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Abstract

We develop a primal dual active set with continuation algorithm for solving the `0-regularized
least-squares problem that frequently arises in compressed sensing. The algorithm couples the the
primal dual active set method with a continuation strategy on the regularization parameter. At each
inner iteration, it first identifies the active set from both primal and dual variables, and then updates
the primal variable by solving a (typically small) least-squares problem defined on the active set,
from which the dual variable can be updated explicitly. Under certain conditions on the sensing
matrix, i.e., mutual incoherence property or restricted isometry property, and the noise level, a finite
step global convergence of the overall algorithm is established. Extensive numerical examples are
presented to illustrate the efficiency and accuracy of the algorithm and its convergence behavior.
keywords: primal dual active set algorithm, coordinatewise minimizer, continuation strategy, global
convergence.

1 Introduction

Over the last ten years, compressed sensing [9, 15] has received a lot of attention amongst engineers,
statisticians and mathematicians due to its broad range of potential applications. Mathematically it can
be formulated as the following constrained `0 optimization problem:

min
x∈Rp

‖x‖0,

subject to ‖Ψx− y‖2 ≤ ε,
(1.1)

where the sensing matrix Ψ ∈ Rn×p with p� n has normalized column vectors {ψi}, i.e.,

‖ψi‖ = 1, i = 1, · · · , p,

ε ≥ 0 is the noise level, and ‖x‖0 denotes the number of nonzero components in the vector x. Due to the
discrete structure of the term ‖x‖0, it is very challenging to develop an efficient algorithm to accurately
solve the model (1.1). Hence, approximate methods for the model (1.1), especially greedy heuristics and
convex relaxation, are very popular in practice. In greedy algorithms, including orthogonal matching
pursuit [34], stagewise orthogonal matching pursuit [17], regularized orthogonal matching pursuit [30],
CoSaMP [29], subspace pursuit [13], and greedy gradient pursuit [4, 7] etc., one first identifies the support
of the sought-for signal, i.e., the locations of (one or more) nonzero components, iteratively based on the
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current dual variable (correlation), and then updates the components on the support by solving a least-
squares problem. There are also several variants of greedy heuristics, e.g., (accelerated) iterative hard
thresholding [3, 6] and hard thresholding pursuit [19], which are based on the sum of the current primal
and dual variable. In contrast, basis pursuit finds one minimizer of a convex relaxation problem [11, 37],
for which a wide variety of convex optimization algorithms can be conveniently applied; see [2, 12, 33, 39]
for comprehensive overviews and the references therein.

Besides greedy methods and convex relaxation, the “Lagrange” counterpart of (1.1) (or equivalently,
the `0-regularized minimization problem), which reads

min
x∈Rp

Jλ(x) = 1
2‖Ψx− y‖

2 + λ‖x‖0, (1.2)

has been very popular in many applications, e.g., model selection, statistical regression, and image restora-
tion. In the model (1.2), λ > 0 is a regularization parameter, controlling the sparsity level of the regu-
larized solution. Due to the nonconvexity and discontinuity of the function ‖x‖0, the relation between
problems (1.1) and (1.2) is not self evident. We shall show that under certain assumptions on the sensing
matrix Ψ and the noise level ε (and with λ chosen properly), the support of the regularized solution to
(1.2) coincides with that of the true signal, cf. Theorem 2.1.

The existence and a characterization of global minimizers to (1.2) were established in [26, 31]. How-
ever, it is still very challenging to develop globally convergent algorithms for efficiently solving problem
(1.2) in view of its nonconvexity and nonsmoothness. Nonetheless, due to its broad range of applications,
several algorithms have been developed to find an approximate solution to problem (1.2), including it-
erative hard thresholding [5], forward backward splitting [1], penalty decomposition [27] and stochastic
continuation [35, 36], to name just a few. Theoretically, these algorithms can at best have a local con-
vergence. Very recently, in [25, 26], based on a coordinatewise characterization of the global minimizers,
a novel primal dual active set (PDAS) algorithm was developed to solve problem (1.2). The extensive
simulation studies in [26] indicate that when coupled with a continuation technique, the PDAS algorithm
merits a global convergence property. The idea of continuation is well established for iterative algorithms
with the purpose of “warm starting” and globalizing the convergence. Unsurprisingly, this idea has been
extensively pursued in sparsity optimization, especially the `1 penalty [43, 20, 44, 18]. The popular OMP
[34] can be viewed as a continuation in the sparsity level of the solution, where one active set is added
at each step; see also [14]. However, to the best of our knowledge, the application of the continuation
technique to the PDAS algorithm for the `0 optimization problem (1.2) and its rigorous convergence
analysis are new.

The PDAS algorithm solves the necessary optimality condition of a coordinatewise minimizer to (1.2),
cf. (2.2) below, and thus it can at best converge to a coordinatewise minimizer. However, if the support
of the coordinatewise minimizer is small and the sensing matrix Ψ satisfies certain mild conditions, then
its active set is contained in the support of the true signal, cf. Lemma 2.4. Hence, the support of the
minimizer will coincide with that of the true signal if we choose the regularization parameter λ properly
(and thus control the size of the active set) during the iteration. This naturally motivates the use of a
continuation strategy on the parameter λ. The resulting PDAS continuation (PDASC) algorithm extends
the PDAS developed in [26]. In this work, we provide a convergence analysis of the PDASC algorithm
under commonly used assumptions on the sensing matrix Ψ for the analysis of existing algorithms, i.e.,
mutual incoherence property and restricted isometry property. The convergence analysis relies essentially
on a novel characterization of the evolution of the active set during the primal-dual active set iterations.
To the best of our knowledge, this represents the first work on the global convergence of an algorithm for
problem (1.2), without using a knowledge of the exact sparsity level.

The rest of the paper is organized as follows. In Section 2, we describe the problem setting, collect
basic estimates, and provide refined properties of a coordinatewise minimizer. In Section 3, we give the
complete algorithm, discuss the parameter choices, and provide a global convergence analysis. Finally, in
Section 4, several numerical examples are provided to illustrate the efficiency of the algorithm and the
convergence theory.
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2 Regularized `0-minimization

In this section, we describe the problem setting, and derive basic estimates, which are essential for the
convergence analysis. Further, we give sufficient conditions for a coordinatewise minimizer to be a global
minimizer, which allows one to derive equivalence between (1.1) and (1.2), under certain circumstances.

2.1 Problem setting

Suppose that the true signal x∗ has T nonzero components with its active set (indices of nonzero com-
ponents) denoted by A∗, i.e., T = |A∗| and the noisy data y is formed by

y =
∑
i∈A∗

x∗iψi + η.

We assume that the noise vector η satisfies ‖η‖ ≤ ε, with ε ≥ 0 being the noise level. Further, we let

S = {1, 2, ..., p} and I∗ = S\A∗.

For any index set A ⊆ S, we denote by xA ∈ R|A| (respectively ΨA ∈ Rn×|A|) the subvector of x
(respectively the submatrix of Ψ) whose indices (respectively column indices) appear in A. Last, we
denote by xo the oracle solution defined by

xo = Ψ†A∗y, (2.1)

where Ψ†A denotes the pseudoinverse of the submatrix ΨA, i.e., Ψ†A = (Ψt
AΨA)−1Ψt

A if Ψt
AΨA is invertible.

The oracle solution xo is the least-squares solution on the true active set A∗.
In compressive sensing, there are two assumptions, i.e., mutual incoherence property (MIP) [16]

and restricted isometry property (RIP) [10], on the sensing matrix Ψ that are frequently used for the
convergence analysis of sparse recovery algorithms. The MIP assumes that the mutual coherence ν of
the sensing matrix Ψ is small, where the mutual coherence ν of Ψ is defined by

ν = max
1≤i,j≤p,i 6=j

|ψtiψj |.

A sensing matrix Ψ is said to satisfy RIP of level s if there exists a constant δ ∈ (0, 1) such that

(1− δ)‖x‖2 ≤ ‖Ψx‖2 ≤ (1 + δ)‖x‖2, ∀x ∈ Rp with ‖x‖0 ≤ s,

and we denote by δs the smallest constant with respect to the sparsity level s. We note that the mutual
coherence ν can be easily computed, but the RIP constant δs is nontrivial to evaluate (see [38] for some
recent results on its computational complexity). Nonetheless, the mutual coherence ν can be used to
provide a simple upper bound on the RIP constant δs [41, Proposition 21]. However, our assumptions
on the mutual coherence ν do not follow from that on the RIP constant δ, or vice versa, and thus we
present theoretical results for both conditions.

The next lemma gives basic estimates under the MIP condition.

