiposity (as indicated
by BMI) accumulation due to genetic risk; tentative novel evidence
was also found to suggest that another healthy lifestyle factor, not
smoking, may attenuate central adiposity (as indicated by WHtR)
accumulation due to genetic risk.

Other studies of gene—environment interaction on adiposity
traits were largely cross-sectional and typically considered only
one lifestyle behaviour.'*?%%27¢ The present study is the first to
test whether the level of attenuation achieved by one lifestyle
behaviour varies across different groups of a second. Three-way
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Table 2. Latent linear spline SEM to test modification of GRS
associations with BMI trajectories by physical activity

BMI (kgm~2), N=2216

Parameter® B (95% Cl), P-value

Intercept
GRS (per risk allele)® A
PA at age of intercept®
Inactive (referent)
Active B
GRS-by-PA at age of intercept
Inactive (referent) ——
Active @ —0.189 (-0.331, —0.047), 0.009

Size 36 years
0.312 (0.196, 0.428), < 0.001

—-0.813 (-1.113, = 0.512), <0.001

Slope 1
GRS (per risk allele)® D
PA at age of intercept®
Inactive (referent) -—
Active E 0.004 (-0.011, 0.019), 0.6
GRS-by-PA at age of intercept
Inactive (referent) -——
Active F 0.000 (—0.008, 0.007), 0.9

Change per year 36-53 years
0.001 (—0.005, 0.007), 0.7

Slope 2

GRS (per risk allele)® G
PA at age of knot®

Inactive (referent) -—

Active H —0.018 (-0.043, 0.008), 0.2
GRS-by-PA at age of knot

Inactive (referent) -

Active | —0.012 (-0.024, —0.001), 0.04

Change per year 53-63 years
0.005 (—0.004, 0.014), 0.3

Abbreviations: BMI, body mass index; GRS, genetic risk score; PA, physical
activity; SEM, structural equation model. °Each parameter is labelled with a
letter that corresponds to a thick arrow in the visual representation of this
SEM in Figure 1. PComputed for each individual as the summation of risk
alleles across 11 obesity variants. “Participation in leisure time PA was
ascertained at each age during an interview with a research nurse. Leisure
time PA assessment was based on the Minnesota leisure-time physical
activity questionnaire at 36 years of age and on more basic questions at 53
years of age. At each age, participants who reported no leisure time PA
were classified as ‘inactive’ and those who reported any relevant activity (in
the previous month at 36 years of age and in the previous 4 weeks at 53
years of age) were classified as ‘active’

GRS-by-physical activity-by-smoking interaction terms were not
nominally significant, thereby indicating no evidence for depar-
ture from additive effects in the level of attenuation achieved by
physical activity and not smoking.

The meta-analysis of Kilpelainen et al.'” reported that the effect
size on BMI related to each risk allele in rs9939609 (FTO) was
0.14kgm~2 lower in physically active adults compared with
physically inactive adults. Similarly, we found that the effect size
on BMI related to each risk allele increase in GRS corresponded to
a BMI increase of 0.31 kgm ~2 at 36 years of age, but that being
active attenuated this association by 0.19kgm ™2 This crudely
equates to a remarkable 60% reduction in genetic influences
on BMI.

Few studies have investigated gene-environment interactions
on indicators of adiposity other than BMI.%'%3* Qur WHtR results
strengthen the limited evidence that physical activity modifies
genetic influences on central adiposity as well as total body
adiposity.'” They also provide the first tentative evidence that
not smoking attenuates genetic influences on central adiposity
accumulation. The paradox of lower BMI but higher waist
circumference and waist-to-hip ratio in smokers compared
with non-smokers has been well documented.?> %" Various

/.17
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mechanisms have been proposed to explain the greater central
obesity of smokers compared with non-smokers, including
higher fasting plasma cortisol concentrations in response to
stimulation of sympathetic nervous system activity.*®**° Our
results suggest that augmented genetic effects may also have
a role.

