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Abstract

A group of n �quacks� plays a price-competition game, facing a
continuum of �patients�who recover with probability �, whether or
not they acquire a quack�s �treatment�. If patients chose rationally,
the market would be inactive. I assume, however, that patients choose
according to a boundedly rational procedure, which re�ects �anecdo-
tal� reasoning. This element of bounded rationality has signi�cant
implications. The market for quacks is active and patients su¤er a
welfare loss which behaves non-monotonically w.r.t n and �. In an
extended model that endogenizes the quacks�choice of �treatments�,
the quacks minimize the force of price competition by o¤ering maxi-
mally di¤erentiated treatments. The patients�welfare loss is robust to
market interventions which would crowd out low-quality �rms in stan-
dard I.O. models. Thus, as long as the patients�quality of reasoning
is not lifted above the anecdotal level, ordinary competition policies
may be ine¤ective.
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1 Introduction

Imagine a hypothetical market, in which n identical �healers�are engaged
in price competition over a continuum of �patients�. If a patient acquires
the �treatment�o¤ered by one of the healers, he recovers with probability
� 2 (0; 1). If the patient chooses to acquire none of the treatments o¤ered
in the market, he recovers with the same probability �. We may refer to the
healers as �quacks�, as they possess no skills relative to the default.
If patients understood this model, they would realize that the entire in-

dustry provides a worthless service, and the �market for quacks�would be
inactive. Indeed, standard market models presuppose that all market agents,
�rms and consumers alike, have �common knowledge of the model�. This as-
sumption is often more plausible for �rms than for consumers. Firms interact
with the market on a regular basis, while consumers often make a once-and-
for-all decision following a brief period of market exposure. Moreover, �rms�
decision process is focused on a speci�c market, whereas consumers divide
their attention among many markets. For these reasons, we should not expect
�rms and consumers to display the same quality of �market reasoning�.
In this paper I study the market for quacks under the following pair of

assumptions: (i) healers are standard pro�t maximizers with respect to a
correct probabilistic understanding of the market model; (ii) patients follow
a boundedly rational decision rule. Instead of reasoning probabilistically with
respect to a correct market model, patients reason anecdotally: they rely on
random, casual stories regarding the quality of treatments, and react to these
stories as if they are fully informative of the actual quality of treatments. As a
result, patients are exposed to exploitation by healers, because they attribute
their occasional success to skill rather than luck. The question is whether
market competition could mitigate this exploitative e¤ect. I examine the
extreme case of a �market for quacks� - that is, a market for a completely
worthless good or service - in order to bring this question into sharper focus.
To capture the patients�anecdotal reasoning, I assume that they choose

according to a simple procedure, called S(1), which I borrow from Osborne
and Rubinstein (1998). A patient samples (once) each of the n+1 treatments
(the quacks and the default). The patient�s sample assigns an outcome xi 2
f0; 1g to alternative i, where xi = 1 (0) means that the outcome was a success
(failure). A sample point xi is interpreted as a random anecdote that the
patient has gathered about treatment i, either from his own past experience
or from a fellow patient. The patient chooses the treatment i that maximizes
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xi � pi in his sample. The outcome of his decision is a new, independent
draw from treatment i. The quacks take into account the patients�choice
procedure when determining their pricing strategy.
The patients�behavioral model is relevant to markets for goods or ser-

vices which generate a random outcome, when it is di¢ cult for consumers to
gain hard, persistent evidence of their quality. I have in mind �soft exper-
tise� industries such as psychotherapy, management consulting, forecasting
and alternative medicine. The e¤ects of skill and luck are hard to disentan-
gle in these industries. Moreover, consumers often enter them when they
face an unexpected problem, hence their consumption is not preceded by a
long learning phase. In such circumstances, consumers are more likely to
rely on anecdotes such as �a friend of mine has taken this pill and he feels
better now�, or �we should trust this political analyst because he foresaw
the collapse of the USSR�.
The �imperfect rationality� inherent in the S(1) procedure should not

be confused with ordinary imperfect information. Indeed, in Section 5 I
argue that a �twin model�with imperfectly informed, rational patients would
yield di¤erent results. To the extent that the procedure re�ects ignorance
on the patients�part, their ignorance is more characteristic of early stages
of a learning process, in which the model itself (rather than the value of its
fundamentals) is still poorly known. Similarly, the sampling component of
the S(1) procedure should not be confused with ordinary models of consumer
search. The patient�s true expected payo¤ from choosing i is �� pi, whereas
in a search model it would be the sample realization xi � pi.
The price-competition game played among the quacks has a unique Nash

equilibrium, which is symmetric and mixed. For every �, the �market for
quacks� is active. Quacks act as �charlatans�: they charge positive prices
for their worthless treatments. There is a negative relation between � and
expected price. In other words, a more incurable disease generates a greater
amount of charlatanry. The intuition for this result is simple: as � decreases,
a patient�s sample is less likely to contain multiple successes, and this weakens
competitive pressures.
Activity in the market for quacks in�icts a welfare loss on patients: those

who end up acquiring the quacks�treatments are on average worse o¤ than
those who end up choosing the default. The welfare loss does not behave
monotonically with respect to n. The reason is that the patients� choice
procedure induces an aggregate demand function which is increasing in n.
As long as n is not too large, this force outweighs the competitive force
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generated by a larger number of competitors.
Thus, increasing the number of competitors does not necessarily reduce

the quacks� adverse e¤ect on consumer welfare. In Section 3, I examine
alternative market interventions, which may appear like e¤ective competition
policies at �rst glance: (i) raising the success rate of one healer, turning him
from a �quack�into a �true expert�; (ii) allowing healers of diverse quality to
disclose their success rates. In the �rst case, the quacks�equilibrium behavior
and adverse welfare e¤ects remain unchanged. In the second case, all healers
(regardless of their quality) choose not to disclose their success rates. The
lesson is simple: without lifting consumers� quality of reasoning above the
anecdotal level, ordinary competition policies may be ine¤ective.
The assumption that treatments are exogenous and statistically indepen-

dent is quite restrictive. Even if quacks cannot alter their success rate, they
may be able to control the correlation with other quacks through their choice
of treatments. In Section 4 I analyze an extended model that incorporates
this consideration. Speci�cally, I study a stylized model of a forecasting in-
dustry, in which forecasters without any special forecasting ability choose
a �forecasting fee�and a rule for predicting the outcomes of �horse races�.
Consumers use anecdotal evidence to evaluate the forecasters�quality: they
recall a past race at random, and pick the cheapest forecaster among those
who predicted the winner in that race.
Such anecdotal reasoning implies that a forecaster can try to avoid com-

petition by di¤erentiating his predictions from his competitors�. As it turns
out, in Nash equilibrium, forecasters attain the maximal degree of di¤erenti-
ation: their predictions are as di¤use as possible. This result may explain the
proliferation of therapeutic methods that we see in alternative medicine and
psychotherapy. At the end of Section 4, I argue that it may also be relevant
for certain aspects of the mutual funds industry.

