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Abstract 

Acquired data in tomographic imaging systems are subject to physical or detector 

based image degrading effects. These effects need to be considered and modeled in order to 

optimize resolution recovery. However, accurate modeling of the physics of data and 

acquisition processes still lead to an ill-posed reconstruction problem, because real data is 

incomplete and noisy. Real images are always a compromise between resolution and noise; 

therefore, noise processes also need to be fully considered for optimum bias variance trade 

off. Image degrading effects and noise are generally modeled in the reconstruction 

methods, while, statistical iterative methods can better model these effects, with noise 

processes, as compared to the analytical methods. Regularization is used to condition the 

problem and explicit regularization methods are considered better to model various noise 

processes with an extended control over the reconstructed image quality. Emission physics 

through object distribution properties are modeled in form of a prior function. Smoothing 

and edge-preserving priors have been investigated in detail and it has been shown that 

smoothing priors over-smooth images in high count areas and result in spatially non-

uniform and nonlinear resolution response. Uniform resolution response is desirable for 

image comparison and other image processing tasks, such as segmentation and 

registration. This work proposes methods, based on MRPs in MAP estimators, to obtain 

images with almost uniform and linear resolution characteristics, using nonlinearity of 

MRPs as a correction tool. Results indicate that MRPs perform better in terms of response 

linearity, spatial uniformity and parameter sensitivity, as compared to QPs and TV priors. 

Hybrid priors, comprised of MRPs and QPs, have been developed and analyzed for their 

activity recovery performance in two popular PVC methods and for an analysis of list-mode 

data reconstruction methods showing that MPRs perform better than QPs in different 

situations. 
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CHAPTER 1  

Introduction 

Imaging systems are compared to each other by the quality of images they produce. 

Resolution is one of the common measures of image quality and expresses imaging 

system’s capability to resolve two smallest spatial features. Resolution properties of 

emission computed tomographic (ECT) imaging systems, such as PET/SPECT, are affected 

by numerous image-degrading effects, such as non-uniform attenuation, scatter and crystal 

penetration effects etc. They also include effects originating from general imaging physics 

to the effects produced by particular image estimator used and by the properties of the 

object being imaged. These effects force the data from these systems to deviate from simple 

line integral model, which is generally considered to be an ideal data model. It could have 

been much easier to specify resolution properties of the reconstructed images, if these 

effects were spatially-uniform, however, an added complexity is due to their spatial 

variations. Even, intrinsically space-invariant systems produce images with space-variant 

characteristics due to these intricacies. All these effects accumulatively degrade the final 

image quality and induce spatial variance noise and resolution properties. 

To optimize resolution recovery, all the above effects need to be addressed by the 

system and reconstruction model which is commonly applied through the reconstruction 

method. Therefore, reconstruction method used is very important in deciding for the 

quality of the reconstructed images. Different reconstruction methods have varying 

abilities to model these effects. For example, analytical reconstruction methods, such as 

filtered back-projection (FBP), direct Fourier reconstruction (DFR) or convolution back-

projection (CBP), have limited ability in this regard. These methods are generally based on 

inversion of an analytical formula to describe forward projected data, which is ideally 

considered to follow a line integral model and ignore any underlying noise processes, 

hence, their results suffer from severe quantification errors. Simple iterative methods, such 

as algebraic reconstruction techniques (ART), try to solve the line integral problem, 

numerically, and their images bear almost same characteristics as of analytical methods. 

Methods based on data likelihood approach try to model data noise and can easily include 
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modeling of the system, however, even with accurate modeling reconstruction problem still 

becomes an ill-posed inverse problem and the resultant images suffer from reconstruction 

based noise. These methods try to find an image, best fitted to the data information only, 

which is always noisy; hence, solution image is noisy, though with better quality as 

compared to the analytical reconstruction methods. 

Regularization, which simply means to constrain the solution image by imposing 

further conditions based on object properties or otherwise, is used to combat this ill-

conditioning of the reconstruction problem. Regularized statistical reconstruction methods, 

such as Penalized-Likelihood (PLEM) or MAP methods, use information based on object 

properties in addition to the information available in the data, to compensate for noise and 

better condition the problem. This object priori information is introduced in form of a 

probability distribution function or regularization function and gives user an extra control 

over quality of the final image. Object properties are based on the images derived from 

Markov Random Field (MRF) images, which emphasizes on local image smoothness. 

Several local regularization priors have been introduced in the literature and 

smoothness priors, in the form of a Gibbs distribution function of pair wise pixel 

differences, have been applied extensively. Smoothness priors, most commonly QPs, 

smooth out salient features of the images and bear anisotropic smoothing behavior. This 

behavior leads images with non-uniform resolution characteristics, which ultimately makes 

image comparison or their registration or segmentation process, a complex task. So, inter-

modality image comparison becomes problematic. With these priors, reconstructed images 

consequently may contain deformed regions, where circles appear as ellipses, and will lead 

to an erroneous diagnosis with hampered quantification. Also, regions appear to have 

lesser activity due to spill over from high count regions and produce errors in the 

calculation of estimated tumor volumes. Hence, images with uniform resolution properties 

across the whole span of the reconstructed images are desirable. Several quadratic and 

non-quadratic smoothness priors have been introduce for better quality and lesser noisy 

images as compared to the simple MLEM methods; however, they produce images with 

space-variant resolution properties and induce asymmetric system responses. It has been 

shown that these priors have space-variant smoothing characteristics, controlled by shift-

variant localized image pixel variance and other physical factors, which are heavier in high 

activity regions inside the object. These priors work on the concept of local image 

smoothness and penalize higher pixel differences with stronger force and over-smooth the 

edges. Non-quadratic prior functions have been proposed for edge preservation, however, 

with an expense of extra empirical parameters to be tuned and an artifact of induced 

patchy areas.  
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Another class of priors, known as edge preserving priors, with two very popular 

choices of Total Variation (TV) regularization priors and Median Root Priors (MRPs), have 

been investigated. TV priors work as the irregularity measure of the image, whereas, MRPs 

try to preserve local mono-tonicity. Both of these concepts are not too different and these 

priors preserve edges and smooth regions almost equivalently. Unfortunately, these priors 

do not have their analytical derivatives defined and are not very attractive mathematically, 

however, their empirical derivatives have been proposed with acceptable results. So far, 

their use has only been restricted to image reconstruction methods and no attempt has yet 

been made, as of our knowledge, to develop, analyze and use MRPs to design prior 

functions in order to achieve uniform reconstructed image resolution. It is very important 

to have some sort of quantitative measure, for this type of analysis, and comparison of 

resolution properties of different methods. A simple way is to use Brute force method 

(defined in the text in Chapter 4) or another option is to use an analytical function, known 

as local impulse response (LIR), which was initially developed for PLEM methods. These 

provide us with nice tools to compare system response of some estimator in a local 

neighborhood of an object of interest. LIR can also help use to design some user defined 

prior functions in order to obtain predefined desired system responses. 

In this work, motivated by the above discussion, we propose a prior design based on 

MRPs for the compensation of non-uniform reconstructed resolution with MAP estimators. 

This design is based on both, the nonlinearity of MRPs and certainty based correction 

method developed for QPs. We comprehensively analyzed resolution characteristics of our 

proposed priors with a comparison to the results of standard quadratic priors by 

evaluating impulse responses inside the target object. We also developed a new class of 

hybrid priors, based on both QPs and MRPs, and have shown that their response is more 

controllable in sense of uniform reconstructed resolution. An implementation of our priors 

with real SPECT data has also been presented. 

Partial Volume Effect (PVE) is a direct consequence of the limited resolution of 

imaging systems; hence, any proposed method for the compensation of non-uniform spatial 

resolution should be analyzed for its activity recovery performance. An implementation of 

our proposed methods has been presented in two very popular partial volume correction 

methods to analyze their activity recovery performance. Data are binned or squeezed both 

in radial and angular directions, in bin mode or histogram data acquisition mode, which 

leads to a loss of accuracy or at least redundancy. Different attributes related to each event 

are saved in a long list, in list-mode data acquisition, and provide us a way to exploit full 

data accuracy. No such effort to use LIR in list-mode reconstruction methods has yet been 

made, as of our knowledge, to evaluate their resolution characteristics. We have presented 
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an implementation of our proposed priors in list-mode reconstruction methods with an 

evaluation of LIR function, appropriately modified for list-mode data. In brief, we may 

summarize a following hypothesis for our research with aims and objects given; 

 

Hypothesis: Tomographic imaging systems have space-variant response due to 

spatially varying acquisition and detection physics and produce images with non-uniform 

resolution characteristics, which can be corrected by modelling emission object constraints 

in form of a properly designed prior distribution function in MAP estimators, with better 

activity recovery performance at the same time. 

 

Aims and Objectives: With the above hypothesis given, research work was carried out 

with the following aims and objectives in mind:  

 

 Evaluation of spatially variant system response with different reconstruction 
methods. These include MAP estimation methods, with popular smoothing priors 
and further to develop prior functions which may provide better image quality, in 
the sense of reconstructed resolution, and activity recovery performance [P1, P4, 
P5]. 

 To analyse comprehensively resolution characteristics of the proposed prior 
functions, with their implementation in LIR function, and to find some modified 
prior functions to compensate for spatially non-uniform resolution properties of 
the reconstructed images. [P4]. 

 Compare resolution properties of proposed priors with standard QPs and TV [P6, 

P5]. Evaluate activity recovery performance of our developed priors using some 
robust methods for partial volume correction and compare their performance with 
that of the standard QPs [P2, P7, P8]. 

 Evaluate resolution characteristics of our proposed prior distribution functions in 
list-most regularized reconstruction methods to look for any further benefit list-

mode data may provide [P1] and to evaluate noise performance as compared to the 
standard QPs [P3]. 

 

Chapter 2, briefly discusses emission computed tomographic imaging physics and 

reconstruction methods including a basic discussion of some physical and detector 

dependent effects which degrade quality of the reconstructed images. We have mentioned 

some of the basic techniques researchers have previously used to compensate for these 

effects and to improve resolution and noise characteristics in order to improve quality of 
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these images. We have briefly given a description of Partial Volume Error (PVE) with a 

brief derivation of Local Impulse Response (LIR) expression which we have extensively 

used in our work. 

Chapter 3, reviews previous literature, while discussing different reconstruction 

techniques, image degrading effects, and system models used in MAP and PLEM 

reconstruction methods, with QPs, MRPs and TV. We have also reviewed different partial 

volume correction methods used, some standard list-mode reconstruction methods and 

noise analysis techniques while putting our work in the context of previous efforts, 

wherever possible. 

Chapter 4, describes some experimental methods and setups and designs for the 

comparison of different algorithms used to improve reconstructed image resolution. We 

have also proposed some new MRPs based prior functions for the compensation of non-

uniform resolution characteristics of the reconstructed images. An implementation of our 

priors with real data has been presented, too. 

Chapter 5, describes an implementation and evaluation of partial volume correction 

methods including a comparison of our proposed priors with QPs. 

Chapter 6, details an implementation of a modified linear impulse response function 

for list-mode reconstruction methods. We presented results for our proposed priors 

included in regularized list-mode reconstruction methods, in the context of non-uniform 

resolution and its compensation methods. 

Chapter 7, concludes our results and analyses and proposes few possible extensions of 

our work as future work. After a list of references we have included copies of some 

important code used to work our analysis in appendix A. 

It is worth mentioning that a vital motivation for this work was the need to develop 

methods for accurate quantification of reconstructed images for diagnosis and therapy 

purposes, for example in case of Thyroid diseases. 
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CHAPTER 2  

Background 

This work has its overall contribution towards the field of tomographic image 

reconstruction and general imaging problems, however, its main application relates to an 

appetite of the medical diagnostic community for better image quality, especially, 

resolution and signal-to-noise ratio. Emission imaging has lower resolution capabilities, as 

compared to the transmission imaging, hence, specific background material has been 

discussed related to emission computed tomography (ECT), though, transmission 

tomography has also been discussed, wherever feasible. 

2.1 Emission Computed Tomography (ECT) 

ECT is used in medicine to image functional information about physiological processes 

in the human body. A small amount of radioisotope is introduced into the body, while 

attached to some pharmaceutical selective for specific organ via injection or inhalation, and 

emission data is acquired around the body. Images of the radiotracer distribution are 

reconstructed, from this data later on, to find concentration of the radiotracer in various 

parts of body. These images are considered very helpful for medical diagnostics [1;2]. 

Two most commonly used ECT modalities are Positron Emission Tomography (PET) 

and Single Photon Emission Computed Tomography (SPECT). Positron emitting 

radioisotopes, such as F18 or C11, are used in PET to generate positrons which travel a short 

distance before annihilation with an electron, producing two almost collinear and 

oppositely traveling gamma ray photons. This pair of oppositely moving photons is 

detected in some surrounding pair of detectors emanating an event along the line joining 

these two detectors, or the so called line-of-response (LOR), giving an estimate that 

emission has taken place somewhere along this line [2]. An event will be added, as a 

coincident event, to the list of detected events, if it falls within a predefined short (~12-20 

ns) coincident timing window [2;3]. After collection of data for a large enough number of 
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LORs, at various angles and radial positions, an image reconstruction algorithm can be 

applied later on to get an estimated image of the radiotracer distribution. 

 

  
(a) SPECT Tomography (b) PET Tomography 

Figure 2.1: Idealized Computed Tomography. (a) In SPECT imaging system, detector rotates around 
the object and collects emission data for all radial samples. Shown above is a single view taken at a 
particular angle with x-axis. (b) In PET system, a single view is shown at a specified angle form x-
axis. Data for all angles is collected at the same time in PET. 

 

A single gamma ray photon is used to account for an event in SPECT imaging, detected 

by a single large rectangular crystal scintillation detector (Anger camera configuration) [3]. 

A collimator is placed in front of the scintillation detector to obtain directional information, 

so that only gamma rays entering from some known angles can reach the detector. Parallel-

hole collimators are the most commonly used collimators, along with other types such as 

converging, diverging or pinhole collimators. Data for a whole range of angles is collected 

by rotating a detector around the object to be imaged. In scintillation detectors, scintillating 

material (for example, Thallium doped Sodium Iodide, NaI(Th)) is optically coupled to a 

number of Photomultiplier Tubes (PMTs). Scintillation material produces a burst of light-

photons when a gamma ray interacts inside it. These light photons are converted into 

electrical signals by the PMTs. Detection and processing for localization of this signal is 

achieved by electronic arithmetic circuitry to estimate the LOR along which that gamma ray 

was traveling [2;4;5]. 

A simplest detection system may comprise of a small single scintillation detector 

coupled with a PMT, however, in practice more complex configurations are used. Detector 

blocks in form of a ring are used in PET system, whereas, Anger camera configuration is 

used for SPECT scanners with a large detector coupled to a number of PMTs as, shown in 

Figure 2.2. A rectangular bundle of crystals is coupled optically to four PMTs, in a block 

detector, in a unique configuration in PET so that event localization can be performed on 

the basis of signal magnitudes coming out of all four PMTs, coupled to the block as shown in 
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Figure 2.3. A similar manipulation of the output signal from PMTs in Anger Camera SPECT 

system is used to define location of the scintillation event inside the crystal. 

 

 
Figure 2.2: PET and SPECT detector configurations, (a) shows a circular ring type PET detector 
where all angular samples are collected simultaneously and (b) shows an Anger type SPECT 
detector configuration where detector rotates around the object to get data for different angular 
samples. 

2.2 Image quality degradations 

Resolution degradations might have not been an important research issue, if it were 

possible to localize the event, exactly. In practice, we make a number of assumptions about 

physical processes involved and the system used. Even scintillation process has a blur due 

to more than one scintillation interactions inside the crystal for a single decaying gamma 

ray. There are several other physical effects which complicate localization of events and, 

hence, degrade image quality [6-8]. 

2.2.1 Detector Response Effects (DRFs) 

Inside a block detector PET system, a single finite sized crystal detector has limited 

detection accuracy, which is only up to the size of that crystal. Detection efficiency of a 

single detector depends on its spatial position inside the main detector block and is non-

uniform even within that detector. In SPECT Anger camera configuration, localization of an 

event has a spatial distribution limited by the number of light photons emitted due to the 

statistical nature of the emission and transmission processes [9;10]. 

These effects may be summed up as Detector Response Function (DRF) and effectively 

define sensitivity pattern of the detector system. These sensitivities are non-uniform, even 

for each individual detector and drifts in PMT response over time is another cause for these 

Detect
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non-uniformities. A periodical normalization scan is necessary to make adjustments for 

these shifts [11-14]. Variations in detector response also depend on the position of the 

detector in a ring type PET scanner as all detectors are not necessarily parallel to each 

other and produce a positional dependency in the detector response. 

 

 
 
Figure 2.3: Block detector configuration used in PET systems. It also presents how the 
emission location is calculated based on the strength of the signal from different PMTs. 

 

Depth of gamma ray interaction inside a crystal, as shown in Figure 2.4, also makes 

positional localization of the scintillation event more ambiguous, which is summed up by 

another ambiguity in the z-direction for oblique detectors because localization is only 

performed in a single plane [11]. In SPECT cameras, detector response widens with the 

distance from the detector surface due to the collimators used to define LORs and is also 

non-uniform with respect to this distance. Some penetration may also occur through 

collimator leaves (septas) which causes smoothing of the detector response [10]. 

2.2.2 Physical Effects 

Gamma photons may be scattered out of the detector plane, while passing through the 

object material, or may be totally absorbed inside the object. Both of these effects are 

known as attenuation collectively. This effect can be explained by Beer’s Law and the 

probabilities of photons reaching the detector surface can be given by [15], 

 

 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙− ∫ 𝜇𝜇(𝑥𝑥 ,𝑦𝑦)𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙  (2.1) 
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In this relation 𝜇𝜇(𝑥𝑥, 𝑦𝑦) is the linear attenuation coefficient of the material, at location 

(𝑥𝑥, 𝑦𝑦) inside the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) integrated, along the 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙, the line of integration along which 

gamma ray travels and 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the survival probability of these photons along that line. 

 

 
Figure 2.4: (a) Effect of crystal penetration depth and spread of impulse response 
at an oblique angle in PET system configuration. (b) Spread of response function 
with distance of the source from detector in SPECT.  

 

For PET scanners, this line of integration or LOR is the line joining both the detectors 

in a pair where two opposite gamma rays are detector as shown in Figure 2.5. Hence, in 

PET system attenuation can be included as a ray dependent effect. In SPECT system, depth 

of interaction inside the object matters because only one gamma ray is used to detect an 

emission and, LOR for this emission event is defined by the collimator used. In this case, 

survival probabilities depend on the depth of interaction inside the object and cannot be 

simply modeled as a ray dependent factor [4;8;15;16]. 

Gamma ray attenuation can be calculated by obtaining attenuation correction factors 

(ACF) from the object distribution. Attenuation correction factors are the inverse of the 

attenuation probabilities along any particular LORs. In PET, several methods have been 

proposed to determine these factors [8]. Uniform attenuation correction methods, for 

example, determine the attenuating object boundaries and then use a uniform attenuation 

coefficient for that region in various directions. These methods ignore underlying non-

uniform distribution of the attenuation inside that region. Transmission scan methods are 

generally used in PET and SPECT to estimate the attenuation map, which defines 

attenuation coefficients 𝜇𝜇(𝑥𝑥, 𝑦𝑦) at location (𝑥𝑥, 𝑦𝑦) inside the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) [15;17]. Different 

configurations of transmission scan can be opted to estimate the attenuation map and 

several configurations have been practically used at the same time with the emission scan. 

A moving point source or a rotating line source is used and then a ratio of a blank to 
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transmission scan is calculated to estimate the attenuation map and, emission model is 

modified accordingly in PET systems. 

 

 
Figure 2.5: Physical effects in PET and SPECT systems, representing attenuation, scatter 
and random events. Also, the variant effect of attenuation is shown in SPECT, where two 
events at varying depths, P1 and P2, face different attenuation. 

 

In PET scanners, scattered photons may still be detected if they have not been 

attenuated completely and will add false information to the detection process, because at 

the time of detection they might not be moving along the line of their emission [7;18]. In 

SPECT, they might have not been originated along the line of their detection. These 

scattered photons can be discriminated on the basis of their energy because mostly they 

have less energy than their emission energies. Dual or multiple energy window methods 

have been used to detect these scattered photons which are then subtracted from all the 

detected events afterwards [9;10]. Practical detectors do not have infinite energy 

resolution and get a lot many scattered events along with the true detected events. Model 

based methods have also been devised for scatter correction, however, still a number of 

scattered events might be detected in addition to the true detection events, so the final 

reconstructed image is not totally scatter free [19]. 

PET scanners have another problem of detecting events, known as accidental 

coincidences, in addition to the attenuation and scattering [20]. If two gamma rays, 

generated at different locations, reach two different detectors within a time shorter than 

the coincident timing window of the system, they are regarded as true detection along the 

line joining those two detectors. They are known as random events which can be estimated 

in a delayed timing window and can be subtracted later from the total detected events. 

Background radiation is present everywhere and further contaminates the detection in 

both PET/SPECT. 
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2.3 Consequence of Image Degrading Effects and System Model 

There are two direct consequences of these image degrading effects including others, 

i.e. non-uniform reconstructed resolution and partial volume effect which are main focus of 

this thesis. If these effects are not modeled accurately, reconstructed resolution is limited 

physically and further becomes non-uniform spatially because these effects are spatially 

asymmetric. Due to finite resolution recovery, resultant images are prone to partial volume 

effect (PVE).  

2.3.1 Non-uniform Reconstructed Resolution 

Quality of images produced by the tomographic imaging systems depends on the above 

mentioned factors and is, generally, measured in various image quality parameters [21]. 

There is not a single universal quality measure available which can describe all the images, 

however, image resolution defined in physical units or in pixels with known pixel size, is 

the most common index used for this purpose along with noise. Image resolution may, 

solely, be described in its uniformity and symmetry across the span of the reconstructed 

images [22-24]. Resolution should be fine (higher) enough to present the smallest features 

in the image with enough sharpness and it should be uniform (uniformity) or have the 

same value across the whole image at the same time in all directions (symmetry) [25].  

All the factors, discussed above, degrade PET or SPECT system’s final response, make it 

spatially-variant, anisotropic and ultimately degrade quality of the final reconstructed 

images, produced by these systems, though, other factors such as choice of the image 

estimator or reconstruction method are also very important [6;24;26-28]. For example, 

statistical image estimators, based on quadratic priors, induce non-uniform smoothing and, 

hence, smooth out regions inside the object with varying intensity, producing anisotropic 

smoothing [26]. This non-uniform smoothing produces non-uniform reconstructed 

resolution properties in the final image. Anisotropic response of the system will produce 

shape deformations and will ultimately compromise the quantitation capability of these 

systems, which is very critical for diagnosis. This will also make various image processing 

tasks, such as image segmentation, registration and image comparison, difficult and 

computationally complicated [26;29]. In this work, we have discussed and analyzed 

tomographic images, with reference to their resolution properties in terms of resolution 

uniformity and symmetry, produced by various reconstruction methods and have proposed 

further methods, based on Median Root Based priors (MRPs) for the recovery of the 

resolution non-uniformity and asymmetry [30]. Another image quality degrading, and 
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especially quantification influencing factor, which is directly related to the system 

resolution, is the loss of signal in the form Partial Volume Error (PVE) [31]. PVE is 

responsible for a direct signal loss in case of objects of a size comparable to the system’s 

reconstructed resolution. 

2.3.2 Partial Volume Error (PVE) 

Tomographic imaging systems have finite reconstructed resolution and their ability to 

provide quantitative estimates is limited due to their lower resolution capabilities. 

Interregional activity contamination might occur among the structures surrounding each 

other due to limiting power of the system to resolve two small objects across their 

boundaries [32-35]. The diminishing signal of the true activity for very small regions, 

within a particular object is also a consequence of the limiting resolution properties [32;36-

38]. These effects are collectively known as Partial Volume Effect (PVE). Interregional 

contamination effect is shown, schematically as a simple example in Figure 2.6. An object 

partially occupying the smallest detector’s sensitive volume, of a tomographic imaging 

system, produces an apparent reduction in the measured signal. This loss of signal is also 

known as Partial Volume Effect [39]. It might also occur when the object occupy varying 

portions of the system’s sensitive detection volume at different times or when an object 

obscures different parts of the detector while being rotated around the object for 

tomographic data collection. 

 

 
Figure 2.6: Schematic presentation of various causes of PVE, due to point spread function or tissue 

fraction effect. 

PVE creates serious problems for absolute activity measurements in the regions of an 

image which are comparably smaller than the system’s tomographic reconstruction 

resolution [36]. Regions which are smaller than two to three times of the FWHM of the 

systems response are severely affected by PVE during activity measurements. PVE 
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produces errors in quantification of the varying activity concentration levels inside the 

object [40;41]. Measurements are over or under-estimated, due to spill-over or inter-

contamination of the surrounding regional activities, into the concerned region. Main 

source of error enters into the reconstruction model through the spread of the impulse 

response function, which is closely related to the systems resolution capabilities [42]. We 

have compared activity recovery performance of various reconstruction algorithms, 

including various priors in MAP estimators, in this work, to assess capabilities and 

improvements which different prior functions may offer to select for the best prior 

distribution function [31]. 

In next sections, we briefly introduce mathematical background of data acquisition, 

modeling and formulation of the tomographic image reconstruction problem with various 

methods to solve it, either in its analytical or discrete form while considering their 

advantages and disadvantages related to their resolution and noise properties and their 

ability to control these properties in the final reconstructed images.  

2.4 Data Acquisition Modeling 

Ideally, in 2D PET, data acquisition can be described as a line or strip integral model of 

the acquisition of gamma rays coincident events. Two gamma rays traveling and being 

detected along a line, joining the two small detectors, within a small coincident timing 

window (generally of 12-20 ns), generate a coincident event as depicted in Figure 2.7 [2]. 

Theoretically, number of all such collected events along a particular LOR, accumulatively, 

will be proportional to the total amount of radiotracer concentration present along that 

LOR, if not corrupted by various physical effects, such as attenuation, scatter and accidental 

coincidences etc. Number of counts along each LOR, and all the LORs put together, make up 

the acquired data which is further divided into parallel set of LORs along various angles in 

PET and are, generally, represented as a sinogram image, in 2D, because a single point will 

traverse a sine curve in the sinogram space [4;43;44]. 

We need to mathematically model the acquired data in order to formulate our 

tomographic image reconstruction problem, and further to solve it [45]. Forward modeling 

is defined as describing mathematical models to relate the measured quantities to the 

unknown quantities of interest [46-48]. It is a mathematical mapping, based on some 

underlying physical theory, from the input space to those values in the data space, which 

we are able to measure through our system. Main objective of a forward model is to make 

ourselves be able to generate data which are as likely as possible to the observed data, if 

the unknown quantities were known. 
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Figure 2.7: (left) Data acquisition modeling for PET system depicting an emitted pair 
of the photons being detected at angle Ɵ with the X-axis. The counter is incremented 
at the bin where this event is detected. (right) Sinogram of a single hot spot in field 
of view is shown to traverse a sine curve in the sinogram space. 

 

This forward mapping may be linear or non-linear and, hence forward problems could 

be of several types, depending on the nature of the object and data representations, which 

could be continuous or discrete or both [46]. 

2.4.1 Continuous-Continuous Model 

Measurements of tomographic imaging system may be considered as ideal projections 

of the object distribution onto a detector continuum, as shown in Figure 2.8. A set of LORs 

is shown with a generic simplified continuous model. Let 𝑓𝑓(𝑥𝑥, 𝑦𝑦) denotes1 an object 

distribution function defined over ℝ2. Assume 𝑝𝑝𝜃𝜃 (𝑟𝑟) represents an ideal projection of the 

object intensity, as a function of radial distance 𝑟𝑟 at an angle 𝜃𝜃, and is related to the object 

as a line integral along the line 𝐿𝐿(𝑟𝑟, 𝜃𝜃) in polar coordinates in 2D as follows,1

 

 

 

𝒑𝒑𝜽𝜽(𝒓𝒓) = � 𝒇𝒇(𝒙𝒙, 𝒚𝒚)𝑯𝑯𝒅𝒅
𝑳𝑳𝑯𝑯𝑳𝑳𝑳𝑳(𝒓𝒓,   𝜽𝜽)

  

𝒑𝒑𝜽𝜽(𝒓𝒓) = � 𝒇𝒇(𝒙𝒙, 𝒚𝒚)𝜹𝜹(𝒙𝒙 𝐜𝐜𝐜𝐜𝐜𝐜 𝜽𝜽 + 𝒚𝒚 𝐜𝐜𝐬𝐬𝐬𝐬 𝜽𝜽 − 𝒓𝒓)𝑯𝑯𝒙𝒙𝑯𝑯𝒚𝒚
∞

−∞

 
(2.2) 

A complete collection of all projections around the object {𝑝𝑝𝜃𝜃 (𝑟𝑟): 𝜃𝜃 ∈ [0, 𝜋𝜋], 𝑟𝑟 ∈

−∞,∞ is known as its Radon Transform [45]. 

                                                             
1 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is assumed to be the object centered at origin along 𝑥𝑥 𝑎𝑎𝑙𝑙𝑎𝑎 𝑦𝑦 axis in real 2D space. Distance 𝑟𝑟 is 

generally considered from origin on 1D line, and in real practice considered to be bounded by object support. 
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Figure 2.8: Depiction of mathematical data acquisition modeling with projections shown at an angle for 
ideal projections and object with its sinogram. 

 

This data is also known as a sinogram in tomographic imaging terms, because shape of 

single point projections, collectively, resembles a sine curve. An object, with its Radon 

transform, is shown in the Figure 2.8, for continuous variables. Equation (2.2) presents the 

case when absorption properties of the object to the radiation are not modeled. If we 

include attenuation into the above model, as shown in equation (2.3), it is known as 

Attenuated Radon Transform (AtRT), for which it is difficult to find an analytical inverse, 

which has been discovered by Novikove R. [80]. 

 

 
𝑝𝑝𝜃𝜃 (𝑟𝑟) = � 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑙𝑙− ∫ 𝜇𝜇 (𝑠𝑠)𝑎𝑎𝑠𝑠 𝑎𝑎𝑠𝑠

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙 (𝑟𝑟 ,   𝜃𝜃)
 

 
(2.3) 

 

In this relation 𝜇𝜇(𝑠𝑠) is the non-uniform attenuation coefficient of the object, integrated 

along the line of emission and is a gamma ray energy dependent parameter. These 

coefficients are commonly used as a-prior information obtained by carrying out a 

transmission scan first. Though, continuous model is useful for simplified theoretical 

analysis of the problem, we can only measure a finite number of data points with real 

systems, and so, continuous models are always an idealization. Also, because computer 

implementation is necessarily purely discrete, so reconstruction problem is implemented 

in discrete form. 

2.4.2 Discrete-Discrete Model 

A finite set of measurements are, commonly, obtained from a system that makes 

measurements on a continuous object distribution function. This invites for a semi-discrete 
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or continuous-discrete modeling of the problem. However, real systems provide discrete 

measurements along some discrete detector array and, similarly, object distribution may 

also be represented in discrete parameterization form. Discrete-discrete modeling of the 

object distribution and the system output helps in reducing data storage and its 

manipulation by computers. Data discretization is normally decided by the design physicist 

or design engineer and is very often oversampled with a multi-index set of numbers which 

are a pair of numbers for 2D and a triplet for 3D data. For idealized system, data can be 

represented in discrete form as a set of equations for simplicity [46;47;49], 

 

 𝑦𝑦 = 𝐻𝐻𝑓𝑓 + 𝑏𝑏 (2.4) 

 

Here, 𝐻𝐻 is the system matrix or forward matrix, which linearly relates the object 

represented in discrete vector form as 𝑓𝑓 and the measurement vector represented in 

discrete form as 𝑦𝑦. Vector 𝑏𝑏 is the noise vector which includes noise from various sources 

such as background or electronic noise. 

2.5 Tomographic Imaging System Model 

Linear transformation operator 𝐻𝐻 = �ℎ𝑙𝑙𝑗𝑗 , 𝑙𝑙 = 1, . . , 𝑀𝑀, 𝑗𝑗 = 1, . . , 𝑁𝑁  �, with 𝑁𝑁 number of 

object pixels and 𝑀𝑀 number of LORs, in equation (2.3), describes a physical transformation 

from object space to the data space. Quantitative PET image reconstruction using statistical 

techniques requires a system model that represents the probability of detecting an 

emission from each image pixel at each detector-pair. By accurately modeling these 

probabilities we can maximize resolution recovery by minimizing spatial distortions which 

are mainly a result of simplified assumptions about the system and the process. 

Operator 𝐻𝐻, which is also known as the system matrix, may be factorized as a product of 

independent contributions from system’s geometry, attenuation effect, positron range, 

detector blurring effects and detector sensitivity etc. [23;50]. This matrix is generally huge 

and, although factorization can drastically reduce its size, it also introduces over-

simplifications at the same time, because the whole matrix cannot be expressed, in the 

general case, as a product of diagonal matrices [23]. Mumcugulo et. al. (1997), introduced a 

simple factorization scheme to include various physical and detector based image 

degrading effects into the system matrix, as given below, which has also been used by many 

others researchers [6;28;51;52]. 
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 𝐻𝐻 = 𝐻𝐻𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠 𝐻𝐻𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 𝐻𝐻𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔  (2.5) 

 

In this relation, 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔  is a 𝑀𝑀 × 𝑁𝑁 matrix with each (𝑙𝑙, 𝑗𝑗) 𝑡𝑡ℎ element equal to the 

probability of a photon pair produced at the 𝑗𝑗 − 𝑡𝑡ℎ pixel reaching the 𝑙𝑙 − 𝑡𝑡ℎ detector pair 

without passing through any attenuating or scattering medium and with perfect photon 

pair co-linearity.  𝐻𝐻𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡  is an 𝑀𝑀 × 𝑀𝑀 matrix and models the effects of photon non-co-

linearity, inter crystal scattering and crystal penetration. These factors ultimately produce 

blurring in the detector response. 𝐻𝐻𝑎𝑎𝑡𝑡𝑡𝑡 𝑙𝑙𝑙𝑙  is a diagonal 𝑀𝑀 × 𝑀𝑀 matrix having attenuation 

correction factors on its diagonal which can be computed in a usual way from the ratio of 

blank to transmission scan. 𝐻𝐻𝑠𝑠𝑙𝑙𝑙𝑙𝑠𝑠  is again a 𝑀𝑀 × 𝑀𝑀 matrix and may include radially varying 

geometric efficiencies due to the ring structure, detector pair geometric efficiencies due to 

non-parallel detector surfaces and dead time etc. 

It should be noted that this factorization scheme is not unique and researchers have 

used other schemes too [24;154]. For example, Fessler and Rogers [24] have used only two 

factors where one matrix holds ray dependent factors, such as attenuation, and the other 

matrix hold voxel based factors, such as scatter etc. These factorized matrices operate one 

by one on the data to correct for certain physical or detector based effects similar to that of 

back projection operator; hence, their various combinations produce ignorable differences. 

For example, diagonal matrix, 𝐻𝐻𝑎𝑎𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙  containing attenuation coefficients in the above 

relation may be applied before or after the scattering matrix 𝐻𝐻𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡 , because its operation 

will correct for the attenuation experienced by the gamma ray events being registered. 

However, once results are obtained with a particular factorization scheme, the order may 

be retained for consistency, because matrix multiplication is not commutative. 

Geometric elements of the system matrix can be calculated analytically or by 

simulation. Analytically, these elements can roughly be approximated by the intersection 

length of a zero width line that connects the pair of detectors with each pixel or voxel or 

may be evaluated using some interpolation method [11;53]. A more accurate approach, for 

2D, involves calculation of the area of intersection between a pixel and the strip of response or, 

in 3D, volume of intersection between voxels and the tubes-of-response [54]. Multiple ray 

tracing methods have also been proposed in 3D to combat the complexity of calculations of the 

volume of intersection and properties of the crystal [55]. Figure 2.9, elaborates this idea for a 

single column of the pixels array and an LOR at angle 𝜃𝜃. 
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Figure 2.9: (left) Intersection area of LOR and a single pixel, giving probability of an emission from 
that pixel and detected in the same LOR. (right) Intersected length of the central line of LOR beam 
within a pixel, estimates an element of the system matrix.  

 

An inefficient, though very simple, way to evaluate these probabilities is to compute 

intersection lengths for each pixel and for each ray line in sequence. Siddon (1985), devised 

an efficient method to take into account only those pixels which are intersected by a 

particular LOR, to calculate these probabilities for CT imaging [53;56]. There are several 

new variations developed for this method [57-59]. Spatially variant response models can 

be calculated by measurements based on point-source acquisitions at varying locations 

inside the field of view or by simulation [60;61]. Monte Carlo (MC) simulation of the system 

matrix elements, which allows incorporation of the model of the most relevant physical 

effects involved, is another choice and different PET or SPECT dedicated Monte Carlo 

simulation codes are available for this purpose [62]. Pre-reconstruction calculation of the 

system matrix elements is a valid approach for any specific device, except for the object-

dependent effects, such as scatter and attenuation in the source distribution [63;64]. 

A fully 3D system matrix may contain trillions of elements and imposes restrictions on 

computing and storage demands, even in case of pre-calculated matrices. Luckily, 

geometric system matrix is highly sparse and in general having very few non-zero 

elements, whereas this sparseness can be exploited to reduce its size [64]. However, 

inclusion of scatter into the system matrix reduces its sparseness a lot. Physical processes 

such as positron range, non-collinearity of the emitted gammas or scatter in crystal are 

generally neglected in order to speed up the reconstructions, while compromising their 

accuracy [65]. For the same reason of simplicity and speed, we also used a system matrix in 

our analysis, which is mainly comprised of geometric system elements while other factors 

are ignored. However, for the sake of generality, we included attenuation in our non-

uniform resolution compensation analysis.  
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2.6 Reconstruction Problem Formulation – Discrete Version 

In its discrete form, data are usually assumed to be an ordered vector with 𝑔𝑔 number 

of components and denoted by 𝑦𝑦 = {𝑦𝑦𝑙𝑙 }𝑙𝑙=1
𝑔𝑔 ∈ ℝ𝑔𝑔 . Object distribution may also be assumed 

to consist of an ordered set of multi-indexed numbers with 𝑙𝑙 components denoted 

by 𝑥𝑥 = �𝑥𝑥𝑗𝑗 �
𝑗𝑗 =1
𝑙𝑙 ∈ ℝ𝑙𝑙 . Mathematical modeling of the imaging system implies the use of 

equations which describe propagation of radiations emitted by the object and detected by a 

series of detectors [66]. If 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is a function of space variables and denotes properties of 

the object, a transform mapping this function onto the sampled values of the exact 

radiations (radiations before detection), denoted by vector 𝑦𝑦 can be expressed as follows, 

 

 
𝒚𝒚𝑯𝑯 = �𝑯𝑯𝒇𝒇(𝒙𝒙, 𝒚𝒚)�𝑯𝑯 + 𝒃𝒃𝑯𝑯 𝒘𝒘𝑯𝑯𝑯𝑯𝒘𝒘 𝑯𝑯𝑯𝑯𝒊𝒊 ≥ 𝟎𝟎. 

      𝒇𝒇𝒇𝒇𝒓𝒓 𝑯𝑯 = 𝑯𝑯, … , 𝑴𝑴 𝑯𝑯𝑳𝑳𝑯𝑯 𝒊𝒊 = 𝑯𝑯, … , 𝑵𝑵 
(2.6) 

 

Here, 𝐻𝐻 could be a discrete or semi-discrete mapping, sometimes referred to as 

operator, and 𝑏𝑏 = {𝑏𝑏𝑙𝑙}𝑙𝑙=1
𝑔𝑔  is a vector representing background noise. The mapping or 

transforming matrix 𝐻𝐻 represents the imaging system and the condition 𝐻𝐻𝑙𝑙𝑗𝑗 ≥ 0 means that 

matrix elements are non-negative. This operator is also known as forward model which is 

towards the noiseless data  𝑦𝑦� = 𝐻𝐻𝑓𝑓 and vector 𝑏𝑏 = 𝑦𝑦 − 𝑦𝑦� is the noise term. It is easier to 

solve the noiseless forward problem, however, the noise term makes the problem highly ill-

conditioned and, to invert it, is very difficult [67]. 

2.6.1 Tomographic Reconstruction as an Inverse Problem 

Almost always, we want to use this forward model 𝐻𝐻 and the observed noisy data 𝑦𝑦 to 

make inference on the unknown quantity of interest 𝑓𝑓: This is the inversion problem 

[46;48;49]. Image reconstruction, where we try to estimate source distribution inside the 

object being imaged using data acquired by an imaging system, is an example of an inverse 

problem in its mathematical formulation [66;68]. For tomography systems, this matrix is 

generally very sparse, though of very large size, and its condition number, which is a ratio 

of the largest to the smallest singular values, is very large [69]. 

Inverse problems are almost always ill-posed in Hadamard sense, which means that 

the solution of the problem may not exist, not unique or may not continuously depend on 

the data [70]. First two conditions are to make sure that inverse of the transform is well 

defined and whole data space is domain of the inverse transform. Requirement of 
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continuous dependence of the solution image on the data is a necessary but not sufficient 

condition for stability of the solution. Hadamard went on to define a problem to be ill-

posed, if it does not satisfy all the above three conditions. So an ill-posed problem is one, 

where, an inverse does not exist, because, the data is outside the range of 𝐻𝐻, or the inverse 

is not unique because more than one image is mapped on to the same data, or because an 

arbitrarily small change in the data can cause an arbitrarily large change in the image [70]. 

Simplest way to solve this problem is to mathematically invert it. 

