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Abstract

Agents who employ non-rational choice procedures are often vulner-
able to exploitation, in the sense that a pro�t-seeking trader can o¤er
them a harmful transaction which they will nevertheless accept. We
examine the vulnerability of a procedure for deciding whether to buy
a lottery: observe another agent who already bought it and buy the
lottery if that agent�s experience was positive. We show that the ex-
ploitation of such agents can be embedded through speculative trade
in a market for an asset of no intrinsic value. However, the market
mechanism imposes a limit on the magnitude of exploitation.

KEYWORDS: bounded rationality, money pumps, dutch books, mar-
ket exploitation, speculative trade, S(1) procedure

1 Introduction

A common criterion for evaluating non-rational decision procedures is whether

they are vulnerable to exploitation, in the sense that a pro�t-seeking trader

could invent a harmful sequence of bilateral transactions which the non-

rational agent will accept nonetheless. This criterion su¤ers from a certain

weakness. Carrying out the exploitative transactions requires direct inter-

action between the trader and the agent. But when an unfamiliar person
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approaches us with a quaint proposal, our instinct is to treat it with caution

(recall your reaction to an invitation to play �Three Card Monte� on the

streets of a foreign city). We tend to think strategically about the situation

and suspect that there is a �catch�, even if we cannot pinpoint it. This is

particularly true if the o¤er has the appearance of a �free lunch� and the

other party does not seem to have anything to gain from it.

A harmful transaction might be more e¤ective if it could be embedded

and concealed in an impersonal market mechanism, which does not trig-

ger the �never trust a stranger� instinct. Compare the way people apply

adverse-selection reasoning in face-to-face bargaining situations and imper-

sonal, common-value auctions. When a seller approaches an agent with an

o¤er to purchase a product for a low price, the agent instinctively infers that

the product�s quality cannot be too high. People seem to be less success-

ful at applying this type of strategic thinking in auctions. The �winner�s

curse� fallacy, often observed in experimental common-value auctions, is a

consequence of this failure.

We focus our investigation on a decision procedure which is applied to

a simple class of choice problems under uncertainty: whether or not to

buy (at a given price) a lottery that yields a prize of $1 or $0, where the

winning probability is unknown. The procedure is to observe the experience

of another agent who already bought the lottery, and buy it if that other

agent�s experience was positive (or, more generally, to sample a number of

experienced agents and buy the lottery if the empirical winning frequency

in the sample is su¢ ciently high). A risk-neutral trader can manipulate an

agent who employs such a procedure - or, for that matter, any procedure

that ensures a positive probability of buying the lottery - by o¤ering him a

lottery which yields $1 with probability h > 0, for a price that lies strictly

between h and 1.

We study the following problem: is it possible to exploit agents who

follow this procedure through an impersonal market mechanism, in which

an asset of no intrinsic value is traded, such that the �lotteries�that agents

face are none other than the traded asset�s price �uctuations? We model the

market in a manner which bears some resemblance to Glosten and Milgrom
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(1985). In each period, a trader referred to as a �price maker�(PM) posts a

price that belongs to a set consisting of three possible prices, 1 > � > 0, and

commits to clear the market at that price. A pricing strategy for the PM is

a probabilistic rule for switching from one price to another. In addition to

the PM, the market is inhabited by agents who wish to buy the asset at the

posted price only for the prospect of selling it at a higher price in the next

period.1

If the agents knew the PM�s pricing strategy and reacted rationally, it

would be impossible to exploit them. However, we assume that the agents

do not know the PM�s strategy. Therefore, in each period they face a choice

problem to which the above sampling procedure is applicable. When the

current price is �, the procedure leads each agent to buy the asset with the

probability h that the PM raises the price from � to 1. If h < �, the PM

earns a positive expected pro�t conditional on the price being �. However,

in order to earn this pro�t on an ongoing basis, the PM must incur expected

losses at the other prices: when the price is 0, the procedure implies that

a positive fraction of the agents purchase the asset because the price must

rise from 0 with positive probability; and when the price is 1, the agents do

not buy the asset because the price never rises.