Related literature
Osborne and Rubinstein (1998) analyzed games in which all players choose
according to S(1). Their main concern was to construct a solution concept for
such situations. In the present paper the S(1) is employed by non-strategic
agents only. Therefore, it does not call for a non-standard equilibrium con-
cept. Osborne and Rubinstein (2003) study a variant on �S(1)-equilibrium�
in a strategic voting model.
The S(1) procedure is related to other departures from standard prob-

abilistic reasoning. Tversky and Kahneman (1971) demonstrated experi-
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mentally that people over-infer from small samples. They explained this
phenomenon (dubbed �the law of small numbers�) as a consequence of the
�representativeness�heuristic: people expect a small sample to mirror the
probability distribution from which it is drawn. Rabin (2002) proposed a
formal model of inference by �believers in the law of small numbers�. The
S(1) procedure re�ects an extreme version of the �law�: patients maximize
utility against the empirical distribution of recoveries given by their sample,
as if this were the true distribution. However, it would be inaccurate to claim
that the S(1) procedure is exclusively a model of �the law of small numbers�.
Rather, it is a model of anecdotal reasoning which may have other origins,
such as lack of market experience.
The S(1) procedure is also linked to the model of �case-based reasoning�

due to Gilboa and Schmeidler (2001), in which decision makers evaluate an
action by recalling its performance in past �cases�. Their emphasis, how-
ever, is on the question of similarity between past and current cases. To my
knowledge, Rabin�s and Gilboa-Schmeidler�s models have not been incorpo-
rated into I.O. models.
More broadly, this paper belongs to a literature that studies market inter-

action between rational �rms and agents with boundedly rational perceptions
of the market environment. Thadden (1992) studies a repeated buyer-seller
interaction, when the buyer uses a non-strategic learning rule to update his
beliefs regarding the quality of the seller�s good. Given this learning rule,
the buyer is not exploited by the seller in the long run. Rubinstein (1993)
analyzes monopolistic behavior when consumers di¤er in their ability to un-
derstand complex pricing schedules. Piccione and Rubinstein (2003) study
intertemporal pricing when consumers have diverse ability to perceive in-
tertemporal patterns. Fishman and Hagerty (2003) study voluntary disclo-
sure by �rms, when some consumers are unable to understand the content of
the disclosure. Chen, Iyer and Pazgal (2002) analyze a model of price com-
petition when consumers have memory imperfections. For other attempts to
introduce non-Bayesian reasoning into game-theoretic modeling, see Eyster
and Rabin (2005), Jehiel (2005) and Spiegler (2005).
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2 A Basic Model

A market consists of a continuum of identical consumers (�patients�) and
n identical �rms (�healers�). When a patient acquires the treatment of a
healer i 2 f1; :::; ng, he �recovers�with probability � 2 (0; 1). The patient
can also choose a default option, denoted i = 0, in which case he recovers
with the same probability �. Every patient is willing to pay 1 for sure
recovery (as shall become clear, we can ignore the patients�risk attitudes).
Healers are standard pro�t maximizers. They compete by choosing prices
simultaneously. Denote healer i�s price by pi. Of course, p0 = 0. I assume
that the healers�activity entails no cost. Because healers�success rate is the
same as the default rate, I refer to them as quacks.
Patients choose according to the following procedure, called S(1). Each

patient independently samples every alternative (including the default) once.
For every i = 0; 1; :::; n, let xi denote the outcome of the patient�s sampling of
alternative i: xi = 1 (recovery) with probability � and xi = 0 (no recovery)
with probability 1��. The xi�s are independently drawn. I refer to a sample
point as an anecdote. Given a sample, the patient chooses an alternative
i 2 argmaxi=0;1;:::;n xi � pi. In case of ties, he chooses the alternative with
the highest pi. If a tie remains, apply the usual symmetric tie-breaking rule.1

When a patient chooses alternative i, the outcome of treatment i is a new,
independent draw, such that the patient�s true expected utility from this
decision is �� pi.
Quacks take into account the patients�choice procedure when calculating

their pro�ts. For example, if p1 > pj for every j > 1, then quack 1�s pro�ts
are equal to p1 � � � (1� �)n, because the quack�s clientele consists of all the
patients who heard a good anecdote only about him. On the other hand, if
0 < p1 < pj for every j > 1, then quack 1�s pro�ts are equal to p1 �� � (1��),
because the quack�s clientele consists of all the patients who heard a good
anecdote about him and a bad anecdote about the default.
Quacks are allowed to use mixed strategies. However, once a price pi has

been realized, quack i is committed to it as far as the patients are concerned.
Patients know the exact prices; the only source of variation in their sample is
the imperfect recovery rate �, which is exogenously given. A mixed strategy
in�icts uncertainty on the quack�s opponents, not on the patients.
The simplicity of the S(1) procedure inevitably means that it is arti�cial

1I employ this tie-breaking rule merely to simplify the writing of proofs.
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in a number of ways. For instance, consider the assumption that patients
sample every quack. It would be more realistic to assume that patients get
to hear anecdotes about a subset of quacks. The following re-interpretation
of the model sidesteps this di¢ culty: assume that there are in�nitely many
quacks, yet patients becomes aware of only n quacks. Under this interpre-
tation, an increase in n cannot be interpreted as market entry, but as an
increase in the patients�awareness of available treatments.
Another arti�cial feature is the assumption that the number of observa-

tions per quack is independent of the size of its clientele. Alternatively, we
could assume (as in the word-of-mouth learning due to Ellison and Fuden-
berg (1995)) that patients sample n fellow patients, rather than n �rms, such
that they get to hear more anecdotes about quacks with a larger clientele.
This variant is more di¢ cult to analyze, because the number of anecdotes
per alternative is a �xed point: the patient�s sample induces a probabilistic
choice, which in turn induces the number of anecdotes per alternative. Such
a �xed point need not exist.2

A di¤erent sort of criticism is that the model is formally equivalent to a
conventional model of price competition over consumers with private values.
In such a model, let vi denote the patient�s valuation of alternative i, for
every i = 0; 1; :::; n. The vi�s are independently drawn, taking the value 1 (0)
with probability � (1 � �), and they are the patient�s private information.
A model of this sort, albeit with continuous distributions and without an
outside option, was studied by Perlo¤ and Salop (1985,1986). Thus, S(1)-
patients in the market for quacks behave as if they were rational consumers
in a market for a �di¤erentiated product�.3

What are the merits of the market-for-quacks interpretation, in light of
this formal equivalence? As it turns out, the observation that S(1)-patients
behave as if they have private values, while simple, has a number of useful
implications. First, in a market for medical treatments, it is hard to imagine
that patients have intrinsic private values for di¤erent treatments. The S(1)
procedure provides a concrete process that generates the spurious �private

2This variant seems to introduce an anti-competitive force. As I illustrate in Section
3.2, quacks prefer that their patients have an inaccurate perception of their quality. If a
greater clientele implies more anecdotes, then quacks may have an incentive to raise prices
in order to reduce their clientele.

3Perlo¤ and Salop suggested that the source of di¤erentiation in their model could be
mistakes in consumers�perception of brands. Gabaix, Laibson and Li (2005) adopt this
interpretation and study asymptotic properties of the Perlo¤-Salop model.
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values�, thus grounding it in market fundamentals (the recovery rate �).
Second, the market-for-quacks interpretation is the source of the insights we
shall obtain into the question of whether the market rewards experts for
sheer luck. Third, it will lead to extended models, which would be hard to
make sense of under the private-values interpretation. Finally, the market-
for-quacks interpretation has radically di¤erent welfare implications.
Let us turn to equilibrium analysis.

Proposition 1 There is a unique Nash equilibrium in the price-competition
game played among the quacks. Every quack plays the mixed strategy given
by the cdf:

G(p) =
1

�
� [1� 1� �

n�1
p
p
] (1)

de�ned over the support [(1� �)n�1; 1].

To see the origin of expression (1), restrict attention to symmetric equi-
librium, and ignore the question of whether asymmetric equilibria exist. The
equilibrium strategy is an atomless cdf G. For every price p in the support
of G, the quacks�payo¤ is given by the expression:

p � � � (1� �) � [1� �G(p)]n�1 (2)

because for every quack i, �(1� �) is the probability that xi � pi > x0 in a
patient�s sample, and 1� �G(p) is the probability that xj � pj > xi � pi for
any rival quack j. It follows that

G(p) =
1

�
� [1� c

n�1
p
p
] (3)

where c is some constant. By standard arguments, the monopoly price p = 1
belongs to the support of G. Therefore, we can retrieve the value of c by
plugging p = 1 and G(1) = 1 in expression (3).4

4This derivation brings to mind similar characterizations in the literature on equilibrium
price dispersion (e.g., Butters (1977), Varian (1980), Burdett and Judd (1983) and Rob
(1985)).
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Corollary 1 The quacks� expected equilibrium price is strictly decreasing
with �. In particular, E(p)! 0 as �! 1 and E(p)! 1 as �! 0.