2.6.1.1 Direct Matrix Inversion 

The ill-conditioning of the reconstruction problem is due to very small singular values 

of 𝐻𝐻, which can be observed if we replace 𝐻𝐻 by its Singular Value Decomposition (SVD); 

or 𝐻𝐻 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑡𝑡 , where 𝑈𝑈 and 𝑉𝑉 are unitary matrices and 𝑈𝑈 is a diagonal matrix composed of 

singular values. Least square solution, for noiseless data will become 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑉𝑉𝑈𝑈−1𝑈𝑈𝑡𝑡𝑦𝑦� =

∑ 1
𝜎𝜎𝑙𝑙

𝑢𝑢𝑙𝑙
𝑡𝑡 𝑦𝑦�𝑣𝑣𝑙𝑙

𝑁𝑁
𝑙𝑙=1 . Here, 𝑢𝑢𝑙𝑙  and 𝑣𝑣𝑙𝑙  are the 𝑙𝑙𝑡𝑡ℎ column of matrices 𝑈𝑈 and 𝑉𝑉. Clearly, for very small 

singular values 𝜎𝜎𝑙𝑙 , the solution will become unstable [67]. For a brief analysis we may 

observe that in case of a well-posed problem, relative error propagation from the data to 

the solution is controlled by the condition number. If ∆𝑦𝑦 is a variation in 𝑦𝑦 and ∆𝑓𝑓, the 

corresponding variation in 𝑓𝑓 then, 

 

 
‖∆𝒇𝒇‖
‖𝒇𝒇‖ ≤ 𝒄𝒄𝒇𝒇𝑳𝑳𝑯𝑯(𝑯𝑯)

‖∆𝒚𝒚‖
‖𝒚𝒚‖ , (2.7) 

 

and, for linear forward problems, 

 

𝒄𝒄𝒇𝒇𝑳𝑳𝑯𝑯 (𝑯𝑯) =  ‖𝑯𝑯‖�𝑯𝑯−𝑯𝑯� 

 

Since, the fractional error in 𝑓𝑓 equals the condition number multiplied by the fractional 

error in 𝑦𝑦; smaller values of condition number for matrix 𝐻𝐻 are desirable [67;71;72]. If 

𝑠𝑠𝑔𝑔𝑙𝑙𝑎𝑎(𝐻𝐻) is not too large, the problem is considered to be well-conditioned and the solution 

is stable with respect to small variations in the data. Otherwise, the problem is said to be ill-

conditioned. It should be noted that the above relation is only valid for square matrices for 

the purposes to calculate matrix inverse. 

Direct inversion is not very popular due to ill-conditioned reconstruction problem 

because it is not straight forward to include regularization explicitly. Even very small ill-

conditioned matrix will require regularization for stable solutions. Similarly, for very large 
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matrices inversion is not very efficient and requires large memory space to hold the 

matrices involved. Hence, factorization is used to reduce the problem size and its 

complexity in iterative manner, though large memory requirements may still slow down or 

hinder the numerical evaluations [48;67;69;72]. 

2.6.2 Solving the Inverse Problem - Reconstruction Methods 

A concept of well-conditioned problems, as discussed above, is lesser distinct than the 

concept of well-posed problems. Most correctly stated, inverse problems turn out to be ill-

posed or at least ill-conditioned due to very high condition number of the inverse operator; 

any attempt to solve it by simple analytical inversion methods fails, though there are some 

simplified inversion techniques available such as DFR or FBP. However, meaningful 

information can be gained from ill-posed inverse problems, even though they cannot be 

strictly inverted. Mathematical theory of regularization or theory of generalized inverses, 

which is an extension of the theory of the Moore-Penrose inverse of a matrix, is usually 

applied to investigate problems that are not well posed [73]. Classical Tikhonov 

regularization is a well developed theory for linear ill-posed problems with a key idea to 

approximate a discontinuous operator with its continuous approximate functionals [71;74]. 

For linear ill-posed inverse problems, with compact linear forward transformation, 

Singular Value Decomposition (SVD) can be used to find the inverse transformation. 

However, for ill-posed problems, solution gets unstable for very small eigenvalues as 

discussed above. Inverse transformation can be regularized by limiting the smallest 

singular values. A filter factor, where filtering is introduced as a type of implicit 

regularization, can be included to set very small singular values equal to zero. Various types 

of filter factors such as Truncated SVD Filter, Tikhonov Filter or Exponential Filter have 

been proposed [67]. Variation regularization and regularization by defining some prior 

function in MAP estimators are different options to define explicit regularization 

functionals. Generally available mathematical tools for such inverse problems are either the 

deterministic regularization theory or the probabilistic Bayesian inference and estimation 

theory [60;74-77]. Filter factor has the least control on the reconstructed resolution which 

mainly depends on the properties of the filter chosen and it is also very difficult to choose a 

cut-off value. 

Analytical reconstruction of images, from tomographic data, means to obtain function 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) by inverting analytical equation (2.2) assuming continuous variables given in the 

relation. These types of methods are known as direct or Analytical Reconstruction Methods 

[78]. They are considerably faster as compared to the iterative reconstruction methods, 
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where a discrete representation of the object is being estimated using some estimation 

algorithm from a discrete data vector using some underlying forward model. However, 

some of the iterative algorithms involve evaluation of certain analytic inversion formulae, 

too [56;79]. 

2.7 Analytical Reconstruction Methods 

In tomographic imaging, data are ideally considered to be line integrals with the sum 

of all line integrals together known as Radon Transform (RT) of the emission or absorption 

properties of the object being imaged. An explicit analytical inversion formula is required to 

recover the object distribution from the data i.e. to determine 𝑓𝑓(𝑥𝑥, 𝑦𝑦) from the 

measurements of its transform 𝑝𝑝𝜃𝜃 (𝑟𝑟). Radon (1970), found an explicit formula for the 

inversion of ordinary Radon Transform [45]. Analytical reconstruction methods are 

intrinsically very fast as compared to their companion iterative reconstruction methods. 

Historically, derivation of the generalized exponential Radon transform was found by 

Tretiak and Metz and further explicit formula for the inversion of the attenuated Radon 

transform was discovered by Novikov [80;81]. Slightly later, Frank Natterer supplied a 

simpler proof of Novikov’s formula [80;82]. If attenuation of the object can be 

approximated as uniform attenuation with defined contour the attenuated Radon 

transform reduces or simplifies to the exponential Radon transform with some inversion 

formulas given in [83]. Below we briefly describe Novikov’s formula with inverse Radon 

transform. 

2.7.1 Inverse Radon Transforms (IRT) 

The basic mathematical problem of both emission and absorption tomography is to 

reconstruct a distribution function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) from the knowledge of its Radon transform 

or ℛ = 𝑝𝑝𝜃𝜃 (𝑟𝑟) as given by equations (2.2) and (2.2A). For emission data, without 

considering attenuation, Radon transform of the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) over real space ℝ2 may be 

written for 𝑟𝑟 𝜖𝜖 ℝ and 𝜃𝜃 𝜖𝜖 (0, 2𝜋𝜋) as, 

 

 𝑝𝑝𝜃𝜃 (𝑟𝑟) = ℛ𝑓𝑓(𝑟𝑟, 𝜃𝜃) = � 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝛿𝛿�(𝑥𝑥, 𝑦𝑦). 𝜃𝜃⊥ − 𝑟𝑟�𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦
ℝ2

.,  
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In this equation 𝜃𝜃⊥ = (−sin 𝜃𝜃 , cos 𝜃𝜃) 𝑎𝑎𝑙𝑙𝑎𝑎 𝜃𝜃′ = (cos 𝜃𝜃 , sin 𝜃𝜃), for 𝜃𝜃 𝜖𝜖 (0, 2𝜋𝜋). For 

inverse Radon transform we need to define the Hilbert transform of a function 𝑢𝑢(𝑡𝑡) as 

follows with its integral representing a Principal value integral, 

 

 𝐻𝐻𝑢𝑢(𝑡𝑡) =
1
𝜋𝜋

�
𝑢𝑢(𝑠𝑠)
𝑡𝑡 − 𝑠𝑠

𝑎𝑎𝑠𝑠
ℝ

 (2.8) 

 

With this definition, the function 𝑓𝑓(𝑥𝑥, 𝑦𝑦) can be reconstructed using inverse of its 

Radon transform ℛ𝑓𝑓(𝑟𝑟, 𝜃𝜃) as follows, 

 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦) =
1

4𝜋𝜋
� �𝐻𝐻

𝜕𝜕
𝜕𝜕𝑟𝑟

ℛ𝑓𝑓(𝑟𝑟, 𝜃𝜃)� �(𝑥𝑥, 𝑦𝑦). 𝜃𝜃⊥, 𝜃𝜃�𝑎𝑎𝜃𝜃
2𝜋𝜋

0
 (2.9) 

 

This is the well known Radon inversion formula to evaluate 𝑓𝑓(𝑥𝑥, 𝑦𝑦) from its Radon 

transform [45]. However, if attenuation is included then forward transform is called the 

attenuated Radon transform (AtRT) and evaluation of its inverse become complex. An 

inversion formula for the AtRT has been discovered by Novikov where attenuation is 

considered with emission data. Novikove’s formula may briefly be described in terms of a 

feasible function and its Hilbert transform. Say, 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is a transferable function 

and 𝑔𝑔 = ℛ𝑎𝑎 𝑓𝑓. The AtRT ℛ𝑎𝑎 𝑓𝑓(𝑟𝑟, 𝜃𝜃) may be defined as, 

 

 
ℛ𝑎𝑎 𝑓𝑓(𝑟𝑟, 𝜃𝜃′) = � 𝑙𝑙−𝐷𝐷𝑎𝑎 �𝑥𝑥 ,𝑦𝑦 ,𝜃𝜃⊥ �𝑎𝑎𝑙𝑙 𝑓𝑓(𝑥𝑥, 𝑦𝑦)𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙  𝑙𝑙
 

𝐷𝐷𝑎𝑎 (𝑥𝑥, 𝑦𝑦, 𝜃𝜃⊥) = � 𝜇𝜇(𝑥𝑥, 𝑦𝑦, 𝜃𝜃′)𝑎𝑎𝑙𝑙
∞

0
 

(2.10) 

 

For 𝜇𝜇 = 0, ℛ𝑎𝑎  is usual Radon transform. In emission tomography, 𝑓𝑓(𝑥𝑥, 𝑦𝑦) represents 

the emission distribution and 𝜇𝜇(𝑥𝑥, 𝑦𝑦) denotes the attenuation distribution, whereas, 

problem is to recover 𝑓𝑓(𝑥𝑥, 𝑦𝑦) from AtRT with known attenuation map. A relevant formula is 

called the inverse Radon transform. Let us define a function ℎ, 

 

 ℎ =
1
2

(𝐼𝐼 + 𝑙𝑙𝐻𝐻)ℛ𝑎𝑎 , 
 

(2.11) 

 

where, 𝐻𝐻 is the Hilbert transform defined in equation (2.8). Then Novikov’s inversion 

formula may be given as, 
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 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = −
1

4𝜋𝜋
ℜ𝑙𝑙 𝑎𝑎𝑙𝑙𝑣𝑣 � 𝜃𝜃′𝑙𝑙−𝐷𝐷𝑎𝑎 (𝑥𝑥 ,𝑦𝑦 ,𝜃𝜃⊥ )

𝐿𝐿1
�𝑙𝑙ℎ 𝐻𝐻𝑙𝑙ℎ�𝑔𝑔��(𝜃𝜃′, (𝑥𝑥, 𝑦𝑦). 𝜃𝜃′)𝑎𝑎𝜃𝜃′ 

 
(2.12) 

 

With 𝑔𝑔�(𝑟𝑟, 𝜃𝜃′) = ℛ𝑎𝑎 𝑓𝑓(−𝑟𝑟, −𝜃𝜃′). This relation can be used to find inversion of attenuated 

Radon transform for which full proof may be sought in [80;82]. By manipulating various 

arrangements of the Radon transform in Cartesian or polar coordinates, several simpler 

inversion schemes for the RT are available. These are simpler in implementation as 

compared to the fully analytical inversion formulae. Few popular schemes are DFR based 

on Fourier Slice Theorem (FST), Back-projection Filtering (BPF) based on linograms and 

FBP based on Fourier Slice Theorem [84-87]. 

2.7.2 Direct Fourier Reconstruction (DFR) 

Fourier Slice Theorem may be summarized as; “The 1D FT of parallel projections of an 

object 𝑓𝑓(𝑥𝑥, 𝑦𝑦), taken at an angle 𝜃𝜃𝑙𝑙 , gives a slice of the 2D FT of the object, 𝐹𝐹(𝑢𝑢, 𝑣𝑣), 

subtending an angle 𝜃𝜃𝑙𝑙  with the 𝑢𝑢 axis” [85]. Using Fourier Slice Theorem, in DFR method, 

2D Fourier Transform of the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is obtained by plotting 1D Fourier transform of 

its projections 𝑝𝑝(𝑟𝑟, 𝜃𝜃), for a range of angles 𝜃𝜃, onto a polar grid and then converting this 

polar grid into a Cartesian grid by interpolation, known as gridding process. Object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 

can be recovered by 2D inverse Fourier transform (IFT), however, the gridding process 

amplifies noise at higher frequencies. 

 

 
Figure 2.10: Depiction of Fourier Slice Theorem (FST). Fourier reconstruction (FR) generates values on a 

polar grid. 

In BPF, projections are backprojected and then filtered with a cone filter, whereas, 

cone filter has the same issue of amplifying high frequency noise components. An 
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unbounded spatial support requirement for the linogram, even for a finite support object, is 

a practical difficulty of this method [86-88]. 

2.7.3 Inversion by Filtered Back-projection (FBP) 

In BPF, support of the linograms must be truncated, in practice, to a finite size for 

implementation and computer storage purposes, which can cause problems with the de-

convolution step. A larger support increases computational costs of both the back-

projection step and the 2D FFT operations used for the cone filter. The Filtered-Back-

projection (FBP) reconstruction algorithm largely overcomes this limitation [84;87;89;90]. 

The FBP method requires only 1D FT and then 2D FT 𝐹𝐹(𝑢𝑢, 𝑣𝑣) in Fourier variables 𝑢𝑢 and 𝑣𝑣 

can be used to recover the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) in Cartesian coordinates 𝑥𝑥 and 𝑦𝑦 by its conjugate 

operator Inverse Fourier Transform (IFT) as follows, 

 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦)   = � � 𝐹𝐹(𝑢𝑢, 𝑣𝑣)𝑙𝑙𝑙𝑙2𝜋𝜋(𝑥𝑥𝑢𝑢 +𝑦𝑦𝑣𝑣 )
∞

−∞

∞

−∞

𝑎𝑎𝑣𝑣𝑎𝑎𝑢𝑢 (2.13) 

 

By changing from Cartesian coordinates (𝑢𝑢, 𝑣𝑣) to Polar coordinates (𝑟𝑟, 𝜃𝜃), where 𝑢𝑢 = 𝑟𝑟 cos 𝜃𝜃 

and 𝑣𝑣 = 𝑟𝑟 sin 𝜃𝜃 and 𝑎𝑎𝑢𝑢𝑎𝑎𝑣𝑣 = �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑟𝑟
𝜕𝜕𝑣𝑣
𝜕𝜕𝑟𝑟

𝜕𝜕𝑢𝑢
𝜕𝜕𝜃𝜃
𝜕𝜕𝑣𝑣
𝜕𝜕𝜃𝜃

� 𝑎𝑎𝑟𝑟𝑎𝑎𝜃𝜃 = 𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝜃𝜃, and by substituting these values in the above 

equation (2.13) we get, 

 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = � 𝑎𝑎𝜃𝜃 � 𝐹𝐹(𝑟𝑟 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃 , 𝑟𝑟 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)𝑙𝑙𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
∞

0

2𝜋𝜋

0

𝑟𝑟𝑎𝑎𝑟𝑟 

 

Using Fourier Slice Theorem, and by replacing 2D FT with 1D projections of the object being 

imaged, we would get, 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = � 𝑎𝑎𝜃𝜃 � 𝑃𝑃𝜃𝜃 (𝑟𝑟)𝑙𝑙𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
∞

0

2𝜋𝜋

0

𝑟𝑟𝑎𝑎𝑟𝑟 

= � 𝑎𝑎𝜃𝜃 � 𝑃𝑃𝜃𝜃 (𝑟𝑟)𝑙𝑙𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
∞

0

𝜋𝜋

0

𝑟𝑟𝑎𝑎𝑟𝑟 

                  + � 𝑎𝑎𝜃𝜃 � 𝑃𝑃𝜃𝜃+𝜋𝜋 (𝑟𝑟)𝑙𝑙−𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
∞

0

𝜋𝜋

0

𝑟𝑟𝑎𝑎𝑟𝑟 
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And using symmetry property of the projections in case of parallel geometry about the 𝜋𝜋 line we 

get, 

 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = � 𝑎𝑎𝜃𝜃 � 𝑃𝑃𝜃𝜃 (𝑟𝑟)|𝑟𝑟|𝑙𝑙𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
∞

−∞

𝜋𝜋

0

𝑎𝑎𝑟𝑟 (2.14) 

 

The inner integral is Inverse Fourier transform of the filtered version of projections 𝑃𝑃𝜃𝜃 (𝑟𝑟) at 

angle 𝜃𝜃 by a filter having a frequency domain response of |𝑟𝑟| and is called “filtered projections”. 

If we substitute 𝐿𝐿𝜃𝜃 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃 + 𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃) = ∫ 𝑃𝑃𝜃𝜃 (𝑟𝑟)|𝑟𝑟|𝑙𝑙𝑙𝑙2𝜋𝜋𝑟𝑟 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃+𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)𝑎𝑎𝑟𝑟∞
−∞  then object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 

can be recovered or reconstructed by simple back-projection of these filtered projections at all 

angles as follows, 

 

𝑓𝑓(𝑥𝑥, 𝑦𝑦) = � 𝐿𝐿𝜃𝜃 (𝑥𝑥 𝑠𝑠𝑔𝑔𝑠𝑠 𝜃𝜃 + 𝑦𝑦 𝑠𝑠𝑙𝑙𝑙𝑙 𝜃𝜃)
2𝜋𝜋

0

𝑎𝑎𝜃𝜃 

 

This smearing back or back-projection method of the filtered projections to retrieve 

the object distribution is known as Filtered Back-projection and this equation states that 

the reconstructed image of the object 𝑓𝑓(𝑥𝑥, 𝑦𝑦) at point (𝑥𝑥, 𝑦𝑦) is a summation of all the filtered 

projections passing through that point. Figure 2.11, presents images reconstructed by FBP 

of a Shepp-Logan phantom with different number of projections [88;91]. These images 

clearly show that quality of reconstructed images heavily depends on various parameter 

values, for example number of projections in this case. Analytical reconstruction methods 

are very fast as compared to the iterative methods and have strong mathematical theory 

behind their derivation, however, they assume data to be a simple line integral model 

which is not real, and it is not simple to include various image degrading effects into the 

system model [23;60;79;92-94]. Also, they ignore any statistical nature of the counting 

process and any underlying noise distribution or the non-negativity condition of the 

counting systems; hence, their reconstructed images bear inferior bias and variance 

properties. For better resolution and noise properties, and better resolution control, 

statistical iterative methods are preferred over them [10;12;34;39;95]. 
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Figure 2.11: Effect of number of projections on the FBP reconstructed images. False reconstructed 
activity in the form of streaks is reduced by increasing the number of projections however is not 

eliminated. 

2.8 Iterative Reconstruction (IR) 

Tomographic image reconstruction problem is, generally, solved in its discrete form, 

with finite dimensions; however, even in this form the problem is ill-conditioned due to 

incomplete data and noise. Iterative reconstruction methods assume object 

parameterization, as a set of unknowns, by assigning some initial value to them and then 

try to find a better fitted image update, iteratively, based on some compromise between the 

estimated projections and the true projection values. 

2.8.1 Linear Least Square Reconstruction (LSQ) 

Deterministic methods may be used to solve this problem without formulating any, 

explicit, probabilistic model. An estimate of the reconstructed image may be obtained by 

defining a mismatch between observed data and an output of a theoretically defined model, 

generally known as the Least Squares Estimate (LSQ) [66;67;96]. 

 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = argmin
𝑓𝑓

‖𝑦𝑦 − 𝐻𝐻(𝑓𝑓)‖2 (2.15) 
 

This solution is very simple and easily interpretable2

                                                             
2 𝑓𝑓 with cap means estimated value of the variable object from noisy measurements. 

. It is a solution to the set of linear 

equations 𝑦𝑦 = 𝐻𝐻𝑓𝑓, noticeably only considering the data and ignoring the noise altogether. 

Possible variations of the above formulation could possibly be Weighted Least Square 

(WLS) solution, 𝐿𝐿𝑝𝑝  Norm solution or Kullback-Leibler (KBL) mismatch solution etc. This 

approach works well for well-behaved problems in Hadamard sense; however, it fails to 

provide a satisfactory solution, if the problem is ill-conditioned or ill-posed. In tomographic 

imaging, the solution may not exist, not unique, or most commonly, it may depend 

discontinuously on the data and will simply be very sensitive to errors or noise which may 
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drive it unpredictably. This, generally, happens if the range of the forward data operator is 

not closed and its inverse is not defined everywhere in the data space [46;67-69;72]. 

2.8.2 Algebraic Reconstruction Methods (ARM) 

Another approach to find a best solution to the set of linear equation 𝑦𝑦 = 𝐻𝐻𝑓𝑓, is to set 

up algebraic equations for the unknowns, in terms of the measured projection data with 

some defined compromise between measured and the calculated projections. These 

methods are commonly referred to as algebraic reconstruction techniques (ART) and try to 

find the final solution in an iterative process [56;56;85;97-99]. 

 

 𝑦𝑦𝑙𝑙 = � ℎ𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗

𝑁𝑁

𝑗𝑗 =1

    𝑙𝑙 = 1, … , 𝑀𝑀 𝑎𝑎𝑙𝑙𝑎𝑎 𝑗𝑗 = 1, … 𝑁𝑁 (2.16) 

 

Here 𝑦𝑦𝑙𝑙  is the 𝑙𝑙 − 𝑡𝑡ℎ data bin, ℎ𝑙𝑙𝑗𝑗  is the contribution from the 𝑗𝑗 − 𝑡𝑡ℎ pixel to the 𝑙𝑙 − 𝑡𝑡ℎ 

data bin and 𝑓𝑓𝑗𝑗  is the 𝑗𝑗 − 𝑡𝑡ℎ unknown parameter to be evaluated. Flow of the algorithm is 

such that the current estimates are compared with the measured projections, instead of 

back-projecting the average ray value as in FBP, and the resultant is used to modify the 

current estimate, thereby creating a new updated estimate. The reconstruction process 

starts with an initial estimate of the object values and tries to drag the updated projection 

estimates nearer to the true projections, with proceeding iteration number. For very large 

number of pixels and projection rays, an iterative method to solve above system of linear 

equations is known as the Kaczmarz method [85;92]. 

 

 𝑓𝑓𝑗𝑗
𝑘𝑘+1 = 𝑓𝑓𝑗𝑗

𝑘𝑘 + 𝜆𝜆. (𝑦𝑦𝑙𝑙 − � ℎ𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗 )
𝑁𝑁

𝑗𝑗 =1

/ � ℎ𝑙𝑙𝑗𝑗

𝑁𝑁

𝑗𝑗 =1

 (2.17) 

 

This is an equation to update value of the 𝑗𝑗 − 𝑡𝑡ℎ unknown or pixel at each iteration and 

is the well-known additive form of the algebraic reconstruction technique (ART) algorithm 

where second term, on the right, is a correction factor for 𝑙𝑙 − 𝑡𝑡ℎ ray. Here 𝜆𝜆 is a relaxation 

parameter which controls the correction step. 

2.8.3 Conjugate Gradient Method (GC) 

Another example of such kind of iterative algorithm, where solution is iteratively 

searched for, using some criteria on the comparison of the data and estimated solution and 
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then modifying the solution image accordingly, is called the gradient algorithm, or steepest-

descent algorithm. Every new estimate of the image is found by adding some vector 

indicating the new direction vector, chosen to be opposite to the local gradient weighted by 

a coefficient representing the step length. Convergence of this algorithm highly depends on 

the choice of this coefficient, however, gradient direction is only the locally best direction 

and, hence, the algorithm is not very efficient. In an efficient version of this algorithm, 

known as the Conjugate Gradient (CG) algorithm, the 𝑝𝑝𝑘𝑘  vector indicates a direction 

towards a combination of the direction of the current gradient and a gradient found at the 

previous iteration. Mathematically, this algorithm can be given as below followed by Polak-

Ribiere CG method [100], 

 

 𝑓𝑓𝑘𝑘+1 = 𝑓𝑓𝑘𝑘 + 𝛼𝛼𝑘𝑘 𝑝𝑝𝑘𝑘   (2.18) 
 

Every new estimate of image 𝑓𝑓𝑘𝑘+1 is found by adding some vector indicating the new 

direction vector 𝑝𝑝𝑘𝑘 , which will be [100], 

 

 𝑝𝑝𝑘𝑘 = 𝑞𝑞𝑘𝑘 + 𝛾𝛾𝑘𝑘 𝑝𝑝𝑘𝑘−1 (2.19) 
With, 

 

 

𝛼𝛼𝑘𝑘 = argmin
α

𝜑𝜑�𝑓𝑓𝑘𝑘 + 𝛼𝛼𝑝𝑝𝑘𝑘 � 

𝛾𝛾𝑘𝑘 = �
0,                                             𝑘𝑘 = 0
�𝑔𝑔𝑘𝑘 − 𝑔𝑔𝑘𝑘−1, 𝑞𝑞𝑘𝑘 �

(𝑔𝑔𝑘𝑘−1, 𝑞𝑞𝑘𝑘−1)
                   𝑘𝑘 > 0

� 
(2.20) 

 

Where 𝑔𝑔𝑘𝑘 = −𝐺𝐺𝑟𝑟𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡(𝑂𝑂𝑏𝑏𝑗𝑗𝑙𝑙𝑠𝑠𝑡𝑡𝑙𝑙𝑣𝑣𝑙𝑙 𝑓𝑓𝑢𝑢𝑙𝑙𝑠𝑠𝑡𝑡𝑙𝑙𝑔𝑔𝑙𝑙 𝑔𝑔𝑓𝑓 𝑓𝑓𝑘𝑘 ) to be maximized and 𝑞𝑞𝑘𝑘 = 𝑴𝑴𝑔𝑔𝑘𝑘 , 

with 𝑴𝑴 as the pre-conditioner used to speed up the convergence rate by reducing the ill-

conditioning. However, these algorithms may generate negative values in the reconstructed 

images, because of its mathematical formulation and one need to be very careful in 

choosing parameter values [100;101]. 

2.8.4 Maximum Likelihood Expectation Maximization (MLEM) 

In tomographic imaging systems, measurements are subject to variations due to the 

Poisson probabilistic phenomena of the radioactive disintegrations and consequently every 

dataset realization 𝑦𝑦 corresponds to a particular measurement. In the framework of linear 

set of equations if we do not take into account the probabilistic nature of the phenomena, 𝑓𝑓 

is a particular solution corresponding to that particular measurement 𝑦𝑦. MLEM algorithm 
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tries to find a general solution as the best estimate 𝑓𝑓, with the maximum likelihood (ML) as 

the criterion that can produce the given data 𝑦𝑦 [91;102;103]. Poisson law is, generally, used 

to evaluate the probability of mean detected events count given the mean number of 

disintegrations. Thus, an iteration of the algorithm is divided in 2 steps: in the expectation 

step (E step), which means a formulation expressing the likelihood of any reconstructed 

image given the measured data, and in the maximization step (M step), to find the image 

that has greatest likelihood to give the measured data. EM algorithm can be visualized as a 

set of successive projections and back-projections. However, MLEM algorithm has 

notoriously slow speed of convergence and may require up to 200 iterations or more to 

converge [90;95;104]. 

In statistical approach, assuming that we know the probability density 𝑝𝑝(𝑦𝑦|𝑓𝑓) of the 

data 𝑦𝑦 given the object density 𝑓𝑓 in parametric form, image reconstruction problem 

becomes a parametric estimation problem i.e. estimation of a realization of the unknown 

object 𝑓𝑓 corresponding to a data realization 𝑦𝑦. For maximum likelihood (ML) estimation, 

the likelihood of the data 𝑦𝑦, given image 𝑓𝑓, may be written as, 

 

 𝐿𝐿𝑦𝑦
𝑌𝑌 (𝐹𝐹 = 𝑓𝑓) = 𝑝𝑝𝑌𝑌(𝑦𝑦|𝑓𝑓) (2.21) 

 

ML estimation is based on a two-steps-operation, which alternates between 

calculating conditional mean of the data likelihood, using data 𝑦𝑦 and the current estimate of 

the object 𝑓𝑓𝑘𝑘 , where 𝑘𝑘 is the iteration number, and then maximizing this quantity with 

respect to the object 𝑓𝑓𝑘𝑘 ,  

 

 
𝐸𝐸 − 𝐿𝐿𝑡𝑡𝑙𝑙𝑝𝑝:           𝐿𝐿�𝑓𝑓�𝑓𝑓𝑘𝑘� = E�ln 𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)|𝑦𝑦, 𝑓𝑓𝑘𝑘 � 
𝑀𝑀 − 𝐿𝐿𝑡𝑡𝑙𝑙𝑝𝑝:           𝑓𝑓𝑘𝑘+1 =  argmax

𝑓𝑓𝜖𝜖 𝑅𝑅𝑙𝑙
 𝐿𝐿�𝑓𝑓�𝑓𝑓𝑘𝑘 � 

 

(2.22) 

Here, 𝑓𝑓𝑘𝑘  is the object estimate which maximizes the likelihood function at the 𝑘𝑘 − 𝑡𝑡ℎ 

iteration with an assumption that this function is convex itself and has a maximum defined. 

In tomographic imaging, likelihood function is a product of large number of factors, so it is 

convenient to maximize its logarithm, as shown in the above relation, which will have the 

same maxima. Alternatively, for a negative-logarithmic expression, being strictly convex 

and with 𝐴𝐴 and 𝐵𝐵 as suitable constants, whose values depend on the noise distribution 

assumed, we may have a minimization problem as follows 

 

 𝑓𝑓 = argmin
𝑓𝑓𝜖𝜖 𝑅𝑅𝑙𝑙

�−𝐴𝐴 ln 𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓) + 𝐵𝐵� , 𝑓𝑓 ≥ 0 (2.23) 
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In case of additive Gaussian white noise, this functional becomes equivalent to the 

Least Square approach as follows [66;101],  

 

 𝑓𝑓 = argmin
𝑓𝑓𝜖𝜖 𝑅𝑅𝑙𝑙

‖𝐻𝐻𝑓𝑓 + 𝑏𝑏 − 𝑦𝑦‖, 𝑓𝑓 ≥ 0 (2.24) 
 

Advantage of the iterative techniques is their flexibility to treat realistic mathematical 

models of the measurements.  

 

 
 
Figure 2.12: Image reconstructed using 10 iterations (left) and 100+ 
iterations (right) of Maximum Likelihood Image reconstruction 
clearly show reconstruction based noise with increasing iteration 
numbers. 

 

They allow not only to account for the attenuation of radiation, but also to correct for 

image degradation factors, such as collimator blurring and photon scattering in SPECT 

[29;52;60;61;91;93;94;102;105]. Though, elegant in its mathematical formulation, iterative 

estimation problem is ill-conditioned due to a very high condition number of the matrix 𝐻𝐻 

for Poisson noise distribution. Due to this ill-conditioning of the problem, reconstructed 

images become too noisy and bear reconstruction induced noise known as checkerboard 
noise, since many components of the minimum are zeros [20;102;106;107]. This ill-posed 

problem is a starting point of the so called Tikhonov regularization theory [46;67;108;109]. 

MLEM method is capable of modeling various image degrading effects. However, because 

they only incorporate information available in the data and do not consider any object 

properties, their resultant solution images bear poor noise and resolution properties. It 

should also be emphasized that, with non-negativity constraint, it is not easy to treat the 

problem with standard regularization theory. However, regularization approach is used to 

overcome this problem by constraining the problem to the strictly positive solutions and 

additional information about the object is used to limit the solution image set [93;110;111]. 
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2.9 Regularization 

Regularization means application of a key idea to introduce a family of continuous 

approximations in place of a discontinuous operator [48;75]. It includes use of some priori 

information on the solution, which in Green’s words can be put as, “it is indeed hard to 

imagine knowing nothing about the object” being reconstructed. Regularization is critical 

for successful statistical modeling of high dimensional noisy data. Regularization could be 

implemented implicitly or explicitly [66;67]. Some form of regularization, such as some 

bounds on the solution image, in form of a filter-factor to zero very small singular values or 

by stopping at early iterations to cease very small oscillations near convergence, is implied 

implicitly without explicitly defining a regularization term. Whereas, the generalized 

explicit form of the regularized solution, in a sense of least squares solution for example, is 

generally defined as [66;74], 

 

 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = argmin
𝑓𝑓(𝑥𝑥 ,𝑦𝑦)

{‖𝑦𝑦 − 𝐻𝐻(𝑓𝑓)‖2 + 𝜆𝜆𝜑𝜑(𝑓𝑓)} (2.25) 
 

Here 𝜆𝜆𝜑𝜑(𝑓𝑓) explicitly defines a regularizing term in form of some priori information, 

known about the object before its reconstruction. This formulation is also known as 

Tikhonov iterative method (TIM). Here, 𝜑𝜑(𝑓𝑓) is the regularization functional and 𝜆𝜆 controls 

trade-off between good data fit and the prior influence. Generally, smoothness imposing 

functionals in the form of squares of the pixel differences 𝜆𝜆(∆𝑓𝑓)2 are used, however, they 

are known to blur sharp features of the reconstructed images. Some authors have 

introduced semi-norm of the Total Variation (TV) as the regularizing functional in the 

context of CT image reconstruction whereas several other prior functionals have been 

introduced [112;113]. We describe TV regularization below in a brief context. 

2.9.1 Total Variation (TV) Regularization 

If the image to be reconstructed is defined on a bounded, open and convex region Ω of 

ℝ2 such that 𝑓𝑓 ∈ 𝐿𝐿1(Ω), we set, 

 

 𝑇𝑇𝑉𝑉(𝑓𝑓) = � |∇𝑓𝑓|
Ω

𝑎𝑎𝑥𝑥 (2.26) 

 

Here, ∇𝑓𝑓 is the vector of weak partial derivatives of 𝑓𝑓 and is known as weak gradient 

of 𝑓𝑓. This functional has been, initially, introduced by Rodin, Osher and Fatemi and further 
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has been used for various image processing problems [112;114]. Medical images, generally, 

do not contain very small structures and very small signal oscillations are due to high 

frequency noise. Also, these images bear visual information such as tumor boundaries as 

sharp discontinuities and tumor bounded areas as uniform signal regions and both of these 

should be reconstructed without artifacts. TV regularization scheme appears to be the 

relevant model for such signals as it recovers piecewise smooth areas without much 

blurring of the sharp edges [115;116]. TV regularization allows reconstruction of the most 

regular image, while better conditioning the ill-posed tomographic image reconstruction 

problem, and constraining it with respect to the TV semi norm, at the same time. 

However, in numerical analysis, a problem of singularity arises when non-

differentiable argument |∇| becomes zero. A suggested way out is a form of relaxation by 

introducing a relaxation parameter 𝜂𝜂 as follows; 

 

 𝑇𝑇𝑉𝑉(𝑓𝑓) =  � �|∇𝑓𝑓|2 + 𝜂𝜂
Ω

𝑎𝑎𝑥𝑥 (2.27) 

 

Here 𝜂𝜂 is a small positive number to avoid singularity in the derivative term. However, 

problem with this method is a compromise, of the advantage of boundary variation (BV) 

model of the TV functional, which introduces blurring of the edges in the final image. Other 

possible proposed methods are computation of TV without any regularization or 

adjustment of standard gradient descent algorithms to sub-gradient. In our work, we 

adopted a numerical scheme introduced in literature and computed 𝑇𝑇𝑉𝑉(𝑓𝑓) with discrete 

approximation [112;113], 

 

 𝑇𝑇𝑉𝑉(𝑓𝑓) = � ��𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙−1𝑗𝑗 �2 + �𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙𝑗𝑗 −1�2 + 𝜂𝜂
𝑁𝑁

𝑙𝑙𝑗𝑗 =2

 (2.28) 

 

Here 𝑓𝑓𝑙𝑙𝑗𝑗  represents the 𝑙𝑙𝑗𝑗 − 𝑡𝑡ℎ pixel within a 2D image. Various kinds of regularization 

functions are used to make the problem less ill-conditioned and to constraint the final 

solution towards less noisy and more acceptable versions. 

The prior formulation, given in equation (2.25), provides a solution using some 

approximate operators, which are mainly evaluated using data, without considering 

statistical properties of the emission process. Whereas, it is much better to discuss the 

solution, with some uncertainties and confidence levels defined, because nature of the 

counting statistics is stochastic and various noise models should be included. Hence, it is 
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appropriate to deal with the regularized reconstruction problem in probabilistic 

framework instead of deterministic approach [46;60;69;76;77]. 

2.10 Probabilistic Formulation of Reconstruction Problem 

Real systems produce data, which is a sampled output of an imaging system, with some 

discrete parameterization, including noise as a random process. Tomographic imaging 

system’s measurements could be thought of as a realization of a random variable obeying 

some specific distribution law [46;66;69;72]. We discussed earlier that a direct inversion 

approach or solution of the linear system of equations, in least square sense, does not 

provide a satisfactory solution due to implied assumptions about the system or the physical 

processes, whereas, considering statistical properties of the counting data, it is quite 

natural to use statistical approach. Deterministic estimation methods are generally used to 

solve the problem of object estimation in image reconstruction, where, deterministic 

methods are those which try to estimate the solution image only on the basis of the 

measurements and no other information, such as noise present in the data, is considered 

for this reason. However, simple measurement based data space is always associated with 

an orthogonal null space, which makes the problem highly ill-conditioned. Bayesian 

approach is used to overcome this problem of noise and additional information about the 

object is used to limit the solution image set [65;76;77]. 

2.10.1 Bayesian Approach for Image Reconstruction 

In essence, Bayesian approach assumes that the solution image is a random 

identifiable ensemble selection from a set of similar solution images reconstructed by the 

identical procedure [66;77;117]. In this way, some further information may be 

reconstructed about the object in the null space and thus may lead to an artifacts reduction. 

The Bayesian approach allows prior information about the reconstructed object to estimate 

the null-space components of the solution, whereas, several types of priori information can 

be incorporated. It is generally accepted that, without considering any additional 

information about the object being reconstructed, formulation of the reconstruction 

problem is highly ill-posed, as the case in ML estimation, where, we only use information 

about the data noise and try to estimate the unknown object from this data only. This 

additional information may be in form of some prescribed bounds on the solution or its 

derivatives [105]. 
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These constraints may include early iteration stopping or post-reconstruction filtering 

the ML solution after convergence, which comprises of some sort of implicit regularization. 

