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Abstract—We propose an energy-efficient vector perturbation
(VP) technique for the downlink of multiuser multiple-input-
single-output (MU-MISO) systems. In contrast to conventional
VP where the search for perturbation vectors involves all users’
symbols, here, the perturbation is applied to a subset of the
transmitted symbols. This, therefore, introduces a performance—
complexity tradeoff, where the complexity is greatly reduced com-
pared to VP by limiting the dimensions of the sphere search, at the
expense of a performance penalty compared to VP. By changing
the size of the subset of perturbed users, the aforementioned trade-
off can be controlled to maximize energy efficiency. We further
propose three distinct criteria for selecting which users’ symbols to
perturb, each of which yields a different performance—complexity
tradeoff. The presented analytical and simulation results show that
partially perturbing the data provides a favorable tradeoff, par-
ticularly at low-power transmission where the power consumption
associated with the signal processing becomes dominant. In fact,
it is shown that diversity close to the one for conventional VP can
be achieved at energy efficiency levels improved by up to 300%
compared to VP.

Index Terms—Vector perturbation, energy efficiency, complex-
ity reduction, multi-user MIMO, non-linear precoding.

I. INTRODUCTION

HE need to produce power- and cost-efficient mobile

devises has recently stimulated interest towards precoding
schemes for the multiple input multiple output (MIMO) down-
link transmission. Simple forms of precoding schemes already
appear in communication standards such as the 3 GPP Long
Term Evolution (LTE) [1] and are expected to dominate future
implementations of telecommunications networks. Capacity
achieving non-linear dirty paper coding (DPC) techniques [2],
[3] have been proposed for pre-subtracting interference prior to
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transmission. The DPC methods developed so far are in general
complex as they require sophisticated sphere-search algorithms
[4] to be employed at the transmitter and assume codewords
with infinite length for the encoding of the data. Their subopti-
mal counterparts [5]-[7] offer a complexity reduction at a com-
parable performance. Still however, the associated complexity
is prohibitive for their deployment in current communication
standards.

On the other hand, linear precoding schemes based on
channel inversion [8]-[14] offer the least complexity, but their
performance is far from achieving the optimum maximum
likelihood bound. Their non-linear adaptation, namely vector
perturbation (VP) precoding [15] provides a performance im-
provement by introducing perturbation vectors at the transmit-
ter to better align the data symbols to the eigenvalues of the
inverse channel matrix on an instantaneous basis. This results in
much improved transmit scaling factors and enhanced receive
signal to noise ratios (SNRs) compared to linear precoding. The
improved performance comes at the expense of an increased
complexity since the search for the optimal perturbation vectors
is an NP-hard problem. This is typically solved by sphere
search algorithms at the transmitter with complexity that grows
exponentially with the number of transmit symbols.

In response to this, the complexity of various sphere search
techniques has been studied in [16]-[19] (among others) in
terms of search nodes visited and search lattice volumes. A
number of techniques have been proposed towards reducing
the complexity of VP precoding (e.g. [20]-[27]). All the above
designs achieve the complexity reduction at the expense of an
inferior performance compared to conventional VP. In [23] a
search over a reduced lattice is proposed, based on empirical
observations of the relation between the instantaneous symbols
and the optimum perturbation vectors. Further work in [24] has
proposed the decoupling of the perturbation optimization in the
real and imaginary domain of the data symbols thus offering a
lower complexity compared to the joint optimization approach.
Finally, in [28] a joint linear and non-linear precoding scheme
is proposed for the next generation of cellular systems where
the legacy users employ existing linear precoding techniques
from the communication standards, while the new added users
in the network employ VP precoding.

Inspired by this joint linear/non-linear approach, in this paper
we explore a partial perturbation technique where from the total
number of information symbols to transmit, the perturbation
quantities are applied only to a subset of these symbols. The
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rest of the symbols are transmitted without perturbation in a
fashion similar to channel inversion precoding. We see in the
results that the perturbation of a subset of symbols is typically
enough to align the transmit symbols with the eigenvalues of the
channel, thus approaching the diversity offered by the full VP as
applied conventionally. At the same time, by saving significant
computational complexity, the proposed scheme offers a favor-
able energy efficiency compared to VP. Finally, by judiciously
selecting the symbols to perturb, additional performance gains
are achievable, at the cost of added complexity. To optimize this
tradeoff, we propose a number of associated selection schemes.