Nevertheless, we show that the PM is able to earn positive expected

pro�ts an on ongoing basis, through a suitable choice of the probabilities

of switching from one price to another. We derive an upper bound on

these pro�ts and show that when � > 1
4 , this bound lies below the maximal

expected pro�t that a trader could earn at the agents�expense if he did not

have to conceal the exploitation. Finally, we characterize the structure of

the PM�s optimal pricing strategy.

Not every boundedly rational choice procedure would lead to the same

conclusions. For example, consider an agent who follows the �dumb� rule

of buying every lottery with some exogenous probability. Clearly, if a risk-

neutral trader can directly interact with such an agent, he can exploit him

by o¤ering him the same exploitative lottery that he proposed to the agent

1The PM need not be interpreted as an actual individual trader, but as a metaphor
for some exogenous market environment.
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who employed the sampling procedure. However, once the exploitation has

to be concealed in the market mechanism, it becomes infeasible. On one

hand, the PM will earn a pro�t at the agent�s expense whenever he lowers

the price. On the other hand, in order to earn this pro�t on an ongoing

basis, he will have to raise the price back and su¤er an equal loss. Because

the agent�s probability of purchasing the asset is the same for all prices, the

expected loss exactly o¤sets the expected pro�t.

Although our primary motivation in this paper is to examine �market

concealment� of exploitative transactions, the model we analyze may be

related to the phenomenon of speculative trade. The agents in our model

engage in speculative trade with the PM, since they predict future asset

prices on the basis of naive extrapolation from past observations, whereas

the PM knows the true transition probabilities. This is quite di¤erent from

models of speculative trade suggested in the �nancial economics literature.

In Kyle (1985), for example, an informed rational trader uses the existence

of �noise traders�, whose behavior follows some stochastic rule, to make

speculative gains in his interaction with uninformed, rational traders. Note

that although our boundedly rational agents behave probabilistically, they

are not �noise traders�in the sense used in the literature, because they follow

an explicit choice procedure which causes their behavior to be systematically

related to actual price �uctuations.

2 The model

Consider a market for a durable, indivisible asset which has no intrinsic

value. Trade takes place in a sequence of periods. The volume of the asset

in the market is normalized to 1. Market participants consist of a Price

Maker (PM) and identical agents. In each period, a continuum of agents of

measure 1 are born and live for two periods. Each agent can hold only one

unit of the asset. He can buy it at the �rst period of his life. Conditional

on buying it in the �rst period, he must sell it in the second period. In each

period, the PM posts a price p from a �nite set P , and he commits to buy

or sell any quantity needed to clear the market at this price.
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The behavior of the PM is a price policy, namely a function f : P !
�(P ), where �(P ) is the set of probability measures over P . We use the

notation f(p; q) for the probability that f(p) assigns to the price q. Our

interpretation of f is that if the price in one period is p, the PM chooses the

price in the next period to be q with probability f(p; q). In other words f is

a Markov process whose state space is P . Given a price policy f , we say that

�f is an ergodic distribution if for all p, we have �f (p) =
P
q �f (q)f(q; p).

Of course, at least one ergodic distribution exists for every f .

The model of the agents�behavior is not conventional. Following Os-

borne and Rubinstein (1998), we label it as the S(1) procedure. Assume

that for any price p, each agent independently draws one sample point from

f(p), and buys the asset if and only if the outcome is a price strictly higher

than p. Thus hf (p) =
P
q>p f(p; q) is the probability that according to the

price policy f , the price which follows p is strictly higher than p. By the

S(1) procedure - and because the agents� samples are independent - the

proportion of agents who purchase the asset at price p is hf (p).

The interpretation of the agents�procedure is as follows. An agent enters

the market and observes the posted price. Being ignorant of the PM�s price

policy, he tries to infer the price trend by examining one period from an

in�nitely long past, in which the price was also p. He decides to buy the

asset if and only the price p at the sampled period was followed by a strictly

higher price in the next period.