Quacks behave as charlatans in equilibrium: they charge a positive price
for a worthless treatment. The false pretense implicit in their over-pricing
gets worse as � decreases - i.e., when the patients�condition becomes more
incurable. The intuition is rudimentary. As � decreases, a patient�s sample is
less likely to contain multiple successes. This weakens competitive pressures
and causes prices to go up. Another way of stating this intuition is that as
� decreases, the degree of �product di¤erentiation�erroneously perceived by
the patients increases.
Because the monopoly price p = 1 belongs to the support of G, the

quacks�equilibrium payo¤ is �(1� �)n, according to expression (2). There-
fore, industry pro�ts are n�(1� �)n. Because quacks do not contribute any
added value, we may de�ne this expression as the welfare loss that quacks
in�ict on patients in equilibrium. This expression is not monotonic in �: it
attains an maximum at �� = 1

n+1
. It also behaves non-monotonically w.r.t n.

For every �, the number of quacks that maximizes the patients�welfare loss
is n� = � 1

ln(1��) . For every � / 0:4, n� � 2. That is, more competition may
increase the patients�welfare loss. As � ! 0, n� tends to in�nity, such that
the perverse e¤ect of greater competition holds for a wider range. However,
�xing �, the welfare loss vanishes as n!1.5
The intuition for the comparative statics w.r.t n is simple. On one hand,

a greater number of quacks increases the incentive to cut prices. This is
the standard �competitive� e¤ect. On the other hand, an increase in n
leads to higher aggregate demand for quacks. This �exploitative� e¤ect is
a consequence of the S(1) procedure: when the set of available treatments
is larger, there is a higher chance of hearing a good anecdote about some
treatment. As � decreases, it takes a larger n for the former e¤ect to outweigh
the latter.
The �exploitative�and �competitive�e¤ects can be separated in a simple

manner. The max-min payo¤ in the game is equal to �(1 � �)n, which is
precisely what quacks earn in equilibrium. Thus, the �exploitative e¤ect�
determines the max-min payo¤, and the �competitive e¤ect�does not allow
quacks to earn more than their max-min payo¤s.

5The patients�welfare loss can be substantial: for every � < 1
2 , there exists n � 2, such

that the patients�loss exceeds 1
4 . As �! 0, the welfare loss at n� converges to 1

e .
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3 Two Market Interventions

We saw in the previous section that increasing the number of competitors
does not necessarily curb the quacks� adverse e¤ects on patients�welfare.
As long as n is not too large, the patients�welfare loss increases with n.
This section examines two market interventions, which would normally be
considered as e¤ective competition policies. In contrast, given the patients�
behavioral model, these interventions turn out to be totally ine¤ective.

3.1 Replacing a Quack with an Expert

In this sub-section, I perturb the basic model of Section 2 by replacing one
of the quacks with a high-quality healer. The question is whether this inter-
vention will crowd out the quacks, or at least alleviate the welfare loss that
they in�ict on patients. Formally, modify the basic model by switching the
success rate of a single healer, denoted e, from � to some �e 2 (�; 1]. Apart
from this modi�cation, the model remains intact. In particular, every other
healer i 6= e has a success rate �. In other words, healer e is an �expert�
while his opponents are �quacks�.
If patients knew the market model, then clearly the expert would crowd

out the quacks in equilibrium. When patients choose according to the S(1)
procedure, we get a very di¤erent result:

Proposition 2 There is a unique Nash equilibrium in the game. Every
healer i 6= e plays the mixed strategy given by equation (1), has the same
clientele size, and earns the same pro�ts as in the Nash equilibrium of the
basic model.

Turning a quack into an expert does not a¤ect his competitors�equilib-
rium behavior and performance. The expert ends up luring patients away
from the default, not from the quacks. As a result, the patients�welfare loss
caused by the n� 1 quacks remains una¤ected.
To get the intuition for this result, suppose that in equilibrium, all Gi�s

share the same support [pL; 1]. Intuitively, the presence of an expert instead
of a quack could not have led the other quacks to raise their prices. Therefore,
we do not expect their pricing strategy to place an atom on p = 1. The
expert�s payo¤ from the monopolistic price p = 1 is thus �e � (1 � �)n. But
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his payo¤ from pL is pL ��e � (1��), hence pL = (1��)n�1. But because pL
also belongs to the support of the quacks�strategies, this means that quacks
earn a payo¤ of �(1� �)n, just as in the basic model. By de�nition, this is
the welfare loss that an individual quack in�icts on patients.
The identity of the supports of the healers�strategies is a consequence

of mixed-strategy equilibrium reasoning. The condition for the expert�s in-
di¤erence among all prices in the support of Ge is independent of �e: it is
only expressed in terms of the opponents�success rates and pricing strategies.
Therefore, it is the same condition as in the basic model, and it yields the
same pricing strategy for the quacks as in the basic model. But this implies
that the expert will be indi¤erent among the same set of prices as in the
basic model.
A simple calculation shows that a patient who ends us choosing the expert

is better o¤ than a patient who ends up choosing a quack. However, both are
worse o¤ than a patient who ends up choosing the default. Thus, the expert
exploits the patients on account of their anecdotal inferences, although to a
lesser degree than the quacks.

3.2 Disclosure of Success Rates

In the basic model of Section 2, healers have no control over the patients�
knowledge. In this sub-section, I perturb the model by assuming that a healer
is able to disclose his success rate to patients. If he does not reveal his success
rate, patients continue to assess his quality according to the S(1) procedure.
In this context, it is appropriate to allow more general market primitives.
Denote the success rate associated with alternative i by �i, and allow the
�i�s to vary across alternatives, where �i 2 (0; 1) for every i = 0; 1; :::; n.
Formally, a strategy for healer i is a pair (pi; ri), where ri = Y (N) if the

healer reveals (does not reveal) his success rate. As in the basic model, xi
denotes the patient�s evaluation of the quality of treatment i. When ri = Y ,
xi = �i with probability one. When ri = N , xi = 1 with probability �i and
xi = 0 with probability 1��i. As before, the patient chooses the alternative
that maximizes xi � pi in his sample.
Until this sub-section, the S(1) procedure has meant one thing: patients

reason anecdotally about the quality of alternatives. Given the model of this
sub-section, the procedure acquires another meaning: patients infer nothing
from the healer�s disclosure policy itself. In particular, they do not realize
that a healer�s failure to reveal his quality signals that his quality is relatively
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low. Thus, the exact sense in which the patients�procedure departs from
standard rationality may vary with the model in which it is embedded.
Standard adverse-selection models with rational, imperfectly informed

patients typically assume that the patients know the distribution of success
rates, but do not know ex-ante the success rates of individual healers. In
sequential equilibrium of such models, every healer would disclose his success
rate (except possibly the lowest types).6 Given our model of the patients�
behavior, the result is the complete opposite:

Proposition 3 For every p, the strategy (p; Y ) for healer i is weakly domi-
nated by some other strategy (p0; N).

Thus, given the patients�choice procedure, healers have an incentive not
to reveal their success rate, even when they are of the highest quality. The
decision whether to reveal one�s type entails a trade-o¤. On one hand, when
a healer deviates from ri = Y to ri = N , the �monopoly� price jumps
from �i to 1. On the other hand, the fraction of patients who are willing
to pay anything to healer i shrinks from 1 to 1 � �i. The reason that the
former consideration outweighs the latter is simple. Suppose that p < �. By
deviating from (p; Y ) to (p=�i; N), the healer replicates his monopoly pro�ts.
At the same time, he attains an edge over competitors because conditional
on xi = 1, the patient�s perceived utility from choosing healer i is 1� p=�i,
compared to �i � p (the patient�s perceived utility from choosing healer i
when ri = Y .)
The lesson from Proposition 3 is that enabling healers to reveal their type

is ine¤ectual when patients choose according to the S(1) procedure.7 It is
interesting to compare this result to Milgrom and Roberts (1986, Section 3).
In their model, consumers are strategically unsophisticated, in the sense of
being unable to draw inferences from what �rms choose not to reveal. How-
ever, they are probabilistically sophisticated: they draw Bayesian inferences
from the content of the �rms�disclosure. Milgrom and Roberts show that in
equilibrium, the full information outcome is attained, thanks to competitive
forces. In contrast, patients in the present sub-section are unsophisticated
both strategically and probabilistically.

