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Spin crossover in Fe,SiO, liquid at high pressure
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Abstract we combine spin-polarized density functional theory with first principle molecular dynamics
(FPMD) to study the spin crossover in liquid Fe,SiO,, up to 300 GPa and 6000 K. In contrast to the much
sharper transition seen in crystals, we find that the high- to low-spin transition occurs over a very broad
pressure interval (>200 GPa) due to structural disorder in the liquid. We find excellent agreement with the
experimental Hugoniot. We combine our results with previous FPMD calculations to derive the partial molar
volumes of the oxide components MgO, FeO, and SiO,. We find that eutectic melts in the MgO-FeO-SiO,
system are denser than coexisting solids in the bottom 600 km of Earth’s mantle.

1. Introduction

Knowledge of the physical properties of silicate melts is crucial for understanding the chemical and thermal
evolution of the Earth. Seismological studies suggest the existence of melts in the present-day Earth up

to pressure-temperature conditions of the core-mantle boundary (136 GPa, 4000 K) [Williams and Garnero,
1996]. Melts at high pressure may have been even more important in the early Earth, when most or all of the
mantle may have been molten [Labrosse et al., 2007; Stixrude et al., 2009].

A key question relates to the buoyancy of melts at great depth: are they less dense than coexisting solids, in
which case they rise to the surface like near-surface melts or are they more dense in which case they remain
trapped at depth? The role of iron is central: iron is the heaviest of the terrestrially abundant cations, and it
is known to partition into the liquid phase on partial melting [Andrault et al., 2012].

Iron behaves differently from other major cations: iron-bearing silicates are expected to be paramagnetic
in the mantle. The temperature in Earth’s mantle far exceeds magnetic ordering temperatures (65 K for
fayalite), so magnetic moments are disordered. Nevertheless, local moments survive because mantle tem-
peratures are much less than typical Fermi temperatures ( 70, 000 K for fayalite). High pressure can alter the
magnitude of the local moments by causing a high-spin to low-spin transition. This magnetic collapse is
generic to Fe oxide and silicate systems because it is driven by d-band broadening on compression [Cohen
et al., 19971. The transition is important geophysically because it influences the density and the partition-
ing of iron among coexisting phases [Badro et al., 2003; Tsuchiya et al., 2006]. Experiments have so far been
unable to measure the spin state in silicate liquids at elevated pressure.

First principles theory has not yet been applied to the study of iron-bearing silicate liquids, and experimen-
tal data at lower mantle conditions are limited [Thomas et al., 2012]. Liquid Fe,SiO, has been studied by
classical molecular dynamics [Guillot and Sator, 2007], but this method cannot address the relevant physics,
including the spin transition, and is further limited by the uncertainty in the choice of the interatomic poten-
tial. Here we use first principle molecular dynamics (FPMD) based on density functional theory, in which the
relevant physics are readily captured.

2, Computational Method

All of our calculations are based on the Perdew-Burke-Ernzerhof (PBE) form of the generalized gradient
approximation [Perdew et al., 1996], with spin polarization to correctly capture the physics of local magnetic
moments. In order to account for the strong coulombic interactions between d electrons, we use the rota-
tionally invariant Hubbard U formalism (PBE+U) [Anisimov et al., 19971, which applies an energetic penalty
U to the double occupation of the d orbitals. We adopt the value U = 4.75 eV computed self-consistently
via density functional perturbation theory in fayalite [Cococcioni and de Gironcoli, 2005]. For comparison, we
also perform a series of simulations with U = 0 (PBE) in order to evaluate the influence of the value of U on
our results.
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Figure 1. (a) Mean absolute local moment for PBE+U (purple) and PBE (orange): symbols are the FPMD results, and
lines are a guide to the eye. Vertical bars at each point indicate the standard deviation of the spin state of the Fe ions.
Histograms of the absolute local magnetic moment in PBE+U calculations at (b) 3000 K and (c) 6000 K.

Other technical details follow our previous FPMD simulations of silicate liquids [Stixrude and Karki, 2005; de
Koker et al., 2013]. We used the projector-augmented wave implementation [Kresse and Joubert, 1999] and
an energy cutoff of 500 eV for the plane wave basis set. For Fe, Si, and O the potentials treat, respectively,
14, 4, and 6 electrons as valence; the core radii are 1.16 A, 0.79 A, and 0.80 A, respectively, which ensures
that there was no significant core overlap over the pressure range considered. Calculations were performed
at the gamma point in the canonical ensemble using the Vienna Ab-initio Simulation Package [Kresse and
Furthmdiller, 1996], with a time step of 1 fs, for at least 3000 time steps. The initial conditionisa2x2x 1
supercell of fayalite with 112 atoms, uniformly strained to a cubic shape. For each volume, the cell was
melted at 6000 K and then cooled to 4000 K and 3000 K. We explore the range of volumes V/V, = 1.2-0.45
where for convenience we scale the volume to V, = 55.34 cm3/mol, the volume of the Fe,SiO, liquid at
the ambient melting point [Shiraishi et al., 1978]. Some runs were also performed at 2000 K in the range
V/V, = 1.2-0.9 to better constrain low-pressure properties. We assume thermal equilibrium between ions
and electrons via the Mermin functional [Mermin, 1965; Wentzcovitch et al., 1992]. We confirmed that the
choice of initial magnetic structure did not influence our results (see supporting information).

