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Abstract 

This thesis explores abnormalities in the multiple sclerosis (MS) spinal cord and 

their relationship with physical disability through the use of conventional and 

quantitative magnetic resonance imaging (MRI). 

Firstly, an hypothesis was tested that spinal cord atrophy would be associated 

with disability, independently from brain atrophy and lesion load, in long disease 

duration MS. The results presented confirm that cord atrophy is significantly 

associated with higher levels of physical disability after more than twenty years 

of MS. 

Following this observation, the next experiment investigated whether a 

combination of an active surface model (ASM) and high resolution axial images, 

would provide a more reproducible measure of spinal cord cross-sectional area; 

compared to previously described methodologies. The results presented show 

the superior reproducibility of the ASM combined with axial images for the 

measurement of cord area in MS, which may be of relevance to future clinical 

trials utilising cord atrophy as an outcome measure. 

The pathology of MS in the spinal cord was also explored in several ways using 

MRI. Firstly, spinal cord lesion morphology was studied, to investigate whether 

focal lesions, that traversed two or more spinal cord columns and involved the 

grey matter, would be associated with progressive MS. The results presented 

confirm this association and also that diffuse abnormalities are more frequently 

seen in progressive disease. 
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Secondly, spinal cord lesion load was measured quantitatively on axial images, to 

investigate if this measure would be associated with disability independently 

from cord atrophy. The functional importance of focal lesions in MS is 

highlighted by demonstrating an independent association between lesion load 

and disability. 

Thirdly, magnetisation transfer ratio (MTR) measures of the outer spinal cord 

were obtained, in an area expected to contain the pia mater and subpial tissue, to 

investigate whether outer cord abnormalities could be seen in MS compared to 

healthy controls and if such abnormalities would be associated with cord 

atrophy. The results presented show that significant decreases in MTR occur in 

the outer cord early in the disease course, prior to the development of cord 

atrophy and further decreases in MTR were seen in progressive MS. 

Furthermore, an independent association is presented between outer cord MTR 

and cord atrophy, suggesting that spinal cord meningeal inflammation may be 

associated with axonal loss in MS. 

Lastly, diffusion tensor imaging was used in the spinal cord grey matter, in order 

to investigate whether microstructural abnormalities in this structure would be 

associated with physical disability. The results of this study identified an 

association between grey matter radial diffusivity and disability, independently 

from cord atrophy, suggesting a significant contribution of spinal cord grey 

matter pathology to clinical dysfunction. 

In summary, this thesis shows that MS spinal cord abnormalities may be 

visualised and quantified using high field MRI, and are significantly associated 

with disability. The observations presented may of relevance to future MRI 
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studies and clinical trials in MS that aim to understand and potentially prevent 

the pathological processes underlying irreversible physical disability. 
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Chapter 1- The spinal cord and multiple sclerosis 

1.1 The spinal cord 

1.1.1 External structure 

The spinal cord (medulla spinalis) extends from the medulla oblongata to the 

conus medullaris. It extends from cranial border of the atlas to the second 

lumbar vertebra, although the caudal termination of the cord is variable (Jit et al. 

1959). Three layers cover the cord: dura, arachnoid and pia, with the 

cerebrospinal fluid (CSF) contained in the subarachnoid space. The width of the 

spinal cord depends on the level with enlargements at the cervical and lumbar 

levels corresponding to the spinal nerves innervating the limbs.  

The anterior surface of the spinal cord is marked by the anterior median fissure, 

which contains perforating blood vessels and dorsally by the posterior median 

and lateral sulci. The white substance contained between the two posterior sulci 

is known as the posterior funiculus. The region between the posterolateral 

sulcus and the anterior median fissure is the anterolateral funiculus. Inferiorly 

the filum teminale descends to leave the subarachoid space and extends to the 

tip of the coccyx. 

Along the length of the cord are paired dorsal and ventral roots of spinal nerves, 

which join in the vertebral foramena to form a spinal nerve. Caudally the spinal 

nerve roots form a bundle known as the cauda equina. 
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1.1.2 Internal structure 

The spinal cord is divided in cross sections into laminae which contain grey and 

white matter, with the grey matter forming a central ‘H’ shaped arrangement, 

surrounded by the white matter (Schoenen 1973). The white matter is divided 

into anterior, posterior and lateral columns connected by a central commissure, 

which contains the central canal. The grey matter contains nerve cells supplying 

the limbs. The white matter is coloured by myelin, which coats the nerve fibres. 

The white matter contains the ascending and descending tracts of the spinal cord.  

The descending tracts include: corticospinal, vestibulospinal, tectospinal, 

olivospinal, reticulospinal and rubrospinal (Williams 1980). The ascending tracts 

include: spinothalamic, dorsal columns and spinocerebellar tracts. Cajal first 

described the histology of spinal cord motor neurons (Cajal 1908), using Golgi 

silver stains.  

1.1.3 Physiology 

The cell bodies of motor neurons that innervate the muscles, that are located in 

the grey matter in longitudinal columns, and receive both afferent and efferent 

input. The most important tract for movement and motor control is the 

corticospinal tract, originating in the precentral gyrus of the frontal lobe. This 

tract is also known as the pyramidal tract, as the fibres cross at the medulla they 

are said to form pyramids. 

Injury to the spinal cord may result in sphincter and sensory dysfunction, and 

spastic paraplegia associated with injury to the corticospinal tract. 
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Many different conditions can result in spinal cord injury including, trauma, 

tumours and multiple sclerosis (MS). 

 

1.2 Multiple sclerosis 

The name multiple sclerosis (MS) is due to the pathological appearance of white 

matter lesions in the CNS that become sclerotic as they age. MS is potentially the 

most common cause of neurological disability in young adults (Compston and 

Coles 2002); it is thought to be the result of infiltration of the central nervous 

system (CNS) by inflammatory cells in a genetically predisposed individual due 

to an unknown environmental antigen (Compston and Coles 2008). The result of 

inflammation of the CNS is a host of neurological symptoms and signs ranging 

from cognitive impairment to paraplegia depending on the site affected by the 

disease. 

The result of migration of inflammatory cells into the CNS is dysfunction of the 

oligodendrocytes as well as activation of other inflammatory cells. The 

oligodendrocyte is responsible for myelination or coating the axons in the CNS, 

allowing saltatory conduction to occur along the length of the axon. It is 

estimated that each oligodendrocyte myelinates 30 to 50 axons (Compston et al., 

2006). In MS demyelination occurs, resulting in impaired conduction along the 

axon; this may be manifested as slowing of conduction (where conduction is still 

possible through sodium channels being distributed along the axonal 

membrane) or conduction block. Demyelinated axons are susceptible to a rise in 

temperature (e.g. Uhtoff’s phenomenon) and positive phenomena (e.g. tonic 
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spasms) can also result from transmission between neighbouring axons 

(Compston and Coles 2002).  

The symptoms and signs produced by demyelination often become apparent 

when a clinically eloquent site, such as the spinal cord, is involved. The 

involvement of the spinal cord can result in weakness, spasms, stiffness, bladder 

dysfunction, sexual dysfunction, paraplegia, constipation and sensory 

dysfunction. 

 

1.2.1 Natural history 

MS affects women twice as commonly as it does men and has a lifetime risk of 

one in 400 in the UK (Compston and Coles 2002). MS typically presents between 

the ages of 20 and 40, as a relapsing remitting condition (RRMS), where a relapse 

is defined as ‘the rapid appearance of new symptoms or the sudden worsening of 

old symptoms, lasting longer than 24 hours and occurring at least one month 

after the preceding relapse’ (Confavreux et al., 1980). RRMS is the initial course 

in about 85% of patients (Compston and Coles. 2002); the remaining 15% have a 

slowly progressive onset of symptoms and disability and is known as primary 

progressive MS. The main clinically recognised forms of the disease have been 

defined by a National Multiple Sclerosis Society of the USA Advisory Committee 

(Lublin and Reingold 1996): Relapsing remitting MS (RRMS), secondary 

progressive MS (SPMS), primary progressive MS (PPMS) and progressive 

relapsing MS (PRMS). 
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These definitions have recently been modified (Lublin et al., 2014), with the 

inclusion of two new disease courses: clinically isolated syndrome (CIS) and 

radiologically isolated syndrome (RIS), which is an incidental imaging finding 

suggestive of demyelination without a corresponding history or physical 

examination findings typical for MS. The PRMS disease subtype has also been 

redefined in the modified criteria as PPMS with accompanying disease activity. 

RRMS as described consists of relapses with a course exhibiting partial or 

complete recovery from the relapse-acquired deficit. About two-thirds to four-

fifths of cases of RRMS will at some time enter a secondary progressive phase 

(Weinshenker et al., 1989), which consists of a gradual and progressive increase 

in symptoms and disability, with or without occasional relapses, but without a 

significant reversal of the underlying disability. The mean age of onset of RRMS 

is about 30 years and there is a 2:1 female to male predominance. 

This differs from PPMS where the mean age of onset is about 40 years and equal 

numbers of males and females are affected. PPMS is often described as a ‘chronic 

progressive myelopathy’, since spinal cord involvement, with walking 

impairment, is the predominant manifestation in 80% of cases. Typically it 

progresses to quadriparesis with autonomic dysfunction and a substantially 

worse prognosis than RRMS (Noseworthy et al., 2000), although the course of 

SPMS (once established) and PPMS are quite similar in their evolution. PRMS 

differs slightly from PPMS, where although there is progressive disease from 

onset, there are also superimposed relapses, with or without full recovery. PRMS 

is less common than PPMS. 
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As RRMS is the most common subtype it has been extensively studied in natural 

history studies of MS. Initial symptoms in RRMS consist of: optic neuritis, 

sensory symptoms, motor deficit of acute or insidious onset, diploplia, vertigo or 

balance difficulty (Weinshenker et al., 1989). Confavreux et al. estimated from a 

natural history study that the annual relapse frequency is approximately one per 

year (Confavreux et al., 1980). It was found that more than half of the RRMS 

cases in this study were severely disabled within fifteen years. The percentage of 

patients who convert to a progressive form increases steadily with duration of 

disease.  

Given the potential for intervention during the RRMS phase, studies have also 

focused on what factors determine long-term disability following the initial 

phase, as there is a disparity between the suppression of relapses and 

accumulation of disability in clinical trials in MS (Beutler et al., 1996; Coles et al., 

1999). Being able to predict the course from an early stage would also be 

invaluable in counselling patients. Factors that influence disease outcome 

including frequency of relapses in first two years, interval between relapses and 

interval between first and second relapse were assessed longitudinally by 

Weinshenker et al. (1989(2)). It was found that the median interval between first 

and second relapse was two years in an untreated population. High numbers of 

relapses in the first two years following onset of MS correlated with long-term 

disability. This study was then extended to 28 years of follow up (Scalfari et al., 

2010), where the effect of relapses was revaluated. It was found that 80% of 

patients developed SPMS with a median time to progression of 15 years. There 

was also found to be a variable interval between the first and second relapse, and 
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patients who had frequent relapses in the first two years were found to be more 

likely to develop SPMS. A longer interval correlated with a lower probability of 

developing SPMS. The frequency and the interval of relapses were both found to 

be important factors in the first two years of the disease. However over the 

course of the disease the overall number of relapses and location of relapse do 

not appear to correlate with progression to SPMS (Kremenchtzky et al., 2006).  

Given the apparent importance of relapse frequency in the initial phase of the 

disease and its effect on long-term outcomes investigators have looked at what 

are possible reasons for an increase in relapse frequency. As MS has a female 

predominance (Compston et al., 2002) the effect of pregnancy on the course of 

MS has been assessed in the Pregnancy in Multiple Sclerosis (PRIMS) study 

(Confavreux et al., 1998). The investigators studied 254 pregnant women with 

MS and found no increased risk of relapse with breast-feeding or epidural. The 

relapse rate was affected by pregnancy with a decrease during pregnancy and an 

increase in the first three months post-partum followed by a return to baseline 

number of relapses. It was also found that the overall progression in level of 

disability was not affected by pregnancy, despite the post-partum increase in 

relapse rate. 

Other factors that have been studied to influence relapse rate include vaccination 

status, as earlier reports suggested a potential link between vaccination and 

onset of MS. In an observational study, it was shown that commonly 

administered vaccines do not increase the risk of relapse in patients with MS and 

some possibly lowered the risk of relapse, including tetanus, poliomyelitis or 

diphtheria (Confavreux et al., 2001).  
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1.2.2 Environmental factors 

MS has been noted for several years to have a clear distribution based on latitude 

(Kurtzke 1975). In this study Kurtzke divided areas into: high, medium and low 

risk, which correlated with latitude. It was noted that there were virtually no 

cases of MS in the tropics and high-risk zones were identified in northern Europe 

and USA. Based on other epidemiological studies the effect of migration from 

high to low risk has shown a reduction in MS risk (Dean 1967). However, the 

opposite does not appear to be true with migration from Asia to Northern 

Europe (Dean et al., 1976). In more recent studies the prevalence and incidence 

of MS has been increasing and in some countries the female to male ratio of MS 

has also been increasing (Orton et al., 2006). 

A number of different hypotheses have arisen from this geographical 

distribution of what is believed to be an autoimmune disease. The first known as 

the “poliomyelitis hypothesis” is based on the idea that higher risk is associated 

with late childhood infection with an unknown virus, whereas infantile infection 

confers immunity (Poskanzer et al., 1976). The second hypothesis is based on 

Kurtzke’s studies of British troops and their effect on the prevalence of MS in the 

Faroe Islands; he concluded that MS is caused by a pathogen (Kurtzke 1993). The 

third hypothesis is known as the ‘hygiene hypothesis’ based on observations in 

Israel on sanitation (Leibowitz et al., 1966) and is substantiated by the fact that 

MS appears to be more prevalent among higher socio-economic groups. 
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Based on his observations including apparent clustering of MS in areas, Kurtzke 

concluded that MS is a ‘rare late outcome of a specific but unknown infectious 

disease of adolescence and young adulthood and that this infection could be 

caused by a thus-far-unidentified virus’ (Kurtzke 1993). 

A number of different proposed viruses have been suggested as the ‘unidentified 

virus’, the most frequently cited being Epstein-Barr virus (EBV). EBV is a 

ubiquitous virus that infects 90% of the adult population worldwide, this 

normally occurs asymptomatically in the first decade of life, however in 

industrialised countries later infection also occurs and may result in infectious 

mononucleosis. EBV is implicated in the pathogenesis of a number of different 

diseases including: Burkitt’s lymphoma, nasopharyngeal carcinoma and EBV-

related Hodgkin’s disease (Crawford 2001).  

Similarities have been noted between the epidemiology of MS and EBV, EBV 

related diseases have a known geographic distribution (Ascherio et al., 2007). 

Epidemiological evidence also suggests that there is a greater risk conferred of 

developing MS in those who had previously been exposed to EBV, whereas the 

risk of developing MS in seronegative subjects is extremely low (Thacker et al., 

2006). EBV has been suggested to be a necessary cofactor for the development of 

MS with serological levels of immunoglobulin G (IgG) correlating with activity on 

neuroimaging and progression of disability (Farrell et al., 2009). The basis for 

EBV as a putative agent in the pathogenesis of MS is strengthened by the fact that 

T cells derived from MS patients cross react with EBV based on shared epitopes 

between myelin basic protein and EBV DNA (Lang et al., 2002). 



 31 

However a number of counter arguments are proposed that EBV may be simply a 

confounder in epidemiological studies, rather than a causative agent in MS. 

Firstly EBV is a ubiquitous virus with the majority of the adult population being 

exposed, while MS is a relatively rare disease (Ascherio et al., 2007). Secondly 

antibody titres to EBV and other viruses are raised in MS, which may be a 

reflection of immune dysregulation rather than being causative factors (Hunter 

et al., 2000). Furthermore, in a study of acute and chronic MS plaques and CSF, 

EBV was not found in the B lymphocytes or plasma cells and no intrathecal EBV 

antibody production was found (Sargsyan et al., 2010). It has therefore been 

suggested that EBV may combine with other risk factors such as smoking that 

may increase risk of MS by modulating EBV infection or the host’s response to 

EBV (Simon et al., 2010). 

Smoking has also been extensively studied as a contributory factor in the 

development of MS. It has been shown that cigarette smoking accelerates the 

transition to SPMS (Hernan et al., 2005); smoking can aggravate MS symptoms 

(Emre 1992), and an association has been established between age of onset of 

MS and smoking (Ghadirian et al., 2001). In three large epidemiological studies 

in women there was found to be an increase in the relative risk of developing MS 

in those who smoked (Villard-Mackintosh et al., 1993; Thorogood et al., 1998; 

Hernàn et al., 2001). The mechanisms by which smoking might increase MS risk 

are uncertain at present but may include neurotoxicity of compounds in 

cigarettes (Smith et al., 1963), immunomodulatory effects (Sopori et al., 1998) or 

the increased risk of respiratory infections, which are some researchers suggest 

may be linked to MS risk (Graham 1990). 
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The other major environmental factor investigated has been the role of vitamin 

D in MS. For most people the major source of vitamin D is sunlight (Holick 2004). 

However for people living beyond the 40th parallels north or South the level of 

sunshine is seasonally low for almost four months of the year with a 

corresponding reduction in vitamin D levels (Webb et al., 1988). The areas that 

experience limited amounts of sunshine include Canada, the Northern half of the 

USA, Northern Europe, Russia, New Zealand and Tasmania (Pierrot-Deseilligny 

and Souberbielle 2010). These regions are also those with a higher prevalence of 

MS (Goodin 2009). This association was first noted by Goldberg (Goldberg 1974) 

and more recent studies have suggested that the month of birth is important in 

MS risk determination as this determines maternal vitamin D levels during the 

pregnancy. Births in November have the lowest risk of MS and births in May 

have the highest risk (Willer CJ et al., 2004).  

In experimental autoimmune encephalomyelitis (EAE), mouse model of MS, 

injection of vitamin D has been shown to prevent pathological signs of disease 

(Cantorna et al., 1996) and its onset can be delayed by providing vitamin D 

supplements (Spach et al., 2005). It has also been shown that macrophages and B 

and T cells contain vitamin D receptors (von Essen et al., 2010), which play a role 

in autoimmunity in conditions such as MS. In some studies the intake of vitamin 

D supplements was found to be associated with a lower risk of MS (Kampman 

and Brustad 2008). Serum vitamin D levels are also found to be low in patients 

RRMS (Soilu-Hänninen et al., 2008). 

It is unlikely that vitamin D alone is responsible for MS alone, as with the other 

potential environmental factors listed above, none of which appear to be solely 
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responsible, it is more likely that a complex interaction between these and 

genetic factors contribute to the pathogenesis of MS. 

 

1.2.3 Genetics 

15 to 20% of patients with MS have a family history of the disease: it is said that 

this figure is greater than would be expected by chance (Compston and Coles 

2002). In twin studies it has been found that there is a higher rate of 

concordance of MS in monozygotic twins compared to dizygotic twins (~25% vs. 

2-3%: Mumford et al., 1994). In those who were adopted early in life and later 

developed MS, the new family did not incur any extra risk of MS, however the 

biological parents were found to be at increased risk (Ebers et al., 1995). Equally 

children of parents, who both have MS, are at greater risk of developing MS, than 

if just one parent is affected (Robertson et al., 1997). It has been also found that 

the risk of a relative developing MS increases with the degree with which they 

are related to them (Dyment et al., 2006). Based on these and other observations 

in families with two or three affected individuals, no clear mode of inheritance is 

apparent in MS, however it is clear that genes play a definite role its 

pathogenesis (Compston et al., 2006).  

Initial studies identified the link between MS and major histocompatibility 

complex (MHC) (Compston et al., 1976). The genes for the Human Leukocyte 

Antigen (HLA) lie within the MHC, an area that contains extreme levels of 

polymorphism (Horton et al., 2004). A number of HLA genes have been identified 

in association with MS including: DRB*1501, DRB5*0101, DQA180102 and 
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DQB2*0602 (Olerup and Hilbert 1991).  Since the association was proven with 

MHCs and MS a number of other potential candidate genes have been studied but 

with limited success. 

Whole genome screens have been done for linkage to MS in the UK, US and 

Canada, however none of these studies found any significant linkages even when 

meta-analysis was used (Sawcer 2008). Later genomewide association studies 

(GWAS) were performed. The International Multiple Sclerosis Genetics 

Consortium studied 931 family trios, testing them for association by analysing 

single nucleotide polymorphisms (SNPs) in 2692 samples (IMSGC 2007). Two 

significant associations in SNPs were found in genes encoding IL2R and IL7R 

chains. These were deemed to be of importance as IL2R gene has been 

implicated in a number of other autoimmune diseases (Vella et al., 2005; Brand 

et al., 2007) and IL7 has been shown to be important in the generation of 

autoreactive T cells in MS, particularly in the early stages of the disease 

(Bielekova et al., 1999). The Welcome Trust Case Control Consortium (WTCCC) 

performed the second GWAS analysing potential associations with MS (Burton et 

al., 2007). This study analysed 12 374 SNPs, however no significant associations 

were found with MS. 

Other GWAS studies have been performed, which have been followed by 

replication studies to assess the more frequently identified abnormalities. The 

Gene Associations in Multiple Sclerosis in 2009 identified a number of potential 

candidate loci, each of which had a modest effect, including: glypican 

proteoglucan 5 (GPC5) genes, which may be involved in sequestering pro-

inflammatory cytokines. PARK2 or Parkin, already identified as playing a role in 
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autosomal recessive Parkinson’s due to proteasomal degradation. Its role in MS 

is believed to be due to mitochondrial dysfunction and apoptosis of neuronal 

cells. Reelin (RELN) was also found to be associated with age of onset of MS 

(Baranzini et al., 2009).  

In the same year a GWAS study was published by the Australia and New Zealand 

Multiple Sclerosis Genetics Consortium (ANZgene 2009). Two previously 

unidentified MS susceptibility loci were identified on chromosome 12 and 20. 

Methyltransferase-like protein 1 (METTL1) and cyclin-dependent kinase 4 

(CDK4), which is down regulated in T cells in Japanese MS cases. Both loci are 

associated with other autoimmune diseases. 

A meta-analysis of MS susceptibility loci was performed in the same year as the 

ANZgene study (De Jager et al., 2009). Three previously unreported associations 

were identified: tumour necrosis factor receptor superfamily member 1A 

(TNFRSF1A), interferon response factor 8 (IRF8) and CD6 loci. TNFRSF1A had 

previously been implicated in disorders of tumour necrosis factor (TNF) and 

IRF8 is implicated in the response to type I interferons and is involved in 

macrophage cell function. CD6 is believed to be involved in T-cell stimulation 

and differentiation and may have a role in inflammatory conditions where T cells 

are implicated in pathogenesis.  

The two GWAS studies identified STAT3 gene, a risk allele for Crohn’s disease 

(Jakkula et al., 2010) and CBLB gene that regulates B and T cell activity and mice 

deficient in this gene are more susceptible to experimental autoimmune 

encephalomyelitis (EAE) (Sanna et al., 2010). A more recent genetic study in MS 

has identified 48 new susceptibility variants (IMSG 2013), including associations 
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with SNPs encoding proteins related to inflammatory B and T cell activity, 

contiguous with the inflammatory hypothesis of the disease. 

However there are a number of limitations to genetic analysis in MS. Firstly MS is 

not a common disease in the whole population, so huge population based studies 

are required to estimate epidemiological parameters (Sawcer 2008). Secondly 

MS is a heterogeneous disorder with a wide spectrum of phenotypes making 

genetic analysis a greater challenge (Compston et al., 2006). Thirdly even the 

associations found to date such as variation in the allele for IL7 occur in up to 

72% of white Europeans, the vast majority of who will never develop MS 

(Sawcer 2008). As with environmental factors in MS there is substantial 

evidence for a genetic component but its study remains challenging. 

1.2.4 Pathology 

The pathology of MS was first described by Carswell and Cruveilhier (Carswell 

1838; Cruveilher 1841) and later summarised by Frommann and Charcot 

(Frommann 1878; Charcot 1880). Since first described the sclerotic plaque has 

been appreciated to be one of the most important findings in MS. The plaque 

results from a complex process of inflammation, demyelination and repair 

accompanied by variable axonal loss (Compston and Coles 2008).  

Oligodendrocytes in the CNS manufacture myelin and the development of these 

cells is regulated by growth factors (Barres 1992). The sections of the axon in 

between the myelin are known as nodes, containing sodium channels, which 

facilitate saltatory conduction along the axon (Compston et al., 2006). In MS the 

oligodendrocytes are damaged by activated inflammatory T lymphocytes. It is 
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believed that these T lymphocytes are not regulated in MS, which allows the 

immune dysregulation to occur (Compston and Coles 2008).  

During the stage of myelin destruction microglial cells are also activated 

immunologically (Ulvestad et al., 1994). These activated microglial cells 

contribute to inflammation with myelin damage and also to repair by removal of 

myelin debris and promotion of remyelination. Due to a combination of a failure 

of remyelination and axonal loss, saltatory conduction is altered along the axon. 

This results in a redistribution of ion channels (Compston and Coles 2008). 

As this process is hypothesised to be driven by T cells their role in the pathology 

of MS has been studied extensively. The evidence for T cells is based on the EAE 

model of MS and similar immune mediated molecules are seen in viral infections 

of the CNS (Lassman 1999). Interleukin 17, regulated by interleukin 23 is 

believed to be secreted by T lymphocytes (Langrish et al., 2005). A combination 

of interleukin 17 and 22 disrupt the blood brain barrier, which allows migration 

of Th17 cells into the CNS (Kebir 2007). A combination of B and T lymphocytes 

and other immune cells activate the microglia, culminating in myelin loss 

through cell surface bound tumour necrosis factor  (Zajicek et al., 1992). The 

plaque itself is then surrounded by undifferentiated oligodendrocytes, 

macrophages and other cells and can be seen on gross specimens. 

However demyelination alone does not seem to be responsible for disease 

progression in MS. Axonal loss in a neurodegenerative manner almost certainly 

results in disease progression (Compston et al., 2006). It has been suggested that 

both inflammation and non-inflammatory processes may initiate axonal loss and 
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sometimes inflammation and axonal loss occur simultaneously. Axonal loss may 

be marked pathologically (Compston and Coles 2008). 

The plaques in MS are readily seen in the white matter of the CNS; however, MS 

is not exclusively a disease of white matter and grey matter has long been 

recognised as being involved (Dawson 1916). Clinico-pathological correlation in 

MS with white matter lesions does not seem to account for all the potential 

deficits seen such as: cognitive impairment, memory impairment, attention 

deficits and reduced mental processing. However the process of axonal loss and 

demyelination in the CNS grey matter has not been clearly elucidated to date, 

although some have suggested it may be secondary to white matter 

inflammation (Geurts and Barkhof 2008). The pathology of grey matter does 

differ from white matter lesions, as inflammatory cells or disruption in blood 

brain barrier are not readily detected in grey matter lesions (Bö et al., 2003). 

Grey matter lesions exhibit marked cellular loss and have been reported to be 

associated with progressive MS (Kutzelnigg et al., 2005). 

Pathological studies have given an insight into the disease mechanisms in MS 

and the wide range of symptoms experienced by the patient. Although pathology 

can provide a definitive diagnosis of MS, particularly in atypical presentations 

(Phadke and Best 1983), it is not a practical way to diagnose those suspected of 

having MS in life, therefore a number of different diagnostic criteria have been 

drawn up based on clinical and laboratory (especially magnetic resonance 

imaging [MRI]) findings. 
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1.2.5 Diagnosis  

Since MS was first described the diagnosis was based solely on clinical findings. 

With the advent of clinical trials and disease modifying therapy, more stringent 

criteria have been developed to exclude other possibilities and confirm a 

diagnosis of MS. A number of different criteria have been published, 

incorporating laboratory data as well as magnetic resonance imaging (MRI); the 

more frequently cited criteria are summarised below. 

One of the first proposed diagnostic criteria were written by Schumacher et al. 

on the basis that there were at that time no clear guidelines for enrolling patients 

into therapeutic trials (Schumacher et al., 1965). A number of difficulties with 

clinical trials, some of which still exist today, are highlighted by the authors 

including: difficulty with diagnosis, unpredictable course of MS and lack of 

biological markers. At the time of writing the guidelines were based on the 

concept of dissemination in time and space with objective abnormalities on 

neurological examination. Each attack was defined as lasting for more than 24 

hours and by definition had to be more than a month from the preceding event. 

The authors recommended routine laboratory tests, in an effort to exclude 

alternate conditions and a lumbar puncture was also included, to look for an 

increase in CSF gamma globulin and mononuclear cells. Schumacher and 

colleagues also recommended that progressive presentations over the course of 

six months or more should be excluded: this will be addressed again later. It was 

also suggested that ‘no better explanation’ is possible to account for the 

symptoms or signs, an observation that is also reflected in more recent criteria.  
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Following on from the Schumacher criteria, Poser et al (Poser et al., 1983) 

incorporated the use of supportive laboratory data in making a definitive MS 

diagnosis, however accepting that the diagnosis does remain a clinical one. As in 

earlier criteria clinical definitions such as what constitutes an attack and 

remission are defined and again the basis is that of dissemination in time and 

space of lesions, with objective findings on neurological examination and CSF. 

The main purpose of the lumbar puncture is to determine if unmatched 

oligoclonal bands (OCBs) are present in the CSF but not in the serum. These 

consist of intrathecal IgG bands detected on electrophoresis and are suggestive 

of an immunological process in the CNS. Their presence is supportive of MS 

diagnosis; however, they may be present in other CNS inflammatory conditions 

such as sarcoid, syphilis, subacute sclerosing pancencepahilitis (SSPE) and 

systemic lupus erythematosus (SLE). 

There are restrictions given of ages between 10 and 59 years and again 

progressive onset of disease is excluded from making an MS diagnosis. With the 

aforementioned caveats, Poser et al. proposed the following categories: clinically 

definite MS, laboratory supported definite MS, clinically probable MS, laboratory 

supported probable MS. 

With the advent of MRI and its widespread use in MS and other neurological 

diseases its contribution was reflected in diagnostic criteria for the disease. MRI 

findings in MS are a reflection of the pathology seen, e.g. with callosal 

involvement (Dawson 1916), and early post mortem studies showed that MRI T2 

high signal lesions corresponded with plaques of demyelination (Ormerod et al., 

1987). Paty et al. wrote a set of criteria that included MRI as well as other 
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paraclinical parameters for a diagnosis of MS (Paty et al., 1988). The use of MRI 

was based on the fact that previous studies had shown clear abnormalities using 

this modality of imaging in MS (Robertson et al., 1985). The other parameters 

assessed were CT, OCBs, visual evoked potentials and somatosensory evoked 

potentials (SSEP). 

Visual evoked potentials (VEPs) involve the use of a chequer board pattern of 

black and white flashing squares as a stimulus. The visual evoked potential 

response is then recorded from the occipital scalp region and can be compared 

to mean values. SSEP involves electrical stimulation of median or posterior tibial 

nerves; again the response is recorded over the scalp. Both of these assessments 

of evoked potentials (visual and somatosensory) may be delayed, although not 

exclusively, in demyelinating diseases such as MS. 

The criteria developed by Paty et al. included abnormalities in the above named 

parameters as well as a history of dissemination in time and space. Whether the 

MRI was strongly suggestive of, possible or not MS was based on the number of 

lesions seen. The authors recommended the following: an MRI strongly 

suggestive of MS has four lesions or three one of which is periventricular; for 

possible MS two lesions must be present or one lesion in a periventricular 

location. If there is one lesion or none, then another diagnosis should be 

considered. The authors also introduced the concept that a single appropriate 

lesion could be used to demonstrate dissemination in space. However given the 

increase in non specific lesions seen with advancing age it is was also 

recommended that OCBs are a prerequisite for a diagnosis for those over 40. 
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The issue of MRI abnormalities with advancing age was then addressed by 

Fazekas et al. to improve specificity of MRI for MS (Fazekas et al., 1988). As 

alluded to in previous criteria again the use of MRI lesions on T2-weighted 

images was incorporated as evidence of dissemination in space. The 

investigators compared T2-weighted lesions in healthy volunteers to those seen 

in MS patients and suggested at least two of the three following MRI criteria for a 

diagnosis of MS: lesion size greater than 6mm, lesions abutting the body of the 

lateral ventricle, infratentorial lesion. When these criteria were applied to 

elderly volunteers with non-specific high signal changes none of them were 

attributed with an incorrect MS diagnosis. It is also noted that MS remains a 

clinical diagnosis. 

Several potential MRI features for supporting a diagnosis of MS were then 

applied to a cohort of subjects with a clinically isolated syndrome (CIS) 

suggestive of MS, and then development of clinically definite MS (i.e. further 

clinical relapse in a different CNS location) during follow up was used to evaluate 

their performance (Barkhof et al., 1997). As new T2 lesions had previously been 

shown to be representative of dissemination in time (Paty et al., 1988), the 

introduction of contrast in MRI led to the concept of enhancing lesions with non-

enhancing lesions on MRI representing dissemination in time and space (Heun et 

al., 1988). The presence of enhancing lesions was incorporated into the new 

diagnostic criteria following a logistic regression analysis of the previous criteria 

(Fazekas et al., 1988; Paty et al., 1988) in CIS patients. The recommendations 

from the study were as follows: presence of at least one enhancing lesion or nine 

T2 weighted lesions: one juxtacortical, one infratentorial and three 
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periventricular (Barkhof et al., 1997). It was found that the diagnostic accuracy 

increased from 69 to 80% when the number of lesions was increased from four 

to nine.  

Tintoré et al later addressed the criteria recommended by Barkhof et al. (1997), 

in a further study on CIS patients (Tintoré et al., 2000). This study was done on 

the basis that a diagnosis of MS cannot be made in those with CIS, as they do not 

fulfil the criteria of dissemination in time. Again it was found that the Barkhof 

criteria were superior to earlier proposed criteria; however, it was 

recommended that at least three out of the four criteria be fulfilled to optimise 

the accuracy in diagnosis.  

A meeting of the NMSS-supported International Panel on MS Diagnosis then 

presented what later became known as the McDonald criteria (McDonald et al., 

2001). These criteria integrated MRI into the diagnosis as well as: evidence of 

dissemination in time (DIT) and space (DIS), objective clinical signs, CSF analysis, 

visual evoked potentials. Importantly for the first time the McDonald criteria 

made provisions for the subset of patients with progressive forms of MS and 

include this in the criteria.  

The MRI criteria were based on those of Barkhof and Tintoré (Barkhof et al., 

1997; Tintoré et al., 2000); three of the four of the following were required: one 

gadolinium enhancing lesion or nine T2 hyperintense lesions, at least one 

infratentorial lesion, at least one juxtacortical lesion, at least three 

periventricular lesions. These initial McDonald criteria also included, to a limited 

extent, the presence of spinal cord abnormalities on MRI. Dissemination of 
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lesions in time was satisfied by the presence of gadolinium (Gd) enhancing or a 

new T2 weighted lesion in an MRI at least three months from the initial event.  

The McDonald Criteria were then revised in 2005 following a meeting of the 

International Panel on the Diagnosis of Multiple Sclerosis (Polman et al., 2005). 

The Panel reviewed all literature published on the original McDonald criteria 

and recognised the potential for misdiagnosis of MS in conditions that are not 

typical of adult onset MS in a Western adult population. The modified criteria 

again incorporate CSF analysis, VEPs and clinical findings as well as three of the 

MRI criteria as outlined in the 2001 criteria with some modifications. Any 

number of cord T2 lesions could substitute for a brain lesion (whereas only one 

could in 2001 criteria) and a cord lesion was recognised as having the same 

significance as an infratentorial lesion. The other modification was in the 

definition of DIT: the originally proposed time period of three months for DIT 

was altered to one month for a new T2 lesion to satisfy DIT or detection of Gd 

enhancement at least three months after the onset of the clinical event. 

The European multicentre collaborative research network that studies MRI in 

MS (MAGNIMS) (Montalban et al. 2010) proposed criteria for MS based on a 

single scan. The proposed MRI criteria are as follows: (i) one or more lesion(s) in 

at least two of 4 locations considered characteristic for MS (juxtacortical, 

periventricular, infratentorial and spinal cord), as outlined before, to satisfy 

dissemination in space, and (ii) simultaneous presence of Gd enhancing and non 

enhancing lesions or a new enhancing lesion or T2 weighted lesion on any follow 

up scan to satisfy dissemination in time. 
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These MAGNIMS criteria were subsequently appraised and encorporated into 

the 2010 revisions to the McDonald criteria (Polman et al., 2011). DIS again was 

defined as one or more T2 lesions in at least two of four characteristic areas of 

the CNS (Periventricular, juxtacortical, infratentorial, spinal cord). However, 

symptomatic lesions in the brainstem or spinal cord are excluded and Gd 

enhancement is not required to demonstrate DIS. DIT has been defined as a new 

T2 or Gd enhancing lesion on a follow up MRI scan, with reference to the original 

scan or presence of Gd enhancing and non Gd enhancing lesions. The criteria for 

a diagnosis of PPMS are also given whereby patients must have one year of 

progression with two of the following: Evidence of DIS in the brain (≥1 T2 lesion 

in following locations: periventricular, juxtacortical or infratentorial), evidence 

of DIS in the spinal cord, based on ≥2 T2 lesions in the cord, positive unmatched 

OCBS. The issues of ethnic heterogeneity and differential diagnosis are discussed 

(discussed in detail below). Again, however it is emphasised that these criteria 

must be applied in an appropriate clinical context with objective signs on clinical 

examination. These updated criteria differ substantially from previous iterations 

of the McDonald criteria because it is now possible to confirm a diagnosis of MS 

at the first presentation suggestive of demyelination. 

In presenting any new criteria, it is generally acknowledged that MS is highly 

heterogeneous condition with a large number of conditions that can mimic it 

clinically and/or on imaging (Charil et al., 2006; Miller et al., 2008); no criterion 

is entirely reliable on its own, and expert clinical evaluation by an experienced 

neurologist remains at the centre of an effective diagnostic process. It is also 
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essential that the specificity and sensitivity of each proposed new set of criteria 

are rigorously scrutinised to reduce the chance of a misdiagnosis of MS. 