It should be noted that the proposed schemes do not con-
stitute user selection schemes such as for example [22] where
a subset of the users’ symbols are selected for transmission.
Indeed here all users’ symbols are transmitted. The selection
refers to choosing which of the transmit symbols to perturb.
Moreover, compared to previous works on complexity reduc-
tion for VP [23]-[27], this work explores a distinct new ap-
proach based on partial symbol perturbation as opposed to a
full perturbation. The proposed can be applied on top of other
complexity reduction techniques to further reduce complexity
compared to the case where the full sphere search is carried out.
Since here we explore a perturbation for a subset of the transmit
symbols, complexity gains will still be observed. However, to
keep the focus of this work on the central idea, we only use
conventional VP with a limited search lattice proposed in [23],
as the reference technique.

For reasons of clarity we list the contributions of the present
work:

1) We introduce a new selective VP scheme that reduces the
complexity with respect to conventional VP schemes,

2) To optimize the performance-complexity tradeoff, we
further propose three distinct criteria for the selection of
the transmit symbols to perturb,

3) We calculate and compare analytically the complexity
of conventional and proposed techniques, and prove the
complexity benefits of the proposed approach mathemat-
ically, based on the volume of the search space associated
with each of the techniques,

4) We quantify the performance-complexity tradeoff of con-
ventional and proposed VP, by introducing a energy
efficiency metric that combines sum rate, transmit power
and complexity and prove the enhanced tradeoff for the
proposed scheme. We demonstrate that this metric can be
used to design an energy efficient communication link by
optimizing the number of perturbed users required in the
proposed VP.

The rest of the paper is organized as follows. Section II
illustrates the MISO channel model used in this paper and
briefly describes conventional VP precoding. In Section III the
proposed selective VP is presented, along with the associated
symbol selection techniques. Section IV presents a complexity
analysis of the proposed techniques, based on the volume of
the search space associated with the sphere encoder. Analytical
sum rate expressions are given in Section V, where the en-
ergy efficiency metric to evaluate the performance-complexity
tradeoff is introduced. Finally numerical results are illustrated
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Fig. 1. Block diagram of VP in the MU-MISO downlink.

and discussed in Section VI and conclusions are summarized in
Section VII.

II. MU-MISO CHANNEL MODEL AND VP
A. MU-MISO Channel Model

We consider a downlink system comprised of a single base
station (BS) equipped with N transmit antennas and M < N
users with a single receive antenna each. The received signals
of all antennas can be represented by the vector

r=H x+w (1)

Herer € CM>*1and H € CM*N ~ CN (0,15 ® Iy) contains
the frequency flat fading channel coefficients with the (m, n)-th
element A, ,, being the complex-Gaussian channel tap between
the n-th transmit and the m-th receive antenna. Also, x € CN*1
is the vector with the symbols transmitted by the N transmit
antennas and w € CM>*1 ~ CN(0,0%I)y) is the vector of the
additive white Gaussian noise (AWGN) components at the M
receive antennas. We note here that, to focus the paper on the
proposed idea and comparisons to conventional VP, and follow-
ing the modeling in the most relevant works, the above model
ignores factors such as path loss that could create variations
in the SNRs of different users. For such scenarios there exist
solutions which constitute variants of the conventional VP in
the form of block diagonalized VP [26], which the proposed
scheme can apply on to further reduce complexity. For the
purposes of the analysis below, full knowledge of channel state
information (CSI) is assumed at the BS transmitter, which is a
common assumption in the VP literature.

B. VP Precoding

VP employs a channel inversion precoding matrix and ap-
plies a perturbation on the transmitted symbols such that the
useful signal power at the receiver is maximized. The block di-
agram is shown in Fig. 1. The transmitted signal is given by [15]

X = \/gF(u—i—Tl*) 2)

where F is the precoding matrix, u € CM*!

vector,

is the data symbol

B =||F(u+71")|? 3)
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is the transmit power scaling factor so that E{[|x||*} = P
and 1" € CM*! s the selected perturbation vector with
integer entries that will be detailed in the following. Also
7 = 2|¢|max + A, where |¢|max is the absolute value of the
constellation symbol with the maximum magnitude and A
denotes the minimum Euclidean distance between constellation
symbols. The precoding matrix can be a channel inversion
matrix in the form F = HY (HH )71 or a regularized channel
inversion matrix F = H (HH" + aI)il. For simplicity we
focus on the former in this paper, while the benefits of the
proposed ideas on the latter are intuitive. For the special case of
channel inversion precoding [8] we have 71* = 0,,, where 0y,
is the all zero M x 1 vector. Based on the above expressions
the received symbol vector can be calculated as

r:\/g(u—l-rl*)—l-w %)

At the receiver the signal is first scaled back to eliminate the
effect of the transmit scaling factor and then fed to a modulo
operator to remove the perturbation quantity 71*. The output of
the modulo stage is given as

y=mod, [\/Er] =mod, [u+71"+ gw =u+n (5
where mod - [z] = fr(R(z)) +j- f-(3(x)) and
frlw) =2 - V +TT/2J T (6)

In the above, vector n in (5) denotes the equivalent noise vector
at the receiver after the scaling and modulo operation.