Thus, under the price policy f , the transition from a price p to price q

is associated with a payo¤ for the PM

�f (p; q) = hf (p) � (p� q)

We assume no discounting and thus, we are led to investigating the maxi-

mization of the PM�s long-run average pro�ts

�(f) =
X
p;q

�f (p) � f(p; q) � �f (p; q)

where �f is the ergodic distribution of f . In principle, we should also deal
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with price policies that admit multiple ergodic distributions. However, as

we shall see shortly, this will not be necessary.

We con�ne ourselves to a three-price case, P = f0; �; 1g. Note that if
the set P consisted of less than three prices, no transition in f would yield

a positive pro�t, because no agent would buy the asset at the high price.

It follows that in order for the PM to earn positive expected pro�ts in the

three-price case, the 3�3 matrix f must be irreducible - namely, every state
must be reachable from any other state with positive probability - which

means that it has a unique ergodic distribution.

Relation to the literature on Markov Decision Problems. Considered from a

formal point of view, the PM�s optimization problem is a variant on a Markov

Decision Problem (MDP) - see Derman (1970). The di¤erence between our

problem and an MDP is that in our problem, the payo¤ function �(p; q) is a

(linear) function of the transition probabilities from p, whereas in an MDP,

payo¤s are independent of transition probabilities.

2.1 The possibility of speculative gains

Let us begin our analysis by showing that there exists a price policy that

yields a positive expected pro�t. For any price policy f , hf (1) = 0. There-

fore, �f (p; q) is given by the following table:

from n to 0 � 1

0 0 �hf (0)� �hf (0)
� +hf (�)� 0 �hf (�)(1� �)
1 0 0 0

Proposition 1 There exists a price policy that yields a positive expected
pro�t.
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Proof. Let f�;� be a price policy represented by the following diagram:

0 δ 1
α1-α β

1-β 1

Figure 1

where the circles represent the states, the arrows represent transitions that

receive positive probability, and the transition probabilities are written near

the arrows.

The ergodic probabilities of f�;� are �(0) : �(�) : �(1) = (1��) : � : ��.
The expected pro�t is thus:

�(f�;�) = �
��� + ��� � �2 + ��
1� � + �+ ��

which is positive, if we set � = �=2, for instance, and a su¢ ciently low value

for �.

The rationale for the price policy f�;� is as follows. Ideally, the PM

would like to lure as many agents as possible into buying the asset at the

intermediate price � and then let the price drop to 0. However, in order for

agents to purchase the asset with probability � at the intermediate price,

this must also be the probability that the price goes up from � to 1. Thus,

the PM faces a trade-o¤: lowering � implies a lower proportion of agents

who purchase the asset at �, but a higher expected pro�t from these agents.

Similarly, when the price is 0, the PM balances between the need to raise

the price to � in order to resume the money pump, and the need to make

the return from 0 to � su¢ ciently unlikely so that su¢ ciently many agents

will choose not to purchase the asset at 0.

7



Note that the formula for �(f�;�) implies that a necessary condition for

earning a positive expected pro�t with f�;� is � > �. That is, in order to

make pro�ts, the PM must raise the price more often when it is intermediate

than when it is low.

Comment. Our analysis assumes that the agents follow a particular choice

procedure. However, we can extend proposition 1 to a somewhat larger set

of procedures. Given a choice procedure C, let bf;C(p) denote the probability

that an agent who follows C purchases the asset at the price p, when the PM

follows the price policy f . Assume that C is such that these probabilities are

well-de�ned. Note that under the S(1) procedure, bf;C(p) = hf (p). Suppose

that bf;C(p) = g[hf (p)], where g : [0; 1] ! [0; 1] is a continuously increasing

function satisfying g(0) = 0 and g(1) = 1. An example for a procedure

satisfying this condition is one where for any price p, the agent draws K

sample points from f(p) and buys the asset if the drawn price is higher than

p in every sample point. A slight change in the proof of Proposition 1 is

needed in order to show that given such a procedure, the PM can �nd a

price policy f such that �(f) > 0.