Lemma 2.1. Let A and B be disjoint subsets of S. Then

‖Ψt
Ay‖`∞ ≤ ‖y‖,

‖Ψt
BΨAxA‖`∞ ≤ |A|ν‖xA‖`∞ ,

‖(Ψt
AΨA)−1xA‖`∞ ≤

‖xA‖`∞
1− (|A| − 1)ν

if (|A| − 1)ν < 1.
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Proof. If A = ∅, then the estimates are trivial. Hence we will assume A is nonempty. For any i ∈ A,

|ψtiy| ≤ ‖ψi‖‖y‖ ≤ ‖y‖.

This shows the first inequality. Next, for any i ∈ B,

|ψtiΨAxA| = |
∑
j∈A

ψtiψjxj | ≤
∑
j∈A
|ψtiψj ||xj | ≤ |A|ν‖xA‖`∞ .

This shows the second assertion. To prove the last estimate, we follow the proof strategy of [40, Theorem
3.5], i.e., applying a Neumann series method. First we note that Ψt

AΨA has a unit diagonal because all
columns of Ψ are normalized. So the off-diagonal part Φ satisfies

Ψ∗AΨA = E|A| + Φ,

where E|A| is an identity matrix. Each column of the matrix Φ lists the inner products between one
column of ΨA and the remaining |A| − 1 columns. By the definition of the mutual coherence ν and the
operator norm of a matrix

‖Φ‖`∞,`∞ = max
k∈A

∑
j∈A\{k}

|ψtjψk| ≤ (|A| − 1)ν.

Whenever ‖Φ‖`∞,`∞ < 1, the Neumann series
∑∞
k=0(−Φ)k converges to the inverse (E|A|+ Φ)−1. Hence,

we may compute

‖(Ψ∗AΨA)−1‖`∞,`∞ = ‖(E|A| + Φ)−1‖`∞,`∞ = ‖
∞∑
k=0

(−Φ)k‖`∞,`∞

≤
∞∑
k=0

‖Φ‖k`∞,`∞ =
1

1− ‖Φ‖`∞,`∞
≤ 1

1− (|A| − 1)ν
.

The desired estimate now follows immediately.

The following lemma collects some well known estimates on the RIP constant δs; see [29, Propositions
3.1 and 3.2] and [13, Lemma 1] for the proofs.

Lemma 2.2. Let A and B be disjoint subsets of S. Then

‖Ψt
AΨAxA‖ T (1∓ δ|A|)‖xA‖,

‖(Ψt
AΨA)−1xA‖ T

1

1± δ|A|
‖xA‖,

‖Ψt
AΨB‖ ≤ δ|A|+|B|,

‖Ψ†Ay‖ ≤
1√

1− δ|A|
‖y‖,

δs ≤ δs′ , if s < s′.

The next lemma gives some crucial estimates for one-step primal dual active set iteration on the
active set A. These estimates provide upper bounds on the dual variable d = Ψt(y −Ψx) and the error
x̄A = xA− x∗A on the active set A. They will play an essential role for subsequent analysis, including the
convergence of the PDASC algorithm.

Lemma 2.3. For any set A ⊆ S with |A| ≤ T , let B = A∗ \A and I = S \A, and consider the following
primal dual iteration on A

xA = Ψ†Ay, xI = 0, d = Ψt(y −Ψx).

Then the quantities x̄A ≡ xA − x∗A and d satisfy the following estimates.

4



(a) If ν < 1/(T − 1), then dA = 0 and

‖x̄A‖`∞ ≤
1

1− (|A| − 1)ν
(|B|ν‖x∗B‖`∞ + ε) ,

|dj | ≥ |x∗j | − ‖x∗B‖`∞(|B| − 1)ν − ε− |A|ν‖x̄A‖`∞ , ∀j ∈ B,
|dj | ≤ |B|ν‖x∗B‖`∞ + ε+ |A|ν‖x̄A‖`∞ , ∀j ∈ I∗ ∩ I.

(b) If the RIP of sparsity level s := max{|A|+ |B|, T + 1} is satisfied, then dA = 0 and

‖x̄A‖ ≤
δ|A|+|B|

1− δ|A|
‖x∗B‖+

1√
1− δ|A|

ε,

|dj | ≥ |x∗j | − δ|B|‖x∗B‖ − ε− δ|A|+1‖x̄A‖, ∀j ∈ B,
|dj | ≤ δ|B|+1‖x∗B‖+ ε+ δ|A|+1‖x̄A‖, ∀j ∈ I∗ ∩ I,

Proof. We show only the estimates under the RIP condition and using Lemma 2.2, and that for the MIP
condition follow similarly from Lemma 2.1. If A = ∅, then all the estimates clearly hold. In the case
A 6= ∅, then by the assumption, Ψt

AΨA is invertible. By the definition of the update xA and the data y
we deduce that

dA = Ψt
A(y −ΨAxA) = 0,

and
x̄A = (Ψt

AΨA)−1Ψt
A(ΨA∗x

∗
A∗ + η −ΨAx

∗
A)

= (Ψt
AΨA)−1Ψt

A(ΨBx
∗
B + η).

Consequently, by Lemma 2.2 and the triangle inequality, there holds

‖x̄A‖ ≤
1

1− δ|A|
‖Ψt

AΨBx
∗
B‖+ ‖Ψ†Aη‖

≤ 1

1− δ|A|
δ|A|+|B|‖x∗B‖+

1√
1− δ|A|

ε.

Next, it follows from the definition of the dual variable d, i.e.,

dj = ψtj(y −ΨAxA) = ψtj(ΨBx
∗
B + η −ΨAx̄A),

Lemma 2.2, and the assumption ψtjψj = 1 that for any j ∈ B, there holds

|dj | = |ψtjψjx∗j + ψtj(ΨB\{j}x
∗
B\{j} + η −ΨAx̄A)|

≥ |x∗j | − (|ψtjΨB\{j}x
∗
B\{j}|+ |ψ

t
jη|+ |ψtjΨAx̄A|)

≥ |x∗j | − δ|B|‖x∗B‖ − ε− δ|A|+1‖x̄A‖.

Similarly, for any j ∈ I∗ ∩ I, there holds

|dj | ≤ δ|B|+1‖x∗B‖+ ε+ δ|A|+1‖x̄A‖.

This completes the proof of the lemma.

2.2 Coordinatewise minimizer

Due to the nonconvexity and discontinuity of the function ‖x‖0, the classical theory [24] on the existence
of a Lagrange multiplier cannot be applied directly to show the equivalence between the constrained
problem (1.1) and the Lagrange counterpart (1.2). Nonetheless, both formulations aim at recovering the
true sparse signal x∗, and thus we expect that they are closely related to each other. We shall establish
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below that under certain circumstances (with the regularization parameter λ properly chosen) the oracle
solution xo is the only global minimizer of problem (1.2), and as a consequence, we derive directly the
equivalence between problems (1.1) and (1.2).

To this end, we first characterize minimizers of problem (1.2). Since the cost function Jλ(x) is
nonconvex and discontinuous, instead of a global minimizer, we study its coordinatewise minimizers,
which was introduced in [42]. A vector x = (x1, x2, . . . , xp)

t ∈ Rp is called a coordinatewise minimizer to
Jλ(x) if it is the minimum along each coordinate direction, i.e.,

xi ∈ arg min
t∈R

Jλ(x1, ..., xi−1, t, xi+1, ..., xp).

The necessary and sufficient condition for a coordinatewise minimizer x to Jλ(x) is given by [25, 26]:

xi ∈ S`
0

λ (xi + di) ∀i ∈ S, (2.2)

where d = Ψt(y −Ψx) denotes the dual variable, and S`
0

λ is the hard thresholding operator defined by

S`
0

λ (v)


= 0, |v| <

√
2λ,

∈ {0, sgn(v)
√

2λ}, |v| =
√

2λ,

= v, |v| >
√

2λ.

(2.3)

Using the operator S`
0

λ , the condition (2.2) can be equivalently written as
|xi + di| >

√
2λ⇒ di = 0,

|xi + di| <
√

2λ⇒ xi = 0,

|xi + di| =
√

2λ⇒ xi = 0 or di = 0.

We note that these conditions as the optimality condition for the stationary point to (1.2) are well known
in the literature (see e.g., [5]). In [5], it forms the basis of the iterative hard thresholding algorithm.
Consequently, with the active set A = {i : xi 6= 0}, there holds

min
i∈A
|xi| ≥

√
2λ ≥ ‖d‖`∞ . (2.4)

It is known that any coordinatewise minimizer x for problem (1.2) is a local minimizer [26, Theorem 3.1
(i)] [31, Section 3.1]. To further analyze the coordinatewise minimizer, we need the following assumption
on the noise level ε:

Assumption 2.1. The noise level ε is small in the sense ε ≤ βmini∈A∗ |x∗i |, for some 0 ≤ β < 1/2.