C. Perturbation Vector Selection

To maximize the signal component in the received symbols
or equivalently minimize the noise amplification, the perturba-
tion vectors 1* should be chosen such that 5 is minimized in (5).
Hence we have

* : 2
I* =arg o |F(u+ 1)l (7)

For complex symbol alphabets, the optimization in (7) is
a 2M-dimentional real integer lattice problem, known to be
NP-hard. Sphere search techniques are typically employed to
solve the minimization. A computationally efficient and flexible
implementation of sphere search is the Schnorr-Euchner (SE)
algorithm [29], which we adopt in this paper and modify
for the purposes of the proposed VP design. We note that
the decoupled optimization of the precoding matrix and the
perturbation vectors separately is essential in transforming the
VP optimization in a least squares problem and solving it by
sphere search techniques. The joint optimization of F and 1
would involve a highly complex optimization for which no
standard solvers exist.
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III. SELECTIVE VECTOR PRECODING (SVP)

It is well established in the literature that the volume and
associated complexity of VP grows exponentially with the
number of search dimensions n. To limit this complexity we
explore a partial perturbation scheme where a subset of L
symbols out of the M total transmitted symbols is perturbed
by means of the perturbation vectors 1. Clearly this reduces the
number of dimensions to L and therefore the complexity now
grows with L. The associated optimization can be written as

P(asr])]

Here 0 and F denote the appropriate re-ordering of the data
vector and the columns of matrix F' to allow for the selection
of the symbols to be perturbed, as detailed in the following.
By partitioning the precoding matrix as F = [F ;1 F1] where
F_p e CMX(M-L) and F; e CM*L_ (8) can be transformed
1nto

min
leZL 4zt

®)

I* = arg

|Fa+ 7F 1|2 )

I* =arg min
1€ZL +jZ"
Clearly (9) is L-dimensional and can be solved by standard
sphere search techniques. The receive processing required for
SVP is identical to the one for conventional VP in Fig. 1.
Further expanding (9) we have

l*:arg minZL{||FuH2+7-2||FL1L||2+27%(ﬁHFHFL1L)}
I

1€ZL +j
(10)

or equivalently
I = i 2NF 1|+ 2rR(@7FPF L)} (11
arg min {T?|F L1 []* + 2rR(T clp)}. (1)

We note that 72||F 1. ||2 < 72tr(FEFL)|1L]|%, where tr(.)
denotes the trace of a matrix, though this is not a tight bound.
It can be observed that the selection of symbols to perturb by
means of the vectors 17, becomes a selection between the most
appropriate columns of the precoding matrix to form F .

We next introduce the proposed selection techniques, along
with the associated algorithms in the following tables. We use
[] to denote an empty matrix, {X}, to denote the y columns of
X, sort(x) to represent the ordering of the elements in vector
x in an ascending manner, nchoosek(n, k) to denote all the
possible combinations of groups with size k and n candidates
and SE{k, x, A} to denote the Schnorr-Euchner algorithm [29]
that minimizes the integer least squares problem arg min,, ||x —
Ay/|| with dimension size k.

A. Random Selection (SVP-RS)

The simplest selection scheme applies random user selection,
and involves a random re-ordering of the columns of F. The
implementation algorithm is shown in Table III.A. Without loss
of generality, for a large number of channel instantiations, this
can be equivalently implemented by simply choosing the last L
columns of the precoding matrix. The partial perturbation of the
symbols on its own greatly reduces the computational complex-
ity and also outperforms channel inversion. By increasing the
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TABLE IILA

ALGORITHM SVP-RS
F=[Fy_1,Fi]
I*= sE{L,Fu,-F 7}

100

102L[r=#=-cl
{| =—— SVP-RS, L=1
‘| =—@=—SVP-RS, L=2|-

107 | —w— SVP-RS, L=3
== VP
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Fig. 2. Error rates and Complexity of SVP-RS with L for N = M = 4 and
N = M = 10, 4-QAM.

number of perturbed symbols L, SVP-RS quickly approaches
the diversity order of conventional VP.