A crucial aspect of this class of procedures is that the agent�s choice prob-

abilities at p depend only on hf (p). Recall the �dumb�procedure described

in the Introduction, according to which the agents follow some random rule

which is independent of p. In this case, every pro�t that the PM earns when

he lowers the price is exactly o¤set in expectation by the loss that he incurs

when raising the price back to its original level. Therefore, the PM cannot

exploit the agents on an ongoing basis.

2.2 The structure of optimal price policies

In this sub-section we characterize the structure of the optimal price policy.

We precede the proof with a useful lemma. It is well-known that in a

standard MDP there is an optimal strategy which is deterministic - i.e.,

a strategy which assigns probability one to a single action at each state.

In our model, the optimal policy will not be deterministic. However, our

lemma shows that there exists an optimal price policy such that for every
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price p, it switches to at most one strictly higher price and at most one

weakly lower price.

Lemma 1 There is an optimal price policy f , such that for every price p,
f(p; q) > 0 for at most one q > p and at most one q � p.

Proof. Let f be an optimal price policy. We will show that there

is a price policy which has the stated property by applying the classical

result (see Derman (1970), Chapter 3, Theorem 2) that any MDP admits

a deterministic optimal strategy. Note that we cannot apply this result

trivially in our setting, because as noted in Section 2, the optimization

problem is not an MDP (speci�cally, f(p) a¤ects �(p; q)).

We consider an auxiliary optimization problem, in which the set of states

consists of all pu and pnu for any p 2 P . The interpretation is that at pu, the
price is supposed to go up and at pnu, the price is supposed not to go up.

The set of actions available at each state pu is the set of all prices which are

strictly higher than p. Similarly, the set of actions available at each state

pnu is the set of all prices which are not strictly higher than p. Given a

state pj (j = u; nu) and a feasible action q, the system switches to qu with

probability hf (q) and to qnu with probability 1�hf (q), and yields the payo¤
�f (p; q).

The auxiliary problem was designed such that any strategy in the origi-

nal problem yields the same expected payo¤ when applied to the auxiliary

problem. However, the auxiliary problem is an MDP. Therefore, there is an

optimal price policy which assigns a deterministic price to every state pu or

pnu. It follows that in the original problem, there exists an optimal price

policy such that for every price p, f(p; q) > 0 for no more than one q > p

and for no more than one q � p.

Before proceeding, we introduce some useful notation. Suppose that f is

irreducible. Given a state s, de�ne an s-cycle to be a sequence of states of the

form (s; :::; s), where all the states except the �rst and the last are not s. Let

C(s) be the set of all s-cycles. For every cycle c, K(c) denotes the number
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of transitions in the cycle; �(c) denotes the sum of payo¤s associated with

the transitions in the cycle; and �(c) denotes the probability of the cycle

according to f . Then, it is possible to write the PM�s expected pro�t as

follows:

�(f) =

P
c2C(s) �(c)�(c)P
c2C(s) �(c)K(c)

(1)

We will show now that there is always an optimal price policy of the

form f�;� as de�ned above (see Figure 1).

Proposition 2 There exist �; � such that f�;� is an optimal price policy.

Proof. By Lemma 1, there is an optimal price policy f such that for
every price p, f(p; q) > 0 for at most one q > p and at most one q � p.

Because f is irreducible, f(1; 1) = 1 is ruled out, and thus f(1; 1) = 0.

In order to make a positive expected pro�t, the PMmust assign a positive

probability to the transition from � to 0. By Lemma 1, there must be an

optimal price policy f such that f(�; �) = 0.