The next lemma gives an interesting characterization of the active set of the coordinatewise minimizer.

Lemma 2.4. Let Assumption 2.1 hold, and x be a coordinatewise minimizer with a support A and
|A| ≤ T . If either (a) ν < (1− 2β)/(3T − 1) or (b) δ , δ2T ≤ (1− 2β)/(2

√
T + 1) holds, then A ⊆ A∗.

Proof. Let I = S \A. Since x is a coordinatewise minimizer, it follows from (2.2) that

xA = Ψ†Ay, xI = 0, d = Ψt(y −Ψx).

We shall prove the assertions by means of contradiction. Assume the contrary, i.e., A * A∗. We let
B = A∗ \ A, which is nonempty by assumption, and denote by iA ∈ {i ∈ I : |x∗i | = ‖x∗B‖`∞}. Then
iA ∈ B. Further by (2.4), there holds

|diA | ≤ ‖d‖`∞ ≤ min
i∈A
|xi| ≤ min

i∈A\A∗
|xi| ≤ ‖x̄A‖`∞ ≤ ‖x̄A‖. (2.5)
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Now we discuss the two cases separately.
Case (a). By Lemma 2.1, ε ≤ βmini∈A∗ |x∗i | ≤ β‖x∗B‖`∞ from Assumption 2.1 and the choice of the
index iA, we have

‖x̄A‖`∞ ≤
1

1− (|A| − 1)ν
(|B|ν‖x∗B‖`∞ + ε)

≤ 1

1− (|A| − 1)ν
(|B|ν + β)‖x∗B‖`∞ ,

|diA | ≥ |x∗iA | − ‖x
∗
B‖`∞(|B| − 1)ν − ε− |A|ν‖x̄A‖`∞

≥ ‖x∗B‖`∞
(

1− (|B| − 1)ν − β − |A|ν 1

1− (|A| − 1)ν
(|B|ν + β)

)
.

Consequently, we deduce

|diA | − ‖x̄A‖`∞ ≥
‖x∗B‖`∞

1− (|A| − 1)ν

[
1− (|A|+ 2|B|)ν − (|A|+ |B|)ν2 + 2ν + ν2 − β(ν + 2)

]
≥ ‖x∗B‖`∞

1− (|A| − 1)ν
[1− 3Tν + ν − 2β + ν(1− β − 2Tν)]

≥ ‖x∗B‖`∞
1− (|A| − 1)ν

[1− (3T − 1)ν − 2β] > 0,

under assumption (a) ν < (1− 2β)/(3T − 1). This leads to a contradiction to (2.5).
Case (b). By assumption, |A|+ |B| ≤ 2T and by Lemma 2.2, there hold

‖x̄A‖ ≤
δ

1− δ
‖x∗B‖+

1√
1− δ

ε

≤ δ

1− δ
‖x∗B‖+

1

1− δ
ε,

|diA | ≥ |x∗iA | − δ‖x
∗
B‖ − ε− δ‖x̄A‖

≥ |x∗iA | −
δ

1− δ
‖x∗B‖ −

1

1− δ
ε.

Consequently, with the assumption on ε and δ < 1−2β
2
√
T+1

, we get

|diA | − ‖x̄A‖ ≥ |x∗iA | −
2δ

1− δ
‖x∗B‖ −

2

1− δ
ε

≥ |x∗iA |

(
1− 2

√
Tδ + 2β

1− δ

)
> 0,

which is also a contradiction to (2.5). This completes the proof of the lemma.

From Lemma 2.4, if the support size of the active set A of a coordinatewise minimizer x can be
controlled, then we may obtain information of the true active set A∗: it is a superset of A. However, a
local minimizer generally does not yield such information; see following result. Hence the coordinatewise
minimizer is more informative. The proof can be found also in [31], but we include a short sketch here
for completeness.

Proposition 2.1. for any given index set A ⊆ S, the solution x to the least-squares problem minsupp(x)⊆A‖Ψx−
y‖ is a local minimizer.

Proof. Let τ = min{|xi| : xi 6= 0}. Then for any small perturbation h in the sense ‖h‖`∞ < τ , we have
xi 6= 0 → xi + hi 6= 0. Now we show that x is a local minimizer. To see this, we consider two cases,
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i.e., supp(h) ⊆ A and supp(h) * A. First consider the case supp(h) ⊆ A. By the definition of x, and
‖x‖0 ≤ ‖x+ h‖0, we deduce

Jλ(x+ h) = 1
2‖Ψ(x+ h)− y‖2 + λ‖x+ h‖0

≥ 1
2‖Ψx− y‖

2 + λ‖x‖0 = Jλ(x).

Alternatively, if supp(h) * A, then ‖x+ h‖0 ≥ ‖x‖0 + 1. Since

lim
‖h‖→0

‖Ψ(x+ h)− y‖ = ‖Ψx− y‖,

we again have Jλ(x+h) > Jλ(x) for sufficiently small h. This completes the proof of the proposition.

Now we can study global minimizers to problem (1.2). For any λ > 0, there exists a global minimizer
xλ to problem (1.2) [26]. Further, the following monotonicity relation holds [23][22, Section 3.2].

Lemma 2.5. For λ1 > λ2 > 0, there holds ‖xλ1‖0 ≤ ‖xλ2‖0.

If the noise level ε is sufficiently small, and the parameter λ is properly chosen, the oracle solution
xo is the only global minimizer to Jλ(x), cf. Theorem 2.1, which in particular implies the equivalence
between the two formulations (1.1) and (1.2); see Remark 2.1 below.

Theorem 2.1. Let Assumption 2.1 hold.

(a) Suppose ν < (1− 2β)/(3T − 1) and β ≤ (1− 2(T − 1)ν)/(T + 3), and let

ξ =
1− 2(T − 1)ν − 2β − β2

2T
min
i∈A∗

|x∗i |2.

Then for any λ ∈ (ε2/2, ξ), the oracle solution xo, cf. (2.1), is the only global minimizer to Jλ(x).

(b) Suppose δ , δ2T ≤ (1− 2β)/(2
√
T + 1) and β ≤ (1− 2δ − δ2)/4, and let

ξ =

[
1

2
(1− δ)− δ2

1− δ
− β√

1− δ
− 1

2
β2

]
min
i∈A∗

|x∗i |2.

Then for any λ ∈ (ε2/2, ξ), the oracle solution xo, cf. (2.1), is the only global minimizer to Jλ(x).

Proof. Let x be a global minimizer to problem (1.2), and its support be A. It suffices to show A = A∗.
If |A| ≥ T + 1, then by the choice of λ, we deduce

Jλ(x) ≥ λ(T + 1) > λT + 1
2ε

2 ≥ Jλ(xo),

which contradicts the minimizing property of x. Hence, |A| ≤ T . Since a global minimizer is always a
coordinatewise minimizer, by Lemma 2.4, we deduce A ⊆ A∗. If A 6= A∗, then B = A∗\A is nonempty.

By the global minimizing property of x, there holds x = Ψ†Ay. Using the notation x̄A from Lemma 2.3,
we have

Jλ(x) = 1
2‖ΨBx

∗
B + η −ΨAx̄A‖2 + λ|A|. (2.6)

Now we consider the cases of the MIP and RIP separately.
Case (a) MIP: Let iA ∈ {i ∈ I : |x∗i | = ‖x∗B‖`∞}, then iA ∈ B and |x∗iA | = ‖x

∗
B‖`∞ . Hence, by Lemmas

2.3 and 2.1, there holds

1
2‖ψiAx

∗
iA + ΨB\{iA}x

∗
B\{iA} + η −ΨAx̄A‖2

≥ 1
2 |x
∗
iA |

2 − |x∗iA |
(
|〈ψiA ,ΨB\{iA}x

∗
B\{iA}〉|+ |〈ψiA , η〉|+ |〈ψiA ,ΨAx̄A〉|

)
≥ 1

2 |x
∗
iA |

2 − |x∗iA |
(

(|B| − 1)ν|x∗iA |+ ε+
|A|ν

1− (|A| − 1)ν
(|B|ν|x∗iA |+ ε)

)
.
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Now with ε < βmini∈A∗ |x∗i | ≤ β|x∗iA | from Assumption 2.1, we deduce

Jλ(x) ≥|x∗iA |
2

(
1

2
−
(

(|B| − 1)ν + β +
|A|ν

1− (|A| − 1)ν
(|B|ν + β)