This is shown in the preliminary results in Fig. 2 where
the symbol error rate performance and complexity in terms
of numbers of floating point operations (NOP) of SVP-RS is
shown for increasing numbers of perturbed users L, for the
casesof N = M =4 and N = M = 10 respectively. A system
employing 4-QAM modulation is assumed and perfect channel
state information (CSI) is available at the transmitter. We note
that the performance for VP in general is governed by the
scaling factor 3 [15] which is unique and common for all MUs.
Therefore the average performance shown here applies to all
users in the system. It can be seen that the performance of SVP-
RS improves from that of CI (L = 0) to VP (L = N) as the
number of perturbed users increases. In the case for N = M =
10 the performance of SVP converges faster to that of VP as
the number of perturbed users increases. In addition, the com-
plexity benefits are more significant as near-VP performance is
achieved for moderate values of L. For example the complexity
is more than 5000 times more for VP compared to SVP with
L = 2 with a respective SNR gain of 7 dB. It can therefore be
observed that SVP becomes more useful for systems with larger
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TABLE IIL.B

ALGORITHM SVP-0S
b = nchoosek(M, L)
fori=1to (]\Ll) do
FZL = {F}ba) o
I' = SE{L,Fu, -F, 7}
R; = ||Fu+ TFiLliH
end
I* = largminz{Ni}

numbers of users as the tradeoff between the performance loss
and gains in complexity becomes more favorable. As SVP-RS
is the simplest of the selection schemes and is equivalent to SVP
without selection, we shall use it as reference hereof.

B. Optimal Selection (SVP-0S)

The optimal symbol selection involves the calculating of the
signal norm

R, = [[Fu+rFyL|, icl,... (M) (12)

L
for all possible groups of transmit symbols with size L and
selecting the group of transmit symbols that jointly minimizes
the signal norm as

F, =argmin |[Fu+7FL [, i€l,... <AL4) (13)
The implementation algorithm is shown in Table III.B. Clearly,
this provides the best possible performance for SVP for a given
number of perturbed users L, but also involves the highest
computational complexity as an L-dimensional sphere search
must be carried out for each of the (}) = M!/(M — L)!L!
candidate symbol groups, where (.)! denotes the factorial oper-
ation. It will be shown however that SVP-OS provides a close-
to-VP diversity for low numbers of L.

C. Decoupled Selection (SVP-DS)

For a lower-complexity alternative with respect to SVP-OS
we explore a decoupled approach where the symbols selected
are those that provide the most improvement in the transmit
signal norm when VP is applied on these symbols individually.
The implementation algorithm is shown in Table III.C. We
therefore apply VP to a single symbol at a time to obtain the
metric

Ny = [[Fu+7filil|, kel,...M (14)

with fj, denoting the k-th column vector of F. We subsequently
select the group of L users with the symbols that provided the
L lowest signal norms Ny,

Fp = {F}LL

where {X};.7, denotes the first L columns of matrix X, and F
is the precoding matrix F with columns re-ordered according
to increasing N;. The perturbation vectors are then obtained by
a final L-dimensional search between the selected users.

5)



4978

TABLE III.C

ALGORITHM SVP-DS
fori=1to M do

£, :={F};

' = SE{l,Fu, —f;7}

R; = [[Fu+ 76’
end

[m,n] = sort(X;)
I* = 1{n}ue

TABLE III.D

ALGORITHM SVP-SS

Fr=[]

$ =F

for k=1to L do

fori=1toM—-k+1do

£, :={®};
Fj = [Fp,f]
i, = SE{k,Fu, —F’ 7}
N}, = [[Fu+ 7FL L[|

end
m = arg min; {R} }

FL = [FL,fm]
P = { Pl i—mmt1:M—k+1
=1

end

I; =1z

D. Sequential Selection (SVP-SS)

As a final alternative with intermediate performance and
complexity between SVP-OS and SVP-DS we propose to se-
quentially select users according to the minimum norm crite-
rion. The implementation algorithm is shown in Table III.D.
We start with the column of F corresponding to the symbol
that yields the minimum norm after perturbation. We then
add columns to F, by selecting the additional symbol that
minimizes the signal norm after joint perturbation with the
previously selected symbols. That is, starting with an empty
matrix F 7, we initially choose the first column according to

argrréinHFu—%-Tfkllle, khel,...M (16)
1

and subsequently add the n-th user by stacking the appropriate
column of F to form the M x n matrix ¥, = [Fp _,, ]
according to

, kpel, ...

kn7ék17k23"'

F;, = arg mkin HFu +7F, 11, M,

7kn71 (17)

In the above [X, Y] denotes the horizontal stacking of matrices
X,Y.
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Fig. 3. Geometrical representation of the 2-dimensional integer-lattice sphere
search problem.