However, we may use information given about some statistical properties of the object 

explicitly, which may be known before hand. If the object being reconstructed is assumed to 

be a realization of a random object, probability density of the data, 𝑌𝑌 = 𝑦𝑦 given a realization 

of the object 𝐹𝐹 = 𝑓𝑓, given as 𝑝𝑝(𝑦𝑦|𝑓𝑓) will have a different interpretation in the form of 

conditional probability of the random variable 𝑌𝑌 given the realization 𝑓𝑓of the random 

object 𝐹𝐹 or 𝑝𝑝𝐹𝐹(𝑌𝑌 = 𝑦𝑦|𝐹𝐹 = 𝑓𝑓) = 𝑝𝑝𝐹𝐹(𝑦𝑦|𝑓𝑓). Additional information about the object is 

introduced in form of some probability density function of the object. This is generally 

known as the prior probability density and its given distribution is known as the prior 
distribution, because it is assumed to be known before acquisition of the data [66]. If the 

prior density is represented by 𝑝𝑝𝐹𝐹(𝑓𝑓) then the joint probability density of the random 

variables 𝑌𝑌 𝑎𝑎𝑙𝑙𝑎𝑎 𝐹𝐹 is given by, 

 

𝑝𝑝𝐹𝐹𝑌𝑌(𝑓𝑓, 𝑦𝑦) = 𝑝𝑝𝑌𝑌(𝑌𝑌 = 𝑦𝑦|F = 𝑓𝑓)𝑝𝑝𝐹𝐹(𝑓𝑓) 

 

Using Bayes formula, we obtain conditional probability density of the random object 𝐹𝐹, for 

a given realization of 𝑌𝑌 = 𝑦𝑦, 

 

 𝑝𝑝𝐹𝐹(𝑓𝑓|𝑦𝑦) =
𝑝𝑝𝐹𝐹𝑌𝑌(𝑓𝑓, 𝑦𝑦)

𝑝𝑝𝑌𝑌(𝑦𝑦) =
𝑝𝑝𝑌𝑌(𝑦𝑦|𝑓𝑓)𝑝𝑝𝐹𝐹(𝑓𝑓)

𝑝𝑝𝑌𝑌(𝑦𝑦)  (2.29) 

 

This is also known as the posteriori conditional probability density of the object given 

the measurement 𝑦𝑦 in terms of the conditional probability of 𝑦𝑦 given 𝑓𝑓 and a priori 

probability distributions of 𝑓𝑓 and 𝑦𝑦 separately. Here 𝑝𝑝𝑌𝑌(𝑦𝑦) is the normalizing factor 

assumed to be constant, and, 

 

𝑝𝑝𝑌𝑌(𝑦𝑦) = � 𝑝𝑝𝐹𝐹𝑌𝑌(𝑓𝑓, 𝑦𝑦)𝑎𝑎𝑓𝑓 

 

The a-posteriori probability density of 𝐹𝐹 given 𝑓𝑓 may be rearranged as, 

 

𝑃𝑃𝑦𝑦
𝐹𝐹(𝑓𝑓) = 𝑝𝑝𝐹𝐹(𝑓𝑓|𝑦𝑦) = 𝑝𝑝𝑌𝑌(𝑦𝑦|𝑓𝑓)

𝑝𝑝𝐹𝐹(𝑓𝑓)
𝑝𝑝𝑌𝑌(𝑦𝑦) = 𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)
𝑝𝑝𝐹𝐹(𝑓𝑓)
𝑝𝑝𝑌𝑌(𝑦𝑦) 
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Here 𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓) is the likelihood function, whereas, a maximum-a-posteriori (MAP) 

estimate of the unknown object, obtained after considering data and the prior, maximizes 

this joint probability density function, 

 

𝑓𝑓 = argmax
𝑓𝑓∈𝑅𝑅𝑙𝑙

𝑃𝑃𝑦𝑦
𝑌𝑌(𝑓𝑓) = argmax

𝑓𝑓∈𝑅𝑅𝑙𝑙
�𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)
𝑝𝑝𝐹𝐹(𝑓𝑓)
𝑝𝑝𝑌𝑌(𝑦𝑦)�  𝑤𝑤𝑙𝑙𝑡𝑡ℎ 𝑓𝑓 ≥ 0 

 

It should be noted that if data is complete, then prior knowledge is useless, however in 

case of noisy data or incomplete data, as in image reconstruction problem, the prior 

information may be as much worthy as the data itself, for a feasible solution. Taking 

logarithm of the MAP density function, the log-posterior functional, ignoring 𝑝𝑝𝑌𝑌(𝑦𝑦) would 

become [105;111;117], 

 

 𝑓𝑓 = argmax
𝑓𝑓∈𝑅𝑅𝑙𝑙

�log  𝑃𝑃𝑦𝑦
𝑌𝑌(𝑓𝑓)� = argmax

𝑓𝑓∈𝑅𝑅𝑙𝑙
�log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)� + log 𝑝𝑝𝐹𝐹(𝑓𝑓)� (2.30) 

 

For optimization, above mentioned MAP formulation is derived with respect to the 

current pixel 𝑓𝑓𝑗𝑗  and its derivative is set equal to zero to find the iterative update equation 

for estimated maxima, 

  
𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
�log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓|𝑦𝑦)� + log 𝑝𝑝𝐹𝐹(𝑓𝑓)� = 0  

 

In case of Poisson noise distribution, with noiseless mean measurement vector given 

by 𝑌𝑌𝑙𝑙� = ∑ 𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑁𝑁
𝑗𝑗 =1  𝑓𝑓𝑔𝑔𝑟𝑟 𝑙𝑙 = 1, . . , 𝑀𝑀 and with constant data vector 𝑦𝑦, the Likelihood function 

will be 𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓|𝑦𝑦) = ∏ 𝑙𝑙−𝑌𝑌�𝑙𝑙

(𝑌𝑌�𝑙𝑙)𝑦𝑦 𝑙𝑙

𝑦𝑦𝑙𝑙 !
𝑀𝑀
𝑙𝑙=1  and log-likelihood of the MAP estimate in this case, 

 

𝐿𝐿(𝑓𝑓) = log �𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓|𝑦𝑦)� + log 𝑝𝑝𝐹𝐹(𝑓𝑓) = �{𝑦𝑦𝑙𝑙 log 𝑌𝑌�𝑙𝑙 − 𝑌𝑌𝑙𝑙� − 𝑦𝑦𝑙𝑙 !}

𝑀𝑀

𝑙𝑙=1

+ log 𝑝𝑝𝐹𝐹(𝑓𝑓) 

 

For optimization, we need to equate the derivative to zero, 

 

𝜕𝜕
𝜕𝜕𝑓𝑓𝑗𝑗

�{𝑦𝑦𝑙𝑙 log 𝑌𝑌�𝑙𝑙 − 𝑌𝑌𝑙𝑙� − 𝑦𝑦𝑙𝑙 !}
𝑀𝑀

𝑙𝑙=1

+
𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓) = 0 
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Solution of this equation must satisfy Kuhn-Tucker’s optimality conditions of the 

problem for all 𝑗𝑗 = 1, . . , 𝑁𝑁, which are as follows [66], 

 
𝜕𝜕𝐿𝐿
𝜕𝜕𝑓𝑓𝑗𝑗

≥ 0, ∀ 𝑗𝑗 

𝑓𝑓𝑗𝑗
𝜕𝜕𝐿𝐿
𝜕𝜕𝑓𝑓𝑗𝑗

= 0, ∀ 𝑗𝑗 

 

By substituting value of 𝐿𝐿 in 2nd condition we get, 

 

𝑓𝑓𝑗𝑗 �− �
𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

+ � 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

+
𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓)� = 0 

𝑓𝑓𝑗𝑗 �� 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

+
𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓)� = 𝑓𝑓𝑗𝑗 �

𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

 

This relation can be rearranged to find an update equation for the optimal image 

estimate as follows with non-negativity condition for 𝑓𝑓 still holding, 

 

 
𝑓𝑓𝑗𝑗

𝑘𝑘+1 =
𝑓𝑓𝑗𝑗

𝑘𝑘

�∑ 𝐻𝐻𝑙𝑙𝑗𝑗
𝑀𝑀
𝑙𝑙=1 + 𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓𝑘𝑘 )�

�
𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

𝑓𝑓𝑗𝑗 ≥ 0, 𝑓𝑓𝑔𝑔𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑗𝑗 

(2.31) 

 

Numerically, this equation does not have a closed form solution, however, Green 

proposed to use the EM algorithm for MAP estimation problem, where image update at the 

previous iteration is used to evaluate derivative of the prior term instead of the unknown 

object values and named this algorithm as One-Step-Late (OSL-MAP) algorithm 

[105;111;118].  

2.10.2 Modeling the Priors Distribution 

Model of the prior is a critical choice for the MAP estimation and is often chosen to be a 

markov random field (MRF) in form of Gibbs distribution function due to its simplistic 

application in image estimation problems. Single pixel mean and variance can be set, 

however, it will not present image properties in a local neighborhood.  Gibbs functions have 

simple mathematical form and can capture local image properties. In MRF, image pixels and 

measurement bins are considered to be random variables and according to the Hammersly-
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Clifford theorem an MRF is defined as a random field, on a lattice, if and only if, its 

probability distribution function corresponds to a Gibbs function [117;119]. The prior, in 

Bayesian approach, is generally modeled as a Gibbs distribution function, because, it 

provides a powerful mathematical tool to model the underlying spatial correlations of the 

source locations [111;120].  

The probability density function for an MRF can be expressed in Gibbs form as follows, 

 

 𝑝𝑝𝐹𝐹(𝑓𝑓) = 𝐶𝐶𝑙𝑙−𝛽𝛽𝑉𝑉 (𝑓𝑓) = 𝐶𝐶𝑙𝑙−𝛽𝛽 ∑ 𝑉𝑉(𝑓𝑓)𝑁𝑁𝑏𝑏  (2.32) 
 

Here 𝐶𝐶 is the normalizing constant for the distribution, 𝑉𝑉(𝑓𝑓) is defined as the energy 

function because it captures relative energy of pixels in a small neighborhood in some 

mathematical formulation, and 𝛽𝛽 is the hyper-parameter whose values define influence of 

the prior [121;122]. Energy functions are generally defined in a local neighborhood 𝑁𝑁𝑏𝑏  of a 

pixel of interest, because they defined the energy distribution in a local neighborhood. 

Values of the parameter 𝛽𝛽 are critical in defining final nature of the image estimate and will 

determine tradeoff between bias and variance of the resulting estimate. For example, large 

𝛽𝛽 values will produce smoother estimates with higher bias, while small values allow the 

estimate to approach the typically high variance solution near to its ML estimate [109]. 

MAP image priors have a locally finite support in a small neighborhood. Gibbs random 

fields (GRF) will have this property, which is computationally very attractive and may be 

presented as follows, 

 

𝑝𝑝�𝑓𝑓𝑙𝑙�𝑓𝑓𝑗𝑗 , 𝑙𝑙 ≠ 𝑗𝑗� = 𝑝𝑝(𝑓𝑓𝑙𝑙|𝑓𝑓𝑗𝑗 , 𝑗𝑗 ∈ 𝑁𝑁𝑏𝑏 ) 

 

Various energy functions 𝑉𝑉(𝑓𝑓) have been suggested in literature. A wrong choice of the 

energy function may lead to unacceptable results; therefore, one must be very careful in 

choosing these functions. Convex energy functions are desirable for stability and 

computational simplicity of the solution. A discussion of Markov random fields for MAP 

tomographic estimation is found in [123-125].  

2.10.2.2 Quadratic (QPs) and Non-Quadratic Priors 

A very common choice for the potential function is, a Gaussian MRF, which works upon 

square of the difference of neighboring pixels about a pixel of interest [125;126]. This 

choice can be expressed in the form of a prior distribution around a particular pixel 𝑓𝑓𝑗𝑗  as 

follows, 
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 𝑉𝑉�𝑓𝑓𝑗𝑗 � =
1
2 �∆𝑓𝑓𝑗𝑗 �

2
 𝑤𝑤ℎ𝑙𝑙𝑟𝑟𝑙𝑙 ∆𝑓𝑓𝑗𝑗 = �𝑓𝑓𝑗𝑗 − 𝑓𝑓𝑘𝑘 �          𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 = 1, … , 𝑁𝑁 𝑎𝑎𝑙𝑙𝑎𝑎 𝑗𝑗

≠ 𝑘𝑘 𝑎𝑎𝑙𝑙𝑎𝑎 𝑘𝑘 ∈ 𝑁𝑁𝑏𝑏  
(2.33) 

 

Here, ∆𝑓𝑓𝑗𝑗  represents the difference of two pixel values in a small neighborhood and, 

commonly, a first order (with four pixels around the centre pixel) or a second order (with 

eight neighboring pixels around the center pixel) pixel neighborhood is used [77;96;105]. 

Pixel values are penalized with reference to this difference in pixel values. 

Salient image features, such as edges, are discouraged in the final image estimate due 

to square of the pixel differences. Huber’s energy function is an example of such functions, 

where a threshold 𝑇𝑇 parameter has been introduced to benefit edges, having pixel 

differences above the threshold passing through the prior without being penalized. Huber’s 

potential function is defined as [127], 

 

 𝑉𝑉�𝑓𝑓𝑗𝑗 � = �
�∆𝑓𝑓𝑗𝑗 �2                      𝑓𝑓𝑔𝑔𝑟𝑟      �∆𝑓𝑓𝑗𝑗 � ≤ 𝑇𝑇
2𝑇𝑇�∆𝑓𝑓𝑗𝑗 � − 𝑇𝑇2,         𝑓𝑓𝑔𝑔𝑟𝑟      �∆𝑓𝑓𝑗𝑗 � > 𝑇𝑇

� (2.34) 

 

Another function has been proposed by Green [105], 

 

 𝑉𝑉�∆𝑓𝑓𝑗𝑗 � = 2𝑇𝑇2 log cosh �
∆𝑓𝑓𝑗𝑗

𝑇𝑇 � (2.35) 

 

Here 𝑇𝑇 is a threshold value for the maximum edge pixel differences. 

 

 
Figure 2.13: Different prior functions with their derivatives. 

It is to be noted that these functions, though take care of the edges empirically, have a 

problem of additional parameter tuning. Also, MAP optimization problem with EM 

algorithm does not have a closed form solution with these prior functions; therefore, 
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approaches similar to EM, such as Generalized EM (GEM) or One Step Late (OSL) need to be 

used [77;105;111]. 

2.10.2.3 Median Root Priors (MRPs) 

Median-Root-Priors (MRPs) as proposed by Alenius (1998), are not a full 

mathematical derivation of the prior distribution or its derivatives due to undefined 

dependence of median on the local neighborhood, but, has an intuitive resemblance to the 

priors distribution given by a Gaussian type PDF as follows [128], 

 

 𝑝𝑝𝐹𝐹(𝑓𝑓) = 𝐶𝐶𝑙𝑙−𝛽𝛽
2𝑉𝑉(𝑓𝑓)𝑤𝑤𝑙𝑙𝑡𝑡ℎ 𝑉𝑉(𝑓𝑓) = �

�𝑓𝑓𝑗𝑗 − 𝑀𝑀�2

𝑀𝑀

𝑁𝑁𝑏𝑏

𝑗𝑗 =1

 𝑓𝑓𝑔𝑔𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙 𝑗𝑗 = 1,2, … , 𝑁𝑁 (2.36) 

   
Here, 𝑀𝑀, are the Gaussian means or hyper-parameters, which depend on a small local 

neighborhood 𝑁𝑁𝑏𝑏 , around pixel 𝑓𝑓𝑗𝑗 , and need to be evaluated by the median operation 

as 𝑀𝑀 = 𝑔𝑔𝑙𝑙𝑎𝑎{𝑓𝑓𝑘𝑘 , 𝑘𝑘 ∈ 𝑁𝑁𝑏𝑏 }. Here, log of the prior, or Gibbs type energy function is of simple 

quadratic form, 

 

log 𝑝𝑝𝐹𝐹(𝑓𝑓) = −
𝛽𝛽
2

𝑉𝑉(𝑓𝑓) = −
𝛽𝛽
2

�
�𝑓𝑓𝑗𝑗 − 𝑀𝑀�2

𝑀𝑀

𝑁𝑁𝑏𝑏

𝑗𝑗 =1

 

 

and its empirical derivative, defined by Alenius (1998), is as follows [128], 

 

𝜕𝜕
𝜕𝜕𝑓𝑓𝑗𝑗

𝑉𝑉(𝑓𝑓) =
2�𝑓𝑓𝑗𝑗 − 𝑀𝑀�

𝑀𝑀
. 

 

This derivative has been evaluated at the pixel 𝑓𝑓𝑗𝑗 , while considering 𝑀𝑀 as constant, 

which is theoretically not true, because dependence of local median is not linear on the 

neighborhood. It is obvious from the above relation that, when median is the center pixel 

and varying w.r.t.  𝑓𝑓𝑗𝑗 , the prior vanishes. However, for median to fall upon any other pixel in 

the neighborhood it is constant for the sake of derivation, hence, mathematically there is no 

harm in considering median as constant, w.r.t.   𝑓𝑓𝑗𝑗 , for the sake of evaluation of 𝜕𝜕𝑀𝑀
𝜕𝜕𝑓𝑓𝑗𝑗

. A 

depiction of this empirical description is given in Figure 2.14. 

A simple description of MRPs could be that it has a Gaussian like distribution with 

location of the Gaussian mean as the local median [128]. Theoretical analysis of the MRPs 

convergence properties is not tractable because of non-availability of its analytical 
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derivatives. However, practically all the images reconstructed with MAP algorithm using 

MRPs, do converge, which has also been observed by other researchers [110]. Pixels are 

only penalized against the local median and not with respect to the pixel differences, when 

centre pixel value departs from the local median. This encourages the final image estimate 

towards its locally monotonic version and not its locally smooth version, however, 

including smoothness as a subset. 

 

 
Figure 2.14: An intuitively depicted dependence of median on the pixel 
value in a small neighborhood. The prior vanishes when median equals 
center pixel (in between two dashed lines) and it is constant for all 
other values of median. 

 

It means that pixel values, corrupted by noise, are compared to the local median and 

left unaltered if they are close enough to the median in which case that pixel is understood 

as uncorrupted. Noise is generally non-monotonic in a local neighborhood, instead of being 

locally smooth, and is penalized. Similarly, no special instructions are needed to let the 

prior behave differently at the edges as median follows the edge, which is equivalent to 

performing automatic edge preservation [107]. This is different from other quadratic or 

non-quadratic priors, where they need extra parameters to be tuned for edge height, and 

let only locally smooth areas pass through them unaltered. 

2.10.2.4 One-Step-Late (OSL) Estimation with QPs, MRPs and TV Regularization 

Considering OSL algorithm, from section 2.9.1, a formulation of this algorithm may be 

rearranged as follows, 

 

 
𝑓𝑓𝑗𝑗

𝑘𝑘+1 =
𝑓𝑓𝑗𝑗

𝑘𝑘

�∑ 𝐻𝐻𝑙𝑙𝑗𝑗
𝑀𝑀
𝑙𝑙=1 + 𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓𝑘𝑘 )�

�
𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

𝑓𝑓𝑗𝑗
𝑘𝑘+1 = 𝑓𝑓𝑗𝑗

𝑘𝑘 𝑓𝑓𝑗𝑗
𝑃𝑃𝑅𝑅𝐼𝐼𝑂𝑂𝑅𝑅(𝑘𝑘)𝑓𝑓𝑗𝑗

𝑀𝑀𝐿𝐿(𝑘𝑘) 

(2.37) 

 

M
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n
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fj < M

fj > M
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Here 𝑓𝑓𝑗𝑗
𝑀𝑀𝐿𝐿(𝑘𝑘) is the likelihood update term and 𝑓𝑓𝑗𝑗

𝑃𝑃𝑅𝑅𝐼𝐼𝑂𝑂𝑅𝑅(𝑘𝑘)is the prior update term of the 

𝑗𝑗 − 𝑡𝑡ℎ pixel, at the 𝑘𝑘 − 𝑡𝑡ℎ iteration, and for QPs [105], 

 

 
𝑓𝑓𝑗𝑗

𝑀𝑀𝐿𝐿(𝑘𝑘) = �
𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

𝑓𝑓𝑗𝑗
𝐿𝐿𝑃𝑃(𝑘𝑘) =

1
�∑ 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀
𝑙𝑙=1 + 𝛽𝛽 ∑ �𝑓𝑓𝑗𝑗 − 𝑓𝑓𝑘𝑘 �𝑁𝑁𝑏𝑏

𝑙𝑙=1 �
 

(2.38) 

 

Similarly, for Median Root Priors (MRPs), we have [107], 

 

 

𝑓𝑓𝑗𝑗
𝑀𝑀𝐿𝐿(𝑘𝑘) = �

𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

𝑓𝑓𝑗𝑗
𝑀𝑀𝑅𝑅𝑃𝑃(𝑘𝑘) =

1

�∑ 𝐻𝐻𝑙𝑙𝑗𝑗
𝑀𝑀
𝑙𝑙=1 + 𝛽𝛽

𝑓𝑓𝑗𝑗 − 𝑀𝑀
𝑀𝑀 �

 
(2.39) 

 

It should be noted that, for the sake of derivation, 𝑀𝑀 has been considered constant with 

respect to the pixel 𝑓𝑓𝑗𝑗 . In case of TV regularizing functional, we will get [112], 

 

𝑓𝑓𝑗𝑗
𝑀𝑀𝐿𝐿(𝑘𝑘) = �

𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

𝑓𝑓𝑗𝑗
𝑇𝑇𝑉𝑉(𝑘𝑘) =

1
�∑ 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀
𝑙𝑙=1 + 𝛽𝛽C(𝑓𝑓)𝑓𝑓𝑘𝑘 �

 

and, 

𝐶𝐶(𝑓𝑓) = �
∇𝑓𝑓𝑙𝑙−1𝑗𝑗 ∙∇𝑓𝑓𝑙𝑙𝑗𝑗 −1

�|∇𝑓𝑓|2 + 𝜂𝜂Ω
𝑎𝑎𝑥𝑥 

 

In its discrete formulization, from equation (2.26), 𝑇𝑇𝑉𝑉(𝑓𝑓) as an irregularity measure of the 

image along with its approximate derivative is defined as follows, 

 

𝑇𝑇𝑉𝑉(𝑓𝑓) = ��𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙−1𝑗𝑗 �2 + �𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙𝑗𝑗 −1�2 + 𝜂𝜂 

 ∇𝑇𝑇𝑉𝑉(𝑓𝑓) = 𝐶𝐶(𝑓𝑓) ≅
2𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙−1𝑗𝑗 − 𝑓𝑓𝑙𝑙𝑗𝑗 −1

��𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙−1𝑗𝑗 �
2 + �𝑓𝑓𝑙𝑙𝑗𝑗 − 𝑓𝑓𝑙𝑙𝑗𝑗 −1�

2 + 𝜂𝜂
 (2.40) 

 

We implemented this form of TV regularization function for a comparison of their 

resolution properties with QPs and MRPs. 
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2.11 Local Impulse Response Function (LIR) 

Stayman and Fessler (1999), have developed an analytical expression for the 

evaluation of resolution properties of Penalized-Likelihood (PLEM) Reconstruction 

methods [24;129]. We adopted that LIR expression, for our analysis and comparison of 

resolution properties of various methods. Below is a brief mathematical derivation of this 

expression in the context of various prior functions. 

The LIR may be defined as the limiting difference of mean reconstruction 𝑓𝑓(𝑌𝑌�) of an 

image 𝑓𝑓 as a function of noisy measurements mean 𝑌𝑌�(𝑓𝑓), and mean reconstruction of its 

perturbed version 𝑓𝑓(𝑌𝑌� + 𝑎𝑎𝛿𝛿𝑗𝑗 ), for a specific estimation algorithm, with a perturbation size 

of 𝑎𝑎 added to the 𝑗𝑗 − 𝑡𝑡ℎ pixel and may be written for the 𝑗𝑗 − 𝑡𝑡ℎ pixel as follows, 

 

𝑙𝑙𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑎𝑎→0

�
𝐸𝐸�𝑓𝑓(𝑌𝑌� + 𝑎𝑎𝛿𝛿𝑗𝑗 )� − 𝐸𝐸�𝑓𝑓(𝑌𝑌�)�

𝑎𝑎 � 

 

Here, 𝐸𝐸�𝑓𝑓(𝑌𝑌� + 𝑎𝑎𝛿𝛿𝑗𝑗 )� is expectation of the estimated perturbed image 𝛿𝛿𝑗𝑗  is the Dirac 

impulse at the center of 𝑗𝑗 − 𝑡𝑡ℎ pixel and 𝑙𝑙𝑗𝑗  represents an image of the impulse at the 𝑗𝑗 − 𝑡𝑡ℎ 

location and may be in a vector form. Taking first-order Taylor approximation about the 

mean measurement 𝑌𝑌�(𝑓𝑓), and ignoring higher order terms, it comes out to be that the 

ensemble mean of the likelihood based estimators is approximately equal to the value one 

gets from applying the estimator to the noiseless data [24;106;130-132]. Hence, the above 

relation becomes, 

 

𝑙𝑙𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑔𝑔
𝑎𝑎→0

�
𝐸𝐸�𝑓𝑓(𝑌𝑌�) + 𝑎𝑎𝛿𝛿𝑗𝑗 � − 𝐸𝐸�𝑓𝑓(𝑌𝑌�)�

𝑎𝑎 � 

= 𝑙𝑙𝑙𝑙𝑔𝑔
𝑎𝑎→0

�
�𝑓𝑓[𝑌𝑌� + 𝑎𝑎𝛿𝛿𝑗𝑗 � − �𝑓𝑓�𝑌𝑌���

𝑎𝑎 � 

 = 𝛻𝛻𝑦𝑦 𝑓𝑓 �𝑌𝑌�(𝑓𝑓)� = 𝛻𝛻𝑦𝑦 𝑓𝑓 ∙ ∆𝑓𝑓 𝑌𝑌�(𝑓𝑓) (2.41) 
  

Here 𝑌𝑌�(𝑓𝑓) is the noiseless data, ∇y = � ∂
∂y1

, ∂
∂y2

, … , ∂
∂𝑦𝑦𝑀𝑀

� is a vector of partial derivatives 

and ∆𝑓𝑓 𝑌𝑌�(𝑓𝑓), is variational derivative with respect to the object. For MAP estimators, we 

have an estimate 𝑓𝑓, from equation (2.30) as a maximizer of the posterior objective function 

in implicit form as follows [133], 
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 𝑓𝑓 = argmax
𝑓𝑓∈𝑅𝑅𝑙𝑙

𝜌𝜌(𝑓𝑓, 𝑦𝑦) = argmax
𝑓𝑓∈𝑅𝑅𝑙𝑙

�log �𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓)� + 𝛽𝛽 log 𝑝𝑝𝐹𝐹(𝑓𝑓)� (2.42) 

 

Maximizer of this function should satisfy Kuhn-Tucker’s second condition of optimality 

and, if we ignore the condition for non-negativity for the time being, 

 

𝛻𝛻𝑓𝑓 𝜌𝜌(𝑓𝑓, 𝑦𝑦) = 0, ∀ 𝑓𝑓 

 

Differentiating again with respect to 𝑦𝑦 we get, 

 

𝛻𝛻𝑓𝑓𝑓𝑓
2 𝜌𝜌(𝑓𝑓, 𝑦𝑦)𝛻𝛻𝑦𝑦 𝑓𝑓 + 𝛻𝛻𝑓𝑓𝑦𝑦

2 𝜌𝜌(𝑓𝑓, 𝑦𝑦) = 0 

 

Here 𝛻𝛻𝑓𝑓𝑓𝑓
2  and 𝛻𝛻𝑓𝑓𝑦𝑦

2 are the matrix gradient operators having partial derivatives with 

respect to the first and second variable of the implicit function defined above. Assuming 

that −𝛻𝛻𝑦𝑦 𝜌𝜌(𝑓𝑓, 𝑦𝑦) > 0 𝑎𝑎𝑙𝑙𝑎𝑎 replacing 𝑦𝑦 = 𝑌𝑌�, we get, 

 

𝛻𝛻𝑦𝑦 𝑓𝑓 = �−𝛻𝛻𝑓𝑓𝑓𝑓
2 𝜌𝜌�𝑓𝑓, 𝑌𝑌���

−1𝛻𝛻𝑓𝑓𝑦𝑦
2 𝜌𝜌�𝑓𝑓, 𝑌𝑌�� 

 

Substituting this value of 𝛻𝛻𝑦𝑦 𝑓𝑓 in equation (2.41), the linearized local impulse response 

(LLIR) will be, 

 

𝑙𝑙𝑗𝑗 = �−𝛻𝛻𝑓𝑓𝑓𝑓
2 𝜌𝜌�𝑓𝑓, 𝑌𝑌���

−1𝛻𝛻𝑓𝑓𝑦𝑦
2 𝜌𝜌�𝑓𝑓, 𝑌𝑌��𝛻𝛻𝑓𝑓 𝑌𝑌�  

 

Using objective function defined in equation (2.42) and noting that 𝛻𝛻𝑓𝑓𝑦𝑦
2 (log 𝑝𝑝𝐹𝐹(𝑓𝑓)) = 0, 

 

 𝑙𝑙𝑗𝑗 = �−𝛻𝛻𝑦𝑦
2 �log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)�� +  𝛽𝛽𝛻𝛻𝑓𝑓
2(log 𝑝𝑝𝐹𝐹(𝑓𝑓))�

−1
𝛻𝛻𝑓𝑓𝑦𝑦

2 �log �𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓)�� 𝛻𝛻𝑓𝑓 𝑌𝑌�  (2.43) 

 

This equation defines LIR in terms of partial derivatives of the implicit MAP estimator. For 

a special case of ECT, mean measurements are related to the object as follows, 

 

 𝑌𝑌�i = � 𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑗𝑗

+ 𝑏𝑏𝑙𝑙  (2.44) 

 

 log �𝐿𝐿𝑦𝑦
𝑌𝑌 (𝑓𝑓)� = � 𝑦𝑦𝑙𝑙 𝑙𝑙𝑔𝑔𝑔𝑔 𝑌𝑌�𝑙𝑙

𝑙𝑙

− 𝑌𝑌�𝑙𝑙  (2.45) 
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𝛻𝛻𝑓𝑓𝑓𝑓
2 �log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)�� = � �
𝑦𝑦𝑙𝑙

𝑌𝑌�𝑙𝑙
2� 𝛻𝛻𝑓𝑓𝑓𝑓

2

𝑙𝑙

𝑌𝑌�𝑙𝑙 − � �
𝑦𝑦𝑙𝑙

𝑌𝑌�𝑙𝑙
− 1� 𝛻𝛻𝑓𝑓𝑓𝑓

2

𝑙𝑙

𝑌𝑌�𝑙𝑙  

 

Partial derivatives of the likelihood function with respect to the first and second variable 

are as follows, 

 

𝛻𝛻𝑓𝑓𝑓𝑓
2 �log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)�� = 𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑦𝑦𝑙𝑙

(𝑌𝑌𝑙𝑙�)2� 𝐻𝐻 

𝛻𝛻𝑓𝑓𝑦𝑦
2 �log �𝐿𝐿𝑦𝑦

𝑌𝑌 (𝑓𝑓)�� = 𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1
𝑌𝑌�𝑙𝑙

� 

 

Also, note that 𝛻𝛻𝑓𝑓 𝑌𝑌� = 𝐻𝐻𝑙𝑙𝑗𝑗  where 𝑙𝑙𝑗𝑗  is the unit vector having 1 at the 𝑗𝑗 − 𝑡𝑡ℎ location. 

Substituting all these values back into the relation (2.43), we can write LIR as follows for 

emission tomography, 

 

𝑙𝑙𝑗𝑗 = �𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑦𝑦𝑙𝑙

(𝑌𝑌𝑙𝑙�)2� 𝐻𝐻 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�
−1

𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1
𝑌𝑌𝑙𝑙�� 𝐻𝐻𝑙𝑙𝑗𝑗  

 𝑙𝑙𝑗𝑗 = �𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1
𝑌𝑌𝑙𝑙�� 𝐻𝐻 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�

−1
𝐻𝐻𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

1
𝑌𝑌𝑙𝑙�� 𝐻𝐻𝑙𝑙𝑗𝑗  (2.46) 

 

Here �̈�𝑅(𝑓𝑓) is Hessian of the prior function. This equation defines the local impulse 

response function (LIR), which we have used extensively in our work in order to evaluate 

and compare resolution properties of various priors. 

2.12 Summary 

A discussion of emission tomography physics, with reference to PET and SPECT has 

been presented, in this chapter, for various types of data acquisition and system models. 

Various image degrading effects have been discussed which ultimately degrade final image 

quality and consequently make reconstructed resolution non-stationary and cause a signal 

loss in form of PVE due to limited resolution capabilities of these systems 

[6;11;14;19;23;28;41;61;93;94]. Asymmetry of these effects across the FOV and noise in 

the data with its incomplete nature make the mathematical image reconstruction problem 

ill-posed. We discussed different approaches, for example implicit or explicit regularization 

techniques, to solve the ill-posed reconstruction problems in the context of their 

capabilities to control final reconstructed resolution and noise [46;109;134;135]. We 

argued that explicit regularization methods, such as MAP or PLEM reconstruction methods 
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have better control over the final reconstructed resolution through a use of penalty or prior 

distribution functions as compared to the other methods [66;95;105;111;125]. Different 

prior functions have been proposed to reconstruct images bearing specific characteristics 

depending on the selected priors [77;105;121;128;129]. A brief description of the 

requirements and capabilities of different reconstruction approaches is given in Table 2.1. 

This table indicates that analytical reconstruction methods do not take care of the ill-

conditioning of the problem due to noisy and incomplete data whereas they are much 

faster as compared to the iterative and statistical reconstruction methods.  

 
Table 2.1: Comparison of different reconstruction methods for their resolution control and other characteristics 

such as edge preservation, ill-posedness and additional parameters required. 

Reconstruction Method Ill-
Posedness 

Conv. 
Speed 

Edge 
Preservation 

Prior 
Used 

Resolution 
Uniformity 

Parameters 
Required 

Analytical Reconstruction       

Direct Inversion Yes Fast Smoothed No Uniform No 

Fourier Reconstruction Yes Fast Smoothed No Uniform No 

Filtered Backprojection Yes Fast Smoothed No Uniform No 

Iterative Reconstruction       

Least Square Yes Fast Smoothed No No No 

Algebraic Reconstruction Yes Fast Smoothed No No One 

Conjugate Gradient Yes Slow Smoothed No No One 

Maximum Likelihood Yes Slow Smoothed No No No 

Reg. Least Square Less Slow Smoothed Yes No One 

Statistical Iterative       

MAP-QPs Less Mod Smoothed Yes Controlled One 

MAP-NonQPs Less Mod Preserved Yes Controlled More than 
One 

MAP-MRPs Less Mod Robust Yes Controlled One 

MAP-TV Less Mod Robust Yes Controlled More than 
one 

 

Similarly, analytical methods produce images with almost uniform resolution for 

space-invariant systems, however, they do not consider any underlying noise distribution 

and their ability to include various system models is limited [84;86;86;88;122;136]. Simple 
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iterative methods, without regularization, cannot compensate for ill-conditioning of the 

reconstruction problem and produce reconstruction based noise because they use 

information embedded in the data only and do not use any available priori information 

about the object [105;111;125]. Their convergence is slow and low frequency content is 

superimposed by high frequency noise if large number of iterations is used, whereas their 

resolution control is poor [98;100;120;134;137]. 

Statistical reconstruction methods, with explicit regularization included in form of QPs, 

require only one parameter to be tuned and have better control on the reconstructed 

resolution, however, their reconstructed images have anisotropic smoothing characteristics 

with blurred and de-shaped regions. Non-quadratic regularization techniques need extra 

empirical parameters to define edges and like TV priors produce patchy artifacts even in 

uniform activity regions [26;30;60;127;138]. 

Regularized image reconstruction MAP methods, based on MRPs, require only one 

empirical hyper-parameter; have robust edge preservation, better resolution control, lower 

blurring nature and moderate convergence speed [30;107;110;139;140]. They have a 

problem of analytical description of their convergence properties like that of TV priors, 

however heuristic approaches are available for the solution. Hence, we described, in this 

chapter, a brief derivation and modeling of the priors based on quadratic, TV and MRPs 

based priors in the context of OSL-MAP reconstruction algorithms for image reconstruction 

[107;112]. We have also presented a brief derivation of the LIR expression, including these 

priors, used for the valuation and comparison of resolution properties of the images 

reconstructed by these priors. In rest of the thesis, an exhaustive analysis and comparison 

of resolution properties of these priors has been presented along with a comparison of 

their activity recovery performance. Our objective is to find the best available prior 

distribution function in MAP reconstruction algorithms if uniform resolution 

characteristics across the whole reconstructed image are desirable. 
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CHAPTER 3  

Literature Review 

In PET, SPECT or CT, final reconstructed images are expected to depict underlying 

activity concentration (in PET, SPECT) or attenuation distribution (in CT) inside the object 

being imaged [4;141-143]. Clinical community assesses these images in two different ways, 

namely, qualitatively and quantitatively. Different figures-of-merit (FoMs), depending on 

the task and requirements of the study being carried out to measure quality of the images, 

are used [27;144]. The most commonly used metrics include spatial resolution, contrast 

recovery coefficients, absolute activity values and standard deviation (noise) images etc. 

Spatial resolution expresses the ability of an imaging system to distinguish between two 

smallest separable structures, inside the object being imaged, and is an important 

evaluation criterion for the comparison of different images [22;50;65;145]. Images can only 

be compared to each other, or various image processing tasks such as segmentation or 

registration or feature recognition can only be performed accurately, if they have matched 

reconstructed resolution characteristics [24;29]. Finite reconstructed resolution of these 

systems depends on many physical or estimator dependent, image degrading effects and it 

is very difficult to obtain images bearing uniform and matched resolution characteristics 

[6;10;60;141]. Also due to many noise processes present in emission and detection 

processes, a compromise is always needed for a trade-off between resolution and noise 

which ultimately depends on the reconstruction method or model used. In this chapter, we 

reviewed image formation process, causes of image quality degradation and non-uniform 

reconstructed resolution, various image reconstruction methods, their resolution 

properties and methods to compensate for resulting non-uniform resolution properties of 

images reconstructed by different methods. 

3.1 Introduction 

Analytical image reconstruction methods, such as filtered backprojection (FBP), 

Fourier reconstruction (FR), and convolution backprojection (CBP), are the reconstruction 
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methods based on an inversion of the assumed line integral model of the projection data 

and work well for space-invariant systems [60;86-88;146]. For space variant systems 

response, these methods ignore any underlying noise distribution and have limited 

capability to model various image degrading effects and their reconstructed image bear 

degraded noise and resolution properties [61;104;122;126]. Simple iterative methods, such 

as ART or SART, try to solve analytical line integral model numerically, as a set, of linear 

equations without any modeling of the projection process or the object properties, while 

considering the object as a linear combination of parameters to be estimated, hence, cannot 

fully exploit imaging physics properly [39;60] and lead to images with lesser than 

optimized quality [56;79;99]. Methods based on simple modeling of the statistical nature of 

the data, such as simple likelihood based method or methods based on least squares data 

modeling; result in noisier images with increasing iteration number due to ill-condition of 

the mathematical formulation of the reconstruction problem [23;28;93]. These methods try 

to fit the solution image to the data only, which is noisy in nature, and this noise gets 

amplified because of very small singular values of the forward model matrix [102, 106]. 

Several methods based on the concept of restricting or constraining smallest singular 

values, known as implicit or global regularization methods such as early iteration stopping 

or post-smoothing of the fully converged MLEM image, are employed to reduce this 

reconstruction based noise, because these images still have better noise properties as 

compare to the analytical methods [104;147;148]. Resultant images may have better noise 

properties, however, their overall resolution and noise characteristics depend on the 

number of iterations, the sieve or the filter used for post-filtering, with least resolution 

control and much longer convergence times [24;95]. Modeling various image degrading 

effects may improve bias and variance of the reconstructed images, however, images may 

still suffer from reconstruction based noise due to ill-conditioning of the problem. Another 

feasible approach is to use some explicit regularization technique to overcome this 

iteration based noise. Methods proposed in the framework of Tikhonov Regularization are 

Penalized-Likelihood Expectation Maximization (PLEM) reconstruction methods or 

Maximum-a-Posterior (MAP) reconstruction methods in Bayesian framework 

[50;111;117]. Explicit regularization allows inclusion of a priori knowledge about the 

object distribution properties and helps conditioning the reconstruction problem. Arbitrary 

regularization can be applied to obtain user defined resolution properties of the 

reconstructed images, which provide extra resolution control [109;129;135]. Regularizing 

functionals may be added as penalty functions in PLEM framework or the prior distribution 

functions in Bayesian sense. These regularization functions are also termed as local 
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regularization methods, because they are generally based on Gibb’s prior distribution 

functions and work on a small neighborhood vicinity of a pixel of interest [66;109]. 

Most commonly used penalties or priors are the smoothness priors or the edge 

preserving priors [24;97;108;148]. Simplest form of smoothing priors, Quadratic prior 

functions, have been used as conventional regularization choice due to their 

implementation simplicity; however, they result in images with non-uniform and 

asymmetric resolution properties across the FOV, even for approximately shift-invariant 

systems, such as PET near the centre of the scanner, because they lead to an estimator with 

highly non-uniform and asymmetric response [26]. This is due to the non-uniform 

smoothing induced by this type of regularization functions, which results from various 

object dependent, such as non-uniform attenuation distribution, and system dependent 

factors, such as non-uniform detector response function (DRF) across the field of view in 

PET [6]. This induced non-uniform smoothing, or consequently non-uniform and 

asymmetric resolution, properties produce shape deformations in the reconstructed 

images and affect image quantification and make other processing tasks difficult [29]. A 

serious attempt to correct for these non-uniformities and asymmetries, in response 

function, induced by QPs in MAP methods, has been presented in [24;129;138]. A 

correction scheme for interactions between data term and the prior term has been 

introduced, which effectively generates locally modified space-variant hyper-parameter 

values and provides increased uniformity in resolution, based on local certainty with 

quadratic regularization, however, asymmetry still persists [129]. This behavior of QPs is 

due to their strong smoothing behavior, which increases with higher intensity differences, 

especially at the edges. Edge preserving regularization functions provide a way to 

compensate for this discrepancy and median root priors (MRPs) have a robust ability to 

preserve edges, though they have theoretical problems in defining their derivatives [107]. 

Total Variation (TV) regularizing functions are another edge preserving priors with the 

same theoretical issue, however, their resultant images bear reasonable properties 

[112;114;116;149;150]. These priors are non-quadratic functionals and bear heavier ill-

conditioning as compared to the QPs and take more time to converge. 

We have implemented MRPs and TV priors based MAP algorithms with an analysis of 

their resolution properties as compared to QPs, by an implementation of these functionals 

in Local Impulse Response (LIR) expression. We have also introduced a correction scheme 

for non-uniform spatial resolution based on an alternate prior functional, with and without 

certainty based term. We use an edge-preserving MRPs based non-quadratic regularizing 

prior, in this scheme, to correct for the above mentioned interactions between data and the 

prior term [108;110]. Our correction scheme is based on an intrinsic property of MRPs that 
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they penalize pixel values with respect to the local median, and their behavior is non-linear, 

which simulates behavior of local certainty type correction method. Also, MRPs have a 

robust edge preserving characteristic, without any additional parameter required, and they 

can be run to any number of iterations without adding much noise to the final image. In the 

following sections, we present a review on tomographic image reconstruction methods, ill-

posedness of the image reconstruction, methods to correct for this, non-uniform resolution 

properties of the reconstruction images and the use of MRPs for the recovery of non-

uniform resolution and their activity recovery performance in MAP reconstruction 

algorithms for histogram and list-mode data. 

3.2 Tomography Imaging and Reconstruction Methods 

Medical imaging systems try to recover distribution of some property, such as non-

uniform object attenuation as in CT or radioactive emission density proportional to the 

non-uniform activity distribution, based on administered activity. These systems acquire 

data around the object, known as projection data, which is mathematically represented as 

Radon Transform or Attenuated Radon Transform, more precisely [45;81;82]. Two very 

important factors, which influence the final outcome from these systems, are the resolution 

of the final image and the noise present in it. Resolution can be optimized by accurately 

modeling acquisition and detection processes, whereas, noise may be limited by modeling 

emission process by modeling the object itself.  These models are generally implemented 

through the reconstruction algorithms used to reconstruct distribution of these properties 

inside the object, in-vivo [66;97;151]. For acquisition and detection processes modeling, 

various image degrading effects which influence image quality at each of the steps from 

administration of the activity to the reconstruction scheme used need to be modeled into 

the system. Analytical reconstruction method have limited ability to model these effect, 

however, iterative methods can model these effects into the system model. 

3.2.1 Image Degrading Effects 

Disappearance or escape of the emitted photons, due to absorption or Compton 

scattering, out of the line of detection is termed as attenuation, which signifies a loss of true 

signal [8;15]. In SPECT, this effect is more complicated, due to its dependence over depth 

inside the object. Some sort of transmission scan is performed to generate attenuation 

distribution map to further apply it as a correction into the system model or reconstruction 

method [4;103;103;152]. Scattered photons, detected out of the line of their emission, add 
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blurring to the acquired data [7;9;19;141]. Numerous energy window-based, and model 

based scatter correction, methods have been proposed for PET or SPECT system [10]. 