))
+ λ|A|

=|x∗iA |
2

(
1

2
− (T − 1)ν − β

)
+ |x∗iA |

2|A|ν
(

1− |B|ν + β

1− (|A| − 1)ν

)
+ λ|A|

≥|x∗iA |
2

(
1

2
− (T − 1)ν − β

)
,

where the last inequality follows from (|A|+ |B| − 1)ν + β < 1. By Assumption 2.1, there holds ε2/2 ≤
β2/2 mini∈A∗ |x∗i |2. Now by the assumption β ≤ (1− 2(T − 1)ν) /(T + 3), we deduce (T + 1)β2 + 2β <
(T + 3)β ≤ 1− 2(T − 1)ν, and hence Tβ2 < 1− 2(T − 1)ν − 2β − β2. Together with the definition of ξ,
this implies ξ > ε2/2. Further, by the choice of the parameter λ, i.e., λ ∈ (ε2/2, ξ), there holds

Jλ(x)− Jλ(xo) ≥
[

1

2
− (T − 1)ν − β − 1

2
β2

]
min
i∈A∗

|x∗i |2 − λT > 0,

which contradicts the optimality of x.
Case (b) RIP: It follows from (2.6) that

Jλ(x) ≥ 1
2‖ΨBx

∗
B‖2 − |〈η,ΨBx

∗
B〉| − |〈x∗B ,Ψt

BΨAx̄A〉|+ λ|A|
≥ ‖ΨBx

∗
B‖( 1

2‖ΨBx
∗
B‖ − ε)− ‖x∗B‖δ‖x̄A‖+ λ|A|.

By Assumption 2.1 and the assumptions on β and δ, we deduce
√

1− δ‖x∗B‖ ≥ ε. Now in view of the
monotonicity of the function t(t/2 − ε) for t ≥ ε, and the inequality ‖ΨBx

∗
B‖ ≥

√
1− δ‖x∗B‖ from the

definition of the RIP constant δ, we have

‖ΨBx
∗
B‖( 1

2‖ΨBx
∗
B‖ − ε) ≥

√
1− δ‖x∗B‖( 1

2

√
1− δ‖x∗B‖ − ε).

Thus by Lemma 2.3, we deduce

Jλ(x) ≥ 1− δ
2
‖x∗B‖2 − ε

√
1− δ‖x∗B‖ − ‖x∗B‖

(
δ2

1− δ
‖x∗B‖+

δ√
1− δ

ε

)
+ λ|A|

=
1− δ

2
‖x∗B‖2 −

1√
1− δ

ε‖x∗B‖ − ‖x∗B‖2
δ2

1− δ
+ λ|A|

≥ ‖x∗B‖2
[

1− δ
2
− δ2

1− δ
− β√

1− δ

]
+ λ|A|,

where the last line follows from ε < β‖x∗B‖, in view of Assumption 2.1. Appealing again to Assumption
2.1, ε2/2 ≤ β2 mini∈A∗ |x∗i |2/2 ≤ β2‖x∗B‖2/2. Next it follows from the assumption β ≤ (1 − δ − δ2)/4
that the inequality

β2 +
β√

1− δ
≤ β2 + β√

1− δ
≤ 2β

1− δ

≤ 1− 2δ − δ2

2(1− δ)
=

1− δ
2
− δ2

1− δ

holds. This together with the definition of ξ yields ξ > ε2/2. Further, the choice of λ ∈ (ε2/2, ξ) implies

Jλ(x)− Jλ(xo) ≥ ‖x∗B‖2
[

1− δ
2
− δ2

1− δ
− β√

1− δ
− 1

2
β2

]
− λ|B| > 0,

which again leads to a contradiction. This completes the proof of the theorem.
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Proposition 2.2. Let the conditions in Theorem 2.1 hold. Then the oracle solution xo is a minimizer
of (1.1). Moreover, the support to any solution of problem (1.1) is A∗.

Proof. First we observe that there exists a solution x̄ to problem (1.1) with |supp(x̄)| ≤ T , upon noting
that the true solution x∗ satisfies ‖Ψx∗− y‖ ≤ ε and ‖x∗‖0 ≤ T . Clearly, for any minimizer x̄ to problem

(1.1) with support |A| ≤ T , then Ψ†Ay is also a minimizer with ‖ΨΨ†Ay − y‖ ≤ ‖Ψx̄− y‖. Now if there is
a minimizer x̄ with A 6= A∗, by repeating the arguments in the proof of Theorem 2.1, we deduce

1
2‖ΨΨ†Ay − y‖

2 + λ‖Ψ†Ay‖0 = Jλ(Ψ†Ay) > Jλ(xo) = 1
2ε

2 + λT ⇒ ‖Ψx̄− y‖ > ε,

which leads a contradiction to the assumption that x̄ is a minimizer to problem (1.1). Hence, any
minimizer of (1.1) has a support A∗, and thus the oracle solution xo is a minimizer.

Remark 2.1. Due to the nonconvex structure of problem (1.1), the equivalence between problem (1.1) and
its “Lagrange” version (1.2) is generally not clear. However under certain assumptions, their equivalence
can be obtained, cf. Theorem 2.1 and Proposition 2.2. Further, we note that very recently, the equivalence
between (1.2) and the following constrained sparsity problem

min ‖Ψx− y‖ subject to ‖x‖0 ≤ T

was discussed in [32].

3 Primal-dual active set algorithm with continuation

In this section, we present the primal-dual active set with continuation (PDASC) algorithm, and establish
its finite step convergence property.

3.1 The PDASC algorithm

The PDASC algorithm combines the strengthes of the PDAS algorithm [26] and the continuation tech-
nique. The complete procedure is described in Algorithm 1. The PDAS algorithm (the inner loop of
Algorithm 1) first determines the active set A from the primal variable x and dual variable d, then up-
dates the primal variable x by solving a least-squares problem on the active set A, and finally updates the
dual variable d explicitly. It is well known that for convex optimization problems the PDAS algorithm
can be interpreted as the semismooth Newton method [24]. Thus the algorithm merits a local superlinear
convergence, and it reaches convergence with a good initial guess. In contrast, the continuation technique
on the regularization parameter λ allows one to control the size of the active set A, and thus the active
set of the coordinatewise minimizer lies within the true active set A∗, under appropriate assumptions.
For example, for the choice of the parameter λ0 ≥ ‖Ψty‖2`∞/2, x(λ0) = 0 is the unique global minimizer
to the function Jλ0

, and its active set A is empty.
In the algorithm, there are a number of free parameters: the starting value λ0 for the parameter λ,

the decreasing factor ρ ∈ (0, 1) (for λ), and the maximum number Jmax of iterations for the inner PDAS
loop. Further, one needs to set the stopping criteria at lines 6 and 10. Below we discuss their choices.

The choice of the initial value λ0 is not important. For any choice λ0 ≥ ‖Ψty‖2`∞/2, x = 0 is the unique
global minimizer, and A = ∅. Both the decreasing factor ρ and the iteration number Jmax affect the
accuracy and efficiency of the algorithm: Larger ρ and Jmax values make the algorithm have better exact
support recovery probability but at the expense of more computing time. Numerically, ρ is determined
by the number of grid points for the parameter λ. Specifically, given an initial value λ0 ≥ ‖Ψty‖2`∞/2
and a small constant λmin, e.g., 1e-15λ0, the interval [λmin, λ0] is divided into N equally distributed
subintervals in the logarithmic scale. A large N value implies a large decreasing factor ρ. The choice
Jmax = 1 generally works well, which is also covered in the convergence theory in Theorems 3.1 and 3.2
below.
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Algorithm 1 Primal dual active set with continuation (PDASC) algorithm

1: Set λ0 ≥ 1
2‖Ψ

ty‖2`∞ , A(λ0) = ∅, x(λ0) = 0 and d(λ0) = Ψty, ρ ∈ (0, 1), Jmax ∈ N.
2: for k = 1, 2, ... do
3: Let λk = ρλk−1, A0 = A(λk−1), (x0, d0) = (x(λk−1), d(λk−1)).
4: for j = 1, 2, ..., Jmax do
5: Compute the active and inactive sets Aj and Ij :

Aj =
{
i : |xj−1i + dj−1i | >

√
2λk

}
and Ij = Acj .

6: Check stopping criterion Aj = Aj−1.
7: Update the primal and dual variables xj and dj respectively by

xjIj = 0,

Ψt
Aj

ΨAj
xjAj

= Ψt
Aj
y,

dj = Ψt(Ψxj − y).

8: end for
9: Set j̃ = min(Jmax, j), and A(λk) =

{
i : |xj̃i + dj̃i | >

√
2λk

}
and (x(λk), d(λk)) = (xj̃ , dj̃).

