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The Illumina HumanMethylation450 BeadChip has become a popular platform for interrogating DNA
methylation in epigenome-wide association studies (EWAS) and related projects as well as resource
efforts such as the International Cancer Genome Consortium (ICGC) and the International Human Epige-
nome Consortium (IHEC). This has resulted in an exponential increase of 450k data in recent years and
triggered the development of numerous integrated analysis pipelines and stand-alone packages. This
review will introduce and discuss the currently most popular pipelines and packages and is particularly
aimed at new 450k users.

� 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

DNA methylation (DNAm) is an epigenetic modification that
plays an important role in the regulation of gene expression and
has become an important avenue of research in our quest to gain
a better understanding of human development and disease. A
number of lab techniques are available for interrogating DNAm
[1] including the popular Infinium HumanMethylation450 Bead-
Chip (450k array) [2,3]. Although not as comprehensive as
sequencing-based methods, it is more affordable and much simpler
to analyse and interpret. These characteristics make the 450k array
an ideal choice for epigenome-wide association studies (EWAS)
involving hundreds or even thousands of cohort samples [4–6]
and also for identifying methylation signatures as biomarkers of
disease state and progression [7,8].

The 450k array contains 485,512 probes covering 99% of RefSeq
genes. The probes interrogate 19,755 unique CpG islands with
additional coverage in shore regions and miRNA promoters as well
as 3091 probes at non-CpG sites. For each probe sequence, a med-
ian of 14 beads is randomly distributed on the array. Each of these
beads contains hundreds of thousands of oligonucleotides. This
provides a unique set of internal technical replication on each
array. The 450k array is an extension of an earlier BeadChip, the
HumanMethylation27 array (27k array). The 27k array was
designed using the Infinium I probe chemistry, which has two
beads per probe, one in the red channel and one in the green
channel. To create the more comprehensive array platform a
second assay type, Infinium II, was used in addition to the Infinium
I assay. The Infinium II assay only uses one bead per probe in the
red or green channel representing methylated or unmethylated
respectively. The Infinium II assay enabled more probes to fit on
the array but due to particular probe characteristics (particularly
CpG density within the probe) 30% of the probes retained the Infi-
nium I assay creating the two-assay design of the 450k array. The
two probe types display a slightly different dynamic range poten-
tially leading to a type II bias during analysis [9].

This two-assay design has led to the development of a variety of
specialised within-array normalisation algorithms [9–14] to adjust
for potential type II bias. This assay adjustment combined with
other basic steps for preprocessing make up the general 450k array
analysis workflow reviewed in detail by Dedeurwaerder et al. [15].
Briefly, raw data (IDAT files) is imported using the illuminaio [16]
tool implemented in minfi. Then a number of quality control metrics
are examined to determine the success of the bisulphite conversion
and subsequent array hybridisation. Probe filtering is performed to
remove probes that have failed to hybridise (detection p-value) and
that are not represented by a minimum of 3 beads on the array. It
may also be of interest to remove probes that overlap with single
nucleotide polymorphisms (SNPs), that cross hybridise to multiple
genomic locations or are on the sex chromosomes. After filtering
it is important to perform within-array normalisation. Methods
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include background correction, dye-bias adjustment [17] and the
aforementioned type II adjustment. Following this it is important
to analyse data for potential batch effects. Batch effects [18] are a
common source of variation in high-throughput experiments. They
represent measurements related to conditions that are not the bio-
logical or scientific variables in the study (i.e. date of experiment,
chip or instrument used, batch of reagents, technician running sam-
ples, etc.). Batch effects can usually be avoided with careful study
design and the ability to correct for them is dependent on the degree
of confounding in the particular dataset. Popular methods for batch
effect correction are the supervised correction methods ComBat
[19], surrogate variable analysis (SVA) [20] and independent surro-
gate variable analysis (ISVA) [21]. Also an unsupervised between-
array normalisation method (i.e. functional normalisation [22])
may be effective in removing batch effects. Depending on the study,
one may want to consider correction for cell heterogeneity [23].
After these preprocessing steps, the calculation of differentially
methylated positions (DMPs) between groups of interest is the first
step in the analysis process. This is most easily done between two
groups, however, more complex analyses can be designed to look
at time-course studies, twin designs [24–27], multiple groups and
paired samples. To focus analysis and narrow results calling differ-
entially methylated regions (DMRs) is the next step [28]. Following
this, additional steps in the 450k array analysis workflow include
copy number alteration (CNA) analysis, integration with external
data resources, data visualisation and data interpretation. There
are a number of analysis packages that include many or all of these
modules that make up the 450k workflow. The purpose of this
review is to describe in detail five comprehensive, freely available
450k software packages (methylumi, minfi, wateRmelon, ChAMP
and RnBeads). Fig. 1 shows the modules within these five analysis
Fig. 1. Popular 450k analysis pipelines w
packages colour-coded to indicate which module is in which
package. We will also highlight a number of stand-alone packages
for additional downstream analysis (Marmal-aid, RefFreeEWAS,
EWasher) that can be used in addition to the more comprehensive
packages. The Illumina Genome Studio software only offers basic
preprocessing and analysis options and requires the purchase of a
license so will not be discussed in this review. Table 1 shows all free
450k software packages available to date.