 

1.2.6 Differential diagnosis 

MS has a number of ‘typical’ presentations such as optic neuritis, partial myelitis 

or brain stem syndromes, however these presentation may have numerous other 

causes to consider in the differential diagnosis, and furthermore, a number of 

atypical or unusual presentations of MS are possible such as: psychosis 

(Felgenhauer 1990), behavioural or intellectual changes (Young et al., 1976), 

aphasia (Lacour et al., 2004) hemianopia or seizures (Striano et al., 2003). Given 

the diverse range of symptoms and signs possible MS often enters the 

differential diagnosis of unexplained neurological symptoms and equally a 

number of other varied conditions can mimic MS, which may result in 

misdiagnosis. 

The differential diagnosis of MS is highlighted in the McDonald criteria 

(McDonald et al., 2001), listing a number of different potential mimics. The 

clinical presentation and the characteristic imaging findings in MS can be caused 

by ischaemic changes due to conditions such as antiphospholipid antibody 

syndrome, CADASIL, and systemic lupus erythematosis (SLE) (Compston et al., 

2006). A number of genetic disorders such as leukodystrophies can produce 

white matter changes on MRI. 

Given the relapsing nature of MS a number of CNS infections can present in a 

similar fashion, such as CNS Lyme disease and neurosyphilis. Possible infective 
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aetiologies can often be elucidated by CSF analysis, which is alluded to in early 

diagnostic criteria for MS (Schumacher et al., 1965). 

Other disorders such as acute disseminated encephalomyelitis (ADEM) or 

neuromyelitis optica (NMO) are more closely related to MS and can pose 

diagnostic dilemas. However with recently discovered antibody for NMO 

(Lennon et al., 2004), the distinction between MS and NMO is possible in 

suspected cases. 

Miller et al. addressed the issue of differential diagnosis and ‘red flags’ in the 

diagnosis of MS (Miller et al., 2008). There were 79 red flags identified, which 

were classified as: major, intermediate or minor. The authors provided a 

diagnostic algorithm to eliminate alternative diagnoses and to confirm a 

diagnosis of CIS or MS. CIS is further defined as being monofocal or multifocal 

based on clinical or radiological features. 

The issue of differentiation between NMO and MS is also addressed based on: 

differences in response to immunomodulatory therapy, predilection in NMO for 

severe optic neuritis and myelitis with T2 weighted spinal cord lesions on MRI 

extending over three or more spinal segments, expression of aquaporin 4 

antibodies (seen in ~70% with NMO) and OCBs are less likely to be present (10-

20% of NMO cases vs. 70-90% MS). NMO can be excluded with biopsy evidence 

of sarcoidosis or vasculitis although seropositivity for antinuclear antibodies 

(ANA) or Sjögren’s (SSA/SSB) does not exclude an NMO diagnosis. 

The diagnosis of ADEM and its differential diagnosis are also outlined. ADEM 

typically presents as a subacute encephalopathy over one week to three months 
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and may have improvement or recovery; it may follow an infectious illness. MRI 

brain in ADEM typically shows symmetrical or large multifocal brain lesions 

(Kesselring et al.,1990), however it has been proposed that no clinical or MRI 

criteria reliably distinguishes fulminant episodes of MS from ADEM (Banwell et 

al., 2007) and the diagnosis of ADEM is often revised to that of MS after 

continued surveillance (de Seze et al., 2007). 

Following a meeting of the MAGNIMS (Magnetic Resonance Network in Multiple 

Sclerosis) a list of imaging red flags for MRI were compiled for images atypical 

for MS where another diagnosis is more likely (Charil et al., 2006). The imaging 

characteristics of NMO, with minimal cerebral lesions, ADEM, with symmetrically 

defined lesions and poorly defined lesion margins are discussed as well as the 

findings in a number of other conditions such as CADASIL, abscesses and 

progressive multifocal leucoencephalopathy (PML). 

In summary, it is clear that a wide spectrum of disorders can mimic MS 

highlighting the importance of investigations and imaging when suspicious of an 

MS mimic. MRI clearly plays a key role in the diagnosis of MS as outlined above; 

an introduction to MRI is given in chapter two. 
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Chapter 2 - Magnetic resonance imaging 

 

2.1 Magnetic resonance imaging principles 

The human body is composed of a number of different tissue types, each with 

varying amounts of water present. Each water molecule is composed of 

hydrogen and oxygen atoms, which contain: protons, neutrons and electrons. It 

is the nucleus of the hydrogen atom that is of particular interest in MRI as this 

contains a proton, which has a net charge and spin on its own axis. These protons 

have a magnetic moment and can align with an external magnetic field. 

When an external magnetic field (B0) is applied to a hydrogen nucleus the 

magnetic moment of the nucleus will align in either the same direction (parallel), 

or in the opposite direction (anti-parallel). The net moment of the hydrogen 

nuclei is known as the net magnetisation vector (NMV), which is initially 

longitudinal i.e. along the z-axis. When the B0 is applied, an additional rotatory 

movement occurs around the applied field, this movement is known as 

precession. The frequency of procession is called the Larmor frequency and is 

governed by the magnetic field strength and gyromagnetic ratio. 

Resonance occurs when an applied force matches the natural frequency of an 

object, giving rise to an increase in the amplitude oscillations that occur. The 

same principle of resonance applies to protons, when an external force matches 

the precessional frequency of the nucleus. If a radio frequency (RF) pulse is 

applied with a frequency equal to the Larmor frequency that causes resonance to 

occur, this resulting process is known as excitation. 
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The application of the RF pulse flips the NMV towards the transverse plane i.e. 

along x-y axis from the original z-axis. In the special case of a 90° the NMV is 

entirely orientated in the transverse plane. The phase and magnitude of the NMV 

in plane is measured by the receiver coil.  

2.2 T1 – longitudinal relaxation 

Immediately after excitation, the NMV returns to the original longitudinal vector, 

which is known as the longitudinal or T1 relaxation (shown in Figure 2.1). 

 

Figure 2.1 T1 relaxation of brain grey and white matter (image from 

www.mcauslander.sc.edu) 

The removal of the RF pulse causes the NMV magnitude of the protons to spiral 

back to their original processional position around the static magnetic field from 

http://www.mcauslander.sc.edu/


 51 

the transverse plane during the application of the RF pulse. T1 is defined as the 

time required for longitudinal magnetisation to restore to 63% of its final value. 

2.3 T2 – transverse relaxation 

During the application of the RF pulse, a large number of protons precess with 

the same phase in the transverse plane. Due to spin-spin interactions (T2 

relaxation) and field inhomogeneities (T2* relaxation), less and less protons 

precess in phase, which combined result in transverse relaxation. T2 relaxation 

is shown in Figure 2.2. 

 

Figure 2.2 T2 (transverse relaxation) of grey matter, white matter, blood and 

CSF (image from www.mcauslander.sc.edu) 

http://www.mcauslander.sc.edu/
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As a result of magnetic field inhomogeneities, the process of decay known as T2* 

decay also occurs and represent the reduction in the induced signal. 

T2 is defined as a time required for a decrement, from the transverse 

magnetisation value to decrease to a value of 37%. 

2.4 Pulse sequences 

Pulse sequences are designed to take advantage of different relaxation times in 

tissues and are constructed through the use of different combinations of RF 

pulses and gradients. The main parameters of a pulse sequence are the echo time 

(TE) and the repetition time (TR). TR is the time between subsequent excitations. 

The time from the RF pulse to the acquisition is known as the TE. 

2.5 Spin Echo sequences 

If a transverse magnetisation is produced by an RF pulse, a transient MR signal 

occurs at the Larmor frequency, which decays with a characteristic T1 and T2*. 

This decay is known as the free induction decay. However, the re-appearance of 

the NMR signal can occur after this point, as a consequence of the effective 

reversal, or rephasing, of the dephasing spins by a specific 180° RF pulse in a 

spin echo (SE) sequence. 

The fast spin echo sequence differs slightly from the conventional SE, as multiple 

180° RF pulses are applied and this produces a series of echoes with a resultant 

reduction in total acquisition time. Fast spin echo sequences are usually T2 

weighted and the use of this sequence in MS is discussed later in relation to its 

use in the spinal cord (Kidd et al., 1993). 



 53 

2.6 Gradient echo sequences 

Gradient echo sequences are an alternative means rephase the spins compared 

to SE sequences, as they are usually faster and allow shorter echo times. No 180° 

pulse is applied, in contrast to SE sequences and which facilitates the short TE 

and TR. 

A commonly used gradient echo sequence in investigation of multiple sclerosis is 

the T1 weighted magnetically prepared rapid acquisition gradient echo sequence 

(MP-RAGE) (Mugler and Brookeman 1990). T1 MPRAGE sequences have also 

been used for evaluation of spinal cord atrophy (Lin et al., 2003) and its use will 

be discussed further later. 

2.7 Image contrast 

Contrast is of importance in MRI so that abnormalities in normal appearing 

tissue can be readily determined, such as demyelination in the CNS in MS. 

Different tissues in the body have intrinsic contrast parameters that are fixed, 

however by altering parameters such as TR and TE, amongst others, extrinsic 

contrast can be changed. When viewing the image areas of high signal appear 

brighter and low signal are darker. 

 

2.7.1 T1-weighted imaging 

T1 recovery is dependent on the intrinsic properties of the tissue type that is 

being examined. Fat has a short T1 time whereas water’s T1 time is prolonged as 

a result of its molecular structure. Since fat has a short T1 it appears bright on a 



 54 

T1-weighted image and water or CSF appears have a longer T1 and as a result 

appear dark. The amount of T1-weighting is determined by TR, which is short for 

a T1-weighted spin echo sequence to maximize the contrast between different 

tissues e.g. grey matter, white matter and CSF in the brain. Therefore a T1-

weighted image is created by using a short TR and short TE. 

In addition to the contrast produced by different MRI weighting, paramagnetic 

substances can be injected intravenously such as gadolinium (Gd) chelates, 

which act as enhancement agents in MRI. Gadolinium shortens the T1 of effected 

tissue by altering the local magnetic field. In imaging the brain in MS, Gd 

enhancement is thought to reflect areas of acute inflammation with disruption of 

the blood-brain barrier (Nesbit et al., 1991). 

T1-weighted images and in particular Gd enhanced T1 weighted images are of 

importance in MS. The onset of a relapse in MS is often accompanied by Gd 

enhancing lesions on MRI (Miller et al., 1993). Equally, some hypo-intense 

lesions can be seen on T1-weighted images in MS and these are termed black 

holes, which, when persistent, have been shown to correlate with axonal loss on 

histopathology (Bruck et al., 1997). When acute contrast enhancing lesions are 

analysed 80% appear hypointense (van Waesberghe JH et al., 1998). In a four 

year follow up study, it was found that approximately 60% of these so-called 

‘acute’ black holes evolve into permanent ones and that the persistence of black 

holes correlated with the duration of enhancement (Bagnato et al., 2003). 
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2.7.2 T2-weighted imaging 

As with T1, T2 imaging decay varies according to the tissue being imaged as 

decay is determined by the result of magnetic fields of nuclei interacting with 

each other. Fat has a short T2 time and water has a long T2, due to slower 

dephasing of water molecules. Water therefore appears as high signal on T2-

weighted imaging and fat appears dark. The degree of T2-weighting is varied by 

changing the TE; T2-weighted images typically have a long TR (to minimise T1 

contrast) and long TE, to maximise the differences in T2 decay as seen in Figure 

2.2. 

T2-weighted images have also been evaluated in the context of MS as a measure 

of inflammatory disease burden and net changes in the brain T2 lesion volume 

have been used as endpoints in clinical trials (Paty et al., 1993). The net change 

of T2 weighted lesion volume in a serial MRI study reflects the volume of new or 

enlarging and resolved or shrinking lesions (Willoughby et al., 1989). 

2.6.3 Proton density imaging 

The number of protons in the tissue being examined determines the proton 

density. The signal is determined in proton density (PD) weighted image by the 

number of protons present, high signal is produced by greater number of 

protons by an increase in the transverse component of magnetisation. If the 

effects of T1 and T2 are decreased, this results in increased proton density 

weighting on an image. Typically this is achieved by using a long TR and short TE. 
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Proton density-weighted sequences may be of particular value in MS for imaging 

lesions in the posterior fossa. In one study assessing the MRI findings in patients 

with a known internuclear opthalmoplegia, a common finding in MS, it was 

found that proton density-weighted imaging was superior to other sequences in 

detecting lesions in the medial longitudinal fasiculus (Frohman et al., 2001). 
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Chapter 3 - Spinal cord magnetic resonance imaging in multiple sclerosis 

 

3.1 Introduction 

In clinically definite MS, spinal cord lesions are detected in up to 85% of patients 

and if atrophic changes are included then up to 90% of patients will have an 

abnormal MRI of the spinal cord (Lycklama et al., 1998). This degree of 

involvement of the cord, a clinically eloquent site, is likely to be a contributory 

factor to the physical disability experienced by MS patients. 

As MS has been proven in post mortem studies to involve all of the central 

nervous system (CNS) it is desirable to image it in its entirety. However, MRI of 

the spinal cord poses a number of technical difficulties as the cord itself is a small, 

mobile structure (Mikulis et al., 1994), which is also susceptible to motion 

artefacts from respiration, cardiac contraction and cerebrospinal fluid (CSF) flow 

artefact (Bronskill et al., 1988; Curtin et al. 1989; Czervionke et al., 1988; Hinks 

et al., 1988; Levy et al., 1988). These technical difficulties can be addressed by 

several approaches including cardiac gating, presaturation slabs and fast imaging 

techniques. 

Due to these technical limitations earlier MR studies had difficulty detecting 

smaller and more chronic lesions, particularly in the thoracic cord whereas 

larger more acute lesions were more easily identified (Miller et al., 1987; Turano 

et al., 1991). Furthermore, the duration of image acquisition was prolonged in 

early studies in order to obtain diagnostic quality images for detection of lesions 

using conventional T2-weighted spin echo images. The issues of length of time 

and image quality were addressed using multi-array coils and T2-weighted fast 
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spin echo sequencing (Kidd et al., 1993). This new imaging technique was also 

able to give an indication of cord atrophy, which correlated with the level of 

disability experienced by the patient. 

Routine clinical assessment of the spinal cord in suspected or confirmed MS, 

typically involves both sagittal and axial T2-weighted images. Fluid attenuated 

inversion recovery (FLAIR), unlike in the brain, has not proven useful in the 

assessment of cord lesions (Keiper et al., 1993), nor has T1-weighted imaging 

(Lycklama et al., 2003). This may be due to the organisation of tissue in the cord. 

However, T1-weighted imaging can be used for the evaluation of cord atrophy 

(Lycklama et al., 1998). Axial T2-weighted images are also of use in the detection 

of MS lesions (Stevenson et al., 1998); they may confirm an equivocal 

abnormality seen on a sagittal image as well as localising the lesion more 

accurately within the cord. 

MRI is an important marker of disease activity in MS as the administration of 

gadolinium (Gd) contrast can demonstrate activity despite absence of clinical 

manifestations of the disease (Bastianello et al., 1990; Harris et al., 1991; Miller 

et al., 1998; Thompson et al., 1991; Barkhof et al., 1992; Capra et al., 1992; 

McFarland et al., 1992). In a study examining serial Gd enhanced MRI of the brain 

and spinal cord (Thorpe et al., 1996); it was found that 10% of the enhancing 

lesions found were in the spinal cord. It was also found that 31% of the 

enhancing spinal cord lesions cause symptoms, in comparison with the much 

larger number of enhancing lesions in the brain with a very low number of 

corresponding relapses. New enhancing brain lesions are more likely to be found 
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than in the cord and simultaneous enhancement of brain and cord lesions is 

often found. 

To assess the MRI abnormalities in the MS spinal cord, investigators have 

compared pathological findings directly with the post mortem images obtained 

from MRI. This allows complete imaging of the spinal cord without any flow or 

movement artefacts and permits a direct comparison. In one study, the spinal 

cords of 19 patients and three controls were examined histologically and 

radiologically using 1.0T MRI with 1mm pixel resolution (Lycklama et al., 2001). 

In this study the sensitivity of MRI was found to be high when compared to 

histology and there was also a good correlation with the subtype of MS. It was 

found that high signal change on MRI corresponded with demyelination and 

changes extended into grey matter in some patients and the distribution of 

lesions were similar to previous studies (Oppenheimer 1978; Fog 1950). It was 

also noted when the MRI was reviewed concurrently with the histology that mild 

signal increase corresponded to partial demyelination. In the PPMS group more 

extensive abnormalities consisted of diffuse signal change on proton density 

weighted spin echo sequences. 

In a separate study a comparison was made between 1.5T, 4.7T MRI and the 

histopathology in spinal cords of seven MS cases (Bergers et al., 2002). The 

findings were similar however the authors point out that; sagittal views on MRI 

underestimate the number and extensiveness of spinal cord lesions, as well as 

diffuse abnormalities in the MS spinal cord. 
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3.1.1 Spinal cord imaging in clinically isolated syndrome 

MRI has been used to assess the number of asymptomatic lesions in the spinal 

cord, in patients with a clinically isolated syndrome (CIS), a presumed 

inflammatory demyelinating event, which often heralds the onset of MS 

(O’Riordan et al., 1998). It was found that there was a high frequency of 

asymptomatic cord lesions found, irrespective of the clinical syndrome. The 

lesions found were predominantly in the cervical and thoracic cord with no 

lumbar lesions found. These findings correlated with previous neurophysiologic 

studies on the cord in CIS (Hume et al., 1988). O’Riordan et al. argue that spinal 

cord MRI may assist in the diagnosis of demyelination in patients over 50, where 

high signal changes in the brain are likely to be seen due to ischaemia, whereas 

abnormalities of the cord are less likely. 

The role of spinal cord imaging in patients who presented with an optic neuritis 

has been assessed (Dalton et al., 2003); it was found that 27% of patients with 

optic neuritis had spinal cord lesions at presentation. Using diagnostic criteria 

(McDonald et al., 2001) for MS spinal cord imaging was felt to be of limited value 

in this study. Other studies however, have shown that the frequency of 

developing MS, has been found to be higher in patients with both brain and 

spinal cord lesions at baseline, than brain lesions alone (Brex et al., 1999). 

In a more recent study of 100 patients with optic neuritis, followed up for six 

years, it was found that asymptomatic cord lesions were seen in 26% of patients 

(Swanton et al., 2009). It was found in those with cord lesions at presentation 

there was an increased odds of higher disability at six years and that this effect 
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was independent of brain lesion load. Swanton et al. argue that there may be a 

role for spinal cord imaging in patients with optic neuritis in assessing the risk 

for future disability.  

In a multicentre retrospective study 282 patients with CIS were assessed to 

investigate the performance of the McDonald criteria in those who developed 

CDMS (Swanton et al., 2007). T2-weighted spinal cord images were available for 

130 patients, with abnormalities detected in 45 patients and five had normal 

brain imaging. It was found that spinal cord MRI increased the sensitivity and 

specificity of the McDonald criteria by up to 3%.  

As not all those with a CIS will convert to clinically definite MS (CDMS), other 

studies have assessed spinal cord imaging in recently diagnosed MS (Bot et al., 

2004). The presenting feature often determines whether the spinal cord is 

imaged or not in CIS. In this study of 104 patients with early MS 82.7% had an 

abnormal MRI of the spinal cord. The fact that not all patients with CIS convert to 

MS may account for the disparity in the percentage of abnormal spinal cord 

images obtained in CIS patients compared to recently diagnosed MS patients in 

this study. The spinal cord MRI obtained in this cohort allowed a diagnosis of MS 

in three patients who did not fulfil the Paty criteria and in 28 patients who did 

not fulfil the Barkhof/Tintoré criteria. It was also found that with substitution of 

a spinal cord lesion for a brain lesion to determine dissemination in space the 

sensitivity of the McDonald criteria reached 84.6%. 
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3.2 Utility of spinal cord MRI in diagnosis 

The diagnosis of multiple sclerosis is based on diagnostic criteria; following a 

meeting of an International Panel on the diagnosis of MS the McDonald criteria 

were established (McDonald et al., 2001 Tables 3.1 and 3.2). The original criteria 

were to be applied to patients in whom there was a clinical suspicion of 

demyelinating disease and no other explanation could account for the symptoms. 

The criteria were based largely on brain MRI that contained: one Gd enhancing 

lesion or nine T2 enhancing lesions if there is no Gd enhancing lesion, at least 

one infratentorial lesion, at least one juxtacortical lesion, or at least three 

periventricular lesions. However it was recommended that one spinal cord 

lesion could be substituted for one brain lesion. 
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Table 3.1 McDonald MRI criteria to demonstrate dissemination of lesions in 
time: 

Original McDonald Criterion 2005 Revisions 
1. If a first scan occurs 3 months or 
more after the onset of the clinical 

event, the presence of a Gd-enhancing 
lesion is sufficient to demonstrate 

dissemination in time, provided that it 
is not at the site implicated in the 

original clinical event. If there is no 
enhancing lesion at this time, a follow 
up scan is required. The timing of this 

follow up scan is not crucial, but 3 
months is recommended. A new T2- or 
Gd-enhancing lesion at this time fulfils 
the criterion for dissemination in time 

1. There are two ways to show 
dissemination in time using imaging: 

 a. Detection of Gd enhancement at 
least 3 months after the onset of the 
initial clinical event, if not at the site 

corresponding to the initial event 
b. Detection of a new T2 lesion if it 

appears at any time compared with a 
reference scan at least 30 days after 
the onset of the initial clinical event 

2. If the first scan is performed less 
than 3 months after the onset of the 
clinical event, a second scan done 3 
months or longer after the clinical 

event showing a new Gd-enhancing 
lesion provides sufficient evidence for 
dissemination in time. However, if no 

enhancing lesion is seen at this second 
scan, a further scan not less than 3 

months after the first scan that shows a 
new T2 lesion or an enhancing lesion 

will suffice. 
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Table 3.2 McDonald MRI Criteria to demonstrate brain abnormalities and 
demonstration of dissemination in space: 

Original McDonald Criteria 2005 Revisions 
Three of the following: 

1. At least one Gd Enhancing 
lesion or nine T2 hypertintense 

lesions if there is no Gd-
enhancing lesion 

2. At least one infratentorial lesion 
3. At least one juxtacortical lesion 

4. At least three periventricular 
lesions 

Three of the following: 
1. At least one Gd-enhancing 

lesion or nine T2 hyperintense 
lesion if there is no Gd-

enhancing lesion 
2. At least one infratentorial lesion 
3. At least one juxtacortical lesion 

4. At least three periventricular 
lesions 

NOTE: One spinal cord lesion can 
substitute for one brain lesion 

NOTE: A spinal cord lesion can be 
considered equivalent to a brain 

infratentorial lesion: an enhancing 
spinal cord lesion is considered to be 

equivalent to an enhancing brain lesion 
and individual spinal cord lesions can 

contribute together with individual 
brain lesions to reach the required 

number of T2 lesions 
Criteria reproduced from Polman et al. 2005 
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Following a further meeting of the International Panel a number of conclusions 

were reached regarding spinal cord MRI in suspected MS, which are reflected in 

the 2005 revisions to the McDonald Criteria (Polman et al., 2005, Table 3.1 and 

3.2). The Panel recognised the use of spinal cord imaging in excluding an 

alternative diagnosis, such as a compressive lesion (e.g. tumour or intervertebral 

disc), and also that intrinsic cord lesions are unlikely to occur in a healthy person 

with aging as brain white matter lesions do (Kidd et al., 1993; Lycklama et al., 

2003). Thus cord lesions provide more specificity, especially in older adults, 

when brain imaging is less specific. It was also recommended that spinal cord 

imaging could be used to determine dissemination in space, if this is not found 

on brain imaging in suspected MS. The cord lesion can substitute for an 

infratentorial lesion but not for a periventricular or juxtacortical lesion. It was 

recommended that spinal cord lesions should be focal and clearly delineated on 

T2-weighted imaging. 

The presence of spinal cord lesions are also included in the 2010 revisions to the 

McDonald criteria and may provide evidence of DIS in MS or in the context of 

PPMS if there are more than two spinal cord lesions this may serve as evidence 

of DIS in the spinal cord (Table 3.3). 
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Table 3.3 The 2010 McDonald criteria for diagnosis of multiple sclerosis 

Clinical Presentation Additional Data Needed for MS 
Diagnosis 

≥2 attacks; objective clinical evidence 
of ≥2 lesions or objective clinical 
evidence of 1 lesion with reasonable 
historical evidence of a prior attack 

None 

≥2 attacks; objective clinical evidence 
of 1 lesion 

DIS, demonstrated by: ≥1 T2 lesion in 
at least 2 of 4 MS-typical regions of the 
CNS (periventricular, juxtacortical, 
infratentorial, or spinal cord); or await 
a further clinical attack implicating a 
different CNS site 

1 attack; objective clinical evidence of 
≥2 lesions 

DIT, demonstrated by: Simultaneous 
presence of asymptomatic Gd-
enhancing and non enhancing lesions 
at any time; or a new T2 and/or Gd-
enhancing lesion(s) on follow-up MRI, 
irrespective of its timing with 
reference to a baseline scan; or await a 
second clinical attack 

1 attack; objective clinical evidence of 
1 lesion (clinically isolated syndrome) 

DIS and DIT, demonstrated by: For DIS: 
≥1 T2 lesions in at least 2 of 4 MS-
typical regions of the CNS 
(periventricular, juxtacortical, 
infratentorial, or spinal cord); or await 
a second clinical attack implicating a 
different CNS site; and for DIT: 
Simultaneous presence of 
asymptomatic Gd-enhancing and non 
enhancing lesions at any time; or a new 
T2 and/or Gd-enhancing lesion(s) on 
follow-up MRI, irrespective of its 
timing with reference to a baseline 
scan; or await a second clinical attack 

Insidious neurological progression 
suggestive of MS (PPMS) 

1 year of disease progression 
(retrospectively or prospectively 
determined) plus 2 of 3 of the 
following criteria: 
1.Evidence for DIS in the brain based 
on ≥1 T2 lesions in the MS-
characteristic (periventricular, 
juxtacortical or infratentorial) regions 
2.Evidence for DIS in the spinal cord 
based on ≥2 T2 lesions in the cord 
3.Positive CSF (isolelectric focusing 
evidence of oligoclonal bands and/or 
elevated IgG index) 
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In two long-term follow-up studies (Beck et al., 2003; Fisniku et al., 2008), it was 

found that MS developed in up to 86% of those with an abnormal brain MRI with 

a CIS. In order to provide an early diagnosis of MS the European multicentre 

collaborative research network that studies MRI in MS (MAGNIMS) drew up 

diagnostic criteria (Montalban et al., 2010), which can provide an MS diagnosis 

in the earliest stage of the disease. These criteria also reflect the importance of 

spinal cord imaging as in the McDonald criteria. 

Spinal cord MRI has been recommended both for early diagnosis and may also be 

useful in determining clinical subtypes (Lycklama et al., 1998). It has also been 

recommended in differentiating MS from other inflammatory disorders affecting 

the spinal cord. Autoimmune conditions, such as systemic lupus erythematosus, 

Sjögren disease, sarcoidosis and small vessel ischaemic changes can mimic the 

T2-weighted signal changes of MS in an MRI of the brain. Thus the sensitivity of 

brain MRI in MS is higher than its specificity (Ormerod et al., 1987). The result is 

that patients with neurological symptoms and an abnormal MRI brain could be 

potentially inappropriately diagnosed as having MS. As spinal cord abnormalities 

in MS have been well defined radiologically as either focal lesions or atrophic 

changes these findings rarely are found in the spinal cord in a healthy population. 

Inflammatory conditions can cause changes in the spinal cord but these often 

differ from MS (Provenzale et al., 1994; Junger et al., 1993). In one study of 

patients with various autoimmune neurological conditions, who had a brain MRI 

mimicking MS, no cervical cord lesions were seen (Rovaris et al., 2000). It has 

been suggested that MS can be confirmed with a positive predictive value of 85% 
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when the spinal cord MRI is abnormal and when the spinal cord is normal; the 

exclusion of MS has a negative predictive value of 97% (Bot et al., 2002).  

Typically spinal cord lesions in MS are detected in the sagittal plane using T2 or 

PD-weighted images and are then confirmed on axial images. The lesions are 

usually less than one vertebral segment in length, most commonly in the cervical 

cord, however diffuse involvement of the spinal cord can also be seen (Lycklama 

et al., 2003). The lesions involve the lateral and posterior white matter and also 

involve the grey matter with a wedge shaped appearance on axial images 

(Tartaglino et al., 1995). Acutely, MS plaques can cause swelling of the cord and 

can enhance with Gd contrast, longstanding lesions can merge to form diffuse 

areas of signal change. Focal or generalised atrophy may also occur. In some 

instances only diffuse changes are seen without the appearance of demarcated 

focal lesions and are associated with progressive forms of the disease (Lycklama 

et al., 1997). 

Although spinal cord MRI is useful when MS is a differential diagnosis based on 

brain imaging, it is also useful when there is a high clinical suspicion of MS but 

the patient has a normal MRI brain, as is the case in a minority of patients with 

MS (Allen et al., 1981). MRI excludes an alternate diagnosis for the symptoms 

attributed to the cord, such as a compressive cause, and increases the sensitivity 

and specificity of imaging for an MS diagnosis (Thorpe et al., 1996). In the same 

study it was commented that cord imaging is particularly helpful in progressive 

forms of MS where there may be a limited number of lesions on the brain and a 

high proportion of cord lesions.  
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Figure 3.1 Sagittal T2-weighted T2 MRI of cervical cord with MS lesion indicated 
by the yellow arrow 

 

Figure 3.2 Axial T2-weighted MRI of the cervical spinal cord with MS lesion, 
indicated by the yellow arrow as a hyper-intense abnormality 
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3.3 Spinal cord atrophy on MRI 

The abnormalities found in spinal cord imaging have been evaluated to 

determine if they correlate with the subtype of MS: RR or progressive forms of 

the disease (Lycklama et al., 1998). There was a correlation found between the 

number of brain T1 lesions and number of focal spinal T2 lesions. There was also 

found to be a correlation between spinal cord atrophy and expanded disability 

status scores (EDSS) (Kurtzke 1983) in all groups. However, a difference in the 

degree of atrophy of the cord was noted between RRMS and progressive forms of 

the disease (PPMS, SPMS). This study was of importance as earlier studies 

(Filippi et al., 1995) evaluating the correlation between brain MRI abnormalities 

and disability were disappointing. These findings were emphasised in a further 

study evaluating dimensions of the cervical spinal cord in benign MS and SPMS 

compared to controls (Filippi et al., 1996). There was found to be an inverse 

association between cord atrophy and disability and cord dimensions in benign 

MS were similar to healthy controls. However a comparison of the T2-weighted 

lesions on brain MRI did not correlate with disease subtype or degree of 

disability. 

As earlier studies had shown a variable relationship between cord atrophy and 

disability (Kidd et al., 1993; Filippi et al., 1995), a new reproducible method of 

measuring cord atrophy was developed by Losseff et al. (1996). In this study a 

1.5T MRI was performed on sixty patients with various forms of MS. From this 

scan five axial 3mm slices were used at the level of C2/C3 intervertebral disc. 

This level was chosen for three reasons: the CSF space is wide so that the cord 

lies centrally (maximising cord/CSF contrast); there is little variability of cross 
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sectional area at this level; and it is an uncommon site for disc protrusion. A 

semi-automated technique was used, the accuracy of which was determined by 

calculating the area of resin rods in fluid to simulate spinal cord measurement. 

From these images a region of interest was drawn around the cord in the top 

slice and then around the cord and CSF space. The technique provided a measure 

of cord cross-sectional area with a coefficient of variation of 0.8%, indicating its 

reproducibility. A strong correlation was found between EDSS score and cord 

area and a correlation between reductions in cord area compared to controls 

with increasing levels of disability. The functional system scores of the EDSS 

were also found to correlate with cord area using this technique.  

Cord atrophy has been found to occur independently of focal lesions (Bergers et 

al., 2002) and these findings have correlated with pathological studies (Ganter et 

al., 1999). The axonal loss and increase in axonal diameter noted pathologically 

was confirmed to occur in normal appearing spinal cord as well as totally and 

partially demyelinated areas. This study provided further evidence for the lack of 

correlation between T2-weighted lesions and physical disability as measured by 

the EDSS. As pathological studies indicated axonal loss from early in the course 

of the disease, radiological studies have also examined possible axonal loss in 

patients with a CIS using atrophy as a surrogate marker of this pathology (Brex 

et al., 2001). Those patients with an abnormal brain MRI were found to have a 

more atrophic spinal cord than those with a normal brain MRI compared to 

controls. Spinal cord syndromes accounted for 12% of those studied, suggesting 

that axonal loss occurs in the spinal cord irrespective of clinical presentation. 
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The investigators also reported atrophic changes found in the brain in the early 

stages of MS following CIS (Brex et al., 2000). 

 

Figure 3.3 Sagittal 3D T1-weighted cervical spine MRI: used in calculating spinal 
cord area in MS. 
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3.4 Association between spinal cord MRI abnormalities and disability 

 

The EDSS, developed by Kurtzke (1983), remains one of the most frequently 

used measures of disability in MS in clinical trials and studies of MS. A number of 

criticisms have been made of the EDSS since it was developed: insensitivity to 

small changes, poor intra-rater and inter-rater variability and its focus on 

ambulatory function without all measures of disability being taken into account 

(Hobart et al., 2000). Spinal cord cross sectional area on MRI, however, has been 

shown to correlate with EDSS and functional system scores (FSS) (Losseff et al., 

1996) and given the lack of correlation between T2-weighted lesions on brain 

MRI and disability, a number of investigators have assessed the use of spinal 

cord MRI parameters as an objective and reproducible measure of disability.  

The abnormalities found on spinal cord MRI appear to correlate with the subtype 

of MS (Lycklama et al., 1997). As there had been no correlation found between 

the number of focal lesions and disability (Bergers et al., 2002) Lycklama et al. 

investigated whether diffuse changes seen on proton density-weighted images, 

rather than focal T2 hyperintense lesions could account for disability in the 

subgroups of MS assessed. Sixty patients with RRMS, SPMS and PPMS were 

imaged and examined using the EDSS (Kutrzke 1983) and also the Functional 

Systems Score (Kurtzke 1961). It was found that the presence of diffuse 

abnormalities was associated with progressive forms of MS and higher scores on 

the EDSS and Functional Systems Score.  

As there has been an established link between cord atrophy and disability 

(Losseff et al., 1996), studies have determined whether this is a reliable MRI 
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parameter for assessment of physical disability in long-term follow up studies 

(Stevenson et al., 1998; Losseff et al., 1996). 

 By using a volume acquired inversion-prepared fast spoiled gradient echo 

(FSPGR) acquisition the problem of reproducibility was addressed by Stevenson 

et al. (Stevenson et al., 1998). The cord area was measured at C2/C3 in 28 

patients with MS. Intra-rater reproducibility was improved at 0.51% compared 

to 0.73% in the assessment by Losseff et al. (Losseff et al., 1996). Again there was 

a strong correlation between EDSS scores, however the MRI parameters were 

found to be reproducible in this long-term follow up study. 

MRI of the brain in PPMS often shows limited abnormalities (Thompson et al., 

1991); with the result that prediction of disability was limited in this progressive 

form of the disease based on this modality of imaging alone. In a long term follow 

up study of PPMS (Sastre-Garriga et al., 2005), it was found that cord atrophy 

over two years predicted clinical outcome on long-term follow up. 

In a ten-year follow up study of 101 patients with PPMS, patients were assessed 

using 10m metre timed walking test (TWT), nine hole peg test (9-HPT), EDSS 

and T1 and T2-weighted MRI of the brain and spinal cord at baseline one and 

two years (Khaleeli et al., 2008). Cervical cord cross sectional area was 

calculated using the technique described by Losseff et al. (Losseff et al., 1996). 

Changes in the EDSS score as well as other parameters were recorded. Although 

spinal cord cross sectional area predicted disability at five years it did not do so 

at ten years. The strongest predictor of long term disability in PPMS was TWT at 

baseline. 
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Earlier studies (Stevenson et al., 1998; Losseff et al., 1998; Losseff et al., 1995) 

focused on cord atrophy as a marker of disability however this has not been the 

only MRI parameter assessed in relation to disability, more recent studies have 

used quantitative MRI measures as a means of assessing the cord and correlation 

with disability. 

 

3.5 Inversion recovery MRI in the spinal cord 

Inversion recovery MRI techniques invert the magnetisation in a T1 sequence by 

applying a pulse, resulting in a strong contrast between tissues with different T1 

relaxation times and can also suppress signal from fluid or fat. Inversion 

recovery sequences can also provide greater sensitivity for Gd enhancement (Lee 

et al., 2000). A number of different inversion recovery techniques have been 

employed imaging multiple sclerosis: short T1 inversion recovery (STIR), phase 

sensitive inversion recovery (PSIR) and double inversion recovery (DIR).  

 

3.5.1 Short T1 inversion recovery 

Imaging the cord in the sagittal plane in MS is useful as it can give anatomical 

level of lesions seen along the length of the cord, this can be done using a number 

of different sequences including short T1 inversion recovery (STIR). Enhanced 

T1 and T2 contrast are obtained by shortening the inversion time (Bydder et al., 

1985). The signal change due to increase in T1 and T2 is of importance as this is 

commonly seen in spinal cord lesions, such as in MS; the sequence also has less 

susceptibility to motion artefacts and enhanced fat suppression (Mascalchi et al., 
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1992). This technique was first employed in the spinal cord in 48 patients with 

varied spinal cord syndromes, not exclusively demyelinating. The STIR sequence 

was found to be superior to cardiac gated spin echo images; however, there was 

a lower signal to noise ratio (SNR) with STIR (Mascalchi et al., 1992).  

This technique was then employed to evaluate exclusively patients with MS who 

had symptoms or signs suggestive of spinal cord pathology (Thorpe et al., 1994). 

The STIR sequences obtained on the spinal cord were compared to FSE 

sequences. More lesions were seen on the STIR sequence; however, there was 

poorer anatomic definition and again a lower SNR. Using a combination of STIR 

and FSE the overall number of lesions detected increased by 25% and the 

authors recommend using a combination of both sequences. 