10: Check stopping criterion: ‖Ψx(λk)− y‖ ≤ ε.
11: end for

The stopping criterion for each λ-problem in Algorithm 1 is either Aj = Aj−1 or j = Jmax, instead
of the standard criterion Aj = Aj−1 for active set type algorithms [24]. The condition j = Jmax is very
important for nonconvex problems. This is motivated by the following empirical observation: When the
true signal x∗ does not have a strong decay property, e.g., 0-1 signal, the inner PDAS loop (for each
λ-problem) may never reach the condition Aj = Aj−1 within finite steps; see the example below.

Example 3.1. In this example, we illustrate the convergence of the PDAS algorithm. Let −1 < µ < 0,
A∗ = {1, 2}, and

Ψ1 =
1√

1 + µ2
(1, µ, 0, ..., 0)t, Ψ2 =

1√
1 + µ2

(µ, 1, 0, ..., 0)t, x∗1 = x∗2 = 1.

In the absence of data noise η, the data y is given by

y =
1√

1 + µ2
(1 + µ, 1 + µ, 0, ..., 0)t.

Now we let
√

2λ ∈ ( (1+µ)2

1+µ2 ,
(1−µ2)2

(1+µ2)2 ), the initial guess A1 = {1}. Then direct computation yields

x1 =
1

1 + µ2
((1 + µ)2, 0)t,

y −Ψx1 =
1− µ2

(
√

1 + µ2)3
(−µ, 1, 0, ..., 0)t,

d1 =
1

(1 + µ2)2
(0, (1− µ2)2)t.

Hence d12 >
√

2λ > x11, and A2 = {2}. Similarly, we have A3 = {1} = A1, which implies that the
algorithm simply alternates between the two sets {1} and {2} and will never reach the stopping condition
Ak = Ak+1.
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The stopping criterion at line 10 of Algorithm 1 is a discrete analogue of the discrepancy principle. This
principle is well established in the inverse problem community for selecting an appropriate regularization
parameter [22]. The rationale behind the rule is that one cannot expect the reconstruction to be more
accurate than the data accuracy, i.e., the discrepancy ε. In the PDASC algorithm, if the active set is
always contained in the true active set A∗ throughout the iteration, then the discrepancy principle can
always be satisfied for some λk, and the solution x(λk) resembles closely the oracle solution xo.

3.2 Convergence analysis

Now we discuss the convergence of Algorithm 1. First we note that for a fixed λ value, since there are
only a finite number of active sets, the PDAS algorithm is asymptotically periodic, and one naturally
expects a finite-step convergence, if the desired convergence does occur. However, the convergence of
the iteration itself does not follow directly, cf. Example 3.1. We shall discuss the cases of the MIP and
RIP conditions separately. The general proof strategy is as follows. It essentially relies on the precise
characterization of the evolution of the active set during the iteration, especially a certain monotonicity
relation of the active set A(λk) (via the continuation technique). In particular, we introduce two auxiliary
sets Gλ,s1 and Gλ,s2 , cf. (3.1) below, to precisely characterize the evolution of the active set A during
the PDASC iteration.

First we consider the MIP case. We begin with an elementary observation: under the assumption
ν < (1− 2β)/(2T − 1) of the mutual coherence ν, there holds (2T − 1)ν + 2β < 1.

Lemma 3.1. If ν < (1 − 2β)/(2T − 1), then for any ρ ∈ (((2T − 1)ν + 2β)2, 1) there exist s1, s2 ∈
(1/(1− Tν + ν − β), 1/(Tν + β)), s1 > s2, such that s2 = 1 + (Tν − ν + β)s1 and ρ = s22/s

2
1.

Proof. By the assumption v < (1 − 2β)/(2T − 1), Tν + β < 1 − Tν + ν − β. Hence for any s1 ∈
(1/(1− Tν + ν − β), 1/(Tν + β)), there holds

s1 > 1 + (Tν − ν + β)s1 and 1 + (Tν − ν + β)s1 >
1

1− Tν + ν − β
,

i.e.,
1

Tν + β
> s1 > 1 + (Tν − ν + β)s1 >

1

1− Tν + ν − β
.

Upon letting s2 = 1 + (Tν − ν + β)s1, we deduce

1

Tν + β
> s1 > s2 >

1

1− Tν + ν − β
.

Now the monotonicity of the function f(s1) = s2/s1 over the interval (1/(1− Tν + ν − β), 1/(Tν + β)),
and the identities

1 + (Tν − ν + β)/(Tν + β)

1/(Tν + β)
= (2T − 1)ν + 2β,

1 + (Tν − ν + β)/(1− Tν + ν − β)

1/(1− Tν + ν − β)
= 1,

imply that there exists an s1 in the internal such that s2/s1 =
√
ρ for any ρ ∈ (((2T − 1)ν + 2β)2, 1).

Next for any λ > 0 and s > 0, we denote by

Gλ,s ,
{
i : |x∗i | ≥

√
2λs
}
. (3.1)

The set Gλ,s characterizes the true sparse signal x∗ (via level sets). The lemma below provides an
important monotonicity relation on the active set Ak during the iteration, which is essential for showing
the finite step convergence of the algorithm in Theorem 3.1 below.
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Lemma 3.2. Let Assumption 2.1 hold, ν < (1 − 2β)/(2T − 1), ρ ∈ (((2T − 1)ν + 2β)2, 1), and s1 and
s2 be defined in Lemma 3.1. If Gλ,s1 ⊆ Ak ⊆ A∗, then Gλ,s2 ⊆ Ak+1 ⊆ A∗.

Proof. Let A = Ak, B = A∗\A. By Lemma 2.3, we have

|xi| ≥ |x∗i | − ‖x̄A‖`∞ ≥ |x∗i | −
|B|ν‖x∗B‖`∞ + ε

1− (|A| − 1)ν
, ∀i ∈ A,

|dj | ≤ |B|ν
(

1 +
|A|ν

1− (|A| − 1)ν

)
‖x∗B‖`∞ + ε

(
1 +

|A|ν
1− (|A| − 1)ν

)
, ∀j ∈ I∗,

|di| ≥ |x∗i |+ ν‖x∗B‖`∞ − |B|ν
(

1 +
|A|ν

1− (|A| − 1)ν

)
‖x∗B‖`∞ − ε

(
1 +

|A|ν
1− (|A| − 1)ν

)
, ∀i ∈ B.

Using the fact ε ≤ βmini∈A∗ |x∗i | ≤ β‖x∗B‖`∞ from Assumption 2.1 and the trivial inequality |B|ν+β
1−Tν+ν+|B|ν ≤

Tν+β
1+ν , we arrive at

|B|ν
(

1 +
|A|ν

1− (|A| − 1)ν

)
‖x∗B‖`∞ + ε

(
1 +

|A|ν
1− (|A| − 1)ν

)
≤ |B|ν + β

1− Tν + ν + |B|ν
(1 + ν)‖x∗B‖`∞ ≤ (Tν + β)‖x∗B‖`∞ .

Consequently,
|dj | ≤ (Tν + β)‖x∗B‖`∞ , ∀j ∈ I∗,
|di| ≥ |x∗i | − (Tν − ν + β)‖x∗B‖`∞ , ∀i ∈ B.

It follows from the assumption Gλ,s1 ⊆ A = Ak that ‖x∗B‖`∞ < s1
√

2λ. Then for all j ∈ I∗, we have

|dj | < s1(Tν + β)
√

2λ <
√

2λ,

i.e., j ∈ Ik+1. This shows Ak+1 ⊆ A∗. For any i ∈ I ∩Gλ,s2 , we have

|di| > s2
√

2λ− (Tν − ν + β)s1
√

2λ ≥
√

2λ,

This implies i ∈ Ak+1 by (2.4). It remains to show that for any i ∈ A ∩ Gλ,s2 , i ∈ Ak+1. Clearly, if
A = ∅, the assertion holds. Otherwise

|xi| ≥ |x∗i | −
|B|ν + β

1− (|A| − 1)ν
‖x∗B‖`∞

> s2
√

2λ− (Tν − ν + β)s1
√

2λ ≥
√

2λ,

where the last line follows from the elementary inequality

|B|ν + β

1− (|A| − 1)ν
≤ Tν − ν + β.

This together with (2.4) also implies i ∈ Ak+1. This concludes the proof of the lemma.

Now we can state the convergence result.

Theorem 3.1. Let Assumption 2.1 hold, and ν < (1 − 2β)/(2T − 1). Then for any ρ ∈ (((2T − 1)ν +
2β)2, 1), Algorithm 1 converges in finite steps.