2. Comprehensive 450K analysis packages

Here we introduce five comprehensive packages developed for
450k array data analysis: methylumi, minfi, wateRmelon, ChAMP
and RnBeads. The first four are available through Bioconductor
while RnBeads is a stand-alone R-package. All five packages allow
the user to import raw IDAT files or tabular methylation values.
However, the availability of the IDAT files enables access to more
functionality in each package (particularly quality control metrics).

2.1. Methylumi

The methylumi [29] Bioconductor package provides R classes for
holding and manipulating 450k array data. These classes enable
the access of MIAME (Minimum Information about a Microarray
Experiment) information including sample details, feature infor-
mation and multiple matrices of data. Methylumi enables the user
to perform quality control interrogation, background correction
and normalisation. In addition to 450k analysis methylumi has
methods that work with GoldenGate and 27k array data.

Methylumi implements an effective normalisation option called
noob (normal-exponential convolution using out-of-band probes)
ith their respective module options.



Table 1
Freely available packages for Infinium 450k data analysis.

Package Use References

ChAMP Comprehensive suite of functions; automated pipeline [35]
COHCAP CpG island analysis and gene expression data integration [49]
Comb-p DMR calling [47]
DMRcate DMR calling [45]
Epigenetic clock Predictor of sample age [54]
EWasher Reference-free cell composition correction [53]
FastDMA Quantile normalisation and DMP/DMR calling [46]
IMA Preprocessing including normalisation methods; Pipeline option [60]
Lumi Background correction, general normalisation [61]
Marmal-aid 450k database for data integration [48]
MethylAid Interface for interactive sample QC [39]
Methylumi Comprehensive suite of functions [29]
Minfi Comprehensive suite of functions [31]
NIMBL Matlab code for QC and DMP calling [62]
RefFreeEWAS Reference-free cell composition correction [37]
RnBeads Comprehensive suite of functions [36]
shinyMethyl Interface for interactive sample QC [38]
wateRmelon Preprocessing including performance metrics and numerous normalisation methods [12]
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[30]. This method includes dye-bias equalisation to control for the
different average intensities in the red and green channels and
background correction to remove technical variation. Three models
for background correction are included in methylumi and are used
together with the intensities of either negative controls or out-of-
band controls within each colour channel. Out-of-band probes are
those that provide signals in the opposite channel from the probe
design. There are 135,501 out-of-band probes on the 450k array.
The noob normalisation uses normal-exponential convolution to
subtract the background mean intensity (estimated from the out-
of-band control probes) from the foreground intensity. Although
noob was not specifically designed to correct for type II bias it is
effective in doing so.

Methylumi has methods that convert its R classes to work with
other 450k analysis packages allowing users to pick and choose
modules from various packages that work best for a particular
application.
2.2. Minfi

The minfi [31] Bioconductor package is a comprehensive pack-
age that like methylumi was developed early on and has its own
set of R classes for holding and manipulating 450k array data.
Although minfi does not provide a single function to run the entire
pipeline it does offer all the modules required for a full workflow. It
is frequently updated to offer methods for the newest analysis
options available to 450k users. These include both DMR calling
and block finding modules, a module for estimating cell-type
composition of whole blood using a reference dataset [32] and a
new between-array normalisation algorithm, termed functional
normalisation [22].

Minfi has included the Genome Studio normalisation and pre-
processing methods for users familiar with those methods and
interested in using them. For quality control analysis a number
of images are included and an HTML QC report can be created that
includes visualisation of the array’s internal controls. It also has a
useful function for predicting sample gender.