Rocca et al. compared the use of STIR with gradient echo (GE) and T2-weighted 

FSE in a study of 56 patients with MS (Rocca et al., 1999). Both GE and STIR 

sequences increased the number of lesions detected when compared to FSE, with 

STIR having the best sensitivity of the three sequences and also the greatest 

number of lesions was detected with STIR. In a separate study the STIR sequence 

was compared to conventional spin echo sequence (CSE) in a cohort of patients 

with secondary progressive MS (Bot et al., 2000). The STIR sequence showed 

33% more lesions, including smaller focal lesions, and with a higher contrast to 

noise ratio (CNR). STIR was recommended as an adjunct in detecting 

abnormalities in the spinal cord in MS. 
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Figure 3.4 Sagittal STIR image of cervical spine showing MS lesion in the cervical 
cord 
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3.5.2 Phase sensitive inversion recovery imaging 

As with other inversion recovery techniques, phase sensitive inversion recovery 

(PSIR) can provide strong contrast between tissues with different T1 relaxation 

times by estimating and removing background phase and retrieving correct 

polarity information. PSIR has shown to be effective in cortical grey matter 

lesion detection with clear lesion delineation (Hou et al., 2005; Nelson et al., 

2007, Sethi et al., 2012; Sethi et al., 2013). PSIR has been prospectively compared 

with FSE and STIR imaging in the spinal cord in MS (Poonawalla et al., 2008). 

Contrast between lesions was compared using the different sequences with FSE 

as the reference. The highest lesion to cord contrast was seen with the PSIR 

sequences and both this sequence and the STIR improved lesion detection 

compared to FSE. The authors recommend that STIR alone is not sufficient for 

lesion detection. 
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Figure 3.5 Axial PSIR of healthy cervical spinal cord at the level of C2/C3 

 

Figure 3.6 Axial PSIR of MS cervical spinal cord with lesion visible (highlighted 
by yellow arrow) in the lateral column of the white matter 
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3.5.3 Double inversion recovery imaging 

Double inversion recovery imaging (DIR) suppresses signal from white matter 

and CSF, which allows easier identification of lesions (Bedell et al., 1998). DIR 

has been utilised for detection of cortical lesions in MS that may not be visible on 

conventional MRI (Geurts et al., 2005).  This sequence has its limitations 

however as it is susceptible to flow artefacts, it also has a low SNR and has poor 

definition of lesion borders. However, use of DIR in combination with PSIR may 

improve the identification of cortical lesions in MS (Nelson et al., 2007). DIR 

imaging has been used for identification of cortical lesions in MS by several 

investigators (Calabrese et al., 2007; Geurts et al., 2005; Nelson et al., 2007; 

Wattjes et al., 2007); however there is limited information as yet on using this 

technique in the spinal cord in MS. 

 

3.6 Quantitative spinal cord MRI 

The importance of MRI in the diagnosis of MS has been reflected by its inclusion 

in all of the most recent diagnostic guidelines for this disease (McDonald et al., 

2001; Polman et al., 2005; Montalban et al., 2010). It has also been used as an 

objective marker of disease activity in a number of clinical trials for treatments 

in MS (Rovaris et al., 1999). However conventional MRI has its limitations in 

detecting the nature and extent of damage in T2-weighted lesions (Kappos et al., 

1999; Molyneux et al., 2001). A number of quantitative measures have been 

developed to elucidate the pathology of MS, which include: Magnetisation-
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transfer MRI, diffusion-weighted MRI, functional MRI and magnetic-resonance 

spectroscopy. 

 

3.6.1 Magnetic resonance spectroscopy 

In normal brain tissue four main metabolites are detected from in vivo proton 

magnetic resonance spectroscopy using long TEs: choline containing compounds, 

creatine/phosphocreatine, N-acetylaspartate (NAA) and lactate. Spectroscopy of 

acute MS lesions reveals a change in the normal values with increases in choline 

and lactate in the acute phase and a decrease in NAA (Davie et al., 1994; 

DeStefano et al., 1995). NAA is located in neurones and axons only and reduced 

NAA levels are thought to reflect axonal damage. NAA is synthesised in the 

mitochondria together with adenosine triphosphate and oxygen consumption 

(Bates et al., 1996) and although its exact function is unclear it is known to be the 

second most abundant amino acid in the CNS (Simmons et al., 1991). 

NAA is of particular importance in assessing spectra as its level is a reflection of 

axonal integrity, it can be permanently decreased reflecting axonal loss or there 

can be a reversible component suggesting axonal dysfunction in an acute lesion 

(Davie et al., 1994). Decreases in NAA can precede visible abnormalities on MRI 

by several months (Pan et al., 2001) and levels are correlated with disability and 

cognitive dysfunction (Bjartmar et al., 2000; Kendi et al., 2004). 

In a study by Bjartmar et al (2007) the NAA levels in the post-mortem spinal 

cords of five disabled patients with MS were measured. Spinal cord area, axonal 

loss and NAA levels were measured on the pathological specimens. It was shown 
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that axonal loss was correlated with decreased NAA in both myelinated and 

demyelinated axons. These data support the use of decreased NAA levels in MR 

spectroscopy (MRS) as a marker of axonal loss and consequently disability in MS. 

Studies initially focused on MRS in the brain of patients with MS, however more 

recently a number of studies involving the spinal cord have been done. The first 

such study was carried out by Kendi et al (2004), comparing MRS in the cervical 

cord of nine patients with MS and twelve healthy controls. In keeping with 

histopathological findings (Bjartmar et al., 2000) there was a prominent 

decrease in NAA levels in the spinal cord of MS patients, with all other 

metabolites unchanged from controls. The same technique was investigated in a 

separate study with 11 patients with MS and 11 controls (Blamire et al., 2007). 

Again it was found that NAA levels were substantially reduced in the spinal cord 

compared to controls and there was significant cord atrophy on conventional 

MRI sequences in MS cases. However, no significant correlation was found 

between NAA levels and EDSS scores, the authors point out that this may be due 

to the small sample size or the heterogeneity of cases used. The decrease in NAA 

was also found to be greater than compared to normal appearing white matter in 

the brain it is hypothesised that this disparity may be due to axonal damage, 

Wallerian degeneration or transection of the cord but not in the brain. 

MRS has also been employed as a method of understanding the mechanism of 

spinal cord repair following an acute relapse (Ciccarelli et al., 2010). Fourteen 

patients with a diagnosis of MS and a spinal cord syndrome localised to the 

cervical cord clinically and radiologically were recruited and imaged at three 

monthly intervals following their initial presentation. It was found that the 
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patients who did not improve had an overall decrease in NAA over time across 

the three time points (1, 3 and 6 months). In comparison with those who 

recovered, where there was an increase in NAA from one month to six months, 

and those with a better recovery had a corresponding greater increase. It was 

found that a longer disease duration was associated with a smaller increase in 

NAA after one month and both those who recovered and those who didn’t had an 

overall decrease in cord area over time. It is hypothesised that the increase in 

NAA may reflect enhanced mitochondrial activity, which is a proposed 

mechanism for recovery following demyelination. 

In a similar study by the same group (Ciccarelli et al., 2007) acute disability was 

assessed, following a cervical cord relapse, in 14 patients with MS, using spinal 

cord spectroscopy and diffusion based tractography. Radiological parameters 

were compared with the EDSS, 9-hole peg test (9-HPT) (Goodkin et al., 1988) 

and 25-foot walk test (TWT) (Cutter et al., 1999). It was found that NAA, 

although significantly lower than controls, did not correlate with EDSS or TWT 

but there was a correlation with 9-HPT.  

Myo-inositol, is a further metabolite that may be analysed from MRS and is a 

potential marker of glial cell function (Brand et al., 1993) and also may be 

increased in the normal appearing white matter in the MS brain (Fernando et al., 

2004). The authors found that myo-inositol correlated with the EDSS and 

creatine levels correlated with 9-HPT. 

More recently, myo-inositol in the cervical cord has been reported to be useful in 

distinguishing neuromyelitis optica (NMO) spectrum disorders from MS 

(Ciccarelli et al., 2013). The lower myo-inositol levels seen in this study in NMO 
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are thought to reflect astrocytic necrosis, which is a prominent feature 

pathologically in this disorder. This may have implications for future studies that 

aim to investigate biomarkers capable of distinguishing NMO from MS. 

3.6.2 Magnetisation-transfer imaging 

Magnetisation transfer involves transfer of magnetisation from the hydrogen 

nuclei of protons (including macromolecular protons e.g. in myelin and 

membranes) that have restricted movement to those that are unrestricted or 

free. The hydrogen nuclei in the water molecules are usually referred to as 

protons. Proton movement differs depending on their location whether they are 

in fluid, with free movement, or in tissue, where movement is more restricted 

(Woff et al., 1989). The free protons have fewer interactions with the 

environment and a longer T2 time compared to the protons that interact with 

the local structures and have a shorter T2. Magnetisation transfer is a 

measurement of the interaction between these two pools of protons and from 

this the magnetisation transfer ratio (MTR) can be calculated. It is of significance 

in MS because a low MTR indicates damage to macromolecular structures 

including myelin and other neuronal structures. A substantial reduction of MTR 

indicates severe tissue damage (van Wasenberghe et al., 1999). 

As with other modalities of quantitative MRI, initial studies were done on the 

brain, with subsequent work done on the spinal cord, including a comparison of 

magnetisation transfer imaging to histopathology in the spinal cord (Bot et al., 

2004). In this study the cervical cords from 11 patients with MS and two controls 

were imaged using 4.7T MRI and examined histologically. Conventional MRI 

sequences were performed as well as quantitative measures; axonal number, 
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diameter and myelin content were then established from the histology. 

Quantitative MR findings were compared with conventional MRI and it was 

found that total cord area measurement showed a prolonged T1 relaxation time, 

which was increased in MS cases. This finding was replicated with T2 

measurements and a reduced MTR compared to controls. There was a strong 

correlation found between MTR and demyelination but not axonal features. 

However the authors indicate that a number of factors may have influenced this 

lack of correlation: length of disease, varying degrees of gliosis of the cord, 

formalin fixation and high field strength. 

In a similar post mortem study on the spinal cord, using 7T MRI, Mottershead et 

al. evaluated a number of different MRI parameters, including MTR, with 

pathological samples (Mottorshead et al., 2003). It was found that there was a 

strong correlation between MTR and axonal density as well as myelin content. 

The change in MTR values were felt to be due to a reduction in bound protons, 

due to axonal loss, with a corresponding increase in free protons. This study 

supports the use of MTR to quantify both myelin and axonal loss.  

In vivo studies have also examined the use of quantitative MRI measures, 

including the examination of sensorimotor dysfunction and its correlation with 

spinal column damage in MS (Zackowski et al., 2009). Images were obtained on a 

3T MRI using cerebrospinal-fluid-normalised magnetisation transfer (MTCSF), 

which allowed evaluation of spinal columns or grey matter. MTCSF uses CSF as 

an internal intensity standard, allowing inter-individual comparison of MT data 

without the need for a reference scan. It allows for quantitative measures of 

specific spinal columns. MTCSF was calculated in lateral columns and dorsal 
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columns and grey matter volume were assessed from C2/C3. Measures of 

impairment, reflecting damage in these structures were calculated using 

vibratory sense, postural sway, ankle dorsiflexion and walking velocity. It was 

found that EDSS scores correlated with MTCSF results there were significant 

correlations between vibration and dorsal columns and dorsiflexion and walking 

velocity with lateral columns. This study demonstrated that MTCSF could be 

used as a measure of disability in the spinal cord column being assessed. It was 

also noted that grey matter volume MTCSF was significantly correlated with 

disability. The fact that MT imaging is specific for demyelination, as seen in post-

mortem studies (Bot et al., 2004), could indicate that demyelination plays an 

important role in disability, as evidenced by this study. 

Other studies have focused more on the correlation between grey matter and 

disability using MTR (Agosta et al., 2007). MS lesions are found on pathological 

studies on the grey matter of the spinal cord, however, the position of lesions 

with respect to grey and white matter is not easily determined on conventional 

MRI (Lycklama et al., 2001; Gilmore et al., 2006). The cervical cord grey matter of 

18 patients with RRMS was assessed by MTR and findings were correlated with 

EDSS scores (Agosta et al., 2007). Findings were compared to healthy controls. 

RRMS patients were found to have significantly lower MTR in the cervical cord 

grey matter. MTR was also found to correlate with the EDSS score.  
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Figure 3.7 MTR imaging in healthy cervical spinal cord. A) MT ‘on’ B) MT ‘off’ C) 
MTR map 

 

3.6.3 Diffusion weighted imaging 

Diffusion MRI is an alternate means of assessing the motion of water molecules, 

as an apparent diffusion coefficient (ADC). The structure that contains the water 

molecules alters the direction of movement, such as myelin in the brain. During a 

diffusion weighted MRI scan, diffusion sensitising gradients encode the diffusion 

properties of the tissue being investigated; this facilitates the sensitivity of the 

MR signal to the diffusion behaviour spins of the protons in the tissue. By 

measuring the ADC diffusion MRI is thereby able to give information about the 

microstructure of tissue along a diffusion-sensitised direction (Filippi et al., 

2003). The water molecules in the structure are defined as having anisotropy, 

which is the property of being directionally dependent. Anisotropy results in 

variation of diffusivity with direction of measurement (Le Bihan et al., 1991). By 

acquiring a number of different diffusion directions a diffusion tensor (DT) can 

be reconstructed as an ellipsoid construct. The full direction of a molecule’s 

diffusion can be plotted along one of the three orthogonal axes (x, y, z), which are 

known as eigenvectors. The measure of length of each eigenvector provides an 

eigenvaluie, from which quantitative measures can be calculated, including the 
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mean diffusivity (average of ADCs in three orthogonal directions). These values 

can be characterised using a 3 x 3 matrix known as tensor (Piperpaoli et al., 

1996), from which fractional anisotropy (which is a scalar value between zero 

and one that describes the degree of anisotropy of a diffusion process) and radial 

diffusivity (index of diffusivity perpendicular to the main axis of DT i.e. 

perpendicular to the main fibre direction) can be evaluated (Basser et al., 1996). 

Studies have shown abnormal values of ADC, mean diffusivity ([MD] i.e. the 

average magnitude of molecular displacement by diffusion) and FA in T2 lesions 

in MS, with more abnormal values when the lesion is hypointense on T1 (Rovaris 

et al., 2005). 

Diffusion tensor imaging (DTI) has been possible in the spinal cord and has been 

shown to be possible in healthy volunteers including tractography (Smith et al., 

2010). The technique involves advanced protocols and had been applied to study 

MS in the spinal cord. 

A technique known as zonally oblique multislice (ZOOM) technique had 

previously been developed (Wheeler-Kingshott et al., 2002); the same technique 

was extended to establish DTI in the spinal cord. However, this technique was 

limited by the fact that a slice gap was required, which precluded the acquisition 

of contiguous slices. A method of obtaining contiguous slices was then developed 

(CO-ZOOM) which was used in both the optic nerve and spinal cord (Agosta et al., 

2007). The technique used was later employed for spinal cord tractography in 

MS (Ciccarelli et al., 2007), as it had been shown to reduce distortions due to 

susceptibility variations and allows for study of axonal damage where nerve 

fibre tracking is performed.   
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Clark et al. (2000) have examined the use of diffusion imaging in multiple 

sclerosis in three patients with significant locomotor impairment (mean EDSS 

score of 6) compared to four healthy controls. MD was significantly higher in MS 

cord lesions than in controls, with a correspondingly reduced anisotropy 

although this was not found to be statistically significant. Both values were found 

to have a high standard deviation, which may represent the heterogeneity of the 

lesions. The abnormal values were attributed to demyelination and axonal loss 

and in acute lesions to vasogenic oedema. These findings were based on the 

assumption that the spinal cord has cylindrical symmetry.  

DT MRI has been shown in cross sectional studies to correlate with the level of 

disability associated to demyelinating and degenerative conditions in the spinal 

cord (Valsasina et al., 2005; Valsasina et al., 2007). Following these studies a 

longitudinal study was performed on 42 patients with varied MS subtypes 

(Agosta et al., 2007). FA and MD values were calculated in the cervical cord as 

well as routine MRI studies, which allowed calculation of cross sectional area. 

The decrease in FA over time was found to be associated with patients’ age and 

clinical phenotype, higher in PPMS than other groups. However no significant 

correlation was found with longitudinal change in cord atrophy, or T2-weighted 

lesions with changes in FA or MD. This study demonstrated that not just cord 

atrophy changes over time but also the intrinsic tissues of the cord as reflected 

by DTI changes. It was also shown that the intrinsic abnormalities precede the 

development of atrophy reflected on MRI imaging. Furthermore, the changes in 

FA of the cervical cord were associated with EDSS scores at baseline and with the 

accrual of disability over time. 
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It has been shown that axonal damage in the spinal cord occurs independent of 

T2-weighted lesions in the spinal cord (Bergers et al., 2002) and that T2-

weighted lesions in the brain do not correlate with disability (Filippi et al., 1995). 

Applying the same principles to DTI imaging, Van Hecke et al. assessed the spinal 

cord diffusion properties in MS patients with and without T2 weighted lesions in 

the spinal cord (Van Hecke et al., 2009). In each patient the following parameters 

were calculated: FA, MD, axial (longitudinal) diffusivity (||), radial (transverse) 

diffusivity () and the ratio of axial to radial diffusivity (||/). Regions of 

interest (ROI) were manually placed on axial images to avoid volume averaging 

by inclusion of CSF. Diffusion tractography was also performed on the spinal 

cord. It was found that FA and the ratio of longitudinal and transverse diffusivity 

(||/) were both significantly reduced in the spinal cord of patients with and 

without any lesions and no statistical difference between the subgroups of 

patients. MD values were found to be increased, but not found to be statistically 

significant. Other authors have suggested that normalisation of the MD value can 

occur due to astrocytic proliferation, cell debris, fibrillary gliosis and 

inflammatory infiltrates (Agosta et al., 2005). Such findings suggest that FA and 

||/ are more sensitive to the micro structural changes in the spinal cord in MS 

and may imply that pathology in the spinal cord is present even when lesions are 

only seen in the brain. 

Using diffusion weighted imaging, a three dimensional modelling technique can 

be used to visually represent neural tracts. Although tractography is typically 

done in the brain, it may also be performed in the spinal cord. However, there 

have been limitations with tractography algorithms that inhibit their application 
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in clinical practice or trials: the process of generating tract measures may be 

laborious and with high variability, which can limit sensitivity to detect 

longitudinal change and may be further compounded in destructive processes 

(Wheeler-Kingshott et al., 2009). To overcome these difficulties two novel 

techniques have been developed: (i) tract based spatial statistics, allowing 

comparison of different tracts by simplifying the structure (Smith et al., 2006); 

(ii) tract probability maps from DTI data, based on probability of a voxel 

belonging to a known tract (Hua et al., 2008). Reich et al. compared these 

techniques in a recent study (Reich et al., 2010). MRI scans were performed on 

healthy volunteers to generate tract probability maps and patients with MS were 

studied and results from the two methods were compared. It was found that the 

there was a correlation found in the optic radiation and corpus callosum but less 

so in the optic tract. It was also found that the tract probability map method 

correlated well with Paced Auditory Serial-Addition Test (PASAT – a component 

of the MSFC [Cutter et al., 1999]) scores for the corpus callosum. 

DTI has also been used to elucidate the mechanism whereby some people with 

MS do not accrue increasing levels of disability over a prolonged period of time, 

in a variant of the disease known as benign MS (BMS) (Benedetti et al., 2010). In 

this study BMS patients were compared with SPMS, who had a higher EDSS. 

Parameters recorded included: cervical cord MD and FA, with histograms 

produced for each, cross sectional area of the cord and brain T2 lesion volume. It 

was found that both BMS and SPMS patients had significant increases in cord MD 

compared to healthy controls, SPMS patients were also found to have a 

significant decrease in average FA compared with BMS and healthy controls. The 
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authors suggest that the discrepancy between FA and MD in BMS may be due to a 

preservation of white matter bundles in the cervical cord. Thus DTI can 

potentially give a further insight into the mechanism of disability in MS and why 

some individuals are relatively spared. 

In a recent study by Oh et al. (2012) spinal cord FA and MD were found to be 

independently associated with hip flexion, vibration sense and EDSS. 

Associations with a number of similar measures of physical disability, used in the 

study by Oh et al., have also been shown to be associated with spinal cord RD and 

FA (Naismith et al., 2013). Furthermore, spinal cord DTI metrics (FA and MD) 

were shown to be able to discriminate between disability levels in MS, whereas 

T2-weighted lesions were unable to do so (Oh et al., 2013). These important 

associations with disability and discriminatory capacity of DTI may reflect the 

microstructural abnormalities (such as axonal loss and demyelination) being 

detected in the spinal cord, that may not be detected using conventional T2-

weighted images (Bergers et al., 2002). 
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Chapter 4 - Spinal cord atrophy in long disease duration multiple sclerosis 

 

4.1 Introduction 

Understanding the causes of long-term disability in MS is a key goal of current 

research; it is directly relevant to how we monitor and treat the disease. 

Histopathology studies have shown that MS affects brain grey (GM) and white 

matter (WM) (Brownwell and Hughes 1962), and the spinal cord (Fog 1950). 

However, from such work (Bø et al., 2003; Kutzelnigg et al., 2005; Gilmore et al., 

2006) it is difficult to determine which is most clinically relevant, and which is 

most likely to serve as a useful marker of disease progression and treatment 

effectiveness. MRI, while being less pathologically specific, facilitates assessment 

of tissue abnormalities in vivo and approximate histopathological changes. 

Previous work measuring brain lesion load, brain and spinal cord atrophy, has 

demonstrated correlations between changes in all these regions and clinical 

outcomes, albeit of varying strengths in different cohorts and with no single 

measure found to fully explain variability in disability scores. Given this, there 

has been increasing interest in the use of combinations of MRI measures in 

parallel to more fully characterise clinically relevant pathology in life. 

Of the conventional MRI techniques available, WM lesions determined using T2-

weighted imaging have been studied more extensively, and have a clear role in 

the diagnosis of MS (Polman et al., 2011) and in monitoring response in 

treatment trials (Barkhof et al., 2011). Following a clinically isolated syndrome 

(CIS) the load and location of brain and spinal cord lesions seen on T2 weighted 
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scans, and appearance of new lesions on serial scans, has been shown to predict 

the conversion from CIS to MS. The accrual of brain WM lesions also, in part, 

predicts disability and conversion to secondary progressive MS (Brex et al., 

2002; Rudick et al., 2006; Fisniku et al., 2008). Furthermore, a combination of 

lesions and relapses has been proposed as a marker of progression in MS 

(Sormani et al., 2011). However, despite the frequent use of brain T2-lesion 

volume (T2LV) as an endpoint in clinical trials (Polman et al., 2006; Coles et al., 

2012; Radue et al., 2012) its contribution to disability in the long term has yet to 

be fully elucidated (Barkhof et al., 2009), although some evidence suggests T2LV 

early in the course of the disease may be predictive of mortality (Goodin et al., 

2012).  

Neuro-axonal loss has been shown on histopathological examination of brain GM 

and WM (Trapp et al., 1998; Ganter et al., 1999; Wegner et al., 2006) and MRI 

parameters that are affected by this, such as GM volumes, have been found to 

correlate with disability (Fisniku et al., 2008; Roosendaal et al., 2011). In 

particular, GM atrophy has been shown to have a role in predicting conversion 

from CIS to MS (Calabrese et al., 2011), as well as reflecting disease subtype 

(Fisniku et al., 2008; Fisher et al., 2008). Atrophy has also been observed in WM 

but appears to progress less rapidly than in GM (Ge et al., 2001; Chard et al., 

2002) albeit with the caveat that there have been few very long-term studies, 

and correlations with disability have not been consistently found. Measures of 

brain atrophy are being used as outcome measures in clinical trials in both 

relapsing remitting (Miller et al., 2007, Kappos et al., 2010) and progressive MS 

(Leary et al., 2003; Kapoor et al., 2010; Connick et al., 2012). 
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Spinal cord involvement by MS is a major cause of locomotor disability. Axonal 

loss has been demonstrated in the spinal cord, and is a contributory factor for 

spinal cord atrophy in pathological studies (Ganter et al., 1999; Bergers et al., 

2002; Bot et al., 2004). Several MRI studies have found correlations of disability 

with upper cervical spinal cord atrophy (Losseff et al., 1996; Stevenson et al., 

1998; Horsfield et al., 2010; Rocca et al., 2011).  

Two studies have investigated brain and spinal cord atrophy in combination. A 

single site study of 70 people followed up for 20 years after a CIS suggestive of 

MS, 43 of whom had clinically definite MS when scanned (median expanded 

disability status scale [EDSS] in the whole group 2.5, in the clinically definite MS 

group 3.5), found that brain grey matter and spinal cord atrophy both 

independently associated with disability (Bonati et al., 2011); and another 

smaller single site study (21 patients) in patients with a shorter disease duration 

(mean 8 years) and lower levels of disability (mean EDSS 1.6) found that 

measures of spinal cord atrophy correlated with disability, while brain lesion 

load and atrophy did not (Cohen et al., 2012). 

In this multicentre cross-sectional study, the relationship between spinal cord 

and brain atrophy and brain lesion load with long term disability in MS is 

explored. The aim of this study is to investigate whether spinal cord atrophy is 

associated with higher levels of physical disability, independently from brain 

pathology, in people with at least twenty years disease duration. 
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4.2 Methods 

4.2.1 Patients  

Seven centres participated in this study, and patients with relapse-onset 

(relapsing remitting [RR] or secondary progressive [SP]) MS with first symptom 

onset 20 or more years prior to their clinical and MRI examinations were 

included. MS subgroups were classified by Lublin-Reingold criteria (Lublin and 

Reingold 1996). Previous or on-going disease modifying drugs (DMD) were 

noted.  

All patients had EDSS determined (Kurtzke 1983). RRMS patients who had an 

EDSS score of ≤3 were defined as having benign MS (Filippi et al., 1994). 

Data from patients who had been treated with steroids in the month prior to MRI 

acquisition were excluded. The ethics committee from each of the participating 

centres approved this work, and written informed consent was obtained from 

each subject. 

4.2.2 MRI acquisition 

MRI scans were acquired using 1.5T (n=5) or 3T (n=2) scanners and included 3D 

T1-weighted gradient echo sequences of the brain and cervical cord, and dual-

echo 2D spin-echo sequences of the brain. The acquisition parameters are 

summarised in Table 4.1. 
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Table 4.1 MRI parameters in each participating centre 

 

 

 

 

 

 

 

 

 

 

 

 

 Centre London Barcelona Basel Milan 
Don 

Gnocchi 

Milan 
San-

Raffaele 

Rome Amsterdam 

 Scanner 
manufacturer    

Phillips 
(3T) 

Siemens 
(1.5T) 

Siemens 
(1.5T) 

Siemens 
(1.5T) 

Siemens 
(1.5T) 

GE (1.5T) GE (3T) 

T2 brain 
scan 

Slice (mm) 3 3 3 3 5 4 3 
TR (ms) 3500 2500 3980 3310 3800 2620 2300 
TE (ms) 85 91 112 11 112 116 114.1 

Matrix (mm2) 240x240 240x320 250x256 256x256 256x256 512x512 512x512 
Resolution 

(mm2) 
1x1 0.78x0.78 0.98x0.98 0.98x0.98 0.98x0.98 0.63x0.63 0.49x0.49 

3D T1 
brain 
scan 

Slice (mm) 1 1.2 1 1 1.5 1 1 
TR (ms) 6.8 2300 2080 1900 2000 21 7.8 
TE (ms) 3.1 3 2.93 3.4 2.9 6 3 

Matrix (mm2) 256x256 240x256 250x256 192x256 256x256 256x256 256x256 
Resolution 

(mm2) 
1x1 1x1 0.98x0.98 1x1 0.82x0.82 0.98x0.98 0.94x0.94 

3D T1 
cervical 

spine 
scan 

Slice (mm) 1 1.2 1 0.9 1 1 1 
TR (ms) 8.1 2300 2700 1160 1160 21 7.2 
TE (ms) 3.7 3 4.2 4.2 4.2 6 3 

Matrix (mm2) 256x256 240x256 256x256 256x512 256x256 256x256 512x512 
Resolution 

(mm2) 
1x1 1x1 1x1 0.45x0.45 1x1 0.98x0.98 0.5x0.5 
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4.2.3 Image analysis 

T2 lesion volume 

Lesions on T2-weighted scans were outlined using a semi-automated edge 

finding tool (JIM v. 6.0, Xinapse systems, Aldwincle, UK, 

http://www.xinapse.com). Total lesion volume was recorded in mLs for each 

subject. 

Brain tissue volumes 

To avoid segmentation errors due to WM lesions, an automated lesion-filling 

technique was employed (Chard et al., 2010). Lesion masks were created based 

on 3D-T1 weighted sequences only (i.e. without reference to previously created 

masks on T2-weighted images). The lesion-filled images were segmented into 

WM, GM and cerebrospinal fluid (CSF) using the ‘new segment’ option on SPM8 

(statistical parametric mapping; Wellcome Trust centre for NeuroImaging, UCL 

Institute of Neurology, London). All segmentations were reviewed to exclude 

errors. WM and GM fractional (WMF and GMF) volumes relative to total 

intracranial volume (the sum of GM, WM and CSF volumes) were calculated.  

Spinal cord atrophy 

Sagittal spinal cord images were reformatted axially into five 3mm thick slices 

perpendicular to the long axis of the spinal cord centred at C2/C3. Upper cervical 

cord cross-sectional area (UCCA) was then evaluated using an active surface 

model (Horsfield et al., 2010), which has been used in a multi-centre study 

(Rocca et al., 2011). Mean cord area of the five slices was determined for each 

subject (Healy et al., 2012). 

http://www.xinapse.com/


 99 

4.2.4 Statistical analysis 

Univariable associations between EDSS and the four MRI predictors (WMF, GMF, 

T2LV, and UCCA) and between MRI variables were assessed using Spearman 

correlation. 

For the binary EDSS models (dividing into groups by EDSS scores <6/6, as an 

EDSS score of 6 marks the requirement of a walking aid) univariable logistic 

regression followed by multiple logistic regression were performed with the four 

MRI predictors and centre, age at scan, age at onset, disease duration, disease 

modifying drugs and gender initially included as potentially confounding 

covariates: only centre and age at scan, contributed significantly (at p<0.05) or 

materially affected coefficients, and these were subsequently retained in all 

models. Along with centre and age at scan, the four MRI predictors were entered 

together and then individually removed from the final multivariable model if 

they did not significantly contribute (at p<0.05). The C-statistic was calculated to 

assess the predictive performance of the logistic model; this statistic can range 

from 0.5 (no better than chance) to 1 (perfect prediction). 

With four-category EDSS (1.5/>1.5,<3/3,<6/6, categories chosen for even 

frequency distribution) a similar procedure to the above was carried out using 

instead proportional odds multiple ordered logistic regression; again centre and 

age at scan were the only covariates to either be significant (at p<0.05) or 

materially affect MRI coefficients, and were retained in models. The four part 

model enabled more complete analysis across the spectrum of disability, as per 

previously published work (Fisniku et al., 2008). 
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Differences in means between patient groups were assessed by t-test or ANOVA 

(for comparison of RR and SP and subgroups of RR with SP). In the same way 

patients with an EDSS 3 were compared to those with an EDSS 6, irrespective 

of disease subtype. 

Analyses were carried out in Stata 12 (Stata Corporation, College Station, TX, 

USA) and SPSS 20 (IBM, USA). 
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4.3 Results 

Demographics of patients in each participating centre and disability category are 

summarised in Tables 4.2 and 4.3. For the whole group, patients had a mean age 

of 52 years (SD 8.8) with a mean age of disease onset 25.8 years (SD 7.7), 111 

females and 48 males, of whom 92 had RRMS and 67 SPMS, with a mean disease 

duration of 26.2 years (SD 6.7) and a median EDSS of 4 (range 0-8). For the four-

category EDSS model patient numbers were as follows: ≤1.5: 28, >1.5, <3: 33, ≥3, 

<6: 44, ≥6: 54. 

Brain segmentation failed for four people (155 volumetric brain scans were 

used), two patients did not have a T2W scan (157 patients were included in 

T2LV analysis) and in three patients spinal cord scan was distorted so could not 

be analysed. 
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Table 4.2 patient demographics by centre 

 

Table 4.3 patient demographics by EDSS category 

 RRMS (EDSS ≤3) RRMS (EDSS ≥3.5) SPMS 

n 70 22 67 

Age (years) mean 
± SD 

49.5 ± 8.1 49.7 ± 7.5 55.4 ± 8.7 

Gender (female, 
male) 

49, 21 20, 2 42, 25 

Disease duration 
mean ± SD 

25.2 ± 0.5 26.1 ± 4.1 27.3 ± 7.8 

 

Centre Age 
(years) 
Mean ± 

SD 

Gender 
(female, 

male) 

Age at 
disease 

onset 
(years) 
Mean ± 

SD 

Disease 
duration 
(years) 
Mean ± 

SD 

Number 
of 

RRMS, 
patients 

Number 
of SPMS 
patients 

EDSS 
Median, 

range 

1. London, n=20 55.3 ± 
7.9 

13, 7 27.8 ± 
6.7 

27.0 ± 
6.3 

9 11 6, 1-8 

2. Barcelona, n=20 53.6 ± 
8.9 

14, 6 25.2 ± 
6.9 

28.4 ± 
9.1 

7 13 4, 2-8 

3. Basel, n=12 56.0 ± 
9.9 

7, 5 24.0 ± 
8.4 

32.0 ± 
7.8 

8 4 4, 2-6 

4. Milan Don 
Gnocchi, n=23 

53.0 ± 
8.0 

17, 6 28.0 ± 
9.0 

25.0 ± 
6.0 

8 15 6, 2-7.5 

5. Milan San-
Raffaele, n=64 

50.0 ± 
8.9 

43, 21 25.0 ± 
8.0 

25.0 ± 
6.0 

45 19 2.5, 0-6.5 

6. Rome, n=11 47.4 ± 
5.9 

11, 0 25.9 ± 
6.2 

25.0 ± 5 9 2 2, 0-6.5 

7. Amsterdam, n=9 52.2 ± 
9.0 

6, 3 29.1 ± 
7.5 

22.7 ± 
4.0 

6 3 4, 1.5-7 

All centres 
n=159 

52.0 ± 
8.8 

111, 48 25.8 ± 
7.7 

26.2 ± 
6.7 

92 67 4, 0-8 
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4.3.1 Correlations between MRI features  

WMF was significantly correlated with T2LV (r=-0.21, p=0.01) and UCCA (r=0.28, 

p<0.01). GMF did not correlate significantly with either T2LV or UCCA but was 

inversely correlated with WMF (r=-0.26, p<0.01).  

4.3.2 MRI features and clinical subgroups (Table 4.4 and 4.5) 

WMF, T2LV and UCCA were found to differ significantly in ANOVA analysis 

between the RRMS and SPMS groups, but no significant difference was found for 

GMF.  

T2LV was significantly higher in SPMS than in benign RRMS (EDSS≤3) (mean ± 

SD 21.3 ± 14.7 vs. 15.7 ± 11.7, p=0.02), and showed a non-significant trend to be 

higher in SPMS than in the non-benign RRMS group (mean ± SD 21.3 ± 14.7 vs. 

16.1 ± 14.5, p=0.16). On the other hand T2LV were almost identical in the benign 

and non-benign RRMS groups (mean ± SD 15.7 ± 11.7 vs. 16.1 ± 14.5, p=0.94). 

T2LV was also found to differ significantly between all subjects with EDSS ≥ 6 

and those with EDSS ≤ 3 (mean 24.3 ± SD 14.4 vs. 15.7 ± 11.7, p<0.01). 

UCCA was significantly higher in benign RRMS when compared with both non-

benign RRMS (mean ± SD 69.7 ± 8.1 vs. 64.8 ± 8.7, p=0.02) and SPMS (mean ± SD 

69.7 ± 8.1 vs. 64.2 ± 9.7, p<0.01). On the other hand, UCCA values were almost 

identical in non-benign RRMS and SPMS subgroups (mean ± SD 64.8 ± 8.7 vs. 

64.2 ± 9.7, p=0.80). UCCA was also found to differ significantly between all 

subjects with EDSS ≥ 6 and those with EDSS ≤ 3 (mean 63.3 ± SD 10.3 vs. 69.7 ± 

8.1, p<0.01).  
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Table 4.4 MRI parameters in benign and ‘non-benign’ RRMS and SPMS 

  All 
RRMS 

Benign 
RRMS 

Non-
Benign 
RRMS 

SPMS 

T2LV (mLs) Mean 16.0 15.7 16.1 21.3 
SD 12.3 11.7 14.5 14.7 

UCCA (mm2) Mean 68.6 69.7 64.8 64.2 
SD 8.4 8.1 8.7 9.7 

WMF Mean 0.332 0.335 0.324 0.324 
SD 0.019 0.018 0.021 0.017 

GMF Mean 0.460 0.462 0.457 0.460 
SD 0.014 0.014 0.012 0.014 
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Table 4.5 Comparison of MRI parameters between benign and ‘non-benign’ 

RRMS and SPMS using ANOVA 

 MS subtypes being 
compared 

p value 

T2LV (mLs) Benign RRMS/Non-
Benign RRMS 

0.94 

Benign RRMS/SPMS 0.02 
Non-Benign RRMS/SPMS 0.16 

All RRMS/SPMS 0.02 

UCCA (mm2) Benign RRMS/Non-
Benign RRMS 

0.02 

Benign RRMS/SPMS <0.01 

Non-Benign RRMS/SPMS 0.80 

All RRMS/SPMS <0.01 

WMF Benign RRMS/Non-
Benign RRMS 

0.02 

Benign RRMS/SPMS <0.01 

Non-Benign RRMS/SPMS 0.98 

All RRMS/SPMS 0.01 

GMF Benign RRMS/Non-
Benign RRMS 

0.24 

Benign RRMS/SPMS 0.55 

Non-Benign RRMS/SPMS 0.47 

All RRMS/SPMS 0.81 

 

4.3.3 MRI features and physical disability (EDSS) 

EDSS was significantly correlated with T2LV (Spearman’s r=0.19, p=0.02), WMF 

(r=-0.32, p<0.01) and UCCA (r=-0.31, p<0.01), whereas the correlation between 

EDSS and GMF was not significant (r=-0.07, p=0.36). Scatter plots of MRI 

variables against EDSS are shown in Figure 4.1. 
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Figure 4.1 Graphs of spinal cord area (A), T2 lesion volume (B), white matter 

fraction (C) and grey matter fraction (D) against EDSS. 