It remains to show that f(1; 0) = f(0; 1) = 0. Assume that f(1; 0) > 0

and thus f(1; �) = 0. Consider a �-cycle in which a transition from 1 to 0

occurs. Then, the cycle must be of the form (�;a; 1; 0;b; �), where a and

b are sequences of states, with the restriction that a does not contain a

transition from 1 to 0. Suppose that the PM deviates to a price policy f 0

which is identical to f except that the probability f(1; 0) = 1 is shifted to

f 0(1; �). This deviation implies that hf 0(s) = hf (s) for every state s. Then,

the probability that f assigns to any cycle of the form (�;a; 1; 0;b; �) is

shifted to (�;a; 1; �). Note that K(�;a; 1; �) � K(�;a; 1; 0;b; �), and because
the only transition that is associated with a positive payo¤ is from � to 0,

�(�;a; 1; �) � �(�;a; 1; 0;b; �). By (1), �(f 0) � �(f).
The proof that f(0; 1) = 0 is identical.

The intuition for this result is as follows. The only transition that yields

a positive payo¤ for the PM is the transition from � to 0. Therefore, when

the price goes up from 0 or goes down from 1, the PM prefers to switch

directly to �.
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2.3 An upper bound on the PM�s expected pro�t

There is no closed solution to the problem max�;� �(f�;�). However, we

provide an upper bound on the PM�s expected pro�t.

Proposition 3 No price policy earns an expected pro�t above �=16.

Proof. Let f be a price policy and let �(f; �) denote the expected

pro�t from f when the intermediate price is �. The function �(f; �) is

linear in �. Moreover, �(f; 0) � 0. Therefore, it su¢ ces to show that

maxf�(f; 1) � 1=16.
By Proposition 2, we can restrict attention to price policies of the form

f�;�. An upper bound on �(f�;�; 1) is attained if we collapse the two upper

states into a single state - i.e., as if only one period passes when we move

from the state � to the state 1 and then back to the state �. The payo¤

function associated with the modi�ed two-state Markov process is:

from �to 0 �

0 0 ��
� � 0

and the transition probabilities are:

from �to 0 �

0 1� � �

� 1� � �

The ergodic probabilities of this process are �(0) : �(�) = (1 � �) : �.
The expected pro�t is thus (substituting � = 1):

�[ (1� �)
(�+ 1� �) ] � [�

2] + [
�

(�+ 1� �) ] � [�(1� �)] = �(1� �) �
��+ �

(�+ 1� �)

Denote � = (� + 1 � �). Then, we have �(1 � �) ��+�
(�+1��) �

(�=2)2(1��)
� =

�(1��)
4 � 1=16.
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2.4 The cost of �market concealment�

In the model analyzed in this section, the PM can obtain a positive expected

pro�t when he posts the price �. However, when the prices are 0 or 1, he

makes a non-positive expected pro�t. It is therefore interesting to draw a

comparison with the situation we described in the Introduction, in which a

manipulator o¤ers in each period a lottery that yields 1 with some probabil-

ity h and 0 with probability 1� h, at a price �. In each period, agents who
face this lottery follow the S(1) procedure. That is, they accept the lottery

if and only if the outcome of a random draw from the lottery is favorable.

The manipulator�s expected pro�t in this case is h(��h). The maximum is

attained with h = �=2, yielding an expected pro�t of �2=4. By Proposition

3, when � > 1=4, the cost for the PM of supporting all the outcomes of the

exploitative lottery as market prices is at least �2=4� �=16 > 0.
Note that the above argument also implies that �(f) � �2=4. The

reason is that �(f) cannot exceed the expected pro�t that is obtained if

agents face the price � in every period, and rewards are given without the

market apparatus.

3 Conditioning prices on asset holdings

Our model has assumed that the state variable in the PM�s price policy

is the price. However, the PM�s could in principle observe the quantity of

the asset in his possession, and condition next period�s price on his current

holdings as well as on the current price. In the model studied in the previous

section this was redundant, because there were many agents whose behavior

was statistically independent. As a result, the PM�s holdings at the end of

each period were uniquely pinned down by the probability distribution over

next period�s price.

In this section we present a variant on the model, in which the agents�

behavior is coordinated, and therefore the ability to condition on holdings

makes a di¤erence. Instead of assuming that the agents�samples from f(p)

are independent, suppose that they all observe the same sample point - say,
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the most recent period in which the price was p - and therefore, in each

period all agents take the same action. This means that the quantity held

by the PM at the end of each period behaves stochastically.