IV. COMPUTATIONAL COMPLEXITY

To evaluate the performance-complexity tradeoff and overall
energy efficiency of the proposed schemes, in this section
we study the computational complexity of selective VP. We
start by introducing an upper bound of the volume searched
by the sphere encoder for the L-dimensional lattice and use
this to calculate the average number of nodes visited by the
encoder. Finally, using an average value for the number of
numerical operations (NOPs) per node, we derive the average
NOPs carried out by the sphere encoder, for each of the symbol
selection techniques.

A. Search Volume

It has been observed in [18] and references therein that the
complexity of the SE search is proportional to the volume of
the region being searched in the lattice space. At the k-th search
layer this volume is a hypersphere with maximum radius a.
A geometrical illustration of this is shown in Fig. 3 for a
2-dimensional lattice. Here the dots represent the lattice points
and the area inside the circle denotes the area of candidate
points searched, based on the search radius «. For the proposed
SVP the search space is L-dimensional, as opposed to the
M -dimensional space for the full VP search. In the following,
we use these key observations to attain a complexity evaluation
for SVP, following the methodology of [17], [18].

Theorem 1: Define the search volume for the k-th search
layer with radius ay as Vi (ay). For the complexity C' asso-
ciated with SVP in a L-dimensional lattice we have

C o Vi () (18)
for which
%
1% <07 19
where ¢, = \/7"%,1 +r5g i k=1, L,y are

the diagonal elements of matrix R obtained from the QR
decomposition
[Q,R] = QR(-Fr7) (20)

and I'(.) denotes the gamma function.
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Proof: The proof of Theorem 1 closely follows the sphere
search volume analysis in [18]. It can be seen that the Schnorr-
Euchner search starts with an infinite search radius at the
highest search layer for k£ = L which is decreased at each layer
according to the minimum observed weight in the previous
layer. Hence, the aforementioned radius aj is adaptive on a
layer-by-layer basis. Accordingly, it has been shown in [18],
[20] that the volume of the search space for the k-th layer
follows

k

[VEad

k
2

Vk(Oék) S mgan S malz

(2D
where the second term represents the volume of a hyper-sphere
with radius «,, in the n-th dimension and the third term a hyper-
sphere with radius «y, in all dimensions. The second inequality
in (21) therefore stems from the fact that the radius decreases
with increasing layers and therefore the volume of the search
space is upper bounded by the volume of the hyper-sphere with
the maximum radius in all dimensions. It addition it is well
known from lattice theory that ay, < ¢ /2 for all k, where ¢,
is defined as in the theorem above [18]. Therefore, using (21)
we have the following upper-bound

5 b 5 .
Vel) = 70251 U? s @2
]

Clearly, where for conventional VP the volume of the
M -layered search is given by Vy;(00), for the proposed SVP
the volume of the L-dimensional sphere search with L < M is
bounded by V1 (00). Since Vi, (00) is monotonically increasing
with & we have Vr(c0) < Vjr(c0) and therefore the sphere
search involved in SVP has a reduced complexity compared to
the one for VP.

In the above theorem, the complexity reduction with SVP has
been shown by means of search space volume. A complexity
comparison between VP and SVP in terms of elementary oper-
ations is shown analytically in the next section and numerically
in the results section in the following.

B. Numerical Operations

The above analysis can be used to obtain an upper bound on
the expected numerical operations associated with the proposed
precoding. Note that, as the search volume is associated with
the search tree complexity, the analysis below focuses only on
the operations required for the search stage, ignoring the pre-
and post-search operations such as the QR decomposition etc.
This is a common practice in the literature [16]—-[18].

It was shown in [17] that for an infinite lattice,! the expected
number of lattice points contained inside a k-dimensional hy-

!Note that in the results section we use a search lattice with finite limits. For
the case of a finite lattice, the subset of lattice points inside the hypersphere is
dependent on the limits of the lattice and no generic closed form expression for
the number of lattice points exists [17]. We therefore look at the generic case of
an infinite lattice to attain a generic complexity expression at this point.
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persphere of radius « is given as

q=0 o? + 4
where
R
@(m,n)z/r(m) “tat 24)

is the normalized incomplete gamma function and 7, (z) de-
notes the number of ways a non-negative integer x can be
represented as a sum of « squares of integers. The closed form
definition of 7, () is a classical number-theory problem, well
studied in the literature [17], [20]. Clearly, based on the above
we can derive upper bounds for expected numbers of nodes
visited by the sphere encoder.