6See, for example, Milgrom and Roberts (1986, Section 2).
7It can also be shown that type disclosure can never be part of Nash equilibrium. I

omit the proof of this result for the sake of brevity.
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4 Forecasters as Quacks

In the basic model, quacks�treatments are exogenous and statistically inde-
pendent. This assumption is too restrictive for a number of potential appli-
cations. For instance, industries such as alternative medicine, psychotherapy
or self-help are characterized by a proliferation of apparently distinct �thera-
peutic methods�. In order to illuminate this phenomenon, one would have to
study a model in which a quack�s treatment - and therefore, the correlation
between his own performance and his competitors�- is endogenous. In this
section I analyze such an extended model.
To better illustrate the extended model�s scope of applications, I abandon

the alternative-medicine imagery in favor of a stylized model of a forecasting
industry, in which �rms are assumed to provide worthless forecasting services.
This assumption is particularly natural in the case of �nancial forecasting.
If one believes in the �e¢ cient market hypothesis�- i.e., that market prices
are fully revealing - then one must accept that �nancial analysts have no
advantage over a rational layman when trying to predict future prices.
Formally, let H = f1; :::;mg be a set of horses. Let R be a �nite set of

races. A forecasting rule is a function t : R ! H that predicts a winning
horse in each race. Firms move simultaneously. A pure strategy for �rm
i 2 f1; :::; ng is a pair (pi; ti), where pi 2 [0; 1] is the price that the �rm
charges (its �forecasting fee�) and ti is the forecasting rule it adopts. A state
is a pair (r; h) consisting of a race and the identity of the horse who wins
in the race. The state is drawn according to the uniform distribution over
R�H. Firm i�s prediction is accurate in state (r; h) if and only if ti(r) = h.
The value of an accurate prediction for consumers is 1. If a consumer ac-

quires the services of �rm i, he adopts its forecasting rule. If a consumer does
not acquire the services of any �rm, his forecast is totally unpredictable: in
each race, he predicts each horse with probability 1

m
. Note that the probabil-

ity that a consumer makes a correct forecast is 1
m
, regardless of his decision.

Thus, �rms are �quacks�: they have no advantage over laymen.
The assumption that �rms can make race-speci�c forecasts plays an im-

portant role in the model. This is what allows them to control the correlation
between their own prediction and their competitors�. This correlation device
is natural, in the sense that real-life forecasters are expected to condition
their forecasts on the speci�c conditions of the race. Although we assumed
that these conditions are immaterial for the outcome of the race, a consumer
who enters the market without realizing that this is the case would not be
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surprised to see �rms making race-speci�c forecasts.
Each consumer chooses according to the following adaptation of the S(1)

procedure. He randomly samples a state (r; h); he then chooses the alter-
native i 2 f0; 1; :::; ng that maximizes xi(r; h) � pi in his sample, where
xi(r; h) = 1 if ti(r) = h and xi(r; h) = 0 if ti(r) 6= h. In this description,
alternative i = 0 represents the default, �lay� forecast, where p0 = 0 and
t0(r) = h with probability 1

m
for every h. The tie-breaking rule is the same

as in Section 2.
The following story �ts the procedure. In order to evaluate forecasters,

the consumer recalls some past race at random. He checks which of the �rms
correctly predicted the winner in that race, and chooses the cheapest among
them. If the lay prediction was accurate, or if none of the �rms made an
accurate prediction, the consumer does not consult a professional forecaster.
This choice procedure seems to capture the way we often judge �nancial and
political analysts. We recall a past episode - the success of eBay, the collapse
of the USSR, etc. - and we give credit to the analysts who anticipated it,
while discrediting whose who did not.8

Firms take into account the consumers�choice procedure when calculating
their pro�ts. Consider a strategy pro�le (pi; ti)i=1;:::;n, where p1 > � � � > pn.
Let Ai be the proportion of races r for which tj(r) 6= ti(r) for any j =
i + 1; :::; n. The payo¤ of �rm i is pi � 1m �

m�1
m
� Ai. The second and third

terms represent the probabilities that i�s prediction is accurate and the lay
prediction is inaccurate, respectively.
If all �rms choose the same forecasting rule, then �rm 1 earns zero prof-

its. The �rm can pro�tably deviate by changing its forecasting rule so as
to make exclusive predictions in some races. This deviation guarantees a
positive clientele, consisting of consumers who sampled states in which �rm
1 alone predicted the winner. Such a deviation may be viewed as an at-
tempt to �di¤erentiate the �rm�s product�. Indeed, it is possible to regard
our forecasting market as an unconventional model of spatial competition, in
which �rms choose a price as well as a �location� in the space of functions
from R to H. In spatial-competition models, �rms �ght opponents by reduc-
ing prices or by di¤erentiating their product (see, for instance, d�Aspremont,
Gabszewicz and Thisse (1979)).

8It is crucial that (r; h) is held �xed across the consumer�s sample. An alternative
adaptation of S(1) would assume that (r; h) is drawn independently for each alternative.
This would reduce the formalism to the model of Section 2, with � = 1

m . I �nd this version
less natural in the context of a forecasting industry.
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My primary objective is to characterize the di¤usiveness of the �rms�fore-
casts (in other words, the degree of �product di¤erentiation�) that emerges in
Nash equilibrium. I restrict attention to equilibria in which the forecasting-
rule component of each �rm�s strategy is pure, while allowing for mixing in
the price component. I refer to such equilibria as Nash equilibria in semi-pure
strategies.
The following notation will be useful. Fix a pro�le of forecasting rules

(ti)i=1;:::;n. Let Bi be the set of races in which �rm i makes an exclusive
prediction. That is, Bi = fr 2 R j ti(r) 6= tj(r) for every j 6= ig Denote
�i = jBij = jRj. For every (r; h), let e(r; h) be the number of �rms i for which
ti(r) = h - i.e., the number of �rms which predict that h wins in r.

De�nition 1 A pro�le of forecasting rules (ti)i=1;:::;n is maximally di¤eren-
tiated if maxh e(r; h) �minh e(r; h) � 1 for every r, or e(r; h) � 2 for every
(r; h).

In a maximally di¤erentiated pro�le of forecasting rules, the �rms�pre-
dictions in each race are as unconcentrated as possible (as long as there is a
�grain of di¤erentiation�- namely, a horse that is predicted by at most one
�rm in some race).

Proposition 4 In any Nash equilibrium in semi-pure strategies, the pro�le
of forecasting rules is maximally di¤erentiated.

Thus, a necessary condition for Nash equilibrium in semi-pure strategies
is that �rms make maximally di¤erentiated predictions. When n � m, the
implication is that they make exclusive predictions in each race: e(r; h) � 1
for every (r; h). When m < n < 2m, every race r is characterized by n�m
horses that are predicted by two �rms and 2m�n horses that are predicted by
one �rm. When n � 2m, �rms never make exclusive predictions: e(r; h) � 2
for every (r; h).
Note that if we knew that all �rms play the same pricing strategy, the

result would be trivial. In each race, �rms would have a clear incentive
to pick a horse that is predicted by as few competitors as possible. The
importance of Proposition 4 is that it does not rely on any restriction on the
�rms�equilibrium pricing behavior.
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To see the main argument behind the result, consider the case of m > n
and suppose that the pro�le of forecasting rules is not maximally di¤eren-
tiated. It is easy to show that e(r; h) = 1 for some (r; h). Let r� be a race
with the maximal number of horses for which e(r; h) = 1. Then, there must
be at least three �rms - say, 1; 2; 3 - which predict the same horse h in r�.
Consider any �rm i that makes an exclusive prediction in r�. The only reason
for �rm 1 not to change its prediction in r� from h to ti(r�) is that �rm i is
(probabilistically) cheaper than �rms 2 or 3.
But now consider some other race r�� which belongs to B3. A central

lemma in the proof of Proposition 4 establishes that such a race must exist.
If some other �rm predicts the same horse h0 as �rm i, then that �rm must
strictly prefer changing its prediction in r�� from h0 to t3(r��), because �rm i
is cheaper than �rm 3. It follows that r�� 2 Bi. But this means that if �rms
1; 2 or 3 make an exclusive prediction in r��, then so does any �rm i which
makes an exclusive prediction in r� - in contradiction to the de�nition of r�.
Let us turn to the �rms�equilibrium pricing behavior.