Formally, let us continue to denote the set of prices by P = f0; �; 1g.
De�ne the set of states S as the set of all p1 and p0 where p 2 P . The state
pz means that the current price is p and the PM currently holds a stock z.

A price policy for the PM is a function f : S ! �(P ). We use f(pz; q) to

denote the probability that next period�s price will be q, conditional on the

current state being pz. Denote fu(pz) =
P
q>p f(p

z; q). Assume that unlike

the PM, the agents do not observe the PM�s stock and cannot distinguish

between periods in which the state is p1 or p0. Given a price p, the agents

choose whether to purchase the asset according to the S(1) procedure. They

sample one period in which the price is p, and choose to buy the asset if and

only if the price in the next period is strictly higher.

Let �f be an ergodic distribution of f . Then, conditional on the current

price being p, the probability that the agents purchase the asset is:

hf (p) =
X
z=0;1

�f (p
z)fu(pz)

�f (p0) + �f (p1)

Given a price policy f , and conditional on the current price being p, the

probability that the state is p0 is hf (p), and the probability that the state

is p1 is 1�hf (p). Therefore, �f is an ergodic distribution if for every p 2 P :

�f (p
0) =

X
qz2S

�f (q
z) � f(qz; p) � hf (p)

�f (p
1) =

X
qz2S

�f (q
z) � f(qz; p) � (1� hf (p))

It is easy to see that for every f , there is at least one ergodic distribution.

The PM�s payo¤ associated with the transition from state pz to state qw

is

�(pz; qw) = q � (z � w)

We continue to assume no discounting and thus, we shall investigate the
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maximization of the PM�s long-run average pro�ts

�(f) =
X
pz ;q

�f (p
z) � f(pz; q) � [h(q) � �(pz; q0) + (1� h(q)) � �(pz; q1)]

where �f is the ergodic distribution of f .

As in the previous version of the model, the PM cannot earn positive

expected pro�ts if the ergodic distribution assigns positive probability to two

prices only, say 0 and 1. Because h(1) = 0; the state 10 is never reached.

Therefore, only the states 00, 01 and 11 can have positive probability under

the ergodic distribution. But any cycle through these states yields a non-

positive sum of payo¤s and therefore, the PM�s expected pro�t cannot be

positive. It follows that we can restrict attention to irreducible price policies,

which are known to induce a unique ergodic distribution.

3.1 An optimal price policy

The following example shows that the PM can exploit the agents�inability

to perceive any systematic relation between price movements and the PM�s

holdings, and earn a higher expected pro�t than when he cannot condition

prices on holdings. Consider the fully deterministic price policy:

g(01; �) = g(�1; 1) = g(11; �) = g(00; 0) = g(�0; 0) = g(10; 0) = 1

That is, the PM raises the price by one level if his stock is 1 - except when

the price is 1, in which case he lowers the price to �. When the PM�s stock

is 0, he sets the price to 0.

The ergodic distribution of g assigns zero probability to the state 10 since

hg(1) = 0. Therefore, g induces a �ve-state Markov process, which is given
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diagrammatically by the following �gure:

01

00

11

δ1

δ0

Figure 2

Each of the transitions in this diagram has probability 1=2, except for the

transition from �1 to 11, whose probability is 1. The ergodic distribution

assigns equal probability to each of the �ve states 11, �0, �1, 00 and 01.

To verify that this is the case, note that hg(0) = hg(�) = 1=2. The PM�s

expected pro�t is �=5, since only the transitions from 11 and 01 to �0 entail

non-zero payo¤s (� in each case). Observe that this is higher than the upper

bound we derived in Section 3.