In a univariable logistic regression analysis for binary EDSS groups, both T2LV 

(odds ratio=1.98 per 1 SD larger T2LV, 95% CI 1.39, 2.82, p<0.01) and UCCA 
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(odds ratio=0.55 per 1 SD higher cord area, 95% CI 0.38, 0.79, p<0.01) were 

found to be associated with EDSS ≥6. In a univariable ordered logistic regression 

for four-category EDSS the following were found to be associated with EDSS: 

T2LV (odds ratio=1.56 per 1 SD larger T2LV, 95% CI 1.16, 2.10, p<0.01), UCCA 

(odds ratio=0.53 per 1 SD higher cord area, 95% CI 0.39, 0.72, p<0.01) and WMF 

(odds ratio=0.62 per 1 SD WMF, 95% CI 0.47, 0.82, p<0.01). 

Subsequently in a multivariable analysis was performed, again using a binary 

and then four-part model of EDSS. Both T2LV (odds ratio=1.67 per 1 SD larger 

T2LV, 95% CI 1.09, 2.56, p=0.02) and UCCA (odds ratio=0.57 per 1 SD higher 

cord area, 95% CI 0.37, 0.86, p=0.01) were found to be associated independently 

with the requirement of a walking aid (i.e. EDSS ≥6). The C-statistic for this 

model was 0.8, with 81% sensitivity and 75% specificity and 77% correctly 

classified. 

In a multivariable ordered logistic regression model with a four-part model of 

EDSS, the following were found to be associated with EDSS: UCCA (odds 

ratio=0.55 per 1 SD higher cord area, 95% CI 0.40, 0.77, p<0.01), T2LV (odds 

ratio=1.56 per 1 SD larger T2LV, 95% CI 1.08, 2.25, p=0.02) and GMF (odds 

ratio=0.67 per 1 SD GMF, 95% CI 0.46, 0.98, p=0.04). 
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4.4 Discussion 

In this chapter a large group of MS patients, two to three decades after first 

symptom onset, were studied. The results demonstrate a strong association 

between spinal cord atrophy and EDSS. In the same model T2LV and to a lesser 

extent GM atrophy were also found to be independently associated with physical 

disability. 

When considering the results, it should be noted that this cohort differs from 

previous studies looking simultaneously at spinal cord and brain measures in MS 

(Bonati et al., 2011; Cohen et al., 2012). Firstly, the present cohort is larger, with 

159 patients, compared with 70 studied by Bonati et al. and 21 by Cohen et al. 

Secondly, it includes patients with longer disease durations (mean of 26 years 

compared to 20 years and 8 respectively). Thirdly, it includes more people with 

higher levels of disability (median EDSS 4, Bonati et al. median EDSS 2.5, Cohen 

et al. mean EDSS 1.6), and more SPMS patients (current study n=67, Bonati et al 

n=11, Cohen et al. n=1). However, (unlike the previous two studies), this is a 

multicentre study and so differences in scanners can introduce inter-site 

variability (Reig et al., 2009). The statistical analyses employed in this study 

adjusted for centre effects, thereby minimising this effect on the results. 

Overall, these findings are in agreement with previous studies (Bonati et al., 

2011; Cohen et al., 2012) demonstrating spinal cord atrophy to be independently 

related to disability. With regard to changes in the brain, Cohen et al. found no 

additional association with disability in a group of mostly RRMS patients with 

low EDSS scores, while in a mixed CIS, RRMS and SPMS cohort with long disease 

duration Bonati et al. observed that GMF independently associated with EDSS in 
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all cases, and T2LV in those with clinically definite MS. In the present cohort, 

T2LV and – in the four-part EDSS model only - GMF were found to contribute to 

variability in EDSS. The consistent independent relationship of spinal cord 

atrophy with disability in all three studies of cohorts with RRMS and SPMS and 

disease durations ranging from a mean of 8-26 years is noteworthy. An 

association of disability with T2LV and GM atrophy independent of spinal cord 

atrophy was only evident in the 20 and 26 year disease duration cohorts, 

suggesting that the effects of brain GM pathology in MS may become more 

relevant with longer disease duration. 

Given that it can be difficult to determine the onset of progressive MS, and a 

natural history study suggested SPMS tends to occur at a similar rate when a 

disability threshold is reached rather than being determined by prior relapses 

(Confavereux et al., 2000), it is of interest to see if there are MRI differences 

between benign and non-benign RRMS, and non-benign RRMS and SPMS. In 

order to do this the RRMS cohort was split into ‘benign’ (i.e. EDSS 3) and those 

with an EDSS of ≥3.5. In doing so it is important to be aware that this division is 

defined by physical disability, and that cognitive deficits may be considerable in 

people with physically ‘benign’ MS (Rovaris et al., 2008). No significant 

differences emerged between T2LV brain or cord atrophy between non-benign 

RRMS and SPMS. This suggests that, the division between these groups on the 

basis of clinical progression may be arbitrary and not strongly supported by 

differences in MRI characteristics. 

Lower cord areas were evident in both SPMS and non-benign RRMS when 

compared with benign MS, thus spinal cord atrophy seems to relate to 
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concurrent physical disability. In this study EDSS was used as a measure of 

disability, although it does not fully reflect the clinical impact of MS. Above 3.5, 

the EDSS is heavily weighted towards mobility, and so corticospinal tract 

integrity. In turn, those MRI measures that are more directly linked with the 

corticospinal tracts are more likely to correlate with EDSS, hence the association 

between spinal cord atrophy and disability emerges consistently in all models. 

This study builds on previous work, demonstrating that spinal cord atrophy is 

relevant to physical disability in MS, and that this relationship remains 

significant in the long-term, in people with higher EDSS. 

A question arising from our observation that the highest T2LV was seen in SPMS 

is whether a high T2LV in earlier years might predict future secondary 

progression? Although our cross-sectional study could not directly investigate 

this, evidence from two other studies supports a long term prognostic role of 

T2LV in relapse-onset MS. First, a 20-year follow up of a CIS cohort found that 

the rate of increase of T2LV was three times higher in those that develop SPMS 

compared to those patients who remained RRMS, and the higher T2LV was 

already evident after 5 years in those who later developed SPMS (Fisniku et al., 

2008). Secondly, in a recent 21-year follow up study that reported mortality 

outcomes of RRMS patients who had participated in a clinical trial of beta 

interferon, Goodin et al. found that the baseline T2LV was an independent 

predictor of death (Goodin et al., 2012); although no information on neurological 

status was provided in that study, it is plausible that the higher mortality reflects 

a greater likelihood of patients with high lesion loads having developed 

secondary progression with severe disability. 
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In the current study, in univariable analyses WMF was associated with EDSS, but 

not in multivariable analysis where GMF was independently associated. This can 

be explained by inter-relationships between MRI measures. For an MRI measure 

to be retained in a regression model, it must correlate with the outcome of 

interest and do so at least partly independently of other measures. WMF was 

significantly correlated with both T2LV and UCCA, whereas GMF was not, and 

when both T2LV and UCCA were included in the statistical multivariable model, 

WMF did not add to the predictive power of the model above that of T2LV and 

UCCA alone. In contrast, while GMF alone did not correlate with clinical 

measures in univariate analysis, once variability due to T2LV and UCCA had been 

accounted for, it did contribute independently to disability in the four-part 

model of EDSS, albeit with modest significance (p=0.04). Although a negative 

correlation was found between GMF and WMF, this is very likely to represent a 

mathematical interaction between the two fractional volumes that have a 

common denominator, rather than an error in segmentation - when the actual 

GM and WM volumes were compared without normalisation, a strong positive 

correlation was seen, as expected (data not shown). 

As a conceptual limitation of this chapter, it cannot be assumed the same 

associations would be observed if different outcome measures were used. 

Cognitive impairment is common in MS, particularly in SPMS (Rao et al., 1991; 

Comi et al., 1995), and if cognitive scores were used instead, the imaging 

associations may differ. A previous longitudinal study in SPMS demonstrated a 

significant correlation of reductions in GM volume, but not UCCA or T2LV, with 

paced auditory serial addition test (PASAT) scores (Furby et al., 2010). However 
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in this current study physical disability is the main outcome measure of interest 

in order to determine the contribution of spinal cord atrophy to disability in long 

disease duration MS. 

Although GMF was associated independently with EDSS in the four-part model, 

no significant differences were established between GMF in RRMS and SPMS 

cohorts, although a weak trend was observed between lower GMF values with 

higher EDSS scores. A stronger correlation between EDSS and GMF was observed 

in a previous study of a MS cohort with 20-year disease duration (Fisniku et al., 

2008). Several factors may have limited the association observed in the present 

study. First, many subjects had large lesion loads, which could have had subtle 

effects on brain segmentation in spite of using lesion filling to correct tissue 

volumes (Chard et al., 2010). Secondly, lesions partly involving the deep GM may 

still sometimes have been classified as WM leading to slight inaccuracies of WMF 

and GMF computation. Thirdly, there was often substantial atrophy. The GM and 

WM segmentation algorithm used (SPM) has been developed from a normal 

(non-atrophic) brain template and its performance may differ in the presence of 

marked brain atrophy. Finally, the cohort studied had a disease duration that 

considerably exceeds that of other cohorts in whom associations were observed 

between GM atrophy and disability (Fisher et al., 2008; Fisniku et al., 2008) and it 

is possible that GM atrophy may reach a nadir at a later point in the natural 

history of the disease, beyond which it has a lesser independent contribution to 

disability. 

Two other study limitations are noted. First this study was cross-sectional, and 

although T2LV, spinal cord atrophy, and to a lesser extent GMF, were found to be 
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independently associated with concurrent disability, the rate of change of these 

measures over time was not examined. Longitudinal observations would be 

required to clarify their temporal dynamics, and relationship to changes in 

disability measures. 

Secondly, this study was multi-centre. This allowed a larger cohort to be studied, 

but will have introduced some variability in MRI measures, and while these were 

accounted for in the statistical models, they may still have influenced the 

apparent strength of associations between MRI measures and clinical scores. 

This chapter demonstrates that spinal cord and brain pathology are both 

relevant, and contribute independently to long-term physical disability in 

relapse-onset MS. 
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Chapter 5 - Evaluation of methodologies for improved quantification of 
spinal cord atrophy 

 

5.1 Introduction 

Spinal cord involvement in MS often results in clinically manifest progressive 

locomotor disability (Mc Donald and Compston 2006) and is relevant in 

determining physical disability in long disease duration as demonstrated in the 

preceding chapter. Although the presence of demyelinating plaques is a 

characteristic feature of MS in the spinal cord (Fog 1950; Oppenheimer 1978), it 

is axonal loss rather than lesions that represent the main pathological substrate 

of irreversible physical disability, as demonstrated by spinal cord 

neuropathological studies (Ganter et al., 1999; Lovas et al., 2000; DeLuca et al., 

2006). 

In vivo measurement of the spinal cord cross-sectional area (CSA) is possible 

using MRI (Kidd et al., 1993). A reduction in CSA of the spinal cord can be 

expected to occur when there is significant axonal loss (Losseff et al., 1996; Bot 

et al., 2004), and a robust correlation has been established between CSA and the 

expanded disability status scale (EDSS), which mainly reflects impairment in 

ambulatory function (Kurtzke 1983). Considering that a decrease in CSA may 

reflect pathological processes that underlie progressive disability, it is a 

biologically plausible surrogate endpoint to clinical trials, to evaluate the effect 

of treatments that aim to prevent neuroaxonal loss and irreversible disability in 

MS. 
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Perhaps because of the challenges in developing a sensitive and reproducible 

method of measuring cord atrophy in MS, only a small number of clinical trials 

(one relapsing remitting MS (Lin et al., 2003) and three in PPMS (Kalkers et al., 

2002; Leary et al., 2003; Montalban et al., 2009) have used CSA as an exploratory 

endpoint. CSA may be a particularly pertinent outcome measure in progressive 

forms of the disease, where there is currently no effective disease modifying 

treatment, and where trials with clinical disability endpoints require large 

numbers of subjects and long term (2-3 years) follow up, in order to achieve 

sufficient power to observe a useful treatment effect on disability. Therefore, a 

sensitive surrogate imaging marker that reflects the pathology causing 

irreversible physical disability could serve as an endpoint in proof-of-concept 

phase one and two clinical trials in patients with progressive disease. 

The average rate of atrophy of the spinal cord in MS subjects is estimated to be 

approximately 1% per year, although with substantial inter-subject variation 

(Rashid et al., 2006). In order to detect these small changes longitudinally, a 

highly reproducible method is required. Such a method has proven difficult to 

establish due to several factors, above and beyond the challenges posed by 

conventional clinical MRI scanning of the spinal cord (Dietrich et al., 2008). 

Early efforts to measure CSA involved manual outlining of axial images (Kidd et 

al., 1993). Subsequently, Losseff et al. reported a semi-automated edge-detection 

(SAED) method. This involves manually drawing two regions of interest (ROIs), 

one around the spinal cord and the other around the outer boundary of the 

surrounding cerebrospinal fluid (CSF) and then calculating the mean signal 

intensity of the cord and surrounding CSF and using a signal intensity threshold 
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halfway between the two to define the edge of the spinal cord, from which CSA 

can be measured (Losseff et al., 1996). Following on from this, a method was 

developed that used an automated edge detection technique (which reduced 

operator input) (Lin et al., 2003; Vaithinanthar et al., 2003). 

A new method known as the active surface model (ASM) has been developed, 

which allows rapid measurement of the spinal cord size (Horsfield et al., 2010). 

This involves the placement of cord markers on some representative axial slices 

and subsequently an outline of the spinal cord is created automatically and 

allows detection of atrophy over a larger portion of the cervical cord. Following 

development of the ASM, it has been used in a large multicentre study (Rocca et 

al., 2011).  

The reproducibility of these methods is variable with published intra-rater 

coefficients of variation (COV) ranging from 0.73% to 2.15% for the SAED 

technique (Losseff et al., 1996; Horsfield et al., 2010); using different techniques 

to the SAED (such as the automated edge finding and ASM), lower intra-rater 

COVs (0.42% and 0.44%) have been reported (Lin et al., 2003; Horsfield et al., 

2010). For inter-rater reproducibility COV, values have been reported ranging 

from 0.83% to 7.95% for SAED method and 1.07% for ASM. Data on scan re-scan 

reproducibility is reported as 0.79% using SAED method. 

In order to determine the most reproducible combination of sequence and 

estimate the number of patients required for clinical trials, in this chapter the 

SAED and ASM methods are tested with two different sequences: 3D 

magnetization prepared rapid acquisition T1-weighted gradient echo (3D-TFE) 

and 3D-phase sensitive inversion recovery imaging (3D-PSIR).  
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T1-weighted 3D-TFE is the most frequently used sequence for the calculation of 

CSA in MS (Losseff et al., 1996; Lin et al., 2003; Leary et al., 2003; Horsfield et al., 

2010). This sequence can be used with isotropic voxel dimensions, thereby 

allowing axial reconstruction (without in-plane resolution being affected). High-

resolution imaging also reduces partial volume averaging, as it has been shown 

that approximately half of voxels in the spinal cord edge form the cord-

cerebrospinal fluid (CSF) interface and are subject to partial volume averaging 

(Tench et al., 2003). In a T1-weighted image there is a strong signal intensity 

gradient between the cord and CSF, which facilitates identification of the edge of 

the cord (Losseff et al., 1996). 

PSIR sequence was chosen for comparison as it is a T1 weighted sequence with 

phase reconstruction. The inversion recovery pulse and phase sensitive 

reconstruction confer a number of advantages. Firstly this sequence applies an 

inversion radio-frequency (RF) pulse; therefore the magnetisation can be 

positive or negative depending on the tissue relaxation times (Hou et al., 2005). 

In this case the mean signal intensity of the cord is positive, while the mean 

signal intensity of the CSF is negative. This feature of PSIR sequence was 

expected to further reduce partial volume averaging between the cord and CSF. 

Secondly, PSIR has been shown to improve signal to noise ratio (Bernstein et al., 

1989), which could further enhance detection of the cord outline. Lastly, this 

sequence can be acquired at higher in-plane resolution within a clinically 

acceptable scan time (Hou et al., 2005). 

The aim of this chapter is to investigate whether a combination of high 

resolution axial PSIR images, with an active surface model, provides a more 
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reproducible measure of upper cervical cord cross-sectional area in MS; 

compared to a semi-automated edge finding method combined with both axially 

acquired or axially reconstructed images of the upper cervical cord. 

 

5.2 Methods 

5.2.1 Subjects 

15 healthy controls (6 female, mean age 37 years, SD 9.5) and 15 patients with a 

diagnosis of MS (Polman et al., 2011) (10 female, 7 with relapsing-remitting MS 

(RRMS) were included in this study, 8 with secondary-progressive MS (SPMS), 

mean age 44.9 years, SD 12.3). Patients’ level of disability was evaluated using 

the EDSS prior to MRI (median EDSS score at baseline 4, range 0-6.5). None of 

the subjects had experienced a relapse or received a course of corticosteroids 

within a month prior to imaging. Six patients were being treated with interferon 

- at the time of recruitment. 

Nine patients (5 female, mean age 42, SD 10.6, 5 SPMS, 4 RRMS) and nine healthy 

controls (3 female, mean age 34, SD 6.4) returned for follow up at six month time 

point, MR imaging and clinical assessment was repeated. In patients, the median 

EDSS score at 6-months was 4. At this time point, the scan was performed twice 

with the subject being removed from the scanner coil then repositioned within it 

between the scans. This enabled an evaluation of scan-rescan reproducibility. 

Informed written consent was obtained from all subjects. 

5.2.2 MRI Protocol 
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Subjects were scanned at 3T using a Philips Achieva MRI system with RF multi-

transmit technology (Philips Healthcare, Best, the Netherlands) and a 16-channel 

neurovascular coil (which permitted coverage of the entire cervical spine), with 

care taken to position the patient comfortably to minimize motion artefact and 

allowed consistent re-positioning of subjects for follow up scans.  

Firstly a 3D-TFE sequence was acquired in the sagittal plane with 

FoV=256x256mm2, matrix=256x256, TR=8ms, TE=3.7ms, TI=860ms, SENSE 

factor 2 in the anterior-posterior direction, TFE factor 205 (using a linear k-

space profile order). The voxel size was 1x1x1mm3 (Figure 5.1). Secondly, a 3D-

PSIR sequence was acquired in the axial plane with a voxel size of 0.5 x 0.5 x 3 

mm3, TR = 8 ms; TE = 3.7 ms; flip angle α = 5°; FOV = 256 x 256 mm; NEX = 1. 

The scanning time was 14:22 min for PSIR sequence and 6:31 min for 3D-TFE 

(Figure 5.2).  

3D-TFE imaging covered the entire cervical spine, while PSIR imaging was 

centred at C2/C3 intervertebral disc. This anatomical location was chosen as 

post-mortem work has demonstrated that with flexion and extension of the head 

the spinal cord can move up to 1.8cm, however this effect is least evident in the 

high cervical cord (Reid 1960). Secondly, in previous work this level yields the 

most reproducible-cross sectional area values (Losseff et al., 1996). Therefore, to 

minimise cord displacement due to movement and optimise reproducibility, 

C2/C3 was chosen for this study. 

5.2.3 Image Analysis 
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From the 3D-TFE images five contiguous 3mm axial slices were reformatted 

using the centre of C2/C3 intervertebral disc as a caudal landmark, with the 

slices perpendicular to the spinal cord (Figure 5.1). Five contiguous 3mm axial 

slices were also extracted from the 3D PSIR images in a similar way (i.e. ensuring 

by visual inspection that the central slice was through the centre of C2/C3 

intervertebral disc). 

 

Figure 5.1 3D-TFE 1x1x1mm3 voxels 6min 30secs 16 channel NV coil. A: sagittal 

view. B: Axial 3D-TFE reconstruction at C2/C3 

The five axial slices for the two sequences were then analyzed in two ways: (i) 

using SAED technique (Losseff et al., 1996), the mean area of the slices were 

calculated using Dispunc display software package (D.L. Plummer, University 

College, London, UK). (ii) ASM using Jim6 software (Xinapse systems, 

www.xinapse.com). 

The SAED method (i) is based on the principle that if the signal intensities (SI) of 

the cord and CSF are uniform then an outline drawn at the point where the SI is 

midway between the two, would represent the position of the cord outline. This 

method involves manually drawing a region of interest (ROI) around the spinal 

cord, and then a ROI is manually drawn around the outer edge of the CSF space. 
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From these two manually drawn ROIs, the mean signal intensities of cord and 

CSF are calculated. The cord/CSF boundary is indicated by calculating the 

halfway SI between the two and an automated border is constructed around the 

spinal cord, from which CSA is measured for each of the five slices and the mean 

CSA is obtained.  

 

Figure 5.2 PSIR 0.5x0.5x3mm3 acquired with 16 channel NV coil. 

The ASM (Figure 5.3) (ii) involves placing a pre-determined size and shape ROI 

in the centre of the cord on each slice. The programme then uses intensity 

gradient information to calculate the radius of each slice and the centre of each 

slice. The centre line is refined from the initial user estimate and segmentation 

then involves a multistage approach allowing greater complexity of the cord 

radius to be calculated (Horsfield et al., 2010). This enhances the cord outline 

where it has been distorted due to atrophic changes. The outline of the cord is 

then automatically generated for each slice. Similarly to the SAED method, the 

CSA is measured for each of the five slices and the mean area is calculated. 
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Figure 5.3 Spinal cord outlined using ASM. A: axially reformatted 3D-TFE B: 

PSIR 

Spinal cord scans are sometimes normalised by brain volume or other measures 

of body size. The purpose of this process is to remove differences between 

patients that are unrelated to pathology. A recent study investigated the effects 

of eight different methods of normalisation including: number of slices, 

intracranial volume, body mass index, body surface area, no normalisation and 

combinations of these parameters (Healy et al., 2012). Of these, only the number 

of slices had a notable effect on reproducibility or discrimination between an 

atrophic and healthy cord. Therefore, the spinal cord area was normalised by the 

number of slices. 

5.2.3.1 Calculation of relative contrast 

The relative contrast was calculated for all scans (Lavdas et al., 2010). The mean 

signal intensity was estimated in the CSF and spinal cord by placing an identical 

ROI in each structure (Figure 5.4). Relative contrast was calculated by using the 

formula: ((S1-S2)/(S1+S2)) x 100, where S1=signal in the spinal cord and S2=signal 

in the CSF. 
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Figure 5.4 Calculation of CNR with ROI placed in CSF and on spinal cord. A: 3D-

TFE B: 3D-PSIR 

5.2.3.2 Reproducibility 

After an interval of one week all the reformatted images were re-analysed using 

both methods by one reader to evaluate intra-rater reproducibility. The same 

reformatted images were analysed by two other readers to evaluate inter-rater 

reproducibility. At six month follow up the images were analysed by the same 

reader to evaluate scan re-scan reproducibility. In addition, the first of the two 

scans at six month time point was used for comparison with baseline to evaluate 

longitudinal change in CSA over time. 

 

5.2.4 Statistics 

SPSS software package (version 20, SPSS Inc.) for Macintosh was used for 

statistical analysis. 

Average CSA was calculated for each combination of sequence and method used. 

Firstly, an independent samples t-test was employed to determine differences 
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between mean, CSA and age in patients and controls; significance was 

established as p≤0.05 with 95% confidence intervals. 

5.2.4.1 Reproducibility  

Reproducibility was evaluated in all subjects together as follows.  

Firstly intra-rater reproducibility was measured by calculating COV expressed as 

a percentage of the mean area (COV=100x(SD of the two measurements/Mean of 

the two measurements)) (Kirkwood and Sterne 2003). Intra-rater 

reproducibility was further examined by calculating the intra-class correlation 

coefficient (ICC) and subsequently 1-ICC (Bland and Altmann 1986). In this 

context 1-ICC represents the proportion of variability, which is due to 

measurement error (within-subject) rather than biological variation (between-

subject). Thus, whereas the COV assesses within-subject variability as a 

proportion of the mean, the ICC assesses within-subject variability as a 

proportion of the total variability (within plus between). 

Inter-rater reproducibility was examined by recording the COV between the 

three raters and both ICC and 1-ICC for each combination of sequence and 

processing technique.  

Similarly, scan-rescan reproducibility was calculated using COV, ICC and 1-ICC. 

5.2.4.2 Change in CSA over six month follow up and correlation with disability at 

baseline 
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To examine differences in mean CSA over time, a paired t-test was used in both 

the patient and healthy control groups. In each group, this test was repeated for 

each combination of sequence and analysis technique.  

Spearman correlation coefficients were calculated to determine the correlation 

between CSA and EDSS scores for all combinations of sequences and analysis 

methods at baseline.  

5.2.4.3 Sample size calculations for clinical trials 

Sample sizes were calculated for each combination of sequence and analysis 

method. These calculations were based on the between-subject SD of the mean 

CSA of 15 patients at baseline. An estimate of the Pearson correlation coefficient 

is given between CSA at baseline and six months.  

Estimate of treatment effects were calculated by measuring the change in cord 

area (in 9 patients and 9 controls) after six months. The difference between 

these mean changes, control-patient, was obtained and considered to be the MS 

disease-specific change in CSA. A decrease of this full amount of CSA change 

while on an experimental treatment was then considered to be a 100% 

treatment effect for a six-month duration trial. From this, the amount of decrease 

in CSA change constituting a 30% and 50% treatment effect, and the 

corresponding sample sizes for a placebo-controlled trial, were calculated. The 

reduction in CSA change for a 100% treatment effect over six months were 

doubled to allow an estimation of sample sizes for a 12-month trial (assuming 

linearity in the changes over time in both groups). 

5.3 Results 
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5.3.1 Comparison of relative contrast between PSIR and 3D-TFE 

Relative contrast was found to be 1811.11% for PSIR, and 74.45% for the 3D-

TFE. The relative contrast for PSIR was found to be higher than the 3D-TFE by a 

factor of 24. 

5.3.2 Differences between groups at baseline  

A significant difference between patients and controls was found for CSA 

(p<0.001) for all combinations of sequence and method of analysis. No 

significant difference was found in the ages of patients and controls. 

5.3.3 Reproducibility  

The combination of ASM with PSIR was more reproducible than the other 

methods (intra-rater COV for PSIR/ASM 0.002%, inter-rater COV for PSIR/ASM 

0.03%); in terms of both lower COV and higher ICC, for all subjects. Again the 

combination of ASM technique with PSIR proved to have greater reproducibility 

for scan-rescan (scan-rescan reproducibility COV for PSIR/ASM 0.1%). Results of 

intra-observer and inter-observer reproducibility are summarised in tables 5.1 

and 5.2. Results of scan-rescan reproducibility are summarised in table 5.3. 

Analysis 
method/MRI 
sequence 

Mean 
CSA 
(mm2) 

COV 
(%) 

ICC 1-ICC 

SAED/3D-
TFE 

70.94 3.86 0.108 0.892 

SAED/PSIR 72.49 0.3 0.946 0.054 
ASM/3D-
TFE 

72.98 0.04 0.990 0.01 

ASM/PSIR 76.52 0.002 0.999 0.001 
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Table 5.1 Intra-observer reproducibility in all subjects (COV: coefficient of 

variation) 
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Analysis 
method/MRI 
sequence 

Observer 
1  
mean 
CSA 
(mm2) 

Observer 
2  
mean 
CSA 
(mm2) 

Observer 
3  
mean 
CSA 
(mm2) 

COV 
(%) 

ICC 1-ICC 

SAED/3D-
TFE 

70.94 69.72 70.49 0.88 0.782 0.218 

SAED/PSIR 72.49 72.82 73.12 0.43 0.919 0.081 
ASM/3D-
TFE 

72.98 72.95 73.23 0.21 0.993 0.007 

ASM/PSIR 76.52 76.48 76.47 0.03 0.999 0.001 
 

Table 5.2 Inter-observer reproducibility in all subjects 

 

Analysis 
method/MRI 
sequence 

Scan 1 
mean 
CSA 
(mm2) 

Scan 2 
mean 
CSA 
(mm2) 

COV 
(%) 

ICC 1-ICC 

SAED/3D-
TFE 

69.76 69.37 0.41 0.755 0.245 

SAED/PSIR 70.43 69.99 0.45 0.911 0.089 
ASM/3D-
TFE 

72.64 73.14 0.48 0.978 0.022 

ASM/PSIR 75.11 75.00 0.10 0.981 0.019 
 

Table 5.3 Scan-rescan reproducibility in all subjects 

5.3.4 Change in cord area over six month follow up and correlation with disability 

at baseline 

At six month follow up none of the patients had a change in EDSS. The control 

scans did not show any significant change. The least change in control CSA was 

seen with ASM/3D-TFE (absolute change of 0.06mm2). In patients all methods 

demonstrated a decrease in CSA, apart from the combination of ASM and 3D-TFE 

which demonstrated a 0.18% increase in CSA. None of the changes detected in 
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patients reached significance with a paired t-test. Results of patients and 

controls longitudinal data are shown in tables 5.4 and 5.5 respectively. 

Analysis 
method/MRI 
sequence 

Mean 
CSA at 
baseline 
± SD 
(mm2) 

Mean 
CSA at 
6 
month 
follow 
up ± 
SD 
(mm2) 

Absolute 
change in 
mean 
CSA 
(mm2) 

Change 
in 
mean 
CSA 
(%) 

p value 
from t-test 
comparing 
baseline 
to follow 
up 
 

SAED/3D-
TFE 

64.93 ± 
11.79 

62.98 
± 
10.10 

-1.96 -3.01 0.410 

SAED/PSIR 64.11 ± 
10.76 

62.07 
± 8.57 

-2.04 -3.19 0.102 

ASM/3D-
TFE 

63.85 ± 
11.01 

63.96 
± 9.82 

+0.11 +0.18 0.512 

ASM/PSIR 67.92 ± 
10.57 

66.48 
± 
10.34 

-1.44 -2.11 0.061 

 

Table 5.4 Longitudinal cord area measures in patients 



 130 

 

Analysis 
method/MRI 
sequence 

Mean 
CSA at 
baseline 
± SD 
(mm2) 

Mean 
CSA at 
6 
month 
follow 
up ± 
SD 
(mm2) 

Absolute 
change in 
mean CSA 
(mm2) 

% 
change 
in 
mean 
CSA 

p value 
from t-test 
comparing 
baseline 
to follow 
up 
 

SAED/3D-
TFE 

77.76 ± 
6.28 

76.53 
± 8.79 

-1.22 -1.57 0.277 

SAED/PSIR 80.16 ± 
8.27 

78.81 
± 9.88 

-1.35 -1.68 0.186 

ASM/3D-
TFE 

81.17 ± 
7.27 

81.12 
± 7.31 

-0.06 -0.07 0.224 

ASM/PSIR 84.50 ± 
7.99 

83.93 
± 9.12 

-0.57 -0.68 0.119 

 

Table 5.5 Longitudinal cord area measures in controls 

 

Using each combination of sequence and method a significant negative 

correlation was seen between CSA and EDSS. The strongest correlation was seen 

with SAED and PSIR (r=-0.75, p=0.001) (Table 5.6). 

Analysis 
method/MRI 
sequence 

Spearman’s 
R 

p value 

SAED/3D-
TFE 

-0.525 0.045 

SAED/PSIR -0.745 0.001 
ASM/3D-
TFE 

-0.693 0.004 

ASM/PSIR -0.725 0.002 
 

Table 5.6 Correlation with EDSS at baseline (15 patients) 

5.3.5 Sample size calculations 
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The calculations of differences between longitudinal CSA changes in patients and 

controls - that were used to estimate treatment effects and perform sample size 

calculations for a placebo-controlled trial in which an active treatment reduces 

CSA loss over time - are provided in Table 5.7. Estimated sample sizes are given 

per arm for six month and 12 month trials in Table 5.8. For a 12 month 

treatment trial with 50% treatment effect and 80% power the lowest number of 

subjects required was found using PSIR/ASM combination (n=89), which was 

substantially lower than the number required with SAED/3D-TFE (n=1172).  

 ASM/PSIR ASM/3D-
TFE 

SAED/PSIR SAED/3D-
TFE 

SD 11.27 11.13 10.83 11.25 

Correlation 0.98 0.99 0.97 0.83 

Mean 
change in 
controls 

-0.57 0.12 -1.35 -1.22 

Mean 
change in 
patients 

-1.44 -0.34 -2.04 -1.96 

Difference 
in mean 
changes1 
(100% 
treatment 
effect) 

0.87 0.47 0.70 0.73 

1 Discrepancies on subtraction due to rounding 

Table 5.7 Calculation of differences between longitudinal changes in patients 
and controls to estimate treatment effect 
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 ASM/PSIR ASM/3D-TFE SAED/PSIR SAED/3D-TFE 

Treatment 
effect; 
power 

6 m 12 m 6 m 12 m 6 m 12 m 6 m 12 m 

30%  90% 1323 331 1454 364 3279 820 17427 4357 

30% 80% 988 247 1086 272 2449 613 13018 3255 

50% 90% 476 119 524 131 1181 296 6274 1569 

50% 80% 356 89 391 98 882 221 4687 1172 

 

Table 5.8 Estimated sample sizes per arm for six month (m) and 12 month 
placebo-controlled treatment trials 
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5.4 Discussion 

Spinal cord atrophy has already been used as an exploratory endpoint in clinical 

trials in MS (Kalkers et al., 2002; Leary et al., 2003; Lin et al., 2003; Montalban et 

al., 2009). Improving reproducibility of cord area measurement should be 

beneficial for clinical trials by increasing sensitivity to detect neuroprotective 

therapies and reducing the sample sizes needed to show such a treatment effect. 

Spinal cord atrophy could then be especially useful as an outcome measure in 

phase 1 and 2 proof-of-concept trials. 

In this chapter the cross sectional area of the spinal cord is measured, as this has 

been measured in previous MS clinical trials (Kalkers et al., 2002; Leary et al., 

2003; Lin et al., 2003; Montalban et al., 2009) and the image analysis software 

used in this study enabled area to be measured with both SAED and ASM 

techniques. However, other studies have measured spinal cord volume as an 

assessment of atrophy in MS (Hickman et al., 2003; Zivadinov et al., 2008) and a 

future study comparing the COVs of area (using the methodology in this study) 

and volume measurements would be of interest. 

Two methods of analysis were evaluated in this study at baseline and at six 

month follow up. The combination of PSIR and ASM in all subjects yielded the 

highest intra-rater reproducibility for cord area reported so far in MS 

(COV=0.002%). This combination also had the lowest value of COV for inter-

observer (0.03%) and scan-rescan reproducibility (COV 0.1%). The lowest value 

of 1-ICC was seen with PSIR/ASM, demonstrating that there is a low proportion 

of variability due to measurement errors. Intra-rater reproducibility was 

substantially lower with the combination of 3D-TFE and SAED method. This was 
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likely to have been due to the manual input required by the rater combined with 

the lower in-plane scan resolution. 

The relative contrast was higher in both 3D-PSIR than 3D-TFE by a factor of 24. 

This provides a higher contrast between cord and CSF, thereby improving the 

detection of the cord outline. PSIR also had a higher in-plane resolution than 3D-

TFE (0.5x0.5mm vs. 1x1mm) which reduced partial volume effects at the 

boundary between cord tissue and CSF. PSIR scans did not require 

reconstruction in a different plane, unlike 3D-TFE. Owing to the fact that the 

PSIR sequence is a 3D acquisition, three views can be reviewed simultaneously 

allowing accurate choice of the central slice for analysis from the sagittal view. A 

combination of these factors is likely to have contributed to the improved 

reproducibility with PSIR sequence. 

Though not significant the rate of change in patients’ cord area was higher than 

expected for 3 of the 4 analysis methods over the course of six months. The small 

cohort size with different subtypes of MS may have been a contributory factor to 

this finding. A larger decrease in both patients and controls was seen with the 

SAED method. As this method was shown to have inferior reproducibility 

compared to ASM, measurement error may account for the larger changes seen. 

Cord atrophy measurements are of particular interest as they correlate with 

EDSS (Losseff et al., 1996). In the present study, the Spearman correlations were 

in a similar range to previously reported values in larger MS patient cohorts 

(Losseff et al., 1996; Lin et al., 2003; Horsfield et al., 2010). A strong negative 

correlation was seen with PSIR and active surface model (r=-0.725, p=0.002). 

The correlation seen in this study strengthens the case for the use of spinal cord 
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atrophy as an objective marker of physical disability in studies. Although strong 

correlations were seen with EDSS it was not possible to comment on whether 

change in CSA using PSIR/ASM can reflect significant changes in EDSS as none of 

the patients followed up developed a change in disability status. 

Given the need for sensitive biomarkers in treatment trials sample sizes from the 

data in this study were estimated to demonstrate that it would be feasible to use 

the cord area as an endpoint to a clinical trial. These calculations are based on 

the cohort of nine patients followed up at six months and more accurate figures 

could be established from larger cohorts with longer duration of follow up. 

Nevertheless, based on the estimates in this study it would be possible to detect 

a 50% treatment effect (decrease in cord area loss) in a twelve month trial in less 

than 100 patients per arm, suggesting this would be a feasible endpoint for a 

proof-of-concept trial involving relatively few centres. The results of the sample 

size calculations also reveal that there are minimal differences between PSIR and 

3D-TFE, in the number of patients required in each treatment arm, provided the 

ASM is used to analyse the images. If the SAED method is used sample sizes 

required would be significantly larger.  

5.4.1 Limitations and future directions 

Although the reproducibility of the measures in this study was greater than that 

of previously published methods, a few limitations must be taken into account. 

First, it was not possible in our study to blind raters to the differences between 

3D-TFE and PSIR. Secondly, raters were not blinded to the two time points 

(baseline or six months) or whether scan one or two was being analysed at six 

month time point; however, the raters were blinded to subject status (control or 
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MS) and we are confident that the differences in CSA change between controls 

and MS (Table 5.7) - that formed the basis of the sample size calculations - are 

robust. As already noted the sample size at follow up was small which influenced 

the accuracy of sample size calculations. 

Thirdly, the scan time of PSIR was considerably longer than the 3D-TFE scan, this 

may potentially limit this scans usefulness (as part of a multimodal imaging 

protocol) due to motion artefacts.  