Proposition 5 Let n � m. There exist Nash equilibria in semi-pure strate-
gies. In equilibrium, each �rm plays p = 1.

This is an immediate consequence of the �maximal di¤erentiation�result.
Because �rms make exclusive predictions in each race, they can a¤ord to
price monopolistically. The following result deals with the other extreme.
When �rms never make exclusive predictions, they have no market power
and therefore the market price is competitive.

Proposition 6 Let n � 2m. There exist Nash equilibria in semi-pure strate-
gies. In equilibrium, the price paid by consumers is zero.

The case of m < n < 2m is more complex. For simplicity, I restrict atten-
tion to equilibria which are symmetric in the price component. In addition,
I assume that jRj is a multiple of

�
m
n�m

�
, in order to guarantee equilibrium

existence.
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Proposition 7 Let m < n < 2m. There exists Nash equilibria in semi-pure
strategies, which are symmetric in the price component. Each �rm plays the
pricing strategy given by the cdf

G(p) =
p� �
p� p� (4)

de�ned over the support [�; 1], where � = 2� n
m
.

The lesson from the last trio of results is that equilibrium pricing behav-
ior is qualitatively the same as in the basic model. Speci�cally, expected
equilibrium price rises as the number of horses increases - or, equivalently,
as the probability of making a correct prediction decreases. The intuition
is that as m increases, �rms have �more room� to di¤erentiate themselves
in the space of functions from R to H. As a result, competitive forces are
weaker and prices go up.

Completely mixed strategies. The restriction to strategies with a pure
forecasting-rule component carries a loss of generality. Once we allow �rms
to randomize in both components, there exists an equilibrium in which each
�rm assigns probability 1

m
to each horse, independently of the race, and plays

the pricing strategy given by Proposition 1 with � = 1
m
. Note that when

n � 2m, this equilibrium implies positive industry pro�ts, while equilibrium
in semi-pure strategies results in zero industry pro�ts. Conversely, when
n � m, industry pro�ts are higher in semi-pure equilibria. Thus, when the
number of �rms is small, they are better o¤ playing an equilibrium in which
their predictions are as di¤erentiated as possible. But when there many
�rms, they are better o¤ playing an equilibrium in which their predictions
are statistically independent.

Possible implications for the mutual funds industry. While the analy-
sis in this section has relied on the �forecasting�metaphor, I believe that the
results are potentially relevant for a host of markets. Proposition 4 sheds
some light on the phenomenon described at the beginning of this section -
namely, the proliferation of therapeutic methods in alternative medicine.9

9Under an alternative-medicine interpretation of the model, R would be a set of medical
conditions, H would be a set of treatments, and t would be a �therapeutic method�.
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The mutual funds industry is another case in point. Since Jensen (1968),
�nancial economists have gathered evidence that fund managers do not sys-
tematically outperform passive benchmarks. Moreover, their performance
is largely unpredictable from past relative performance. Nevertheless, �ows
into and out of mutual funds are highly sensitive to their recent relative
performance (see Chevalier and Ellison (1997), Sirri and Tufano (1998)).
In light of these stylized facts, it seems sensible to search for a �market

for quacks� account of the mutual funds industry. An index fund may be
viewed as a default option, whereas actively managed funds may be viewed
as quacks. The sensitivity of �ows to past relative performance is an imme-
diate consequence of investors�anecdotal reasoning. Proposition 4 suggests
that fund managers may choose highly specialized investment strategies as a
means of avoiding competition. Propositions 5-7 suggest a positive relation
between the underlying market risk (captured by the parameter m) and the
fees that mutual funds charge. Careful modeling of the industry as a �market
for quacks�is left for future research.

5 Concluding Remarks

This paper presented a model with rational �rms and consumers who are
boundedly rational, in the sense that they reason anecdotally about �rms�
quality. Anecdotal reasoning implies that consumers react to a common-
value environment as if they have independent private values. As a result,
a market for a worthless service becomes active and displays anomalous fea-
tures: standard competition policies may be ine¤ective; a decrease in the
quality that characterizes the industry results in higher prices; and �rms
can avoid competition by making divergent recommendations about the de-
sired action. These results may illuminate phenomena associated with �soft
expertise� industries such as alternative medicine, forecasting and money
management.

Imperfect rationality or imperfect information? Although the mod-
els presented in this paper are simple, the modeling procedure they em-
body is unusual. Our starting point is a standard price-competition model
with complete information. Economists typically depart from such a simple
benchmark by perturbing its informational structure, without abandoning
the meta-level assumption that �the model itself is common knowledge�.
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Instead, in this paper we relaxed the rationality of consumers�choice with
respect to the complete-information model. The question naturally arises,
whether the basic model and its various extensions could be �rationalized�,
in the sense that the same results could be obtained from a price-competition
model with imperfectly informed consumers. In other words, can we replace
imperfectly rational patients with imperfectly informed patients, and get the
same results?
Let us begin with the simplest attempt to rationalize the basic model of

Section 2. Suppose that the healers�success rate is drawn from some prior
distribution over f�L; �Hg. The distribution of types is commonly known.
Healers know their own success rates, whereas patients observe partially in-
formative signals.
Such a model cannot yield exactly the same results as our model. Note

that in the model of Section 2, patients behave as if they are absolutely
certain of the quality of each alternative, and consequently their willingness
to pay �jumps�to 1 or 0. A partially informed, rational patient would not
display a �jump� to these extreme posteriors. Thus, although equilibrium
strategies will be mixed in the manner of Proposition 1, it will be impossible
to reproduce expression (1). More importantly, the two models have di¤erent
comparative statics with respect to the industry�s average success rate. In
the model of Section 2, equilibrium prices decrease with �. In contrast, in the
alternative model proposed here, if we raise �L and �H by the same factor,
equilibrium prices will increase by this factor as well.
When we turn to some of the extensions of the basic model, the disparity

between the two modeling approaches widens. In the model of Section 4, the
statistical structure of a �rm�s product is endogenous. If we tried to rewrite
the model with imperfectly informed, rational patients, then in equilibrium
they would have to know the �rms�forecasting rules. It is hard to see how
one could reconcile such equilibrium knowledge with the behavior we attempt
to rationalize. In the model of Section 3.2, healers are allowed to reveal their
type. We have already observed the contrast between the no-revelation result
we obtain and the full-revelation result obtained in a standard model with
imperfectly informed patients (e.g., Milgrom and Roberts (1986, Section 2)).
Similar di¤erences between the two approaches will emerge in any model in
which healers can signal their type.

Extension of the decision procedure. The S(1) procedure captures
an extreme case of anecdotal reasoning: patients form deterministic action-
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consequence correspondences on the basis of a single observation per alterna-
tive. A natural generalization of this procedure, suggested by Osborne and
Rubinstein (1998) and called S(K); is to assume that patients sample every
alternative K times and maximize their expected payo¤ against the empiri-
cal distribution generated by their sample. Thus, patients form an unbiased
�point estimate� of the success rate associated with each alternative, but
they behave as if there is no sampling error. As K gets larger, the sampling
error decreases, and in the limit, the patient�s procedure converges to the
rational-choice benchmark.
There is some formal relation between the S(K) procedure and the model

of �inferences by believers in the law of small numbers�due to Rabin (2002).
In this model, an individual decision maker observes repeated draws from an
i.i.d process, and tries to learn the process. He updates his belief according to
Bayes�rule, under the false assumption that the draws are taken from an urn
with K balls without replacement. After K observations, the decision maker
believes that the urn is re�lled. Thus, Rabin�s decision maker predicts the
(K + 1)-th observation just like an S(K)-agent. However, in other respects
the two models are incomparable, because the S(K) model is static whereas
Rabin�s model is dynamic.