This price policy fully exploits the agents� inability to distinguish be-

tween p0 and p1. The PM raises the market price only when his current

stock is 1, and (weakly) lowers the price when his current stock is 0. The

agents purchase the asset when they observe a price increase, although the

periods in which the price rises are precisely the periods in which the asset

is held by the PM. For instance, consider the case of p = 0. The agents

purchase the asset with probability 1=2 at this price because the price rises

from 0 to � with probability 1=2. However, the price rises only from the state

01 - i.e., when the agents have not bought the asset and therefore cannot

reap the bene�t from the price increase.

Our next result shows that the price policy g is indeed optimal.

15



Proposition 4 There exists no price policy that generates an expected pro�t
higher than �=5.

Proof. Assume that f is a price policy with ergodic distribution � such
that �(f) > �=5. Our method of proof is to get a contradiction by showing

that �(s) > 1
5 for s 2 f1

1; �1; �0; 01; 00g.

Step 0: W.l.o.g, for every state pz there is at most one q > p for which

f(pz; q) > 0, and at most one q � p for which f(pz; q) > 0.
Proof : Along the same lines as in Lemma 1.

Step 1: We can assume that f(�0; �) = 0.
Proof : Assume that f(�0; �) > 0. By Step 0, we can assume that f(�0; 0) =
0. Let C(�0; p) be the set of all �0-cycles of the form (�0; pz; :::; �0). Every

�0-cycle c for which �(c) > 0 is in C(�0; �) or C(�0; 1) and thus �(c) � 0.

Therefore, by (1), �(f) � 0, a contradiction.

Step 2: �(p1)fu(p1) = �(p0)(1� fu(p0)), for p = 0; �.
Proof : By de�nition,

h(p) =
�(p0)fu(p0) + �(p1)fu(p1)

�(p0) + �(p1)

By the agents� rule of behavior, �(p0) = h(p)(�(p0) + �(p1)). The claim

follows from these two identities.

Step 3: �(�0)f(�0; 0) > 1
5 and �(0

1)f(01; �) > 1
5

Proof : In order for the PM to earn a positive expected pro�t, it must be

that �(�0) > 0. Therefore, the total probability of cycles in C(�0) is positive.

Consider a cycle c 2 C(�0). Observe that �(c) � �. Moreover, �(c) � 0
unless the cycle contains a transition from �0 to 0z and a transition from 01

to �z. Therefore for both pairs (s; p) = (01; �) and (�0; 0):

�

5
< �(f) =

P
c2C(�0) �(c)�(c)P
c2C(�0) �(c)K(c)

� �
P
c2C(�0);�(c)>0 �(c)P
c2C(�0) �(c)K(c)

� �

P
c2C(�0;0) �(c)P

c2C(�0) �(c)K(c)
� ��(s)f(s; p)
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The claim thus follows.

Step 4: �(11); �(�1); �(01) > 1
5

Since h(1) = 0, �(10) = 0, and thus �(11) � �(�0)f(�0; 1)+�(�1)f(�1; 1).
By Step 2, �(�1)f(�1; 1) = �(�0)(1�f(�0; 1)) and therefore, �(11) � �(�0) >
1
5 .

By Step 1, f(�0; 0) = 1� f(�0; 1). By Step 2:

�(�1)f(�1; 1) = �(�0)(1� f(�0; 1)) = �(�0)f(�0; 0)

�(01)[1� f(01; 0)] = �(00)[1� f(00; 0)] � �(00)f(00; �)

By Step 3, the R.H.S in both cases is greater than 1
5 .

3.2 The cost of �market concealment�

As in the case of our original model, the following question is naturally

raised: to what extent does the need to support the outcomes of an ex-

ploitative lottery as market prices reduces the expected pro�t that can be

earned at the agents�expense? The relevant benchmark, given the model

of this section, is as follows. A risk-neutral trader o¤ers in each period a

lottery that yields 1 or 0, at a price �. Imagine that if the agent rejects

the o¤er, the trader gives the lottery to a proxy. In this case, although the

outcome of the lottery is made public, it does not involve any monetary

transfer. The trader can condition the lottery�s outcome on whether he sold

it to an agent or gave it to the proxy.