Fourthly, the 3D-TFE scan was acquired in this study with a larger voxel size 

than PSIR. Although this allowed direct comparison with previously published 

results, it may have been a contributory factor to the reduction in reproducibility. 

In order to improve reproducibility with 3D-TFE, this sequence could be 

acquired with a smaller voxel size (0.5x0.5mm in plane) equivalent to the PSIR 

sequence. Fifthly, rather than sagittal acquisition (which potentially introduces 

operator error into the measurement) an axial acquisition of the 3D-TFE 

sequence may improve its reproducibility. Finally, although the PSIR-ASM 

method was the most reproducible, the PSIR sequence may not be routinely 

available with all scanners manufacturers, potentially limiting its use in some 

multicentre trials; in such circumstances, the 3D-TFE-ASM approach may be 

more suitable and in our study it yielded only slightly higher sample sizes. 

This chapter has demonstrated a new methodology for measuring spinal cord 

atrophy in MS that has greater reproducibility than previously reported methods. 

Furthermore it has also demonstrated that it would be feasible to use this 

method as an endpoint in a clinical trial of neuroprotection in MS. 
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Chapter 6 - (i) A Pilot study to evaluate two high resolution axial sequences 
for spinal cord lesion detection in multiple sclerosis 

 

6.1 Introduction 

Spinal cord pathology is a major cause of disability in multiple sclerosis (MS). 

Pathological studies of the spinal cord in MS have detailed the morphology and 

distribution of lesions demonstrating wedge-shaped lesions predominantly in 

the posterior and lateral white matter (WM) columns (Fog, 1950). More recent 

post mortem magnetic resonance imaging (MRI) and histopathologic studies 

have identified additional involvement of central grey matter (GM) by spinal 

cord lesions, with both GM-only and mixed WM-GM lesions being detected 

(Gilmore et al., 2006, Lycklama à Nijeholt et al., 2001, Gilmore et al., 2009, 

Mottershead et al., 2003, Bot et al., 2004). 

Conventional in vivo T2-weighted MRI sequences detect focal spinal cord lesions 

and sometimes more diffuse abnormalities in the spinal cord in MS (Kidd et al., 

1993). The presence of focal cord lesions is valuable in the diagnosis of MS, as 

reflected by their inclusion in new diagnostic criteria (Polman et al., 2011). 

However, the number or load of T2-weighted lesions seen on sagittal scans of the 

spinal cord has little correlation with measures of disability in MS (Bergers et al., 

2002).  

The clinical effects of spinal cord WM lesions will depend on their locations, e.g., 

motor deficits from lateral column lesions and sensory symptoms from posterior 

or anterior column lesions. The effect of GM lesions is uncertain. Better in vivo 

MRI localisation of focal cord lesions should help understand their functional 

effects. Conventional axial T2-weighted MRI sequences have provided limited 
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information on the WM column or GM involvement by MS lesions, because of 

relatively low spatial resolution (typically 1x1mm in plane voxel size), 

insufficient contrast between WM and GM, motion and other types of artefacts 

(Dietrich et al., 2008).  

The hypothesis being investigated in this pilot study is that a combination of two 

high resolution axial images will be able to consistently visualise the spinal cord 

grey matter; the purpose of which is to identify the individual spinal cord white 

matter columns and thereby identify the anatomical location of focal spinal cord 

lesions in MS. 

 

6.2 Methods 

6.2.1 Subjects 

15 patients with a diagnosis of MS were recruited (Polman et al., 2011) (10 

female, 8 with relapsing-remitting MS (RRMS), 7 with secondary-progressive MS 

(SPMS), mean age 44.8, SD 10.53, range 28-64) (Lublin and Reingold, 1996) and 

one patient with a clinically isolated syndrome (CIS). The patient with CIS 

presented with optic neuritis and fulfilled the MS criteria for dissemination in 

space (DIS) but not dissemination in time (DIT) on brain MRI (Polman et al., 

2011). Subject inclusion was based solely on clinical diagnosis supported by 

brain MRI findings. Previous spinal cord MRI findings were not considered in 

order to avoid the potential to bias the study cohort based on prior descriptions 

of spinal cord lesions. 
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None of the subjects had experienced a relapse or received a course of 

corticosteroids within a month prior to imaging. All patients on disease 

modifying treatment were on the treatment for at least six months at the time of 

the study MRI. Informed written consent was obtained from all subjects. 

6.2.2 MRI Protocol 

Scanning was performed using a 3T Philips Achieva MRI system with RF multi-

transmit technology (Philips Healthcare, Best, the Netherlands) and a 16-channel 

neurovascular (NV) coil. Coverage of the two sequences acquired is outlined in 

Figure 6.1. 

 

Figure 6.1 Survey image demonstrating coverage of axial images acquired in this 

study 

Two 3D gradient-echo sequences – one with predominantly proton density 

weighting, the other with T1 weighting – were selected for this study of MS 

patients by an experienced neuroradiologist (KM), as they provided good 
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depiction of central grey matter (GM) and white matter (WM) columns of the 

cord (Figure 6.2), and because it was anticipated that they would detect MS 

lesions that are typically associated with an increase in proton density and T1-

relaxation time. Both of these scans were optimised in healthy controls and 

provided a clear outline of the cord anatomy without distortion by artefacts, 

through 3D averaging. 

 

Figure 6.2 Axial cervical cord MRI (A) FFE and (B) PSIR in a healthy control 

showing central grey matter and white matter columns. (C) Sagittal T2 weighted 

image used for orientation of slices 

The proton density-weighted sequence was a 3D gradient echo (fast field echo 

[FFE]) sequence that showed central GM with higher signal than cord WM. The 

T1-weighted sequence was a phase sensitive inversion recovery (PSIR) sequence, 

i.e. an inversion prepared 3D gradient echo (turbo field echo [TFE]) sequence 

with phase sensitive reconstruction, as has been previously described (Hou et al., 

2005) that provides a greater range of signal intensity because it additively 

combines the effects of negative and positive longitudinal magnetization in the 

image. PSIR also provides better GM-WM tissue contrast than other T1-weighted 

sequences and was previously shown to improve detection of cortical GM lesions 



 141 

and spinal cord lesions when combined with other MR sequences (Nelson et al., 

2007, Poonawalla et al., 2008; Sethi et al., 2012). 

The two scans were acquired in the same position through the upper cervical 

cord, by geometrically linking the two volumes during prescription, with the 

middle of the volume through the C2/C intervertebral disc. The copied geometry 

of the two volumes allowed corresponding slices to be reviewed simultaneously. 

High in plane resolution (0.5 x 0.5mm voxel size) and relatively small voxel sizes 

(1.25mm3) were chosen to achieve good anatomical definition. Care was given to 

immobilizing the patient using polystyrene filled bags to reduce motion artefact.  

 The sequence details were: 

1. 3D PSIR was acquired in the axial plane without parallel imaging 

containing 10 contiguous slices, FOV=256x128mm2, matrix=512x256, 

TR=12ms, TE=6.1ms, dual RF transmit, TI=843.6ms and number of 

averaged signals=3. The voxel dimensions were 0.5x0.5x5mm3 and the 

acquisition time was 14:22 minutes.  

2. 3D FFE image was acquired in the axial plane containing 10 contiguous 

slices, FOV 240x180mm2, TR 23ms, TE 5ms, flip angle α=7°, and number 

of averaged signals=8. The voxel dimensions were 0.5x0.5x5mm3 and the 

acquisition time was 13:34 minutes.  
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6.2.3 Image Analysis 

6.2.3.1 Lesion identification and location 

Two readers (HK and KM) reviewed both axial images simultaneously (i.e. on a 

slice-by-slice basis). Lesions were identified first on 3D-FFE images then 

confirmed on the 3D-PSIR images. Lesions were identified as sharply delineated 

areas of increased signal intensity on 3D-FFE imaging and hypo-intensity on 3D-

PSIR images (Figure 6.3 and 6.4). 

 

 

Figure 6.3 Axial cervical cord MRI (A) FFE and (B) PSIR in a MS patient showing 

(i) a WM-GM lesion involving the anterior column lesion and ventral horn of GM 

and (ii) a GM-WM lesion in the left lateral column and extending to adjacent 

dorsal horn and posterior column. (C) Sagittal T2 weighted image used for slice 

orientation showing a hyper-intense lesion at C2/C3 level 
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Figure 6.4 Axial cervical cord MRI (A) FFE and (B) PSIR in a MS patient showing 

a WM-GM lesion involving the left lateral column and adjacent dorsal horn GM. 

(C) Sagittal T2 weighted image with no visible lesions 

Following lesion identification on 3D-FFE, GM involvement was defined using 

PSIR. As lesions were hyper-intense on 3D-FFE, they have similar signal intensity 

to GM; this problem was not encountered on PSIR. Thus PSIR helped to clarify 

GM involvement by a lesion. Areas of diffuse abnormality were sometimes visible, 

mainly on the FFE sequence (Figure 6.5), in both subtypes of MS; however, only 

focal lesions were recorded in this study. Both images were used to define lesion 

location as fully as possible. Lesions were differentiated from motion artefact as 

any lesion included had to be identifiable on both sequences in the same location, 

as the two sequences were acquired separately this reduced the possibility of 

motion artefacts being misclassified as lesions. 
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Figure 6.5 Axial cervical cord MRI (A) FFE and (B) PSIR demonstrating diffuse 

changes seen in both lateral columns and posterior column on the FFE sequence. 

These were seen on 3 consecutive FFE slices at the C2/C3 level in the absence of 

focal lesions at the same level. (C) Sagittal T2 weighted image shows a focal 

lesion at C3-4 only 

Lesions were classified as WM-only (Figures 6.6 and 6.8), mixed WM-GM 

(Figures 6.4 and 6.7) or GM-only. Location within WM columns was also 

recorded: posterior column (PC), lateral column (LC), anterior column (AC). If a 

lesion involved more than one column, it was recorded as involving the column 

where it was predominantly located. When lesions extended over more than one 

slice, involvement of both WM and GM on any slice was sufficient to classify it as 

a mixed WM-GM lesion (Figure 6.4). Lesions were classified as WM-only when no 

GM involvement was seen on any slice over the entire lesion length (Figure 6.6 

and 6.8). GM-only lesions were categorised as not involving WM on any slices. 
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Figure 6.6 Axial cervical cord MRI (A) FFE and (B) PSIR in a MS patient showing 

a WM-only lesion in the right lateral column. (C) Sagittal T2 weighted image with 

multiple focal lesions 

 

 

Figure 6.7 Axial cervical cord MRI (A) FFE and (B) PSIR in a MS patient showing 

a WM-GM lesion involving posterior column and adjacent left dorsal horn GM; 

the GM involvement is more clearly evident on PSIR. (C) Sagittal T2 weighted 

image with large focal lesion at the level of the foramen magnum 
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Figure 6.8 Axial cervical cord MRI (A) FFE and (B) PSIR in a MS patient showing 

a WM-only lesion in the posterior column. (C) Sagittal T2 weighted image with a 

focal lesion visible above the C3/4 intervertebral disc 

6.2.3.2 Lesion area and length 

Cross-sectional cervical cord area of each subject was calculated on 3D-PSIR 

images using an active surface model on JIM software (Horsfield et al., 2010) 

(version 6, Xinapse Systems, Northants, UK), and mean cord area for each slice 

was calculated. The 3D-PSIR sequence was chosen for this purpose as it has a 

high contrast to noise ratio between cord and CSF (Hou et al., 2005). Lesions 

within each WM tract were outlined on the same 3D-PSIR image using a semi-

automated tool on JIM software package. The area of each lesion was recorded 

on each slice. The proportion of the whole cross-sectional cord area affected by 

lesions was calculated as: (lesion area/whole cord area) x 100%. The number of 

axial slices that each lesion involved was also recorded to document lesion 

length. 
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6.3 Results (Tables 6.1 and 6.2) 

51 lesions were identified in total, 24 in RRMS cohort, 22 in SPMS cohort, and 5 

in the case of CIS. Three lesions were seen in the AC (one in CIS, one in RRMS 

group and one in SPMS), 30 in LC (three in CIS, 16 in RRMS and 11 in SPMS) and 

18 in PC (one in CIS, seven in RRMS, ten in SPMS). The highest number of lesions 

was seen in the LC (n=30, 59%) and PC (n=18, 35%) with the lowest number 

seen in AC (n=3, 6%).  

In total 19 (37%) WM-only lesions were seen and 32 (63%) mixed GM/WM 

lesions were seen. Lesions typically involved only a part of a WM column and it 

was possible to detect lesions with a wide range of areas (range 1.9-20.6mm2). 

An occasional WM lesion was seen to extend from one column across central GM 

and in to another WM column (Figure 6.2). No GM-only lesions were identified.  

In the CIS case two of the five lesions were mixed GM/WM lesions and three 

were WM only. In RRMS cohort, 8 (33%) WM-only and 16 (67%) mixed GM/WM 

lesions were seen. In the SPMS cohort, 8 WM-only (36%) and14 mixed GM/WM 

(64%) lesions were seen. 

Mean lesion area was 4.3mm2 in AC (SD 0.97), 8.5mm2 in the LC (SD 3.72) and 

11.3mm2 in the PC (SD 4.61), which corresponded with 6.1%, 12% and 16.1% of 

mean cord area respectively. Mean lesion length in AC was 18.3mm, in the LC 

was 17.6mm and in the PC was 24.8mm.
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Table 6.1 Spinal cord lesion number and location in all MS patients and clinical subgroups (WM: white mater, GM: Grey matter) 

 All Subjects CIS RRMS SPMS 
 WM only Mixed WM 

/GM 
All WM 

only 
Mixed 

WM/GM 
All WM 

only 
Mixed 

WM/GM 
All WM only Mixed 

WM/GM 
All 

Anterior Column 1 2 3 0 1 1 0 1 1 1 0 1 

Posterior Column 7 11 18 1 0 1 3 5 8 3 6 9 

Lateral Column 11 19 30 2 1 3 5 10 15 4 8 12 

All regions 19 32 51 3 2 5 8 16 24 8 14 22 
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  Total CIS RRMS SPMS 

Mean 
Lesion 
Area 

(mm2) 

Anterior 
Column 

4.3 ± 0.9 4.8 ± 1.1 4.5 ± 0.5 3.6 ± 0.4 

Lateral 
Column 

8.5 ± 3.7 4.8 ± 1.9 9.5 ± 3.7 7.8 ± 3.3 

Posterior 
Column 

11.3 ± 4.6 6.3 ± 3.2 11.9 ± 4.7 10.5 ± 4.3 

Mean 
lesion 
length 
(mm) 

Anterior 
Column 

18.3 ± 7.6 20  10  25  

Lateral 
Column 

17.6 ± 12.8 11.7 ± 7.1 20.6 ± 12.5 20.5 ± 14.8 

Posterior 
Column 

24.8 ± 12.8 15  30.6 ± 10.2 28.9 ± 14.5 

% of cord 
area 

covered 
by lesion 

Anterior 
Column 

6.1 6.8 6.4 5.1 

Lateral 
Column 

12 6.8 13.4 11.1 

Posterior 
Column 

16.1 8.9 16.9 14.9 

 

Table 6.2 Mean (±SD) Lesion area and length in white matter columns 
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6.4 Discussion 

In this pilot study a 3T MR system and 3D-FFE and 3D-PSIR sequences were used, 

as an alternative to 2D conventional acquisitions. It was possible to visualise 

lesions affecting the central GM and WM columns in the spinal cord of patients 

with MS. Many WM-only and mixed WM-GM MS lesions were detected, whilst no 

GM-only lesions were detected. 

The imaging appearances of the WM column lesions correspond well with 

several pathological studies (Fog, 1950, Gilmore et al., 2006, Lycklama à Nijeholt 

et al., 2001) as does their predominant location in the posterior and lateral 

columns.  

The relative proportion of lesions classified as WM-only or as mixed WM-GM 

lesions (37% versus 63% respectively) is similar to the proportions that were 

reported in a previous detailed histopathological study (33% versus 45% 

respectively) (Gilmore et al., 2006), suggesting that the sensitivity of these two 

sequences for detecting such lesions is good. However, although it was possible 

to comment on the involvement of GM it was not possible to accurately 

determine the border between the lesion and the normal appearing GM, 

especially on the 3D-FFE sequence where central GM had a signal intensity that 

was often similar to the WM lesions. The 3D-PSIR sequence improves detection 

of MS lesions in the cerebral cortex (Nelson et al., 2007), and it was helpful in 

depicting GM involvement in the spinal cord. 
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The absence of GM-only lesions seen in our study differs from a previous 

histopathological study that reported 22% of cord lesions being confined to 

central GM (Gilmore et al., 2006). The pathology study noted that GM-only 

lesions seen on a single slice were sometimes seen to expand into the WM in 

subsequent slices, suggesting that they were in fact mixed WM-GM lesions. 

However, it is likely that the MR parameters used with each sequence in this 

study may have been suboptimal for detecting GM-only lesions. 

Difficulties with conventional T2-weighted fast spin echo (FSE) imaging in the 

spinal cord have been well documented and other sequences have proved 

superior in lesion detection in the cervical spinal cord (Rocca et al., 1999). 

Recently, conventional FSE imaging has been compared to multi-echo 

recombined gradient echo (MERGE) sequence (similar to FFE sequence in this 

study) (White et al., 2011, Martin et al., 2012). In both studies MERGE appears 

superior in detection of spinal cord lesions with the rational given that improved 

contrast between GM and WM aids lesion detection. In a similar manner PSIR has 

been compared to short time inversion recovery (STIR) and FSE and also was 

found to improve lesion detection with GM visible on axial images (Poonawalla 

et al., 2008). However none of these studies comment on the frequency of 

involvement of GM by spinal cord lesions.  

Better detection of central GM involvement in vivo might be possible with higher 

resolution images, providing that adequate SNR can be achieved within a feasible 

imaging time. This should be facilitated by acquiring the present sequences with 

thinner slices, e.g., 3mm thickness. Alternative ways to improve resolution and 

SNR would involve the use of improved multi-channel coil designs, or higher 
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magnetic field 7 Tesla scanners (where improved cerebral cortical MS lesion 

detection has already been shown [Mainero et al., 2009, Schmierer et al., 2010]) 

and higher resolution spinal cord images may be acquired in clinically acceptable 

time frames in the spinal cord (Zhao et al., 2013). There may also be other 

sequences (e.g. double inversion recovery) and contrast mechanisms with 

potential to improve GM lesion detection in the spinal cord. 

The imaging sequences used in this pilot study are not likely to be useful in 

routine diagnosis, mainly because of their long acquisition time and limited 

coverage of spinal cord. However, they may be helpful in research directed at 

understanding the structure-function relationship of MS spinal cord pathology. 

Therefore, in the latter half of this chapter these two sequences are employed in 

a significantly larger cohort of people with CIS and MS to accurately characterise 

spinal cord lesion morphology on axial imaging. 
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(ii) Classification of spinal cord lesions in different phenotypes of multiple 
sclerosis using high resolution axial MRI 
 

6.5 Introduction 

Spinal cord abnormalities may be detected in up to 90% of cases of MS on MRI 

(Bot et al., 2002; Bot et al., 2004) and are typically seen as abnormal regions of 

hyper-intense signal, less than two vertebral segments in length, on T2-weighted 

images (Kidd et al., 1993). 

Although spinal cord lesions may be visualised on sagittal imaging, it has been 

suggested that this approach underestimates their number (Bergers et al., 2002) 

and axial acquisitions may improve detection (Weier et al., 2012). A further 

advantage of axial imaging is that the spinal cord grey matter (GM) and columns 

may be visualised (Poonawalla et al., 2008; White et al., 2011; Martin et al., 2012). 

However, to our knowledge, there are no reports to date investigating the 

association between spinal cord lesions’ GM involvement in vivo and MS. 

In the pilot study, in the former part of this chapter, the utility of a combination 

of axial (0.5 x 0.5 mm2 in plane) 3D-fast field echo (FFE) and 3D-phase sensitive 

inversion recovery (PSIR) scans was evaluated, using a 3T MRI system, to record 

the anatomical location and grey matter involvement of cervical cord lesions. 

In this latter part of the chapter, spinal cord lesion morphology is studied in a 

larger cohort of people with MS, in order to investigate whether diffuse 

abnormalities and more extensive focal lesions, that traverse two or more spinal 

cord columns and involve the grey matter, are associated with progressive MS. 
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6.6 Methods 

6.6.1 Subjects 

People with clinically isolated syndrome (CIS) or MS (Polman et al., 2011) were 

recruited. Subtypes of MS were classified using published criteria (Lublin and 

Reingold 1996). Recruitment was performed without reference to earlier spinal 

cord imaging findings. None of the subjects had a relapse or received 

corticosteroids within a month prior to participation. Disability was recorded 

using the expanded disability status scale (EDSS [Kurtzke 1983]). Informed 

written consent was obtained from all participants. 

6.6.2 MRI protocol 

MRI scans were performed using a 3T Philips Achieva MRI system with 

radiofrequency (RF) multi-transmit technology (Philips Healthcare, Best, the 

Netherlands). To minimise motion artefacts during scanning a polystyrene filled 

vacuum bag was placed behind the neck of each participant and subsequently 

the air was removed to immobilise the neck. The axial spinal cord images 

acquired in the upper cervical cord contained ten slices of 5mm thickness and 

were centred at C2/C3: 

6.6.2.1 Spinal cord acquisitions 

(i) Sagittal PD/T2 cervical spine: TR=4000ms, TE=15/80ms (dual echo), 

NEX=2, FOV=256 X 160 mm2, 12 slices, voxel size=1 x 1 x 3mm3, 

TSE=12. 

(ii) Axial 3D-PSIR: was acquired in the axial plane in the cervical cord centred 

at C2/C3 intervertebral disc, with a voxel size of 0.5 x 0.5 x 5 mm3, TR 
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= 8 ms; TE = 3.7 ms; α = 5°; FOV = 256 x 256 mm2; NEX = 1. 

(iii) Axial 3D-FFE sequence using identical slice prescription geometry as in 

(ii) with TR = 23ms; TE = 5ms; α = 7°; FOV 240 x 180mm2; voxel size 

0.5 x 0.5 x 5mm3 

 

6.6.2.2 Brain acquisition 

 

(i) Axial PD/T2 images using a 2D turbo spin echo sequence (TSE) with 3mm 

slice thickness; the following parameters were employed: TR=3500 ms; 

TE=19/85 ms; matrix 240 x 240 mm2; in plane voxel size = 1 x 1 mm. 

 

6.6.3 Image analysis 

Using the sagittal image for orientation of axial slices, lesions were recorded on 

the slice-matched 3D-FFE and 3D-PSIR images by one reader (HK) under the 

supervision of an experienced neuroradiologist (KM). Lesions were analysed on 

all ten 5mm thick slices of the axial images. Both readers were blinded to the 

clinical status of the cases being reviewed. 

6.6.3.1 Focal lesions 

Focal lesions were defined as abnormal areas of clearly increased signal intensity 

on the 3D-FFE image and decreased signal intensity on 3D-PSIR and a clearly 

demarcated border from the surrounding tissue. Focal lesions were only 

recorded when they were clearly visible simultaneously as a hyper-intense 

abnormality on the 3D-FFE scan and hypo-intense abnormality on 3D-PSIR scan. 
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Focal lesions were then categorised based on the number of spinal cord columns 

involved. For this, either unilateral or bilateral involvement of the anterior and 

posterior columns was counted as a single column and involvement of the right 

and left lateral columns was counted separately. Thus anywhere between one 

and four columns could be involved (Table 6.3). The spinal cord column 

predominantly involved by the lesion was recorded and if extension into one or 

more additional columns was seen (e.g. a lateral column lesion extending into 

the posterior column) this was also noted. 

 

Type I Spinal cord lesion involving a single 
column and confined to the white 

matter 

Type II Spinal cord lesion involving a single 
column and grey matter 

Type III Spinal cord lesion involving two 
columns and grey matter 

Type IV Spinal cord lesion involving three or 
four spinal cord columns and grey 

matter 

 

Table 6.3 Classification system used for focal spinal cord lesions identified on 
axial scans 

 

Lesions involving a single column were either confined to white matter only 

(Type I – demonstrated in Figure 6.9), or extended to involve GM (Type II – 

Figure 6.10). When focal lesions involved two (Type III –Figure 6.11) or more 

(Type IV – Figure 6.12) columns, the GM adjacent to the affected columns was 

also invariably involved, i.e., no lesions involved two or more columns without 
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including GM. For lesions that covered multiple slices of the image, their extent 

was classified from the slice with maximal involvement. 
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Figure 6.9 Three cases of lesions involving a single spinal cord column restricted 
to the white matter (Type I lesions). 1A-C: 3D-FFE 0.5 x 0.5 mm2 in plane voxel 
size, 1D-F: 3D-PSIR 0.5 x 0.5 mm2 in plane voxel size. Focal lesions are marked by 
a yellow single chevron and are located in the left lateral column (Figures A/D 
and C/F) and in the right lateral column (Figures B/E and C/F) 

 

 

Figure 6.10 Three cases of lesions involving a single spinal cord column also 
involving the grey matter (Type II lesions). 2A-C: 3D-FFE 0.5 x 0.5 mm2 in plane 
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voxel size, 2D-F: 3D-PSIR 0.5 x 0.5 mm2 in plane voxel size. Diffuse abnormalities 
are demonstrated on the 3D-FFE images 2B and 2C in the right lateral column 
indicated by a double chevron. Focal lesions involving the grey matter are 
demonstrated in the left lateral column by a single chevron in all images and a 
separate focal lesion is demonstrated in the posterior column (Figure B and E). 

 

 

Figure 6.11 Three cases of focal lesions (indicated by single chevrons) involving 
two spinal cord columns and the grey matter (Type III lesions). 3A-C: 3D-FFE 0.5 
x 0.5 mm2 in plane voxel size, 3D-F: 3D-PSIR 0.5 x 0.5 mm2 in plane voxel size. A 
focal lesion crossing from the anterior to posterior column is demonstrated in 

Figures A and D. Figure B and E demonstrate lesions crossing from the lateral to 
the posterior column and a separate focal lesion in the left lateral column. Figure 

A also shows diffuse abnormalities in the right lateral column (indicated by 
double chevron). A focal lesion crossing from the lateral to the anterior column is 

demonstrated in Figure C and F. 
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Figure 6.12 Three cases of lesions involving three spinal cord columns and the 
grey matter (Type IV lesions). 4A-C: 3D-FFE 0.5 x 0.5 mm2 in plane voxel size, 
4D-F: 3D-PSIR 0.5 x 0.5 mm2 in plane voxel size. Focal lesions are shown in all 

images by a single chevron. 

 

6.6.3.2 Diffuse abnormalities 

These were defined as abnormal areas of intermediate signal intensity, between 

that of focal plaques and normal appearing spinal cord tissue (Figure 6.13). 

Diffuse abnormalities also lacked a well demarcated border from adjacent 

normal appearing spinal cord tissue. These were recorded on the 3D-FFE scan, 

where they were visible as an intermediate hyper-intense abnormality relative 

to the normal appearing spinal cord. Diffuse abnormalities were often not seen 

on the PSIR scan, or if they were, they were less well defined areas of subtle 

hypo-intensity relative to normal appearing cord. 

Diffuse abnormalities were recorded, when seen, as present or absent. An 

anatomical classification system based on spinal cord columnar involvement – as 
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undertaken for focal lesions - could not be implemented for diffuse abnormalities, 

due to the absence of a clearly defined border demarcating their termination. 

Images degraded by artefacts on visual inspection were excluded from analysis. 

 

 

Figure 6.13 Images demonstrating diffuse abnormalities on 3D-FFE images (A 
and B) shown by double chevrons. Corresponding slices of 3D-PSIR image shown 
in images C and D. 

 

6.6.4 Statistical analysis 

Stata 13 (Stata Corporation, College Station, Texas, USA) was used for statistical 

analysis. 

6.6.4.1 Comparison of focal lesion characteristics, GM involvement and diffuse 

abnormalities between CIS and MS subtypes 

 

Firstly, to investigate significant differences in the number of focal spinal cord 

lesions between CIS and MS and between each MS subtype, a single test for 

‘linear trend’ (Altman et al., 1991) by regressing the lesion variable (i.e. number 
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of focal lesions) on a group variable coded numerically in the order: 0=CIS, 

1=RRMS, 2=PPMS, 3=SPMS. 

Secondly, to test the hypotheses that more extensive focal lesions, GM 

involvement and diffuse abnormalities would be seen more frequently in 

progressive MS, these lesion characteristics were compared between CIS and MS 

subtypes using logistic regression.  

In each regression model constructed, the lesional element being compared 

(lesion extent, GM involvement and diffuse abnormalities) was entered in a 

binary fashion as the dependent variable. Disease subtype (CIS or MS) was 

entered as a predictor in each model and adjustment was made for age, gender 

and disease duration (where appropriate). Separate adjustment was performed 

so that age and duration were not in the model simultaneously, since across 

subject groups duration will necessarily vary substantially in patients of the 

same age. Where patients did not have a particular lesion characteristic (e.g. 

diffuse abnormalities) an exact chi-square test was used and this is indicated in 

the Results. Comparisons performed were as follows: CIS vs. RRMS, SPMS vs. 

RRMS and PPMS vs. RRMS/SPMS. 

Due to the exploratory nature of the study, no adjustment for multiple 

comparisons was performed (Bender and Lange 2001). However, to limit the 

number of statistical tests being performed, comparisons were restricted solely 

to the hypotheses being investigated. 

6.6.4.2 Investigation of independent associations between spinal cord lesion 

characteristics and physical disability 
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In order to investigate independent associations between lesion variables and 

physical disability, a multiple linear regression model was constructed with 

EDSS as response variable on the lesion predictors listed in the Table 6.4. A 

standard manual forward stepwise procedure was used as follows: (i) age, 

gender and disease duration were retained in the model throughout; the first 

MRI variable entered was the subject classification according to their most 

extensive lesion (ii) each MRI variable entered was retained if P<0.05, while any 

MRI variables with P>0.05 were removed; with each new variable combination 

thus constructed, the procedure was repeated, until all MRI variables in the 

model were P<0.05 and no other variable improved the model at P<0.05. There 

was no marked deviation from normality or homoscedascity of regression 

residuals, but the regression estimates for the final model were confirmed using 

the non-parametric bias-corrected and accelerated bootstrap (Carpenter and 

Bithall 2000). 
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Lesion number The total number of lesions per patient 

Lesion characteristics The most extensive lesion seen in each 
patient (Type I – IV) 

Diffuse abnormalities The presence of diffuse abnormalities 

Spinal cord columnar involvement by 
focal lesions 

The mean number of columns involved 
per lesion 

The largest number of columns 
involved in any one lesion 

The number of lesions involving the 
anterior, lateral or posterior columns 

Spinal cord grey matter involvement 
by focal lesions 

The number of lesions involving the 
grey matter 

The number of lesions involving the 
anterior, lateral or posterior columns 
and the grey matter 

Diffuse abnormalities and spinal cord 
grey matter involvement by a focal 
lesion 

 

Table 6.4 A list of all MRI variables that were tested prior to construction of the 
final regression model investigating independent associations between spinal 
cord lesion variables with EDSS 
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6.7 Results 

6.7.1 Demographics of CIS and MS groups 

In this study 120 people were recruited: 25 CIS, 35 RRMS, 30 SPMS and 30 PPMS. 

Demographic details of the subjects recruited are summarised in Table 6.5. 

Three scans were excluded due to motion artefacts: CIS (1), RRMS (1) and SPMS 

(1). 

 CIS 

n = 25 

RRMS 

n = 35 

PPMS 

n = 30 

SPMS 

n = 30 

Age (years) 36.5 ± 9.0 38.7 ± 9.7 50.6 ± 
9.9 

51.1 ± 9.2 

Gender 
Female: Male 

14:11 23:12 13:17 18:12 

Disease 
duration 
(years) 

0.4 ± 0.4 6.5 ± 5.2 10.4 ± 
7.5 

19.9 ± 11.5 

Median EDSS 
(range) 

1 (0 – 3.5) 2.5 (0 – 6) 6 (2 – 
7.5) 

6.5 (4 - 8) 

Disease 
modifying 
drugs (%) 

0 (0) 19 (54) 0 (0) 5 (17) 

 

Table 6.5 Demographics of all CIS and MS patients recruited for this study. Data 
represents mean ± standard deviation (SD). 

 

The CIS cohort had the following presentations: optic neuritis (21), partial 

myelitis (2), multifocal CIS (1, optic neuritis with a brainstem syndrome) and 

hemispheric presentation (1, unilateral hand weakness due to a motor cortex 

lesion). Criteria for dissemination in space was fulfilled in 15 cases, however, 
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dissemination in time could not be determined as gadolinium was not used 

(Polman et al., 2011). 

In the MS cohort 19 of the 35 RRMS patients were taking disease modifying 

drugs: -interferon (13), natalizumab (5), and glatiramer acetate (1). In the 

SPMS cohort, five of the 30 patients were taking -interferon. 

6.7.2 Number of spinal cord lesions recorded (Tables 6.6a and 6.6b) 

Lesion numbers in each category (Type I-IV) are summarised in Table 6.6a in 

total 354 focal spinal cord lesions were identified. A higher number of Type IV 

lesions were identified in progressive MS: SPMS (8), PPMS (5) than RRMS (1) 

and CIS (0). 

Total number 
of lesions 

Type I Type II Type III Type IV 

CIS  

n = 18 

8 (44.5%) 8 (44.5%) 2 (11%) 0 (0%) 

RRMS  

n = 94 

36 (38%) 41 (44%) 16 (17%) 1 (1%) 

PPMS  

n = 106 

36 (34%) 55 (52%) 10 (9%) 5 (5%) 

SPMS  

n = 136 

37 (27%) 69 (51%) 22 (16%) 8 (6%) 

All subjects 

n = 354 

117 (33%) 173 (49%) 50 (14%) 14 (4%) 

 

Table 6.6a Number (percentage) of lesion types I-IV recorded in each clinical 
subgroup. 
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In line with pathological reports of the MS spinal cord, lesions involved the 

lateral and posterior columns more frequently (75% and 38% of lesions 

respectively) than the anterior column (6%). The GM was involved by 67% of the 

lesions seen. Lesion numbers recorded in each anatomical location are 

summarised in Table 6.6b. 

Total number 
of lesions 

Grey matter 
involvement 

Anterior 
column 

Posterior 
column 

Lateral 
column 

CIS  

n = 18 

10 (56%) 2 (11%) 5 (28%) 13 (72%) 

RRMS  

n = 94 

58 (62%) 5 (5%) 38 (40%) 67 (71%) 

PPMS  

n = 106 

70 (66%) 7 (7%) 37 (35%) 79 (75%) 

SPMS  

n = 136 

99 (73%) 6 (4%) 54 (40%) 107 (79%) 

All subjects 

n = 354 

237 (67%) 20 (6%) 134 (38%) 266 (75%) 

 

Table 6.6b The number (percentage) of lesions involving the spinal cord grey 
matter and each column of the spinal cord in each clinical subgroup. Note: the 

numbers in this table do not add to the total number of lesions, since some 
lesions seen involved more than one column e.g. extension into the lateral and 

posterior column by the same lesion. 

6.7.3 Lesion characteristics by MS subtype (Tables 6.7a, 6.7b) 

The proportion of people with focal spinal cord lesions increased in the order: 

CIS (42%), RRMS (85%), PPMS (97%) and SPMS (100%) - Table 6.7a. 
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Total number 
of people 

Number of 
people with 
focal spinal 
cord lesions 

Number of 
people with 
Type I lesions 

Number of 
people with 
Type II 
lesions 

Number of 
people with 
Type III 
lesions 

Number of 
people with 
Type IV 
lesions 

Number of 
people with 
lesions 
involving the 
grey matter 

Number of 
people with 
diffuse 
abnormalities 

CIS 

n = 24 

10 (42%) 8 (33%) 5 (21%) 2 (8%) 0 (0%) 6 (25%) 0 (0%) 

RRMS 

n = 34 

29 (85%) 20 (59%) 21 (62%) 12 (35%) 1 (3%) 25 (74%) 6 (18%) 

PPMS 

n = 30 

29 (97%) 22 (73%) 25 (83%) 9 (30%) 5 (17%) 27 (90%) 17 (57%) 

SPMS 

n = 29 

29 (100%) 20 (69%) 27 (93%) 17 (59%) 7 (24%) 28 (97%) 16 (55%) 

 

Table 6.7a Number (percentage) of people with CIS or MS with spinal cord lesions, each lesion type, spinal cord grey matter 
involvement and diffuse abnormalities. Note: Three peoples’ scans were excluded from analysis due to motion artifacts on images: CIS 
(1), RRMS (1) and SPMS (1). 
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Table 6.7b shows mean number and type of lesions per person. The mean of the 

total number of lesions per patient increases also in the order CIS (mean 0.8), 

RRMS (2.8), PPMS (3.5), and SPMS (4.7). This increase is approximately linear 

with a significant increase of 1.2 (95% CI 0.9, 1.6; P<0.001) lesions per MS 

subtype. Adjustment for age and gender did not affect the results. 

 

Number of 
people 

Type I Type II Type III Type IV Grey matter 
involvement 

CIS 

n = 24 

0.33, 0 (0-
1) 

0.33, 0 (0-
2) 

0.08, 0 (0-
1) 

0, 0 (0) 0.42, 0 (0-3) 

RRMS 

n = 34 

1.06, 1 (0-
5) 

1.21, 1 (0-
4) 

0.47, 0 (0-
3) 

0.03, 0 (0-
1) 

1.71, 1 (0-5) 

PPMS 

n = 30 

1.20, 1 (0-
4) 

1.83, 1.5 
(0-6) 

0.33, 0 (0-
2) 

0.17, 0 (0-
1) 

2.33, 2 (0-6) 

SPMS 

n = 29 

1.27, 1 (0-
5) 

2.37, 2 (0-
6) 

0.75, 1 (0-
3) 

0.28, 0 (0-
2) 

3.41, 3 (0-8) 

 

Table 6.7b Mean, median (range) of the number of spinal cord lesions in each 
category and involving the grey matter seen in each person with CIS and MS. 

 

In line with the hypothesis being explored, the proportion of subjects with more 

extensive lesions (defined as Type III or IV), was significantly higher in RRMS vs. 

