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Abstract

Fully-localised solitary waves propagating on the surface of a three-dimensional ideal fluid of arbitrary depth, and bounded above
by an elastic sheet that resists flexing, are computed. The cases of shallow and deep water are distinct. In shallow water, weakly
nonlinear modulational analysis (see Milewski & Wang6) predicts waves of arbitrarily small amplitude and these are found numer-
ically. In deep water, the same analysis rules out the existence of solitary waves bifurcating from linear waves, but, nevertheless,
we find them at finite amplitude. This is accomplished using a continuation method following the branch from the shallow regime.
All solutions are computed via a fifth-order Hamiltonian truncation of the full ideal free-boundary fluid equations. We show that
this truncation is quantitatively accurate by comparisons with full potential flow in two-dimensions.
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1. Introduction

Fully localised travelling disturbances of a flexible sheet on the surface of a fluid, often called the flexural-gravity
(FG) wave problem, are considered. This problem has been proposed as a model for the dynamics of waves under
floating ice sheet, and has, mostly in the linear setting, been studied extensively (the reader is referred to the mono-
graph by Squire et al.13 and the references therein). The main application of these studies has been the use of lake
and ocean ice for roadways and landing strips or for the understanding of how disturbances arising from water waves
impinging on the edge of an ice sheet propagate. Another possible offshoot of this research is the dynamics of man-
made floating structures which have been studied in the past in the context of floating bridges’ and airports’ structural
integrity. There is renewed interest in understanding ice sheet dynamics and its breakup due to many effects, including
waves, as it has an important impact on the climate.

Recent nonlinear studies have aimed to understand the large response of ice to moving forces when the forces
move at particular (constant) speeds. These studies have been restricted to the one-dimensional free surface of a
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two-dimensional fluid (the 2D problem). Milewski et al.5 found that forces moving at a critical range of speeds could
generate a strongly nonlinear, large-amplitude and stable localized response. This phenomenon was also computed
by Guyenne & Părău3,4 using a different fully nonlinear elastic model. As pointed out in these papers, in order to
understand these forced responses it is crucial to know the nontrivial free responses of the system, such as fully
localised solitary waves.

Three-dimensional (3D) nonlinear FG waves have not been studied extensively, the first challenge being finding
appropriate models for the solid. In the simplest nonlinear shell theories of fully nonlinear elasticity Plotnikov &
Toland12 posed an energy due to the bending only (i.e. beam-like response) of the thin material using the Willmore
functional. Milewski & Wang6 used this model to investigate the problem in the weakly nonlinear modulational
regime which resulted in the Benney-Roskes-Davey-Stewartson (BRDS) system whose type varies with the physical
parameters of the problem. They found that at the minimum of phase speed, which is the regime at which localised
travelling wave solutions bifurcate, the BRDS system was defocussing (Benjamin-Feir stable) in infinite depth and
focussing for water shallower than a critical depth. Thus in the infinite depth limit one does not expect small amplitude
localised solutions whereas in water shallower than the critical depth the physics sustains bright solitary waves of
BRDS corresponding to small-amplitude wave packet solitary waves in the original problem. In the two-dimensional
FG problem, however, fully localised travelling wave solutions were found in infinite depth (Guyenne & Părău3,
Milewski et al.5), even though the associated nonlinear Schrödinger equation (NLS) which is the counterpart of
BRDS for the 2D problem is also of defocussing type. These solutions do not exist at arbitrarily small amplitude,
and bifurcate from finite amplitude generalised solitary waves. The question remains whether similar results hold in
3D (especially the existence of finite amplitude waves in infinite depth), and we address it in this paper. In Părău &
Vanden-Broeck10 one example of an unforced solution with a linear elasticity model is shown, but more computations
are needed to understand the properties of solitary waves for this model.

In addition to the challenge mentioned above regarding the model for the solid, the 3D problem has the added
difficulty of the lack of accurate and efficient 3D numerical formulations for the fluid. Boundary integral methods
have been used both in this problem with linear elasticity and the similar capillary-gravity problem (Părău & Vanden-
Broeck9,10, Părău et al.11) but it is computationally expensive to obtain highly accurate results (see, for example,
Wang & Milewski15). Here, we numerically compute 3D FG solitary waves via a quintic truncation Hamiltonian
model both in shallow and deep water. The model is first validated against full potential flow calculations in 2D. We
then show, numerically, that there exist fully localised FG travelling waves for all values of depth in 3D, and that in
shallow water these waves exist at arbitrary small amplitudes (as predicted by BRDS) whereas in deep water and in
infinite depth, the waves exist only at finite amplitude. To our knowledge, these are the first computations of solution
branches for 3D localised flexural-gravity waves for the Plotnikov & Toland’s model.