These methods, however, do not remove 100% of scattering from the measured data. 

Attenuation is easier to handle in PET due to its independence over depth of interaction as 

compared to SPECT. Accidental coincidences are another concern in PET system [20]. A 

delayed coincident timing window is used to accumulate these random events which can be 

subtracted from the acquired data before reconstruction [20;153]. 

There are other detector based effects that influence event localization, which is a 

crucial measurement, of an emitted photon in ECT during the detection and acquisition 

processes. Scintillation blur, detection blur up to the finite size of the small detectors, 

crystal penetration effects and variations in individual detector performance, all contribute 

to variations in detector response and are known as detector sensitivities [4;5;13;154]. 

These detector sensitivities can be accounted for by performing normalization scans in PET 

or uniformity correction maps in SPECT [11-13]. 

3.2.2 System Modeling 

To achieve accurate quantification and lesser image artifacts, all the above factors need 

to be addressed, however, some of the above effects are generally ignored by the system 

models used, for the sake of speed, implementation simplicity and storage requirements. 

Different approaches have been devised to simplify modeling of the above factors. Though 

inclusion of these factors into the system model drastically overburdens computational and 

storage resources, Mumcugolo et al., 1997 proposed a very popular factorized system 

matrix model in which depth dependent geometric sensitivity, photon pair non-co-linearity, 

attenuation, intrinsic detector sensitivity, non-uniform sinogram sampling, crystal 

penetration and inter-crystal scatter are modeled with system geometry, object non-

uniform attenuation and other effects to improve system model accuracy [23;34;141]. By 

accurately modeling these probabilities spatial distortions can be minimized and certain 

assumptions are generally made for real time reconstruction speeds in clinical 

environment. Though, it is known that complete and accurate system modeling should 

produce images with better quality, fully accurate modeling of the system matrix makes a 

full project in itself [52;155]. Even, with complete modeling of the physics of various effects 

into the system model, image reconstruction problem is still an ill-posed problem in its 

mathematical formulation due to incomplete and noisy data [52;64;93;94]. Small changes 

in the input data may produce very large and unacceptable changes in the resultant image 

and leads to noisier image [67;70;75;102]. 
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3.2.3 Geometric System Model 

Iterative reconstruction methods are based on a linear model, which relates acquired 

data to the unknown source distribution, through a projection matrix, also known as 

system matrix or probability matrix [23;53;61;156]. Each element of this matrix models 

probability of an event emitted in a particular pixel (voxel in 3D) and being detected at a 

certain location inside the detector. This reduces basic image reconstruction problem, into 

a simple iterative estimation method, to find an approximate solution of a set of linear 

equations [98;119;122]. Line intersection length of a pixel, with a zero width line, through 

the centre of the LOR is a typical approximate model used to calculate these probabilities 

[53]. Further improvements have been proposed to reduce relative calculation time for the 

line and pixel intersection lengths [57-59;155]. Another very popular model approximation 

is to use intersection area of a pixel of interest and the strip (in 2D) or tube (in 3D) joining 

the two detectors in PET, or a diverging strip starting at detector surface and passing 

through the pixel of interest in SPECT, which is considered to be more accurate as 

compared to the line intersection length model, because, it can cover the whole pixel area 

[54]. It should be noted that simple geometrical system model is not sufficient for accurate 

system modeling and other physical and detector based image degrading effects need to be 

modeled [23;52]. 

3.2.4 Analytical and Iterative Reconstruction Methods 

Analytical methods, based on some inversion scheme of the simple line integral model, 

such as FBP, FR and CBP, are well suited for space-invariant imaging systems. These 

methods lead to fast reconstructions and reconstructed images have almost uniform 

resolution properties across the FOV for space-invariant systems [24;29]. However, for 

space variant systems these methods have limited quantitative accuracy, because, they use 

implicit assumptions about the system model and ignore any degrading factors which 

results the data to deviate from line integral model. Also, they do not account for statistical 

nature of the event counting or any underlying noise distribution [84;86;88;129;138]. 

Resultant reconstructions have inferior quality, bear various artifacts such as streak 

artifacts in FBP images, cannot account for non-negativity constraint for the emission 

process and produce added noise. Post-filtering is generally used to reduce noise, which 

has the least control over reconstructed resolution only through the choice of filter 

parameters used. These filters are generally space-invariant and cannot account for various 

space-variant image degrading effects present [39;60;90]. Simple iterative methods, such 



 
Chapter III- Literature Review   

Page 72 of 182 
 

as Algebraic Reconstruction Techniques (ART) by Gordon et al. 1972, present a class of 

numerical methods to solve a set of large sparse systems and try to approach the analytical 

problem numerically. Several excellent reviews were given by Censor and Zenios 

[79;92;99;157]. These methods simple follow the line integral model; ignore any 

underlying noise distribution or nonlinear image degrading effects and produce images 

with inferior quality. 

3.2.5 Statistical Iterative Reconstruction Methods 

Statistical iterative methods take care of the statistical nature of the data counting and 

model data noise which is generally considered to be Poisson. These methods became a 

very hot subject for research community with appearance of a paper by Shepp and Verdi 

(1982), for a detailed derivation and description of Maximum-Likelihood Expectation 

Maximization (MLEM) reconstruction method [99]. This method was a start of an era of 

statistical methods due to their ability to include system related and other physical models 

for acquisition and reconstruction processes and produce images with better noise 

characteristics. However, because of slow reconstruction speed because of slow 

convergence of high frequency components, and limited computer resources available at 

that time, inclusion of full system model was a problem. 

There have been many efforts to increase the speed of convergence for this algorithm 

where most popular of these is Ordered-Subset EM reconstruction method (OSEM). This 

algorithm divides data into disjoint or mutually exclusive subsets and final image is 

evaluated using each subset sequentially [158]. Convergence speed of this algorithm is 

faster, approximately, the same number of times, than MLEM, as the number of subsets. It is 

attractive and very popular variant of MLEM, due to its fast convergence rate, however, it 

does not converge to the same solution as ML-EM. Convergence point depends on the 

number of subsets or the number of iterations used or even on the initial image 

[98;137;159]. Many researchers have tried to get convergent variants and convergence 

may be achieved through an appropriate choice of relaxation parameters, though 

resolution properties of these algorithms are not very well understood, and will also 

depend on these parameters [134;160]. There is no consensus in the choice of subsets or 

the number or subsets, too. 

Kaufman has shown that MLEM algorithm is a kind of steepest ascent optimization 

method and other optimization methods, such as Conjugate Gradient (CG) or Least Squares 

(LS) method, can alternatively be used to reconstruct images from projection data [161]. 

Pre-conditioned conjugate gradient (PCCG) methods and least squares method with 
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Gaussian noise models have extensively been used by many researchers and have been 

shown to converge faster than MLEM [100;101]. Some researchers have used single pixel 

update strategy, instead of updating whole image at a time, as in iterated coordinate ascent 

(ICA) method, and these methods have been shown to converge faster than MLEM [119]. 

There is another class of reconstruction methods known as optimization transfer methods 

[162]. Instead of maximizing non-linear set of equations having no closed form solution, 

other functionals can be added, which guarantee maximization of the original function, if 

they are maximized. This may result in a closed form solution. SAGE algorithms are a class 

of these types of algorithms. They use hidden data spaces with respect to the original data 

sets [133;163], however, their development and analysis is confined to speed up the 

reconstruction and their resolution characteristics are not very well known. In all these 

methods, mentioned above, stress was to increase convergence rate or to get the converged 

solution with no serious effort made to exploit or control resolution properties of these 

methods. Similarly, these methods only consider data modeling and try to fit the final image 

to the data at best, which is noisy in nature; hence, lead to images with reconstruction 

based noise due to ill conditioning of the reconstruction problem. 

3.3 Ill-Posedness of Image Reconstruction Problem 

MLEM type methods are expected to produce images with uniform resolution 

characteristics, if allowed to fully converge with complete system matrix modeling, 

however, they need large number of iterations before convergence can be achieved 

[104;147;161]. Unfortunately, simple ML problem, in ECT, is highly ill-conditioned, 

mathematically, and reconstructed images get noisier as we continue increasing the 

iteration number due to incomplete data and noise. Images exhibit high spatial variance 

and image features are overcome by the induced noise [17;72;164]. In Hadamard sense, 

solution image is not unique or may discontinuously depend on the data. This is because of 

very small singular values of highly ill-conditioned system matrix. Several implicit 

regularization techniques have been proposed, such as stopping the reconstruction before 

convergence, post-filtering the fully converged MLEM images or methods of Sieves, which 

in essence try to get rid of these very small singular values [95;147]. However, these 

methods are generally space-invariant and induce bias towards a uniform starting guess 

image [29]. These methods have either no or very least control over reconstructed image 

resolution. Additional constraints are needed to limit the set of solution images. These 

constraints are generally implemented in form of an additional function, describing object 
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properties in form an object distribution function, and are generally referred to as explicit 

regularization methods. 

3.3.6 Explicit Regularization Techniques 

Explicit regularization simply means to include object distribution properties, along 

with data distribution function, as part of a cost function which is optimized to find the final 

reconstructed image. In Tikhonov regularization framework, key idea of explicit 

regularization is to introduce a continuous approximation of a non-continuous operator 

and is known as Penalized-Likelihood Expectation Maximization (PLEM) reconstruction 

method in penalty function framework [71;75]. This approach is equivalent to add a 

penalty term to the likelihood function and then to maximize this modified objective 

function [96;118]. An explicit form of regularization, to overcome the problem of ill-

conditioning, can be implied in form of a prior distribution probability along with the 

likelihood in Bayesian framework and is, generally, known as Maximum-a-Posterior (MAP) 

reconstruction algorithm [77;111;117]. This prior function is used to satisfy the data and to 

include any prior knowledge available about the object being reconstructed and may be a 

generalized image description based function or an anatomical image of the object being 

imaged [93;111;122]. A very popular choice of theoretical image description is based on a 

property of images derived from morkov-random-fields (MRF) as Gibbs distribution 

function. This function works on a very small local neighborhood of image pixels assuming 

that images are locally smooth [111;125]. Hence, most favored regularization choice is that 

of smoothness priors or penalty functions based on piece-wise pair differences of pixels in 

local neighborhoods of an image [24;26;138]. 

3.3.7 Prior Distributions 

Smoothness priors work on a basic image description that images are locally smooth 

and are generally applied in form of Gibbs distribution priors. Quadratic regularization 

priors, based on pair-wise pixel differences, have been most advocated and analyzed as 

smoothness priors in MAP reconstruction methods due to their simple implementation and 

good smoothing properties to reduce noise. However, these priors cause an over smoothing 

at regional edges and high count areas in the image, because their smoothing behavior is 

spatially non-uniform and depends on various factors such as activity concentration, 

system geometry, and non-uniform attenuation. Fessler (1996), has shown that QPs 

produce over smoothing in high count regions and consequently, images bear spatially-
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variant resolution properties with poor resolution in these areas [24;26;129;138;148]. 

Difficulty in hyper-parameter tuning is another drawback of MAP reconstruction methods, 

because, this parameter unlike cut-off frequency in FBP, does not have any units and is 

difficult to evaluate. Smoothing heavily depends on this parameter and several methods 

have been proposed to tune this parameter much like a tabulation of cut-off frequency 

against resolution [26;126]. It has also been shown that effective parameter value for QPs is 

spatially non-uniform and depends on local certainty, though, impulse response is 

independent of the object intensity values, because Hessian of QPs becomes independent of 

the object. 

Interestingly, non-uniform resolution is not specific to QPs only and, for non-quadratic 

priors; local resolution may not only depend on the smoothing parameter but also on object 

through Hessian of the prior term. However, this dependence, somehow, is also desirable 

such as in edge preservation. Non-quadratic priors, in general, require more than one 

parameter to be tuned which is a tedious problem [107;111;125]. The quadratic and non-

quadratic (excluding MRPs) priors work on a basic description of the images that they are 

locally smooth and try to penalize pixel differences without any respect for basic image 

features, such as edges, where pixel differences are highest [77;121]. This results in an 

estimator form which drags the final image towards its locally smooth version. Hence, these 

estimators result in images with non-uniform and asymmetric resolution properties. 

3.3.8 Edge Preserving Priors – MRPs and TV 

Quadratic regularization blurs edges and induces low resolution in high count regions, 

whereas, to avoid this problem an edge preserving non-quadratic regularization may be 

used [77]. Several edge preserving techniques have been proposed. However, either these 

methods use non-quadratic regularization (other than Median Root Priors - MRPs) such as 

Huber and Lang’s penalty functions or they are computationally intensive and use complex 

edge defining techniques such as deterministic annealing or the method of level sets 

[77;120;127]. Also, these methods have only been implied to improve edge preservation 

without addressing the problem of non-uniform resolution and, generally, use more than 

one empirical parameter to define edges [134;135]. 

Median Root base Priors (MRPs) have a robust property to preserve edges [107;128]. 

This is mainly due to the fact that MRPs assume that images are locally monotonic and 

median follows the edge. Alenius et. al., (1998) documented several advantages of MRPs, 

such as lesser quantification errors because of noise suppression and automatic edge 

preservation without additional parameters required [128]. MRPs do not induce noise with 
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proceeding iteration number and virtually can be iterated to any feasible number of 

iterations. Our results have shown that reconstructed resolution with MRPs is less sensitive 

to the hyper-parameter value, which is an advantage in MAP reconstruction methods [30].  

We gained motivation for our analysis and design to use MRPs by Alenius et. al. 

(1998). They proposed non-quadratic regularization based on these priors and assumed a 

Gaussian-like distribution for their prior function about the median taken as its mean in a 

local neighborhood [128;165]. Their proposed reconstruction algorithm may be thought of 

as a generalization of one-step-late (OSL) variation of PLEM methods by Green [105]. There 

are certain drawbacks of using MRPs for example there are no straight forward analytical 

derivatives available for MRPs due to their nonlinear dependence in a local neighborhood 

and one has to resort to an empirical definition, because response of the system in MAP 

methods depends on Hessian of the prior function [107;112]. 

Hsiao et. al., (2003), have discussed analytical behavior of MRPs in detail and propose 

their own prior function based on an approximation to absolute function, because 

optimized absolute function in a local neighborhood turns out to be the local median [110]. 

They defined an auxiliary field of variables, in registration with local medians, for 

minimization of their suggestive objective function and claim that their posterior is a true 

joint estimation due its analytical derivability. Interestingly, even though the convergence 

properties of MRPs are not very well known, still they pointed out that, all the images they 

tried with MRPs converged. Their method results in images that bear same properties as 

images reconstructed by MRPs and the same has been observed by us [30]. Hence, in our 

point of view, it is more a matter of theoretical description and we used MRPs in our 

analysis borrowing heuristic derivatives while leaving their convergence properties as an 

open question. Another class of prior functions, having same problem with their analytical 

derivatives, is the TV regularizing functional [112;149]. Even with theoretical issues, these 

priors have been vastly used in image restoration problems with acceptable results. We 

have also compared TV regularizing functionals in our studies and compared them with 

QPs and MRPs. 

3.4 Non-uniform resolution compensation 

A serious effort to thoroughly investigate user controlled resolution properties with 

QPs is presented in [29]. An analytical expression has been developed for QPs to evaluate 

impulse response of the system and further to evaluate resolution properties of their MAP 

estimators. A local certainty based method has been proposed including QPs to obtain 

images with almost uniform resolution properties through a calculation of space-variant 
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penalty coefficients. This method, effectively, provides a way to calculate spatially-varying 

parameter values to obtain almost uniform resolution properties across the FOV. 

3.4.1 Modified Priors and Combined Priors (ModMRPs and CPs) 

Several publications describe implementation and evaluation of MRPs based 

regularization in MAP image reconstruction to reduce noise [31;63;107;110;139;165]. 

However, no serious effort, up to our knowledge, has been made to evaluate resolution 

properties of MRPs in comparison to the quadratic and non-quadratic priors. Qi and Leahy, 

(1999) have developed expressions to examine spatial resolution and variance properties 

of MAP reconstructed PET images [50]. They derived expressions for local impulse 

response contrast recovery coefficients (LIR-CRC) and variance for each voxel and, then, 

used these results to evaluate an effective parameter value for each voxel. Their work is 

based on quadratic regularization and, we have extended almost the same approach with 

MRPs [30]. They have also shown that noise performance of MAP estimators with QPs and 

post-smoothed filtering methods is almost similar and choice of a particular estimator 

should be based on some other factors, such as convergence speed. A very recent work in 

this regard has been presented by, Ahn et al., (2008), for an analysis of resolution and noise 

properties of the non-quadratic regularizers [132]. They mentioned about limited literature 

to understand quantitative properties of non-quadratic regularization and proposed a local 

perturbation response (LLPR) to analyze these properties, with an expression to evaluate 

resolution and variance. They, too, have based their design on quadratic regularization for 

which results are much analogous to our ModMRPs. Most of their development resembles 

our work which was published in Lecture Notes in Computer Science [30]. Fessler and 

Rogers (1996), suggest a certainty based penalty design for quadratic regularization in 

MAP estimators to induce almost uniform reconstructed resolution across the FOV [24]. 

They noted that a constant hyper-parameter value results in spatially-variant resolution 

properties with MAP estimators including QPs for Poisson data and, hence, proposed a way 

to effectively produce spatially-variant parameter values to induce spatially-uniform 

resolution characteristics across the image. In other words, this method corrects for non-

uniformly induced resolution by evaluating space-variant coefficients for QPs. Certainty 

based modified penalty coefficients increase the effective parameter value in high count 

regions to compensate for higher smoothing. Resembling this behavior, we propose the use 

of nonlinearity of MRPs in MAP estimators as a mean to correct for this non-uniform 

behavior of the prior. We suggest MRPs based regularization scheme to obtain almost 

uniform resolution properties. Similarly, relying on certainty based modification for QPs, 
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we introduced ModMRPs in this work, to obtain uniform resolution properties of the 

reconstructed images.  

We introduced several new median based priors and evaluated their resolution 

properties in detail with an analysis of their ability to compensate for non-uniform 

resolution properties, induced by standard uniform space-invariant QPs [24;26;29]. We 

have also developed hybrid priors based on QPs and MRPs and have shown that they offer 

fine resolution tuning in between of the ingredient priors [30]. Elsewhere, Fessler et. al., 

(1996), presented exploration of a modified penalty framework for non-quadratic edge 

preserving priors to achieve a uniform local step response, and an idea almost resembling 

to our work was proposed as future work [29]. This work presents resolution 

characteristics of MRPs, which is a form of non-quadratic edge-preserving regularization, in 

a modified penalty frame work to condition the reconstruction problem and to obtain 

almost uniform resolution characteristics [30]. We hope our work would be a step forward 

towards an understanding and use of MRPs, in the form of our proposed priors or any other 

new derivation, for the reconstruction of tomographic images with better quality. 

3.4.2 Noise Analysis 

Statistical iterative methods reconstruct images while trying to fit it to the data [91]. In 

real systems, data are noisy and consequently reconstructed images are noisy. Even with 

accurate system model, resultant images are still noisy because of incomplete and noisy 

data. In addition to accurately modeling of acquisition and detection processes one needs to 

model emission and object properties to optimize resolution verses noise trade off 

[17;133;164;166]. Different methods have been proposed to reduce noise and their noise 

properties have been evaluated [95;147;148]. Wilson et. al. (1994), have investigated 

propagation of noise into the images reconstructed with linear reconstruction methods 

such as FBP [131]. Approximate expressions have been developed by, for example Fessler 

et. al. (1996) proposed method to calculate mean and variance, for implicitly defined 

expressions, of images reconstructed by PLEM methods [166]. However, their expression 

assumes fully converged solution and is not valid for iteration stopping criteria. Barrett et. 
al., (1994), have developed analytical expressions for the calculation of mean and variance 

of images reconstructed using MLEM reconstruction methods [106]. Similar efforts have 

been done for regularized MLEM reconstruction methods [167]. A number of figures of 

merit have been proposed for this reason and are generally based on population mean and 

variance of the processed data [133;148;166;168]. 
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Noise properties of the reconstruction algorithms are commonly studied either of the 

fully converged solution or of the images at a particular iteration number [106;133;166]. 

Though, analytically it is better to study the fully converged solution, reconstructions are 

stopped after a finite number of iterations, practically. Expressions for theoretical 

propagation of noise, through iterations, have been developed by Wilson and Barrett for 

quadratic regularization functions [106;131]. In this work, we developed same type of 

expressions for the propagation of noise, through any given number of iterations, with 

MRPs in MAP algorithms. We have also validated our theoretical expressions with Monte-

Carlo results.  

3.5 Partial Volume Correction (PVC) 

Tomographic imaging systems have limited ability to quantify object activity 

distribution, due to their finite resolution properties. Their resolution is limited by system 

components such as collimators in SPECT, or crystal size in PET and various physical 

processes. This limited resolution, consequently, produces Partial Volume Effect (PVE) due 

to point spread effect or spill-over effect [40;41;141;169]. It is known for a long time that 

partial volume error induces underestimation, in activity recovery values, for hot objects 

embedded inside or surrounded by cold background. This effect is known as ‘spill-over’, 

from the hot regions having higher activity values into the cold regions with lower activity 

values. Imaging system’s point spread effect (PSF) signifies blurring induced by low 

resolution of the system for objects of sizes comparable to the reconstructed resolution 

[33;35;40;143;170;171]. PVE hinders true quantification and is of high importance in 

measuring response of the tumors to therapy in functional imaging systems. For example, 

in brain atrophy studies for aging and degenerative brain diseases, partial volume error 

increases with varying degrees of atrophy [37;143;170]. There have been long time efforts 

to correct reconstructed images for PVE, with a long list of suggested methods, however, 

there is not a consensus, for a single method, to be used for PVE, valid for every situation 

[31-34;37;38;41;172;173]. 

Initial PVC methods were based on recovery coefficients (RC), where one multiplies 

measured values in particular regions, with some correction factors [36]. Though, these 

methods result in good tumor uptake values by implicitly assuming that tumor volume is 

approximately known, they do not yield PVC images and cannot be used for visual analysis. 

Another problem is that correction factors need to be pre-collected using some known 

shape and volume, which is generally assumed to be spherical, and cannot represent 

practical objects [39;40;42]. This approach was extended to assume regions as spheres 
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having uniform activity with unknown radius and placed inside a uniform background [40]. 

Measured image is then modeled as a convolution of the sphere with the point spread 

function. It is a simple method; however, assumptions required for its implementation are 

highly restrictive in practical environment. Pixel based PVC methods, work on pixel by pixel 

basis instead of recovering regional values and, therefore, require structural and functional 

data together to work upon. By assuming various regions as compartments, with known 

homogeneous, uptake except where it is being measured, a method has been developed for 

brain images [34]. A difference of the image produced by convolution of these 

compartment values and the point spread function with the measured whole image is used 

to recover the unknown activity. In real imaging conditions, it is difficult to know the 

activity inside surrounding regions around the region of interest. A generalization of this 

method was proposed, which does not need this assumption, however, segmentation and 

registration errors may still persist [172]. These methods assume stationary resolution 

response which is not true in practice, though, solutions have been proposed to recover for 

this problem. A recently proposed method of this sort is based on high resolution images, 

for example CT or MRI, co-registered with low resolution functional images, say from PET 

[172]. This method also uses wavelet transforms for grey level correlation at the common 

resolution, which is complex to evaluate. 

In contrast to these “post-reconstruction” methods for PVC, where images are 

processed after reconstruction, several PVC methods have also been suggested for “pre-

reconstruction” or during reconstruction correction. MAP reconstruction methods are the 

ideal to include any structural information available before reconstruction [170]. Most of 

these methods work as region based methods; however, being pre-reconstruction methods 

they produce PVC images, instead of only recovering regional activity values. These 

methods have an advantage that noise can be modeled before PVC; however, they are more 

complicated, because fractional regional modeling can be a very complex task. Most of the 

above discussed methods are based on static image reconstruction, which uses some kind 

of statistical noise model and assume homogeneous activity distribution. However, several 

methods have been proposed to compensate for PVE in dynamic studies [39]. These 

methods do recover for PVE, in dynamic images, and include additional parameters for 

kinetic modeling, which bound them to the only time series calculations and make the 

problem complex, however, with an advantage of real time PVC. De-convolution has been 

used to recover spatial resolution in restoration studies. PVC images can be obtained by 

convolving an assumed true activity image with system response and update the final 

image adding a weighted difference of the two [174]. These methods do not require high 

resolution anatomical information. However, they use a segmentation method to define ROI 
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on the uncorrected images, which is an added complexity. De-convolution based methods 

greatly amplify the noise; hence, their produced images are not suitable for visual analysis 

and are preferred only to compare the uptake values. 

3.5.1 Partial Volume Correction using MRPs 

Geometric transfer matrix (GTM) method for PVC is a generalization of the RC 

methods and uses high resolution images from CT or MRI for regional definitions 

[38;39;41;42;172]. This method has successfully been used for brain images to correct for 

spillover in different brain compartments. Image, as a whole, is considered to be a linear 

superposition of mutually exclusive regions, with homogenous activity distribution inside 

each region, to evaluate transfer coefficients, which is practically a difficult condition to 

fulfill in real situations. Transfer matrix is simple to evaluate for few regions, however, with 

large number of regions it becomes too complex. Also, assumption of homogeneous activity 

distribution inside a particular region is not natural. This method was initially developed 

for FBP and assumes a spatially-invariant system response; hence, it does not account for 

nonlinearity implicit to the statistical reconstruction methods. It has been shown that this 

nonlinearity, affects the corrected values, when reconstruction based compensation for 

detector response is applied and a regional perturbation response method has been 

introduce to correct for this problem [38;39;39]. 

Another, recently introduced, method is based on statistical-regional-interaction 

modeling, instead of linear superposition, by Aston et. al., (2002). They based their model 

on “Tissue Fraction Effect” and “Point Spread Effect”, proposed a least squares solution to 

derive the problem and addressed the issues of regional activity recovery, estimation of 

variance and test for homogeneity assumption with correlated and un-correlated noise 

modeling [42]. 

Though, the above mentioned methods have some disadvantages, they are capable of 

recovering good regional activity concentration values. Our work presents an 

implementation of proposed priors in both of these PVC methods and compares the results 

with standard QPs. GTM requires an estimator having stationary response, whereas, MAP 

estimators are nonlinear. A suggestive way out is to use impulse responses evaluated in 

each region, separately, and use them as the PSF. Similarly, statistical PVC methods are 

computational intensive and require large storage capacity; however, it is possible to peak 

off PSF in each dimension to reduce size of the problem. We used the same approach to 

separate impulse response along each axis to evaluate activity values. MRPs performed 

equivalent or better than QPs, in various situations. Our results showed that both of these 
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methods correct the measured activity, corrupted by PVE well, whereas, statistical methods 

are more sensitive to segmentation error than the GTM method. Also, MRPs have more 

stable response due to their lesser dependence on the parameter values. 

3.6 List-Mode Reconstruction 

There is a huge interest in list-mode reconstruction methods after the development of 

MLEM algorithm by Barret et. al. (1998), for list-mode acquisition data [159;175-178]. 

However, they mainly discussed savings in storage space and efficient and fast 

reconstruction options for low count studies. Variations of these methods have been 

presented, later on, for example, based on concepts of minimization of penalized cross-

entropy functions. A faster and more accurate method was developed for iterative 

reconstruction of list-mode data for low statistics in PET [155;179]. A list mode ML 

reconstruction method has been proposed, with irregular sampling and depth of 

interaction, for a rectangular PET system for breast imaging [51;180]. Another List-Mode 

Iterative Reconstruction Algorithm (ALMIRA) has been presented for SPECT system with a 

new projector/backpojector pair using radiance distribution to obtain probabilities used in 

iterative reconstruction [177]. An un-convergent subset version of list-mode 

reconstruction methods have been developed later with convergent versions of the 

regularized and subsidized version for speeding up the reconstruction [159]. A list of 

advantages using list mode reconstruction, over bin mode reconstruction methods, has 

been published [181]. Data can be collected with higher accuracy and precision in list-mode 

data acquisition, which is very useful for low count studies. Motion correction can also be 

easily incorporated into the reconstruction method [182]. Time of flight information can 

also be included in list mode data for higher accuracy [154;182;183].  

All the methods mentioned above are specific to a system or do not consider any 

resolution characteristics of these methods. A very recent study to evaluate resolution 

recovery in list mode reconstruction methods, as compared to the other methods including 

bin mode reconstruction techniques has been done by Bouwens (2000) [179;183]. They 

developed an iterative reconstruction technique, which used list-mode data with collimator 

modeling, in SPECT system. They used Gaussian shaped sources of different resolution, 

placed at different locations inside the FOV to assess spatial response variations. They 

compared different algorithms and found that variations in response and reconstructed 

resolution of the list-mode reconstruction methods were worst for off centre locations in 

the FOV, as compared to the other algorithms. They used a system model partitioned into 

object dependent and detector dependent modules for better and easy modeling. However, 
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their method was meant specifically for SPECT system to model different collimators and 

compares only absolute error at specific iteration number. We evaluated resolution 

characteristics of different priors included in MAP type list mode reconstruction methods 

[184]. We used Local Impulse Response (LIR) investigations, to evaluate resolution 

properties of these priors. No such effort has been done so far, as in our knowledge. We 

have also compared resolution characteristics of our proposed priors with standard 

quadratic priors for list-mode data. These results will help in understanding behavior of 

list-mode reconstruction methods in terms of their resolution and noise properties while 

object properties are used with data modeling as well. 
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CHAPTER 4  

Non-uniform Resolution Recovery 

Tomographic imaging systems require modeling of a number of image degrading 

effects to compensate for space variant nature of their response [20;141]. Unfortunately, 

inclusion of these effects into the system model overburdens computational and storage 

resources and assumptions are made to obtain reconstructions in real clinical times [23]. 

Complete and accurate modeling can be done with recent computer advancements and 

image reconstruction methods play a vital role in this modeling. Analytical reconstruction 

methods assume that projection data follow an ideal line integral model, whereas above 

mentioned effects are nonlinear and force the data to deviate from line integral model 

[78;84]. Iterative reconstruction methods have an ability to accurately model these effects 

and stochastic nature of the data; however, iterative reconstruction problem becomes 

heavily ill-conditioned due to incomplete data and noise which leads to overly noisy images 

[67;84;104;141]. To reduce this noise and ill-conditioning of the problem, emission physics 

is modeled in form of an object prior distribution function [105]. Smoothness and edge 

preserving priors have been proposed in PLEM reconstruction methods or MAP estimators 

and quadratic smoothness priors have been investigated vastly due to their convexity. 

However, they are believed to over smooth images in certain areas and provide images 

with non-uniform resolution characteristics [147;148;186]. MRPs and TV priors have been 

used as edge preserving priors with robust edge preservation with no additional parameter 

required for edge preservation [26;112;128]. 

In this chapter, we analyze and compare results of an implementation of LIR and of a 

simple brute force method, including MRPs and TV priors, to evaluate their impulse 

responses for a comparison of their resolution properties with QPs. We show that QPs 

produce images with non-uniform resolution properties and propose new MRPs based 

prior functions to compensate for this non-uniform resolution. We extended certainty 

based correction method for the correction of non-uniform resolution and further propose 

methods based on a different prior without a use of certainty correction term. In brief, our 

objective is to show that, if reconstructed images with uniform resolution properties are 
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desirable then, MRPs based priors can perform better than other priors in terms of 

resolution linearity, uniformity, symmetry, noise, reconstruction speed and calculation 

simplicity etc., and require less number of empirical parameters to be tuned. A theoretical 

expression has also been derived for iteration based noise propagation in MAP 

reconstruction methods, including MRPs as prior function, and results have been validated 

with Monte-Carlo technique [29;129;138]. 

4.1 Data Simulation and Reconstruction 

In this chapter, our main analysis consists of a comparison of various image estimators 

in terms of their resolution properties and development of new approaches to combat non-

uniform resolution. Almost always, new methods in image reconstruction are assessed on 

the basis of simulated data and then tried on the real scanner data. One of the advantages of 

using simulated data is to be able to compare reconstructed images directly with true 

noiseless activity distribution, whereas, it is not possible to separate noise from the signal 

for real data [107;188;189]. We used a simple system model to simulate our phantom data 

for the comparison of algorithms and prior functions. It is an imperative argument, in our 

view, that addition of noise in the data or inclusion of various image degrading effects will 

further corrupt the results and complicate, slow down or overburden system resources and 

the evaluation process. Hence, for comparison purposes our simple system model is a valid 

choice. 

4.1.1 Phantom Object Used 

Resolution properties of MAP reconstruction algorithms mainly depend on the activity 
distribution, object attenuation distribution and various system and estimator 
characteristics. We selected a commonly used digital phantom image to simulate our data 

[24;26;110;129;187]. This phantom represents a superposition of very simple objects, 

which were further convolved with a 5 x5 averaging filter kernel to delineate sharp edges, 

and is not an anthropomorphic phantom [107]. There were several reasons to select this 

phantom. First of all, various regions inside the phantom were used to study the effect of 

activity concentration and object size variation on the final reconstructed resolution for 

different estimators. Two circular regions, holding varying activity concentration and 

embedded inside a background disc, were simulated to study effect of activity variation on 

the final induced resolution by various reconstruction algorithms. One of the small discs 

contains higher activity concentration, whereas, the other one contains lower activity 
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concentration as compared to the moderately hot background disc, which helped us in 

understanding their comparative behavior. This phantom also facilitated in studying spatial 

variations in induced resolution and effects of non-uniform attenuation distribution by the 

addition of an attenuation map of the object. Resolution and noise variations were studied 

for different reconstruction algorithms and MAP estimators across the FOV and 

effectiveness of non-uniform resolution compensation methods for QPs, MRPs, and TV 

priors was measured with the help of this phantom [24]. Our digital phantom image is 

shown in Figure 4.1, which has been divided physically in 128 x 128 pixels. Relative activity 

concentration is 1.0 in the left small disc (COLD DISC), 2.0 in the large disc (BKGND DISC) 

and 3.0 in the right small disc (HOT DISC). Small discs are of radii of 15 pixels and the main 

background elliptical disc has radii of 30 and 50 pixels with attenuation coefficients of 

0.003, 0.013 and 0.0096 mm-1, respectively [129]. 

Figure 4.3 shows a thorax chest phantom which has been used by several researchers 

for the evaluation of various algorithms performance [96]. We selected this phantom to 

analyze and compare the performance of various algorithms and MAP estimators in terms 

of MAE, percent bias and MSE. Though, this phantom has fairly irregular shaped objects to 

imitate real object, we used this phantom for our analytical comparison for locally small 

regions and quantitative comparison for the whole image. Small point sources were added 

to this phantom, in order to study the effect of various algorithms’ response to small sized 

objects, while only analytically. 

 

 
Figure 4.1: Simulated phantom image (left) with its sinogram (center) and attenuation map image (right). Image 
and sinogram resulted from 1M counts in total while attenuation map image shows the distribution of 
attenuation with coefficients given in the text above. 

Another phantom image, shown in Figure 4.17 and known as holes phantom, was used 

to study the behavior of QPs, MRPs and TV priors in terms of their noise performance using 

two hyper-parameter values. This phantom was selected for to its varying sized objects to 

study the effect of noise and resolution on the estimation of varying sized objects, because 

it is comprised of small and large sized circular discs. 
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4.1.2 Data Model 

We modeled a simple PET system with 16,384 detector bins or LORs (divided into 128 

LORs per angular view for 128 views) over 1800 around the object. One million (1M) 

counts were collected in total, assuming a small single crystal detector width equal to that 

of a single pixel for the sake of simplicity, which was taken to be 1.0 mm in width for the 

purpose of attenuation correction. A system model was considered without any scatter and 

background noise included, in which case matrices representing scatter and background 

noise will become identity matrix {𝐻𝐻𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡 = 𝐼𝐼} in equation (2.4) [23]. However, non-uniform 

attenuation correction has been included as an attenuation map image and was used to 

simulate non-uniform attenuation correction factors (ACF) into the system model, as 

shown in Figure 4.1 (right). These ACFs were obtained by forward projecting an 

attenuation distribution map with almost resembling values of attenuation coefficients to 

the real values of soft tissues and bone [8]. 

4.1.3 Data Simulation Scheme 

For event simulation scheme, a random point (using Matlab’s random point generator 

function “rand()”) inside the phantom’s emission area was generated to represent a 

random emission location, along with a random angle from 0 𝑡𝑡𝑔𝑔 𝜋𝜋 to simulate gamma ray 

travelling direction. An LOR index was calculated based on the emission’s spatial location 

and the random angle generated. This value was then weighted by the pixels activity 

concentration and the probability of detection of the event along a particle LOR using 

Siddon’s (1998), algorithm [53]. Corresponding LOR counts were incremented accordingly 

to represent its contribution to the final sinogram with an application of the attenuation 

effect. Figure 4.1 (center) displays a resulting sinogram image. 

4.2 Software Implementation 

Various simulation software are available freely online which can generate simulated 

data for different systems, such as SimSET for PET/SPECT and SIMIND for SPECT system. 

These implementation codes are very straight forward and user friendly. However, for a 

basic understanding of these imaging systems they are just black boxes. Even though their 

implementation and modeling details are available in form of various manuals and 

publications, they are not very fragile and modifiable. Hence, for a better understanding of 

the working and physics of these systems, we decided to implement our own codes and 
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routines. However, we only developed our stand alone routine to carry out various task 

instead of a complete package, because of the availability of the above mentioned software. 

There were also many unique tasks needed to be carried out in this research work, for 

which there were no implementations available, for example impulse response evaluation 

for list-mode data or implementation of PVC method for statistical methods. Another 

obvious reason for self implementation of various routines was a better and stronger 

control over different steps of the process. For example, for customized phantom and data 

simulation or for customized implementation of reconstruction codes and for the 

evaluation of the geometrical system matrix, it was necessary to code our own algorithms. 

Different computational routines were coded and implemented for data simulation 

and reconstruction purposes, for this work. Calculation of system matrix elements, for a 

defined PET system model to evaluate probabilities of event emission and detection 

processes, was a basic requirement for our analysis. Siddon (1985), described an algorithm 

to calculate system matrix elements for 3D CT reconstruction and is considered to be very 

fast as compared to the method of evaluation of these probabilities for each pixel in 

sequence, because it considers only those pixels which are intersected by a specific LOR 

[53]. Its implementation has further been simplified by Jacob (1998) to simplify most time 

consuming nested loops of the evaluating code, because this evaluation needs to be 

performed for each LOR and for every pixel intersected by the LOR [59]. We implemented 

this algorithm as a MATLAB MEX file which can be directly used as a MATLAB sub-function 

with its C++ implementation files. This routine is available on File-Exchange webpage, of 

Mathworks website, under a heading of “PET System matrix” where it can be downloaded 

freely. This code is a direct computer implementation of Jacob’s modified algorithm to 

evaluate PET system matrix elements for a given LOR for square pixel grid and for parallel 

beam geometry [59]. It should be noted that this function has been downloaded and used 

by several people in their development work. It outputs its results in sparse matrix form, 

which is very helpful in reducing storage requirements and implementation time. Format of 

this routine is given as follows; 

 

𝐹𝐹𝑢𝑢𝑙𝑙𝑠𝑠𝑡𝑡𝑙𝑙𝑔𝑔𝑙𝑙 (𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑠𝑠𝑡𝑡) 𝑔𝑔𝑢𝑢𝑡𝑡 = 𝑠𝑠𝑦𝑦𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙_𝑣𝑣2_𝑙𝑙𝑙𝑙𝑤𝑤((𝑙𝑙𝑙𝑙𝑡𝑡) 𝑙𝑙𝑔𝑔𝑟𝑟, (𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑠𝑠) 𝑠𝑠𝑦𝑦𝑠𝑠). 

 

In this function, ‘out’ is a structure containing intersected lengths and indices of pixels 

intersected by a particular LOR, whose number is given as an integer variable ‘lor’ with a 

structure defining system parameters in ‘sys’. These input and out variables are clearly 

defined inside the function definition as comments. 
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Another very important computer implementation is of various reconstruction 

algorithms including MLEM, PLEM-QP, PLEM-MP and PLEM-TV as given in Appendix A.2. 

This is an implementation of OSL algorithm by Green, and has been implemented in LOR 

major format, instead of pixel based sequential format in a MATLAB function [105]. It 

should be noted that it evaluates system matrix elements on the fly, hence, does not need to 

store these elements, which reduces storage requirements. Further, these codes were 

written for an implementation of our developed prior distribution functions. This routine 

was implemented in form of a MATLAB function as below; 

 

𝐹𝐹𝑈𝑈𝑁𝑁𝐶𝐶𝑇𝑇𝐼𝐼𝑂𝑂𝑁𝑁 [𝑟𝑟𝑙𝑙𝑠𝑠_𝑙𝑙𝑔𝑔𝑔𝑔, 𝑟𝑟𝑔𝑔𝑠𝑠] = 𝐼𝐼𝑔𝑔𝑎𝑎𝑔𝑔𝑙𝑙𝑅𝑅𝑙𝑙𝑠𝑠𝑔𝑔𝑙𝑙𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑠𝑠𝑡𝑡𝑙𝑙𝑔𝑔𝑙𝑙(𝑠𝑠𝑦𝑦𝑠𝑠, 𝑠𝑠𝑙𝑙𝑙𝑙𝑔𝑔, 𝑎𝑎𝑙𝑙𝑔𝑔𝑔𝑔, 𝑙𝑙𝑡𝑡𝑙𝑙𝑟𝑟, 𝑏𝑏𝑙𝑙𝑡𝑡𝑎𝑎, 𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔ℎ) 

 

Many of the above mentioned parameters are self explanatory, such as ‘sys’ is a 

structure defining system parameters and ‘neigh’ is a vector giving neighborhood size and 

‘algo’ is the algorithm being used, such as MLEM or PLEM-QP. 