CIS (OR 6.8, 95% CI 1.4, 33.9; P=0.019), SPMS vs. RRMS (3.1, 95% CI 1.1, 8.7; 

P=0.033) and in SPMS vs. PPMS (OR 3.8, 95% CI 1.3, 11.2; P=0.015). These 
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comparisons were not materially affected by adjustment for age, gender or 

disease duration. 

The proportion of subjects with lesions involving the GM (Type II, III and IV 

lesions) was also greater in RRMS vs. CIS (OR 8.3, 95% CI 2.5,27.6; P=0.001) and 

SPMS vs. RRMS (10.1, 95% CI 1.2, 85.3; P=0.034) but not significantly greater in 

SPMS vs. PPMS (OR 3.1, 95% CI 0.3, 31.8; P=0.338). 

As anticipated, diffuse abnormalities were present in over half of PPMS (57%) 

and SPMS (55%) patients but only in 18% of RRMS and none of CIS (P=0.037 for 

RRMS vs. CIS, exact chi-square test). The odds ratio for having diffuse 

abnormalities in PPMS vs. RRMS was 6.1 (CI 2.0, 19.1; P=0.002) and for SPMS vs. 

RRMS, 5.7 (95% CI 1.8, 18.1; P=0.003). Adjustment for age, gender or disease 

duration did not materially alter these results. 

 

6.7.4 Independent associations between EDSS and spinal cord lesion 
characteristics 

The best independent predictor of EDSS was found to be the number of a 

subject’s lesions which involved both a lateral column and GM. Compared to 

subjects with no such lesions, having 1, 2 and 3+ lateral column lesions with GM 

involvement, predicted respectively 0.8 (95% CI -0.26,1.77; P=0.143), 0.7 (-0.46, 

1.81; P=0.239) and 2.1 (0.94, 3.32; P=0.001) higher mean EDSS (with P=0.0007 

for the overall contribution of the categorical variable). 

None of the other MRI variables entered additionally into this model (see Table 

6.4) was significant, but in particular neither (i) the total number of lesions, nor 

(ii) the number of lesions involving a lateral column, nor (iii) the number of 
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lesions with GM involvement, contributed significantly to the above model, 

confirming the importance of the more specific predictor.  

EDSS was also predicted with borderline significance to be higher by 0.4 (95% CI 

0.01, 0.78; P=0.046) per category (Type I-IV) of the subject’s most extensive 

lesion. 

Age at scan (predicted 0.06 increase in mean EDSS per year of age, P<0.001), 

gender (predicted 0.60 higher mean EDSS in men compared to women, P=0.032) 

and disease duration (predicted 0.07 increase in mean EDSS per year duration, 

P=0.001) were also associated with EDSS. 

The proportion of explained variance (R2) in this regression model was 66%, 

compared to 46% for a model with only age, gender and duration, and with 44% 

for a model with just the two lesion variables (though this rose to 50% when 

subject’s most extensive lesion was entered as categorical). 
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6.8 Discussion 

 

In this study two novel associations between spinal cord lesion characteristics 

and progressive MS have been demonstrated. Firstly, lesions involving two or 

more spinal cord columns and the grey matter, as well as diffuse abnormalities, 

are more frequent in progressive MS. Secondly, lateral column lesions with grey 

matter involvement, are independently associated with physical disability. 

 

6.8.1 Association of more extensive focal lesions and diffuse abnormalities with 
progressive MS 

 

Post mortem spinal cord studies have demonstrated extensive ‘fan shaped’ focal 

lesions traversing several white matter columns and grey matter (Fog 1950; 

Oppenheimer 1978), as well as diffuse abnormalities in progressive MS (Bergers 

et al., 2002). However, due to the inherent limitations of axial spinal cord 

imaging (Stroman et al., 2014), there are limited data on the morphology of focal 

lesions seen in progressive MS in vivo; compared directly to earlier stages of the 

disease. 

This present study is in agreement with previous studies demonstrating a 

greater number of focal lesions in progressive MS (Lycklama et al., 1997; Nijeholt 

et al., 1998; White et al., 2011; Weier et al., 2012; Lukas et al., 2013). However, 

this study extends these findings in two ways. Firstly, a greater number of spinal 

cord columns covered by individual focal lesions in progressive MS was noted 

(as seen in pathology studies [Fog 1950; Oppenheimer 1979]). This observation 

was in comparison to RRMS and CIS, where focal lesions seen were more 
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frequently restricted to a single column. Through the inclusion of people with 

earlier phases of the disease, an association has been demonstrated between 

these larger lesions, covering two or three columns, and progressive MS. 

Secondly the grey matter involvement of the extensive focal lesions seen was 

recorded. These results suggest that spinal cord grey matter involvement is 

extensive in progressive MS, in line with pathology reports (Gilmore et al., 2006; 

Gilmore et al., 2009). 

A question arising from this observation is how lesions restricted to a single 

column of the cord, evolve to encompass multiple columns. Pathology reports of 

the spinal cord in progressive MS have demonstrated extensive inflammation 

and demyelination (Lovas et al., 2000; DeLuca et al., 2004). This may provide a 

milieu in the spinal cord conducive to the formation of new extensive lesions, or 

facilitate the extension and/or coalescence of existing lesions. However, 

longitudinal studies are required to elucidate the exact mechanisms involved. 

Consistent with previous spinal cord studies we have also observed frequent 

diffuse abnormalities in progressive MS (Lycklama et al., 1997; Nijeholt et al., 

1998; Weier et al., 2012; Lukas et al., 2013). An ex vivo study has suggested the 

histopathological correlate of this imaging abnormality is demyelination 

(Bergers et al., 2002). Therefore, the more frequent identification of diffuse 

abnormalities in progressive MS in this study is in agreement with the extensive 

demyelination seen in post mortem spinal cord studies (Fog 1950; Oppenheimer 

1979; Lovas et al., 2000; DeLuca et al., 2004; Gilmore et al., 2009). 

In this present study patients with progressive MS were almost six times more 

likely to have diffuse abnormalities, compared to RRMS. The significance of 
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diffuse abnormalities in progressive MS is discussed in the 2005 revisions to the 

McDonald diagnostic criteria (Polman et al., 2005). However, diffuse 

abnormalities were not included due to a lack of reliability. The spinal cord 

imaging studies referenced in the 2005 revisions contained sagittal views only, 

unlike the present axial study. The detection of diffuse abnormalities in 

progressive MS may be improved upon (as seen with focal lesions [Weier et al., 

2012]), through the use of high resolution axial views in future studies. 

 

6.8.2 Lesions involving lateral columns and grey matter are independently 
associated with disability 

 

In the subsequent chapter (seven) of this thesis, spinal cord lesion load 

measured quantitatively is shown to be independently associated with disability. 

In line with this, the current chapter also demonstrates an independent 

association between spinal cord lesions and disability. However, this present 

study characterised the anatomical location of lesions, in order to identify their 

functional effects in individual spinal cord columns. 

The independent association between lateral column lesions with grey matter 

involvement and EDSS, may be due to corticospinal tract abnormalities and/or 

de-afferentation between sensory and motor tracts, as a consequence of grey 

matter inter-neuronal loss (Gilmore et al., 2009). The EDSS is heavily weighted 

towards ambulatory function (Hobart et al., 2000), which may explain the 

association between lateral column abnormalities and physical disability. 

The most extensive lesion seen in patients (defined by the number of columns 

involved), not recorded in previous studies, was also associated with EDSS, albeit 
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with borderline significance. Such extensive lesions may contribute to axonal 

pathology by acute transaction (Trapp et al., 1998) or Wallerian degeneration 

(DeLuca et al., 2004). However, the strength of the association seen may have 

been weakened by the effect of lesions outside of the field of view of the scans 

acquired. 

 

6.8.3 Limitations and future directions 

A number of limitations should be considered in the interpretation of the results 

of this study. Firstly, the images acquired were restricted to the upper cervical 

cord. Although limited, this approach minimised physiological motion and likely 

provided the greatest yield of lesions for analysis (Fog 1950; Oppenheimer 

1979). 

 

Secondly, with multiple statistical tests there may be an increased chance of 

obtaining false positive results: caution is especially needed interpreting results 

when the P-values obtained were significant at the 0.05 but not 0.01 level; such 

results should be regarded as hypothesis-generating only and need to be 

confirmed in future studies. 

 

Finally, small focal lesions and subpial or peripheral lesions of the spinal cord, 

extending over two columns without GM involvement, may not have been 

visualised with the in-plane resolution used in the present study. Furthermore, 

lesions’ extent within the spinal cord GM could not be quantified. Spinal cord 

lesion detection and classification may be improved upon in future studies 
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performed at 7T, with higher resolution acquisitions within clinically acceptable 

timeframes (Zhao et al., 2013). 

 

6.8.4 Conclusions 

Through the use of high resolution, axial cervical spinal cord MR imaging on a 3T 

scanner, significant associations have been demonstrated in this chapter 

between the extent of focal spinal cord lesions, grey matter involvement and 

diffuse abnormalities with progressive MS and disability. The techniques used 

improve the detection and quantification of cord lesions in MS, and warrant 

further investigation for their potential to assist diagnosis and provide new 

outcome measures in clinical trials. 
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Chapter 7 - Investigation of associations between spinal cord lesion load, 
magnetisation transfer ratio and physical disability 

 

7.1 Introduction 

The progressive phase of MS often includes a prominent spinal cord syndrome 

(Kremenchutzky et al., 2006) and post mortem studies have demonstrated 

multiple and sometimes extensive ‘wedge-like’ or ‘fan-shaped’ lesions (Fog 1950; 

Oppenheimer 1978). However, the relationship of spinal cord lesion-load with 

clinical course is uncertain and direct pathological comparison of lesion-load in 

progressive forms of MS versus the relapsing-remitting (RR) phase of the disease 

is impeded by the rarity with which MS tissue becomes available in early disease.  

MRI provides a technique to detect spinal cord lesions in vivo and can compare 

their frequency and extent at all stages of the disease. Perhaps surprisingly, MRI 

studies have generally shown no or only limited correlations between measures 

of spinal cord lesion-load and physical disability (Kidd et al., 1993; Nijeholt et al., 

1998). However, almost all MRI studies of spinal cord lesions have been based on 

images acquired only in a sagittal plane, and therefore provide no indication of 

the extent to which the spinal cord is involved in its transverse dimensions. 

These studies have also used qualitative or only semi-quantitative methods to 

measure lesion-load, such as counts of lesion number (Kidd et al., 1993; Nijeholt 

et al., 1998) or the number of segments involved by lesions (Lukas et al., 2013). 

Only one study has reported on lesions detected with axial (transverse) MRI 

scans, and in this study lesions were counted but their size was not reported 

(Weier et al., 2012).  
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No study has previously attempted to quantify the extent of lesions involvement 

of the spinal cord by measuring the total lesion area in images acquired in the 

axial (transverse plane). Newer T2- and T1-weighted sequences have been 

developed that acquire high in-plane axial images through the upper cervical 

cord (Chapter 6), a level at which lesions are often seen pathologically and on 

conventional T2-weighted MRI. Lesions are clearly depicted on these sequences 

and demonstrate morphological appearances similar to those described on 

transverse histopathological slices (Fog 1950; Oppenheimer 1978). 

In the present study, high in-plane resolution axial upper cervical cord images 

were acquired in a large cohort of patients with both RR and progressive forms 

of MS and with widely varying disease duration and disability. The hypotheses 

being explored were that firstly; carefully quantified cross-sectional spinal cord 

lesion area – measured on high-resolution axial slices - would be higher in 

progressive forms of MS than in RR disease and secondly, that lesion load would 

be significantly correlated with disability. Thirdly, magnetisation transfer ratio 

(MTR) values were measured in both intrinsic lesional and non-lesional spinal 

cord tissue, to investigate whether greater MTR abnormalities, reflecting more 

extensive demyelination, would be identified in progressive MS, compared to 

earlier stages of the disease (Dousset et al., 1992; Bot et al., 2004; Schmierer et 

al., 2004; Chen et al., 2013). 
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7.2 Methods 

7.2.1 Subjects 

In this study people with MS (Polman et al., 2011) were recruited. MS subtype 

was classified using published criteria (Lublin and Reingold) and physical 

disability was recorded prior to the MRI scan using the expanded disability 

status scale (EDSS) (Kurtzke 1983) and multiple sclerosis functional composite 

(MSFC) (Fischer et al., 1999). The nine hole peg test (9-HPT) and paced auditory 

serial addition tests (PASAT) were analysed in standard z-score form. The timed 

walk test (TWT) was analysed as a z-score formed from the inverse of walk times 

(i.e. walk speed), as walk times are highly positively skewed. None of the subjects 

had experienced a relapse within a month prior to participation. This study was 

approved by our local ethics committee and informed written consent was 

obtained from all participants. 

7.2.2 MRI protocol 

MRI scans were acquired using a 3T Philips Achieva MRI system with 

radiofrequency (RF) multi-transmit technology. To minimise motion during 

scans a polystyrene filled bag surrounding the neck was used. The spinal cord 

sequences were performed in the upper cervical cord centred at the C2/C3 level 

and covering C2-C4. 

SC Imaging: 
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(i) 3D phase sensitive inversion recovery (PSIR): voxel size of 0.5 x 0.5 x 3 

mm3, TR = 8 ms; TE = 3.7 ms; flip angle α = 5°; FOV = 256 x 256 mm; 

NEX = 1 

(ii) MTR data were obtained by acquiring a 3D slab selective spoiled gradient 

echo sequence with two echoes using TR = 36ms, TE1/TE2 = 

3.5/5.9ms, flip angle (α)=9°, with and without Sinc-Gaussian shaped 

MT saturating pulses of nominal α=360°, offset frequency 1kHz, 

duration 16ms applied prior to the excitation pulse. Twenty-two 5mm 

slices were acquired in an axial orientation, with FOV = 180 x 240 

mm2 and acquisition matrix = 240 x 320 (voxel size 0.75 x 0.75mm2, 

reconstructed to 0.5 x 0.5mm2), with SENSE factor 2 in the foot/head 

direction, and 2 signal averages (NEX). 

(iii) 3D fat-suppressed fast field echo (3D-FFE) was acquired in the axial 

plane containing 10 contiguous slices, FOV 240x180mm
2
, TR 23ms, TE 

5ms, flip angle α=7°, and number of averaged signals=8 

Brain imaging: 

(i) 3D magnetisation-prepared turbo field echo (3D-TFE) sequence was used 

with slice thickness= 1mm; TR=6.8 ms; TE=3.1 ms; matrix = 256 x 256 

mm2; in plane voxel size 1 x 1mm2  

(ii) Axial PD/T2 images using a 2D turbo spin echo sequence (TSE) with 3mm 

slice thickness, and the following acquisition parameters: TR=3500 

ms; TE1/TE2=19/85 ms; matrix 240 x 240 mm2; in plane voxel size = 

1 x 1 mm2 

7.2.3 Image analysis 
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7.2.3.1 Upper cervical cord lesion-load and cross-sectional area 

An inclusion criterion for each scan was the absence of motion artefacts. Focal 

spinal cord lesions were defined as abnormal areas of decreased signal change, 

with a clearly visible hypo-intense abnormality suggestive of a demyelinating 

plaque that had clearly defined margins and could be demarcated from the 

surrounding tissue on 3D-PSIR images. Lesions were outlined using a semi-

automated edge-finding tool in JIM 6.0 (Xinapse systems, 

http://www.xinapse.com) on the 3D-PSIR image (Figure 7.1). Poorly demarcated 

areas of equivocal decrease in signal intensity were not outlined. The area of 

individual SC lesions and calculated the upper cervical cord lesion load for each 

subject (as described in Chapter six). Reproducibility of cord lesion-load 

measurement was evaluated by re-analyzing ten MS subjects’ scans after a 

period of one week. The mean upper cervical cord cross-sectional area was also 

recorded (Chapter five) and then the cord lesion load was expressed as a 

percentage of cord area. 

 

Figure 7.1 3D-Phase sensitive inversion recovery image (PSIR); 0.5 x 0.5 mm2 in 

plane voxel size, centred at C2/C3 intervertebral disc acquired using 16-channel 

neurovascular coil. Image (A) demonstrating lesions seen as hypo-intense areas 

in both lateral columns and posterior column in the spinal cord of a patient with 

http://www.xinapse.com/
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SPMS (EDSS 6.5). The central canal can also be seen as a hypo-intensity above 

the central grey matter. Image (B) shows lesions circumscribed to calculate 

cervical cord lesion-load. The cord lesion load in this case was 12.59 mm2 the 

ratio between cord lesion load/area was 18.62%. 

 

7.2.3.2 MTR analysis 

The central ten slices of the MT volume were extracted and then the MT-on and 

MT-off images were registered using the linear registration tool in FSL 

(http://www.fmrib.ox.ac.uk/fsl/). An MTR map was created in the MT-off space 

regions of interest (ROIs) were marked on the MT-off image to avoid bias. All 

focal lesions seen were marked using a semi-automated edge-finding tool. As the 

MT-off image was geometrically linked to the 3D-FFE during prescription, this 

enabled its use as a reference for marking lesions (Figure 7.2). The perimeter of 

the spinal cord on the MT-off image was outlined using the active surface model 

(Horsfield et al., 2010) (Figure 7.3) to create a whole-cord mask. In the cases 

where focal lesions were identified, a lesion masks was created by applying the 

respective ROIs independently to the MTR mask. Both masks were converted to 

binary format using FSL and the lesion mask was then subtracted from the 

whole-cord mask, resulting in a mask of normal appearing spinal cord (NASC) 

tissue. Mean MTR values were obtained for: whole-cord, lesions and NASC. In 

healthy controls (i.e. without lesions) whole-cord measurements only were 

obtained. 

http://www.fmrib.ox.ac.uk/fsl/


 183 

 

 

 

Figure 7.2 Images (A) and (C) demonstrate representative images of the 3D-FFE 

sequence; 0.5 x 0.5 mm2 in plane voxel size, centred at C2/C3 intervertebral disc 

acquired using 16-channel neurovascular coil. Images (B) and (D) demonstrate 

the corresponding MT-off images; 0.5 x 0.5 mm2 in plane voxel size, centred at 

C2/C3 intervertebral disc acquired using 16-channel neurovascular coil. Images 

(A) and (B) demonstrate a focal lateral column lesion (indicated by yellow 

chevron) with extension into the dorsal horn of the grey matter. Images (C) and 

(D) show a posterior column lesion restricted to the white matter (indicated by 

yellow chevron). 
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Figure 7.3 MT-off images; 0.5 x 0.5 mm2 in plane voxel size, centred at C2/C3 

intervertebral disc acquired using 16-channel neurovascular coil demonstrating 

the cord outline region of interest acquired using the active surface model. 

 

7.2.3.3 Brain image analysis 

Brain T2 lesion volume (T2LV) and brain parenchymal fraction (BPF) (the sum 

of white and grey matter relative to total intracranial volume) were measured as 

described in Chapter four. 

 

7.2.4 Statistical analysis 

Reproducibility of cord lesion-load measurement was analyzed using the 

coefficient of variation (expressed as a percentage [COV]) and intra-class 

correlation coefficient (ICC) between the two measures. 

To compare MRI variables, multiple linear regression was used on the whole 

sample (including controls except for lesion-MTR) with MRI as response variable 

and subject group indicators as predictors with the following potential 
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confounders as covariates: age, gender, BPF and cord area (except when cord 

area was the response variable being compared across groups). 

P-values and confidence intervals for the multiple comparisons between groups 

were inflated, to account for the six between-group differences, using Šidák’s 

method (Šidák 1967), though this is quite conservative since the comparisons 

are not all independent. The control versus MS group comparisons were 

adjusted for the covariates above and adjustment for two other covariates – 

disease duration and EDSS - is also reported for comparisons between MS 

subtypes. 

There was no indication that regression residuals deviated materially from 

normality; some comparisons showed signs of heteroskedasticity, and in these 

cases the regression was repeated using robust Huber-White standard errors 

(Huber 1967), and this result is reported if materially different. 

To identify independent predictors of disability, multiple regression models 

were constructed for the disability scores: all MRI and socio-demographic 

predictors (Tables 7.1 and 7.2) were entered, and manual stepwise backwards 

elimination removed singly predictors with highest P-value, until all model 

predictors were significant at P<0.05 (or borderline). Regression residuals did 

not materially deviate from normality but, as a precaution, for EDSS inference 

was confirmed using the bias-corrected and accelerated non-parametric 

bootstrap. 
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Analyses were implemented in Stata 13.1 (Stata Corporation, College Station, 

Texas, USA). All p-values are two-tailed and statistical significance is reported at 

P<0.05 (including any Šidák inflation). 

7.3 Results 

7.3.1 Subjects and MRI measures 

120 people were recruited: 28 controls, 34 RRMS, 29 SPMS and 29 PPMS 

patients. Lesions in the SC were visible in 80% (27/34) of cases with RRMS, 96% 

(28/29) with SPMS and 90% (26/29) in PPMS. Group demographics are 

summarised in Table 7.1. 

 Gender Age 
(years) 

Median 
EDSS 

(range) 

Disease 
duration 
(years) 

Controls 
n=28 

 

19 F, 9 
M 

41.43 ± 
10.33 

  

RRMS 
n=34 

 

22 F, 12 
M 

38.59 ± 
9.82 

2.5  
(0 – 6) 

6.53 ± 
5.23 

SPMS 
n=29 

 

17 F, 12 
M 

51.34 ± 
9.25 

6.5 
(4 – 
8.5) 

19.86 ± 
11.74 

PPMS 
n=29 

 

12 F, 
17M 

50.66 ± 
10.05 

6.0  
(2 – 
7.5) 

10.50 ± 
7.66 

 

Table 7.1 Demographics of cohort studied presented as mean ± standard 

deviation. 

7.3.2 Reproducibility analysis 

Cord lesion load measurement was found to be reproducible with a COV of 

1.95% and ICC 0.995. 
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7.3.3 Comparison of MRI measures between MS and controls 

 Controls 
n=28 

RRMS n=34 SPMS n=29 PPMS n=29 

Upper 
cervical cord 
lesion-load 
(mm2) 

 8.10 (9.26) 16.68 (7.41) 13.2 (10.85) 

Upper 
cervical cord 
cross-
sectional area 
(mm2) 

79.59 (8.24) 76.79 (7.50) 63.64 (9.66) 69.33 (9.54) 

% Spinal cord 
area covered 
by lesions 

 11.1 (12.1) 28.4 (14.5) 19.3 (15.9) 

Whole cord 
MTR 

49.70 (1.04) 47.75 (2.29) 45.49 (2.53) 46.48 (2.89) 

Normal 
appearing 
spinal cord 
MTR 

49.70 (1.04) 48.31 (2.06) 46.56 (2.49) 47.51 (2.51) 

Spinal cord 
lesion MTR 

 43.37 (3.49) 40.54 (2.04) 41.26 (2.28) 

Brain 
parenchymal 
fraction (BPF 

0.823 (0.015) 0.811 (0.018) 0.788 (0.022) 0.799 (0.014) 

Brain T2 
lesion volume 
(mLs) 

 13.00 (13.51) 23.34 (16.71) 16.57 (19.72) 

 

Table 7.2 Mean (standard deviation) of MRI parameters analyzed in controls 
and each subtype of MS 

 

In keeping with the first hypothesis being tested, spinal cord lesion-load was 

significantly higher in progressive MS compared to RRMS. Mean differences: 

SPMS vs. RRMS 8.06mm2, P=0.008 (95% CI 1.69, 14.44) and PPMS vs. RRMS: 
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6.38mm2, P=0.021 (95% CI 0.74, 12.02). However, the difference between PPMS 

and SPMS was not significant: 1.69mm2, P=0.817 (95% CI -3.53, 6.80). 

When the regression was repeated accounting for some heteroscedasticity of 

residuals, the SPMS vs. RRMS comparison remained significant (P=0.005) but the 

PPMS vs. RRMS comparison lost significance (P=0.09). When Including EDSS as a 

covariate, these differences were greatly reduced and non-significant: SPMS vs. 

RRMS: 11.56mm2, P=0.980 and PPMS vs. RRMS: 4.73 mm2, P=0.997. 

As anticipated, both SPMS and PPMS groups had significantly lower cord areas 

compared to controls: mean adjusted differences were SPMS vs. controls: -

15.08mm2, P<0.001 (95% CI -22.83, -7.33), PPMS vs. controls: -10.45mm2, 

P=0.001 (95% CI -17.40, -3.50). No differences in cord area were seen between 

RRMS and controls -2.40mm2, P=0.893 (95% CI –8.71, 3.91). 

Significantly smaller cord areas were recorded in SPMS vs. RRMS (-12.68mm2, 

P<0.001, 95% CI -19.65, -5.71) and PPMS vs. RRMS (-8.05mm2, P=0.009, -14.65, -

1.46). However, no significant difference in cord area was seen between the two 

progressive cohorts: (-4.63mm2, P=0.302, 95% CI -11.10, 1.85). 

Both progressive MS subtypes had significantly lower whole-cord-MTR than 

controls. Mean adjusted differences were SPMS vs. controls: -2.46, P=0.011(95% 

CI -4.52, -0.40), PPMS vs. controls: -2.32, P=0.004 (95% CI -4.10, -0.55), RRMS vs. 

controls -1.09, P=0.288 (95% CI -2.61, 0.42). However, there were no significant 

adjusted differences in whole-cord-MTR between the MS groups. There were no 

significant adjusted differences in NASC-MTR between MS subgroups and 
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controls and between MS subgroups. There were no significant differences in 

lesion MTR between MS subgroups. 

 

7.3.4 Associations between MRI measures and disability 

In line with the second hypothesis EDSS was independently associated with cord 

lesion-load (P<0.001), along with cord area (P=0.003), age (P<0.001) and gender 

(P=0.001, R2=0.58 for this model). 

Cord lesion-load increase by 1mm2 predicts an increase in EDSS by 0.008 (95% 

CI 0.004, 0.012), which translates to a predicted EDSS increase of 0.37 SDs per 1 

SD increase in lesion-load. A decrease of 1mm2 in cord area predicts an increase 

in EDSS by 0.05 (95% CI 0.02, 0.09), translating to a 0.27 SD EDSS increase per 

SD decrease in cord area. 

Further support for our hypothesis that cord lesion-load would be associated 

with disability, was seen in the independent association with the 9-HPT 

(P=0.003) in addition to cord area (P=0.034), BPF (P=0.007) and, with 

borderline significance, gender (P=0.085) (R2=0.42). 

A 1mm2 increase in lesion-load predicts a 9-HPT z-score decrease by 0.003 SD 

(95% CI 0.001, 0.005). A 1mm2 smaller cord area predicts a z-score decrease by 

0.02 SD (95% CI 0.002, 0.04) and a 0.1 increase in BPF predicts a higher z-score 

by 1.33 SD (95% CI 0.37, 2.29). 

Independent associations with the TWT were seen with: cord area (P<0.001), 

disease duration (P<0.001) and gender (P=0.007), (R2=0.38). A 1mm2 higher 

cord area predicts 0.035 SD (95% CI 0.02, 0.05) higher walk speed. 
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As expected none of the spinal cord MRI measures were associated with PASAT. 

However, brain T2LV (P=0.035) and, with borderline significance, BPF (P=0.05) 

were associated with PASAT (R2=0.14). 

7.3.5 Associations with disability in MS patients with EDSS ≤ 6 

To determine if the independent associations seen in this study maintained 

significance in populations with lower levels of physical disability - such as those 

commonly seen in clinical trials in RRMS - the analysis was repeated in this 

subset of the study population. 

The independent associations between spinal cord lesion-load and age 

coefficients with EDSS were not materially altered and retained significance 

(P=0.001 and P<0.001 respectively), while gender also remained significant at 

P=0.02. However, the association with cord area lost significance, (P=0.868, cord 

area coefficient over 90% smaller). 

The association between cord lesion load and 9-HPT also remained significant at 

P=0.01. In contrast, the cord area coefficient lost significance (P=0.876) and BPF 

maintains borderline significance (P=0.048). 

The associations between cord area (P=0.632), gender (P=0.116) and TWT also 

lost significance and the coefficients are reduced, though disease duration 

remains significant at P=0.014. 

No significant associations with the PASAT test were seen in patients with an 

EDSS ≤ 6. 
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7.4 Discussion 

The main study finding is that a quantitative measure of upper cervical cord 

lesion-load – measured from axial, high-resolution images - is significantly 

greater in progressive forms of MS than in RRMS and is associated with physical 

disability in MS, independent of an effect of cord atrophy. 

7.4.1 Association of cord lesion-load with progressive MS and disability 

In this present study cord lesion-load was calculated, for the first time, by 

circumscribing individual lesions on axial scans and measuring their mean area 

across all axial slices in mm2, in an effort to replicate the methodology in post 

mortem studies (Evangelou et al., 2005; DeLuca et al., 2006). The cord lesion-

load was significantly higher in progressive than RRMS in spite of the smaller 

cord area in the progressive groups. Indeed, the proportion of the transverse 

section of the upper cervical cord involved by lesions was about 30% in SPMS 

and 20% in PPMS whereas it was around only 10% in RRMS. 

The associations of physical disability with cord lesion-load (EDSS and 9-HPT) 

were independent of the associations observed with cord atrophy. Only one 

previous study of MS, with axial cord imaging has investigated lesion counts and 

atrophy qualitatively (Weier et al., 2012). However, in this present study, lesion 

area was quantified electronically (in mm2) with higher in-plane resolution (0.5 

x 0.5 mm2 vs. 1.1 x 0.5 mm2 voxel size) and acquired at higher field strength (3T 

vs. 1.5T) than in the previous study. The PSIR sequence was chosen for lesion-

load measurement, as it has previously been shown to improve both lesion 

localization, and boundary definition with normal appearing spinal cord tissue 
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(Poonawalla et al., 2008). A combination of these factors should have led to more 

sensitive and accurate quantitation of lesion-load, and thereby facilitated 

detection of a robust independent association with disability. 

Although the cord lesion-load and area differences between progressive and 

RRMS lost significance when including EDSS as a covariate, this is likely to reflect 

the strong association between these MRI measures and EDSS. Therefore, people 

with the same EDSS score will tend to have very similar lesion-load irrespective 

of the MS subtype. However, in the analysis of MS patients with an EDSS ≤ 6, the 

association between cord lesion-load and disability is maintained. In contrast, 

the association between cord atrophy and disability loses significance. These 

results, combined with its reproducibility, support the use of cord lesion-load as 

a potential endpoint for clinical trials involving MS subjects with an EDSS ≤ 6, 

which is the case in virtually all trials in RRMS. 

Previous regression analyses have investigated the contributions of brain MRI 

measures of lesion-load and/or atrophy along with cord atrophy to EDSS, and 

have identified independent associations with both (Chapter four, Bonati et al., 

2011). Our present regression analyses have identified independent 

contributions to EDSS variability by cord measures alone, and this probably 

reflects the sensitive measures of cord pathology used, especially cord lesion-

load. Our study emphasizes the predominant role of cord pathology in causing 

locomotor disability and thereby contributing to higher EDSS scores seen in 

progressive MS. 
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7.4.2 Associations between other MRI measures and disability 

In confirmation of previous studies, this present study has also shown that both 

progressive cohorts had more marked cord atrophy than RRMS and that cord 

atrophy was also associated with physical disability (Losseff et al., 1996; 

Horsfield et al., 2010; Rocca et al., 2011; Furby et al., 2010). The greater extent of 

atrophy is consistent with more severe axonal loss in the cord in both 

progressive MS groups compared with RRMS (Ganter et al., 1999; Lovas et al., 

2000), thereby resulting in locomotor-disability. Given the limited region of cord 

investigated, it is also possible that atrophy is contributed to by Wallerian 

degeneration from distant lesions. 

Although abnormalities in the whole-cord MTR were evident in progressive MS 

groups, the measure was not independently associated with disability. The MT 

ratio may reflect demyelination and/or inflammation in the spinal cord (Dousset 

et al., 1992). However, it is thought that axonal loss, rather than demyelination, 

represents the pathological substrate for disability in the spinal cord (Ganter et 

al., 1999; Lovas et al., 2000; Tallantyre et al., 2010). The lack of evidence of 

abnormal whole cord MTR in RRMS may reflect limited sensitivity to detect 

effects of Wallerian degeneration.  

Brain atrophy (BPF) had a significant and independent association with the 9-

HPT. The association between brain atrophy and 9-HPT might reflect cerebellar 

pathology resulting in impaired co-ordination. The lack of an association 

between the spinal cord MRI parameters used and PASAT test emphasizes their 

specificity, as cord measures were exclusively associated with physical disability. 
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7.4.3 Association of demographic features with disability 

Not surprisingly older age and longer disease duration were more likely 

associated with higher disability and progressive MS (Confavreux and Vukusic 

2006; Leray et al., 2010; Scalfari et al., 2014). Male gender also associated with 

higher disability and there was a higher male-female ratio in PPMS versus other 

MS subtypes, consistent with previous studies (Thompson et al., 1997; 

McDonnell et al., 1998; Kremenchutzky et al., 2006).  

7.4.4 Spinal cord MRI findings in primary and secondary progressive MS 

Both spinal cord atrophy and lesion-load measurements did not significantly 

differ between SPMS and PPMS. These results are coherent with the similar 

levels of disability recorded in both subtypes. As cord atrophy and lesion-load 

are independently associated with disability, it is plausible that they each 

contribute to disability in both progressive MS groups. 

No difference was found in lesion-MTR when comparing the progressive and 

RRMS groups. However, MTR is sensitive to demyelination per se (Dousset et al., 

1992; Bot et al., 2004; Schmierer et al., 2004; Chen et al., 2013) and it is 

conceivable that a reduction in lesion-MTR reflects an effect of demyelination 

alone, while not excluding a difference in axonal density. More specific in vivo 

assessment of axonal density within lesions may be possible using measures 

based on diffusion tensor (Xu et al., 2013) and/or diffusion-weighted (Zhang et 

al., 2012) imaging sequences, and analysis of lesions in PPMS and SPMS using 

such techniques would be of interest in a future study. 
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7.4.5 Study limitations 

The study has several limitations. First, the imaging acquisitions were confined 

to the upper cervical cord, in order to minimize physiological motion and enable 

high resolution multi-sequence imaging within an acceptable time frame. 

Although lesions in the upper cervical cord are common in MS (Fog 1950; 

Oppenheimer 1978) further studies should investigate cord lesions at other 

levels and their relationship to clinical function.  

Secondly, although cord lesion load and atrophy were independently associated 

with disability, the variability in these imaging measures (and additional clinical 

parameters) only explained about a half of the variability in disability measures. 

Probably multiple factors impact on the strength of such associations, including 

limitations in coverage of the spinal cord, and the pathophysiological specificity 

of the imaging metrics themselves. 

Thirdly, although the sample size was sufficient to investigate our a priori 

hypotheses that cord lesion load is greater in progressive MS groups than in 

RRMS and is associated with disability, it may not have been sufficient to detect a 

smaller difference in lesion load between the PPMS and SPMS groups. A study 

comparing quantitative spinal cord MRI measures in larger cohorts with PPMS 

and SPMS would be of interest. 

7.4.6 Conclusion 

The results presented in this chapter show that both cord lesion-load and 

atrophy are independently associated with physical disability in MS. 



 196 

Longitudinal studies are required to understand the evolution of cord lesion-load 

in MS, and to consider its potential as an outcome measure in clinical trials. 
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Chapter 8 - Investigation of magnetisation transfer ratio-derived pial and 
subpial abnormalities in the multiple sclerosis spinal cord 

 

8.1 Introduction 

Although the exact causative mechanisms of multiple sclerosis are unclear, it has 

been suggested from the findings in neuropathological studies that meningeal 

inflammation may play a role in the development of earlier disability in 

progressive forms of the disease (Magliozzi et al., 2007; Howell et al., 2011; Choi 

et al., 2012). It has also been reported that B cell follicles (as well as T cells) are 

present in the meninges of post-mortem brain specimens (Serafini et al., 2004; 

Lovato et al., 2011). However, Frischer et al. (2009) reported that B cells may 

only be found in the progressive forms of the disease. Neuropathology studies 

have also suggested that cortical demyelination may be a characteristic finding in 

multiple sclerosis (Dawson 1916; Brownwell and Hughes 1962). Another post-

mortem study has suggested that cortical demyelination is more commonly 

found in progressive multiple sclerosis and inflammation is more diffuse, when 

compared directly to the relapsing-remitting form of the disease (Kutzelnigg et 

al., 2005). 

 

Taking in to account the above observations, an hypothesis has arisen that the 

pathological processes of meningeal inflammation and cortical demyelination 

may be interconnected and in turn play a role in the development of a 

progressive disease course. A paper by Magliozzi et al. (2010) has demonstrated 

the co-localisation of areas of meningeal inflammation (composed of B cells and 
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dendritic cells) and cortical demyelination. Furthermore, extensive subpial 

demyelination has been recorded in the cortex in multiple sclerosis (Bø et al., 

2003; Bö et al., 2007). It has been proposed that cortical demyelination 

(especially subpial) may occur in the presence of meningeal inflammation due to 

the release of inflammatory cytokines in the subarachnoid space (Brown et al., 

2007; Ransohoff 2009). In progressive forms of multiple sclerosis, where there 

appears to be long standing inflammation, this may create a milieu, which 

favours further retention of inflammatory cells (Krumbholz et al., 2005; Meinl et 

al., 2008). This retention of inflammatory cells in multiple sclerosis may result in 

the activation of microglia and subsequently demyelination (Magliozzi et al., 

2010). 

 

It has been reported that in relapsing-remitting multiple sclerosis meningeal 

inflammation may be present, with inflammation involving T cells rather than B 

cells (Frischer et al., 2009). As neuropathology studies are predominantly 

composed of cases of progressive multiple sclerosis, an important insight was 

gained into the process of meningeal inflammation in a study examining biopsies 

of patients with early relapsing-remitting multiple sclerosis or a clinically 

isolated syndrome (Lucchinetti et al., 2011). In this paper it was found that 

subpial cortical demyelination may be associated with meningeal inflammation.  

 

Imaging studies have also provided a means of studying patients when they 

present with a clinically isolated syndrome suggestive of multiple sclerosis, 

which is the earliest clinical manifestation of the condition in most cases. The use 

of a double inversion recovery sequence has demonstrated the presence of 
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cortical lesions in clinically isolated syndrome patients (Calabrese et al., 2007). 