The rest of the paper is structured as follows: in Section 2, we formulate the FG problem mathematically; in Section
3, we briefly present the derivation of different truncated models and discuss what can be learned about the solitary
waves from the associated BRDS system; in Section 4, we validate models by investigating comparisons between
different models and the full problem in 2D. This is followed by the main numerical results of the existence of solitary
waves, especially in a deep water situation, when the associated BRDS system is of the defocussing type. Lastly,
some concluding remarks are presented in Section 5.

2. Formulation

2.1. Mathematical Description

Consider an incompressible, inviscid, irrotational, three dimensional fluid covered by an elastic sheet on the top and
a rigid horizontal wall at the bottom. The restoring forces are due to gravity and the elastic bending. The Hamiltonian
of the problem is the total energy of the fluid which is the sum of kinetic and potential energies (Zakharov 18):
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where φ(x, y, z, t) is the velocity potential whose gradient is the velocity field of the fluid, η(x, y, t) is the free surface
displacement, H0 is the mean depth of the fluid, ξ = φ(x, y, η(x, y, t), t) is designated as the surface potential, κ1 and κ2
are the principal curvatures on the free surface, and dS is the surface element. G(η) is a scaled Dirichlet to Neumann
(DtN) operator yielding the normal velocity of the free surface. It is defined by G(η) ! φz −∇φ ·∇η =

√
1 + |∇η|2 φn,

where φn is the derivative of the potential in the outward normal direction to the free surface. The Willmore surface
energy in (1) was proposed by Plotnikov & Toland12 for this problem and later written in the Euler-Lagrangian form
by Milewski & Wang6 to study the wavepacket FG solitary waves in the modulational regime. We note that the total
energy (1) is in non-dimensional form, with the density of the fluid, the gravitational acceleration and the flexural
rigidity of the surface solid, having been removed by proper rescaling. The only parameter remaining is the mean
depth which appears in G (see below).

Following Zakharov18, who worked in these canonical variables, the kinematic and dynamic boundary conditions
can be recast in terms of ξ and η as:

ηt =
δH
δξ
= G(η)ξ (2)

ξt = −
δH
δη
=

1
2J

[(
G(η)ξ

)2
+ 2
(
G(η)ξ

)(
∇ξ · ∇η

)
−
∣∣∣∇ξ
∣∣∣2
∣∣∣∇η
∣∣∣2 +
(
∇ξ · ∇η

)2 −
∣∣∣∇ξ
∣∣∣2
]
− η −

δEb

δη
(3)

where Eb ! 1
2

∫
(κ1 + κ2)2dS , and its variational derivative takes the form:

δEb

δη
= −2∂x

[
κ
ηxηyy − ηyηxy

J

]
− 2∂y

[
κ
ηyηxx − ηxηxy

J

]
− 2∂xy

[
κ
ηxηy

J

]

+∂xx

[
κ

1 + η2
y

J

]
+ ∂yy

[
κ

1 + η2
x

J

]
+

5
2
∂x

[
κ2
ηx√

J

]
+

5
2
∂y

[
κ2
ηy
√

J

]
(4)

where

J = 1 + η2
x + η

2
y (5)

κ = κ1 + κ2 =
(1 + η2

x)ηyy + (1 + η2
y)ηxx − 2ηxηyηxy

J3/2 (6)

2.2. Dirichelet to Neumann Expansion

The key difficulty in solving the surface water wave problem (2–3) using this formulation is how to compute the
DtN operator. It has been proved under quite general conditions that the DtN operator G(η) is analytic therefore can be
expanded as a convergent Taylor series G =

∑∞
i=0 Gi. Craig & Sulem2 first showed the explicit expression for Gi using

a recursion formula. The readers can find the derivation of the formula in Craig & Sulem2 and the references therein.
The recursive representation was then rewritten (see Craig & Nicholls1, Nicholls & Reitich7, Xu & Guyenne17) using
the adjoint operator of G, which is much simpler to use numerically. Using the adjoint formula, the resulting recursion
form for the DtN operator is given as follows: for j = 2r > 0,
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with

G0 = |D| tanh
(
H0|D|

)
(9)

where D = −i∇ and |D|2 = −∆. It is noted that as H0 → ∞, G0 reduces to |D|. Computation of the DtN operator via
the adjoint formulae (7) and (8) is substantially faster and memory efficient than the original formulae presented in
Craig & Sulem2.