Implementation of various forms of LIR function was a tricky job because of huge 

storage and computational burden. With a 128 x 128 image matrix size and same number 

of LORs, generated file was of Gigabytes size and it was not possible to hold it in double 

precision in a 2 GB or even 4 GB RAM, available on my laptop. To overcome this problem, 

two different files were created and stored, for their further use by loading them in turn, 

having almost half of the matrix size in each file, required by the CG function to evaluate LIR 

with different MAP functions [100]. This was mathematically equivalent to load half of the 

matrix at one time for matrix multiplication or addition. Required calculation time of days 

was reduced to hours using direct matrix multiplication or addition of the most time and 

storage consuming part of the function i.e. evaluation of 𝐻𝐻𝑡𝑡𝐷𝐷𝐻𝐻, with this save, load and use 

technique [24;29]. Similarly, LIR implementation was divided into two parts and initially 

𝐻𝐻𝑡𝑡𝐷𝐷𝐻𝐻 was evaluated and saved and then the whole LIR was calculated by loading this 

matrix in CG. It was interesting to note that computational time for nonlinear and non-

quadratic priors, such as MRPs or TV, was longer as compared to the quadratic priors. It 

was possible to reduce image size for the same reason; however, the results were not up to 

the mark for smaller sized images. 

Other routines, such as GTM or STAT methods for PVE, were time consuming but with 

lower storage requirements [41;42]. Similarly, to calculate mean and variance images for 

iteration based noise analysis, image size was reduced because of its less importance on the 

final results. For the sake of repetition or improvements, few important routines have been 

included in this thesis as an appendix. 
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4.3 Hyper-parameter Tuning and Perturbation Analysis 

One obvious disadvantage of MAP estimators is an absence of some specific criteria to 

choose regularization parameter value. There are few methods proposed in the literature 

to help in selecting this value. L-Curve is a log-plot of the norm of a regularization solution 

versus norm of the corresponding residual norm and shows the size of the solution and fit 

to the data and helps in defining an optimum value of the regularization parameter. 

However, it is computational expensive and requires a lot of data [68;69]. Unbiased 

predictive risk estimation (UPRE) is another method which minimizes expected value of 

the predictive risk and shown to find good estimates of the parameter values, however, 

with large size problem it becomes complex to implement and computationally expensive. 

Generalized cross validation (GCV) is another method which minimizes predictive risk, 

however, it may become flat or may have multiple minima and computational expensive 

too. These methods either require large data because they are based on statistical analysis 

or they are computationally extensive [69]. In our experimental work, we only needed to 

decide crudely for a parameter value where resolution, at some fix point inside the 

phantom, say at the center is uniform with low computational efforts. Hence, we opted for a 

technique suggested by Fessler and Rogers (1996), to select 𝛽𝛽 parameter value for a single 

selected pixel, say inside the center of the object [24;190]. This method consists of a 

tabulation of reconstructed resolution values for a given pixel and for a range of 𝛽𝛽 values. 

Then, for any user specific reconstructed resolution, one can simply interpolate that table 

to get a desired value of the parameter. Though empirical, this method is simple to follow 

and reduces the burden of extra calculations. 

We used our simulated digital phantom image shown in Figure 4.1 for 𝛽𝛽 verses 

resolution analysis. A point source, having a spread of 4.0 pixels FWHM, was added to the 

image at the center and its noiseless sinogram data was generated, using same system and 

parameter values as mentioned in section 4.1. That sinogram was then reconstructed with 

MAP algorithm, including QPs and MRPs as prior functions, for a number of 𝛽𝛽 values. Figure 

4.2 (left) presents reconstructed resolution values at the centre of the phantom image for a 

range of parameter values for QPs. It also shows 𝛽𝛽 verses resolution response of MRPs with 

different neighborhood window sizes. Response to the added impulse was evaluated using 

Brute Force method, which may be defined by the following expression [24], 

 

 𝑙𝑙𝑗𝑗 = lim
𝑎𝑎𝑥𝑥𝑗𝑗 →0

�𝑓𝑓�𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑥𝑥𝑗𝑗 � −  𝑓𝑓(𝑥𝑥)�
𝑎𝑎𝑥𝑥𝑗𝑗

 (4.1) 
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In this expression, 𝑓𝑓�𝑥𝑥𝑗𝑗 + 𝑎𝑎𝑥𝑥𝑗𝑗 � is the noiseless reconstruction of the perturbed image 

at pixel location 𝑥𝑥𝑗𝑗 , 𝑓𝑓(𝑥𝑥) is a reconstruction of un-perturbed noiseless image and 𝑎𝑎𝑥𝑥𝑗𝑗  is the 

perturbation size added to the 𝑗𝑗 − 𝑡𝑡ℎ pixel. It has been argued by researchers that mean 

reconstruction from a sample of noisy data, using MAP estimators, highly resembles to the 

reconstruction from noiseless data [159]. Hence, we used only a single reconstruction from 

noiseless data for our analysis. Figure 4.2, displays profiles for FWHM against different 

perturbation sizes and parameter values, for QPs and MRPs with a neighborhood size of 3 x 

3, to obtain optimum parameter value and perturbation size for these priors. Figure 4.2 

(top and bottom right), shows reconstructed resolution response for the centre pixel of the 

image against perturbation size. Resolution seems to approach its limit for QPs as 𝛽𝛽 value 

increases and size of the perturbation 𝑎𝑎𝑥𝑥𝑗𝑗  decreases. 

 

 

 
Figure 4.2: (left) Resolution FWHM (in pixels) plotted for a range of hyper-parameter values for QPs. 
Profile is almost flat for small values of the parameter whereas reconstructed resolution worsens 
very fast for values above 0.01. Sinogram was blurred with a Gaussian filter (FWHM=4.0 pixels) to 
introduce a detector blur and to define our targeted resolution. (right) Reconstructed resolution 
against perturbation size and parameter values and indicates that by reducing perturbation size and 
decreasing parameter values, reconstructed resolution approaches a limit. Sinogram was blurred 
with a Gaussian filter (FWHM=4.0 pixels) to introduce a detector blur and to define our targeted 
resolution. 

 
Similarly, for MRPs, resolution approaches its limit with decreasing 𝛽𝛽 value and the 

perturbation size. We selected a perturbation size of 1.0 x 10-4 for a reasonable impulse 
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response width. Figure 4.2 (top and bottom left), shows reconstructed resolution in FHWM 

(Pixels) against 𝛽𝛽 values for QPs and MRPs. For very small values of 𝛽𝛽, induced resolution 

remains stable at approximately 4.3 pixels while it increases rapidly for a beta value > 5.0 x 

10-3 with an average pixel value of 4.5 pixels. This means that prior starts getting more 

weight after this value and its effect get stronger on the resultant image beyond this point, 

whereas data has the dominant effect before this value. Neighborhood size used for QPs 

was 3 x 3 pixels and increasing this size does not have much effect on the profile, which 

means far pixels do not affect the results much. We draw resolution profiles, against 𝛽𝛽 

values, for MRPs using different neighborhood window sizes. A window size of 3 x 3 pixels, 

for MRPs, has a response more stable than QPs, against 𝛽𝛽 value, whereas, it is worse than 

QPs for a 9 x 9 window. This indicates that, in case of MRPs, reconstructed resolution is 

more sensitive to the selected neighborhood window size as compared to the influence of 𝛽𝛽 

parameter, which is stated other way by other researchers [107]. We may infer from these 

results, that it is better to study resolution properties of such estimators with fully 

converged solution instead of iteration based analysis [166]. Based on the above results, we 

selected values of hyper-parameters, i.e. 1.0 x 10-2, 5.0 x 10-4 and 1.0 x 10-4 to analyze for 

image quality. 

4.4 Reconstruction Algorithms 

Unfortunately, real systems do not provide noiseless measurements and appropriate 

sampling or sub-sampling is further required. In PET system, arc-correction is needed to 

sample the data back into parallel projections for FBP reconstruction. In 3DRP 

reconstruction algorithm, complete 3D data is not available and one needs to fill in the 

missing data by forward projecting an initial reconstruction [191;192]. In Fourier 

Rebinning (FR) reconstruction method, 3D data is rebinned into 2D projections, before 2D 

FBP is applied, which suffers from geometric distortions due to rebinning process. For 

accurate reconstruction, all the physical image degrading effects need to be included in the 

system, whereas, non-uniform attenuation in SPECT system is very difficult to model 

[8;10]. Approximate, ACFs may be applied, which do not compensate well for the error. 

Similar to the FBP, depth dependent attenuation is a problem for direct inversion methods 

and these methods do not incorporate any underlying data noise model in the 

reconstruction. 

Non-statistical iterative methods try to estimate the image by discretizing the problem 

into a set of unknowns. They mainly use the ideal line integral model in discrete form and 

do not consider underlying noise models in the reconstruction problem. Statistical iterative 
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methods, such as MLEM methods, try to achieve this by explicitly defining some model of 

the measurements in the form of data likelihood [91;122]. Several models can fit into the 

reconstruction framework, while defining the likelihood function. However, because the 

image reconstruction problem is ill-posed, MLEM tend to produce overly noisy images 

similar to the noise amplification by ramp filter in FBP. Methods have been proposed to 

reduce this noise, which generally apply some implicit regularization such as truncated 

iteration or post-convergence filtering. However, these methods have poor resolution 

control of the reconstructed images. Smooth basis function based approaches, such as 

blobs, need large number of iterations to converge and may also increase the ill-

conditioning of the problem [49;72;73;104;193]. 

MAP reconstruction methods based on Bayes’ rule, or equivalently PLEM 

reconstruction approach in the penalty design framework, has two advantages over the 

other alternate methods for regularization [76;77;121;123]. Firstly, because a prior 

distribution is formed about the object and then a MAP estimate is sorted, inclusion of the 

prior distribution improves conditioning of the problem and, secondly, various prior 

distributions can help control the final reconstructed image characteristics, especially the 

resolution, in our perspective. Nonnegative definite prior functions are generally selected, 

for maximization purposes of the overall objective function. Prior functions are very 

important in determining the final image quality [93;110;121;125;126;165]. Simplest form 

of the prior function used is called the smoothing or the quadratic priors. These priors 

work on the basis of pixel differences and generate overly-smoothed or an-isotropically 

blurred images. This fades out the salient features such as edges inside the image. 

Alternatively, edge-preserving prior functions are used for reconstruction [129;165]. 

Non-quadratic edge preserving prior functions have been introduced, however, they 

make the objective function non-convex and produce patchy areas of varying intensities. 

Median Root Priors (MRPs) and Total Variation (TV) prior functions have a robust 

property to preserve the edges. A numerical problem with these two prior functions is that 

their analytical derivatives are not defined, however, various heuristic definitions of the 

derivatives have been proposed which work well [112;114;116;128]. They only have a 

problem that their convergence properties cannot be analytical described. In this work, we 

opted for prior functions based on MRPs and TV regularization functions and analyzed 

their resolution characteristics, in detail. We developed methods for the compensation of 

non-uniformity in reconstructed resolution using MRPs prior functions [30]. This topic is 

the main focus of our work and will be discussed in detail in the next sections. 
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Figure 4.3: Digital thorax phantom with its simulated sinogram data. 

In this section we compare performance of various algorithms and prior functions 

using a simulated digital human thorax phantom of size 128 x 128 pixels. This phantom has 

been simulated in the same manner as described above, though without simulating non-

uniform attenuation. 

 
Table  4.1: Reconstruction methods used and their corresponding abbreviations mentioning 

different parameter values and neighborhood sizes. 

Reconstruction Methods Abbreviations 

Filtered Backprojection, Hann filter, 0.5 cut-off FBPh 

Maximum Likelihood, 15 iterations ML15 

Maximum Likelihood, 30 iterations ML30 

Maximum Likelihood, 200 iterations ML200 

MAP reconstruction with QPs, 15 iterations  QP15 

MAP reconstruction with QPs, 200 iterations  QP200 

MAP reconstruction with MRPs, 15 iters. [3 3] window 3MRP15 

MAP reconstruction with MRPs, 15 iters. [7 7] window 7MRP15 

MAP reconstruction with MRPs, 200 iters. [3 3] window MRP200 

MAP reconstruction with TV, 15 iterations TV15 

MAP reconstruction with TV, 200 iterations TV200 

 

The reconstruction algorithm can be considered as an estimator of the unknown 

quantities or pixel values and performance of different algorithms can be compared using 

several measures. The estimate should be unbiased, statistically, and often there is a trade-

off between bias and variance of the estimate. The variance measures the variability of the 

calculated estimate.  
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Figure 4.4: Reconstructed images of a thorax chest phantom for noiseless and noisy data with different 
algorithms and parameters values. Images in the top most row is for noiseless data and a 𝜷𝜷 value of 1.0 x 10-4 
for QPs, MRPs and TV with a neighborhood size of [3 3]. Second and third row images were reconstructed using 
same parameters but for 𝜷𝜷 values of 1.0x10-4 and 5.0x10-4, respectively.  Last row contains images for MRPs 
only with 𝜷𝜷 value of 1.0x10-4 and neighborhood size of [7 7]. 
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An estimator with small bias from the average, whereas having large variance, may 

make an individual estimate unreliable. Mean square error (MSE), generally, depends on 

both bias and variance and mean absolute error (MAE) can be a measure of accurateness 

and changeability of the estimate. Some of these measures need to know the true activity 

distribution, so simulated data is most helpful in this comparison [166]. The quality and 

estimation of the effect of noise on the correctness` of reconstructed images was evaluated 

using our simulated phantom shown in Figure 4.3. Our phantom is not an anthropomorphic 

one but served well for quantitative testing, because the reconstruction algorithm should 

be able to reconstruct any kind of data. This phantom image was forward projected to a 

noiseless sinogram and then Poisson noise was added to it, using Matlab “imnoise()” 

function, in order to get 100 different noisy realizations.  

These sinograms were reconstructed using different algorithms, as listed in Table 4.1, 

and priors with different parameters values. The aim was to compare MRPs performance with 

well experimented standards, FBP and MLEM algorithms, and then further compare with QPs 

and TV in MAP algorithms. In order to examine the consequences of the selection of suitable 

prior function, images were tested against known true phantom image and the statistical 

properties of the images were inspected. We treated the whole image as an ROI bearing non-

uniform activity distribution and used following relations to compare various algorithms and 

priors [128]. 

 

 

𝑀𝑀𝐴𝐴𝐸𝐸 =
∑ |𝐼𝐼𝑙𝑙 − 𝜇𝜇𝑙𝑙 |𝑙𝑙

𝑁𝑁
 

𝑉𝑉𝑎𝑎𝑟𝑟 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝐼𝐼𝑙𝑙) 

%𝑏𝑏𝑙𝑙𝑎𝑎𝑠𝑠 =
∑ �𝑓𝑓�̅�𝑙 − 𝑓𝑓𝑙𝑙�𝑙𝑙∈𝑟𝑟𝑔𝑔𝑙𝑙

𝑁𝑁𝑟𝑟𝑔𝑔𝑙𝑙 × 𝑡𝑡̅ × 100 

𝑀𝑀𝐿𝐿𝐸𝐸 = 𝑏𝑏𝑙𝑙𝑎𝑎𝑠𝑠2 + 𝜎𝜎2, 𝑓𝑓𝑔𝑔𝑟𝑟 𝑙𝑙 = 1,2, … ,100 

(4.2) 

 

In this relation, bias is defined in terms of mean reconstructed image pixels 𝑓𝑓�̅�𝑙  and true 

ROI mean 𝑡𝑡̅ with 𝑁𝑁𝑟𝑟𝑔𝑔𝑙𝑙  number of pixels in the ROI. To evaluate mean image pixels, we 

reconstructed images from 100 noisy realizations, by inducing Poisson noise in the true 

phantom image. 𝜎𝜎2, is variance of all the pixels from all the noisy reconstructions, for a 

particular algorithm, and for a specific value of the hyper-parameter, if required. We 

decided for a set of reconstruction methods, as given in Table 4.1, to compare their 

reconstruction abilities, as an initial assessment of their reconstructed resolution 

properties, in the form of regional uniformity and shape distortions. Here, we present 

results for two different hyper-parameter values are shown for different prior functions in 

MAP reconstruction algorithms.  
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Figure 4.4 displays thorax phantom images reconstructed using different algorithms 

for few parameter values. Mean Absolute Error (MAE) and Variance images have been 

calculated from 100 noisy reconstructions, of the phantom image containing Poisson noise 

and total 1M counts with an average of ~400 counts per non-zero pixel. MAE and variance 

images have been calculated using 100 noisy reconstructed images. Noiseless 

reconstructions are not much different from each other except for FBP images which 

contain streak artifacts and TV images show patchy edges in both images obtained after 15 

and 200 iterations.  

Streak artifacts are visible in FBP images for noiseless or noisy data with false activity 

impression outside the object boundaries. Some mock activity, for example around the 

arms, can be seen in noisy and noiseless data in images obtained after 15 iterations for all 

the iterative algorithms. This is possibly the initial uniform activity guess used to start the 

iterative algorithm and indicates initial convergence of low frequency components. All the 

algorithms performed almost similar for noiseless data even after 200 iterations, however, 

with noisy data MRPs and ML algorithms behave much the same way. Their reconstructed 

images are closest to each other as compared to the images reconstructed by other 

algorithms and indicate least smoothness [128]. For TV priors there are obvious patchy 

artifacts. Global image variance is displayed along with MAE images, which is smallest for 

ML and MRPs, whereas, TV priors present worst results. QPs produce images with 

maximum smoothing effect which is, certainly, strong blurring effect instead of the effect of 

noise reduction.  

 

 
Figure 4.5: %Bias values for various algorithms and parameters such as iterations 
and hyper-parameter values. 
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Last row displays variance images calculated from same 100 noisy reconstructions, 

and the results indicate that MRPs and ML estimates are almost matching, whereas, QPs 

and TV show some strenuous artifacts, which indicates their poor noise performance in 

terms of variance. These results demonstrate superiority of MRPs, over the other 

algorithms, for iteration based reconstruction image quality and noise performance. We 

present results for Bias, Figure 4.5, and MSE, Figure 4.6, values for two different iteration 

numbers (15 and 30) and two parameter values (5.0x10-4 and 1.0x10-4). Selected ROI 

includes those pixels having non-zero value inside the phantom image and contains non-

uniformly distributed activity concentration. All MAP algorithms seem to perform better 

than FBP in terms of percent bias values. Both MRPs perform almost same as MLEM, 

whereas, TV priors performed worse than MRPs, but, better than QPs. QPs have poor 

performance in case of percent bias, which is a measure of accuracy, due to heavier 

smoothing induced by them and this behavior worsens with higher 𝛽𝛽 value. High frequency 

components converge at higher iteration number and that seems to be a reason for slightly 

better results. Mask window size and iteration number do not have appreciably different 

effect for MRPs results due to earlier convergence of the low and high frequency 

components at earlier iterations. TV priors behaved almost similar manner to QPs, with 

lower bias values, which suggest their almost similar smoothing trend and dependence 

over 𝜂𝜂 parameter value.  

Figure 4.6 presents results for MSE for various algorithms in terms of iteration number 

and 𝛽𝛽 parameter value. FBP is not included here and MLEM performs worse with 

increasing iteration numbers. QPs work better than MRPs and TV priors, with lower error 

at higher 𝛽𝛽 values, which indicates heavier smoothing, and slightly increased error with 

increased iteration number. MRPs and TV perform almost similar due to the median and 

differential operations. Percentage bias values provide us with accurateness of the behavior 

of a particular measurement or estimation process and MSE is a measure of preciseness. In 

our analysis, we defined MSE including both bias and variance, however, bias is very small 

as compared to the variance, hence, it is mainly a measure of preciseness. According to 

these results MRPs performed well in terms of accuracy and almost equivalently to other 

algorithm in terms of precision. 

Resolution properties are commonly studied either iteration based or of the fully 

converged solution and depend upon estimator characteristics [106;166]. In our work in 

this chapter, we analyzed resolution properties of the fully converged solution, using 

impulse response function and brute force empirical method, in terms of resolution 
uniformity and impulse response linearity and symmetry across the FOV. 
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Figure 4.6: MSE values for various algorithms and parameters. 

Other influencing factors such as hyper-parameter sensitivity, activity concentration 

distribution and spatial location inside the FOV have also been discussed. Our strategy 

mainly proceed with choice of a proper prior distribution function, for the purpose of 

uniform reconstructed resolution, in order to see if MRPs may provide lesser variations in 

system response as compared to the other priors, specifically QPs. 

4.5 Resolution Properties of QPs 

Reconstruction algorithm controls speed of the reconstruction process and does not 

affect the final solution, as far as objective function maximization is concerned, however, it 

is possible to control the final image characteristics through the choice of prior function in 

MAP algorithms. Some algorithms though, such as Ordered Subset Expectation 

Maximization (OSEM), intrinsically do not converge to a single final solution but only speed 

up the reconstruction [137]. Post-reconstruction filtering or sinogram de-blurring methods 

can produce images with almost uniform resolution characteristics for space-invariant 

systems, whereas, they may need a large number of iterations to finally converge [120]. 

Analytical methods, such as FBP or direct inversion methods, are better suited for space-

invariant systems, but, have an embedded mismatch between practical real system models 

and model of their own [78;151;185]. Methods based on un-regularized ART techniques 

may take much longer to converge and need post filtering to specify their resolution 

properties, which will mostly depend on the chosen filter. Least Squares methods such as 

Penalized Unconstrained Least Square (PULS) methods are linear reconstruction methods. 
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These are, generally, based on incorrect noise model and do not relate reconstructed 

resolution to the hyper-parameter values directly. 

In post-filtered MLEM, resolution properties depend on and can fully be expressed by 

the properties of the filter used and can provide almost uniform resolution properties of 

the final image for space-invariant systems. However, space-variance and depth dependent 

attenuation in SPECT may not be fully compensated by these methods. Unconventional 

pixel basis, such as blobs, can provide good uniform resolution properties, however, may 

take large number of iterations to converge due to an overlapping of the basis functions. 

Statistical MAP estimators including standard QPs, provide non-uniform resolution which 

is space-variant and object and system dependent. Certainty based correction methods 

have been proposed to compensate for space-variant resolution properties of QPs in PLEM 

reconstruction framework, however, edge smoothness still remains a problem 

[26;90;193;194]. 

With all the methods reviewed above, MAP estimators have stronger control over the 

resolution properties, convergence speed, edge preservation, noise control and ability to 

incorporate noise model as compared to the other methods. In the following sections, we 

have presented resolution characteristics of MAP estimators, including MRPs in 

comparison to QPs and TV, and suggest correction methods, based on certainty correction 

method developed earlier for QPs in PLEM methods and, in addition, suggest new 

correction method based on alternate prior function to compensate for non-uniform 

reconstructed resolution. Standard QPs are the most favored priors due to their simple 

implementation and their resolution characteristics have already been investigated in 

detail [24;26;29;108;118;129;138]. In the next section, resolution properties of QPs in MAP 

reconstruction methods are briefly analyzed with noiseless phantom data. 

4.5.4 Resolution Uniformity and Symmetry 

Space-variant system response for QPs is a consequence of different image degrading 

effects, which act non-uniformly across the FOV. Figure 4.6 (a) presents results for an 

evaluation of resolution properties of QPs at three specific points inside the phantom 

including emission and transmission properties. These three points were selected to 

evaluate effect of varying activity levels and its spatial distribution and are at the centers of 

two small COLD and HOT discs and at the center of the whole image. Purpose of this 

evaluation is three folds: first to analyze local resolution properties of the estimator, second 

to quantify and compare local reconstructed resolution and third to compare different 

priors and to seek for more suitable prior distribution function based on this analysis. Here, 
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we present resolution properties of the reconstructed images in terms of their space-
variance, linearity and symmetry for QPs and evaluated responses using brute force 

method, as given by equation (4.1) [103;129].  

Though, a large number of noisy reconstructions are required to obtain mean 

reconstructions from noisy data sets, it is luckily, well known that reconstructions from 

noiseless data very well approximate the noisy mean reconstruction [24;102;106]. 

Therefore, only a single reconstruction of a perturbed and unperturbed noiseless data is 

required to evaluate impulse response. This perturbed version is simply the addition of an 

impulse to a pixel of interest. An accumulative horizontal profile through the impulses at 

the selected pixel locations is shown in Figure 4.2(a), obtained by MAP reconstruction 

methods using QPs with two different 𝛽𝛽 values and 30 iterations to display resolution 

space-variance and non-linearity. Symmetry contours, with contour heights at 99%, 75%, 

50% and 25% of the peak value at center of the impulses, are shown in Figure 4.2(b). 

 

 

 

Figure 4.7: (a): Resolution 
(shown as FWHM in pixs) at the 
center of the small discs of an 
image reconstructed by QPs 
with two different parameter 
values. Resolution is almost 
uniform with lower parameter 
values whereas the responses 
are heavily smoothed out and 
have non-uniform response 
with higher values of the 
parameter which indicates high 
dependency of induced 
resolution on parameter values. 

 

 

(b): Response symmetry shown 
as contours at 99%, 75%, 50% 
and 25% of the peak value at 
the center of the three disks for 
two parameter values. 
Responses are asymmetric and 
spread out with higher 
parameter value. 

 

Responses get heavily smoothed out, with large β value or with higher weight given to 

the prior term, whereas they get thinner and less smooth with lower β values. Similarly, 

responses are nonlinear and depict non-uniform resolution at three different locations, as 

shown by the FWHM values, with poorer resolution in high count regions. Symmetry 
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contours are elongated in vertical direction due to higher attenuation encountered in that 

direction. These contours are not very irregular though, because of a simple system model 

introduced without considering many of the degrading effects, which will certainly distort 

the response further. These results indicate that reconstructed resolution, with QPs in MAP 

or PLEM methods, is non-uniform, non-linear and asymmetric due to anisotropic 

smoothing produced by these priors across the field-of-view (FOV) with higher sensitivity 

to β values. So, even the spatially uniform penalties or shift-invariant penalties bearing 

isotropic and symmetric weighting in a local neighborhood of a pixel, such as QPs, which 

are expected to induce uniform resolution response across the FOV, produce space variant 

system response in terms of local uniformity, linearity and symmetry, which is further 

sensitive to the hyper-parameter values [26;129]. 

4.6 Local Impulse Response Evaluations 

Because resolution properties depend on the number of iterations used in brute force 

method, to work out properties of the fully converged solution we implemented LIR given 

by equation (2.39), using our defined system matrix and a simulated human torso phantom 

data, presented in Figure 4.8. An impulse response was evaluated at the location shown in 

Figure 4.8. Surface plot indicates that the response is asymmetrical which is further 

elaborated in a contour plot at four different heights (99%, 75%, 50% and 25%) of the 

peak value. This plot indicates that horizontal and vertical resolution, in FWHM is 1.27 and 

1.69 pixels, respectively. LIR allows us to quantify resolution at some given location inside 

the object, and possibly with respect to some given target resolution. For example, in this 

image the desired response was selected to be isotropic and with 1.00-pixel FWHM. 

To assess space-variant nature of the system response with QPs, we evaluated impulse 

responses at a number of locations inside our digitally simulated phantom. Instead of 

evaluating LIR at all pixel positions, we used a sub-sampled grid of pixel points of interest 

for our investigation, as shown in Figure 4.9. Sub-sampling was used to see an effect of the 

varying activity and varying spatial position inside the phantom. 

This figure shows a grid of sample points along with contour maps of the LIR function 

at each pixel position. Numbers mentioned at top of each contour plot represent average 

contour radius in pixels of the impulse at 50% height, and standard deviation of the 

contour radius at that height. 
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Figure 4.8: 2D Local impulse response inside torso phantom at the specified location (left) with a 2D surface 
plot showing asymmetric response (center) with a zoomed 2D contour at four heights with respect to the peak 
(right). 

Mean reconstructed resolution is higher in the high activity area as compared to the 

low activity region. Standard deviation is higher in the low count area which indicates 

higher error in low activity region. This indicates that QPs produce higher and anisotropic 

smoothing in high count regions as compared to the low count areas, which makes 

reconstructed resolution non-uniform and asymmetric. 

 

  

Figure 4.9: Impulse responses evaluated at various locations inside our simulated phantom. 

𝛽𝛽 parameter value was selected to be 0.01 for these results. This sub-sampling is 

justifiable because impulse response does not change appreciably with spatial position. 

These results indicate that spatial resolution is space-variant with higher smoothing in the 

high count region for QPs in MAP estimators. 

4.7 Non-uniform Resolution Analysis and Correction Methods 

LIR expression, equation (2.39), elaborates that response of an imaging system for 

MAP methods depends on the properties of the system, the object and the estimator used 

including the prior distribution function. Hence, even uniform shift-invariant penalties, or 
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priors in Bayesian perspective, produce shift-variant response instead. Theoretically, we 

can say that although the prior term was added to reduce final image noise and better 

condition the problem, it makes the system response non-uniform and asymmetric across 

the FOV. This may be understood partially, if we assume that measurement noise is 

homoscedastic or has a uniform variance 𝑣𝑣, then the variance term in LIR may simply be 

written as a scaled identity matrix: 𝐷𝐷 = 𝑣𝑣−1𝐼𝐼 and LIR will become [129], 

 

 
𝑙𝑙𝑗𝑗 = �𝑣𝑣−1𝐻𝐻𝑡𝑡 𝐻𝐻 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�−1𝑣𝑣−1𝐻𝐻𝑡𝑡 𝐻𝐻𝑙𝑙𝑗𝑗  

= [𝐻𝐻𝑡𝑡𝐻𝐻 +  𝑣𝑣𝛽𝛽�̈�𝑅(𝑓𝑓)]−1𝐻𝐻𝑡𝑡𝐻𝐻𝑙𝑙𝑗𝑗 
(4.3) 

 

This relation shows that the effective smoothing parameter 𝑣𝑣𝛽𝛽 is not constant and 

depends on the local variance. Hence, regions with higher variance or higher mean activity 

for Poisson noise will observe heavier smoothing or lower induced resolution. 
  

 
Figure 4.10: Zoomed image of 𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 � 𝑯𝑯

𝑯𝑯𝑯𝑯���� 𝑯𝑯 and 𝑯𝑯𝑯𝑯𝑯𝑯 near the diagonal. The diagonal term makes the diagonal 
of FIM highly non-uniform as compared to the FIM without it. 

Mathematically, Fisher information matrix (FIM), 𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �1
𝑌𝑌𝑙𝑙�� 𝐻𝐻, or so called data 

certainty, will be smaller in regions with higher activity and the prior will get more weight 

which will ultimately lower the induced resolution [195]. FIM can be considered as a 

mapping from and to the image space. Due to non-uniform variance term, �1
𝑌𝑌𝑙𝑙��, diagonal of 

this matrix is highly non-uniform as shown in Figure 4.10 and adds to the non-uniformity of 

the induced resolution across the FOV. 

4.7.1 Certainty-based Correction Method 

QPs produce images with space-variant resolution properties due to anisotropic 

smoothing which is higher in high count regions. This suggests a way to compensate for 
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this smoothing by introducing some factor into the response function, which depends on 

local activity concentration, or in other words certainty of the rays crossing a particular 

pixel [29]. If we use factorization of the system matrix as given in equation (2.4), then 

system matrix may be split into pixel dependent, ray dependent and geometry dependent 

factors. In such case, we may write, 𝐻𝐻 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔{𝑠𝑠𝑙𝑙} 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔  𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 � with 𝑠𝑠𝑙𝑙 as LOR dependent 

and 𝑠𝑠𝑗𝑗 as pixel dependent factors and 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔  is the object independent geometric system 

matrix defining only geometric probabilities as 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 = �𝑔𝑔𝑙𝑙𝑗𝑗 , 𝑙𝑙 = 1, … , 𝑀𝑀 𝑎𝑎𝑙𝑙𝑎𝑎 𝑗𝑗 = 1, … 𝑁𝑁�. 

The matrix 𝐻𝐻𝑡𝑡
𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 is almost shift-invariant and induced non-uniform resolution is a 

consequence of non-uniformity in the variance term 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 � 1
𝑌𝑌�𝑙𝑙

�. Because measurement mean 

is not directly available, we simply replace it by the noisy measurements, or 𝑌𝑌�𝑙𝑙 = 𝑦𝑦𝑙𝑙� . With 

such a non-unique factorization, the LIR would become, 

 

 
𝑙𝑙𝑗𝑗 ≈ �𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑠𝑠𝑙𝑙

2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �

+  𝛽𝛽�̈�𝑅(𝑓𝑓)�
−1

𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝑙𝑙𝑗𝑗  

 
 
 

(4.4) 

 

The Fisher Information Matrix in the above expression can be written as, 

 

𝐹𝐹𝐼𝐼𝑀𝑀 =  𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 � 

 

Or element wise, with �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 �
𝑙𝑙𝑗𝑗

= 𝑔𝑔𝑙𝑙𝑗𝑗 , 

 

(𝐹𝐹𝐼𝐼𝑀𝑀)𝑙𝑙𝑗𝑗 =  𝑠𝑠𝑗𝑗
2 � 𝑔𝑔𝑙𝑙𝑗𝑗

2 𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙𝑙𝑙

= 𝑘𝑘𝑗𝑗
2 � 𝑔𝑔𝑙𝑙𝑗𝑗

2

𝑙𝑙

 𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 = 1, … , 𝑀𝑀 

With, 

 
𝑘𝑘𝑗𝑗

2 =  𝑠𝑠𝑗𝑗
2 � 𝑔𝑔𝑙𝑙𝑗𝑗

2 𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
𝑔𝑔𝑙𝑙𝑗𝑗

2�
𝑙𝑙

. 
 

(4.5) 

 

This equation shows that, 𝑘𝑘𝑗𝑗 , is a normalized back-projection of the term, 𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
. Fessler 

and Roger (1996), proposed an approximate FIM based on the above estimation so that the 

matrix becomes almost shift-invariant [24], as follows, 
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𝐹𝐹𝐼𝐼𝑀𝑀 =  𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 � ≈ 𝐹𝐹𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝐹𝐹 

 

where, 

𝐹𝐹 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑘𝑘𝑗𝑗 � 

 

With this FIM, the LIR expression will become, 

 

𝑙𝑙𝑗𝑗 ≈ �𝐹𝐹𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝐹𝐹 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�−1𝐹𝐹𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝐹𝐹𝑙𝑙𝑗𝑗  

= 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽𝐹𝐹−1�̈�𝑅(𝑓𝑓)𝐹𝐹−1�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝐹𝐹𝑙𝑙𝑗𝑗  

= 𝑘𝑘𝑗𝑗 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽𝐹𝐹−1�̈�𝑅(𝑓𝑓)𝐹𝐹−1�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑙𝑙𝑗𝑗  

 

For further approximation, they concluded that in local neighborhood of a single pixel 

effective smoothing depends on certainty of the number of LORs passing through that pixel 

and, with higher certainty the induced resolution will be poorer. They proposed a modified 

prior term, based on the above observation as 𝐹𝐹−1�̈�𝑅(𝑓𝑓)𝐹𝐹 and the LIR with an assumption 

that neighboring pixels have similar certainties, would simplify to, 

 

 𝑙𝑙𝑗𝑗 ≈ 𝑘𝑘𝑗𝑗 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑙𝑙𝑗𝑗  (4.6) 

 

Assuming almost shift invariant 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 , this modified LIR produces uniform responses 

with standard QPs. Technically, this modified penalty term only corrects for interactions 

between data non-uniformity and the prior term or 𝐹𝐹−1�̈�𝑅(𝑓𝑓)𝐹𝐹−1.  

 

 
Figure 4.11: Accumulative horizontal profile through impulses at three selected points for ModQPs with a 
parameter value of 0.01. Resolution is given in FWHM in Pixels at the three points. Responses have almost 
similar reconstructed resolution and non-linearity due to difference in activity concentration has almost been 
removed. 
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Secondly, the presence of 𝑘𝑘𝑗𝑗 𝐹𝐹−1 term indicates that there will be some asymmetry 

near the edges, where there are heavier data transitions due to the variance term [29]. 

Figure 4.11, presents horizontal profile through impulse responses at three locations inside 

our phantom. Responses are thinner as compared to QPs and have higher reconstructed 

resolution. Responses are also less non-linear and heavier smoothing due to the prior 

weighting has almost been recovered. Hence, modified QPs have an ability to recover for 

non-uniformity and non-linearity in the system response due to non-uniform activity 

concentration. However, edge preservation is a problem with QPs because there are higher 

pixel differences at edges and there is no obvious tuning method in the prior to locate edge 

differences. We present an alternate correction method for non-uniformly induced 

resolution with MAP estimators based on MRPs. 

4.7.2 Alternate Prior-based Correction Method 

LIR expression based on modified QPs corrects for interactions between data or 

likelihood term and the prior term by multiplying a local certainty based correction term 

with the prior. This correction term corrects for non-linearity induced by the differences in 

local activity concentrations at various locations inside the object. However, this modified 

prior function still contains QPs as the basic prior function and will pose a problem of 

overly smoothed edges. Non-quadratic priors may also be used; however, they will induce 

object dependent non-linearity to the response and would make the prior function non-

convex, hence adding to the ill-conditioning of the problem and, generally, need extra 

empirical tuning parameters. 

QPs suffer from underlying non-linearity in the local variance, whereas ModQPs try to 

correct for this local variance by including a correction term based on the local certainty. 

This non-linearity correction may also be induced using some non-linear prior function. 

This may add to the ill-conditioning of reconstruction problem and will need a compromise 

between the correction needed and further processing needed to solve the problem. We 

propose the use of MRPs as an alternate prior to develop a modified LIR [30;107].  
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Figure 4.12 (a): Resolution (shown 
as FWHM in pixs) at the center of 
the small discs of our phantom 
image reconstructed by PL-EM-MPs 
with two different parameter 
values. Resolution is almost 
uniform with lower parameter 
values whereas the responses are 
heavily smoothed out and have 
non-uniform response with higher 
values of the parameter which 
indicates high dependency of 
induced resolution on parameter 
values. 

 

 

(b): Response symmetry shown as 
contours at 99%, 75%, 50% and 
25% of the peak value at the center 
of the three disks for two 
parameter values. Responses are 
asymmetric and spread out with 
higher parameter value. 

 

MRPs will have non-linear response and are expected to correct for the local variance 

problem automatically. Also, they have a robust property of edge preservation, which will 

solve the problem of overly smoothed edges and, further, they need only a single parameter 

as QPs. Their main theoretical issue of having no analytically defined derivative may be 

solved by using their heuristic derivatives. Figure 4.12, presents results for an 

implementation of LIR with MRPs, in the form of response profiles and contour maps, for 

two different parameter values. Theoretically, MRPs drag the final image towards its 

monotonic version in a local neighborhood, which contains smoothness as a subset, and the 

prior is non-linear so we expect automatically higher response in regions having higher 

count level. In other words, correction between the likelihood term and prior term would 

automatically be taken care of, using MRPs as the prior function. Horizontal profile image 

for MRPs, Figure 4.12(a), shows that the response is almost independent of 𝛽𝛽 value, which 

is another advantage of using MRPs as an alternate prior function. Also, nonlinearity in 

responses, with different parameter values is corrected across the FOV in contrast to that of 

QPs. This supports our hypothesis that system response variations are expected to be 

lesser with MRPs. 
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Figure 4.13: Impulse responses shown at defined sub-sampled grid of pixels with mean and standard 

deviation for resolution values mentioned above each contour plot. 

Figure 4.13, presents results for an evaluation of LIR with MRPs for the same grid of 

points used in previous sections. Mean resolution in pixels and its standard deviation is 

given with each contour plot. Induced resolution is better as compared to the recovered 

resolution in case of QPs and almost uniform except near the edges. Similarly, error in the 

radius of the contour along all angles has been reduced. Contours are smaller and almost 

symmetric which resembles the results with that of ModQPs. This suggests that non-linear 

response of the median operator has recovered non-linearity due to varying activity and 

attenuation distribution, as expected. We selected a 𝛽𝛽 value of 1.0 x 10-2, however, because 

MRPs are not very sensitive to the parameter value, we found results with other parameter 

values almost similar. 

4.8 Further Priors Design 

Non-uniform smoothing behavior of QPs is more evident, especially in case of Poisson 

statistics, where variance equals mean of the measurements. Due to higher variance in high 

count regions resultant smoothing is higher and makes the ultimate response non-uniform 

across the FOV. On the other hand, MRPs have a non-linear behavior, robust ability to 

preserve edges and penalized image pixels with respect to the local median instead of 

neighborhood pixel differences [128]. This suggests a use of both the prior functions in 

some joint form. Consider LIR given by equation (4.4) as follows, 

 

𝑙𝑙𝑗𝑗 ≈ �𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �

+  𝛽𝛽�̈�𝑅(𝑓𝑓)�
−1

𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �

𝑠𝑠𝑙𝑙
2

𝑦𝑦𝑙𝑙
� 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑠𝑠𝑗𝑗 �𝑙𝑙𝑗𝑗  
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Hessian of the prior function �̈�𝑅(𝑓𝑓), in this relation, can be defined for QPs as follows, 

 

𝑅𝑅(𝑓𝑓) =
1
2

� � 𝜔𝜔𝑗𝑗𝑘𝑘 (∆𝑓𝑓)2

𝑁𝑁𝑏𝑏

𝑘𝑘=1

𝑗𝑗 =𝑀𝑀

𝑗𝑗 =1

 

�̈�𝑅(𝑓𝑓) =

⎩
⎨

⎧� 𝜔𝜔𝑗𝑗𝑘𝑘 𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 = 𝑘𝑘,

𝑁𝑁𝑏𝑏

𝑘𝑘=1
−𝜔𝜔𝑗𝑗𝑘𝑘 𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 ≠ 𝑘𝑘.