Two different functions in minfi estimate DMRs depending on
the genomic region. The function bumphunte() implements the
Bioconductor package bumphunter [33] and focuses on short-range
(1–2 kb) DNAm changes, e.g. around gene promoters. To find
blocks of differential methylation [34], the function cpgCollapse()
covers long-range changes in DNAm status as represented by the
170,000 open sea probes on the 450k array.
For estimation of cell-type composition of whole blood samples
and correction for this difference in composition the estimateCell-
Counts() function implements an algorithm that utilises a reference
dataset of different blood cell types to estimate cell composition in
any dataset of whole blood [32].

The most recent update to minfi is the functional normalisation
algorithm, preprocessFunnorm() [22]. This utilises control probes
on the bead chip (similar to noob in methylumi) to remove technical
variation. The control probes act as surrogates representing the
unwanted variation, which may include batch effects. In fact, the
authors show that replication between experiments are improved
even with a batch effect present. The method is expected to be most
useful in datasets with large differences between samples (e.g. can-
cer vs. normal). The authors show that the functional normalisation
outperforms within array type II adjustment normalisations by
improving the ability to replicate findings between experiments.
2.3. wateRmelon

The wateRmelon Bioconductor package was developed to pro-
vide access to the 15 normalisation methods and three perfor-
mance metrics developed and described by Pidsley et al. [12].
The package provides the functions for loading data in text files
or IDAT files and for filtering based on detection p-value and bead
count per probe.

wateRmelon takes advantage of known DNAm patterns that
have been associated with genomic imprinting, X-chromosome
inactivation (XCI) and also the 65 single nucleotide polymorphisms
(SNPs) present on the array to create three independent metrics
which can be used to test methods of correction and normalisation.
Discrete imprinted differentially methylated regions (iDMRs) are
expected to have monoallelic methylation (b = 0.5). XCI causes
male–female differences on the X-chromosome that lead to
females showing at least 50% methylation and males substantially
less. Finally, the signal from the SNP probes is expected to cluster
into three distinct genotype groups (i.e. AA, AB, BB) and could be
used to provide an indication of technical variation between sam-
ples. These three natural control sets have been used to create the
performance metrics dmrse_row(), genki() and seabi() respectively.
Of the 15 normalisation functions implemented in wateRmelon, the
authors show their function, dasen(), to be the best performing.

To enable users to take advantage of the performance metrics
and normalisation methods wateRmelon works with the R classes
needed for the other packages.
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2.4. ChAMP

The Chip Analysis Methylation Pipeline, ChAMP [35], is a Bio-
conductor package that streamlines and automates many of the
minfi functions for a more inexperienced R user. As such it offers
eight functions that can be manipulated by changing parameters
if the user wishes to use options other than the default values.
One useful feature of the ChAMP package is the option to run the
entire pipeline with a single function champ.process(). The caveats
with this function are the time it takes to run and the fact that not
all intermediate tables are saved. However, once the user is famil-
iar with the package this offers a quick option for subsequent anal-
yses. The default normalisation in ChAMP is BMIQ [9] and there is
also the option to run ComBat [19] to correct for batch effect
related to slide number (Sentrix ID) as long as the study design is
not confounded by slide number (an example of this would be all
control samples on one slide and test samples on another).

ChAMP offers a few modules that are currently unique to ChAMP.
The DMR hunting algorithm ‘Probe Lasso’ is run using the cham-
p.lasso() function. Probe lasso requires differential methylation p-
values for all probes after filtering (even those that are above the sig-
nificance threshold) and uses a dynamic window based on genomic
features to capture DMRs. This method is described in more detail in
this issue (Butcher and Beck). In addition, ChAMP includes a module
for copy number alteration analysis using the function champ.CNA()
[19]. This module utilises the intensity values so users must have
either the IDAT files or a table of intensity values.
2.5. RnBeads

RnBeads [36] is another comprehensive package that can ana-
lyse sequencing based DNAm data, in addition to 27k and 450k
data. Like ChAMP, RnBeads offers a full pipeline option that runs
through all the modules with a single function rnb.run.analysis().
Alternatively the workflow can be run in steps with a number of
normalisation options (including SWAN, BMIQ, wateRmelon meth-
ods and methylumi’s noob method. A benefit of RnBeads is the
detailed HTML report that describes the analysis that was done
along with results and images including a number of quality
control plots.