3. Approximate Equations

3.1. Truncation and Models

There are three main ways in which the water wave problem can be approximated. First, one can truncate the DtN
expansion in the Hamiltonian (1), take the variational derivatives to obtain dynamical equations, and then evolve these
equations (this will be called the Hamiltonian expansion method and was used in Wang & Milewski15). Second, one
can take the exact evolution equations (2–3) and substitute an DtN expansion of arbitrary order (this will be called the
DtN expansion method and is used in most other computational papers using the DtN map). These two approximations
are not the same in equation (3). The former has the advantage that the resulting approximate dynamical system is
Hamiltonian, whereas in the later one gains “for free” a presumably better approximation to (3) since some higher
order terms are included. A third possibility, which is a priori distinct, is to introduce the DtN expansion of G into
(2–3) directly (as in the DtN expansion method) and to then ‘re-truncate’ (3) up to i + 2 order ηiξ2. This method is,
at least up to fifth order (0 ≤ i ≤ 3), provably equivalent to the first method of truncating the Hamiltonian described
above. We omit the tedious explicit computation of this equivalence here.

Listed below are the quadratic, cubic, quartic and quintic models using the Hamiltonian expansion method: for the
n-th order truncation (2 ≤ n ≤ 5),
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Therefore, one obtains four model systems depending of the order n = 2, 3, 4, 5 of truncation. These formulations and
approximations have reduced the 3D nonlinear water wave problem to a 2D one involving only the variables on the
surface, bypassing the solution of the Laplace equation in an irregular domain at every time step. In periodic domains
the operators above can be computed efficiently using Fourier methods.
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Fig. 1. Plot of the minimum phase speed (dashed line) and corresponding wavenumber (solid line) as the function of the reciprocal
of the mean fluid depth (1/H0).

3.2. Weakly Nonlinear Analysis

All truncation models share the same linear part, and the dispersion relation can be found from the linearized
equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηt = G0ξ

ξt = −η − ∆2η
=⇒ ω2 = tanh

(
|k|H0

)
|k|
(
1 + |k|4

)
(16)

where ω is the frequency and k = (k, l) is the wavenumber whose components are the wavenumbers in x- and y-
direction respectively. The phase speed cp(|k|) !

ω(|k|)
|k| has a global minimum cmin(H0) for each fixed H0. This

minimum occurs at wavenumber |k| = k∗(H0) and, at this value of |k|, the phase and group speed are equal: cg(|k|) !
dω
d|k| = cmin. These facts imply that steadily travelling wavepacket-like solitary waves may bifurcate from infinitesimal
periodic waves of wavenumber k∗, and exist for speed c < cmin. The bifurcation can be verified by a normal form
analysis which is equivalent to deriving the BRDS modulational equations as sketched below. The graphs of k∗ and
cmin are shown in figure 1. In these we can see that, from a linear perspective, H0 > 5 is effectively the infinite depth
regime which is expected since k∗H0 > 4.

The results of the BRDS based analysis are briefly stated here, and the reader can find the details for the FG case
in Milewski & Wang6 or Sulem & Sulem14 for general properties of the system. Just below the global minimum of
the phase speed, the quasi-monochromatic waves have the form of small-amplitude wavepackets with crests moving
at the same speed as their envelopes. To derive the governing equation for the envelope, we introduce X = ϵ(x − cgt),
Y = ϵy and T = ϵ2t, and choose the carrier wave with wavenumber k = (k, 0) that propagates in x-direction only. One
then seeks a solution of the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η = ϵA(X, Y, T )eiΘ + ϵ2A1 + ϵ
3A2 + · · · + c.c.