The patients�knowledge of the default. The basic model assumes that
the patients�choice procedure treats the default and the healers symmetri-
cally: patients sample each of them once. It could be argued that patients
are more familiar with the default than with the healers, and that they may
even know the success rate associated with the default. Therefore, it makes
sense to consider a variant on the model, in which x0 = � with probability
one. The patients form quality assessments of healers as in the basic model.
The essential features of our equilibrium characterization - uniqueness,

symmetry, price dispersion, as well as the comparative statics - remain un-
changed under this modi�cation. Only �ne details have to be modi�ed: the
�monopoly price�becomes 1 � � instead of 1; the exact expression for G is
slightly di¤erent; and the welfare analysis needs to be re�ned. In particular,
the patients�welfare loss is lower than in the basic model. The reason pa-
tients experience a loss at all is that they compare an alternative they are
highly familiar with (the default) with alternatives they know only through
anecdotal evidence, as if a single anecdote has the same informational content
as full knowledge of a probability distribution.
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Relaxing quackery. Our analysis is easily extendible to the case in which
the default success rate is �0 < �. With standard rational patients, the model
is reduced to standard Bertrand competition, such that equilibrium price is
zero, and the patients�expected utility is ���0. By comparison, with S(1)-
patients, Proposition 1 continues to hold. The reason is simple: the default
success rate enters the healers� payo¤ function through the multiplicative
term 1��0, and it cancels out when we derive the expression forG. Therefore,
the healers�behavior is independent of �0. The welfare analysis is modi�ed.
For instance, when �0 = 0, the patients�expected utility in equilibrium is
�� n�(1� �)n�1. It follows from this expression that there is a net welfare
loss if � is su¢ ciently low.

A dynamic justi�cation for the S(1) procedure. The models presented
in this paper are static. However, the interpretation of S(1) as a best-reply
to a random sample suggests a dynamic learning context. The following is an
outline of an explicit dynamic model which justi�es our basic model. Quacks
commit to their pricing strategy at period t = 0 (if a quack plays a mixed
strategy, it commits to its realization). At any period t > 0, a constant
measure of patients enter the market, make a one-shot decision and then exit
the market. The outcome of a quack�s treatment is drawn independently each
time it is chosen. Patients choose according to the following rule: (i) with
probability 1 � ", they imitate the patients who earned the highest payo¤
at t � 1; (ii) with probability ", they choose each of the n + 1 alternatives
with equal probability. This is simply a best-reply dynamics combined with
blind experimentation. It can be shown that as " tends to zero, patients�
long-run average behavior converges to the average behavior implied by the
S(1) procedure.
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Appendix: Proofs
Proof of Proposition 1
Quack i�s equilibrium strategy si induces a cdf Gi over the interval [0; 1]. The
main task in this proof will be to show that the equilibrium is symmetric.
The proof proceeds stepwise.

Step 1. For every quack i, Gi is continuous over [0; 1).
Proof. Since Gi is monotonic, it is su¢ cient to show that si contains no
atoms on [0; 1). Assume the contrary and suppose that si contains an atom
on some p < 1. If p = 0, then quacks i assigns a positive measure to a price
that yields zero pro�ts. As we noted in Section 2, the quacks�max-min payo¤
is �(1��)n > 0. Therefore, the quack can pro�tably deviate by shifting this
measure to some p > 0. Now suppose that p 2 (0; 1). If every other quack
assigns no weight to the interval (p; p+"), then quack i can pro�tably deviate
by shifting the atom from p to p + "=2. And if some quack j 6= i assigns
weight to the interval (p; p+") for arbitrarily small ", then there exists � > 0
such that quack j can pro�tably deviate by shifting this weight to p� �.

In the remainder of the proof, we shall rely on two additional observations.
First, if Gi has an atom on p = 1, then no other Gj has an atom on p = 1.
Otherwise, either of these quacks would be able to deviate pro�tably by
shifting this atom slightly downward. Second, if si assigns a positive weight
to an interval (p; p + ") or (p; p � ") for some p 2 (0; 1) and " > 0, then p
maximizes quack i�s expected payo¤ against s�i. This is a standard result
which follows from Step 1.
Let pLi and p

H
i denote the in�mum and supremum of the support of Gi.

De�ne pL = minfpL1 ; :::; pLng and pH = maxfpH1 ; :::; pHn g.

Step 2. pH = 1.
Proof. Assume that pH < 1. Then by Step 1, none of the Gi�s contain
an atom on pH . It follows that the payo¤ of the quack who charges pH is
pH � �(1� �)n, which is below the max-min payo¤, a contradiction.

Step 3. All quacks earn the same payo¤ in equilibrium.
Proof. Assume the contrary, and suppose (w.l.o.g) that quack 1 earns a
higher payo¤ than quack 2. Suppose that quack 2 deviates by playing pL1
with probability one. Quack 1�s payo¤ before the deviation is:

pL1 � � � (1� �) � �j>1[1� �Gj(pL1 )] (5)
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whereas quack 2�s payo¤ after the deviation is:

pL1 � � � (1� �) � �j>2[1� �Gj(pL1 )] (6)

and since the second expression is at least as high as the �rst expression,
quack 2�s deviation is pro�table.

Step 4. The quacks�equilibrium payo¤ is �(1� �)n.
Proof. By Step 2, pH = 1. We have observed that there exists a quack i
whose competitors do no place an atom on p = 1. This quack�s payo¤ is
�(1� �)n. By Step 3, all quacks earn this payo¤.

Step 5. No quack places an atom on p = 1.
Proof. Suppose that quack i places an atom on p = 1. We have observed that
no other quack places an atom on p = 1. Suppose that the second-highest pHj
is strictly lower than one. Then, pHj does not maximize j�s payo¤, because
if j charged a slightly higher price, the probability that he is chosen by a
patient would not change. It follows that pHj = 1. But since quack i places
an atom on p = 1, quacks i and j earn di¤erent payo¤s, in contradiction to
Step 3.

Step 6. pLi = p
L for all quacks i.

Proof. Assume the contrary, and suppose (w.l.o.g) that pL2 = pL and
pL1 > pL. Suppose that quack 2 deviates by playing pL1 with probability
one. Expressions (5) and (6) represent quack 1�s payo¤ before the deviation
and quack 2�s payo¤ after the deviation, respectively. Because G2(pL1 ) > 0,
expression (6) is higher than expression (5). By Step 3, quacks 1 and 2 earn
the same payo¤ prior to the deviation. Therefore, the deviation is pro�table.

Step 7. For every quack i, Gi is strictly increasing in [pLi ; p
H
i ].

Proof. Assume the contrary, and suppose (w.l.o.g) that G1 is �at over
some interval (p; p0) � [pL1 ; p

H
1 ]. By Step 6, p

L
1 = pL2 . Then, there must

be some other quack (denoted 2, w.l.o.g) who assigns positive weight to the
neighborhood of p - otherwise, p would not maximize quack 1�s payo¤. The
two quacks�payo¤ from the prices p and p0 are:

�1(p) = p � � � (1� �) � [1� �G2(p)] � �j>2[1� �Gj(p)]
�2(p) = p � � � (1� �) � [1� �G1(p)] � �j>2[1� �Gj(p)]
�1(p

0) = p0 � � � (1� �) � [1� �G2(p0)] � �j>2[1� �Gj(p0)]
�2(p

0) = p0 � � � (1� �) � [1� �G1(p0)] � �j>2[1� �Gj(p0)]
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By Step 3, �1(p) = �2(p). Therefore, G2(p) = G1(p). By assumption,
G1(p) = G1(p

0), whereas G2(p0) > G2(p). Therefore, quack 2 can pro�tably
deviate by playing p0 with probability one.