� 

 

However, for a hybrid type of prior function, we suggest use of the following prior form, 

 

𝑅𝑅𝑠𝑠𝑝𝑝 (𝑓𝑓) =
1
2

� �� 𝜔𝜔𝑗𝑗𝑘𝑘 (∆𝑓𝑓)2

𝑁𝑁𝑏𝑏

𝑘𝑘=1

+ 𝑔𝑔𝑙𝑙𝑎𝑎(𝑓𝑓𝑘𝑘 |𝑘𝑘 ∈ 𝑁𝑁𝑏𝑏 )�
𝑗𝑗 =𝑀𝑀

𝑗𝑗 =1

, 

 

and Hessian of this prior will be, 

 

 𝑅𝑅𝑠𝑠𝑝𝑝̈ (𝑓𝑓) =

⎩
⎨

⎧� 𝜔𝜔𝑗𝑗𝑘𝑘 + 1
𝑀𝑀𝑗𝑗

�  𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 = 𝑘𝑘,
𝑁𝑁𝑏𝑏

𝑘𝑘=1
−𝜔𝜔𝑗𝑗𝑘𝑘                      𝑓𝑓𝑔𝑔𝑟𝑟 𝑗𝑗 ≠ 𝑘𝑘.

� 

 
 
 

(4.7) 
 

In the relation above, 𝑀𝑀𝑗𝑗  is a median in a small local neighborhood vicinity of the 

pixel 𝑗𝑗.  Here, we made use of heuristic definition of the derivative of MRPs. Results for an 

implementation of this combined prior in LIR are shown in Figure 4.14. 

 

 
Figure 4.14: Accumulative horizontal profile through impulses at three selected points for CPs 
with a parameter value of 0.01. Resolution is given in FWHM in Pixels at the three points. 
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Responses have almost similar reconstructed resolution and non-linearity due to difference in 
activity concentration has almost been removed. 

This figure shows that response non-linearity has been reduced and the induced 

resolution is better distributed uniformly, however, the responses are broader as compared 

to MRPs or ModQPs. This might be due to non-linear behavior and penalization based on 

the median operation of MRPs. We used only one 𝛽𝛽 value of 1.0 x 10-2, however, it is 

possible to use two different values for both the priors to vary their weighting accordingly, 

towards the final solution. This will make the response properties more controllable and in 

between of QPs and MRPs. Further results are needed to look for any improvements it may 

provide however that will be out of the scope of this thesis. 

4.8.3 Certainty plus Prior-based Design 

Certainty based prior design is a kind of local correction applied to the response of the 

system in a local neighborhood. Basic idea for this correction is to use normalized 

backprojection of the local certainty, or the local activity as shown in the equation below. 

 

𝑙𝑙𝑗𝑗 ≈ 𝑘𝑘𝑗𝑗 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽�̈�𝑅(𝑓𝑓)�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑙𝑙𝑗𝑗  

 

Here 𝑘𝑘𝑗𝑗  is the correction term applied to the LIR to correct for local resolution control. 

For QPs, this relation simplifies to, 

 

𝑙𝑙𝑗𝑗 ≈ 𝑘𝑘𝑗𝑗 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽�̈�𝑅𝑞𝑞𝑝𝑝 (𝑓𝑓)�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑙𝑙𝑗𝑗  

 

Hessian of the prior term �̈�𝑅𝑞𝑞𝑝𝑝  is for the QPs. In case of MRPs this expression will 

become as follows, 

 

 𝑙𝑙𝑗𝑗 ≈ 𝑘𝑘𝑗𝑗 𝐹𝐹−1�𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔
𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 +  𝛽𝛽𝑅𝑅𝑀𝑀𝑅𝑅𝑃𝑃̈ (𝑓𝑓)�−1𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔

𝑡𝑡 𝐻𝐻𝑔𝑔𝑙𝑙𝑔𝑔𝑔𝑔 𝑙𝑙𝑗𝑗  (4.8) 
 

 We propose the use of MRPs, with certainty based correction method for non-uniform 

resolution recovery. Reasons for adding certainty based correction are two folds; first to 

include advantages offered by the prior based method and, second corrections offered by 

the certainty based method. However, it should be noted that we are still correcting for 

interactions between the data and the prior term, 𝐹𝐹−1�̈�𝑅(𝑓𝑓)𝐹𝐹−1, in LIR. 
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4.9 Application to tomography 

To check, if our proposed priors and developed MRPs-MAP estimators work for real 

data, a sinogram acquired on a GE Infinia Dual Head gamma camera, installed at Institute of 

Nuclear Medicine and Oncology, Lahore, (INMOL), Pakistan, was reconstructed using QPs 

and MRPs as shown in Figure 4.12 [196]. We acquired a point source containing an activity 

concentration of 200 𝜇𝜇𝐶𝐶𝑙𝑙 in 4 x 4 x 2 mm, was placed at approximately -85 mm off the 

centre along the x-axis. A sinogram was acquired with step and shot algorithm, at 25 cm 

radius, with 128 views over 180o around the point source, collecting 10 kCnts at each view 

with 128 x 128 image matrix size. A 2D sinogram acquired in 𝑥𝑥 and 𝑧𝑧 direction while 

keeping 𝑦𝑦 direction constant, and keeping the point source in focus, shown in Figure 4.12, 

was obtained in Interfile format. This 2D sinogram data, reconstructed with MLEM, PLEM-

QPs and PLEM-MRPs algorithms (as given in Appendix A), with resultant images is shown 

in the same figure. For each point source, reconstructed resolution in FWHM in pixels and 

in mm is shown with an estimated pixel size of 2.84 mm. We selected that value of the 𝛽𝛽 

parameter, which induced almost same resolution for MRPs and MLEM. 

  

 
Figure 4.15: A 2D sinogram obtained from a 3D SPECT sinogram data acquired from a point source, placed -80 
mm off the center, on a GE Infinia Dual Head Gamma Camera, with 128 views collected for 128 x 128 matrix 
size. 

 

These images show that QPs produced heavier blur due to strong smoothing 

behavior and point source was spread out more, whereas, for MRPs and MLEM this spread 

is the minimum. It should be noted that a diagonal elongation of the point source was due 

to the physical shape deformation of the point source prepared in a cotton swab. Results 

for another real PET data set are shown in Figure 4.16. This is a CTI EXACT PET Scanner 

emission data, which has been pre-corrected for randoms.  
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Figure 4.16: This figure shows real CTI EXACT PET sinogram data which is available for free use on J. A. Fessler’s 
home page. This is only the emission data pre-corrected for randoms. The data file has been resized to 128 x 
128 sinogram size or an easy use with our reconstruction routine. 

Transmission data is also available to apply the correction; however, we have only 

presented results for emission data without carrying out any correction to show an 

application of our reconstruction routine with real data. Actual size given for the emission 

sinogram was 47 slices of 160 x 192 pixels, however, we have resized this data into a 128 x 

128 sinogram by simple interpolation functions of Matlab to fit it for our reconstruction 

routine sizes. Four images, reconstructed by simple MLEM, QPs in MAP algorithm with 𝛽𝛽 

values of 1.0 x 10-6 and 1.0 x 10-5 and MRPs with 𝛽𝛽 value of 5.0 x 10-2, are shown in the 

bottom row. Top row presents sinogram data image at the center of the axial direction, 

which is 23rd slice of the data set out of 47 slices. A horizontal profile is also shown 

through the four reconstructed images at a height of 58 pixels. This profile image indicates 

that the four algorithms generate reasonable images from the data set with almost 

matching profiles. 

4.10 Noise Effect 

Noise properties of a reconstruction algorithm are closely related to their resolution 

characteristics [133;166]. Reconstruction methods may behave differently with noisy data 

and may be sensitive to the amount of noise in it. To assess this, we performed mean 

absolute error (MAE) test for different priors in MAP estimators to investigate their noise 

sensitivity by analyzing single pixel behavior near the center of the image as shown in  
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Figure 4.16. Altogether, 50 noisy sinogram realizations were generated by adding Poisson 

noise to our phantom image, with three different levels of total counts. We used a ‘holes’ 

phantom image shown in Figure 4.16. These noisy sinograms were reconstructed using 

QPs, MRPs and TV, and MAE for each noisy reconstruction was calculated by the following 

relation, 

 

 𝑀𝑀𝐴𝐴𝐸𝐸𝑙𝑙 =  �𝑓𝑓𝑙𝑙 − 𝑡𝑡� (4.9) 
 

Here 𝑀𝑀𝐴𝐴𝐸𝐸𝑙𝑙  represents the 𝑙𝑙 − 𝑡𝑡ℎ  mean absolute image, 𝑓𝑓𝑙𝑙  is the 𝑙𝑙 − 𝑡𝑡ℎ reconstructed 

noisy image and 𝑡𝑡 is the phantom image, with given total number of counts. 

 

 
Figure 4.17: Wholes phantom image with its sinogram image and a MLEM reconstructed image. MAE was 
calculated for a pixel at the center of the largest cold disc near the right corner of the center. 

 

MAE profile for an image pixel at the center of the largest cold disc inside the phantom 

for two different 𝛽𝛽 values and three different count levels is plotted in Figure 4.17. We 

increased the mean number of counts per pixel in the image, to observe an increase in per 

pixel variance.  

 
Table 4.2: This table presents MAE (%) for the same pixel averaged 
over 50 noisy realizations for three count levels and two 𝜷𝜷 values. 

 

 

 

 

 

 

 

 

 

𝜷𝜷 Value Counts QPs MRPs TV 

1.0x10-4 1.0x106 34.9 34.2 32.8 

 5.5x105 17.2 16.9 17.3 

 5.0x105 3.0 2.9 3.0 

     
5.0x10-4 1.0x106 37.5 34.2 42.2 

 5.5x105 18.1 16.9 19.1 

 5.0x105 3.0 2.9 3.0 
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Table 4.2, shows MAE values, for the same pixel, averaged over 50 noisy images. Three 

different noise levels have been used and an increased MAE can be observed for higher 

mean counts for the three priors.  

 

 
Figure 4.18: Plots showing MAE for the pixel at the center of the largest cold disc 
inside the phantom for three different variance levels. Top graph is for a 𝜷𝜷 value 
of 1.0x10-4 and the bottom plot is for 5.0x10-4. 

At low noise level and with both parameter values, all the priors have almost similar 

response. However, with higher noise, QPs and TV performed worse than MRPs for 

0

10

20

30

40

50

1 6 11 16 21 26 31 36 41 46

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

Noisy image number

MAE for noisy realizations

QP MP TV

0

10

20

30

40

50

60

1 6 11 16 21 26 31 36 41 46

M
ea

n 
A

bs
ol

ut
e 

E
rr

or
 (M

A
E

)

Noisy image number

MAE for noisy realization

QP MP TV



 
Chapter IV- Non-uniform Resolution Recovery   

Page 116 of 182 
 

increased 𝛽𝛽 value, as depicted by Figure 4.17. Table 4.2 indicates that MRPs have the most 

stable response as compared to the other priors, for various noise levels and 𝛽𝛽 values. 

Hence, response of MRPs is least sensitive to these effects. 

4.10.1 Iteration Based Noise Prorogation with MRPs 

There are two strategy used to analyze noise propagation in the reconstructed images. 

Fessler (1996), analyzed noise propagation in reconstructions computed at a fixed point 

for a class of objective functions [168]. However, another approach followed by Barrett and 

Wilson (1994), tracks noise in the reconstruction at each iteration [106;197]. We extended 

this approach to study noise statistics in reconstructions at a specified iteration number for 

MAP objective function, including MRPs. 

 

A brief derivation of the related theoretical expression to evaluate noise propagation at 

any selected iteration is given in this section. One-Step-Late (OSL) MAP-EM algorithm has 

been formulated in equation (2.24) [105], 

 

𝑓𝑓𝑗𝑗
𝑘𝑘+1 =

𝑓𝑓𝑗𝑗
𝑘𝑘

�∑ 𝐻𝐻𝑙𝑙𝑗𝑗
𝑀𝑀
𝑙𝑙=1 + 𝜕𝜕

𝜕𝜕𝑓𝑓𝑗𝑗
log 𝑝𝑝𝐹𝐹(𝑓𝑓𝑘𝑘 )�

�
𝑦𝑦𝑙𝑙

𝐻𝐻𝑙𝑙𝑗𝑗 𝑓𝑓𝑗𝑗
𝑘𝑘 𝐻𝐻𝑙𝑙𝑗𝑗

𝑀𝑀

𝑙𝑙=1

 

 

In vector notation we may express this algorithm as, 

 

 
𝒇𝒇𝑘𝑘+1 =

1

�𝒅𝒅 + 𝜕𝜕 log 𝑝𝑝𝐹𝐹(𝒇𝒇)
𝜕𝜕𝒇𝒇 �

𝒇𝒇=𝒇𝒇𝑘𝑘

𝒇𝒇𝑘𝑘 𝑯𝑯𝑡𝑡 �
𝒚𝒚

𝑯𝑯𝒇𝒇𝑘𝑘 � 
(4.10) 

 

With 𝒅𝒅 = 𝑯𝑯. 𝑯𝑯 and small-bold-face letters represent vectors and bold-capital-letters 

present matrices, whereas, normal-capital-letters represent random variables with bold 

face small letter or subscripted-small-letters as their deterministic realization vectors. 

Some special presentations, such as 𝑘𝑘 for iteration number, are explained in the context. 

 

4.10.1.1 Quadratic Priors (QPs) 

Now, as we know, derivative of log of QPs is 𝜕𝜕 log 𝑝𝑝𝐹𝐹 (𝒇𝒇)
𝜕𝜕𝒇𝒇

=  
∂(−𝑯𝑯

𝟐𝟐� 𝒇𝒇𝑯𝑯𝑹𝑹𝒇𝒇)
∂𝒇𝒇

=  −𝑹𝑹𝒇𝒇, equation 

(4.10) becomes, 
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𝒇𝒇𝑘𝑘+1 =
1

𝒅𝒅 − 𝑹𝑹𝒇𝒇𝑘𝑘 𝒇𝒇𝑘𝑘 𝑯𝑯𝑡𝑡 �
𝒚𝒚

𝑯𝑯𝒇𝒇𝑘𝑘 � 

 

To evaluate propagation of noise through iterations, we re-write the above equation in 

random variables as below, 

 

𝐹𝐹𝑘𝑘+1 =
1

𝒅𝒅 − 𝑹𝑹𝐹𝐹𝑘𝑘 𝐹𝐹𝑘𝑘 𝑯𝑯𝑡𝑡 �
𝐺𝐺

𝑯𝑯𝐹𝐹𝑘𝑘 � 

 

Here 𝐺𝐺 is considered to be a random detector measurement variable, for which 𝒚𝒚 is a noisy 

realization, because we are studying ensemble statistics over noisy measurements. Taking 

log on both sides and substituting 𝑌𝑌𝑘𝑘 = 𝑙𝑙𝑔𝑔𝑔𝑔 𝐹𝐹𝑘𝑘 , we get, 

 

 𝑌𝑌𝑘𝑘+1 = 𝑌𝑌𝑘𝑘 + 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝐺𝐺

𝑯𝑯𝐹𝐹𝑘𝑘 �� − log�𝒅𝒅 − 𝑹𝑹𝐹𝐹𝑘𝑘 � (4.11) 

 

We decompose random vector 𝐹𝐹𝑘𝑘  into mean image, or expectation 𝑯𝑯𝑘𝑘 , and deviation 

from mean 𝑵𝑵𝒇𝒇
𝑘𝑘 , where deviation has zero mean itself, then vector 𝑌𝑌𝑘𝑘 = 𝑙𝑙𝑔𝑔𝑔𝑔�𝑯𝑯𝑘𝑘 + 𝑵𝑵𝒇𝒇

𝑘𝑘 � ≅

𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘 +
𝑵𝑵𝒇𝒇

𝑘𝑘

𝑯𝑯𝑘𝑘 = 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘 + 𝑵𝑵𝒚𝒚
𝑘𝑘  with 𝑵𝑵𝒚𝒚

𝑘𝑘 =
𝑵𝑵𝒇𝒇

𝑘𝑘

𝑯𝑯𝑘𝑘 . This is based on the approximation that signal is 

much larger than noise in it, or 𝑵𝑵𝒚𝒚
𝑘𝑘 ≪ 1. Similarly, using mean operator 𝐺𝐺 = 𝑯𝑯𝒇𝒇 + 𝑵𝑵, 

where, 𝑵𝑵 is noise in the sinogram and 𝒇𝒇 is the phantom image, the second term in equation 

(4.11) becomes [197], 

 

𝑯𝑯𝑡𝑡 �
𝐺𝐺

𝑯𝑯𝐹𝐹𝑘𝑘 � = 𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇 + 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 + 𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 �

� 

= 𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇 + 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 �𝑯𝑯 −
𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 �
𝑯𝑯𝑯𝑯𝑘𝑘 �� 

≅ 𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 � + 𝑯𝑯𝑡𝑡 �
𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
[𝑯𝑯𝒇𝒇]�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ][𝑯𝑯𝑯𝑯𝑘𝑘 ] � 

𝑙𝑙𝑔𝑔𝑔𝑔 �
𝐺𝐺

𝑯𝑯𝐹𝐹𝑘𝑘 � = 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 � + 𝑯𝑯𝑡𝑡 �
𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
[𝑯𝑯𝒇𝒇]�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ][𝑯𝑯𝑯𝑯𝑘𝑘 ] �� 

≅ 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑯𝑯 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝒌𝒌�� +
𝑯𝑯𝑯𝑯 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝒌𝒌� − 𝑯𝑯𝑯𝑯 �
[𝑯𝑯𝒇𝒇]�𝑯𝑯�𝑯𝑯𝒌𝒌𝑵𝑵𝒚𝒚

𝒌𝒌��
[𝑯𝑯𝑯𝑯𝒌𝒌][𝑯𝑯𝑯𝑯𝒌𝒌] �

𝑯𝑯𝑯𝑯 � 𝑯𝑯𝒇𝒇
𝑯𝑯𝑯𝑯𝒌𝒌�

 

≅ 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 �� +
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
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And the third term in equation (4.11) may be evaluated as, 

 

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝐹𝐹𝑘𝑘 = 𝐜𝐜 − 𝛽𝛽𝑹𝑹�𝐚𝐚k + 𝑵𝑵𝒚𝒚
𝑘𝑘 � = 𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘 − 𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚

𝑘𝑘  

 

Taking log of both sides of these equations will be, 

 

𝑙𝑙𝑔𝑔𝑔𝑔�𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑹𝑹𝑘𝑘 � = 𝑙𝑙𝑔𝑔𝑔𝑔�𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘 − 𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚
𝑘𝑘 � ≅ 𝑙𝑙𝑔𝑔𝑔𝑔�𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘 � −

𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚
𝒌𝒌

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘  

 

Inserting these values into the equations (4.11), we get for QPs, 

 

𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘+1 + 𝑵𝑵𝒚𝒚
𝑘𝑘+1

= 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘 + 𝑵𝑵𝒚𝒚
𝑘𝑘

+ 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 �� +
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
− 𝑙𝑙𝑔𝑔𝑔𝑔�𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘 �

+
𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚

𝑘𝑘

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘  

 

Equating random and deterministic terms to each other on both sides, 

 

 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝒌𝒌+𝑯𝑯 = 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝒌𝒌 + 𝒍𝒍𝒇𝒇𝑯𝑯 �𝑯𝑯𝑯𝑯 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝒌𝒌�� − 𝐥𝐥𝐜𝐜𝐥𝐥�𝒅𝒅 − 𝜷𝜷𝑹𝑹𝑯𝑯𝒌𝒌� (4.12) 

 

and, 

 

 
𝑵𝑵𝒚𝒚

𝑘𝑘+1 = 𝑵𝑵𝒚𝒚
𝑘𝑘 +

𝑯𝑯𝑡𝑡 � 𝑵𝑵
𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �

�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 ��

[𝑯𝑯𝑯𝑯𝒌𝒌] �

𝒅𝒅
+

𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚
𝑘𝑘

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘  
(4.13) 

 

Equations (4.12) and (4.13) can be used to evaluate ensemble mean 𝑯𝑯𝑘𝑘 , by running 

noise free MAP-EM algorithm till 𝑘𝑘 iterations, from phantom image 𝒇𝒇. Further these 

equations present update linear relation to find noise propagation in the log of 

reconstructed image at iteration 𝑘𝑘. Because we do not know the noise 𝑵𝑵, in the sinogram 

these equations need further modifications to find the final noise expressions. Equation 

(4.13) can be re-arranged as follows, 
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 𝑵𝑵𝒚𝒚
𝑘𝑘+1 = 𝑩𝑩𝑘𝑘 𝑵𝑵 + [𝑪𝑪𝑘𝑘 − 𝑨𝑨𝑘𝑘 ]𝑵𝑵𝒚𝒚

𝑘𝑘 . (4.14) 
 

Where B, C and A, are implicitly defined matrices as, 

 

𝑩𝑩𝑘𝑘 𝑵𝑵 =
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 �

𝒅𝒅
 

𝑪𝑪𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 =

𝛽𝛽𝑹𝑹𝑵𝑵𝒚𝒚
𝑘𝑘

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘  

𝑨𝑨𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 =

𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
 

 

Using component notation for matrix multiplication and division as, 𝑯𝑯𝒃𝒃 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔(𝑯𝑯)𝒃𝒃 

and 𝑯𝑯 𝒃𝒃� = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �1
𝒃𝒃

� 𝑯𝑯, we can write matrices B, C and A for QPs as follows, 

 

 

𝑩𝑩𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1
𝒅𝒅

� 𝑯𝑯𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1

𝑯𝑯𝑯𝑯𝑘𝑘 � 

𝑪𝑪𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝛽𝛽𝑹𝑹

𝒅𝒅 − 𝛽𝛽𝑹𝑹𝑯𝑯𝑘𝑘 � 

𝑨𝑨𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1
𝒅𝒅

� 𝑯𝑯𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
1

𝑯𝑯𝑯𝑯𝑘𝑘 � 𝑯𝑯𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 � 
 

(4.15) 

4.10.1.2 Median Root Priors (MRPs) 

For MRPs we will obtain, 𝜕𝜕 log 𝑝𝑝𝐹𝐹 (𝒇𝒇)
𝜕𝜕𝒇𝒇

=  − (𝑓𝑓𝑗𝑗 −𝑀𝑀)
𝑀𝑀

= − � 𝒇𝒇
𝒎𝒎

� + 1, with 𝒎𝒎 as vector of 

medians and of length of the image vector, hence, equation (4.10) will become, 

 

 
𝒇𝒇𝑘𝑘+1 =

𝑯𝑯

𝒅𝒅 + 𝛽𝛽 �𝑯𝑯 − 𝒇𝒇𝑘𝑘

𝒎𝒎𝑘𝑘� �
𝒇𝒇𝑘𝑘 𝑯𝑯𝑡𝑡 �

𝒚𝒚
𝑯𝑯𝒇𝒇𝑘𝑘 � 

 

 

Indicating random variables with capitals and deterministic variables by small letters 

for image vector 𝑓𝑓  and data vector 𝑦𝑦 and taking log on both sides we get, 

 

 𝑌𝑌𝑘𝑘+1 = 𝑌𝑌𝑘𝑘 + 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝐺𝐺

𝑯𝑯𝐹𝐹𝑘𝑘 �� − 𝑙𝑙𝑔𝑔𝑔𝑔 �𝒅𝒅 + 𝛽𝛽 − 𝛽𝛽
𝐹𝐹𝑘𝑘

𝒎𝒎𝑘𝑘 � (4.16) 

 

Second term in the above relation would become, 
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𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 𝐺𝐺
𝑯𝑯𝐹𝐹𝑘𝑘 � = 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �

𝑯𝑯𝒇𝒇
𝑯𝑯𝑯𝑯𝑘𝑘 � + 𝑯𝑯𝑡𝑡 �

𝑵𝑵
𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �

[𝑯𝑯𝒇𝒇]�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 ��

[𝑯𝑯𝑯𝑯𝑘𝑘 ][𝑯𝑯𝑯𝑯𝑘𝑘 ] �� 

≅ 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 �� +
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
[𝑯𝑯𝒇𝒇]�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ][𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝑯𝑯𝑡𝑡 � 𝑯𝑯𝒇𝒇
𝑯𝑯𝑯𝑯𝑘𝑘 �

 

≅ 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 �� +
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
 

 

Third term will simplify to, 

 

(𝒅𝒅 + 𝛽𝛽) − 𝛽𝛽
𝐹𝐹𝑘𝑘

𝒎𝒎𝑘𝑘 = (𝒅𝒅 + 𝛽𝛽) − 𝛽𝛽 �
𝑯𝑯𝑘𝑘

𝒎𝒎𝑘𝑘 +
𝑵𝑵𝒚𝒚

𝑘𝑘

𝒎𝒎𝑘𝑘 � 

 

Taking log of this term, 

 

𝑙𝑙𝑔𝑔𝑔𝑔 �𝒅𝒅 + 𝛽𝛽 − 𝛽𝛽
𝐹𝐹𝑘𝑘

𝒎𝒎𝑘𝑘 � = 𝑙𝑙𝑔𝑔𝑔𝑔 �(𝒅𝒅 + 𝛽𝛽) − 𝛽𝛽 �
𝑯𝑯𝑘𝑘

𝒎𝒎𝑘𝑘 +
𝑵𝑵𝒚𝒚

𝑘𝑘

𝒎𝒎𝑘𝑘 �� 

≅ 𝐥𝐥𝐜𝐜𝐥𝐥 �(𝒅𝒅 + 𝜷𝜷) − 𝜷𝜷
𝑯𝑯𝒌𝒌

𝒎𝒎𝒌𝒌� −
𝑵𝑵𝒚𝒚

𝒌𝒌

�𝒅𝒅
𝜷𝜷� + 𝑯𝑯� 𝒎𝒎𝒌𝒌 − 𝐚𝐚𝐤𝐤

 

 

Putting these two values in equation (4.16) for MRPs, we get, 

𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘+1 + 𝑵𝑵𝒚𝒚
𝑘𝑘+1 = 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘 + 𝑵𝑵𝒚𝒚

𝑘𝑘 + 𝑙𝑙𝑔𝑔𝑔𝑔
�𝑯𝑯𝑡𝑡 �

𝑯𝑯𝒇𝒇
𝑯𝑯𝑯𝑯𝑘𝑘 �� +

𝑯𝑯𝑡𝑡 � 𝑵𝑵
𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �

�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 ��

[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
 

− 𝑙𝑙𝑔𝑔𝑔𝑔 �(𝒅𝒅 + 𝛽𝛽) − 𝛽𝛽
𝑯𝑯𝑘𝑘

𝒎𝒎𝑘𝑘 � +
𝑵𝑵𝒚𝒚

𝑘𝑘

�𝒅𝒅
𝛽𝛽� + 𝑯𝑯� 𝒎𝒎𝑘𝑘 − 𝑯𝑯𝑘𝑘

 

 

Equating random and non-random terms on both sides separately, we get, 

 

 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘+1 = 𝑙𝑙𝑔𝑔𝑔𝑔 𝑯𝑯𝑘𝑘 + 𝑙𝑙𝑔𝑔𝑔𝑔 �𝑯𝑯𝑡𝑡 �
𝑯𝑯𝒇𝒇

𝑯𝑯𝑯𝑯𝑘𝑘 �� − 𝑙𝑙𝑔𝑔𝑔𝑔 �(𝒅𝒅 + 𝛽𝛽) − 𝛽𝛽
𝑯𝑯𝑘𝑘

𝒎𝒎𝑘𝑘 � (4.17) 

 𝑵𝑵𝒚𝒚
𝑘𝑘+1 = 𝑵𝑵𝒚𝒚

𝑘𝑘 +
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 � − 𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
+

𝑵𝑵𝒚𝒚
𝑘𝑘

�𝒅𝒅
𝛽𝛽� + 𝑯𝑯� 𝒎𝒎𝑘𝑘 − 𝑯𝑯k

 (4.18) 
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and, equation (4.18) can be used to evaluate value of 𝑵𝑵𝒚𝒚
𝑘𝑘+1 using constants B, C and A, 

implicitly defined matrices as, 

 

𝑩𝑩𝑘𝑘 𝑵𝑵 =
𝑯𝑯𝑡𝑡 � 𝑵𝑵

𝑯𝑯𝑯𝑯𝑘𝑘 �

𝒅𝒅
 

𝑪𝑪𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 =

𝑵𝑵𝒚𝒚
𝑘𝑘

�𝒅𝒅
𝛽𝛽� + 𝑯𝑯� 𝒎𝒎𝑘𝑘 − 𝐚𝐚𝑘𝑘

 

𝑨𝑨𝑘𝑘 𝑵𝑵𝒚𝒚
𝑘𝑘 =

𝑯𝑯𝑡𝑡 �
�𝑯𝑯�𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 ��
[𝑯𝑯𝑯𝑯𝑘𝑘 ] �

𝒅𝒅
 

 

Using component notation for matrix multiplication and division as, 𝑯𝑯𝒃𝒃 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔(𝑯𝑯)𝒃𝒃 

and 𝑯𝑯 𝒃𝒃� = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �𝑯𝑯
𝒃𝒃

� 𝑯𝑯, we can write matrices B, C and A for MRPs as, 

 

 

𝑩𝑩𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑯𝑯
𝒅𝒅

� 𝑯𝑯𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑯𝑯

𝑯𝑯𝑯𝑯𝑘𝑘 � 

𝑪𝑪𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑯𝑯

�𝒅𝒅
𝛽𝛽� + 𝑯𝑯� 𝒎𝒎𝑘𝑘 − 𝐚𝐚𝑘𝑘

� 

𝑨𝑨𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑯𝑯
𝒅𝒅

� 𝑯𝑯𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑯𝑯

𝑯𝑯𝑯𝑯𝑘𝑘 � 𝑯𝑯𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �. 

(4.19) 

 

4.10.1.3 Noise Statistics 

Generally, a uniform image is used as a starting object for the MAP-EM algorithm, 

𝑵𝑵𝒚𝒚
0 = 0 and the recursive relation may be summed to yield, 

 

 𝑵𝑵𝒚𝒚
𝑘𝑘 = 𝑼𝑼𝑘𝑘 𝑵𝑵 (4.20) 

 

Where a 𝑀𝑀 ×  𝑁𝑁 matrix 𝑼𝑼𝑘𝑘  would satisfy the recursive relation below, and depends 

only on the deterministic parameters of the algorithm, such as system matrix, iteration 

number, noise free estimate and the object itself and its median image at each iteration. 

 

 𝑼𝑼𝑘𝑘+1 = 𝑩𝑩𝑘𝑘 + �𝑪𝑪𝑘𝑘 − 𝑨𝑨𝑘𝑘 �𝑼𝑼𝑘𝑘   𝑤𝑤𝑙𝑙𝑡𝑡ℎ 𝑼𝑼0 = 0 (4.21) 
 

Noise in the reconstruction at 𝑘𝑘 − 𝑡𝑡ℎ iteration depends on the noise in the sinogram 

through 𝑼𝑼𝑘𝑘  as, 
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𝑵𝑵𝒇𝒇
𝑘𝑘 = 𝑯𝑯𝑘𝑘 𝑵𝑵𝒚𝒚

𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �𝑵𝑵𝒚𝒚
𝑘𝑘 = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �𝑼𝑼𝑘𝑘 𝑵𝑵 

 

Given the Poisson nature of the emission process, random variable 𝐺𝐺 representing 

projection measurements, considered as independent Poisson distribution, and have 

mean 𝑯𝑯𝒇𝒇. The forward projection model may be given by 𝐺𝐺 = 𝑯𝑯𝒇𝒇 + 𝑵𝑵, where object 

dependent noise, 𝑵𝑵 has conditional mean zero. The conditional covariance matrix 𝑵𝑵 or 

𝐸𝐸[𝑵𝑵𝑡𝑡 𝑵𝑵|𝒇𝒇] is same as the conditional covariance matrix of 𝐺𝐺 which is 𝐸𝐸[(𝐺𝐺 − 𝐸𝐸[𝐺𝐺])(𝐺𝐺 −

𝐸𝐸[𝐺𝐺])𝑡𝑡 |𝒇𝒇]. It is a diagonal and symmetric matrix with 𝑙𝑙 − 𝑡𝑡ℎ diagonal element representing 

the covariance of 𝐺𝐺𝑙𝑙  or [106;197], 

 

𝐸𝐸[𝑵𝑵𝑡𝑡𝑵𝑵|𝒇𝒇] = 𝐸𝐸[(𝐺𝐺 − 𝐸𝐸[𝐺𝐺])(𝐺𝐺 − 𝐸𝐸[𝐺𝐺])𝑡𝑡 |𝒇𝒇] = 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔(𝑯𝑯𝒇𝒇) 

 

Now, the covariance matrix of 𝐹𝐹|𝒇𝒇 is also the covariance matrix of 𝑵𝑵𝒇𝒇
𝑘𝑘 |𝒇𝒇 or 

 

𝐶𝐶𝑔𝑔𝑣𝑣𝐹𝐹|𝒇𝒇
𝑘𝑘 = 𝐸𝐸 �𝑵𝑵𝒇𝒇

𝑘𝑘 �𝑵𝑵𝒇𝒇
𝑘𝑘 �

𝑡𝑡
|𝒇𝒇� 

= 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �𝐶𝐶𝑔𝑔𝑣𝑣𝑵𝑵𝒚𝒚|𝒇𝒇
𝑘𝑘 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 � 

= 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �𝑼𝑼𝑘𝑘 𝐶𝐶𝑔𝑔𝑣𝑣𝑵𝑵|𝒇𝒇
𝑘𝑘 �𝑼𝑼𝑘𝑘 �𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 � 

= 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �𝑼𝑼𝑘𝑘 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔(𝑯𝑯𝒇𝒇)�𝑼𝑼𝑘𝑘 �𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔�𝑯𝑯𝑘𝑘 �, 

 

and the (𝑙𝑙, 𝑗𝑗) − 𝑡𝑡ℎ element of this matrix will be, 

 

 �𝐶𝐶𝑔𝑔𝑣𝑣𝐹𝐹|𝒇𝒇
𝑘𝑘 �

𝑙𝑙𝑗𝑗
= 𝑯𝑯𝑙𝑙

𝑘𝑘 𝑯𝑯𝑗𝑗
𝑘𝑘 ��𝑼𝑼𝑘𝑘 �𝑙𝑙𝑔𝑔 �𝑼𝑼𝑘𝑘 �𝑗𝑗𝑔𝑔 [𝑯𝑯𝒇𝒇]𝑔𝑔

𝑔𝑔

 (4.22) 

 

Diagonal of this matrix represents the variance image reconstructed at the 𝑘𝑘 − 𝑡𝑡ℎ 

iteration. This equation gives the noise statistics of the algorithm with MRPs or the QPs 

with suitably calculated 𝑼𝑼 matrix. 

4.10.2 Monte-Carlo Validation of the Derivation 

We simulated large number of noisy images, for Monte-Carlo evaluation of mean and 

variance images, by applying a Poisson random number generator to the noiseless 

sinogram data. Sample mean of 𝑇𝑇 number of noisy images was evaluated at iteration 𝑘𝑘 as 

follows, 



 
Chapter IV- Non-uniform Resolution Recovery   

Page 123 of 182 
 

 

 
𝑹𝑹𝑘𝑘 =

1
𝑇𝑇

� 𝒇𝒇𝑡𝑡
𝑘𝑘

𝑇𝑇

𝑡𝑡=1

 (4.23) 

 

Whereas sample covariance was calculated by, 

 

 𝐶𝐶𝑔𝑔𝑣𝑣𝑘𝑘 =
1

𝑇𝑇 − 1
��𝒇𝒇𝑡𝑡

𝑘𝑘 − 𝑹𝑹𝑘𝑘 ��𝒇𝒇𝑡𝑡
𝑘𝑘 − 𝑹𝑹𝑘𝑘 �𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 (4.24) 

 

For theoretical noise statistics, we reconstructed noise free estimates 𝑯𝑯𝑘𝑘 of the object 

for various iteration numbers for 𝑙𝑙𝑡𝑡𝑙𝑙𝑟𝑟𝑎𝑎𝑡𝑡𝑙𝑙𝑔𝑔𝑙𝑙 = 1, … , 𝑘𝑘, and then evaluated 𝑼𝑼𝑘𝑘  using required 

parameters, such as system matrix 𝑯𝑯 and object 𝒇𝒇, to get the covariance matrix. A variance 

image is simply the main diagonal of the covariance matrix. The conditional mean is 𝑯𝑯𝑘𝑘  for 

the specific iteration number. 

To validate above relations, 100 noisy sinogram realizations have been generated, by 

inducing Poisson noise with 106 total counts, for our simulated phantom image. These 

sinograms were reconstructed by MAP reconstruction method using three priors for 30 

iterations and mean and variance images have been calculated. Figure 4.18 

 

 

 
Figure 4.19: Mote-Carlo mean and variance images for various priors with a parameter value of 
5.0x10-4 for QPs and MRPs and 1.0x10-4 for TV regularization. 

 

shows that mean images for QPs are smoothed out whereas smoothing is not so strong 

for MRPs and TV, with better edge definition with MRPs. Horizontal profiles through mean 
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images indicate a similar trend. MRPs present least smoothed mean profile. TV has also 

smoothed out the image more than MRPs, which may be due to the parameter 𝜂𝜂. Profiles 

through variance images, shown in Figure 4.19 for theoretical expressions, also indicate 

that MRPs behave better than other priors. Low variance level for QPs may be attributed to 

higher smoothing than better noise properties.  

4.11 Summary 

Tomographic imaging systems suffer from various image degrading effects. These 

effects cause response of these systems to be space-variant. Iterative methods have an 

ability to explicitly model these effects, as compared to the analytical methods; however, 

they lead to noisy images, because they consider information only based on noisy data. 

Implicit regularization techniques, added to these methods, can reduce this noise, but 

unluckily, have least resolution control [72;141;164]. MAP reconstruction algorithms are 

better suited to recover for this space-variance in response of the system, due to the 

application of an explicit form of regularization with prior object knowledge, which can also 

be used to reduce noise in the reconstructions and for better control over their 

reconstructed resolution and noise properties. Smoothing prior functions are commonly 

used in MAP algorithm; however, they have a notorious problem of anisotropic smoothing 

behavior [26].  

In this chapter, we have analyzed and compared reconstructed resolution and noise 

properties of various priors, included in MAP algorithm, with simulated and real data. 

Initial results, for hyper-parameter tuning, indicate that MRPs are less sensitive to the value 

of this parameter, as compared to the standard QPs and TV regularization. Further, our 

qualitative analysis with simulated thorax chest phantom data, suggests that MRPs perform 

better, in terms of correctness and preciseness, as compared to the other regularization 

priors and produce images close to MLEM, whereas, QPs and TV produce over smoothing 

and patchy effects. 

Resolution properties of the reconstructed images were evaluated in terms of 

response linearity, uniformity and symmetry for different priors with brute force empirical 

method and LIR analysis methods. MRPs have better linearity and uniformity of the 

response function and reconstructed resolution is less sensitive to the parameter value, 

though, various priors behave almost similar in terms of anisotropic smoothing 

characteristics, whereas blurring is the least for MRPs. LIR evaluations indicated that 

resolution is less non-uniform and with better recovered resolution, for MRPs as compared 

to QPs. The non-uniform resolution response is due to the non-uniform FIM in LIR. 
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Figure 4.20: Profile images through mean and variance images for QPs and MRPs using theoretical formulae. 

Certainty based correction method, developed for PLEM methods including QPs, was 

implemented to produce better responses with QPs and we developed a similar approach 

to introduce a simple prior based correction method, using MRPs. Non-linear response of 

MAP with MRPs helps in reducing non-linearity and non-uniformity in the spatial 

resolution characteristics of the reconstructed images. Extending this approach further, we 

suggested use of an average behavior of both QPs and MRPs in the form of Combined Priors 

(CPs). Results indicate that these hybrid priors have a response in between of median and 

quadratic priors. A combination of certainty based and prior based corrections has also 

been analyzed, with a conclusion that MRPs have an ability to compensate for non-uniform 

resolution with better correction for nonlinearity, non-uniformity, and asymmetry and 

parameter sensitivity. 

Noise analysis is, commonly, carried out for a fully converged solution or solution 

obtained after a specific number of iterations. To analyze behavior of MRPs with noisy data, 

we opted for iteration based analysis, because, these algorithms are generally run for a 
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certain number of iterations. Analytical expressions were derived for the propagation of 

noise through iterative process with MAP algorithm, including MRPs, after a certain 

number of iterations. These expressions were validated using Monte-Carlo methods, 

through an evaluation of mean and variance images. Results indicated that QPs have higher 

blurring effect than reducing the noise in the reconstructed images. In conclusions, if 

uniform resolution across the FOV is desirable, then MRPs, produce images with better 

quality and lesser system variations.  
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CHAPTER 5  

Partial Volume Correction 

A promising efficacy of emission computed tomography (ECT) is the ability to measure 

underlying tissue activity concentration. However, accuracy of measuring this activity is 

limited due to finite resolution capabilities of these imaging systems and resulting partial 

volume effect (PVE) [34;41;42]. Resolution properties of the reconstructed images are 

closely related to the ability, of the reconstruction methods and ultimately of the imaging 

system to recover for PVE. In previous chapter, methods have been proposed to recover for 

non-uniform reconstructed resolution. Here, we show an implementation of two very 

popular PVC methods, with MAP estimators. We present results of our proposed MRPs 

based, priors in MAP estimators and compare them with standard QPs [31]. 

5.1 Geometric Transfer Matrix (GTM) Method 

A very popular and vastly used method for PVC is due to Rousset et al. (1998) [41]. 

Certain variations of this method have been developed, however, their basic theme is still 

the same [38;169]. This method was initially developed for quantification of the brain 

images; however, it can be used for other body organs, too. This method uses three basic 

assumptions; (i) a linear transformation among mutually exclusive regions inside the 

object, (ii) homogenous activity concentration distribution inside a single region and (iii) a 

spatially-invariant system response. These assumptions are not natural; still this method 

results in relatively good recovery values for regional quantification, with linear 

reconstruction methods such as FBP [41]. This method is known as geometric transfer 

matrix (GTM) method and in the following we briefly describe the theory behind it. 