In order to analyze our results, we fit FPMD values of internal energy and pressure to the fundamental ther-
modynamic relation of de Koker and Stixrude [2009]. This procedure allows us to derive self-consistently all
thermodynamic properties, including second-order properties guaranteed to satisfy the Maxwell relations.
More details can be found in the supporting information.

The theoretical Hugoniot is computed as the set of state points that satisfy the Rankine-Hugoniot relation
1
(Ey — Ep) = _E(PH + Pp)(Vg = V). (1)

Following previous studies [de Koker and Stixrude, 2009], we find the value of the temperature (T,) at given
volume (V})) that yields values of the internal energy (E;) and pressure (P,,) such that the relation is satisfied.
Subscript R refers to the unshocked reference state. We compute theoretical Hugoniots for two ambient
pressure (P, = 0) reference states: liquid at T, = 1573 Kand V;/V, = 1 and crystalline fayalite at T, = 300 K
and V,/V, = 0.8365. We calculate E, from the fundamental relation described above for the liquid reference
state and from a spin-polarized PBE+U static calculation on the antiferromagnetic ground state for the solid
reference state.
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Figure 2. (a) Our PBE+U results (symbols) and the equation of state
fit (lines). Hugoniot of (b) the preheated liquid (T; = 1573 K) and (c)
crystalline forsterite (T = 300 K) as computed from PBE+U (purple
line) and PBE (orange line) and experimentally measured (symbols)
[Chen et al., 2002; Thomas et al., 2012].

3. Results

Our simulations show a very broad high- to
low-spin transition in the liquid taking place
over a pressure interval >200 GPa (Figure 1).
In PBE+U calculations, the transition is not
complete even up to the highest pressures
of our study (300 GPa), whereas in PBE cal-
culations, the liquid is almost entirely low
spin by 250 GPa. The tendency for the local
moment magnitude to decrease with com-
pression is already apparent at ambient
pressure. The larger local moments in PBE+U
as compared with PBE are consistent with
expectations: the stronger local correlation
produced by the finite value of U favors the
high-spin state [Stackhouse et al., 2010].

The transition takes place in the liquid

by altering the relative proportions of
high- and low-spin cations (Figure 1). His-
tograms of local moment magnitudes are
bimodal with most Fe cations either high
or low spin, and a small proportion in an
intermediate-spin state (~ 2ug). For exam-
ple, the system is essentially 100% high spin
at 3 GPa and 71% high spin, 22% low spin,
and 7% intermediate spin at 252 GPa.

The gradual magnetic collapse in the liquid is very different from the behavior in solid oxides and silicates.
In solids, the magnetic collapse is completed within a pressure interval <20 GPa at 300 K and, even at

2200 K, takes place over an interval less than 40 GPa [Mao et al., 2011; Nomura et al., 2011]. We attribute the
different behavior of the liquid to the much greater variety of Fe coordination environments as compared
with crystals or glass. Analysis of the radial distribution function from our simulations shows a wide range of
Fe-O bond lengths in the liquid with standard deviation o = 0.21 A (see supporting information). This is in
contrast to the much narrower range of divalent cation oxygen bond lengths in silicate glasses, o = 0.108 A
[Waseda and Toguri, 1977, similar to the value for crystalline fayalite (¢ = 0.079 A).

We find excellent agreement with shock wave measurements (Figure 2). PBE+U yields slightly smaller
densities along the Hugoniot as compared with PBE. This difference is consistent with the greater mean

Table 1. Properties of Liquid Fe,SiO, Calculated Using Fun-
damental Thermodynamic Relation at Ambient Pressure and
Ty = 1573 K, Compared With Experiment and Classical MD
Simulations [Guillot and Sator, 2007]

PBE PBE+U  Classical MD  Experiment

o (g/cm?) 3811  3.687 3.75 3.7502
Ks (GPa) 239 253 22.0 25.9b, 21.4¢
Cp (NKg) 4932  3.906 4,013 41334
10°-a (K") 538 5.94 12.8 5.7¢,7.12
Yo 0.24 0.37 0.521 0.332bde

AShiraishi et al. [1978].

bChen et al. [2002].