Furthermore, a decrease in magnetisation transfer ratio (MTR) of the cortex, 

which might reflect demyelination (Chen et al., 2013), - has also been observed 

in clinically isolated syndrome subjects (Audoin et al., 2005; Fernando et al., 

2005). These imaging observations also suggest that cortical demyelination 

occurs early in the disease course. 

 

The meninges of the spinal cord have also been reported to be inflamed in 

multiple sclerosis (Androdias et al., 2010; DeLuca et al., 2013), with the 

inflammatory cells predominantly composed of T cells in one study (Androdias 

et al., 2010). Meningeal inflammation in the spinal cord has been related to 

axonal loss (Androdias et al., 2010; DeLuca et al., 2013). As axonal loss has been 

hypothesised to be the pathological substrate for disability (Ganter et al., 1999; 

Evangelou et al., 2000; Lovas et al., 2000; Schirmer et al., 2011), and because 

much of the physical disability from multiple sclerosis arises from spinal cord 

involvement, a greater understanding of meningeal abnormalities in the spinal 

cord, and their relationship to disease course, would seem to be relevant. 

 

However, to date the effect of multiple sclerosis on the spinal cord meninges has 

not been investigated in vivo, due to image resolution constraints and other 

technical challenges associated with magnetic resonance imaging (MRI) protocol 

optimisation in the spinal cord (Dietrich et al., 2008; Stroman et al., 2013). 

Magnetisation transfer ratio (MTR) imaging in the spinal cord has been 

employed for some time (Mezzapesa et al., 2004; Charil et al., 2006). The MTR of 

a tissue is related to its macromolecular structure and an important contribution 
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in central nervous system tissue comes from myelin (Dousset et al., 1992). 

Recent MTR imaging studies in the spinal cord have provided insights into the 

mechanisms of disability in multiple sclerosis (Zackowski et al., 2009; Oh et al., 

2013). With the implementation of higher resolution structural and MTR 

acquisitions in the spinal cord than those previously acquired (Yiannakas et al., 

2012), the potential to investigate the effects of multiple sclerosis on the outer 

region of the spinal cord, that would be expected to include the pia mater of the 

meninges, could provide further insights into the pathophysiology of multiple 

sclerosis. 

 

The aims of this chapter are threefold: 

1. To characterise the outermost region of the spinal cord which is expected 

to include contributions from the pia mater and subpial region of the 

spinal cord, using high in-plane resolution, magnetisation transfer-

weighted images to measure MT ratio (MTR) in healthy controls and in 

people with multiple sclerosis or a clinically isolated syndrome.  

2. To compare the outer spinal cord MTR measures of people with a 

clinically isolated syndrome or multiple sclerosis with those of healthy 

controls 

3. To compare outer spinal cord MTR findings seen in different clinical 

subgroups – clinically isolated syndrome, relapsing remitting, primary 

and secondary progressive multiple sclerosis – and explore the 

relationship of outer cord MTR with measures of both spinal cord atrophy 

and physical disability. 
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8.2 Methods 

8.2.1 Subjects 

People with no prior neurological diseases (n = 26) and those with either 

clinically isolated syndrome (n = 22) or multiple sclerosis: relapsing 

remitting (n = 29), secondary progressive (n = 28) and primary progressive 

(n = 28), were recruited. Multiple sclerosis (MS) was diagnosed using the 

2010 McDonald criteria (Polman et al., 2011). The clinically isolated 

syndrome (CIS) cohort was recruited following a single clinical episode 

consistent with demyelination and at least one lesion on a T2-weighted axial 

brain scan. The MS subgroups were classified using the Lublin-Reingold 

criteria (Lublin and Reingold 1996). Informed written consent was obtained 

from each participant prior to inclusion in the study. 

 

All people with CIS or MS had expanded disability status scale (EDSS [Kurtzke 

1983]) determined as well as multiple sclerosis functional composite (MSFC) 

(Fischer et al., 1999). Subsequently Z-scores were calculated from normative 

values displayed in the National Multiple Sclerosis Society Task Force 

Database (Fischer et al., 1999) for the 25-foot timed walk test (TWT), 9-hole 

peg test (HPT) and 3 s paced auditory serial addition test B (PASAT). 

American Spinal Injury Association (ASIA) motor (m) and sensory (s) scores 

(Maynard et al., 1997) were also recorded for all people with MS and CIS. 

Assessment of physical function was performed immediately before the 

magnetic resonance imaging (MRI). 
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None of the subjects had experienced a relapse or received a course of 

corticosteroids within a month prior to imaging. 

 

8.2.2 MRI protocol 

Subjects were scanned at 3T using a Philips Achieva MRI system with 

radiofrequency (rf) multi-transmit technology (Philips Healthcare, Best, the 

Netherlands). A 16-channel receive-only neurovascular coil was used for 

spinal cord scanning and brain scanning was performed using the product 

32-channel receive-only coil. A polystyrene filled vacuum fixation bag was 

placed behind the neck of all participants to provide a head rest and neck 

restraint and to minimise motion artefacts. The following sequences were 

acquired:  

(iv) 3D fat-suppressed fast field echo (3D-FFE) was acquired in the axial 

plane containing 10 contiguous slices, FOV 240x180mm2, TR 23ms, TE 

5ms, flip angle α=7°, and number of averaged signals=8 

 

(v) MTR data were obtained by acquiring a 3D slab selective spoiled gradient 

echo sequence with two echoes using TR = 36ms, TE1/TE2 = 

3.5/5.9ms, flip angle (α)=9°, with and without Sinc-Gaussian shaped 

MT saturating pulses of nominal α=360°, offset frequency 1kHz, 

duration 16ms applied prior to the excitation pulse. Twenty-two 5mm 

slices were acquired in an axial orientation, with FOV = 180 x 240 

mm2 and acquisition matrix = 240 x 320 (voxel size 0.75 x 0.75mm2, 
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reconstructed to 0.5 x 0.5mm2), with SENSE factor 2 in the foot/head 

direction, and 2 signal averages (NEX). 

 

(vi) 3D-phase sensitive inversion recovery (PSIR): voxel size of 0.5 x 0.5 x 

3 mm3, TR = 8 ms; TE = 3.7 ms; flip angle α = 5°; FOV = 256 x 256 mm; 

NEX = 1 

 

(vii) Axial PD/T2 images using a 2D turbo spin echo sequence (TSE) with 

3mm slice thickness, and the following acquisition parameters: 

TR=3500 ms; TE1/TE2=19/85 ms; matrix 240 x 240 mm2; in plane 

voxel size= 1 x 1 mm2 

 

(viii) 3D magnetisation-prepared turbo field echo (3D-TFE) sequence was 

used with slice thickness= 1mm; TR=6.8 ms; TE=3.1 ms; matrix = 256 

x 256 mm2; in plane voxel size 1 x 1mm2 
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8.2.3 Image Analysis 

 

8.2.3.1 MTR values 

 

An inclusion criterion for all MRI images was the absence of motion artefacts. 

Using JIM 6.0 (Xinapse systems, http://www.xinapse.com) the central 10 

slices of the MTR volume were extracted and the MT-off and MT-on images 

were registered independently to the volumetric 3D-FFE using linear 

registration in FSL (http://www.fmrib.ox.ac.uk/fsl/). Subsequently an MTR-

map was created in the 3D-FFE space (Figure 8.1) (Yiannakas et al., 2012). All 

MTR-maps were reviewed to confirm that no artefacts were introduced 

during the registration step. 

 

 

Figure 8.1 (A) Axial 3D-FFE image (voxel size 0.5 x 0.5 x 5mm3) through the 

C2/C3 intervertebral disc (B) Following independent linear registration of the 

MT-on and MT-off to the FFE the MTR-map is created in this space (voxel size 0.5 

x 0.5 x 5mm3) 

Three slices centred at the C2/C3 intervertebral disc were extracted from the 

volumetric 3D-FFE image and then created two regions of interest (ROIs): (i) 

spinal cord outline using an active surface model (Horsfield et al. 2010) (ii) 

http://www.xinapse.com/
http://www.fmrib.ox.ac.uk/fsl/
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spinal cord GM using a semi-automated fuzzy connector method (Udupa and 

Samarasekera 1996) (Figure 8.2). Using these two ROIs a mask of the cord 

outline and GM were created from the MTR-map and then converted to 

binary format using FSL tools (http://www.fmrib.ox.ac.uk/fsl/). This process 

enabled the subtraction of the binary GM mask from the binary cord outline 

resulting in two masks: (i) spinal cord WM MTR-mask and (ii) spinal cord GM 

MTR-mask. The mean value of the spinal cord GM MTR-mask was recorded 

for each participant. 

 

 

Figure 8.2 (A) Axial 3D-FFE image (voxel size 0.5 x 0.5 x 5mm3) demonstrating 

the spinal cord outline created using the active surface model (B) Axial 3D-FFE 

(voxel size 0.5 x 0.5 x 5mm3) demonstrating grey matter region of interest 

outlined using the fuzzy connector. 

 

The WM MTR-mask was then further analysed by eroding the image using 

iterations based on 4-connected neighbours written in Matlab 2012a (the 

Mathworks, Natick USA). The outermost row of pixel of the image was 

discarded to avoid contamination by cerebrospinal fluid (CSF). As the image 

was acquired at 0.75 x 0.75 mm2 voxel size and subsequently reconstructed 

to 0.5 x 0.5 mm2, the next voxel layer was also considered to be also 

http://www.fmrib.ox.ac.uk/fsl/
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contaminated by CSF due to the voxels’ interpolation and consequently this 

voxel was also discarded. Therefore, the next voxel layer was designated as 

being the outermost voxel layer of the spinal cord and the mean MTR values 

of the voxels in this layer were recorded across the three selected slices for 

each subject. The classification of peripheral voxels in the image is illustrated 

in Figure 8.3 and on MRI in Figure 8.4; this layer was considered likely to 

include both pia mater and subpial spinal cord tissue. Following removal of 

the three outermost voxels the mean value from the spinal cord WM-MTR 

mask was recorded for each subject and this was designated as the WM-MTR 

value. Finally, the mean GM MTR value was recorded across the three slices. 

 

 

Figure 8.3 Graphical representation of voxel layers analysed in the outermost 

region of the spinal cord.  
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Figure 8.4 (A) MTR-map (voxel size 0.5 x 0.5 x 5mm3) demonstrating a square 

shaped region of interest from which (B) was obtained in the periphery of the 

spinal cord (B) Zoomed image of the periphery of the spinal cord demonstrating 

from right to left: Cerebrospinal fluid (CSF), (P) Outer exclusion voxel layer - 

partial volume with CSF (1) inner exclusion layer - interpolation of voxels (2) 

Outermost spinal cord voxel layer, (WM) spinal cord white matter 

 

8.2.3.2 Spinal cord area 

Spinal cord mean cross-sectional area was measured from the 3D-PSIR image 

using the active surface model (Horsfield et al. 2010). In order to do this five 

3mm thick slices centred at C2/C3 were extracted and then the area of each 

of the five slices was recorded (c.f. Chapter Five). Spinal cord area was 

normalised by the number of slices used i.e. the mean area of the five slices 

for each participant was calculated. This method of normalisation was chosen 

as a previously published report has demonstrated that normalisation of 

spinal cord volume by slice number is superior to the use of brain volume or 

other measures of body habitus (Healy et al., 2012). The spinal cord 

measurements are presented as area normalised by slice number rather than 

as volume, as cord area is more commonly reported in clinical trials of 
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multiple sclerosis (Kalkers et al., 2002; Leary et al., 2003; Lin et al., 2003; 

Montalban et al., 2009). 

 

8.2.3.3 Brain scan analysis 

 

The brain parenchymal fraction (BPF) was then recorded for each subject 

using the methodology described in chapter four. The volume of T2-weighted 

lesions (T2LV) was also recorded for each subject in mLs (chapter four). 

 

8.2.4 Statistical Analysis 

 

SPSS 21 (IBM) was used for statistical analysis. 

 

Comparisons of MRI measures in controls and patient subgroups 

In healthy controls the differences in mean MTR values were evaluated between 

(i) Outer spinal cord and spinal cord white matter (ii) Outer spinal cord and 

spinal cord grey matter (iii) spinal cord white matter with grey matter, using a 

paired samples t-test. Subsequently the same tests were employed in clinically 

isolated syndrome patients and each subgroup of multiple sclerosis separately. 

Differences in cord area and brain parenchymal fraction were also tested 

between MS and CIS patients and controls using an independent samples t-test. 

 

To explore the hypothesis that MTR abnormalities in each tissue component of 

the spinal cord (outer spinal cord, white matter and grey matter) may differ 

between clinically isolated syndrome or each subtype of MS patients and 
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controls, a linear regression model was constructed, with the case (i.e. multiple 

sclerosis subgroup, clinically isolated syndrome and control) set as the 

dependent variable and MTR added as an independent variable. To compare 

each patient group (clinically isolated syndrome or multiple sclerosis subgroups) 

with controls, or with each other, a separate regression model was constructed 

for each comparison of MTR values (outer spinal cord, white matter and grey 

matter) being performed. To investigate whether differences seen in MTR values 

between subject groups (dependent variable) were affected by cord atrophy in 

the multiple sclerosis subgroups, spinal cord area was included as an 

independent variable in every model and the comparison was corrected for age 

and gender by adding these as independent variables. Adjustments for multiple 

comparisons were not performed due to the exploratory nature of this study 

(Bender and Lange 2001). 

 

Relationship between cord MTR measures and cord area 

To investigate the relationship between spinal cord MTR and cord area 

univariate Pearson’s correlation coefficients were calculated with the MTR of the 

grey matter, white matter and outer spinal cord versus cord area in all multiple 

sclerosis patients combined. In order to identify the components of the spinal 

cord MTR (i.e. outer spinal cord, grey and white matter) which were associated 

with atrophy, independently from the others and from age and gender, a 

multivariate linear regression model was constructed. In this model cord area 

was set as the dependent variable, and MTR values from each region of the spinal 

cord that had a significant univariate correlation with cord area were added as 

independent variables, in a forward stepwise manner, to determine those with 
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independent associations with cord area. Independent variables retained in the 

final model with a p-value of < 0.05 were considered to be independently 

associated with cord area (dependent variable). 

 

Relationship between MRI and disability measures 

To explore the relationship of each MRI measure analysed (spinal cord area, 

spinal cord MTR [outer cord, white matter and grey matter], brain parenchymal 

fraction and brain lesion load) with disability, univariate correlations were 

calculated firstly between these variables, in all multiple sclerosis patients 

combined. We used Spearman’s rank correlation coefficient for the EDSS, as this 

scale is logarithmic. For all other disability scales (multiple sclerosis functional 

composite Z-scores, ASIAs and ASIAm) univariate correlations were calculated 

with the MRI parameters using Pearson’s correlation coefficient. For univariate 

associations, p < 0.01 was considered significant. 

 

In order to further investigate the relationship between the MRI parameters 

analysed and physical disability, independent associations between these two 

variables were sought. To achieve this, a multivariate linear regression model 

was constructed with the disability measure of interest set as the dependent 

variable. A separate model was constructed for each disability measure used i.e. 

multiple comparisons were not performed. To refine the choice of independent 

variables added to the model, only MRI parameters which had a significant 

univariate correlation with the dependent variable (i.e. the disability measure of 

interest), were included in the regression analysis. In each model constructed, 

age and gender were also added as independent variables, to correct for any 
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influence these may have on the association being tested. The MRI parameters 

were added to the model, as independent variables, in a forward stepwise 

manner and those variables retained in the final model, with a p-value of < 0.05, 

were deemed to be independently associated with the disability scale 

(dependent variable). 
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8.3 Results 

8.3.1 Subjects and their clinical and conventional MRI characteristics 

 

In total 133 subjects were studied; 26 healthy controls, 22 people with CIS, 29 

relapsing remitting (RR) MS, 28 secondary progressive (SP) MS and 28 primary 

progressive (PP) MS. Characteristics of the group are shown in Table 8.1. In the 

CIS cohort there were 18 cases of unilateral optic neuritis, one multifocal CIS 

(consisting of optic neuritis, facial numbness and diplopia), one hemispheric 

presentation (unilateral hand weakness due to a lesion in the right motor cortex) 

and two cases of partial myelitis (one cervical and one thoracic). 

 

With regard to the conventional MRI scans, in the CIS cohort 15 cases fulfilled 

criteria for dissemination in space (DIS) (Polman et al., 2011); the criteria for 

dissemination in time could not be evaluated on this single scan as a gadolinium-

contrast agent was not administered. Asymptomatic T2-weighted brain lesions 

were seen in 18/22 cases and in one case the symptomatic lesion was seen (in 

the motor cortex). There were eight spinal cord lesions seen on cord PSIR and 

FFE scans, seven asymptomatic and one due to cervical cord partial myelitis. 



 213 

 

 

 Controls 
n=26 

CIS n=22 RRMS 
n=29 

SPMS 
n=28 

PPMS 
n=28 

Gender F:M 18:8 12:10 20:9 17:11 12:16 

Age in years 40.6 ± 

10.2 

36.2 ± 

9.3 

38.1 ± 9.5 51.3 ± 9.4 50.5 ± 9.9 

Mean disease 
duration 

(years for MS 
groups; 

(months for 
CIS group) 

 5.8 ± 4.3 6.1 ± 4.0 20.11 ± 

11.89 

10.9 ± 7.6 

Median EDSS 
(range) 

 1 (0-3) 2.5 (0-7) 6.5 (4-

8.5) 

6.0 (2-8) 

Brain 
parenchymal 

fraction 

0.824 ± 

0.015 

0.822 ± 

0.013 

0.811 ± 

0.017 § 

0.788 ± 

0.022 § 

0.798 ± 

0.014 § 

T2 lesion 
volume 
(mLs) 

 2.9 ± 3.8 13.1 ± 

14.3 

23.4 ± 

17.0 

16.4 ± 

20.2 

Spinal cord 
cross-

sectional 
area (mm2) 

80.3 ± 7.7 82.6 ± 

7.3 

78.1 ± 9.0 63.6 ± 9.8 

§ 

68.1 ± 9.7 

§ 

 

Table 8.1 Demographics and conventional magnetic resonance imaging 

parameters in healthy controls, CIS and MS. Significant differences 

between MRI parameters from controls (i.e. p < 0.01) are denoted by § 

symbol.  
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8.3.2 Comparison of cord area and brain volume between groups 

 

There was no significant difference in the cord area of healthy controls with 

either the CIS (p = 0.06) or RRMS (p = 0.18) groups. The SPMS (63.5 mm2 ± 10.0 

vs. 80.2 mm2 ± 6.8, p < 0.01) and PPMS (68.1 mm2 ± 9.7, p < 0.01) groups both 

had lower cord areas than healthy controls. Results for all groups are presented 

in Table 8.1. 

 

No significant difference was seen in BPF in the CIS group compared to controls 

but significant differences in BPF were seen between controls and all subgroups 

of MS (p < 0.01), with smaller BPFs in the MS subgroups. 

 

8.3.3 Comparison of outer spinal cord and spinal cord WM MTR values within each 

subject group (Table 8.2) 

 

In each subject group, MTR of the outer spinal cord was higher than MTR of 

spinal cord WM: controls (51.35 ± 1.29 vs. 49.87 ± 1.45, p < 0.01), CIS (50.46 ± 

1.39 vs. 49.13 ± 1.19, p < 0.01), RRMS (48.86 ± 2.89 vs. 47.44 ± 2.70, p < 0.01), 

SPMS (46.33 ± 2.84 vs. 44.75 ± 3.10, p < 0.01), PPMS (46.99 ± 3.78 vs. 45.62 ± 

3.40, p < 0.01).  
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 Controls CIS CIS 

(excluding 

two cases 

of 

myelitis) 

RRMS SPMS PPMS 

Outer spinal 
cord MTR  

51.35 ± 

1.29 

50.46 

± 1.39 

49.9 ± 

1.40 

48.86 ± 

2.89 

46.33 

± 2.84 

46.99 

± 3.78 

Comparison 
between 

outer spinal 
cord and 

white 
matter MTR 

values 

p < 0.01 p < 
0.01 

p < 0.01 p < 
0.01 

p < 
0.01 

p < 

0.01 

MTR spinal 
cord white 

matter 

49.87 ± 

1.45 

49.13 

± 1.19 

49.21 ± 

1.31 

47.44 ± 

2.70 

44.75 

± 3.10 

45.62 

± 3.4 

Comparison 
between 

spinal cord 
white and 

grey matter 
MTR values 

p < 0.01 p < 
0.01 

p < 0.01 p < 
0.01 

p = 
0.02 

p < 
0.01 

MTR spinal 
cord grey 

matter  

48.23 ± 

1.76 

47.72 

± 1.23 

47.8 ± 

1.30 

46.6 ± 

2.43 

43.88 

± 2.62 

44.88 

± 3.09 

 

Table 8.2 Mean MTR values (± standard deviation) of spinal cord region 

subtypes (outer cord, white matter, grey matter) in the control group and 

in each patient group. The CIS cohort is presented with and without the 

two cases of myelitis included. 
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8.3.4 Comparison of spinal cord WM and GM MTR values within each subject group 

(Table 8.2) 

 In each subject groups, the spinal cord WM had higher MTR values than spinal 

cord GM. 

 

8.3.5 Outer spinal cord MTR in controls versus patient subgroups (Table 8.3) 

The outer spinal cord MTR values were higher in controls than all patient 

groups: controls vs. CIS (coefficient = -0.32, p = 0.03, 95% CI -0.22, -0.01), 

controls vs. RRMS (coefficient = -0.48, p < 0.01, 95% CI -0.28, 0.09), controls vs. 

SPMS (coefficient = -0.51, p < 0.01, 95% CI -0.31, -0.15), controls vs. PPMS 

(coefficient = -0.38, p < 0.01, 95% CI -0.36, -0.06). Cord area was not a significant 

covariate in any of the models used. 

 

8.3.6 Spinal cord WM and GM MTR in controls versus patient subgroups (Table 

8.3) 

MTR of spinal cord WM was higher in controls than in all patient groups. MTR of 

spinal cord GM was not different between controls and the CIS group but was 

significantly higher in controls than in all three MS subgroups.  

 

8.3.7 Outer spinal cord MTR: comparison between patient subgroups (Table 8.3) 

Outer spinal cord MTR was lower in RRMS than CIS (coefficient = -0.28, p = 0.02, 

95% CI -0.10, -0.01). Both SPMS (coefficient -0.24, p = 0.02, 95% CI -0.07, -0.01) 

and PPMS (coefficient = -0.29, p = 0.02, 95% CI -0.16, -0.01) had lower outer 
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spinal cord MTR values compared to RRMS. No significant difference was found 

between SPMS and PPMS. 

MTR 
value 

Groups being 
compared 

SE Coefficient Significance 
(p value) 

95% CI 
(lower, 
upper) 

Outer 
spinal 
cord MTR 

CIS/control 0.05 -0.32 0.03 -0.22, -
0.01 

 RRMS/control 0.05 -0.48 < 0.01 -0.28, -
0.09 

 SPMS/control 0.04 -0.51 < 0.01 -0.31, -
0.15 

 PPMS/control 0.07 -0.38 < 0.01 -0.36, -
0.06 

 CIS/RRMS 0.02 -0.28 0.02 -0.10, -
0.01 

 RRMS/SPMS 0.02 -0.24 0.02 -0.07, -
0.01 

 RRMS/PPMS 0.04 -0.29 0.02 -0.16, -
0.01 

 SPMS/PPMS 0.02 -0.02 0.89 -0.05, 0.04 
MTR WM CIS/control 0.39 -0.34 0.03 -1.69, -

1.05 
 RRMS/control 0.30 -0.56 <0.01 -1.95, -

0.76 
 SPMS/control 0.23 -0.98 <0.01 -2.74, -

1.80 
 PPMS/control 0.22 -0.80 <0.01 -1.79, -

0.92 
MTR GM CIS/control 0.42 -0.17 0.26 -1.3, 0.37 
 RRMS/control 0.29 -0.36 <0.01 -1.38, -

0.21 
 SPMS/control 0.20 -0.74 <0.01 -1.84, -

1.05 
 PPMS/control 0.19 -0.75 <0.01 -1.50, -

0.73 
 

Table 8.3 Comparison of MTR values between patient and control groups using 
a linear regression model adjusted for age, gender and cord area (SE=standard 
error, CI=confidence interval) 
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8.3.8 Univariate correlations and associations between MTR measures and cord 

area in all MS patients combined 

 

The following MRI parameters were correlated with cord area: Outer spinal cord 

MTR (r = 0.39, p < 0.01), MTR WM (r = 0.36, p < 0.01), MTR GM (r = 0.36, p < 

0.01) and BPF (r = 0.27 p = 0.01). However, only outer spinal cord MTR 

(coefficient = 0.40, p < 0.01, 95% CI 0.63, 1.88) was found to be independently 

associated with cord area. 

 

8.3.9 Univariate correlations between MRI parameters and disability in all MS 

patients combined (Table 8. 4) 

 

Significant univariate correlations between MRI parameters and disability are 

presented in Table 8.4. Although significant correlations were seen between 

outer spinal cord MTR and each disability measure used (apart from PASAT z-

score), stronger correlations were seen between cord area and disability 

measures reflecting motor function. Brain T2LV was not found to be correlated 

with any disability measures except for PASAT z-score  
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MRI 
parameter 

Disability measure 

 EDSS* ASIAm ASIAs Z-score 
PASAT 

Z-score 
9-HPT 

Z-score 
25ft 
TWT 

Z-score 
MSFC 

Outer 
MTR 

r = -
0.41  

r = 
0.38 

 

r = 
0.30 

r = 0.03 r = 
0.41 

r = 
0.36 

r = 
0.42 

MTR WM r = -
0.32  

r = 0.23 r = 
0.30 

r = 0.01 r = 
0.42 

r = 
0.40 

r = 
0.43 

MTR GM r = -
0.34  

r = 0.27 r = 
0.29 

r = 0.05 r = 
0.38  

r = 
0.37  

r = 
0.40 

Cord area r = -
0.60  

r = 
0.49 

r = 
0.39 

r = 0.14 r = 
0.48 

r = 
0.38 

r = 
0.44 

BPF r = -
0.40  

r = 0.22 r = 0.06 r = 
0.35 

r = 
0.48 

r = 
0.29 

r = 
0.40 

T2LV r = 0.19 r = -
0.04 

r = 0.17 r = -
0.36 

r = -
0.29 

r = -
0.08 

r = -
0.29 

 

Table 8.4 Significant (p<0.01) univariate correlations between MRI parameters 
and disability measure in all MS patients combined are indicated in bold font 
(*Spearman’s coefficient used for EDSS and Pearson’s coefficient for all other 

disability measures). 

 

 

8.3.10 Independent associations between MRI parameters and disability in all MS 

patients combined (Table 8.5) 

 

Significant independent associations between MRI variables and disability 

measures are summarised in Table 8.5. The 9-HPT z-score was associated with 

MTR in the outer spinal cord. Tests of motor function (EDSS and ASIAm) were 

associated with cord area. The TWT z-score was associated with spinal cord WM 

MTR in MS. The PASAT z-score was associated with both brain T2 lesion volume 

and BPF.  
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Disability 
Measure 

MRI 
parameter 
associated 
with 
disability 

SE Coefficient Significance 
(p value) 

95% CI 
(lower, 
upper) 

EDSS Cord area 0.02 -0.48 < 0.01 -0.13, -0.06 
BPF 9.45 -0.29 < 0.01 -48.78, -

11.17 
ASIAm Cord area 0.13 0.42 <0.01 0.32, 0.85 
ASIAs Cord area 0.08 0.26 0.03 0.02, 0.34 
Z-score 
PASAT 

BPF 8.42 0.25 0.02 2.82, 36.32 
T2LV 0.01 -0.26 0.02 -0.04, -

0.004 
Z-score 9-
HPT 

Outer 
spinal cord 
MTR 

0.04 0.27 < 0.01 0.04, 0.19 

BPF 0.41 0.41 <0.01 16.44, 
14.99 

Z-score 25 
ft. TWT 

MTR WM 0.15 0.36 <0.01 0.30, 0.89 

Z-score 
MSFC 

MTR WM 0.07 0.30 <0.01 0.07, 0.36 
Cord area 0.023 0.22 0.04 0.001, 0.09 

 

Table 8.5 Summary of MRI parameters significantly associated with disability 
measures from linear regression models using disability as dependent variable 

(SE=standard error, CI=confidence interval) 
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8.4 Discussion 

There are a number of novel findings in this chapter. First, a quantitative imaging 

metric (MTR) was measured in vivo in the outer spinal cord – a region likely to 

include the pia mater and subpial spinal cord. Secondly, in healthy controls, 

outer cord MTR was higher than cord white matter MTR. Thirdly, there was a 

reduction in outer cord MTR at an early stage of MS, and in the absence of 

significant cord atrophy, as reflected by the findings in CIS and RRMS subgroups. 

Fourthly, outer cord MTR abnormality was significantly and independently 

correlated with cord atrophy and was also greater in progressive MS subgroups 

when compared with RRMS. Finally, there were several independent 

associations between spinal cord MRI metrics and disability measures. These 

findings are discussed in turn. 

 

The outer spinal cord MTR measure and what it reflects anatomically 

 

MTR was quantified in a voxel layer in the expected location of the pia mater and 

subpial region of the spinal cord. As the spinal cord is surrounded by 

cerebrospinal fluid the outer voxels of the cord are susceptible to partial volume 

effects (Tench et al., 2005). However, by excluding the most peripheral voxel 

layers this influence was likely to be negligible as the outer cord MTR values 

were actually higher than the remaining (deeper) spinal cord tissues, which will 

not be affected by cerebrospinal fluid. 
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The pia mater is composed of two layers in the spinal cord; the intima pia and 

epipial layer, of which the epipial layer (not present over the cerebral 

hemispheres) is the thicker of the two due to its composition of connective tissue 

(Millen and Woollam 1961). The combined thickness of these layers was 0.2mm 

in a post-mortem study of the thoracic spinal cord with an increase in higher 

segments of the cord (Reina et al., 2004). The cord samples in this study were 

fixed with formaldehyde, and a reduction in tissue size of up to 19% can occur 

using a 10% formalin solution (Mouritzen Dam 1979). It therefore seems likely 

that a significant proportion of the outer cord voxel layer of the upper cervical 

cord region studied (which has an in-plane voxel size of 0.5mm) will contain pial 

meningeal tissue, although it is also likely to include subpial spinal cord white 

matter.  

 

Higher outer than white matter spinal cord MTR in healthy controls 

A question arising is why the MTR in the outer cord region should be higher than 

that of normally myelinated cord white matter. One possible explanation is that 

there is a tissue component other than myelin in the outer cord that has a 

relatively high MTR. In this regard, both the pial and subpial tissues in the spinal 

cord contain collagenous fibres (Reina et al., 2004) and in vitro data obtained in 

phantoms has shown that higher MTR is correlated with higher collagen 

concentration (Laurent et al., 2001). It seems therefore possible that collagen 

contributes to the higher outer cord MTR. 

 

Outer spinal cord MTR abnormalities in clinically isolated syndrome and relapsing 

remitting multiple sclerosis in the absence of cord atrophy 
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The finding of reduced outer cord MTR without atrophy in the CIS and RRMS 

groups supports the robustness of the outer cord measure: had partial volume 

effects of cerebrospinal fluid the cause of decreasing outer cord MTR, an 

abnormality would not be seen when there was no difference in cord area 

between patient and control groups.  

 

In the CIS cohort 15 fulfilled the criteria for dissemination in space and 18 of the 

22 participants had at least one asymptomatic T2-weighted brain lesion evident 

on their brain MRI scan and are therefore at higher risk of conversion to MS 

(Fisniku et al., 2008). Seven of this group had asymptomatic spinal cord lesions, 

the presence of which also increases the risk for conversion to MS (Sombekke et 

al., 2013). The abnormalities detected in the outermost spinal cord in CIS 

compared to controls indicate that changes occur at a very early stage in relapse-

onset MS. 

 

The RRMS cohort was also at a relatively early stage of disease had little 

disability and no cord atrophy. Since cord atrophy is related to axonal loss in 

neuropathology studies (McGavern et al., 2000; DeLuca et al., 2004; Evangelou et 

al., 2005), the decrease in MTR in the outer spinal cord seen at this stage of MS 

may be occurring in the absence of – and by implication preceding - significant 

axonal loss.  

 

The pathological basis of the reduced outer cord MTR warrants further 

consideration. In an inflammatory animal model of MS (experimental allergic 
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encephalomyelitis) areas of oedema, signifying inflammation, exhibited a mildly 

decreased MTR in the absence of demyelination (Dousset et al., 1992). A 

decrease in MTR also occurs with inflammation in spinal cord experimental 

allergic encephalomyelitis (Cook et al., 2004). A post-mortem study in MS has 

demonstrated reduced MTR corresponding with an increased number of 

inflammatory T cells (Moll et al., 2009). Other post mortem studies in MS also 

report a reduction in MTR in regions of demyelination in the cerebral cortex 

(Schmierer et al., 2010; Chen et al., 2013), brain white matter (Schmierer et al 

2004) and spinal cord (Bot et al., 2004). As the outer spinal cord voxel layer in 

this study is likely to contain both the pia mater and subpial white matter tissue, 

a combination of inflammation in the former and demyelination in the latter may 

be responsible for the decrease seen in MS.  

 

Although the limits of image resolution prevent a more specific interpretation of 

the MTR decrease that we saw in outer spinal cord region, it may nevertheless 

reflect a distinct pathogenic process in so far as co-localised subpial 

demyelination may occur secondary to meningeal inflammation. These 

pathological changes have been previously associated in brain biopsies of 

patients with early MS, where meningeal inflammation was found to have a 90% 

probability to be topographically associated with subpial demyelination 

(Lucchinetti et al., 2011). Further pathological studies will be needed to 

determine whether such changes are topographically related in the spinal cord. 

 

Association of outer spinal cord MTR with cord atrophy and progressive multiple 

sclerosis 
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In this study, outer spinal cord MTR was independently associated with cord 

atrophy. In a previous study of inflammation in the spinal cord meninges there 

was an association seen between meningeal inflammation and diffuse axonal loss 

in the spinal cord parenchyma (Androdias et al., 2010). In a similar study by 

DeLuca et al. (2013) it was found that small peripheral axons are preferentially 

lost. In these studies inflammatory cells and mediators were demonstrated to be 

present in the cord meninges. Thus, in both of these pathology studies, 

meningeal inflammation and axonal loss were evident. It is likely that axonal loss, 

which can be profound in the MS spinal cord (Ganter et al., 1999; Lovas et al., 

2000), is the major substrate of spinal cord atrophy. Thus, the link observed 

between outer cord MTR and cord atrophy would appear concordant with 

pathological association of meningeal inflammation and axonal loss in the cord. 

In contrast, the lack of independent association between the inner spinal cord 

(grey and white matter) MTR (implying demyelination) and atrophy (consistent 

with neuroaxonal loss) is consistent with a dissociation between these 

pathological processes, in line with previous pathological reports in the spinal 

cord (DeLuca et al., 2006) and brain (Wegner et al., 2006). 

Although at present it is not known how meningeal inflammation might be 

associated with cord pathology, including axonal loss, a possible anatomical 

connection may be via the epi-pial layer of the spinal cord, which contains 

branches of blood vessels that penetrate the spinal cord (Millen and Woollam 

1961). Furthermore, spinal cord lesions tend to occur around small veins 

(Oppenheimer et al., 1978), and therefore the small epi-pial vessels could 
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potentially provide a route of entry for inflammatory cells from the meninges 

into the cord parenchyma. 

 

The comparison of clinical subgroups showed that greater outer cord MTR 

abnormality in both primary and secondary MS groups compared with RRMS 

(Tables 8.2 & 8.3). In the comparison of the two progressive subtypes of MS no 

significant differences were found. These results suggest that the outer spinal 

cord (and by implication pial and/or subpial) abnormalities are greater in the 

progressive stage of MS.  

 

The findings are consistent with previous neuropathology studies in the brain 

that have linked both meningeal inflammation and subpial demyelination with 

the progressive stage of multiple sclerosis (Magliozzi et al., 2007). There can be 

extensive cortical subpial demyelination in progressive multiple sclerosis 

(Peterson et al., 2001; Bö et al., 2003; Kutzelnigg et al., 2005; Vercellino et al., 

2005; Wenger et al 2006). Although cortical subpial lesions are rarely visible on 

MRI (Geurts et al., 2005), post mortem study has identified that regions of 

cortical demyelination have a reduced MTR (Chen et al 2013), and a recent in 

vivo study reported a reduced MTR of the outer cortex in multiple sclerosis that 

was most marked in those with a secondary progressive course (Samson et al., 

2014). These observations support use of MTR to reflect subpial demyelination 

in the cortex and suggest that subpial demyelination could contribute to the 

lower MTR we observed in the outermost region of the spinal cord. 

 

Associations between spinal cord MRI metrics and disability measures 



 227 

 

Although outer spinal cord MTR had a univariate correlation with each disability 

measure used in this study, in a regression analysis it was found only to be 

associated with nine hole peg test z-score. This limited independent association 

with function may reflect the small region of spinal cord included in the outer 

voxel layer; the purpose in studying outer cord MTR was to investigate for 

abnormalities that reflect a process of pathogenic importance (i.e., meningeal 

and subpial pathology) and not for an association with disability. 

 

Spinal cord white matter-MTR was independently associated with 25 foot timed 

walk test and multiple sclerosis functional composite z-scores; this relationship 

plausibly reflects pathology in functionally important motor and sensory 

pathways of the spinal cord. These results also confirm an earlier finding of a 

univariate correlation between spinal cord grey matter MTR and EDSS (Agosta et 

al., 2007), although grey matter MTR was not independently associated with 

EDSS in the subsequent regression analysis. Amongst the several MRI metrics 

studied, the measure of spinal cord cross-sectional area (atrophy) had a 

generally stronger univariate correlation with each of the disability measures 

used. Furthermore, cord area was found to be independently associated with a 

number of measures of disability. The strong relationship between cord atrophy 

and disability may be due to this measure reflecting axonal loss, thought to be 

the pathological substrate for disability (Evangelou et al., 2000; Lovas et al., 

2000; Schirmer et al., 2011). A biologically coherent finding was that the PASAT 

z-score (a measure of cognition) was associated only with the two brain MRI 
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metrics (brain parenchymal fraction and T2 lesion volume) and with none of the 

spinal cord measures. 