Step 8. The equilibrium is symmetric, and the equilibrium strategy is given
by expression (1).
Proof. By Step 6, pLi = p

L for every quack i. Denote p� = minfpH1 ; :::; pHn g.
By Step 7, all the Gi�s are strictly increasing in [pL; p�]. By Step 4, all
quacks earn a payo¤ of �(1 � �)n. Therefore, for every quack i and every
price p 2 [pL; p�]:

�(1� �)n = p � � � (1� �) � �j 6=i[1� �Gj(p)]

We have a system of n equations in n variables Gj(p). The equations are
symmetric and the R.H.S. is strictly decreasing in the Gj(p)�s. Therefore, the
system has a unique solution, which is symmetric. In particular, it follows
that pHi = p

� for every quack i. It is now straightforward to derive expression
(1). By construction, every element in the support of Gi is a best reply to
G�i, hence we have a Nash equilibrium. �

Proof of Corollary 1
Given the formula for G(p) given by Proposition 1, it is easy to calculate the
expected equilibrium price:

E(p) =
�1��

�
ln(1� �) for n = 2

1��
�(n�2) [1� (1� �)

n�2] for n > 2

It is straightforward to show that both expressions decrease with �, and
that their limits are lim�!1E(p) = 0 and lim�!0E(p) = 1. �

Proof of Proposition 2
Let us borrow the de�nitions of pLi ; p

H
i ; p

L; pH from the proof of Proposition
1. Steps 1 and 2 can also be borrowed. In addition, no more than one healer
places an atom on p = 1. Consider the case of n > 2. By the same symmetry
arguments as in the proof of Proposition 1, all quacks (i 6= e) play the same
strategy G. In particular, they all have the same pLi , and G does not place
an atom on p = 1. In contrast, Ge may contain an atom on p = 1. Denote
the size of this atom by A.

Step 1. Healer e�s equilibrium payo¤ is equal to �e(1� �)n.
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Proof. Suppose that pHe < 1. Then, pHi = 1 for all i 6= e. Suppose that
quack i 6= e deviates by playing pHe with probability one. The quack�s payo¤
prior to the deviation is �(1��)n�1(1��e). This follows from the fact that
pHi = 1 maximizes the quack�s payo¤. Healer e�s payo¤ after i�s deviation
is at least �e(1 � �)n, because this is his max-min payo¤. But this means
that healer i�s payo¤ after the deviation is at least �(1 � �)n, a pro�table
deviation. It follows that pHe = 1. Then, p = 1 maximizes healer e�s payo¤,
which is therefore �e(1� �)n.

Step 2. For every price p 2 [pLe ; 1], G(p) is given by expression (1).
Proof. First, let us see that pLe � pLi for every i 6= e. By the fact that all
quacks play the same strategy, they all have the same pLi . If p

L
e < p

L
i , then

clearly healer pie fails to maximize healer e�s payo¤ (because some other price
between pLe and p

L
i would be more pro�table). Therefore, p

L
e � pLi . Denote

pLi = p
L.

Let p belong to the support of Ge. Because p maximizes healer e�s payo¤,
the following equation holds:

�e � (1� �)n�1 = p � �e � (1� �) � [1� �G(p)]n�1 (7)

Therefore, G(p) is given by expression (1).
Let us now show that the support of Ge is indeed [pLe ; 1] - i.e., that Ge is

strictly increasing in this interval. Assume the contrary - i.e., that Ge is �at
in some interval (p; p0) � (pLe ; 1). By the symmetry in the quacks�behavior,
G is strictly increasing in this interval. A quack�s payo¤ from the prices p
and p0 is given by:

�(p) = p � � � (1� �) � [1� �G(p)]n�2 � [1� �eGe(p)]
�(p0) = p0 � � � (1� �) � [1� �G(p0)]n�2 � [1� �eGe(p0)]

By assumption, Ge(p) = Ge(p0). Therefore:

p � [1� �G(p)]n�2 = p0 � [1� �G(p0)]n�2

But according to the expert�s equilibrium condition (expression (7)):

p � [1� �G(p)]n�1 = p0 � [1� �G(p0)]n�1

and since G(p0) > G(p), we obtain a contradiction.
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Step 3. pLe = p
L.

Proof. Assume the contrary - i.e., pLe > p
L. Because pLe maximizes healer

e�s payo¤:

�e � (1� �)n = pLe � �e � (1� �) � [1� �G(pLe )]n�1 (8)

The limit of the quacks�payo¤ as p! 1 is � � (1��)n�1 � (1��e+�eA),
where A is the size of the atom that Ge places on p = 1. Because both pLe
maximizes the quack�s payo¤:

� � (1� �)n�1 � (1� �e + �eA) = pLe � � � (1� �) � [1� �G(pLe )]n�2 (9)

Because pL maximizes the quack�s payo¤:

� � (1� �)n�1 � (1� �e + �eA) = pL � � � (1� �)
such that

pL = (1� �)n�2 � (1� �e + �eA) (10)

Suppose that healer e deviates by playing pL with probability one. Then,
his payo¤ would be pL � �e � (1 � �). In order for this to be an unpro�table
deviation, it must be the case that:

(1� �)n�2 � (1� �e + �eA) � �e � (1� �) � �e � (1� �)n

such that 1 � �e + �eA � 1 � �. Applying this inequality to equation (9),
we obtain:

pLe � [1� �G(pLe )]n�2 � (1� �)n�1

By assumption, G(pLe ) > 0. Therefore:

pLe � [1� �G(pLe )]n�1 < (1� �)n�1

in contradiction to equation (8). We conclude that pLe = p
L.

Step 4. The quacks�payo¤ is � � (1� �)n.
Proof. Consider equation (8). by Step 3, G(pLe ) = 0. Therefore, pL =
(1 � �)n�1. By equation (10), 1 � �e + �eA = 1 � �, such that the quacks�
payo¤ is � � (1� �)n.

The case of n = 2 should be handled separately, because there is one
expert and one quack, and so the argument that all quacks play the same
strategy is irrelevant. However, in this case it is much more straightforward
to show that pLe = p

L
i and p

H
e = p

H
i = 1. From this point, the derivation of

the quack�s strategy and payo¤ is just the same as in the case of n > 2. �
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Proposition 3
Denote �i = �, for notational convenience. If p > � and ri = Y , then clearly
no patient will choose healer i, and therefore, the healer�s payo¤ from (p; Y )
is zero. In this case, (p; Y ) is dominated by any (p0; N).
Let p = �. Then, in a patient�s sample, the probability that xi�pi > x0 is

zero, and the probability that xi�pi = x0 is ��(1��0). If healer i deviates to
(1�";N), the probability that xi�pi > x0 is � � (1��0), and the probability
that xi� pi = x0 is zero. Therefore, this deviation is pro�table, regardless of
the other healers�strategies. Therefore, (1� ";N) strictly dominates (p; Y ).
Finally, consider the case of p < �. In this case, healer i�s payo¤ from

the strategy (p; Y ) is bounded from above by:

p � �j 6=i Pr(xj � pj � �� p)

In contrast, when healer i takes the strategy (p0; N), his payo¤ is bounded
from below by:

p0 � � � �j 6=i Pr(xj � pj < 1� p0)
Now, let us show that (p; Y ) is weakly dominated by (p0; N), where p0 = p=�.
Then, p0 2 (p; 1). Since �� p = � � (1� p0), it is clear that 1� p0 > �� p as
long as p < �. Therefore:

�j 6=i Pr(xj � pj < 1� p0) � �j 6=i Pr(xj � pj � �� p)

This inequality is strict if Gj(1� p0) > Gj(� � p) for at least one healer
j 6= i (where Gj is the cdf induced by healer j�s strategy). It follows that
(p0; N) weakly dominates (p; Y ). �

Proof of Proposition 4
Consider a Nash equilibrium in semi-pure strategies, in which the pro�le of
forecasting rules is (ti)i=1;:::;n. Borrow the de�nitions of pLi ; p

H
i ; p

L; pH from
the proof of Proposition 1.