CRivers and Carmichael [19871].
d0rr [1953].

€Courtial et al. [1997].

local moment magnitude in PBE+U: larger
local moments lead to lower density. By
comparison, the Hugoniot computed from
classical potentials is much too stiff as
compared with experimental data: the
pressure is overestimated by 40% [Guillot
and Sator, 20071].

The importance of +U is shown by com-
parison to the experimental heat capacity
(Table 1): the PBE+U value agrees well with
experiment, while the PBE value is much
too high. We have traced the origin of this
difference to the electronic structure: while
PBE+U shows a pseudogap, PBE has a large
density of states at the Fermi level (Figure 3).
This means that PBE has a large electronic
contribution to the heat capacity that is not
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Figure 3. Average electronic density of states (DOS) of liquid Fe,SiO,4 using the PBE+U functional: total DOS (black),
oxygen contribution (blue), iron contribution (red), and silicon contribution (green). Dashed black line is the total DOS

with PBE.

observed experimentally: the experimental value is very similar to that of Mg-silicate liquids. The pseudo-
gap that we find in PBE+U is also consistent with experimental measurements of the current efficiency,
which show that the dominant charge carriers are ions rather than electrons and that the liquid is at best

a semiconductor [Simnad and Derge, 1953]. The influence of U in our calculations is similar to that seen in
crystalline systems: Fe oxides and silicates are observed experimentally to be insulators at low pressure and
incorrectly predicted to be metals by PBE, whereas PBE+U produces a gap comparable in magnitude to that
observed experimentally [Cococcioni and de Gironcoli, 2005; Stackhouse et al., 2010].
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Figure 4. Partial molar volume of the oxides in the liquid state (thick
solid lines) as derived from FPMD results on Fe,SiO, (present work),
Mg,SiO,4, and MgSiO3 [de Koker et al., 2013] compositions. Partial molar
volumes are compared with independent FPMD simulations on the
pure end-member oxides MgO and SiO, [de Koker et al., 2013] (sym-
bols). Thin lines show the equation of state of the crystalline oxides as
computed with HeFESTo [Stixrude and Lithgow-Bertelloni, 2011]. The
inset shows the equations of state of Fe,SiO,4 (green), Mg,SiO, (red),
and MgSiOs (blue) liquids. The blue-dashed line shows the volume of
MgSiO3 multiplied by 7/5 to permit direct comparison, on a per atom
basis, with the orthosilicate compositions.

As pressure increases, the electronic
structure of fayalite liquid computed
with PBE+U changes and the gap closes
(Figure 3). At conditions corresponding
to those at the base of Earth’s mantle,
the liquid shows a large density of states
at the Fermi level. The closure of the
pseudogap at high pressure suggests
that fayalite liquid may be electrically
conductive, i.e.,, metallic, in the deep
mantle. The gap closes at much lower
pressure than in iron-free silicate liquids
[Hicks et al., 2006; Spaulding et al., 2012;
McWilliams et al., 2012], and amorphous
Fe,SiO, formed by compression of fay-
alite at room temperature [Williams et
al., 1990]. The role of iron must be taken
into account in assessing the possible
existence and geophysical significance of
electrically conducting silicate liquids in
planetary interiors.

We gain additional insight into the
equation of state of silicate liquids by
comparing with previous results on
Mg,SiO, and MgSiO; compositions [de
Koker et al., 2013] (Figure 4). As expected,
the volume of Fe,SiO, composition is
slightly greater than that of Mg,SiO,,,
reflecting the larger ionic radius of Fe as
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6.0 I I I I I I compared with Mg. The volume differ-
ence diminishes slightly with increasing
sl Basalt pressure reﬂecFing th'e gradual mag-
i netic collapse in Fe,SiO,. The volume per
) atom of MgSiOj; is smaller than that of
Pyrolite . . . .
~ 5.0 Mg,SiO,, consistent with the increase
N')E in density with increasing silica content
; across the MgO-SiO, join found in our
E, 4.5 o u previous work [de Koker et al., 2013].
g ~ 00 i We apply a linear transformation to
8 4.0 é B - obtain the partial molar volumes of MgO,
ES o2r ) ] FeO, and SiO, components (Figure 4). We
35 0.4} 4 assume that the volume can be repre-
o a0 a0 sented as a linear combination of partial
P (GPa) molar oxide components since previous
3.0 . I l ' ' L simulations have shown that the non-
20 40 60 80 100 120 ’40 ideal volume of mixing on the MgO-SiO,
Pressure (GPa) CmB