Using (23), for the volume in (22) of a hypersphere with
radius ¢y /2 in all dimensions we have the straightforward
upper bound

p(k) < E, (k ((/)2’6)2>

00 <252 k A
Zs@( ) -ri(q) = B(k)

02 +q) 2
The complexity in numbers of numerical operations for a
generic A-dimensional search can then be calculated using the
formula

(25)

A
C(A) = p(k) f(k) (26)
k=1

yielding
o3

A ] % k
<5l Z@( : 2) ) @7)
k=1 —0

where f,(k) = 2k + 11 denotes the number of numerical oper-
ations per visited node [17] in the k-th search layer.

While the inner summation in (27), has infinite terms, it can
be seen that the terms ¢(¢7 /4/2(c? + q), k/2) - 71 (q) tends to
zero for large gq. We therefore approximate these expressions
using a sum limit of gmax = 100 when numerically calculating
the complexity in terms of numbers of operations.

C. Complexity of Each of the SVP Sub-Schemes

We have up to now established the complexity associated
with a generic A-dimensional sphere search. For each of the
proposed selection techniques however, a number of sphere
searches of variable dimensionality is required. We therefore
use the above analysis combined with the algorithmic oper-
ations shown above to derive the complexity of each of the
SVP sub-techniques. These complexities as a function of C'(A)
are summarized in Table IV. As the rest of the transmit and
receive processing is identical for conventional VP and all SVP
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TABLE IV
COMPLEXITY FOR VP AND THE PROPOSED SVP SCHEMES
VP C(M) = 330, p(k) fo (k)
SVP-RS Crs = 3 r_, p(k) fo(K)
SVPOS | Cos = b (14 S o) o (R)
SVP-DS | Cps = (1+p(1)fo(1)) M + SE_ p(k) fo(k)
SVP-SS | Cgs = Zi:l(M —k+1) (1 + 22:1 P(n)fp(”))

schemes, in the analysis below we focus on the complexity
associated with the sphere search.

1) SVP-RS: The symbols are chosen randomly and then an
L-dimensional search is carried out. This clearly entails the
least complexity of the proposed schemes given by

L

Crs = C(L) =Y p(k) fp(k)

k=1

(28)

2) SVP-OS: For the optimal selection scheme, all possible
(Ag ) combinations of L symbols are evaluated, each yielding
an L-dimensional search, and the one with minimum norm is
selected. The associated complexity is therefore given as

() ()

L

- (Mﬂ)lu <1 y Zp<k)fp<k>> (29)
k=1

Which is the sum of the numerical operations involved in
the sphere searches plus the operations required to find the
minimum amongst the (ALI ) norms.

3) SVP-DS: The decoupled selection involves M sphere
searches of dimension 1 each to evaluate the minimum norm
achieved with each symbol individually, and selecting the L
symbols with lowest minimum norms. The SVP-DS subse-
quently carries out an L-dimensional search with the selected
group of symbols. The complexity for this case is given as

Cps =C(1)M + M + C(L)

L

= (1+p(W)fp(1) M+ > plk) fy (k)

k=1

(30)

4) SVP-SS: Finally the sequential selection initially picks
the user that yields the minimum norm by individual pertur-
bation, and at the k-th stage adds the user that minimizes the
norm by joint perturbation with the previously selected users,
until L users are selected. This involves M — k + 1 searches
of dimension k at the k-th stage, for which case the total
complexity for this scheme is given as

L
Css =Y CE)(M —k+1)+(M—Fk+1)

k=1
L k
=D (M —k+1) (1 + Zp(n)fp(m) (31)
k=1 n=1
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V. ENERGY EFFICIENCY

As the ultimate metric for evaluating the performance-
complexity tradeoff and the overall usefulness of each of the
proposed techniques and towards an energy efficient communi-
cation system, we look at the transmit energy efficiency of SVP
compared to VP, and its dependence on the number of perturbed
users L and the user selection method. Following the modeling
of [20], [30], [31] we define the transmit energy efficiency of
the communication link as the bit rate per total transmit power
consumed i.e. ratio of the sum rate achieved over the consumed
power at the transmitter