RnBeads includes a module for ‘‘Annotation Inference’’ that
includes functions to infer gender of samples using an internal
classifier based on signal intensity or identify hidden confounders
using SVA. This module also implements both a reference based
cell type correction method for blood [32] (also implemented in
minfi) and a reference free method (also available as a stand-alone
package described below) [37]. A separate module allows the user
to inspect data for sample traits that might lead to batch effects
with a few different plots (principal component analysis, PCA and
multidimensional scaling, MDS). RnBeads also offers functions for
interactions with UCSC to allow ENCODE annotation and data
visualisation.

RnBeads provides images for inspecting methylation profiles
and also conducts differential methylation analysis between
sample groups using linear modelling (limma package) or regular
t-tests to compute p-values. There is an option for paired analysis.
The function for calculating DMRs simply calculates the mean
methylation across all probes in the genomic region.
3. Additional resources

In addition to the comprehensive packages reviewed here we
thought it would be worthwhile to highlight other stand-alone
packages that can be incorporated into any analysis pipeline.
3.1. Quality control

Although all the packages above include modules for assessing
quality control two new packages worth mentioning are shinyMethyl
[38] and MethylAid [39]. Both of these packages are interactive Shiny
applications (http://www.rstudio.com/shiny/) that enable users to
investigate sample quality through an interactive user interface.
The packages each provide slightly different diagnostic plots of the
internal control probes present on the array, but both allow users
to select thresholds and observe the potential impact of batch
effects.

3.2. Probe annotation

As described above it is important to filter out probes that have
failed during hybridisation. In many studies it may also be benefi-
cial to filter out X- and Y-chromosomes. A few resources are now
available that annotate probes hybridising to multiple genomic
locations (non-specific probes) or those that overlap with SNPs
particularly at the probed CpG dinucleotide [40–42]. Additionally,
the Bioconductor package Illumina450ProbeVariants.db [43] is a
curated collection of data from the 1000 genomes project [44] that
includes minor allele frequency of SNPs derived from four popula-
tions (American, African, European or Asian) with details on the
SNPs distance from the CpG dinucleotide.

3.3. DMR calling methods

In addition to the DMR hunting methods included in packages
reviewed here (i.e. probe lasso and bumphunter) two stand-alone
packages for calling DMRs have been developed recently.

DMRcate [45] is a Bioconductor package that uses a kernel func-
tion to aggregate groups of significant probes where the distance to
the next consecutive probe is less than the designated number of
nucleotides.

FastDMA [46] is a package written in C++/Python that includes a
function to preform basic quantile normalisation before analysing
samples for DMPs or DMRs. The DMP analysis uses ANCOVA (a
generalised linear model combining ANOVA and regression) to
compare two linear regression models, one assuming an overall
mean across all study groups while the other assumes different
means. A p-value is calculated and then the false discovery rate
is computed to identify significantly differentially methylated
probes. The DMR caller then identifies DMRs containing several
probes with uniform methylation in predefined regions (promoter
or CpG Island) or in arbitrary regions based on a sliding window
that looks for more than two significant probes.

Another package comb-p [47] has been extended to work with
450k data. It combines previously calculated p-values that are spa-
tially correlated resulting in a list of regions with an aggregated
and corrected p-value assigned to each region.

3.4. Data integration

With the large number of EWAS being conducted and the vast
amount of publically available data it is important to come up with
methods and tools for data integration. This is an area of analysis
that needs more emphasis as data integration can be challenging.

Marmal-aid [48] is an R-package and database that is frequently
updated and currently includes more than 11,000 450k array sam-
ples from nearly 200 different tissues and approximately 100 dif-
ferent diseases. This is a powerful tool for integrating smaller
datasets to ask different biological questions, to validate results
or to observe trends across different samples.

COHCAP [49] is a software package that takes methylation data
(450k or BS-Seq) that has been preprocessed and identifies CpG
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islands that show a consistent methylation pattern among CpG
sites. This package also integrates with gene expression data to
identify CpG islands that potentially regulate downstream gene
expression.