Suppose our object is divided into 𝑁𝑁 number of different tissue domains, represented 

by 𝐷𝐷𝑙𝑙 , (𝑙𝑙 = 1,2, … , 𝑁𝑁) and that the true activity concentration level, represented 

by 𝐴𝐴𝑙𝑙 , (𝑙𝑙 = 1,2, … , 𝑁𝑁) inside the 𝑙𝑙 − 𝑡𝑡ℎ domain is considered to be homogeneous within that 

domain or region. Then, activity concentration of the object 𝑓𝑓, being imaged is assumed to 

be a linear sum of all the activity concentrations within those regions, 
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 𝑓𝑓 = � 𝐴𝐴𝑙𝑙 𝑧𝑧𝑙𝑙

𝑁𝑁

1

 (5.1) 

 

In this equation, 𝑧𝑧 is 1, if the point of interest lies inside the 𝑙𝑙 − 𝑡𝑡ℎ domain, and 0 else 

where. Rousset proposed considering restricted domains to be convolved with the system’s 

PSF, instead of the whole image to obtain regional projections termed as regional spread 

functions (RSF) [41]. A regional projection 𝑅𝑅𝐿𝐿𝐹𝐹𝑙𝑙  of the 𝑙𝑙 − 𝑡𝑡ℎ  domain through the object 

can be thought of as a linear superposition of the true activity concentrations in all the 

regions. In this case, the mean observed activity concentration for a j−𝑡𝑡ℎ region or ROIj can 

be stated as; 

 

𝑅𝑅𝐿𝐿𝐹𝐹𝑗𝑗 = � 𝑤𝑤𝑗𝑗𝑙𝑙 𝐴𝐴𝑙𝑙

𝑁𝑁

𝑙𝑙=1

 

 

Matrix 𝑊𝑊 is called the geometric transfer matrix (GTM) and its elements 𝑤𝑤𝑙𝑙𝑗𝑗  represent 

activity transfer coefficients in region 𝑙𝑙 into another region 𝑗𝑗. Diagonal elements of this 

matrix represent self contamination of each region by its own activity concentration while 

off diagonal terms give inter-regional contamination. If matrix 𝑊𝑊 is known then the true 

activity concentrations vector 𝐴𝐴 may be recovered by inverting this matrix and solving the 

following equations. 

 

 
𝐴𝐴 = 𝑊𝑊−1𝑇𝑇 

𝑉𝑉𝑎𝑎𝑟𝑟 = (𝑊𝑊2)−1𝑉𝑉 
(5.2) 

 

Here 𝑉𝑉 is a vector representing the variance in each domain 𝐷𝐷𝑙𝑙  and 𝑇𝑇 is vector of 

measured mean activity concentrations and  𝐴𝐴 is a vector of true mean activities in all 

regions calculated using above equation. Elements of matrix 𝑊𝑊 can be estimated by the 

following method [198]. 

 

 𝑤𝑤𝑙𝑙𝑗𝑗 =
1
𝑁𝑁𝑗𝑗

�𝑅𝑅𝑂𝑂𝐼𝐼𝑗𝑗 ∙ 𝑅𝑅𝑙𝑙𝑠𝑠[𝑃𝑃𝑟𝑟𝑔𝑔𝑗𝑗(𝑅𝑅𝑂𝑂𝐼𝐼𝑙𝑙)]� (5.3) 

 

𝑅𝑅𝑂𝑂𝐼𝐼𝑙𝑙  is the image vector of the 𝑙𝑙 − 𝑡𝑡ℎ 𝑅𝑅𝑂𝑂𝐼𝐼 filled with unit activity, forward projected 

and then reconstructed back into an image. This reconstructed image is then multiplied 
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using dot product “• ” operator with a binary vector of the 𝑗𝑗 − 𝑡𝑡ℎ ROI. 𝑁𝑁𝑗𝑗  is the total number 

of pixels in the 𝑗𝑗 − 𝑡𝑡ℎ ROI. 

5.1.1 Digital Simulated Phantom 

We used our 128 x 128 pixels digital phantom image as shown in Figure 5.1 for our 

analysis, assuming 128 detector bins per view and 128 views over 180o, using pixel size 

equal to that of the detector bin, in parallel beam geometry. This phantom has two discs 

with low and high activity, termed as ROI1 and ROI3, embedded in a moderately active 

background disc, termed as ROI2, with a relative activity concentration ratio of 1.0, 2.0 and 

3.0, respectively. A much smaller region ROI4 with relative activity concentration of 4.0 

was added to observe PV effect, when object size approaches system’s reconstructed 

resolution. With inclusion of this small region our phantom was now able to compare the 

effect of PVE for different reconstruction algorithms, with varying sized objects and varying 

activity concentrations. Two larger discs were added to study the effect of varying activity 

concentration, as compared to the background on the PVE and the smaller disc was added 

to observe the effect of object size. This smallest disc also contains very high activity 

concentration as compared to the background and is expected to show the maximum PVE 

due to higher spill-over effects. Otherwise the phantom is almost same as described in the 

previous chapter for consistency. Image was segmented by intensity threshold method to 

define regions. This simulated phantom, with defined regions is shown in Figure 5.1. 

 

 
Figure 5.1: Digital simulated phantom used for PVC analysis with definition of ROIs (ROI 1, 2, 3 and 4 
from left to right). ROI 4 was added to observe the PV effect when object size approaches comparably to 
the system reconstructed resolution. Bottom row show reconstructed images of these ROIs. 

 

A simple PET system with line integral model, as discussed in Chapter 4, was used to 

evaluate activity recovery performance. We ignored any scattering or randoms, however, 
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evaluated recovery performance of MAP estimator with different priors with or without 

attenuation added and a Gaussian blur of 3.5 pixels FWHM was applied to the sinogram 

along the radial direction. Images were reconstructed with OSL-MAP versions of the QPs 

and MRPs. Two hyper-parameter values have been selected to have a very low and a 

reasonably high smoothing, at the center of the image. We also compared the performance 

in terms of Percentage Bias values for the estimated mean pixel activity concentration in a 

region, relative to the true values as defined by the following formula [38;198;199], 

 

 𝐵𝐵𝑙𝑙𝑎𝑎𝑠𝑠 (%) =
𝐴𝐴𝑙𝑙𝑠𝑠𝑡𝑡 − 𝐴𝐴𝑡𝑡𝑟𝑟𝑢𝑢𝑙𝑙

𝐴𝐴𝑡𝑡𝑟𝑟𝑢𝑢𝑙𝑙
 × 100 (5.4) 

 

Underestimated values will produce negative bias and overestimated values will result 

in positive bias. Small discs of radii of 15 pixels and 5 pixels have been placed inside the 

large elliptical background disc of radii 30 and 55. The smallest disc has a relative size of 

within 3 to 4 times of the system resolution. Other two discs are large enough and should 

show only a difference of the edge pixels. 

5.1.2 Activity Recovery Performance 

Figure 5.2 presents our results for an implementation of GTM method with QPs and 

MRPs in MAP estimators and compares activity recovery performance of these priors with 

line intersection length model. Without attenuation correction, recovered activities are 

heavily underestimated for all the discs and negative bias values were obtained from -25% 

to 70%, hence these results are not shown here. These very high bias values mean that, if 

attenuation correction is not performed, activity recovery will be heavily undermined.  

 

 
Figure 5.2: Activity recovery performance of QPs and MRPs in GTM method, with attenuation correction 
performed, for various disks defined in our digital phantom image. Vertical axis represents mean counts 
per pixel and error bars indicate variance in each region. 
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However, with attenuation correction applied for QPs, measured values show a spill-

out from the hot disc and spill-into the cold disc from the background disc, respectively. An 

accumulative effect, in the background disc is a spill out of the activity from this disc. In 

smaller hot disc, a heavier spill-out can be seen because of higher PVE due to its size 

comparable to the system FWHM. Similar behavior can be observed, in case MRPs; 

however, in the smallest hot disc recovery is better as compared to QPs. 

 
Table 5.1: Integrated activity values in various ROIs, represented as GTM 

 Cold Disc Background Hot Disc Small Disc 
Cold Disc 93.2 % 1.2 % 0.0 % 0.0 % 
Background 14.9 % 90.0 % 14.9 % 31.2 % 
Hot Disc 0.0 % 1.25 % 93.2 % 0.0 % 
Small Disc 0.0 % 0.4 % 0.0 % 79.0 % 

 

A typical GTM matrix is shown in Table 5.1 below for QPs with parameter value of 1.0 x 

10-4. For example, for background disc 90.0% of the activity remains inside the disc, 

whereas 1.2% spilled into the cold disc and 14.9% and 31.2% spilled into this disk from the 

hot disc and the small disc, respectively. Our modified priors (ModMRPs), defined in 

previous chapter, provided almost similar results for activity recovery performance, as 

depicted by Figure 5.3. There was one exception though, that both the modified priors have 

almost equal and higher sensitivity to 𝛽𝛽 value and produce highly underestimated values 

for the mean regional activities with higher parameter values. 

 

 
Figure 5.3: Activity recovery performance of ModQPs and ModMRPs in GTM method, for various disks 
defined in our digital phantom image, with attenuation correction performed. Vertical axis represents 
mean counts per pixel and error bars indicate variance in each region. 

5.2 %Bias and Noise Analysis 

Figure 5.4, presents results for Percentage Bias obtained using both the priors and 

with and without attenuation correction applied. 

Cold Disc Background Hot Disc Small Disc0

50

100

150

200

250

300

350

400
Reconstructed and Corrected Activity Values for ModQPs

M
ea

n
 C

o
u

n
t 

R
a
te

 

 

True
Corrected
Uncorrected

Cold Disc Background Hot Disc Small Disc0

50

100

150

200

250

300

350

400
Reconstructed and Corrected Activity Values for ModMPs

M
ea

n
 C

o
u

n
t 

R
a
te

 

 

True
Corrected
Uncorrected



 
Chapter V- Partial Volume Correction   

Page 132 of 182 
 

 

 
Figure 5.4: Bias (%) performance of QPs (top) and MRPs (bottom) applied in 

GTM method for various regions defined in our phantom image. 

 

Results are highly underestimated without the application of attenuation correction 

and bias values range from 25% to 70%, in negative, for various priors and 𝛽𝛽 parameter 

values. Hence, it is crucial to include attenuation correction, before any activity 

quantification is carried out. 

With attenuation correction performed, highest activity underestimation is in the 

smallest hot disc with QPs bearing a negative bias value of -17% which recovered to -15% 

after PVC. These low recovery factors are probably due to a very simple system matrix used 

and very low blur induced to the sinogram. However, MRPs performed better both in 

measured values before correction and after PVC applied. Almost similar behavior of both 

the priors is evident for other regions though values with QPs are much more sensitive to 

the parameter value. This is most probably due to the smoothing behavior of quadratic 

regularization. 
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Table 5. 2: Noise performance of QPs and MRPs with GTM 

 True Corrected Measured 
QPs    

Cold Disc 96    89 ± 11   111 ± 10 
Background 191  185 ± 5   172 ± 5 

Hot Disc 287  252 ± 13    263 ± 11 
Small Disc 382  280 ± 66    279 ± 51 

MRPs    
Cold Disc   96      89 ± 12    112 ± 11 

Background 191    194 ± 6    180 ± 5 
Hot Disc 287    267 ± 15    278 ± 13 

Small Disc 382    303 ± 78    300 ± 61 
    

 

Table 5.2, briefly presents noise performance of QPs and MRPs with GTM method for 

PVC. Mean recovered values are generated using 30 noisy realizations of the true phantom. 

Noisy sinograms were generated by adding Poisson noise to the true phantom sinogram, 

and finally the mean recovered regional activities along with their standard deviations 

were calculated as average of these 30 reconstructions. Recovered activity values are closer 

to the true values for MRPs as compared to the QPs except for the cold disc embedded in a 

relatively higher activity background disc. 

5.3 Discussion 

In this section, we presented our results for an implementation of various priors in a 

popular PVC method known as GTM. This method assumes that the object activity, as a 

whole, can be represented as a linear superposition of regional activities present inside the 

object, and uses an analytical simulator to evaluate regional spread functions and high 

resolution anatomical images to recover mean regional activity values. The assumption of 

linear superposition is not natural and only valid, till, we define mutually exclusive regions 

which make up, collectively, the whole image. For mutually non-exclusive regions the GTM 

will not be singular and noninvertible, hence, cannot be used to recover true activities. An 

implicit noise distribution has been taken into account in the original method, whereas, for 

comparison of various priors in MAP algorithm, we used, explicitly, Poisson noise, and our 

work differs here from simple FBP based GTM method [41]. This method assumes a 

stationary system response which is impractical, because, all real scanners have a spatially 

variant response [29]. However, it has been observed that this type of non-linearity will 

affect the results most, if correction for spatially varying detector response function (DRF) 

is included in the system matrix, which is not a problem in our experiments, because for 
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comparison of our priors, we assumed a very simple system model which ignores these 

corrections. Methods have been proposed to evaluate perturbed regional spread functions 

(pRSF), instead of RSF, to correct for space variant resolution response, though, the results 

are similar to simple GTM without DRFs correction. GTM method depends on matrix 

inversion to recover for true regional activities, whereas, any kind of matrix inversion 

amplifies the noise in the data and our results show the same. Error in recovered regional 

activity values increases as compared to the measured values for regional activity 

concentrations. Another very basic problem with this method is an increased 

computational complexity with an increase in the number of regions, in which the object is 

divided [33;38;39;41;172]. In our experiments, only four regions have been considered 

which is not very large. Some extensions of the method have been suggested to reduce the 

region size to a single pixel and to evaluate the method for PVC images, however, 

computational burden and size of the problem becomes huge and difficult to handle [173]. 

Another problem with this method is induced error due to segmentation and registration 

errors, which is not serious in our experiments because we used true definitions of the 

ROIs. 

Our results indicate that both, QPs and MRPs, can recover regional activity values, 

when used in MAP reconstruction methods for an implementation of GTM method. QPs 

produce more smooth images and, hence activity recovery performance of these priors is 

more sensitive to 𝛽𝛽 parameter values, as compared to MRPs. Recovered activity 

concentration is better in case of MRPs as compared to the QPs, which could be due to their 

better comparative edge preserving capability and lower or selective smoothing behavior. 

5.4 Statistical Methods for PVC 

A partial volume correction method based on statistical properties of the data has been 

developed by Aston et al., (2002) [42]. We implemented various priors in this statistical 

PVC method and compared relative performance of QPs and MRPs. Statistical PVC methods 

try to take into account the signal distribution and underlying noise structure. They have 

considered both correlated and uncorrelated noise structures under various noise 

distributions. They claim that their method is independent of the assumption of activity 

homogeneity in a particular region. They have shown relationship of their method to the 

GTM and Labbe’s methods for PVC. We will describe their derived method briefly in the 

following section with a 1D example. 
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Figure 5.5: A 1D example of statistical PVC method. This example is a modified version of example 
given by Aston et al. This figure shows different matrices and vectors used in 1D example. A line 
object is assumed having two hot spots over a background activity concentration. 

 

Suppose our imaged object is comprised of 𝑙𝑙 pixels and let 𝑃𝑃 be a 𝑙𝑙 ×  𝑙𝑙  matrix 

representing system point spread function (PSF). This matrix will be a symmetric Toeplitz 

matrix for a space-invariant symmetric system model. Define matrix 𝑅𝑅 as a binary matrix of 

size 𝑙𝑙 ×  𝑟𝑟 where 𝑟𝑟 is the number of mutually exclusive anatomical regions and 𝑇𝑇 as a 

𝑙𝑙 ×  𝑡𝑡 matrix defining different tissue classifications. Let 𝑏𝑏 be a 𝑙𝑙 ×  1 vector containing 

measured tracer concentration in each pixel. The resultant solution vector 𝑥𝑥 will be 𝑟𝑟𝑡𝑡 ×  1 

denoting true activity concentration in different classified regions [42].  If we assume a 

homogenous activity distribution, the partial volume problem can be formulated as, 

 

𝑃𝑃(𝑅𝑅 ⊗ 𝑇𝑇)𝑥𝑥 = 𝑏𝑏 

 

This relation can be rearranged as follows, 

 

(𝑅𝑅 ⊗ 𝑇𝑇)𝑥𝑥 = 𝑃𝑃−1𝑏𝑏 
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The last equation represents a linear relation and can be solved using standard linear 

methods such as conjugate gradient (CG) or weighted least squares (WLSQ) method. 

Weighted least squares method may be used to find weighted linear least square solution 

as below, 

 

 𝑥𝑥� =  �(𝑅𝑅⨂𝑇𝑇)𝑇𝑇𝑊𝑊(𝑅𝑅⨂𝑇𝑇)�−1(𝑅𝑅⨂𝑇𝑇)𝑇𝑇𝑊𝑊𝑃𝑃−1𝑏𝑏 (5.5) 
 

Measurement variance can on the estimated activity values is then given by, 

 

 𝑣𝑣𝑎𝑎𝑟𝑟(𝑥𝑥�) =  
�(𝑅𝑅⨂𝑇𝑇)𝑇𝑇𝑊𝑊(𝑅𝑅⨂𝑇𝑇)�−1�(𝑅𝑅⨂𝑇𝑇)𝑥𝑥 − 𝑃𝑃−1𝑏𝑏�𝑇𝑇𝑊𝑊�(𝑅𝑅⨂𝑇𝑇)𝑥𝑥 − 𝑃𝑃−1𝑏𝑏�

𝑙𝑙 − 𝑟𝑟𝑡𝑡
 (5.6) 

 

Here, weighting matrix 𝑊𝑊, is inverse of the covariance matrix. A 1D problem with its 

solution is shown in Figure 5.5. For experimental purposes, we implemented this method in 

2D for our given phantom image and the results have been presented for different priors in 

the next sections with line intersection length model. We used a point spread function, as a 

2D Gaussian distribution with FWHM equal to the FWHM of our blurring function, used to 

blur the sinogram data. However, we split this PSF into 𝑥𝑥 and 𝑦𝑦 directions into two PSF 

matrices defining x-direction and y-direction components [42]. 

5.4.3 Activity Recovery Performance 

Figure 5.6, presents results for an implementation of statistical PVC method with QPs 

and MRPs in MAP reconstruction methods and compares activity recovery performance of 

these priors with line intersection length model.  

 

 
Figure 5.6: Activity recovery performance of QPs and MRPs in Statistical PVC method, with attenuation 
correction performed, for various disks defined in our digital phantom image. Vertical axis represents 
mean counts per pixel and error bars indicate variance in each region. 
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Without attenuation correction, recovered activities are heavily underestimated for all 

the discs and negative bias values were obtained from -25% to -65%, hence these results 

are not shown here. These very high bias values mean that activity recovery is heavily 

undermined, if attenuation correction is not performed. 

However, with attenuation correction applied, for QPs, measured values show a spill-

out from the hot disc and spill-into the cold disc from the background disc, respectively. An 

accumulative effect, in the background disc, is a spill-out of the activity from this disc into 

the cold disc. In smaller hot disc, a heavier spill out can be seen because of higher PVE due 

to its size comparable to the system FWHM. Similar behavior can be observed in case of 

ModMRPs, as shown in Figure 5.7, and again in the small hot disc recovery is better as 

compared to the ModQPs. 

 

 
Figure 5.7: Activity recovery performance of ModQPs and ModMRPs in Statistical PVC method, with 
attenuation correction performed, for various disks defined in our digital phantom image. Vertical axis 
represents mean counts per pixel and error bars indicate variance in each region.  

5.4.4 Bias and Noise Analysis 

Figure 5.4, presents results for Percentage Bias obtained using both the priors and 

with and without attenuation correction applied. Results are highly underestimated 

without the application of attenuation correction and bias values range from 25% to 70%, 

in negative, for various priors and beta parameter values.  

Hence, it is crucial to include attenuation correction, before any activity quantification 

is carried out, even with statistical PVC methods. Highest activity underestimation is in the 

smallest hot disc with a negative bias value of -17% which recovered to -14% after PVC in 

case of QPs. However, MRPs performed better both in measured values before correction 

and after PVC applied with -12% to -10% bias values. For other two discs of moderate size, 

there is a very small underestimation of activity in the measured values with MRPs and it is 

corrected very well with PVC, however, with QPs there is small amount of error which is 

certainly corrected, though. For QPs, the image is more smoothed and, hence, results in 
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more PVE. In both QPs and MRPs, the background disc shows some overestimation, which, 

after correction gets worse. Similarly, QPs are more sensitive to the parameter value, 

expectedly. 

 

 
Figure 5.8: Bias (%) performance of QPs (top) and MRPs (bottom) applied in statistical PVC method for 

various regions defined in our phantom image. 

 

Table 5.3, briefly presents noise performance of QPs and MRPs with GTM method for 

PVC. Mean recovered values are generated using 30 noisy realizations of the true phantom. 

Noisy sinograms were generated by adding Poisson noise to the true phantom sinogram 

and finally the mean recovered regional activities were calculated as average activities of 

these 30 reconstructions and errors presented are variance of these 30 generated values. 

Recovered activity values are closer to the true values, for MRPs as compared to QPs, 

except for the cold disc embedded in a relatively higher activity background disc, where, 

recovered activity gets worse than the measured one due to the surrounding higher 

activity. 
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Table 5.3: Noise performance of QPs and MRPs with Statistical Methods 

 True Corrected Measured 
QPs    

Cold Disc   96 116 ± 11 111 ± 10 
Background 191 180 ± 5 172 ± 5 

Hot Disc 287 272 ± 13 263 ± 11 
Small Disc 382 291 ± 66 279 ± 51 

MRPs    
Cold Disc   96 116 ± 12 112 ± 11 

Background 191 187 ± 6 180 ± 5 
Hot Disc 287 288 ± 15 278 ± 13 

Small Disc 382 311 ± 78 300 ± 61 
    

 

5.4.5 Discussion 

In this section, we presented our results for an implementation of various priors in 

statistical PVC method. These methods have been developed within a mathematical 

framework to include point spread effect and the tissue fraction effect, while considering 

statistical nature of the underlying assumptions about noise and data structure. A 

derivation of the estimation of regional concentrations and associated error estimations 

are presented in a weighted least squares framework. Similar to GTM, these statistical 

methods also get complicated with an increase in the number of tissues defined or the size 

of the image considered, though, not in mathematical complexity but in terms of the 

computational and storage requirements [37;41;42]. Accuracy of the tissue segmentation 

and registration process has an ultimate say on the accuracy of the final result and its 

variation, which is a problem with all other methods using structural definitions of the 

regions. 

This method can accommodate non-stationary system response of the real scanner in 

the form of a PSF matrix. Though, PSF has a crucial effect on the implementation speed of 

the method and due to low memory available with PCs a separable model of the PSF has 

been considered, where this effect was separated in 𝑥𝑥 and 𝑦𝑦 directions. This separable-

ability assumption provided an implementation ease and faster speed whereas did not 

produce much larger error. As mentioned above, non-linearity and space-variance will 

affect the results, if DRF is included in the system matrix [28;42]. Authors claim that their 

method does not depend on the assumption of regional activity homogeneity; however, this 

was not a concern in our assessment of the prior functions performance because we used 

simulated data for validation with truly defined regions.   
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Our results indicated that both the QPs and MRPs can recover regional activity values, 

when used in MAP reconstruction methods and then applied in statistical PVC methods. 

QPs produce more smooth images and, hence, activity recovery performance of these 

priors is more sensitive to the beta parameter values as compared to MRPs. Recovered 

activity concentration is better in case of MRPs, as compared to QPs which could be due to 

their better comparative edge preserving capability and lower or selective smoothing 

behavior. 

5.5 Summary 

Partial volume error is a direct consequence of limited resolution capabilities of the 

imaging systems. These resolution characteristics are also non-uniform across the spatial 

span of the system and undermine activity recovery performance of the reconstruction 

algorithms. MAP algorithms provide us with a way to control resolution properties through 

the prior term. In this chapter, we used two popular PVC methods to evaluate performance 

of various priors in MAP algorithm. The simulated phantom, used in the previous chapter, 

was used for activity recovery performance, of various priors to evaluate effect of spatial 

activity distribution and its concentration. 

Images, reconstructed with QPs and MRPs in MAP algorithm, were evaluated for PVE 

recovery with GTM method. Our results indicate that these priors have an ability to recover 

PVE, with GTM method, while it was concluded that attenuation correction has a critical 

effect on the recovered values and should be performed before the application of GTM 

method. PVE was mainly due to spill-over from the higher activity regions into the low 

activity areas with lesser effect due to PSF effect, because of a simple system model used. In 

larger objects, PVE was mainly due to the edge pixels effect, whereas, in small sized object it 

was due to spill-over from higher activity concentration regions. This PVE was corrected by 

MAP estimators including various priors, however, MRPs performed better, or at least, 

equivalent to QPs in different situations. Similarly, we used statistical PVC methods to 

recover for PVE using images reconstructed by MAP algorithms, including various priors. 

These methods take account of the statistical nature of the data and performed reasonably 

well with the suggested priors. For larger objects PVE is very low and, hence the recovery, 

whereas for small objects significant error is caused by the PVE and needs careful 

correction techniques to be applied. 
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CHAPTER 6  

List-Mode Reconstruction Methods 

Histogram data is collected in a predefined number of bins in commonly used 

tomographic imaging systems and then reconstructed using sinogram based reconstruction 

methods. However, in some systems, such as high resolution research tomograph (HRRT), 

data is collected as a list of events with different attributes recorded for each event. In such 

systems, list-mode reconstruction methods are more favorable than the sinogram based 

reconstruction methods, especially when low count studies are being performed [181]. 

List-mode data are expected to give better quality images, in low count studies, due to the 

availability of further redundant data information [155;181;199]. In this chapter, we 

present an implementation of our proposed priors in MAP algorithms with list-mode data. 

We contribute towards an assessment of resolution properties of list-mode image 

reconstruction methods, through an investigation of impulse response function, in MAP 

methods with our proposed Median Root Based (MRP) priors and have compared our 

results with standard QPs [184]. We show that better resolution can be recovered with 

these priors, whereas, QPs produce overly-smoothed images even with list-mode data. We 

also present results for Combine Priors (CPs), for better user controlled resolution 

characteristics and noise resolution trade-off with results for non-uniform resolution 

recovery techniques. 

6.1 Introduction 

Higher sampling capabilities of modern imaging systems increasingly require a 

continuous effort to develop new data collection and imaging techniques. For the last few 

years, total number of crystals in PET tomographic system has increased many folds [176-

178;183;184]. There is a proportional increase in the number of lines of response (LORs) 

for these systems and, hence, requires an exhaustive enhancement in the computational 

and storage capabilities of these systems. An alternative, to standard histogram 

reconstruction methods is the use of List-Mode acquisition and reconstruction techniques 
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to compensate for this increase in the available data [154;181]. Conventional PET systems 

inherently histogram their acquired data into a predefined number of sinogram bins which 

is only a feasible method of data collection until the number of lines of response (LORs) 

does not exceed total number of collected events. This is generally not true when low count 

studies are performed or not feasible where the number of events in each bin is very close 

to or less than one. List-mode data collection method is a preferred option in this situation, 

where collected events are inserted into a long sequential list according to their 

occurrences in time, along with their other useful information. This data collection method 

potentially reduces the size of data storage and always has an option of converting latter, if 

required, the collected data back into the sinogram mode. This always offers a chance to 

record additional and more accurate information regarding each event, which can be 

exploited latter during the image reconstruction process. List-mode reconstruction has 

certain other advantages, too, over histogram reconstruction methods, which includes 

faster reconstruction and more accurate data information for spatial location and angular 

position [176]. 

We present an evaluation of resolution properties of list-mode reconstruction 

methods, in this chapter, with an emphasis on LIR investigations in MAP reconstruction 

methods and use of different priors, specially our proposed priors based on median. No 

such effort has been done before, as of our knowledge, to understand resolution properties 

of list-mode reconstruction methods using some analytical expression of this kind. We also 

present a comparison of standard QPs with our proposed MRPs. A further analysis of 

response symmetry along with resolution properties has been presented using both 

noiseless and noisy data. These results can help in deeper understanding of the behavior of 

list-mode reconstruction methods and resolution properties of their reconstructed images 

which consequently will help making different image processing tasks, such as image 

comparison, registration or segmentation easier. We used simulated phantom data to do 

our analysis. This phantom is the same phantom image we used in previous chapters. 

6.2 List-Mode Data Simulation 

Our digitally simulated phantom image, used in this analysis, has the same shape and 

activity levels used for non-uniform resolution compensation and partial volume recovery 

analysis, for consistency of our results. Descriptively, a cold (having lower activity as 

compared to the background) and a hot disc, of radii 15 pixels, are embedded in an 

elliptical background disc, with radii 30 and 55 pixels. Activity concentration ratio is same 

as 1.0, 2.0 and 3.0 in the cold, background and hot disc, respectively. Figure 6.1 presents 
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this phantom; however, in this chapter we simulated our phantom by generating 1M list-

mode events instead of using histogram data simulation scheme [154]. Data simulation 

algorithm for this phantom may be summarized as follow, 

 Using Matlab’s Random Number generator function “rand()”, a set of 

random points inside a rectangle, centered at origin (0, 0), were simulated, 

tightly inscribing the bigger ellipse of our phantom, having the same radii of 

size 30 and 55 pixels. Further, points outside of the ellipse and inside the 

small discs of radii 15 pixels were eliminated by rejection technique. 

Average activity concentration per pixel in this case was assumed to be 1.0. 

 Again, we generated random points inside two squares inscribing the two 

small circles (Discs) and rejected those points lying outside of these circles 

by rejection technique. The number of simulated events was selected such 

that the relative activity concentration per pixel in left circle (Cold Disk) 

was half of the background ellipse and double in the right hand circle (Hot 

Disk) as compared to the background disc. 

 

 
Figure 6.1: A list-mode phantom image (top right) generated by 
1,000,000 simulated events with two small discs having activity 
concentration ratio of 0.5:2 inside an elliptical shaped background 
disc with a relative activity concentration of 1.0. Image on the top left 
depicts simulation of a random event with its detection coordinates as 
line along with many other locations represented by asterisks. The 
bottom image shows a horizontal profile through the phantom at the 
centre. 
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 These two random point sets were merged to the points of the bigger ellipse 

to describe emission locations inside our simulated phantom and then 

normalized to 1M counts. This simulated digital phantom image is shown in 

Figure 6.1. 

 To simulate random events, along with their emission locations simulated 

above, inside the assumed detector ring of radius 150 pixels, we generated 

normally distributed random angles, from – 𝜋𝜋/2 𝑡𝑡𝑔𝑔 𝜋𝜋/2, and assigned a 

random angle from this list to each emission point in our data list. Based on 

these emission points and random angles, two points (𝑥𝑥1, 𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2) 

were calculated as opposing detection locations, on the bigger circle, 

simulating our detector ring, using simple geometry. A typical simulated 

event is shown in Figure 6.1 with a line representing the LOR and a small 

circle indicating its emission point inside the phantom. 

A file containing long list of event attributes, including two detection points, in form of 

their spatial coordinates, and an assigned angle was an output of the simulation algorithm. 

For histogram data representation, we divided the whole data of 1M counts into 16,384 

LORs (i.e., 128 bins per view by 128 views over 180o) and detection probability of each 

event was calculated with respect to its own LOR in which it falls. A part of the list 

containing few events and their attributes is shown in Figure 6.2. 

 

 
Figure 6.2: List mode data simulation and data list. First row indicates the total 
number of events and from the second line onward each column in every row 
gives attributes of that event. 

Few other researchers have used histogram mode data, converted into a list of events, 

for list-mode reconstruction; however, we more strictly simulated our data in list-mode 
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manner by generating a list of events with their attributes, though, for a very simple 2D 

elliptical phantom and circular PET system model [154;181]. It should be noted that reason 

to use simulated data was an almost no access to the list-mode data from a real scanner.  

Also, it was much easier to manipulate simulated list-mode data as compared to the real 

data for our comparative analysis. 

6.3 List-Mode Reconstruction Methods 

In analytical reconstruction methods, BPF (Back Projection Filtering) is the most 

suitable algorithm for list-mode data reconstruction [154;176;200]. List-mode events can 

be back projected and the final image may be post-filtered. These methods are being used 

even before the list-mode acquisition became popular. However, being an analytical 

reconstruction method, it uses Fourier Transform and needs complete data to operate 

upon, which may not be available in 3D acquisitions [78;151;191]. There are few 

exceptions, where certain solutions have been proposed to generate this data, for example 

by forward projecting the initially reconstructed image [191]. List-mode data seems to be 

more appropriately handled by statistical reconstruction methods, due to its count based 

nature and for exploitation of full list of benefits assumed to be provided by this type of 

measurements. 

 If, our object is subdivided into 𝑁𝑁 number of pixels �𝑓𝑓𝑗𝑗 |𝑗𝑗 = 1, . . , 𝑁𝑁� containing 𝑓𝑓𝑗𝑗  

number of expected events, from 𝑗𝑗 − 𝑡𝑡ℎ pixel, which are to be estimated from 𝑀𝑀 number of 

total recorded events with their attributes given, then List-Mode Likelihood Expectation 

Maximization (LM-EM) reconstruction method can be expressed mathematically as follows 

[177;199], 
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(6.1) 

 

 Here, 𝑥𝑥𝑗𝑗
𝑘𝑘  is the 𝑗𝑗 − 𝑡𝑡ℎ pixel update at the 𝑘𝑘 − 𝑡𝑡ℎ iteration, 𝑝𝑝𝑙𝑙𝑙𝑙 𝑗𝑗  defines detection 

probability of an event emitted at 𝑗𝑗 − 𝑡𝑡ℎ pixel and detected along the 𝑙𝑙 − 𝑡𝑡ℎ LOR, along 

which that event is expected to be detected, and 1 is a unit row vector of size 𝑁𝑁 𝑥𝑥 1. A 

dummy variable 𝑗𝑗′  is used to evaluate forward projection for 𝑁𝑁 pixels and 𝑠𝑠𝑗𝑗  is a row vector 

defining sensitivity image, for the 𝑗𝑗 − 𝑡𝑡ℎ pixel, which sums the probabilities over all the 

LORs, also including those one with no counts detected. Though, various derivations have 
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been proposed for List-Mode MAP-EM reconstruction methods, here we simply adopt an 

approximate form resembling to that of the OSL-algorithm proposed by Green (1996), as 

follows [105], 
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 (6.2) 

 

This relation is same as the relation (6.1) with an inclusion of the term 

�𝜕𝜕𝑉𝑉 (𝑥𝑥 𝑘𝑘 )
𝜕𝜕𝑥𝑥

�
𝑥𝑥=𝑥𝑥𝑘𝑘

 which defines first order derivative of the current image update 𝑥𝑥𝑘𝑘  at 𝑘𝑘 −

𝑡𝑡ℎ iteration, and evaluated w.r.t 𝑥𝑥𝑗𝑗 . Several methods have been proposed to produce images 

with edge-preserving priors, however, either they are based on high level segmentation 

techniques [117;134;201] or by inclusion of some additional-functional [110;117;135]. In 

this work, we propose the use of MRPs in List-Mode MAP reconstruction algorithm, to 

perform robust and automatic edge preservation. There are several possible ways to take 

account of any image degrading effects in list-mode image reconstruction methods. 

However, system matrix factorization is very popular and suitable method to include these 

effects into the system modeling [23]. We may decompose system matrix 𝑃𝑃, into 𝑃𝑃 = 𝑊𝑊𝐺𝐺, 

where 𝐺𝐺 represents system geometric model, and 𝑊𝑊 could be a diagonal matrix, having 

terms 𝑤𝑤𝑙𝑙𝑗𝑗 , including variations due to attenuation and normalization etc. With this 

factorization, the reconstruction algorithm will become [154], 
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 (6.3) 

 

Here, 𝑤𝑤𝑙𝑙𝑙𝑙  is a diagonal matrix and may contain attenuation or normalization correction 

terms on its diagonal. It may also include other effects such as crystal penetration effects; 

however, that would reduce its sparseness a lot and will burden the computational 

resources. 

6.4 List-Mode Impulse Response Function 

In previous chapters, we discussed LIR expression to evaluate local resolution 

properties of histogram data acquisition mode. Though, in case of list-mode data, this 

expression may be evaluated from abio-initio as in [178], our experience with the following 

expression, given in equation (6.4), has shown its approximate validity for list-mode data. 
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Another reason, to use the same function, is to have better experience of its implementation 

and to reuse our developed code for implementation and analysis. 
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We used this expression, in previous chapters, for histogram data and there are few 

points to be considered for its implementation with the list-mode data.  At first we have to 

decide for correct formulation of the variance term 𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 �
𝑠𝑠𝑙𝑙𝑙𝑙

2

𝑦𝑦𝑙𝑙𝑙𝑙
� |𝑙𝑙=1,…,𝑀𝑀 𝑎𝑎𝑙𝑙𝑎𝑎  𝑙𝑙=1,..,𝐿𝐿𝑂𝑂𝑅𝑅𝑠𝑠  in list-

mode case, where 𝑠𝑠𝑙𝑙𝑙𝑙 ′𝑠𝑠 are the attenuation correction terms for the 𝑙𝑙 − 𝑡𝑡ℎ LOR along which 

the 𝑙𝑙 − 𝑡𝑡ℎ event occurred and, similarly, 𝑦𝑦𝑙𝑙𝑙𝑙  are the measurements in the sinogram space 

converted from the event list by approximating measurement mean along 𝑙𝑙 − 𝑡𝑡ℎ LOR and 

for 𝑙𝑙 − 𝑡𝑡ℎ event. If no attenuation correction is applied and data are such that value of 

𝑦𝑦𝑙𝑙𝑙𝑙 ≅ 1 or we use a large number of LORs so that in each LOR we have approximately one 

event collected, then the variance term may be ignored, the response function would 

simply be expected to behave almost stationary and a major cause of the non-uniformity 

would vanish. However, in case of our data, we need to include variance term along the 

LOR, because our data have events along each LOR much larger than 1. The form of our 

implemented Impulse Response Function is, 
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Secondly, heart of the expression, is the term 𝐻𝐻𝑡𝑡𝑎𝑎𝑙𝑙𝑎𝑎𝑔𝑔 � 1
𝑦𝑦𝑙𝑙

� 𝐻𝐻, which needs to be 

evaluated event by event for list-mode data and not by LOR, as in sinogram data. However, 

this form of the term also suggests that, if we convert list-mode data into sinogram, the 

same algorithm which was applied to histogram mode can also be used to evaluate this 

expression. Hessian of the prior term �̈�𝑅(𝑓𝑓) can be obtained by choosing a specific prior 

distribution. We used both QPs and MRPs in our analysis of the impulse response function 

for list mode data. 

6.5 Impulse Response Evaluation 

In the following sections, we present our results for an implementation of LIR with 

different priors in LM-MAP reconstruction methods. Impulse response function given in 
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equation (6.5) is a linear system of equations; hence, we opted for second choice 

mentioned above and used Conjugate Gradient (CG) method to obtain impulse responses. 

6.5.1 Implementation of QPs and MRPs 

 Impulses at three specified points have been shown with induced resolution in FWHM 

in pixels in Figure 6.3, which displays impulse responses for QPs. In cold disc, resolution is 

better as compared to the resolution in the hot disc where it is poor. Higher activity has an 

over smoothing effect which broadens the impulses in the higher count region. Also, 

obtained values are non-uniform at the three locations, which mean non-uniform 

reconstructed resolution. Spatial activity distribution has produced this effect, through, an 

anisotropic smoothing. 

 

 
Figure 6.3: This image shows results of an implementation of LIR with QPs at the three specified points 
inside our phantom. The impulses show that with QPs, reconstructed resolution is non-uniform at the 
three points which presents space-variance and effect of activity variation. 

 

Similarly, Figure 6.4 shows results for MRPs for the same 𝛽𝛽 value of 0.01 as for QPs and 

responses are thinner as compared to QPs. Non-linear response in case of QPs at the three 

locations has also been corrected as the responses are almost similar in height. 

Reconstructed resolution is still non-uniform, however, non-uniformity is lesser as 

compared to QPs and heavier smoothing in the high count region has also been recovered 

with reconstructed resolution getting better. 

These results confirm that the recovered resolution or reconstructed resolution has 

almost same trend in list-mode data reconstruction algorithms, as it has in case of 

histogram mode, however, with an improvement in its non-uniform distribution. Induced 
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resolution is better with MRPs as compared to QPs and the responses are thinner which 

indicate lesser variation with MRPs and supports our hypothesis. 

 

 
Figure 6.4: This image shows results of an implementation of LIR with MRPs at the three specified 
points inside our phantom. The impulses show that with MRPs, reconstructed resolution is non-
uniform at the three points however non-uniformity is much lesser as compared to the QPs, 
especially at the high activity point where the QPs have their worse behavior. 

6.5.2 Modified Quadratic Priors (ModQPs) 

Modified priors have been presented in Chapter 4 for the recovery of non-uniform 

resolution. These priors were based on certainty method, where local smoothing is 

controlled by weighting the response according to the local certainty. In histogram mode, a 

weighting factor is calculated by normalized forward projection of the local measurement 

certainty. In list-mode data, we use histogramed data in form of a sinogram to evaluate that 

correction term. Impulse responses evaluated using ModQPs are shown in Figure 6.5.  

This figure indicates that non-linear response, due to anisotropic smoothing produced 

by QPs, has been recovered with ModQPs. We found that the response is sensitive to the 

parameter value and it is very difficult to optimize hyper-parameter in case of ModQPs. We 

needed to select a very low value of 1.0 x 10-4 for reasonably reconstructed resolution 

values, because smoothing behavior was much sensitive to this value and responses got 

spread much faster with a small increase in the parameter value. This is certainly due to the 

addition of the correction term to the prior term in the LIR expression. It should be noted 

that with very large number of LORs, it is not straight forward to include this correction 

term to the response because in that case the measurement term may become unity or less 

than unity. 
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Figure 6.5: Impulse responses at three locations for ModQPs with a parameter value of 1.0x10-4. 

 

6.5.3 Combined Priors (CPs) 

QPs and MRPs have different response in recovering the induced or reconstructed 

resolution. This suggests an idea to use a combination of these priors. As given by equation 

(4.7), both of the priors may be added together using two different 𝛽𝛽 values to adjust their 

weight accordingly to the LIR function. Another possible way is to make one parameter 

value dependent on the other and use only a single value to control both. However, tuning 

of these parameter values will be a problem and it is better to use only a single value with 

both the priors. A combined prior gives us a chance to use properties of both the priors, 

such as smoothing behavior of QPs and edge preserving characteristics of MRPs, at the 

same time. Figure 6.6 presents our results for an implementation of CPs in LIR expression 

with a parameter value of 0.01. This figure presents a horizontal profile through an 

accumulative image obtained by adding the three response images. 