The mechanisms by which lifestyle behaviours modify the
influences of obesity genetic variants are not fully understood.
Epigenetic regulation of gene expression is a likely pathway
because epigenetic markers, such as DNA methylation, can be
modified by environmental factors®®>? and are associated with at
least the strongest genetic susceptibility locus for obesity.>>™> The
advent of high-throughput DNA methylation bead chip techno-
logy will allow large cohort studies to better quantify complex
interactions between genotype, environment and DNA methyla-
tion variation in the near future.*®*’

A particular strength of the present study is the robust
analysis of longitudinal data covering 36 to 60-64 years of age.
Our results build on cross-sectional gene-environment interac-
tion on obesity studies and one published longitudinal study
that found annual change in BMI, over an average follow-up of
3.6 years, to be attenuated by approximately 0.006 kgm~2 per
year per risk allele (in a 12 SNP GRS) in a group who were active
at baseline compared with a group who were inactive at
baseline (aged 39-79 years).45 What we add to this literature is
the knowledge that healthy lifestyle behaviours may be
important in the determination of how much adiposity is
gained, because of genetic risk, over a substantial period of
adulthood.

In terms of limitations, physical activity and smoking status
were self-reported, which might have biased estimates if there
was systematic under- or over-reporting, the questions used to
assess physical activity changed over age and the GRS explained
only a small fraction of the variance in BMI/WHtR. The SEMs
efficiently handled missing BMI and WHtR data, but the missing
physical activity and smoking data did have the potential to
introduce some bias. The estimated relationships of physical
activity/smoking with BMI/WHtR might be confounded by other
lifestyle behaviours and failure to adjust for these might have
biased the GRS-by-physical activity/smoking estimates. Differ-
ences between physical activity groups in the influence of genetic
susceptibility to adiposity were already present at 36 years of age,
but lifestyle behaviour data before 36 years of age are limited in
the MRC NSHD, making it impossible to determine the age when
physical activity started to modify the influence of genetic
susceptibility to adiposity. Finally, the sample comprised indivi-
duals who were all born in 1946, which makes it impossible to
distinguish between age effects and period effects, and may limit
generalisability of results to the modern-day British population of
adults who were born more recently than in 1946. Other studies
have shown that the positive effect of obesity genetic variants on
adulthood adiposity has strengthened over successive cohorts,>®
which suggests that the scope for attenuation of genetic
influences on adiposity by lifestyle behaviours may be greater in
more recently born cohorts.

In conclusion, we provide novel evidence that being active in
mid-adulthood attenuates genetic influences on subsequent
adiposity accumulation, and that being a non-smoker in mid-
adulthood may attenuate genetic influences on subsequent
central adiposity accumulation. The public health message is
clear; some individuals may be more susceptible to obesity than
others, but this can at least be partly offset by remaining active
across the life course and perhaps not smoking. Research in
larger samples is needed to confirm whether or not the
combined modifying effect of lifestyle behaviours is more than
additive.
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Figure 2.

Estimated GRS effect sizes within each physical activity (PA) or/and smoking (SM) group. GRS was computed for each individual as

the summation of risk alleles across 11 obesity variants, PA was ascertained at the age of 36 years and either at the age of 53 years (for BMI) or
43 years (for WHtR) during interviews with a research nurse, SM was ascertained at the age of 36 years and either at the age of 53 years (for
BMI) or 43 years (for WHtR) during interviews with a research nurse. Participants were categorised as being a ‘smoker’ if they currently smoked
or a ‘non-smoker’ if they had never smoked or were an ex-smoker. The GRS effect sizes in panels a and b are estimated from the models
shown in Supplementary Table 1, the GRS effect sizes in panels ¢ and d are estimated from the models shown in Supplementary Table 2 and
the GRS effect sizes in panels e and f are estimated from the models shown in Supplementary Table 3. Results for participants who changed
group (e.g., active at the age of 36 years but inactive at the age of 53 years) are not shown because this was not explicitly modelled (i.e., there
was no parameter for participants who changed groups). However, it is implicit that the trajectories for individuals who changed group would
diverge at the age of 53 years (for BMI) or 43 years (for WHtR) from the trajectory of the old group (e.g., active) to follow the gradient of the

trajectory for the new group (e.g., inactive).
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