3.5. Visualisation

All the pipelines and packages discussed here produce a num-
ber of images. However, custom high quality images and plots
can be created using R/Bioconductor packages including ggplot2
[50] and Gviz [51]. Analysis output from any of the packages men-
tioned here could also be imported into UCSC Genome Browser or
IGV (Integrative Genomics Viewer) for data visualisation.
4. Emerging 450K analyses

As reviewed here, there are a number of comprehensive pipe-
lines for 450k array analysis for those with varying skills in R pro-
gramming and statistics as well as several packages for
downstream data analysis. In addition, a number of new packages
have recently been released. Here we briefly highlight some of the
most recent developments.

4.1. Cell composition correction

An important issue in methylation studies is cellular heterogene-
ity [23]. Whole blood, like many other tissues, is made up of a num-
ber of different cell types each with different methylation profiles
that can vary in proportion with age or disease status. Houseman
et al. [32] developed a statistical method using reference data to
accurately estimate relative proportions of differing cell types in
whole blood. This method has been incorporated into methods in
minfi and RnBeads. Guintivano et al. [52] have implemented a similar
method for particular brain cell types. A reference dataset for each
cell type would be the ideal solution and the International Human
Epigenome Consortium (IHEC) is attempting to generate this data.
Unfortunately it is costly, time consuming and in some cases unreal-
istic to come up with reference sets for each cell type. As such two
methods have recently been developed to deal with this issue
without the need for a reference dataset. EWasher [53] is a package
written in Perl and RefFreeEWAS [37] is an R-package. Both can be
used alongside any of the other analysis packages. It is important
to consider the top down systems view of the study being analysed
before applying a cell-composition correction as it may correct away
the methylation differences that are of interest. Cell-composition
correction may be of different importance in studies with large
methylation differences (cancer vs. normal) compared to those with
small methylation differences (common disease).

4.2. Estimating sample age

A significant amount of work is going into finding DNAm pro-
files for particular disease states. However one condition every
sample has in common is age. Horvath [54] took advantage of this
fact by using 8000 samples from 82 27k or 450k datasets to define
a DNAm profile consisting of 353 CpG sites that can act as a predic-
tor of age. It is not clear whether these clock CpGs are simply a
marker for age or relate to an effector of aging. However, they do
highlight interesting questions that may give us more information
on tissue aging. For one, the clock systematically overestimates the
age of female breast tissue, and conversely heart tissue age seems
to be underestimated while the prediction of brain tissue age is
extremely accurate. In addition, work with monozygotic and dizy-
gotic twins showed that age acceleration is extremely heritable.
The epigenetic clock script is written in R and utilises the WGCNA
R-package to measure pure age effects. Details about using the epi-
genetic clock can be found in the supplementary files of the paper.

4.3. Hydroxymethylation analysis

The recent development of chemical [55] and enzymatic [56]
assays for oxidation of 5-methylcytosine (5mC) enables the
discrimination between 5mC and 5-hydroxymethylcytosine
(5hmC) and their quantitative measurements in a single workflow.
In addition to sequencing-based applications, this has created a
new use for the 450k array which has already been successfully
translated for the chemical assay into a commercially available
kit (TrueMethyl) by CEGX [57]. First attempts indicate that both
assays work on the 450k platform (Field et al., submitted, [58])
but as yet no methods specific to 5hmC analysis have been
developed. However, judging by the speed this community has
addressed such needs in the past, it will not be long before
appropriate methods become available and integrated into the
pipelines discussed in this review.

5. Limitations and conclusions

Despite its popularity and obvious success, the 450k platform
has some limitations which cannot be addressed by computational
approaches. The coverage of total CpG sites, for instance, is low
(only around 2%) which means that some features such as enhanc-
ers are only barely or not at all covered. The design of the Infinium
assay does not allow the detection of allele-specific DNAm that is
important in the context of imprinting and other parent-of-origin
effects. Furthermore, the platform is human-specific and thus not
suitable for comparative analysis with model organisms such as
mice. The mouse reference genome matches only 13,715 probes
on the 450k array [59].

Looking forward, however, the 450k platform is likely to remain
popular for some time to come and it will be the platform of choice
for EWAS for the foreseeable future. This is largely due to the
innovative and freely available computational solutions that the
community has been developing to streamline the analysis and
address the many technical and biological confounders discussed
above. Judged on publications indexed in PubMed and data submis-
sions to GEO (www.ncbi.nlm.nih.gov/geo/), the public repository for
this type of data, 450k use and analysis was exponentially growing
at the time of writing this review.
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