£ R
Pps+N-Py+p.-C

(32)

where Pps = (£/n)P in Watts is the power consumed at the
power amplifier to produce the total transmit signal power P,
with 77 being the power amplifier efficiency and ¢ being the
modulation-dependent peak to average power ratio (PAPR).
Py = Ppiz + Pris + Ppac is the power related to the mixers
and transmit filters and the digital-to-analog converter (DAC),
assumed constant for the purposes of this work. We use
practical values of these from [31] as 7 = 0.35 and P,,;, =
30.3 mW, Py = 2.5 mW, Ppac = 1.6 mW yielding Py =
34.4 mW. p, in Watts/KOps is the power per 103 elementary
operations (KOps) of the digital signal processor (DSP) and
C is the average numbers of operations discussed above for
each symbol selection case. This term is used to introduce
complexity as a factor the transmitter power consumption in
the energy efficiency metric. Typical values of p. include p. =
22.88 mW/KOps for the Virtex-4 and p. = 5.76 mW/KOps
for the Virtex-5 FPGA family from Xilinx [32]. In C we
use the fact that the sphere search and related optimization
dominates the signal processing complexity at the transmitter
and therefore the additional processing such as the scaling
and modulo operation entail negligible complexity. Finally,
R represents the sum rate which we discuss in the next
subsection.

The expression in (32) provides a metric that combines
transmission rate, complexity and transmit signal power, all in
a unified metric. By varying the number of perturbed users
L, both the resulting complexity and transmission rates are
influenced, as shown above. Therefore, this expression can
be used for the design of the communication link to max-
imize the energy efficiency by optimizing L and choosing
the appropriate symbol selection scheme. High values of &
indicate that high sum rates are achievable for a given trans-
mit power consumption, and thus denote a high energy ef-
ficiency. The proposed technique is clearly advantageous in
low transmit power scenarios, such as the small cell trans-
mission, where the computational complexity accounts for a
significant part of the power consumption attributed to the
signal processing at the transmitter. The following results, how-
ever, show that SVP provides an increased energy efficiency
compared to VP in numerous scenarios with varied transmit
powers P.
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A. Sum Rate Performance
In [33] the sum rate performance of VP was studied analyti-
cally and rate lower bounds were derived for a VP system with
uniformly distributed inputs is given as
E
{ﬁ}> a3

R:Mlog 2%
0

E,
E{ﬂ}JrQMQ(

where Fj, and Ny represent the energy per bit and noise spectral
density respectively, and

o] S

o0
_le=si? _le—t|2
T2z E e 2z
27Tx

t=—00

> d¢ (34)

1
2

is a function that relates to the effect of the receive modulo
operation [6]. We note that while L users have their symbols
perturbed as per the proposed scheme, it is M symbols that are
transmitted per channel use, which justifies the use of M as the
pre-log factor. For the high SNR region it was shown in [33] that

FE

lim € {Eﬂ} =0 (35)

T 00 28e

0 0

for which case a lower bound can be derived as
Ey

R> Ry =Mlog ——F+—+—— 36
> Ry OgNoweE{B} (36)

In the following, we use (36) in (32) to evaluate the energy
efficiency of the conventional and proposed schemes.

VI. NUMERICAL RESULTS

This section presents numerical results based on Monte Carlo
simulations of the proposed SVP techniques and conventional
VP (L = N) for the frequency flat Rayleigh fading statisti-
cally uncorrelated MIMO channel whose impulse response is
assumed perfectly known at the transmitter. Without loss of
generality for the error rate results it is assumed that P =
1, while in the following energy efficiency results we use
various values of P according to existing standards. A system
employing 4-QAM modulation is explored for the case with
N = M while it is clear that the benefits of the proposed
technique extend to non-symmetric MIMO channels and higher
order modulation. We focus on the performance and complexity
comparisons and tradeoff between VP and SVP. As explained
above and following the methodology in the literature, here
the complexity evaluation focuses only on the complexity of
the tree-search stage, ignoring pre- and post-processing. To
focus on the proposed concept, we compare the proposed SVP
solely to conventional VP, while it is clear the benefits of the
selective perturbation concept extend to modified VP designs
existing in the literature. In the following we use the notation
p = 10log,,(E}/Np) for convenience.

Fig. 4 shows the symbol error rate (SER) performance
with the transmit SNR (p) for CI, VP and the proposed SVP
schemes, for L = 2 perturbed users with N = M = 10. It can
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Fig. 5. SER vs. SNR for CI, VP, SVP, N = M = 10, L = 4,4-QAM.

be seen that all the proposed schemes provide a performance
between that of conventional VP and CI, with SVP-RS offering
the worst performance due to the random user selection. Indeed,
SVP-OS shows a significant improvement over SVP-RS with a
7 dB SNR gain and with only L = 2 perturbed users closely
approaches the diversity and performance of full VP with L =
10. This however comes at the cost of increased complexity
w.r.t. SVP-RS as detailed in the following. It should be noted
however that the two other schemes namely SVP-DS and SVP-
SS already offer 2.5 dB and 5 dB gains compared to SVP-RS
with little added complexity.