Suppose that the agent decides whether to accept the lottery on the

basis of a sampled past realization of the lottery - whether it was sold to an

agent or given to the proxy. Let ha and hp denote the probabilities that the

trader assigns to the outcome 1 when he sells the lottery to an agent or gives

it to a proxy, respectively. Then, the trader�s expected pro�t is �[� � ha],
where � is the probability that the agent will purchase the lottery, given by

� = �ha + (1 � �)hp. A simple calculation shows that the trader will set

hp = 1 and ha = 0, yielding an expected pro�t of �2 . Thus, the trader�s loss

from concealing this trick in the market apparatus is �2 �
�
5 .
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4 Concluding remarks

Vulnerability to the invasion of rational agents

Suppose that the population of traders with whom the price maker interacts

consisted of both S(1)-agents and rational agents who fully understand the

price maker�s price policy. Then, the rational agents would not purchase

the asset at the price � but they would purchase it at the price 0. The

rational agents�strategy in�icts a loss on the PM, and if their proportion is

su¢ ciently large, he is unable to earn a positive expected pro�t.

Note that in the benchmark situation described in the Introduction, in

which the risk-neutral trader constantly o¤ers the same lottery at the price

�, without having to support the lottery�s outcome as market prices, he does

not su¤er from this vulnerability. The rational agents avoid purchasing the

lottery, but they do not in�ict a loss on the trader. Thus, the trader�s

vulnerability to the invasion of rational agents is another cost of �market

concealment�.

The relevant parameter space

The set of prices in our model consists of three prices, 0; � and 1. The

procedure we ascribed to the boundedly rational agents applies to all values

of �. However, we �nd that the model is reasonable only for relatively low

values of �. If � is high, it does not make sense to base one�s decision on one

random observation of the price that follows �, because the potential loss

is large while the potential gain is small. However, our qualitative results

would persist if we replaced the S(1) procedure with an S(n) procedure, in

which the agents base their decision on n > 1 sample points, although the

price maker�s pro�ts would be reduced.

The relation to Markov Decision Problems

The price maker�s maximization problem in this paper is close but not iden-

tical to a Markov Decision Problem. As we pointed out in the main text,

the di¤erence is that in our model, the payo¤ associated with a transition is

a linear function of the transition probabilities. We solved the maximization
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problem in two variants of the model. However, we are not aware of a gen-

eral characterization of the optimal solution for such optimization problems.

This also makes it di¢ cult for us to extend the model to the case in which

P contains more than three prices.

Related literature

Osborne and Rubinstein (1998) introduced the S(1) procedure in a game-

theoretic context. In their model, each player chooses his action after sam-

pling each possible action once. Their focus was on constructing a suitable

equilibrium concept for an interaction between agents who employ the S(1)

procedure. Equilibrium in a symmetric game is a distribution of actions

such that the probability assigned to an action is the probability that an

agent who uses the S(1) procedure decides to take this action. Osborne and

Rubinstein (2003) apply a variant of the concept to a voting model.

Spiegler (2003,2005) analyzes markets in which pro�t-maximizing �rms

compete over consumers who employ the S(1) procedure to evaluate each

�rm. As in the present paper, the consumers�choice rule makes them vulner-

able to exploitation by the �rms. The exploitative e¤ect need not disappear

as the number of competitors increases.

In its critical exploration of harmful transactions, this paper is related to

the literature on �money pumps�and �dutch books�(e.g., see Yaari (1985)).

This literature has constructed exploitative transactions for a variety of de-

cision procedures that violate properties such as transitivity, independence

or Bayesian updating, and argued that the possibility of such transactions

ensures that these violations of rationality will disappear from the market.

Laibson and Yariv (2005) study the market performance of dutch books

from a wholly di¤erent perspective than ours. They construct a general

equilibrium model with dynamically inconsistent consumers. They de�ne a

dutch book in this environment as a temporal sequence of contracts that

impoverishes such consumers, and show that the exploitative e¤ect of dutch

books disappear in competitive equilibrium.
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