This figure indicates that resolution is non-uniform and heavier smoothing is evident 

in high count region. However, the reconstructed resolution is better as compared to the 

QPs alone. Some non-linearity, edge effect and anisotropic smoothing are present which 

may be due to the median operation of MRPs. This may extend up to better resolution 

control of the resolution properties using MRPs with QPs. 



 
Chapter VI: List-Mode Reconstruction Methods   

Page 151 of 182 
 

 
Figure 6.6: Impulse responses at three specified locations with resolution given in FWHM 

in pixels for CPs using single parameter value.  

6.6 Impulse Response Symmetry 

We analyzed contour maps for each evaluated impulse using Matlab contour function 

(countour()) to assess symmetry of the smoothness produced by various priors in the 

response function. Three contours, evaluated at 99%, 75%, and 50% of the peak value 

inside each impulse response, were drawn. These contour maps show that the responses 

are almost symmetric, though this symmetry is slightly better for median priors as 

compared to the quadratic priors. 

Symmetry contours are much broadened out for QPs as compared to MRPs and CPs. 

This signifies the effect of heavier smoothing in case of QPs, which reduces a lot with MRPs 

and CPs. For MRPs, smoothness works as a subset of mono-tonicity and broadening of the 

response mainly depends on the size of the median window and not on the prior function, 

hence, these contour maps are not so broad. For CPs, it seems to be due the combined effect 

of median and quadratic operation of both the priors, which reduced the final smoothing 

effect. Vertical and horizontal broadening is also reduced with the last two priors as 

compared to the QPs which marks a better symmetry obtained. MRPs induce the least 

broadening effect in the response as compared to the QPs against the removal of 

undesirable noise hence the above mentioned results are expected. Another factor which 

influences smoothness is the empirical parameter and, luckily, MRPs are not that sensitive 

by the value of this parameter as compared to the QPs. 
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Figure 6.7: Contour maps at the location of the impulses (from left to right: Cold disc, Background disc and 
Hot disc) to present symmetry and smoothing in case of different priors. Values at the top of the image show 
mean reconstructed resolution and variance of the contour radius around 360o. It should be noted that the 
axis values are not the true values but interpolated values in order to present the contours smoothly. 

6.7 Noise Performance 

Figure 6.8, elaborates results for noisy data reconstructed by list mode MAP 

reconstruction algorithm including various priors. Noisy list mode data were generated 

using normally distributed random numbers (by srand() function of c++ with timer object 

to seed it) to create a list of 500,000 events and 30 different realizations were obtained.  

These noisy lists were reconstructed using QPs, MRPs and CPs in MAP estimators for list-

mode reconstruction and their mean and variance images are shown in the figure below. 
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Figure 6.8: Mean and Variance images and horizontal profiles through them for different 
prior functions for 30 different noisy realizations of list mode event lists. Images were 
reconstructed using QPs, MRPs and CPs with a parameter value of 1.0 x 10-3.  

 

Mean images show a strong smoothing effect of QPs and CPs while images are not so 

heavily smoothed out by MRPs, which is clearly an indication of low smoothing behavior. 

However, mean and variance profiles through MRPs are highly noisy and speak out for 

nonlinear behavior of MRPs, which seems to be stronger in case of list-mode data as 

compared to the histogram data due to noisy nature of list-mode data. Hence, CPs may be 

helpful in this situation to adjust blurring (QPs) and sharpness (MRPs) in list mode data 

reconstruction. 

6.8 Summary 

We discussed resolution characteristics of list-mode reconstruction methods in this 

chapter, by analyzing LIR functions at various spatial locations inside the FOV, with MAP 

estimators to compare various priors. Standard QPs and MRPs produce images with non-

uniform resolution characteristics, however, this variation in resolution is a consequence of 

various image degrading effects and, is not as strong as in case of histogram reconstruction 

methods. The recovered resolution depends on the activity concentration and its spatial 

distribution across the spatial span of a particular image region. Modified priors based on 

MRPs, produce images with better recovered resolution, whereas, combined priors 

produce images with resolution properties in between of QPs and MRPs as summarized in 

Figure 6.11. Modified quadratic and median priors are much less sensitive to the hyper-

parameter value, which is similar to the results in the previous chapter. We only analyzed 
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results for those parameter values, where quadratic and median priors have almost 

matched resolution at the centre of the image. 

 

 



 
Chapter VII: Conclusions and Future Work   

Page 155 of 182 
 

CHAPTER 7  

Conclusions and Future Work 

7.1 Conclusions 

Tomographic imaging systems provide us with an ability to quantify distribution of 

object properties in-vitro, however, their output response depends on accurate modeling of 

the physics of emission and detection processes, geometry of the system and 

reconstruction algorithm used. Reconstructed image resolution and noise in the resultant 

image define its quality and ability to quantify its various properties. Accurate modeling is 

required to optimize system resolution capabilities; however, due to spatially non-uniform 

image degrading effects reconstructed resolution is spatially non-uniform across the field 

of view. Even with accurate data modeling to optimize resolution, tomographic image 

reconstruction problem is an ill-posed problem in its mathematical formulation 

[6;11;14;23;28;31;52;76;195]. There is always a compromise between resolution and 

noise, hence acquisition and detection models only cannot provide an optimized result. 

Modeling of the object properties and noise processes is required to achieve a best bias 

variance trade off. Analytical reconstruction methods, such as FBP, have limited ability to 

model imaging physics because they follow line integral model [78;151;191]. Iterative 

reconstruction methods can easily model imaging physics and object properties and lead to 

images with better resolution and noise characteristics [17;118;120]. Iterative methods, 

such as MLEM, model acquisition and detection processes and lead to overly noisy images, 

with increasing iteration number, because of ill-conditioning of the problem due to noise 

and incomplete data. Statistical iterative reconstruction methods, for example MAP 

methods, can include model of the object properties to better condition the problem and to 

reduce the reconstruction based noise. These object models are generally formed as prior 

distribution functions and are applied as constraints on the final solution image explicitly 

[29;50;66;111;117;148]. 

Two types of prior distribution functions, namely smoothing priors and edge 

preserving priors, are commonly applied for computational simplicity and to capture local 



 
Chapter VII: Conclusions and Future Work   

Page 156 of 182 
 

empirical image properties. Smoothing priors, such as QPs, attract the final image towards 

it locally smoother version, which reduces noise, however, over smoothes high count 

regions, such as edges at the same time and produce shape distortions. They bear 

anisotropic smoothing behavior due to implicit non-uniform data weightings, non-uniform 

object activity levels, object size and image estimator characteristics etc., and result in 

highly asymmetric responses [26;29;129;138]. Imaging system’s response, for MAP or 

PLEM estimators, depends on the Hessian of the prior function and, luckily for simple QPs, 

it becomes independent of the object and is not prone to abrupt activity changes inside the 

object. Absence of a universal method to tune the regularization parameter is an added 

complexity and response of the system with smoothing priors is highly sensitive to the 

value of this parameter [129;168;190]. Alternatively, edge preserving priors can be used, 

where edge preservation can be enhanced with non-quadratic prior functions. These priors 

use an additional empirical parameter to change behavior of the prior near the edges. 

Unfortunately, non-quadratic priors make the objective function non-convex, add data 

dependency and increase ill-conditioning of the problem. Similarly, empirical definition of 

edge height introduces a bias and reconstructed resolution is non-uniform and asymmetric 

across the FOV, because of spatially non-uniform physical and detector based effects [135]. 

Another class of edge preserving priors, based on MRPs and TV priors, works on local 

mono-tonicity or image regularity based image descriptions, including smoothness as a 

subset. These priors have a theoretical pitfall that their derivatives are not defined 

analytically. However, heuristics definitions are available for their derivatives and work 

well for reconstruction purposes. MRPs based priors use median in a local neighborhood to 

penalize pixel values and drag the final image towards its locally mono-tonic version. 

Median follows the edge so edge preservation becomes robust. Unfortunately, these priors 

too, increase ill-conditioning of the problem and response function becomes dependent on 

the object values through the median or TV operations. Hence, estimators based on these 

priors take longer to converge as compared to the smoothing priors 

[108;110;112;114;116;117;134;135;149;150;201]. 

We observed that reconstructed resolution depends lesser on the hyper-parameter 

values and more on the size of the median filter window, in case of MRPs as locally 

monotonic changes smaller than the root images pass through the filter unaltered. 

However, if more weight is given to both of these priors, i.e. MRPs and TV priors, patchy 

edge artifacts dominate the resultant images, which is severe in case of TV priors. This 

seems to be due to monotonic and regularity behavior of MRPs and TV priors. MRPs have 

several advantages over QPs and other non-quadratic priors, such as automatic edge 

preservation, reconstruction of the smooth regions at the same time, reduction of noise, 
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and requirement of only one parameter and lesser sensitivity to the parameter value. Based 

on these observations, we proposed several MRPs based prior functions, in this work, for 

the purpose of image reconstruction from simulated and real scanner data and have shown 

their ability to recover non-uniform resolution and PVE and have compared them with QPs 

and TV priors [107;110;139]. 

Our initial reconstruction results, with thorax chest phantom using different 

algorithms, show that MRPs have more matching noise performance to MLEM algorithm in 

terms of MAE, percentage bias and Variance as compared to the other algorithms. QPs have 

lesser MSE values, which is due to higher smoothing effect of these priors. Reconstructed 

resolution properties were studied in terms of uniformity, linearity, symmetry and 

parameter sensitivity and our results show that MRPs performed better than QPs. This is 

because MRPs produce images by penalizing pixel values with least blurring induced. 

Implementation of QPs and MRPs in LIR expression indicates that resolution is more 

uniform, linear and has more symmetric responses for MRPs. The recovered resolution is 

better in case of MRPs as compared to QPs. 

Response (LIR) of MAP estimators with smoothness priors becomes spatially non-

uniform, nonlinear and asymmetric. Local certainty based methods for QPs have been 

proposed to correct for these problems. We proposed an alternate prior based correction 

with MRPs in place of certainty based correction. Instead of evaluating a correction term 

based on the local certainty, this method uses nonlinearity of MRPs to work as a local 

correction factor for the recovery of non-uniform resolution response. Our results reveal 

that, this method recovers for non-uniformity, nonlinearity and asymmetry of the local 

response, with additional benefits of edge preservation and lower sensitivity to the hyper-

parameter values. Implementation of MRPs, with certainty based correction term, does not 

show much improvement over the simple MRPs results. However, we proposed a hybrid 

type of priors, combining both QPs and MRPs, which lead to a better control of the final 

reconstructed resolution. In CPs, locally smooth version of the final image is attracted by 

QPs, whereas MRPs try to favor local mono-tonicity, producing an image influenced by both 

of the priors. Different weights can be assigned to both priors, however, their tuning may 

be a problem and it is better to use a single parameter value for both. This is theoretically 

feasible because both the priors work on pixels in the same neighborhood. Implementation 

of MRPs with real data shows that they produce less smoothness as compared to QPs. Noisy 

data of the holes phantom, reconstructed with MRPs, depicted lower MAE as compared to 

QPs and TV priors, for three different count levels. We have also developed analytical 

expressions, for iteration based noise propagation, for MAP algorithm using MRPs and 

validated our theoretical expressions using Monte-Carlo method for noisy data. Our results 
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for mean and variance images indicate that MRPs produce less smoothing and smaller 

error as compared to QPs and TV priors. 

We also used our proposed priors in two very popular PVC methods and compared 

their activity recovery performance with QPs. Results indicate that there is a spill-over 

effect from high count regions into lower activity regions surrounding them. Modeling of 

image degrading effects is critical for the correction of PVE, because, without inclusion of 

these effects into the model, recovered activities were highly underestimated. MRPs 

performed better as compared to QPs and are less sensitive to the hyper-parameter values 

for noisy data, whereas object size strongly affects the results. We assumed a separable PSF 

for statistical PVC methods, which worked well for MRPs and QPs, however, both GTM and 

statistical PVC methods get influenced by segmentation and registration errors. For large 

sized objects, all the priors performed almost similar, whereas, for small sized objects, our 

proposed MRPs performed better than QPs. Error in the recovered activity concentration 

increases with increasing size of the object, which indicates higher variance in the 

recovered values. This could be due to large spatial domain covered by large sized objects 

and, hence, larger variations in the recovered values. 

We used certain assumptions for our experimental design and the most prominent 

assumption was that pixels are square and pixel size is equal to the size of a single detector 

or sinogram bin. This assumption is a very simple, however, very general one. We used a 

very simple system model including only the geometric system and attenuation modeling, 

whereas, other effects were simply ignored. This is, however, justifiable because our work 

was mainly a comparison of various priors and inclusion of the effects was certainly going 

to worsen the results of all the priors almost equally. We have also used a mix of object 

sizes and activity levels to observe their influence on the final reconstructed resolution and 

activity recovery performance. An implementation of LIR, including various priors, with 

list-mode data is presented, in this work, for the first time, as of our knowledge. QPs and 

MRPs produce images with non-uniform resolution properties, whereas, MRPs are less 

sensitive to the parameter value. Modified QPs recover nonlinearity in the response and 

CPs perform well for list-mode data, too, and MRPs have shown lower smoothing behavior 

with noisy data. 

Considering all above, we conclude that MRPs have lower smoothing behavior, better 

edge preservation and lower sensitivity to the parameter value as compared to the 

commonly used QPs. In our view, the myth of not using nonlinear and non-quadratic prior 

functions for the purpose of uniform resolution properties is not correct and we have seen 

that nonlinear behavior of MRPs can be used as a correction factor. This work presents that 
MRPs induce lesser spatial variations in the system response as compared to the standard 
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QPs in terms of non-uniformity, nonlinearity and parameter sensitivity. They can also be 

modified in order to recover, for non-uniform spatial resolution and for better activity 

recovery performance. 

7.2 Future Work 

Following may be some further extensions of the work presented in this thesis; 

1. We used CG method, an iterative solver, to solve LIR expression and even for a 

modest size of the image matrix and sinogram, convergence of the expression is very 

slow. Also, for comprehensive analysis and comparison, one may need to evaluate LIR 

for each individual pixel. This is very time consuming computational task and 

development of fast calculation methods, to reduce required computational time to 

carry out an exhaustive evaluation, will be helpful. 

2. Spatially non-uniform resolution is a consequence of various image degrading effects, 

which need to be modeled accurately to optimize resolution; however, it overburdens 

system resources. We studied effects of non-uniform attenuation, whereas, inclusion 

of all other effects for accurate system model can be a further extension of this work. 

3. We used constant spatial weighting factors to evaluate our prior functions in a small 

neighborhood and applied nonlinearity of MRPs to recover for non-uniform 

resolution. Methods have been proposed to evaluate spatially varying weights, which 

will ultimately generate a spatially varying prior function and may combat for local 

changes. A possible further extension could be the derivation of space-variant penalty 

coefficients to obtain images with almost uniform resolution properties. 

4. Inclusion of MRPs in MAP algorithms means to reduce noise with minimum level of 

smoothing. It needs to be verified that how sensitive are the median priors to very 

small changes in data that may be due to noise and not the signal itself.  

5. Instead of obtaining an arbitrary uniform resolution, we are frequently more 

interested in some user defined resolution characteristics. A possible extension of this 

work could be to design penalty coefficients for some user defined resolution 

response. 

6. List-mode data contains redundant information about any particular event which 

could be useful to recover for PVE. Development of a PVC method for list-mode data 

can be a possible extension of our work. 

7. We carried out a comparison of resolution properties of different priors using 2D 

data. This work can be extended to 3D reconstruction methods as new scanners and 

imaging systems work in 3D to take advantage of extra contrast gained. 
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8. Most of the results presented in this thesis are based on simulated PET data. We 

proposed several new median based priors to compensate for non-uniform resolution 

characteristic of MAP or penalized-likelihood tomographic image reconstruction 

methods. Though, few results with real data have been evaluated, further validation 

with an exhaustive real data analysis may be an extension of the work. 

9. Future analysis can be extended to other modalities such as SPECT, CT or MRI, where, 

there are some additional problems involved (depth dependent resolution in case of 

SPECT). 
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APPENDIX A 

This Appendix presents few routines coded to simulate and process the data and analyze 

various results. 

A.1 Calculation of Mean and Variance – Theoretical Formulae 

This matlab routine calculates mean image using theoretical formula given by equation 

(4.12) for QPs and a similar routine can be used for MRPs. 

 
clear all 
 
%Load ak 

Load the reconstructed image at 1st iteration as “ak”. 
 
%Make matrix R 

Load matrix R as “mat_R” for QPs as given by equation ().     
 
%Load H 

Load system matrix H as mat_h 
     
%Load f 

Load true phantom image as “ph”. 
  
%Matrix to filter the image  
h = [0 -0.25 0;-0.25 1 -0.25; 0 -0.25 0]; 
 
%Log of the image matrix 
ak = log(f); 
 
%Calculate “log(ak)” at ith iteration 
for i=1:30 
    tic 
        AA = ak;  
        BB = log(mat_h' * ((mat_h*ph)./(mat_h*exp(ak))));    
        CC = log(s' + 0.0005 * (mat_R*exp(ak))); 
        ak = real(AA + BB - CC);         
    toc 
end 
 
%Recover image from “log(ak)”  
img = reshape(exp(ak), 64, 64); 
ph=reshape(ph, 64, 64); 
 

 

 
The following matlab routine calculates variance using theoretical formula given by 

equation (4.13) for QPs. We need to change the for-loop only as follows where we need to 

use sparse matrix functions even for a 64 x 64 image size. 
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for i=1:30 
tic 
   %% Calculate Variance Image    
   AA = sparse(diag(1./s)*mat_h' *diag(1./(mat_h*exp(ak)))*mat_h*diag(exp(ak))); 
   BB = sparse(diag(1./s)*mat_h' *diag(1./(mat_h*exp(ak)))); 
   CC = sparse((0.0005.* mat_R)*diag(1./(s'+0.0005.*mat_R* exp(ak))));       
   U = BB +(CC-AA)*U;       
   %%End of Variance Image 
    
   % Calculation of Mean Image 
   AA = sparse(ak);  
   BB = sparse(log(mat_h' * ((mat_h * ph)./ (mat_h * exp(ak))))); 
   CC = sparse(log(s' + 0.0005 * (mat_R * exp(ak)))); 
   ak = sparse(real(AA + BB - CC)); 
   % End of mean image calculations 
toc 
end 
 
%Covariance matrix   
cov = (exp(ak) .^2) .* (U.^2 * (mat_h * ph)); 
img = reshape(cov, 64, 64); 
 

 
 

A.2 Image reconstruction routine 

This matlab routine reconstructs an image from sinogram data as input using various MAP 

algorithms. Sys_ele_v2_new(i, sys) is a sub function to evaluate system matrix elements 

using line intersection length model, following Siddon’s algorithm, for the 𝑙𝑙 − 𝑡𝑡ℎ LOR. This 

routine is freely available on Mathworks FileExchange webpage under a heading of “PET 

System Matrix”. 

 
function [rec_img, rms] = ImageReconstruction(sys, sino, algo, iter, beta, neighb) 
% FUNCTION REC_IMG = IMAGERECONSTRUCTION(SINO, ALGO, ITER, BETA) 
% 
% This function reconstructs and image using line intersection length 
% system model and different regularized and unregularized reconstruction 
% methods. 
% 
% sys - is a system structure to define PET system variables 
% sino - is the sinogram to be reconstructed 
% algo - is the algorithm such as MLEM, PLEMQP, PLEMMP 
% iter - is number of iterations to be used 
% beta - such as value of beta to be used etc. 
% neigh - neighbourhood for MPs a vector [3 3], [5 5], [7 7] or [9 9] 
% 
% Munir AHMAD 
% 06-NOV-2010 
% 
 
if length(neighb) ~= 2 
    disp('Array neighb should be 2D..'); 
    return 
end 
  
sz = size(sino); 
  
img = zeros(sys.hpixels, sys.vpixels); 
  
sino_vec = reshape(sino, sys.nangles * sys.trays, 1); 
solx = ones(sys.hpixels * sys.vpixels, 1); 
sj = zeros(sys.hpixels * sys.vpixels, 1); 
bq = zeros(sys.hpixels * sys.vpixels, 1); 
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switch algo 
     
    case 'MLEM'     % in case of mlem algoithm 
         
        for i=0:sys.nangles * sys.trays - 1     
            out = sys_ele_v2_new(int16(i), sys);     
            ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
            sj(ind) = sj(ind) + out(:, 3);        
        end 
        fprintf(1, '\nAlgorithm is MLEM\n'); 
        fprintf(1, 'Iteration finished is   0'); 
        for it = 1:iter     
            for i=0:(sys.nangles * sys.trays) - 1 
                out = sys_ele_v2_new(int16(i), sys);     
                ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
                if sj(ind) ~= 0 
                    sum1 = sum(solx(ind) .* (out(:, 3) ./ sj(ind)));            
                end 
                if sum1 ~= 0 
                    bq(ind)=bq(ind)+(out(:,3)./sj(ind)).*(sino_vec(i + 1)./sum1); 
                end 
            end 
            solx = solx .* bq;     
            bq(:)=0; 
            rms(it) = norm(solx) / (sqrt(length(solx)))';   % calculates rms error 
            if (it < 10) 
                fprintf(1, '\b\b'); 
            elseif (it < 100) 
                fprintf(1, '\b\b\b'); 
            elseif (it < 1000) 
                fprintf(1, '\b\b\b\b'); 
            end 
            fprintf(1, ' %d', it);       
             
        end 
        fprintf(1, '\nCalculation finished and reconstructed image returned\n'); 
         
    case 'PLEMQP' 
         
        h = [0 -1 0;-1 4 -1; 0 -1 0]; 
         
        for i=0:sys.nangles * sys.trays - 1    
            out = sys_ele_v2_new(int16(i), sys);     
            ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
            sj(ind) = sj(ind) + out(:, 3);        
        end 
        fprintf(1, '\nAlgorithm is PLEM QPs\n'); 
        fprintf(1, 'with beta values as %f   \n', beta); 
        fprintf(1, 'Iteration finished is   0'); 
        for it = 1:iter     
            for i=0:sys.nangles * sys.trays - 1 
                out = sys_ele_v2_new(int16(i), sys);     
                ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
                if sj(ind) ~= 0 
                    sum1 = sum(solx(ind) .* (out(:, 3) ./ sj(ind)));            
                end 
                if sum1 ~= 0 
                    bq(ind) = bq(ind)+(out(:,3)./sj(ind)).*(sino_vec(i + 1)./sum1); 
                end 
            end 
            solx = solx .* bq; 
            solx = reshape(solx, 128, 128); 
            h1 = (1 + beta .* imfilter(solx, h, 0, 'corr', 'same') ./ 4); 
            solx = solx ./ h1; 
            solx = reshape(solx, 16384, 1); 
            bq(:)=0; 
            rms(it) = norm(solx) / (sqrt(length(solx)))';   % calculates rms error 
  
            if (it < 10) 
                fprintf(1, '\b\b'); 
            elseif (it < 100) 
                fprintf(1, '\b\b\b'); 
            elseif (it < 1000) 
                fprintf(1, '\b\b\b\b'); 
            end 
            fprintf(1, ' %d', it);     
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        end 
  
        fprintf(1, '\nCalculations finished and reconstructed image returned\n');  
         
    case 'PLEMMP' 
         
        for i=0:sys.nangles * sys.trays - 1              
            out = sys_ele_v2_new(int16(i), sys);     
            ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
            sj(ind) = sj(ind) + out(:, 3);        
        end 
        fprintf(1, '\nAlgorithm is PLEM MPs\n'); 
        fprintf(1, 'with beta values as %f   \n', beta); 
        fprintf(1, 'Iteration finished is   0'); 
        for it = 1:iter     
            for i=0:(sys.nangles * sys.trays) - 1 
                out = sys_ele_v2_new(int16(i), sys);     
                ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
                if sj(ind) ~= 0 
                    sum1 = sum(solx(ind) .* (out(:, 3) ./ sj(ind)));            
                end 
                if sum1 ~= 0 
                    bq(ind) = bq(ind) + (out(:, 3)./sj(ind)).*(sino_vec(i + 1)./ 
sum1); 
                end 
            end 
            solx = solx .* bq; 
            z1 = reshape(solx, sys.hpixels, sys.vpixels); z1 = z1'; 
            z1 = medfilt2(z1, neighb); 
            z1 = reshape(z1', sys.hpixels * sys.vpixels, 1); 
            z2 = solx - z1; z1(z1==0)=1; 
            z1 = z2 ./ z1; 
            h = (1 + beta .* z1); 
            solx = solx ./ h; 
            bq(:) = 0; 
            rms(it) = norm(solx) / (sqrt(length(solx)))';   % calculates rms error 
            if (it < 10) 
                fprintf(1, '\b\b'); 
            elseif (it < 100) 
                fprintf(1, '\b\b\b'); 
            elseif (it < 1000) 
                fprintf(1, '\b\b\b\b'); 
            end 
            fprintf(1, ' %d', it); 
             
            rec_img = reshape(solx, sys.hpixels, sys.vpixels);    
             
        end 
  
        fprintf(1, '\nCalculations finished and reconstructed image returned\n');  
         
    case 'PLEMTV' 
         
        eta = 5.0e-5; 
         
        for i=0:sys.nangles * sys.trays - 1              
            out = sys_ele_v2_new(int16(i), sys);     
            ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
            sj(ind) = sj(ind) + out(:, 3);        
        end 
        fprintf(1, '\nAlgorithm is PLEM TV\n'); 
        fprintf(1, 'with beta values as %f   \n', beta); 
        fprintf(1, 'Iteration finished is   0'); 
        for it = 1:iter     
            for i=0:(sys.nangles * sys.trays) - 1 
                out = sys_ele_v2_new(int16(i), sys);     
                ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
                if sj(ind) ~= 0 
                    sum1 = sum(solx(ind) .* (out(:, 3) ./ sj(ind)));            
                end 
                if sum1 ~= 0 
                    bq(ind) = bq(ind) + (out(:,3)./sj(ind)).*(sino_vec(i + 
1)./sum1); 
                end 
            end 
            solx = solx .* bq; 
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            %Change these lines to implement TV Regularization 
            z1 = reshape(solx, sys.hpixels, sys.vpixels); z1 = z1'; 
            z2 = padarray(z1, [1 1], 'replicate', 'pre'); 
            z3 = (z1(1:end, 1:end) - z2(1:end-1, 2:end)).^2; 
            z4 = (z1(1:end, 1:end) - z2(2:end, 1:end-1)).^2; 
            z5 = (2 .* z1(1:end, 1:end)) - z2(1:end-1, 2:end) - z2(2:end, 1:end-1); 
            CF = (z5 ./ sqrt(z3 + z4 + eta));                         
            z1 = reshape(CF', sys.hpixels * sys.vpixels, 1); 
            z1 = z1 .* solx; 
            h = (1 + beta .* z1); 
            solx = solx ./ h; 
                         
            bq(:) = 0; 
            rms(it) = norm(solx) / (sqrt(length(solx)))';   % calculates rms error 
            if (it < 10) 
                fprintf(1, '\b\b'); 
            elseif (it < 100) 
                fprintf(1, '\b\b\b'); 
            elseif (it < 1000) 
                fprintf(1, '\b\b\b\b'); 
            end 
            fprintf(1, ' %d', it); 
             
            rec_img = reshape(solx, sys.hpixels, sys.vpixels);    
             
        end 
  
        fprintf(1, '\nCalculations finished and reconstructed image returned\n');  
         
end 

 
 

A.3 Calculation of HtDH for LIR 

This C++ routine calculates matrix HtDH embedded in LIR expression to evaluate local 

impulse response at a given location. Note that this matrix is not sparse and for 128 x 128 

image matrix size and 128 x 128 sinogram size huge memory was required, hence, this 

matrix has been calculated in two different parts which were separately saved in to 

different files. Also, dynamic memory was used to temporarily hold the variables of huge 

size. This routine was run on a Dual Core 1800 MHz system having 6 GB of RAM. 
 

///////// read COLOUMN MAJOR system matrix file /////// 
  
Load sparse system matrix in coloumn major format using a structure variable 
  
//////// system matrix file read //////////// 
 
////////// Load sinogram file //////////////////// 
 
Load attenuated sinogram file. 
 
////////// end of sinogram reading /////////// 
 
////////// Load sinogram file //////////////////// 
 
Load attenuation factors file 
 
////////// end of sinogram reading /////////// 
 
////////// Calculate AtD part 1 ///////////////////// 
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ud = new SSysMatUSNew [8384]; 
   
for (i=0; i<8384; i++){  // for all Coloumns of At 
   
 ud[i].nz = 0; 
 
 for (j=0; j<trows; j++){ 
     
  sum = 0.0; 
  for (k=0; k<sc[i].nz; k++){ 
   for (l=0; l<sc[j].nz; l++){ 
    if (sc[i].rc[k] == sc[j].rc[l]){ 
sum = sum + (sc[i].val[k] * (1.0 / __max(sino[sc[j].rc[l]], 10)) * sc[j].val[l]); 
    } 
   } 
  } 
  if (sum != 0){ 
   // write data to matrix dad 
   ud[i].rc[ud[i].nz] = j; 
   ud[i].val[ud[i].nz] = float(sum); 
   ud[i].nz += 1; 
  } 
 }    
 cout << i << "  " << ud[i].nz << "  " << float(sum) << endl;   
}  
//Decomment to visualize the output   
//cout << i << "  " << ud[i].nz << "  " << float(sum) << endl; 
   
} 
  
Save part one of the matrix to the file 1  
 
delete [] ud;  //delete heap memory 
 
} 
 

 

Similar code can be used to calculate part 2 of this matrix and save it into another file. 

A.4 Local Impulse Response Evaluation 

This C++ routine was used to calculate LIR for MRPs using HtDH in two different parts 

and uses Conjugate Gradient method for the solution of the linear system. 
 

///////// read system matrix file part two /////// 
 ud = new SSysMatUSNew [8384]; //Declare memory space 

Load Part one of the matrix HtDH 
 
/// Get Col_b of AtDA matrix or get AtDAej for jth pixel 
for (i=0; i<8384; i++){  // for all rows of At    
 for (j=0; j<ud[i].nz; j++){ 
  if (ud[i].rc[j] == col_num){     
    col_b[i] = ud[i].val[j]; 
   r[i]  = ud[i].val[j]; 
   p[i]  = ud[i].val[j]; 
  } 
 } 
} 
delete [] ud;  // Delete Part 1 of the matrix in Heap 
       
///////// end of calculate of matrix dad //// 
 
///////// read system matrix file part two /////// 
 ud = new SSysMatUSNew [8000];  // Declare memory space 
 Load Part one of the matrix HtDH 
 
////////// calculate coloumn of dad ///////////////////// 
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for (i=0; i<8000; i++){  // for all rows of AtDA    
 for (j=0; j<ud1[i].nz; j++){ 
  if (ud1[i].rc[j] == col_num){ 
   col_b[i + 8384] = ud1[i].val[j]; 
   r[i + 8384] = ud1[i].val[j]; 
   p[i + 8384] = ud1[i].val[j]; 
  } 
 } 
} 
delete [] ud1;  // Delete Part 2 of the matrix in Heap 
 
///////////// Start of conjugate gradient method //////////// 
 
for (iter=0; iter<200; iter++){   // start of iteration for CG 
 //////// Calculate Median Image of the impulse response /////// 
 med_array(hpixels, vpixels, sx, medians); 
     
 ///////// read system matrix file part one /////// 
 ud = new SSysMatUSNew [8384]; 
 Load Part one of the matrix HtDH again 
 
 ////////////// Add penalty term for MRP here ///////////////// 
 for (i=0; i<8384; i++){ 
  flag1 = 1; 
  for (j=0; j<ud[i].nz; j++){ 
   if (i==ud[i].rc[j]){ 
    flag1 = 0; 
    if (medians[i] != 0){ 
     ud[i].val[j] = ud[i].val[j] + bt / 
medians[i]; 
    } 
   } 
  } 
  if ((flag1) & (medians[i]!= 0)){ 
   ud[i].nz += 1; 
   ud[i].rc[ud[i].nz] = i; 
   ud[i].val[ud[i].nz] = bt / medians[i]; 
  } 
 } 
 //////////// End of penalty term addition //////////// 
      
 ////////// calculate column from AtDA ///////////////////// 
 for (i=0; i<8384; i++){  // for all rows of At 
  sum = 0;       
   for (j=0; j<ud[i].nz; j++){ 
   sum = sum + ud[i].val[j] * p[ud[i].rc[j]]; 
  } 
  q[i] = sum;       
  } 

///////// end of calculate of matrix dad //// 
 
 Similarly calculate q[i] for part 2 of the matrix 
 
 ////// end of q vector calculation //////////// 
 
 sum = 0; 
 for (i=0; i<trows; i++){ 
  sum = sum + r[i] * r[i]; 
 } 
 rho0 = sum; 
      
 /////// Calculation of RHO1 Parameter ///////// 
 sum = 0; 
 for (i=0; i<trows; i++){ 
  sum = sum + p[i] * q[i]; 
 } 
 if (sum != 0){ 
  alpha = rho0 / sum; 
 } 
 else{ 
  alpha = 0; 
 } 
     
 for (i=0; i<trows; i++){ 
  r[i] = r[i] - alpha * q[i]; 
 } 
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 for (i=0; i<trows; i++){ 
  sx[i] = sx[i] + alpha * p[i]; 
 }      
      
 sum = 0; 
 for (i=0; i<trows; i++){ 
  sum = sum + r[i] * r[i]; 
 } 
  
 //End for loop if error is less than epsilon 
 rho1 = sum; 
 if (sqrt(rho1) < 1e-8) 
  break; 
 
 beta = rho1 / rho0; 
 for (i=0; i<trows; i++){ 
  p[i] = r[i] + beta * p[i]; 
 } 
 
cout << "End of iteration " << iter << " with error sum (norm_rk) : " << 
sqrt(rho1) << endl << endl; 
 
}  // end of CG 
 

     

 

This routine writes the evaluated impulse image in a file for further processing. Similar 

code was used to evaluate impulse response for QPs. 

A.5 Simulation of Phantom and Sinogram data 

The script given below was used to generate a phantom image having one ellipse and 

two circular regions with different activity weightings and sizes inside the phantom image. 

The main phantom image spanned 128 by 128 pixels. 
 

%Loop through all pixels and generate weight proportional to activity 
for i=1:128 
    for j=1:128 
        if(((i-cx3)/a3)^2+((j-cy3)/b3)^2) < 1 %If pixel is in the main disk 
            if(((i-cx1)/a1)^2+((j-cy1)/b1)^2) < 1 %If pixel is in left disk 
                ph(i, j) = 1.0; 
            elseif(((i-cx2)/a2)^2+((j-cy2)/b2)^2) < 1 %If pixel is in right disk 
                ph(i, j) = 3.0;         
            else 
                ph(i, j) = 2.0; %If pixel is in back disk 
            end 
        end 
    end 
end 
 

 
 

The following script was used to generate attenuation map image from the same 

phantom, but having different weighting according to the attenuation coefficients in 

various image regions. 
 

%Loop through all pixels and generate attenuation map image 
for i=1:128 
    for j=1:128 
        if(((i-cx3)/a3)^2+((j-cy3)/b3)^2) < 1 %If pixel is in the main disk 
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            if(((i-cx1)/a1)^2+((j-cy1)/b1)^2) < 1 %If pixel is in left disk 
                atten_ph(i, j) = 0.003; 
            elseif(((i-cx2)/a2)^2+((j-cy2)/b2)^2) < 1 %If pixel is in right disk 
                atten_ph(i, j) = 0.013;         
            else 
                atten_ph(i, j) = 0.0096; %If pixel is in back disk 
            end 
        end 
    end 
end 
 
%Call the sinogram making routine 
sino_main = make_sino(sys, ph); sino_main(sino_main < 1.0e-10) = 0; 
 
%Attenuated sinogram including activity and attenuation 
sino_attenuated = sino_main .* exp(-sino_atten_fact); 
 

 

Following function represents code to generate or simulate sinogram from a structure 

named “sys” holding system parameters and “img” variable holding the phantom to create 

sinogram data. 

 
function sino = make_sino(sys, img)  
     
    img_vec = reshape(img, size(img,1)*size(img,2), 1);  
    j1 = 0; k = 0; 
    sj = zeros(sys.trays * sys.nangles, 1); 
  
    for i=0:(sys.trays * sys.nangles ) - 1 
        out = sys_ele_v2_new(int16(i), sys);     
        ind = sub2ind(size(img), out(:, 2) + 1, out(:, 1) + 1); 
        sj(ind) = sj(ind) + out(:, 3);     
    end 
  
    % loop to make sinpgram 
    for i=0:(sys.trays * sys.nangles ) - 1 
  

  out = sys_ele_v2_new(int16(i), sys); %call routine for one LOR path 
      if (out(1, 1) ~= - 1) && (out(1, 2) ~= - 1) && (out(1, 3) ~= - 2) 

      ind = sub2ind(size(img), out(:,2)+1, out(:,1)+1); 
% Turn indices of intersected pixels to a vector 

            if ((sys.trays / sys.hpixels) == 2) 
                ray = mod(i, sys.trays) + 1; 
                j = int16((ray) * 0.5 ./ sys.ddet); 

    if j == j1 
sino(k)=sino(k)+sum(img_vec(ind).*(out(:,3)./sj(ind))); 

                else 
                    k = k + 1; 
                 sino(k) = sum(img_vec(ind) .* (out(:, 3) ./ sj(ind))); 
                end             
                j1 = j; 
            elseif ((sys.trays / sys.hpixels) == 1) 
                k = k + 1; 
                sino(k) = sum(img_vec(ind) .* (out(:, 3) ./ sj(ind))); 
                if mod(k, size(img, 1)) == 0 
                    sino_ind = [k-size(img,1)+1:1:k]; 
        %sino(sino_ind) = smoothts(sino(sino_ind), 'g', 32, 0.7071); 
       %Blurr the sinogram in radial direction 
        sino(sino_ind) = 
smoothts(sino(sino_ind),'g',size(img,1),1.4142); 
        %sino(sino_ind) = smoothts(sino(sino_ind), 'g', 128, 2.1213); 
                end   
            end 
        end     
    end     
    sino = reshape(sino, size(img,1), size(img,2));     
end 
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A.6 Partial Volume Correction (GTM) 

This code evaluates GTM method using reconstructed image and ROIs defined on the 

same image. It is assumed that the image variables “im”, “roi1”, “roi2”, “roi3”, hold the 

image and various ROIs images for their reconstructed and true segmented versions. 

 
%%% Reshape rec image to vec 
im = reshape(im, 1, 16384); 
  
%%%% Reshape measured ROIs ************ 
true_rois(1, :) = reshape(roi1, 1, 16384); 
true_rois(2, :) = reshape(roi2, 1, 16384); 
true_rois(3, :) = reshape(roi3, 1, 16384); 
  
%Calculate average counts in rois 
avg_counts = sum((true_rois .* repmat(im, 3, 1)), 2)./[nnz(roi1); nnz(roi2); 
nnz(roi3)]; 
  
%%%% Reshape true ROIs ************ 
rec_roi1(rec_roi1<1.0e-5) = 0;        % Zero those pixel less than half of the 
peak value 
rec_roi2(rec_roi2<1.0e-5) = 0;         
rec_roi3(rec_roi3<1.0e-5) = 0;         
rec_rois(1, :) = reshape(rec_roi1, 1, 16384); 
rec_rois(2, :) = reshape(rec_roi2, 1, 16384); 
rec_rois(3, :) = reshape(rec_roi3, 1, 16384); 
  
%%%% Calculate wij ************ 
mat_w(1, 1) = sum(true_rois(1, :) .* rec_rois(1, :)) / nnz(roi1); 
mat_w(2, 1) = sum(true_rois(1, :) .* rec_rois(2, :)) / nnz(roi1); 
mat_w(3, 1) = sum(true_rois(1, :) .* rec_rois(3, :)) / nnz(roi1); 
mat_w(1, 2) = sum(true_rois(2, :) .* rec_rois(1, :)) / nnz(roi2); 
mat_w(2, 2) = sum(true_rois(2, :) .* rec_rois(2, :)) / nnz(roi2); 
mat_w(3, 2) = sum(true_rois(2, :) .* rec_rois(3, :)) / nnz(roi2); 
mat_w(1, 3) = sum(true_rois(3, :) .* rec_rois(1, :)) / nnz(roi3); 
mat_w(2, 3) = sum(true_rois(3, :) .* rec_rois(2, :)) / nnz(roi3); 
mat_w(3, 3) = sum(true_rois(3, :) .* rec_rois(3, :)) / nnz(roi3); 
  
%%%%%%%%Calculate mean measured activity in each region %%%%% 
m_A(1)= (sum(true_rois(1, :) .* im)) ./ nnz(roi1); 
m_A(2)= (sum(true_rois(2, :) .* im)) ./ nnz(roi2); 
m_A(3)= (sum(true_rois(3, :) .* im)) ./ nnz(roi3); 
  
%%%%%%%Calculate variance in each roi %%%%%%%%%%%%%%%%%%%%%%% 
m_V(1)= (var(true_rois(1, :) .* im)) ./ nnz(roi1); 
m_V(2)= (var(true_rois(2, :) .* im)) ./ nnz(roi2); 
m_V(3)= (var(true_rois(3, :) .* im)) ./ nnz(roi3); 
  
%%%%%%%%% EValuate true activity by GTM inversion %%%%%%%%%% 
t_A = inv(mat_w') * m_A'; 
  
%%%%%%%%% Evaluate variance by GTM inversion %%%%%%%%%%% 
t_V = inv((mat_w').^2) * m_V'; 
t_V = [[0 0 0 ]', t_V, m_V'];     
barvalues(:,:,i) = [t_A'; m_A]'; 
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