SUPPLEMENTARY FIGURES

Supplementary Figure 1: Stimulation-secretion coupling in the pancreatic beta-cell. Glucose is transported into the cell and undergoes glycolysis followed by mitochondrial metabolism (1). The increase in ATP:ADP ratio (2) blocks hyperpolarizing K_{ATP} channels. The resulting depolarization (3) of the cell membrane leads to Ca²⁺ influx (4), triggering exocytosis (5) and release of insulin into the circulation (6). a) Zoom-in of K_{ATP} channel function.

Supplementary Figure 2: ¹H and ¹³C NMR of (*E*)-4-((4-(diethylamino)phenyl)diazenyl)benzenesulfonamide.

Supplementary Figure 3: ¹H and ¹³C NMR of **JB253**.

Supplementary Figure 4: 2D NMR of JB253 (HSQC, top; HMBC, bottom).

Supplementary Figure 5: pK_a measurement of JB253. Ionization constant of *trans*-JB253 in a DMSO/buffer mixture (1/1) was determined with an absorbance-based platereader assay. All datapoints were acquired in triplicate (n = 3 repeats) at the following pH-values: 3.33, 3.66, 4.00, 4.33, 4.66, 5.00, 5.33, 5.66, 6.00 and 6.33. Ionic strength was held constant (I = 0.1 mM) by the addition of KCl to each buffer. Data was background subtracted and the spectral differences plotted against the pH. Sigmoidal fitting (IgorPro v6.22a) obtained a $pK_a = 4.76$. Values represent the mean \pm SD.

Supplementary Figure 6: K_{ATP} channel block characteristics of JB253 in the dark. a) To account for cell-cell variation in current densities, magnitude block with JB253 (dark) was calculated as a percentage *versus* that achieved with 500 µM tolbutamide in the same experiment (n = 3 recordings). b) Bar graph displaying the amplitude of the inward current (ΔI [pA]) at -60 mV elicited by application of either tolbutamide or JB253 in the dark (n = 3 recordings). c) Representative current-voltage (IV) relationships showing a minor decrease in membrane conductance upon application of JB253 in the dark (before drug = black; after drug = orange). This inhibition is reversibly enhanced by exposure to blue light (blue = ON; pink = OFF). d) Mean reversal potential (E_{rev}) before and after illumination of JB253 measured in recordings as depicted in c). (NS, nonsignificant, *trans*-JB253 *versus cis*-JB253; Student's paired t-test) (n = 5 recordings). Values represent the mean \pm SEM.

Supplementary Figure 7: JB253 reversibly blocks K_{ATP} currents in MIN6 beta cells. a) Representative current-voltage (IV) relationships recorded straight after establishing the whole-cell configuration (Pre- K_{ATP}) and after development of the K_{ATP} current due to wash-out of ATP from the cell (Peak K_{ATP} current). b) IVs from the same cell as a) in the presence of either *trans*-JB253 (light off) or *cis*-JB253 (light on). c) Bar graph displaying mean data from experiments as shown in a) and b). Slope conductance was normalized to peak K_{ATP} current. Note that at this concentration (10 mM), JB253 only blocks the K_{ATP} current during illumination and this is readily reversed when the light source is shut off (*P<0.05 *versus* JB253 dark; one-way ANOVA) (n = 4 recordings). Values represent the mean \pm SEM.

Supplementary Figure 8: Extended JB253 action spectrum. JB253 is unable to photoswitch K_{ATP} currents in HEK293t cells transfected with Kir6.2 and SUR1 at wavelengths > 560 nm (holding potential -60 mV) (trace representative of n = 3 recordings).

Supplementary Figure 9: Extinction coefficient measurement of JB253. Absorbance at two wavelengths (405 and 485 nm) was measured of a dilution series of JB253 (concentrations in μ M: 0.01, 0.10, 1.00, 10.0, 25.0 50.0) in low K⁺ buffer (containing in mM: 3 KCl, 118 NaCl, 25 NaHCO₃, 2 CaCl₂, 1 MgCl₂, 10 HEPES, NaOH to pH 7.4) (*n* = 4 repeats). Data was background subtracted and the absorbance values plotted against the concentration to obtain the extinction coefficients *via* linear fitting. Values represent mean ± SD.

SUPPLEMENTARY TABLES

Supplementary Table 1: Crystallographic data for JBA
--

	JB253	
net formula	$C_{23}H_{31}N_5O_3S$	
$M_{\rm r}/{ m g mol}^{-1}$	457.590	
crystal size/mm	0.100 imes 0.080 imes 0.050	
T/K	173(2)	
radiation	Μο Κα	
diffractometer	'Bruker D8Venture'	
crystal system	monoclinic	
space group	$P2_{1}/n$	
a/Å	15.8069(6)	
b/Å	9.0578(3)	
$c/\text{\AA}$	17.1444(7)	
α/°	90	
β/°	95.8298(13)	
γ/°	90	
$V/Å^3$	2441.97(16)	
Z	4	
calc. density/g cm ^{-3}	1.24466(8)	
μ/mm^{-1}	0.166	
absorption correction	multi-scan	
transmission factor range	0.9045–0.9585	
refls. measured	26927	
R _{int}	0.0416	
mean $\sigma(I)/I$	0.0408	
θ range	3.28–27.52	
observed refls.	4046	
<i>x</i> , <i>y</i> (weighting scheme)	0.0742, 2.2726	
hydrogen refinement	mixed	
refls in refinement	5578	
parameters	299	
restraints	0	
$R(F_{\rm obs})$	0.0601	
$R_{\rm w}(F^2)$	0.1664	
S	1.049	
shift/error _{max}	0.001	
max electron density/e Å ⁻³	1.022	
min electron density/e Å ⁻³	-0.402	

Supplementary Table 2: Wavelength-dependent kinetics and current change in JB253-treated cells. On/off kinetics for various wavelengths are shown in ms \pm SD (n = 3 recordings). Current change is expressed as percentage ($\% \pm$ SD)-block *versus* that obtained with tolbutamide in the same experiment (n = 3 recordings). Current change (Δ I [pA]) for a single representative experiment is displayed. In all cases, cells were exposed to 500 μ M tolbutamide before washout and application of 50 μ M JB253.

λ [nm]	τ_{on} [ms]	$\tau_{\rm off}$ [ms]	% block	ΔI [pA]
400	1176±385	2758±745	44.0±29.6	216
420	1309±438	2209±482	69.4±51.1	492
440	1246±421	2295±397	70.0±44.3	440
460	1181±447	1940±322	72.8±48.1	481
480	1163±434	2183±422	72.4±49.0	487
500	1244±462	2002±354	70.2±49.5	482

Supplementary Table 3: Kinetics and current change during a repetitive illumination cycle. On/off kinetics are shown as ms \pm SEM and current change as pA \pm SEM calculated following four dark/400 nm cycles. Values are from a single cell.

τ_{on} [ms]	$\tau_{\rm off}$ [ms]	ΔI [pA]
477±26	1472±75	504.8±6.9

Supplementary Table 4: Current change for first and last switch for all experiments. The difference in current change (ΔI [pA]) between the first and last switch (400nm) is represented as a percentage (%).

Experiment #	∆I [pA] first	ΔI [pA] last	Cycles	Difference (%)
	switch	switch		
1	136.5	89.5	12	34.4
2	438.8	423.8	9	3.4
3	200.0	161.0	5	19.5
4	521	510	4	2.1