φ = ϵ
[
ϕ(X, Y, T ) + B(X, Y, z, T )eiΘ

]
+ ϵ2B1 + ϵ

3B2 + · · · + c.c.
(17)

where Θ = kx − ωt and c.c. represents the complex conjugate. A1, A2 and B1, B2 are higher order corrections that
include all the harmonics of the primary mode. Substituting the ansatz (17) into the system (2–3) with the n = 3
truncation (higher order terms with n > 3 do not enter in the derivation of BRDS) results in the following nonlocal
equation equivalent to the BRDS system:

iAT +
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2
AXX +
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2k
AYY + α(k,H0)∆̃−1

[∣∣∣A
∣∣∣2
]
YY

A + µ(k,H0)
∣∣∣A
∣∣∣2A = 0 (18)
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where ∆̃ =
(
1 − H−1

0 c2
g
)
∂XX + ∂YY , and all the coefficients ω, cg, α, µ depend on the wavenumber and the mean depth

of the fluid. In Milewski & Wang6, the authors found that, fixing the wavenumber at k = k∗(H0) corresponding to the
minimum of phase speed described above, the coefficients of dispersion ω′′/2 and geometric focussing cg/2k are both
positive, that ∆̃ is elliptic, and that there is a critical depth Hc ≈ 233 such that the controlling nonlinear coefficient
µ(H0) changes sign, with µ < 0 for H0 > Hc. This fact disallows solitary waves from bifurcating from infinitesimal
waves for deeper water (H0 > Hc), and predicts small amplitude localised waves in shallower water (H0 < Hc) arising
from fully localised solutions of BRDS (see Milewski & Wang6). In next section we shall confirm this numerically
in the more primitive Hamiltonian truncation model and show that that solitary waves also occur in deeper water at
finite amplitude. The FG solitary wave of deep water is a more strongly nonlinear structure, and is not described by
the cubic BRDS based analysis.

4. Numerical Results

4.1. Model Validation

In this section we seek fully localised travelling waves translating with speed c to the system (10–11). First of
all, we shall determine the required order of truncation in the DtN expansion by comparing the bifurcation curves for
different truncated models and for the full irrotational Euler equation in 2D case. In this case the full Euler system
can be solved accurately by using a conformal mapping technique Milewski et al.5. For simplicity in this validation
study, we only consider the 2D depression FG solitary waves. In figure 2, we show the speed-amplitude diagrams for
H0 = 1, H0 = 2, H0 = 5 and H0 = ∞ for n = 2, 3, 4, 5 truncations.

From figure 2 we can see that, if the mean depth of the fluid is small, all the truncation models agree well with
the bifurcation picture obtained using the full potential flow equations up to large amplitudes comparable to water
depth. However, as H0 increases, lower order truncations lose accuracy even near cmin, and only the quintic model
can quantitatively capture the bifurcation diagram for the full potential flow, when H0 = ∞. These observations
are intuitively easy to explain. In shallower water the leading nonlinear contribution for water waves is a quadratic
term arising from the convective derivatives - thus the quadratic model captures most of the behaviour. As the depth
tends to infinity, the cubic truncation cannot capture accurately the finite amplitude solitary waves (note that the
waves computed from the full equations no longer bifurcate from zero amplitude) since, from the BRDS analysis,
we know the phenomenon requires omitted higher order terms. The quintic model, however, appears sufficient. The
adequacy of the quintic model arises from the observation that for H0 > 233, the nonlinear coefficient µ in the BRDS
equation remains very small (see Milewski & Wang6) and that, therefore, under a new rescaling, the modulations of
wavepackets should be well described by a cubic-quintic BRDS model. Furthermore, in order to derive a correct cubic-
quintic BRDS equation, the quintic truncation of the DtN expansion is clearly necessary. Although the derivation of a
cubic-quintic BRDS equation is tedious and beyond the scope of this work, we conjecture that it would have solitary
waves arising from a finite amplitude bifurcation.

Therefore, we conclude that the quintic truncation model is the simplest quantitative DtN-truncated model for FG
waves in relatively deep fluids, and that a cubic model is sufficiently accurate in shallower water (certainly for H0 < 2).
In the next section we shall use the quintic truncation model in 3D computations for H0 ≥ 2 and the cubic model for
H0 = 1.