join is only a few percent at lower man-
Figure 5. Density of crystalline assemblages of pyrolite (thin red) and tle conditions [de Koker et al., 2013].
basalt (thin blue) compositions compared with the density of partial The liquid components are all more
rpelts ir? equilibrium with these compositions (boI("j Iines),"ljhe Qashed compressible than their crystalline coun-
line estimates the influence of the high- to low-spin transition in fer- -
ropericlase by assuming that the low-spin phase is 2% denser [Mao et terparts. In the case of FeO, the liquid
al, 2011]. The inset shows the density difference between pyrolite and ~ COMponent becomes denser than the
its partial melt (red) and basalt and its partial melt (blue). Solid assem- high-spin crystalline component, reflect-
blage mass fractions at the core-mantle boundary as computed with ing the gradual magnetic collapse in
HeFEST9 are.0.82, 0.46 (perovskite), 0.18, 0.06 (ferropericlase), and 0, the liquid.
0.48 (stishovite) for pyrolite and basalt, respectively.

We use these results to evaluate the

buoyancy of partial melts in the deep
Earth (Figure 5). We compute the density of coexisting partial melts and crystalline assemblages in the
MgO-FeO-SiO, system for two scenarios: partial melting of pyrolite and basalt, such as might occur in the
lower thermal boundary layer at the base of the mantle. We approximate pyrolite and basalt as the eutec-
tic compositions on the MgO-SiO, join [de Koker et al., 2013], Z = SiO, /(SiO, + MgO + FeO) = 0.405 and
Z = 0.70 respectively, and assume X;, = Fe/(Fe + Mg) = 0.1 and X;, = 0.3, for pyrolite and basalt respec-
tively [Workman and Hart, 2005]. We assume Fe partitioning according to the Mg-Fe partition coefficient
between Mg-rich silicate perovskite and liquid K = 0.4, consistent with experimental studies [Andrault et al.,
2012], yielding X, = 0.22 and X, = 0.54 for the two partial melts, respectively, in the limit of infinitesimal
amounts of partial melt. Solid phase proportions, compositions, and physical properties are computed with
HeFESTo [Stixrude and Lithgow-Bertelloni, 2011]. We find that partial melts of both compositions are denser
than the coexisting solids at pressures exceeding 100 GPa, i.e., in the bottommost 600 km of the mantle.

4. Discussion and Conclusions

The gradual high- to low-spin transition that we find calls into question experimental evidence for sud-
den changes in the chemistry of silicate melts near 75 GPa [Nomura et al., 2011]. For this behavior to be
caused by magnetic collapse in the liquid, as inferred in the experimental study, the transition would have
to occur over a very narrow pressure interval (<3 GPa) in contrast to the wide pressure interval that we find
(>200 GPa). Magnetic collapse found in a glass compressed at 300 K [Nomura et al., 2011] is not a good
analog for the behavior of silicate liquids: the transition occurs over a much narrower pressure interval
(<20 GPa) in the glass, which we attribute to the much greater degree of structural order in the glass as
compared with the liquid. Based on the broad high- to low-spin transition that we find, we expect iron parti-
tioning into the melt to increase slightly and gradually with increasing pressure, a conclusion supported by
a recent experimental study [Andrault et al., 2012].

For silicate melts to persist in the deep mantle they must be buoyantly stable, i.e., denser than surrounding
crystalline material. Our results show that the influence of FeO on the density of silicate liquids is greater
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than we had estimated previously. Instead of the liquid-crystal density crossover occurring just above
the core-mantle boundary [Stixrude et al., 2009], we now find it to occur 600 km above the core-mantle
boundary. The difference reflects the importance of the high- to low-spin transition in the liquid.

The presence of small amounts of dense partial melt provides a possible explanation of seismic anomalies in
the lower mantle. According to our results, if partial melt exists it is slightly denser than surrounding mantle
in the bottom 600 km of the mantle. While the position of the solidus with respect to lower mantle temper-

ature remains a key uncertainty, recent measurements suggest that small amounts of partial melt may exist
over a wide range of depth in the lower mantle [Nomura et al., 2014]. Depending on the amount and geom-
etry of partial melt, the melt may drain to the core-mantle boundary, producing melt-enriched regions that

can explain ultralow velocity zones [Williams and Garnero, 1996; Stixrude et al., 2009]. Alternatively, because

the density contrast driving melt-crystal segregation is small, the partial melt may remain where it is formed.
Widespread, laterally varying amounts of very low degree partial melts provide a natural explanation for the
anomalously low shear wave velocity of the African and Pacific anomalies [Garnero et al., 2007], and anoma-
lously large lateral variations of shear as compared with compressional velocity [Robertson and Woodhouse,

1996; Duffy and Ahrens, 1992].
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