Proof. For each λk-problem, we denote by Ak,0 and Ak,� the active set for the initial guess and the last
inner step (i.e., A(λk) in Algorithm 1), respectively. Now with s1 and s2 from Lemma 3.1, there holds
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Gλ,s1 ⊂ Gλ,s2 , and using Lemma 3.2, for any index k before the stopping criterion at line 10 of Algorithm
1 is reached, there hold

Gλk,s1 ⊆ Ak,0 and Gλk,s2 ⊆ Ak,�. (3.2)

Note that for k = 0, Gλ0,s2 = ∅ and thus the assertion holds. To see this, it suffices to check ‖x∗‖`∞ <
s2‖Ψty‖`∞ . By Lemma 2.1 and the inequality s2 > 1/(1− Tν + ν − β) we obtain that

‖Ψty‖`∞ ≥ ‖Ψt
A∗ΨA∗x

∗
A∗‖`∞ − ‖Ψtη‖`∞

≥ (1− (T − 1)ν)‖x∗‖`∞ − ε > ‖x∗‖`∞/s2.

Now for k > 0, it follows by mathematical induction and the relation Ak,� = Ak+1,0. It follows from (3.2)
that during the iteration, the active set Ak,� always lies in A∗. Further, for k sufficiently large, by Lemma
2.5, the stopping criterion at line 10 must be reached and thus the algorithm terminates; otherwise

A∗ ⊆ Gλk,s1 ,

then the stopping criterion at line 10 is satisfied, which leads to a contradiction.

Next we turn to the convergence of Algorithm 1 under the RIP condition. Let 1− (2
√
T + 1)δ > 2β,

an argument analogous to Lemma 3.1 implies that for any
√
ρ ∈ ((2δ

√
T + 2β)/(1− δ), 1) there exist s1

and s2 such that

1− δ
δ
√
T + β

> s1 > s2 >
1− δ

1− δ − δ
√
T − β

, s2 = 1 +
δ
√
T + β

1− δ
s1,

s2
s1

=
√
ρ. (3.3)

The next result is an analogue of Lemma 3.2.

Lemma 3.3. Let Assumption 2.1 hold, δ , δT+1 ≤ (1 − 2β)/(2
√
T + 1), and

√
ρ ∈ ((2δ

√
T +

2β)/(1− δ), 1). Let s1 and s2 are defined by (3.3). If Gλ,s1 ⊆ Ak ⊆ A∗, then Gλ,s2 ⊆ Ak+1 ⊆ A∗.

Proof. Let A = Ak, B = A∗\A. Using the notation in Lemma 2.3, we have

|xi| ≥ |x∗i | − ‖x̄A‖ ≥ |x∗i | −
δ‖x∗B‖+ ε

1− δ
, ∀i ∈ A,

|dj | ≤ δ‖x∗B‖+ ε+ δ‖x̄A‖ ≤
δ‖x∗B‖+ ε

1− δ
, ∀j ∈ I∗,

|di| ≥ |x∗i | − δ‖x∗B‖ − ε− δ‖x̄A‖ ≥ |x∗i | −
δ‖x∗B‖+ ε

1− δ
, ∀i ∈ B.

By the assumption Gλ,s1 ⊆ Ak, we have ‖x∗B‖`∞ < s1
√

2λ. Now using the relation s1 < (1−δ)/(δ
√
T + β)

and Assumption 2.1, we deduce

δ‖x∗B‖+ ε

1− δ
≤ δ
√
T + β

1− δ
‖x∗B‖`∞ <

√
2λ.

Thus for j ∈ I∗, |di| <
√

2λ, i.e., Ak+1 ⊂ A∗. Similarly, using the relations s2 = 1 + s1(δ
√
T + β)/(1− δ)

and s1 > (1− δ)/(1− δ − δ
√
T − β), we arrive at that for any i ∈ Gλ,s2 , there holds

|x∗i | −
δ‖x∗B‖+ ε

1− δ
> s2
√

2λ− δ
√
T + β

1− δ
s1
√

2λ =
√

2λ.

This implies that for i ∈ Gλ,s2 ∩ A, |xi| >
√

2λ, and for i ∈ Gλ,s2 ∩ I, |di| >
√

2λ. Consequently, (2.4)
yields the desired relation (Gλ,s2 ∩A) ⊆ Ak+1, and this concludes the proof of the lemma.

Now we can state the convergence of Algorithm 1 under the RIP assumption. The proof is similar to
that for Theorem 3.1, and hence omitted.
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Theorem 3.2. Let Assumption 2.1 hold, and δ , δT+1 ≤ (1 − 2β)/(2
√
T + 1). Then for any

√
ρ ∈(

(2δ
√
T + 2β)/(1− δ), 1

)
, Algorithm 1 converges in finite steps.

Remark 3.1. Theorems 3.1 and 3.2 indicate that under designated assumptions, Algorithm 1 converges
in finite steps, and the active set A(λk) remains a subset of the true active set A∗.

Corollary 3.1. Let the assumptions in Theorem 2.1 hold. Then Algorithm 1 terminates at the oracle
solution xo.

Proof. First, we note the monotonicity relation A(λk) ⊂ A∗ before the stopping criterion at line 10 of

Algorithm 1 is reached. For any A ( A∗, let x = Ψ†Ay. Then by the argument in the proof of Theorem
2.1, we have

Jλ(x) = 1
2‖Ψx− y‖

2 + λ|A| > 1
2ε

2 + λT ⇒ ‖Ψx− y‖ > ε,

which implies that the stopping criterion at line 10 in Algorithm 1 cannot be satisfied until the oracle
solution xo is reached.

3.3 Connections with other algorithms

Now we discuss the connections of Algorithm 1 with three existing greedy methods, i.e., orthogonal
matching pursuit (OMP), iterative hard thresholding (IHT) and hard thresholding pursuit (HTP).

Connection with the OMP. To prove the convergence of Algorithm 1, we require either the MIP
condition (ν < (1 − 2β)/(2T − 1)) or the RIP condition (δT+1 ≤ (1 − 2β)/(2

√
T + 1)) on the sensing

matrix Ψ. These assumptions have been used to analyze the OMP before: the MIP appeared in [8]
and the RIP appeared in [21]. Further, for the OMP, the MIP assumption is fairly sharp, but the RIP
assumption can be improved [45, 28]. Our convergence analysis under these assumptions, unsurprisingly,
follows the same line of thought as that for the OMP, in that we require the active set A(λk) always lies
in the true active set A∗ throughout the iteration. However, we note that this requirement is unnecessary
for implementing the PDASC algorithm, since the active set A(λk) can move inside and outside the true
active set A∗ during the iteration. The numerical examples in Section 4 below confirm this observation.
This makes the PDASC much more flexible than the OMP.

Connection with the IHT and HTP. The IHT due to Blumensath and Davies [6] also defines the
active set by both primal and dual variables, but with a projection step, i.e., hard thresholding, in place
of the least-squares step (cf. Step 7) in the PDASC algorithm. The HTP due to Foucart [19] can be
viewed a primal-dual active set method in the T -version, i.e., at each iteration, the active set is chosen by
the first T components based on primal and dual variables. This is equivalent to a variable regularization
parameter λ, where

√
2λ is set to the T -th component of |xk + dk| at each iteration. The convergence

of IHT and HTP were provided under RIP condition, with RIP constants being δ3T ≤ 1/
√

32 [6] and
δ3T ≤ 1/

√
3 [19], respectively. These results are stronger than our convergence result based on the RIP,

i.e., Theorem 3.2, but the former require an a priori knowledge of the exact sparsity level T . In addition,
the IHT has also been applied to the Lagrange formulation (1.2) [5], but the convergence seems unknown.

4 Numerical tests and discussions

In this section we present numerical examples to illustrate the efficiency and accuracy, and the convergence
behavior of the proposed PDASC algorithm. The sensing matrix Ψ is of size n× p, the true solution x∗

is a T -sparse signal with an active set A∗. The dynamical range R of the true signal x∗ is defined by
R = M/m, with M = max{|x∗i : i ∈ A∗|} and m = min{|x∗i | : i ∈ A∗}. The data y is generated by

y = Ψx∗ + η,
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where η denotes the measurement noise, with each entry ηi following the Gaussian distribution N(0, σ2)
with mean zero and standard deviation σ. The exact noise level ε is given by ε = ‖η‖2.

In Algorithm 1, we always take λ0 = 1
2‖Ψ

ty‖2`∞ , and λmin = 1e-15λ0. The choice of the number of
grid points N and the maximum number Jmax of inner iterations will be specified later.

Step 7 of Algorithm 1 requires solving a linear system, which is the most expensive piece of the
algorithm. A direct linear solver can be expensive for large-scale problems or even infeasible when
the sensing matrix Ψ is given only implicitly. Hence, in practice one may employ iterative solvers for
symmetric positive definite systems, e.g., (preconditioned) conjugate gradient (CG) method. In the
following numerical examples, when the matrix Ψ is the partial DCT or composition of partial FFT with
an inverse wavelet transform (for 1D signal or 2D MRI image), we employ the CG method to solve the
resulting linear systems. In practice, only a few CG steps are needed, in view of the good conditioning
of the linear systems and a good initial guess from the continuation strategy.