This is further pronounced in Fig. 5 where the same com-
parison is shown for the case of L = 4. In this case SVP-OS
achieves the performance of full VP with only L = 4. However,
it is shown in the following that the complexity of SVP-OS
in this case is comparable to the one for VP due to the large
number of candidate transmit symbol groups. Nevertheless, it
should be observed that the rest of the SVP schemes perform
very close to VP at much reduced complexity (see Fig. 7). The
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Fig. 7. Complexity for SVP with increasing L, N = M = 10, 4-QAM.

same trend can be seen in Fig. 6 where the SER is shown for
the case of N = M =4 with L = 2 perturbed users. In this
figure we also show the performance of the techniques in the
presence of 7% CSI errors at the transmitter and it can be seen
that the performance of both VP and proposed SVP schemes
deteriorates with the same trend. We note that for the cases with
imperfect CSI at the transmitter, CSI-robust VP solutions such
as the ones in [33]-[35] can be applied on top of the proposed
SVP scheme to improve performance.

Fig. 7 shows the complexity in numbers of operations
(NOPs) with increasing numbers of perturbed users L for the
10 x 10 MISO system (N = M = 10). We have calculated the
average complexity per search empirically, which we then use
in the complexity expressions in Table II to obtain the graphs
shown. Clearly, the lowest complexity is offered by SVP-RS,
closely followed by SVP-DS. It should be noted that the
complexity of full VP corresponds to the case L = M. It is
also observed that SVP-OS quickly becomes impractical from
L =5 onwards since it imposes complexity higher than con-
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Fig. 9. Energy efficiency for SVP with increasing P for L = 2 and L = 4,
N = M =10, p = 20 dB, 4-QAM.

ventional VP. This is because, despite the fact that it involves
sphere searches of reduced dimension, these need to be per-
formed an amount of times (JZ] ) which becomes excessive
for larger L, leading to a high number of candidate perturbed
symbol groups. The lower-complexity alternatives however still
offer computational gains w.r.t. VP.

The performance complexity tradeoff for SVP is examined
directly in Figs. 8—11 by means of the energy efficiency as
defined in (32), for the 10 x 10 system with a fixed trans-
mit SNR of p =20 dB. Firstly for the transmit power of
P = 32 mW (15 dBm) which corresponds to the power budget
of a WLAN base station, it is clear that there is room for
improving the efficiency of conventional VP which corresponds
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Fig. 11. Energy efficiency for SVP with increasing L, N = M = 10,
P = 37dBm (5 W), p = 20 dB, 4-QAM.

to the points with L = 10. It can be seen that for the different
SVP schemes, different optimal values are found for L where
the energy efficiency is maximized. The most power efficient
options for this scenario are SVP-OS with L = 2 and SVP-
DS with L = 5, both offering a power efficiency improvement
compared to VP of more than 300%.

Fig. 9 illustrates the resulting energy efficiency of VP and the
SVP schemes for increasing transmit powers from P = 10 dBm
(10 mW) up to P =40 dBm (10 W), which corresponds to
the LTE base station power region, for the cases of L = 2 and
L = 4. It can be seen that the energy efficiency of all schemes is
reduced with increasing transmit power according to the metric
in (32) due to the increase of the power consumption of the
power amplifier. Note however, that all SVP schemes offer
significant benefits in the energy efficiency compared to VP for
power budgets of up to 30 dBm, with the exception of SVP-OS
for L = 4 due to its impractical complexity.
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The same comparison as in Fig. 8 is shown in Figs. 10 and
11 for transmit power budgets of P = 250 mW (24 dBm) and
P = 5W (37 dBm) respectively, which correspond to the limits
of the transmit power envisaged for the small-cell deployment
[36]. It can be observed that with increasing P the maxima of
energy efficiency move to higher values of L for all techniques
since the power consumption due to the added complexity
becomes less significant compared to the gains in sum rates.
Still however, the energy efficiency is maximized with the
various SVP schemes at values of L < M. It can therefore be
concluded that the proposed scheme provides a more power
efficient alternative to VP for the low power transmission of
future small cell networks.

VII. CONCLUSION

An selective vector precoding scheme has been proposed,
which partially perturbs the information symbols to improve the
energy efficiency of VP. By applying the perturbation function
to a subset of the transmit symbols, the proposed scheme
saves significant computational complexity which otherwise
increases exponentially with the number of users. To improve
the resulting tradeoff between performance and complexity, a
number of criteria have been proposed for the selection of
the symbols to be perturbed, yielding significant performance
gains. The results show that the proposed SVP schemes provide
significant energy efficiency gains with respect to conventional
VP, especially in the low-power transmission envisaged for the
future generation of communication networks.
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