One additional observation can be made from our 2D computations: while the weakly nonlinear analysis predicts
that the transition between shallow and deep water behaviour happens at H0 ≈ 233, we find that in practice, it occurs in
much shallower water. For depths 5 < H0 < 233, the controlling nonlinear coefficient µ, whilst positive, remains very
small (see Milewski & Wang6) and thus the bifurcation curve is predicted to be extremely steep at cmin. Numerically,
for any speed appreciably below cmin, the waves are immediately of large amplitude and it is difficult to compute the
nonlinear branch down to zero amplitude. These observations are consistent with 2D computations of Guyenne &
Parau4 and the threshold of H0 ≈ 5 between shallow and deep is also consistent with the fact that the linear depth
effects are minimal for H0 > 5 (see figure 1).
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Fig. 2. Comparison of different truncation models with the irrotational Euler system. Speed-amplitude bifurcation diagrams for 2D
depression the FG solitary waves in water of different depths. Circles: full potential flow computation using a conformal mapping
technique; dot-dash line: quadratic truncation model; dotted line: cubic truncation model; dashed line: quartic truncation model;
solid line: quintic truncation model. (a) H0 = 1, (b) H0 = 2, (c) H0 = 5 and (d) H0 = ∞.

4.2. The Three-dimensional Problem

Focussing our attention on 3D FG solitary waves, we now seek fully localised travelling solutions for propagation
speeds smaller than the minimum of the phase speed (c < cmin) and for various values of the mean depths using a fifth-
order Hamiltonian truncation combined with an accurate pseudo-spectral numerical method. We write the travelling
solution to the system (10–11) as

η(θ, y) =
M∑

m=−M+1

N∑

n=−N+1

am,nei(nkθ+mly) (19)

ξ(θ, y) =
M∑

m=−M+1

N∑

n=−N+1

bm,nei(nkθ+mly) (20)
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Fig. 4. Speed-amplitude bifurcation diagrams. (a) H0 = 2, (b) H0 = ∞. The largest speed indicated on the horizontal axis is cmin.
For the shallow water case, the asymptotic prediction is shown with a dotted line.

waves are of smaller amplitude and have longer period oscillations than deep water ones. In figure 4 we show the
bifurcation curves for the two values of the depth used in figure 3. The principal observation is that for shallower
water, the bifurcation curves originate from infinitesimal waves, whereas for deep water they clearly originate at finite
amplitude. The shallower water bifurcation curve may thus be approximated using the solutions found in Milewski &
Wang6 and is given by

c − cmin ≈ −
1
9

(η(0, 0))2.

In figure 5 we show the bifurcation diagram for H0 = 1 which shows a linear relation between c and amplitude.
This is an indication that a quadratically nonlinear equation of the Kadomtsev-Petviashvilli (KP) type is probably the
relevant weakly nonlinear approximation in this case. Also in figure 5 are shown small and large amplitude wave
profiles at H0 = 1, together with a large amplitude profile for H0 = 2 (the difference between this case and the small
amplitude H0 = 2 wave shown in figure 4 is worth noting). Both large amplitude profiles shown in figure 5 have
amplitudes that are greater than half the depth of the fluid and the solution profiles are reminiscent of solitary lumps
of the KP-I equation.

5. Conclusion

We have shown, using a quintic Hamiltonian model derived from the full water wave problem that three-dimensional
fully localized flexural-gravity solitary waves exist in deep water, even though the associated Benney-Roskes-Davey-
Stewartson small amplitude approximation, in this case, is of defocussing type and does not predict them. We have
also computed shallower water localised waves, predicted by the small amplitude analysis. To our knowledge, these
are the first computations of fully localised solitary flexural-gravity waves for the Plotnikov & Toland’s model. The
quintic model is validated by showing it is quantitatively accurate for two-dimensional flexural-gravity waves in arbi-
trary depth.

The Hamiltonian truncation, at any order, has its limitations. Therefore, complicated structures such as the over-
hanging waves found in Guyenne & Părău3 and Wang et al.16 cannot be studied using these methods and require
further work. The dynamics of the waves computed here is also of interest. It is expected that small amplitude waves
would be unstable (see Milewski & Wang6) but larger amplitude waves may be stable Wang & Milewski15.
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