All the computations were performed on a dual core desktop with 3.40 GHz and 8 GB RAM using
MATLAB version 2013b. The MATLAB package PDASCl0 for reproducing all the numerical results can be
found at http://www0.cs.ucl.ac.uk/staff/b.jin/companioncode.html.

4.1 The behavior of the PDASC algorithm

First we study the influence of the free parameters in the PDASC algorithm on the exact support recovery
probability. To this end, we fix Ψ to be a 500 × 1000 random Gaussian matrix, and σ = 1e-2. All the
results are computed based on 100 independent realizations of the problem setup. To this end, we consider
the following three settings:

(a) Jmax = 5, and varying N ; see Fig. 1(a).

(b) N = 100, and varying Jmax; see Fig. 1(b).

(c) N = 100, Jmax = 5, and an approximate noise level ε̄; see Fig. 1(c).

We observe that the influence of the parameters N and Jmax is very mild on the exact support recovery
probability. In particular, a reasonably small value for these parameters (e.g. N = 50, Jmax = 1) is
sufficient for accurately recovering the exact active set A∗. Unsurprisingly, a very small value of N can
degrade the accuracy of support recovery greatly, due to insufficient resolution of the solution path. In
practice, the exact noise level ε is not always available, and often only an approximate estimate ε̄ is
provided. The use of the estimate ε̄ in place of the exact one ε in Algorithm 1 may sacrifice the exact
recovery probability. Hence it is important to study the sensitivity of Algorithm 1 with respect to the
variation of the parameter ε. We observe from Fig. 1(c) that the use of the estimate ε̄ does not affect the
recovery probability much, unless it is grossly erroneous. The case of an overly underestimated noise level
is especially dangerous, which may render the reconstruction completely useless due to an insufficient
amount of regularization.

To gain further insight into the PDASC algorithm, in Fig. 2, we show the evolution of the active set
(for simplicity let Ak = A(λk)) . It is observed that the active set Ak can generally move both “inside”
and “outside” of the true active set A∗. This observation is valid for random Gaussian, random Bernoulli
and partial DCT sensing matrices. This behavior is in sharp contrast to the OMP, where the size of the
active set is monotonically increasing during the iteration, by its construction. The flexible change in the
active set might be essential for the efficiency of the PDASC algorithm.

For each λk-problem, with x(λk−1) (x(λ0) = 0) as the initial guess, the PDASC generally reaches
convergence within a few iterations, typically two or three, cf. Fig. 3, which is observed for random
Gaussian, random Bernoulli and partial DCT sensing matrices. This is attributed to the local superlinear
convergence of the PDAS algorithm. Hence, when coupled with the continuation strategy, the overall
PDASC procedure is very efficient.
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Figure 1: The influence of the algorithmic parameters (N , Jmax and ε) on the exact recovery probability.

4.2 Comparison with existing algorithms

In this part, we compare Algorithm 1 with five state-of-the-art algorithms in the compressive sensing
literature, including orthogonal matching pursuit (OMP) [34], greedy gradient pursuit (GreedyGP) [4],
accelerated iterative hard thresholding (AIHT) [3], hard thresholding pursuit (HTP) [19], compressive
sampling matching pursuit (CoSaMP) [29].

First, we consider the exact support recovery probability, i.e., the percentage of the reconstructions
whose support agrees with the true active set A∗. To this end, we fix the sensing matrix Ψ as a 500×1000
random Gaussian matrix, σ = 1e-3, (N, Jmax) = (100, 5) or (50, 1), and all results are computed from 100
independent realizations of the problem setup. Since a different dynamical range R may give different
results, we take R = 1, 10, 1e3, 1e5 as four exemplary values. The numerical results are summarized in
Fig. 4. We observe that when the dynamical range R is not very small, the proposed PDASC algorithm
with (N, Jmax) = (100, 5) has a better exact support recovery probability, and that with the choice
(N, Jmax) = (50, 1) is also largely comparable with other algorithms.

To further illustrate the accuracy and efficiency of the proposed PDASC algorithm, we compare it
with other greedy methods in terms of CPU time and reconstruction error. To this end, we fix σ = 1e-2,
(N, Jmax) = (100, 5) or (50, 1). The numerical results for random Gaussian, random Bernoulli and
partial DCT sensing matrices with different parameter tuples (R,n, p, T ) are shown in Tables 4.1-4.3,
respectively. The results in the tables are computed from 10 independent realizations of the problem
setup. It is observed that the PDASC algorithm yields reconstructions that are comparable with that
by other methods, e.g., HTP and AIHT, but usually with less computing time. Further, we observe that
it scales well with the problem size. By increasing the maximum number of inner iterations Jmax and
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Figure 2: Numerical results for random Gaussian (top row, R = 100, n = 500, p = 1000, σ = 1e-3),
random Bernoulli (middle row, R = 1000, n = 210, p = 212, σ = 1e-3) and partial DCT (bottom row,
R = 1000, n = 211, p = 213, σ = 1e-3) sensing matrix. The parameters N and Jmax are set to N = 50
and Jmax = 1, respectively.

the continuation steps N , one can improve the reconstruction accuracy slightly, but the enhancement is
small. This indicates that with the “good” initial guess provided by the continuation strategy, one inner
iteration is sufficient to achieve the desired accuracy, due to the fast local convergence of the PDASC
algorithm, and thus it is also very efficient for large-scale problems.

Lastly, we consider one-dimensional signals and two-dimensional images. In this case the explicit form
of the sensing matrix Ψ may be not available, and we employ the CG method for the least-squares step at
line 7 of Algorithm 1. The most natural initial guess for the CG method for the λk-problem is the solution
x(λk−1) (projected on the current active set), and the stopping criterion for the CG method is as follows:
either the number of CG iterations is greater than a given (small) integer or the residual is smaller than a
given tolerance. With the continuation strategy, a few (often one or two) CG iterations at the inner loop

18



0 10 20 30 40
1

2

3

4

5

N
um

be
r 

of
 it

er
at

io
n 

 

k
0 10 20 30 40

1

2

3

N
um

be
r 

of
 it

er
at

io
n 

 

k

(a) Random Gaussian (b) Random Bernoulli

0 10 20 30 40
1

2

3

4

N
um

be
r 

of
 it

er
at

io
n 

 

k
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Figure 3: The number of iterations of PDASC at each λk for random Gaussian (top left with R = 1000,
n = 500, p = 1000, T = 200, σ = 1e-3), random Bernoulli (top right with R = 1000, n = 210, p = 212,
T = 28, σ = 1e-3) and partial DCT (bottom with R = 1000, n = 211, p = 213, T = 28, σ = 1e-3) sensing
matrix. The parameters N and Jmax are set to N = 50 and Jmax = 5, respectively.

of Algorithm 1 suffice the desired accuracy. Numerically we find that the choice (N, Jmax) = (50, 1) and
one CG iteration for the least-squares problem works well in practice, and thus we present the results
below only for this particular choice. This surprising “superconvergence” phenomenon awaits theoretical
justification.

For the one-dimensional signal, the sampling matrix Ψ is of size 665×1024, and it consists of applying
a partial FFT and an inverse wavelet transform (with two level of Daubechies 1 wavelet), and the signal
under wavelet transformation has 247 nonzero entries and σ = 1e-4, N = 50, Jmax = 1. The results are
shown in Fig. 5 and Table 4.4. The reconstructions by all the methods, except the AIHT and CoSaMP,
are visually very appealing and in excellent agreement with the exact solution. The reconstructions by
the AIHT and CoSaMP suffer from pronounced oscillations. This is further confirmed by the PSNR
values which is defined as

PSNR = 10 · log
V 2

MSE

where V is the maximum absolute value of the reconstruction and the true solution, and MSE is the
mean squared error of the reconstruction, cf. Table 4.4. One finds that except the CoSaMP, all other
methods can yield almost identical reconstructions within similar computational efforts.
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Figure 4: The exact support recovery probability for four different dynamical ranges: R = 1, 10, 103,
and 105.

For the two-dimensional MRI image, the sampling matrix Ψ amounts to a partial FFT and an inverse
wavelet transform, and it has a size 29729 × 262144. The image under wavelet transformation (with
four level of Daubechies 1 wavelet) has 8450 nonzero entries and σ = 1e-3, N = 50, and Jmax = 1.
The numerical results are shown in Fig. 6 and Table 4.5. Since OMP is too costly for this example
(more than one hour), we do not present the corresponding numerical result. All other methods produce
similar results. Therefore proposed PDASC algorithm is competitive with state-of-the-art algorithms,
and feasible for large-scale problems with implicit operators.