Step 1. All �rms earn the same payo¤ in equilibrium.
Proof. Assume that �rm i earns a higher equilibrium payo¤ than �rm j.
Then, pLi > 0. Let �rm j deviate to the pure strategy (pLi � "; ti), where
" is arbitrarily small. The probability that j is chosen after the deviation,
denoted �, is at least as high as the probability that i was chosen prior to
j�s deviation. Therefore, j�s payo¤ after the deviation is �(pLi � "). Firm
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i�s payo¤ prior to j�s deviation was at most �pLi . Therefore, j�s deviation is
pro�table.

Step 2. pLi = p
L for all �rms i.

Proof. Suppose that there exist �rms i and j such that pLi > p
L
j . Assume

�rst that ti(r) = tj(r) for some race r. Suppose that �rm j deviates to the
pure strategy (pLi � "; ti), where " is arbitrarily small. The probability that j
is chosen is now strictly higher than the probability that i was chosen prior
to j�s deviation. Therefore, j�s payo¤ after the deviation is higher than i�s
payo¤ prior the deviation. By Step 1, this is a pro�table deviation for j, a
contradiction. It follows that for every pair of �rms i and j for which pLi > p

L
j ,

ti(r) 6= tj(r) for every r. Then, �rm i�s equilibrium payo¤ is pLi � 1m �
m�1
m

while �rm j�s equilibrium payo¤ is pLj � 1m �
m�1
m
, in contradiction to Step 1.

Step 3. Either B 6= ? for all �rms, or B = ? for all �rms.
Proof. Assume the contrary - i.e., that there are �rms k and l, such that
Bk 6= ? and Bl = ?. Note that �rm k necessarily earns a positive payo¤.
By Step 1, all �rms earn a positive payo¤.
De�ne the following binary relation: i % j if �rm i�s pricing strategy

assigns positive probability to prices p � pHj . It is easy to verify that %
is complete and transitive. Note that if i is %-maximal, then Bi 6= ? -
otherwise, this �rm would earn zero pro�ts, a contradiction. Consider a %-
maximal �rm j among those with B = ?. Then, for every race r, there
exists a �rm i % j such that ti(r) = tj(r) - otherwise, j would earn zero
pro�ts. Moreover, if i � j, then both �rms place an atom on pHj . But in this
case, �rm j can pro�tably deviate by shifting this atom slightly below pHi .
It follows that i � j. Let i� be the %-maximal �rm among these �rms i.
By de�nition, Bi� 6= ?. That is, there is a race r0 and a horse h such that

i� is the only �rm that predicts h in r0. Note that there is a �rm k, such that
i� % k � j and tk(r0) = tj(r

0) 6= h. Firm k can deviate by switching to a
forecasting rule t0k that di¤ers from tk only in that t

0
k(r

0) = h. This deviation
increases the probability that k is chosen, hence it is pro�table.

Step 4. If e(r; h) < 2 for some (r; h), then maxh e(r; h) � minh e(r; h) � 1
for every r.
Proof. Assume �rst that e(r; h) = 0 for some (r; h). If e(r; h0) > 1 for
some other horse h0, then at least one of the �rms that predict h0 in r can
pro�tably deviate by predicting h in r. Thus, e(r; h) � 1 for every h, which is
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possible only when n � m. It follows that for every (r; h), either e(r; h) = 0
or e(r; h) = 1, hence (ti)i=1;:::;n is maximally di¤erentiated.
Now suppose that e(r; h) > 0 for every (r; h), and assume that (ti)i=1;:::;n

is not maximally di¤erentiated. For every r, let b(r) denote the number
of horses for which e(r; h) = 1. De�ne b� � maxr2R b(r). By assumption,
b� > 0. Let r� be a race satisfying b(r�) = b�. Then, there must be a horse
h such that e(r�; h) > 2.
Let i; j; k be three distinct �rms such that ti(r�) = tj(r�) = tk(r�) = h.

Let l be a �rm that makes an exclusive prediction in r�. Because b� > 0,
such a �rm must exist. By Step 2, there is a price p > pL which be-
longs to the supports of all �rms�pricing strategies, such that in particu-
lar, Gi(p); Gj(p); Gk(p) > 0. If Gl(p) � Gi(p), then j can pro�tably deviate
to a pure strategy (p0j; t

0
j) satisfying: (i) p

0
j = p; (ii) t0j(r

�) = tl(r
�) and

t0j(r) = tj(r) for every r 6= r�. It follows that Gl(p) > Gi(p).
By Step 3, b� > 0 implies that B 6= ? for all �rms. Consider a race

r�� 2 Bi. Suppose that r�� =2 Bl - i.e., there exists a �rm g such that
tg(r

��) = tl(r
��). We have shown that Gl(p) > Gi(p). But this means that g

can pro�tably deviate to a pure strategy (p0g; t
0
g) satisfying: (i) p

0
g = p; (ii)

t0g(r
��) = ti(r

��) and t0g(r) = tg(r) for every r 6= r��. Therefore, it must be
that r�� 2 Bl. We have established that Bi � Bl. But this holds for any
�rm l among the b� �rms who make an exclusive prediction in r�. Therefore,
b(r��) > b�, contradicting the de�nition of b�. �

Proof of Proposition 5
Existence of Nash equilibrium with semi-pure strategies is easy to verify: for
every �rm i, let pi = 1 and ti(r) = i. Each �rm earns a payo¤ of 1

m
� m�1

m
,

which is the maximal payo¤ that is possible in the model. Suppose that
there exist equilibria with pi < 1 or �i < 1 for some �rm i. Then, this �rm
attains a payo¤below 1

m
�m�1
m
. The �rm can deviate to a pure strategy (p0i; t

0
i)

satisfying p0i = 1 and t
0
i(r) 6= t0j(r) for every race r and every j 6= i, and attain

this payo¤. �

Proof of Proposition 6
Existence of Nash equilibrium with semi-pure strategies is easy to verify.
Suppose that all �rms charge p = 0, and construct a maximally di¤erentiated
pro�le of forecasting rules satisfying e(r; h) � 2 for every (r; h). Then, no
�rm has any pro�table deviation.
Let us now show that the price paid by consumers must be zero in any
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equilibrium in semi-pure strategies. Because n � 2m, Proposition 4 implies
that e(r; h) � 2 for every (r; h). Therefore, B = ? for each �rm. By Step
1 in the proof of Proposition 4, all �rms earn the same equilibrium payo¤.
Consider the set of �rms i with pHi = pH . There must be at least one
such �rm, for which the probability of being chosen by consumers is zero.
Therefore, this �rm earns zero pro�ts. But this means that all �rms earn
zero pro�ts, hence the price paid by consumers is zero. �

Proof of Proposition 7
Because n > m, for every race r there is a horse h such that e(r; h) > 1.
Therefore, the �rms�pricing strategy must be mixed and atomless - otherwise,
some �rms would be able to pro�tably deviate by shifting the atom to a
slightly lower price. Let G denote the �rms�mixed pricing strategy. By a
standard argument, the support of G is an interval [pL; 1]. Firm i�s payo¤
from pi = pH = 1 is thus �i � 1m �

m�1
m
. Since all �rms earn the same equilibrium

payo¤, � is identical for all �rms. By Proposition 4, in each race there are
n�m horses h with e(r; h) = 2 and 2m�n horses with e(r; h) = 1. Therefore,
� = 2m�n

m
. Furthermore, for every price p in the support of G:

� � 1
m
� m� 1
m

= p � 1
m
� m� 1
m

� [�+ (1� �) � (1�G(p))]

The formula for G(p) follows from this equation.
Let us establish equilibrium existence. Suppose that all �rms play the

pricing strategy given by expression (4). It remains to construct a pro�le of
forecasting rules which satis�es the necessary condition of Proposition 4, as
well as � = 2m�n

m
for all �rms. Consider the class of allocations of �rms to

horses, such that each horse h 2 f1; :::; n � mg is allocated two �rms, and
each horse h 2 fn�m+1; :::;mg is allocated a single �rm. There are

�
m
n�m

�
such allocations. Partition R into

�
m
n�m

�
subsets of equal cardinality, and

attach a distinct allocation to each cell in the partition, such that all races
in a given cell have the same allocation of �rms to horses. This constitutes
a pro�le of forecasting rules with the desired properties. �
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