5 Conclusion

We have developed an efficient and accurate primal-dual active set with continuation algorithm for the `0

penalized least-squares problem arising in compressive sensing. It combines the fast local convergence of
the active set technique and the globalizing property of the continuation technique. The global finite step
convergence of the algorithm was established under the mutual incoherence property or restricted isometry
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Table 4.1: Numerical results (CPU time and errors) for medium-scale problems, with random Gaussian
sensing matrix Ψ, of size p = 10000, 15000, 20000, 25000, 30000, n = bp/4c, T = bn/3c. The dynamical
range R is R = 1000, and the noise variance σ is σ = 1e-2.

p method time(s) Relative `2 error Absolute `∞ error
PDASC(50,1) 1.46 4.49e-5 3.81e-2
PDASC(100,5) 2.82 4.49e-5 3.81e-2

10000 OMP 15.1 4.49e-5 3.81e-2
GreedyGP 16.5 8.30e-5 1.32e-1

AIHT 4.23 4.49e-5 3.81e-2
HTP 1.54 4.49e-5 3.81e-2

CoSaMP 7.98 8.87e-2 6.34e+1
PDASC(50,1) 3.44 4.61e-5 4.56e-2
PDASC(100,5) 6.63 4.61e-5 4.56e-2

15000 OMP 51.3 4.61e-5 4.55e-2
GreedyGP 54.8 7.17e-5 1.24e-1

AIHT 9.33 4.61e-5 4.56e-2
HTP 3.88 4.61e-5 4.56e-2

CoSaMP 22.6 8.66e-2 6.16e+1
PDASC(50,1) 6.47 4.56e-5 4.34e-2
PDASC(100,5) 12.3 4.56e-5 4.34e-2

20000 OMP 119 4.56e-5 4.34e-2
GreedyGP 127 6.29e-5 1.12e-1

AIHT 16.2 4.56e-5 4.34e-2
HTP 7.12 4.56e-5 4.34e-2

CoSaMP 50.1 8.68e-1 6.59e+1
PDASC(50,1) 11.1 4.55e-5 4.61e-2
PDASC(100,5) 20.3 4.55e-5 4.61e-2

25000 OMP 230 4.55e-5 4.61e-2
GreedyGP 245 5.87e-5 1.10e-1

AIHT 25.2 4.55e-5 4.61e-2
HTP 12.0 4.55e-5 4.61e-2

CoSaMP 90.9 9.29e-1 6.71e+1
PDASC(50,1) 17.5 4.53e-5 4.53e-2
PDASC(100,5) 31.8 4.53e-5 4.53e-2

30000 OMP 399 4.53e-5 4.53e-2
GreedyGP 430 5.62e-5 1.07e-1

AIHT 36.9 4.53e-5 4.53e-2
HTP 18.6 4.53e-5 4.53e-2

CoSaMP 153 9.32e-2 7.61e+1

property on the sensing matrix. Our extensive numerical results indicate that the proposed algorithm is
competitive with state-of-the-art algorithms in terms of efficiency, accuracy and exact recovery probability,
without a knowledge of the exact sparsity level.

Our numerical experiment indicates that the conjugate gradient method is very effective for solving the
least-squares problems arising in the PDAS iterations. A complete analysis of the excellent convergence
behavior is of significant interest. Further, the primal dual active set with continuation algorithm extends
naturally to other popular nonconvex sparse models, e.g., bridge penalty, smoothly clipped absolute
deviation and minmax concave penalty. However, the convergence analysis of the algorithm for these
penalties remains unclear.
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Table 4.2: Numerical results (CPU time and errors) for medium-scale problems, with random Bernoulli
sensing matrix Ψ, of size p = 10000, 15000, 20000, 25000, 30000, n = bp/4c, T = bn/4c. The dynamical
range R is R = 10, and the noise variance σ is σ = 1e-2.

p method time(s) Relative `2 error Absolute `∞ error
PDASC(50,1) 0.64 2.46e-3 3.82e-2
PDASC(100,5) 1.21 2.45e-3 3.82e-2

10000 OMP 10.3 2.46e-3 3.83e-2
GreedyGP 12.8 2.40e-2 1.07e+0

AIHT 3.50 2.45e-3 3.82e-2
HTP 0.95 2.45e-3 3.82e-2

CoSaMP 4.93 5.00e-3 7.57e-2
PDASC(50,1) 1.49 2.53e-3 4.13e-2
PDASC(100,5) 2.85 2.52e-3 4.11e-2

15000 OMP 34.6 2.52e-3 4.10e-2
GreedyGP 43.7 2.20e-2 1.07e+0

AIHT 8.38 2.52e-3 4.11e-2
HTP 2.35 2.52e-3 4.11e-2

CoSaMP 13.9 5.01e-3 7.75e-2
PDASC(50,1) 2.63 2.52e-3 3.96e-2
PDASC(100,5) 4.93 2.51e-3 3.97e-2

20000 OMP 78.4 2.52e-3 3.99e-2
GreedyGP 96.4 2.41e-2 1.09e+0

AIHT 13.6 2.51e-3 3.97e-2
HTP 4.37 2.51e-3 3.97e-2

CoSaMP 29.0 5.10e-3 8.07e-2
PDASC(50,1) 4.37 2.50e-3 3.99e-2
PDASC(100,5) 8.30 2.49e-3 3.99e-2

25000 OMP 157 2.49e-3 3.99e-2
GreedyGP 191 2.31e-2 1.08e+0

AIHT 20.1 2.49e-3 3.99e-2
HTP 7.36 2.49e-3 3.99e-2

CoSaMP 54.4 5.10e-3 7.98e-2
PDASC(50,1) 7.06 2.48e-3 4.19e-2
PDASC(100,5) 12.3 2.48e-3 4.18e-2

30000 OMP 265 2.48e-3 4.18e-2
GreedyGP 325 2.09e-2 1.08e+0

AIHT 26.6 2.48e-3 4.18e-2
HTP 10.5 2.48e-3 4.18e-2

CoSaMP 85.6 5.00e-3 9.44e-2
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Table 4.3: Numerical results (CPU time and errors) for large-scale problems, with partial DCT sensing
matrix Ψ, of size p = 213, 214, 215, 216, 217, n = bp/4c, T = bn/3c. The dynamical range R is R = 100,
and the noise variance σ is σ = 1e-2.

p method time (s) Relative `2 error Absolute `∞ error
PDASC(50,1) 0.21 7.09e-4 7.93e-2
PDASC(100,5) 0.39 7.08e-4 7.89e-2

p = 213 OMP 2.26 7.08e-4 7.93e-2
GreedyGP 0.74 9.99e-4 1.68e-1

AIHT 0.30 7.08e-4 7.93e-2
HTP 0.32 7.08e-4 7.87e-2

CoSaMP 0.50 3.63e-1 3.24e+1
PDASC(50,1) 0.35 6.97e-4 8.60e-2
PDASC(100,5) 0.66 6.95e-4 8.52e-2

214 OMP 11.3 6.95e-4 8.49e-2
GreedyGP 2.52 9.01e-4 2.49e-1

AIHT 0.48 6.95e-4 8.50e-2
HTP 0.52 6.96e-4 8.57e-2

CoSaMP 0.85 3.87e-1 3.63e+1
PDASC(50,1) 0.64 7.16e-4 8.20e-2
PDASC(100,5) 1.20 7.83e-4 4.58e-1

215 OMP 66.8 9.96e-4 1.01e+0
GreedyGP 9.50 7.98e-4 1.90e-1

AIHT 0.98 7.14e-4 8.23e-2
HTP 0.97 7.15e-4 8.24e-2

CoSaMP 1.53 3.79e-1 3.71e+1
PDASC(50,1) 1.23 7.43e-4 2.75e-1
PDASC(100,5) 2.30 7.37e-4 1.81e-1

216 OMP 423 1.11e-3 1.03e+0
GreedyGP 34.2 8.39e-4 5.20e-1

AIHT 1.87 7.07e-4 8.80e-2
HTP 2.12 7.08e-4 8.78e-2

CoSaMP 2.77 3.87e-1 3.93e+1
PDASC(50,1) 3.04 7.47e-4 3.73e-1
PDASC(100,5) 6.29 7.43e-4 1.95e-2

217 OMP 3.17e+3 1.11e-3 1.03e+0
GreedyGP 200 7.96e-4 5.99e-1

AIHT 4.76 7.13e-4 9.86e-2
HTP 4.90 7.14e-4 9.88e-2

CoSaMP 7.67 3.91e-1 4.25e+1
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