 

Limitations and future directions 

 

Limitations should be noted when considering the findings in this chapter. 

Firstly, only the upper cervical spinal cord was studied. However, at this level, a 

robust registration technique could be employed and segmentation of the cord 

into grey matter and white matter regions was possible. Furthermore, spinal 

cord involvement by multiple sclerosis is most common in the cervical cord 

(Oppenheimer et al., 1978), and this approach is likely to have yielded the most 

reliable results within the technical constraints of spinal cord MRI. 

 

Secondly, this study was cross-sectional in nature and future longitudinal studies 

will be needed to elucidate outer cortical MTR changes over time and its 

relationship with evolution of disability and cord atrophy. 

 

Thirdly, the in plane resolution of the axial images was constrained by time 

limitations necessitated in a clinical study. Future studies of the spinal cord at 7 

Tesla field strength (Zhao et al., 2013) may provide higher resolution images 

within an acceptable time frame. 

 

Finally, this in vivo imaging study does not include MTR findings for 

histopathologically confirmed pia mater and subpial cord. To date, no such 

findings have been published, either in ex vivo multiple sclerosis spinal cord or in 
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animal models of the disease. A post mortem MRI-histopathology correlation 

study is needed to consolidate the findings of this in vivo study. 

 

In conclusion MTR abnormalities have been recorded in an area corresponding 

to the expected location of the pia mater and subpial region in the outer cervical 

spinal cord. These outer spinal cord abnormalities occur early in the course of 

multiple sclerosis prior to significant cord atrophy and that a greater reduction 

in MTR values is seen in progressive multiple sclerosis. 
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Chapter 9 - Spinal cord grey matter abnormalities are associated with 
secondary progression and physical disability in multiple sclerosis 

 

9.1 Introduction 

 

Relapse-onset multiple sclerosis (MS) presents as a clinically isolated syndrome 

(CIS), later evolving to relapsing-remitting (RR) MS and, in many cases, 

secondary progressive (SP) MS (Weinshenker et al., 1989). Physical disability in 

SPMS is often due to a progressive spinal cord syndrome (Kremenchutzky et al., 

2006). It is important therefore to understand and monitor spinal cord 

pathology leading to irreversible disability, as it may facilitate treatment 

development. 

While pathology of spinal cord white matter (WM) should contribute to the 

motor and sensory impairments in MS, the functional effects of cord grey matter 

(GM) pathology are uncertain. Noting that spinal GM may be extensively involved 

(Gilmore et al., 2006; Gilmore et al., 2009), and that brain GM abnormalities are 

associated with SPMS (Fisher et al., 2008; Fisniku et al., 2008), further 

investigation of cord GM abnormalities would seem worthwhile. 

Magnetic resonance imaging (MRI) offers a tool for investigating spinal cord 

abnormalities during life and their relationship with functional status. In 

particular, diffusion tensor imaging (DTI) (Le Bihan et al., 1995) may provide 

quantitative measures, sensitive to microstructural abnormalities and can be 

employed in the spinal cord (Wilm et al., 2007).  
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Two recent publications reported associations between cervical cord DTI 

abnormalities and physical disability in an MS cohort containing both RR and 

progressive patients (Oh et al., 2013). However, these studies did not investigate 

whether functional effects observed were related to WM or GM involvement. 

Several studies have investigated DTI in the main WM columns affected by MS 

(posterior and lateral columns); they were largely confined to subjects with 

RRMS and low disability (Hesseltine et al., 2006; Freund et al., 2010; Raz et al., 

2013). Two studies investigated cord GM but only in RRMS (Hesseltine et al., 

2006; Raz et al., 2013). No previous study has reported DTI findings in cord GM 

or WM columns in SPMS. 

In this study a DTI protocol was implemented to investigate microstructural 

integrity of spinal cord grey matter and the two main white matter columns 

affected by MS in cohorts of patients with SPMS and RRMS. A cohort of CIS 

patients was also included along with healthy controls to investigate whether 

microstructural abnormalities are already present at what is often the first 

presentation of relapse-onset MS. The imaging findings were correlated with 

clinical functional measures in order to test the hypotheses - based on known 

pathology findings – that: firstly, abnormalities in cord grey matter would be 

significantly associated with secondary progressive MS and secondly, that grey 

matter microstructural abnormalities would be associated with physical 

disability. 
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9.2 Methods 

 

9.2.1 Subjects 

 

Healthy controls and people with CIS and relapse-onset MS (Polman et al., 2011) 

were recruited. The subtype of MS was classified as RR or SP (Lublin and 

Reingold 1996). Disability was assessed with the expanded disability status scale 

(EDSS) (Kurtzke 1983) and the two motor components of multiple sclerosis 

functional composite (9-hole peg test [9HPT] and timed walk test [TWT]) 

(Fischer et al., 1999) with z-scores calculated using published normative values. 

With a focus on spinal cord function, American spinal injury association (ASIA) 

motor and sensory scores and the Kurtzke functional scores for the motor, 

sensory and sphincter systems were also investigated (Maynard et al., 1997). 

Testing of physical function was performed immediately prior to the MRI scan. 

No one had experienced a relapse or received a course of corticosteroids within a 

month prior to imaging. Informed written consent was obtained from all 

participants. 

9.2.2 MRI protocol 

 

The upper cervical spine and brain of all participants was imaged using a 3T 

Philips Achieva MRI system with radiofrequency (RF) multi-transmit technology 

(Philips Healthcare, Best, the Netherlands). For the spinal cord and brain 

imaging the product 16 and 32 channel coils were used. Subjects were 

immobilised by placing a polystyrene filled vacuum fixation bag behind the 
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cervical spine, to decrease motion artefacts. The spinal cord imaging was centred 

at C2/C3 and imaging volume for all sequences covered from C2-C4. 
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Spinal cord imaging: 

 

(i) Diffusion weighted scan: TE = 52 ms, TR = 12 RRs (cardiac gated), 

reduced FOV of 64 x 48 mm2, SENSE factor = 1.5, acquisition matrix = 64 x 48 

for a voxel size of 1 x 1 x 5 mm3. The DW imaging protocol consisted of 30 b = 

1000 s mm–2 DWI volumes with gradient directions evenly distributed over 

the sphere16 and 3 non–DWI (b = 0, b0) volumes 

 

(ii) 3D phase sensitive inversion recovery (PSIR): voxel size of 0.5 x 

0.5 x 3 mm3, TR = 8 ms; TE = 3.7 ms; flip angle α = 5°; FOV = 256 x 256 mm; 

NEX = 1 

Brain imaging: 

(i) Axial PD/T2 images using a 2D turbo spin echo sequence (TSE) 

with 3mm slice thickness; the following parameters were 

employed: TR=3500 ms; TE=19/85 ms; matrix 240 x 240 mm2; in 

plane resolution= 1 x 1 mm. 

(ii) 3D magnetisation-prepared turbo field echo (3D-TFE) sequence 

was used with slice thickness= 1mm; TR=6.8 ms; TE=3.1 ms; 

matrix = 256 x 256; in plane voxel size 1 x 1mm2 



 235 

 

9.2.3 Image analysis 

 

9.2.3.1 DTI Analysis 

 

WM regions of interest (ROI): Three circular regions of interest (ROI) were 

marked on all ten slices of the b0 image: one within each lateral column and one 

in the posterior columns, as previously described (Hesseltine et al., 2006; Freund 

et al., 2010); care was taken to place the ROI entirely within the WM column and 

thereby avoid partial volume effects (Figure 9.1A). A single average value for 

each DTI parameter was calculated from the two lateral column ROIs (Freund et 

al., 2010). 

 

GM segmentation: Average diffusion-weighted images (DWIs) were created 

based on the angular threshold of the diffusion gradient direction with respect to 

the longitudinal axis of the spinal cord. All DWIs with diffusion gradient direction 

between 00 (i.e. parallel to the cord axis) and a given cut-off angle were averaged 

and visually assessed for their GM/WM contrast. The cut-off angles were set at 50 

intervals from 400 through to 800. Each threshold involved a variable number of 

DWIs, i.e. 10 images for a cut off value of 400 and one image for 800. After review, 

by visual inspection, a threshold of 500 was chosen as the GM was then clearly 

visible as a hyper-intense ‘H’ shaped structure on a hypo-intense background 

(Figure 9.1B). This allowed the use of a semi-automated tool in JIM 6.0 software 

(Xinapse systems, http://www.xinapse.com) to delineate the GM and construct a 

mask that was then applied to the DTI maps to obtain quantitative values from 

http://www.xinapse.com/
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each parameter (FA, MD, AD, RD). The GM ROI was marked carefully in each case 

around hyper-intense voxels only, to minimise potential partial volume effects 

from the surrounding WM. 

 

 

 

Figure 9.1 A) b0 image with regions of interest displayed in lateral and posterior 

column B) Average transverse diffusion weighted image optimised displaying 

grey matter region of interest (see methods for details). Voxel size of images 1 x 

1 x 5mm3 

To determine the reproducibility of GM segmentation and WM ROI placement, 

ten control scans were analysed and then re-analysed by the same reader after a 

period of one month. 

 

The DTI data were processed using the open-source Camino toolkit (Cook et al., 

2006) to create fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD) and axial diffusivity (AD) maps in the spinal cord.  
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9.2.3.2 Conventional MRI analysis 

 

Upper cervical spinal cord cross-sectional area was measured from the PSIR 

image (previously described in chapter five). Spinal cord lesions were identified 

on the PSIR image (described in chapter six). Brain parenchymal fraction (BPF) 

and T2 lesion volume were measured as described in chapter four. 

 

9.2.4 Statistical analysis 

 

SPSS 21 (IBM) and Stata 13 (Stata Corporation, College Station, Texas, USA) were 

used for statistical analysis. 

Reproducibility of GM segmentation and WM ROI placement was assessed using 

the coefficient of variation (COV [expressed as a percentage]) and the intra-class 

correlation coefficient (ICC). 

Means of DTI metrics were compared between subject groups (each patient 

subgroup versus controls and comparisons between the 3 patient subgroups) 

using ANOVA with post hoc Bonferonni correction. 

To further investigate for differences in DTI metrics between the 4 subject 

groups, a “linear trend test” analysis was performed (Altman 1991) across the 

groups by regressing the standardised DTI parameter on a group variables coded 

numerically in the following order: 0=control, 1=CIS, 2=RRMS, 3=SPMS (N.B.: the 

word “trend” in this context refers to a statistical analysis that investigates for 

significant linear differences from one disease subtype to the next; it does not 
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infer a result of borderline significance). Each DTI parameter was standardised 

(to units of 1 standard deviation [SD]) so that the “trend” coefficients are directly 

comparable, reflecting the increase in mean DTI parameter in SD units. 

 

Univariable correlations with disability were calculated: Spearman’s rank 

correlation coefficient for EDSS and Pearson’s correlation coefficient for the 

MSFC. Significant univariable correlations were further investigated to identify 

independent DTI predictors with a multiple regression of the disability measure 

on the DTI parameters, adjusting for age, gender and UCCA. 

 

Statistical significance was defined as p < 0.05. 

9.3 Results 

 

9.3.1 Demographics and conventional MRI scans (Table 9.1) 

A total of 114 people were included; 30 controls, 21 CIS, 33 RRMS, 29 SPMS. 

Spinal cord lesions were identified and counted on 3D-PSIR sequence in 38% 

(8/21) of cases with CIS, 81% (27/33) with RRMS and 96% (28/29) in SPMS. 

In the CIS cohort there were 18 cases of unilateral optic neuritis, one multifocal 

CIS (consisting of optic neuritis, facial numbness and diplopia), and two cases of 

partial myelitis (one cervical and one thoracic). Asymptomatic T2-weighted 

brain lesions were seen in all CIS cases and 15 fulfilled the criteria for 

dissemination in space, dissemination in time could not be assessed as 

gadolinium was not administered (Polman et al., 2011). 
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None of the CIS patients were being treated with disease modifying drugs. In the 

RRMS cohort 19 were on treatment: interferon  (n = 13), glatiramer acetate (n = 

1) and natalizumab (n = 5). Four of the 29 SPMS patients were being treated with 

interferon . 

 

9.3.2 Reproducibility of spinal cord GM segmentation 

Segmentation of the spinal cord GM on the diffusion weighted images was found 

to reproducible: COV = 1.46%, ICC = 0.907. Placement of the ROIs in the lateral 

columns also reproducible, lateral column: COV = 1.05% ICC = 0.925 and 

posterior column: COV = 0.27% ICC = 0.949. 
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 Age (years) Gender (F:M) Disease 
duration 
(years) 

Median EDSS 
(range) 

T2 lesion 
volume (mLs) 

Brain 
parenchymal 
fraction 

Spinal cord 
area (mm2) 

Controls 

(n = 30) 

41.50 ± 10.34 19:11    0.823 ± 0.015 80.28 ± 7.29 

CIS 

(n = 21) 

35.14 ± 8.53 11:10 0.48 ± 0.36 1 (0 – 3) 2.98 ± 3.82 0.822 ± 0.013 83.55 ± 7.42 

RRMS 

(n = 33) 

39.58 ± 9.24 21:12 6.58 ± 5.21 2.5 (0 – 6) 12.90 ± 13.73 0.810 ± 0.018 76.31 ± 7.72 

SPMS 

(n = 29) 

51.14 ± 9.35 17:12 20.21 ± 11.62 6.5 (4 – 8.5) 23.41 ± 16.67 0.789 ± 0.017 62.50 ± 8.63 

 

Table 9.1 Demographic and conventional MRI features of all participants. Presented as mean ± standard deviation.
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9.3.3 DTI measures in controls versus patient subgroups (Table 9.2) 

In the CIS group, compared to healthy controls, significant abnormalities were 

seen in the lateral column FA (p = 0.02) and RD (p = 0.04). 

No significant differences were seen between the CIS and RRMS cohorts. 

In SPMS compared to RRMS, we observed higher MD (p < 0.01) and RD (p < 0.01) 

in the spinal cord GM, in line with the first hypothesis that the most significant 

GM abnormalities would be seen in SPMS. More extensive abnormalities were 

also seen in the posterior column MD (p < 0.01) and RD (p < 0.01) in SPMS, 

compared to RRMS. No differences were seen in AD between any of the groups 

compared. 

Comparisons of CIS and MS subtypes with controls are shown in Table 9.2.  
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Spinal 
cord 
region 
analysed 

DTI metric Control CIS RRMS SPMS 

Lateral 
column 

FA 0.76 ± 0.04 0.72 ± 0.05 
* 

0.71 ± 0.05 
*** 

0.69 ± 0.05 
*** 

MD (x 10-3 

mm2/s) 
0.91 ± 0.06 0.95 ± 0.05  0.96 ± 0.07 

* 
0.98 ± 0.07 
** 

RD (x 10-3 

mm2/s) 
0.39 ± 0.07 0.45 ± 0.06 

* 
0.49 ± 0.08 
*** 

0.50 ± 0.07 
*** 

AD (x 10-3 

mm2/s) 
1.96 ± 0.11 1.95 ± 0.10 1.94 ± 0.10 1.93 ± 0.10  

Posterior 
column 

FA 0.79 ± 0.05 0.77 ± 0.05 0.73 ± 0.05 
*** 

0.71 ± 0.05 
*** 

MD (x 10-3 

mm2/s) 
0.95 ± 0.06 0.93 ± 0.05 0.96 ± 0.06 1.03 ± 0.09 

*** 

RD (x 10-3 

mm2/s) 
0.37 ± 0.07 0.39 ± 0.06 0.45 ± 0.08 

** 
0.51 ± 0.09 
*** 

AD (x 10-3 

mm2/s) 
2.09 ± 0.17 2.01 ± 0.13 1.98 ± 0.10 2.05 ± 0.14 

Grey 
matter 

FA 0.56 ± 0.16 0.53 ± 0.04 
* 

0.51 ± 0.05 
** 

0.48 ± 0.05 
*** 

MD (x 10-3 

mm2/s) 
0.82 ± 0.04 0.84 ± 0.04 0.86 ± 0.05 

** 
0.91 ± 0.06 
*** 

RD (x 10-3 

mm2/s) 
0.53 ± 0.04 0.56 ± 0.04 

** 
0.59 ± 0.04 
*** 

0.64 ± 0.05 
*** 

AD (x 10-3 

mm2/s) 
1.41 ± 0.11 1.41 ± 0.09 1.42 ± 0.10 1.45 ± 0.13 

 

Table 9.2 Mean ± standard deviation of DTI measures in patients and controls. 

Significantly different from controls, ANOVA with post hoc Bonferroni 

correction: * p < 0.05; ** p < 0.01; *** p < 0.001 
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9.3.4 “Linear trend test” analysis of standardised DTI measures across CIS, RRMS 
and SPMS subgroups (Figure 9.2) 

 

As trends in the data displayed in Table 9.2 seemed apparent, these were further 

investigated using a linear trend test analysis and significant changes were 

observed across the three subgroups (from least abnormal in CIS to most 

abnormal SPMS) in FA, RD and MD.  

 

Mean FA decreased significantly by an estimated:  

(i) 0.43 SDs in the lateral column (p < 0.01, 95% CI -0.57, -0.28) 

(ii) 0.48 SDs in the posterior column (p < 0.01, 95% CI -0.62, -0.34) 

(iii) 0.46 SDs in the GM (p < 0.01, 95% CI -0.60, -0.32). 

 

Mean RD increased significantly by an estimated:  

(i) 0.43 SDs in the lateral column (p < 0.01, 95% CI 0.29, 0.57) 

(ii) 0.50 SDs in the posterior column (p < 0.01, 95% CI 0.37, 0.64) 

(iii) 0.59 SDs in the GM (p < 0.01, 95% CI 0.47, 0.71). 

 

Mean MD increased significantly by an estimated: 

(i) 0.32 SDs in the lateral column (p < 0.01, 95% CI 0.17, 0.48) 

(ii) 0.50 SDs in the posterior column (p < 0.01, 95% CI 0.18, 0.49) 

(iii) 0.49 SDs in the GM (p < 0.01, 95% CI 0.35, 0.63). 
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There were no significant changes across the subgroups in AD. Graphs with lines 

fitted across the mean of standardised DTI measures to demonstrate trends seen 

are shown in Figure 9.2. 
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Figure 9.2 Graphs of standardised DTI measures (FA, RD and MD): the trend 

lines demonstrated are fitted to the means in each group. Bars on either side of 

the mean represent the standard error of group means. CIS – clinically isolated 

syndrome, RR – Relapsing remitting MS, SP – Secondary progressive MS. 

 

9.3.5 Univariable correlations with disability (Table 9.3 and 9.4) 

EDSS was significantly correlated with GM MD and RD; and posterior column FA, 

MD and RD.  

The TWT z-score was significantly correlated with GM FA, MD and RD; and 

posterior column FA, MD and RD. 

The 9-HPT z-score was significantly correlated with GM FA, MD, RD and AD; 

lateral column FA, MD and RD; and posterior column FA, MD and RD. 

Univariable correlations with Kurtzke motor, sensory and sphincter functional 

systems and with ASIA motor and sensory scores are provided in a Table 9.4. 

The pattern of significant DTI correlations with motor and sphincter scores was 

similar to that seen for the EDSS, TWT and 9HPT, i.e., predominantly in GM and 

posterior columns, and including FA, RD, MD but not AD. Significant DTI 

correlations with sensory scales were mainly seen in the posterior column. 
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  EDSS 25ft TWT 9-HPT 

Lateral 
column 

FA -0.22 0.15 0.26 * 

MD 0.14 -0.11 -0.34 ** 

RD 0.22 -0.13 -0.33 ** 

AD -0.01 -0.02 -0.11 

Posterior 
column 

FA -0.47 *** 0.25 * 0.35 ** 

MD 0.36 ** -0.24 * -0.44 *** 

RD 0.51 *** -0.27 * -0.44 *** 

AD 0.06 -0.03 -0.12 

Grey matter FA -0.27 0.25 * 0.25 * 

MD 0.37 ** -0.40 *** -0.52 *** 

RD 0.46 *** -0.42 *** -0.52 *** 

AD 0.16 -0.19 -0.19 

 

Table 9.3 Univariable correlations (r values presented) between DTI metrics 

and physical disability, significant correlations are highlighted in bold font: * p < 

0.05; ** p < 0.01; *** p < 0.001. (EDSS: expanded disability status scale, 25ft TWT: 

25 foot timed walk test, 9-HPT: 9 hole peg test) 
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  Pyramidal 
functional 
system 

Sensory 
functional 
system 

Bowel 
and 
bladder 
functional 
system 

ASIA 
motor 

ASIA 
sensory 

Lateral 
column 

FA -0.16 -0.21 -0.34 ** 0.20 0.15 
MD 0.18 0.06 0.21 -0.19 0.01 
RD 0.20 0.17 0.36 ** -0.23 * -0.10 
AD 0.05 0.01 0.04 -0.03 0.05 

Posterior 
column 

FA -0.39 *** -0.34 ** -0.45 *** 0.31 ** 0.22 * 
MD 0.34 ** 0.26 * 0.39 *** -0.28 * -0.16 
RD 0.41 *** 0.34 ** 0.48 *** -0.34 ** -0.21 
AD 0.02 -0.05 0.02 -0.02 0.02 

Grey 
matter 

FA -0.30 ** -0.26 * -0.29 ** 0.24 * 0.21 
MD 0.40 *** 0.18 0.34 ** -0.32 ** -0.06 
RD 0.45 *** 0.26 * 0.42 *** -0.36 ** -0.16 
AD 0.17 -0.01 0.14 -0.12 0.09 

 

Table 9.4 Significant univariable correlations between DTI metrics and physical 

disability. Significant correlations are highlighted in the table in bold font: * p < 

0.05; ** p < 0.01; *** p < 0.001. (ASIA: American spinal injury association) 

 

9.3.6 Independent associations with physical disability 

In confirmation of the second hypothesis being investigated, significant 

independent associations were seen with GM RD (coefficient = 0.33, p < 0.01, 

95% CI 0.89, 1.92) and EDSS. Cord area (coefficient = -0.45, p < 0.01, 95% CI -

0.13, -0.07) was also independently associated with EDSS (R2 = 0.77). No 

independent associations were seen with the brain MRI measures (i.e. T2LV and 

BPF) included in this model. 

Further confirmation of our hypothesis that spinal cord GM would be associated 

with disability, was seen in the independent association with the 9-HPT and GM 

RD (coefficient = -0.33, p < 0.01, 95% CI; -1.14, -.36). UCCA (coefficient = 0.35, p < 
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0.01, 95% CI; 0.02, 0.06) and BPF (coefficient = 0.24, p = 0.02, 95% CI 2.15, 

27.36) were also independently associated with the 9-HPT (R2 = 0.57). 

Spinal cord GM RD (coefficient = -0.20, p = 0.04, 95% CI -0.32, -0.47) and UCCA 

(coefficient = 0.29, p < 0.01, 95% CI 0.04, 0.21) were both independently 

associated with the TWT (R2 = 0.42). 
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9.4 Discussion 

This is the first MRI-DTI study to investigate the spinal cord in a cohort that 

included both CIS and relapse-onset MS patients. It investigated both cord GM 

and WM and found that a DTI measure of GM microstructural integrity (RD) was 

independently associated with disability. 

9.4.1 Spinal cord grey matter findings 

In a post mortem study in progressive MS more than 40% of the upper cervical 

cord GM exhibited demyelination, which was greater than the proportion of WM 

demyelination (Gilmore et al., 2006). Reduced counts of neurons and 

interneurons also have been reported in areas of GM demyelination (Gilmore et 

al., 2006), along with inter-neuronal atrophy in lesions and normal appearing 

GM. 

The cord GM is a more anatomically complex structure than the WM and should 

be less anisotropic. Accordingly it should display a lower FA and AD and a higher 

RD, as was the case in our healthy controls.  

Previous studies in WM tracts have shown associations between DTI and 

pathological abnormalities, the former exhibiting reduced FA and increased RD 

and MD and the latter displaying demyelination and neuroaxonal loss 

(Schmierer et al., 2007; Zhang et al., 2009; Klawiter et al., 2011; Zollinger et al., 

2011). The same DTI abnormalities were observed in this in vivo study of cord 

GM and although such changes are not likely to be specific for any single 

pathological feature, it is plausible that they are a consequence of demyelination 
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and/or neuronal loss. In previous studies, AD abnormalities have been 

associated with acute axonal loss (Budde et al., 2009) and following a spinal cord 

relapse (Freund et al., 2010); the exclusion of subjects having a recent relapse 

may account for the absence of AD abnormalities in our study. 

The clinical spectrum of our cohort is broad (from CIS to SPMS) and the findings 

in this present study indicate that pathological involvement of the cord GM is 

already present in early relapse-onset MS (CIS and RRMS) but is more severe, 

with abnormalities being greatest, in SPMS. 

Pyramidal, sensory and sphincter deficits in MS are generally attributed to 

pathology in the spinal cord WM tracts and little consideration has been given to 

whether GM involvement may contribute. However, the descending motor tracts 

in the spinal cord terminate in the dorsal horn, where they synapse with 

interneurons and in turn with anterior horn cells (Williams and Warwick 1980). 

The spinal cord GM also contains interneurons between sensory and motor 

tracts. It would seem plausible that pathology in the cord GM could affect motor, 

sensory and sphincter function. 

Only two studies have investigated DTI metrics in cord GM and these were 

confined to RRMS patients, most of whom had low disability (Hesseltine et al., 

2006; Raz et al., 2013). These studies either sampled a small region in the 

anterior horn (Raz et al., 2013) or a central cord region that included both GM 

and WM (Hesseltine et al., 2006). This present study is the first to have 

segmented the whole cord, whilst also excluding WM as far as possible within 

the limits of image resolution. This approach, combined with the inclusion of 

both RRMS and SPMS patients, should have facilitated the detection of a 
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significant association of GM microstructural abnormalities with functional 

impairment.  

The functional importance of cord GM pathology is suggested by a GM parameter 

(RD) being the only DTI measure to be independently associated with EDSS. 

Together, cord atrophy (which is already well-known to correlate with disability 

[Losseff et al., 1996]) and abnormal GM RD findings accounted for 77% of the 

variance of EDSS in a regression analysis. GM RD was also independently 

associated with the 9-HPT and TWT. Pathological studies suggest that although 

RD is not specific, it is sensitive to myelin and/or neuroaxonal damage (Klawiter 

et al., 2011; Zollinger et al., 2011); this may explain why RD emerged as the sole 

DTI predictor of disability in the regression model. Interestingly, RD has 

previously been correlated with recovery of clinical function following relapses 

affecting the spinal cord (Freund et al., 2010) and optic nerves (Naismith et al., 

2010). 

Neuropathological studies of the brain in MS have identified extensive GM 

abnormalities (Peterson et al., 2001; Bø et al., 2003; Wegner et al., 2006); 

however, there has been relatively little investigation of spinal cord GM 

involvement. Noting the significance of cortical GM abnormalities, the potential 

functional eloquence of the cord GM, and our new DTI findings that link cord GM 

abnormalities to disability and SPMS, further investigation of the nature of cord 

GM involvement in MS would seem worthwhile. 
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9.4.2 Spinal cord white matter findings 

 

Similar to previous reports (Hesseltine et al., 2006; Freund et al., 2010; Raz et al., 

2013), abnormalities of FA, RD and MD were recorded in the posterior and 

lateral columns in RRMS. However, this study extends previous ones: showing 

abnormalities detectable in the lateral columns at presentation with a CIS, and 

increasing abnormalities across the three clinical subgroups. The increase was 

more evident in posterior columns, with significant differences seen between 

RRMS and SPMS.  

Greater microstructural abnormality in the posterior columns in SPMS may help 

explain the stronger univariable correlations with disability than was seen for 

lateral column DTI measures (Table 9.3). Significant associations – albeit modest 

– were also seen between measures of sensory function and posterior column 

DTI measures only (Table 9.4). Posterior column pathology with deafferentation 

could affect balance and mobility thereby contributing to the associations 

observed. 

The more limited associations of lateral column DTI measures with disability 

may have several explanations. First, although the pyramidal tract travels 

through the lateral columns, it may be affected by pathology at other levels in the 

cord, brain stem or cerebral hemispheres. Secondly, involvement of non-

pyramidal motor tracts, such as cerebellar pathways, could contribute to 

impaired motor function.  
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Thirdly, while DTI investigates the microstructure of residual tissue, it does not 

account for tissue loss and we found that global spinal cord atrophy was 

independently associated with disability. A previous post mortem study reported 

that spinal cord atrophy in MS was due to loss of cord WM, with relative 

preservation of GM volume (Gilmore et al., 2005). It would be of interest to 

investigate cord WM and GM tissue volumes in future work. 

9.4.3 Study limitations 

A number of study limitations are recognised. First, it did not investigate 

longitudinal changes in spinal cord DTI abnormalities and future studies are 

needed to elucidate the evolution of imaging measures and their relationship to 

changes in clinical course and function. 

Secondly, as lesions were not visible on DTI, it was not possible to investigate 

whether abnormalities arose from lesions and/or normal appearing cord. While 

it is nevertheless possible that lesions had a subtle influence on the segmentation 

of the spinal cord GM, in all cases it was possible to readily visualise the GM on 

the optimised average diffusion-weighted image. The image analysis performed 

on the lower resolution diffusion weighted images may be considered a 

somewhat circular approach and has the potential to include partial volume 

effects in the regions analysed. However, in the present study it was not possible 

to establish a satisfactory registration of the 3D-PSIR to the non-diffusion-

weighted EPI-ZOOM images (b = 0), due to a lack of anatomical details. In future, 

it may be possible to co-register high resolution anatomical images sensitive to 

lesions, with the DT images to investigate the effect of spinal cord lesions on DTI 

and further improve cord segmentation. 
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Thirdly, the study was limited to the upper cervical cord. This level is less 

susceptible to distortion or artefact related to physiological motion and has also 

been investigated in previous DTI studies in MS (Hesseltine et al., 2006; Freund 

et al., 2010; Raz et al., 2013). Furthermore, the spinal cord is frequently affected 

by MS at this level (Oppenheimer et al., 1978) and may therefore be 

representative of the cord in general. 

Lastly, the EDSS may be affected by MS involving systems other than spinal cord, 

e.g., brain stem and cerebellum. However, it remains a ‘gold standard’ in MS, and 

the importance of spinal cord GM involvement is reinforced by correlations of 

GM DTI measures with specific measures of pyramidal, sensory and sphincter 

function (Table 9.3). Notwithstanding, future studies could include more 

quantitative and sensitive measures of sensory and motor function (Oh et al., 

2013). 

9.4.4 Conclusions 

In this DT imaging study, marked microstructural abnormalities were found in 

the spinal cord GM in SPMS compared to RRMS. A combination of abnormal cord 

GM tissue microstructure and global cord tissue loss explained 77% of the 

variation in the widely used EDSS disability scale. GM pathology in the spinal 

cord may contribute to developing SPMS and irreversible disability. Future 

studies in MS should investigate longitudinal changes in spinal cord GM DTI 

measures and the relationship with evolving clinical status. 



 
 

256 

 

Chapter 10 - Summary 

This thesis uses in vivo MR imaging on a 3 Tesla scanner to explore the 

pathology of MS in the spinal cord as well as the relationship between spinal 

cord abnormalities and physical disability. The results demonstrate that both 

macro and micro-structural abnormalities may be visualised using high field MRI 

and have significant independent contributions to physical disability. Specific 

findings of the thesis will now be discussed in turn. 

 

10.1 Atrophy 

The relevance of spinal cord atrophy in long disease duration MS is explored in 

chapter four. Using a regression analysis spinal cord atrophy emerged as being 

significantly associated with the use of a walking aid (EDSS ≥ 6) and a higher 

EDSS score i.e. significantly higher levels of physical disability. These results 

emphasise the importance of using a combination of spinal cord and brain 

imaging in clinical trials, where MRI may be used as a primary or secondary 

endpoint.  

However, as the spinal cord is a small mobile structure with minimal discernible 

anatomical landmarks, the inclusion of cord atrophy as a potential endpoint to 

clinical trials poses numerous technical challenges. In chapter five alternative 

combinations of sequences and methodologies were investigated to determine a 

more reproducible method of cord area measurement to those currently 

available. In this chapter the semi-automated edge finding technique (Losseff et 
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al., 1996) was compared to the active surface model (ASM) (Horsfield et al., 

2010). The combination of the ASM with phase sensitive inversion recovery 

(PSIR) imaging proved to be the most reproducible method of cord area 

measurement (Reproducibility expressed as coefficient of variation [COV]: intra-

rater COV 0.002%, inter-rater COV 0.03%, scan re-scan COV 0.1%). 

To evaluate the possibility of using cord atrophy in a clinical trial in MS, sample 

sizes were calculated based on the between-subject mean standard deviation of 

the mean spinal cord cross-sectional area of 15 MS patients’ baseline scan. The 

combination of PSIR and ASM required the smallest sample size for a trial, using 

cord atrophy as an endpoint. These data suggest that it may be feasible to include 

this MRI parameter in future trials of neuroprotection in MS. 

10.2 Lesions 

As spinal cord lesions may also be visualised, as well as atrophy, on gross 

pathology (Opppenheimer 1979; Fog 1950), cord lesions were also investigated 

in this thesis. To identify high resolution axial sequences that could accurately 

identify the anatomical location of spinal cord lesions, a pilot study was 

performed firstly in a small group of people with MS. The results of this pilot 

study indicate that fast field echo (FFE) and phase sensitive inversion recovery 

(PSIR) images in combination may be useful in recording the presence and 

columnar involvement of spinal cord lesions. 

Having established the utility of these two sequences in the pilot study, these 

sequences were then employed in the upper cervical cord of the whole cohort of 

CIS and MS patients studied in this thesis. In order to accurately record the 
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differences in lesion morphology between relapsing remitting and progressive 

MS, a classification system of spinal cord lesions detected on axial images, is 

proposed in this chapter six. Furthermore, the presence of diffuse abnormalities 

was also recorded (not previously done in the pilot study). 

The results of this chapter suggest that larger, more extensive lesions, involving 

a greater number of WM columns, are more common in progressive MS 

compared to the relapsing remitting subtype. In agreement with the existing 

literature on spinal cord imaging (Lycklama à Nijeholt et al., 1998), diffuse 

abnormalities were found more commonly in progressive MS. The spinal cord 

columnar involvement was also found to be in agreement with early post mortem 

studies of the spinal cord (Opppenheimer 1979; Fog 1950) indicating that the 

lateral and posterior columns are frequently involved by spinal cord lesions.  

The results of this chapter suggest that spinal cord lesion morphology may be 

accurately characterised using high resolution axial imaging. However, it is 

important to emphasise the caveat that the scanning protocol implemented in 

this study would be too long to use in clinical practise. Therefore, a number of 

technical modifications would be required to reduce the scanning time 

(alternative sequences, higher field strength or different acquisition protocols) 

before this approach could be used more routinely. 
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -- - - - - - - - - - - - - - - - - - - - - - - -  

Spinal cord pathology in MS results in a number of histopathological 

abnormalities including inflammation, gliosis, demyelination and axonal loss 

(Oppenheimer 1979; DeLuca et al., 2006; Tallantyre et al., 2009). Through the 

use of quantitative MRI, histopathological abnormalities were investigated in 

this thesis. 

10.3 Lesion load 

In part two of chapter six, spinal cord lesion morphology and location are 

investigated; however, this approach did not investigate the volume of the 

lesions seen. Therefore, the subsequent chapter seven, utilised a quantitative 

approach to measure spinal cord lesion load, analogous to that used in post 

mortem studies (Evangelou et al., 2005; DeLuca et al., 2006), by individually 

circumscribing all the lesions detected on the PSIR scan. In addition the 

magnetisation transfer ratio (MTR) was measured in both normal appearing and 

lesional spinal cord. 

The main result of this chapter is that spinal cord lesion load in the upper 

cervical cord was associated with physical disability independently from spinal 

cord atrophy. These two MRI parameters in combination explained 56% of the 

variance in EDSS in this cohort. These data also demonstrated modest 

associations between tissue integrity, measured by MTR and physical disability. 
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10.4 Meningeal and subpial abnormality (MTR) 

Chapter eight also used MTR imaging of the spinal cord. However, in this 

instance it was used to investigate a concept that has arisen in brain studies 

suggesting that meningeal inflammation is associated with subpial 

demyelination and progressive MS (Magliozzi et al., 2010; Lucchinetti et al., 

2011). Meningeal inflammation in the spinal cord has also been reported to be of 

importance in the pathophysiology of MS through its association with axonal loss 

(Androdias et al., 2010; DeLuca et al., 2013). However, these post mortem 

findings have not been previously investigated in vivo. 

High resolution axial imaging was acquired in the upper cervical cord and the 

outermost region of the cord (thought to contain the pia mater and subpial white 

matter) was extracted to compare MTR values in this and the deeper white and 

grey matter. Significant higher MTR was measured in the outer spinal cord 

compared with deeper white matter in healthy controls, suggesting that the 

outermost region of the cord may be composed of different tissue types to the 

white matter, possibly reflecting collagen in pia mater. The MTR values in the 

outermost region were significantly lower in all patient subtypes (including 

clinically isolated syndrome [CIS] and MS) compared to controls. As MTR values 

were lower in CIS, these data suggest that early inflammation/demyelination 

may occur in the outermost region of the spinal cord. 

The association between outer spinal cord inflammation and axonal loss was 

then explored via a regression analysis. A significant independent association 
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was seen between outer cord MTR (putative marker of meningeal inflammation 

and subpial demyelination) and cord atrophy (used as a marker of axonal loss), 

in agreement with previous pathology studies of the spinal cord (Androdias et al., 

2010; DeLuca et al., 2013). 

 

10.5 Grey matter (DTI) 

Pathological studies in progressive MS have also reported extensive grey matter 

pathology in the spinal cord (Gilmore et al., 2006; Gilmore et al., 2009). However, 

the functional effects of spinal cord grey matter involvement have not been fully 

elucidated. In chapter 9, diffusion tensor imaging (DTI) was used to investigate 

spinal cord grey matter abnormalities and their association with disability and 

secondary progressive MS. 

The DTI metrics investigated in the spinal cord grey matter (fractional 

anisotropy, mean diffusivity and radial diffusivity) displayed significantly more 

abnormalities in secondary progressive MS compared to relapsing remitting MS 

and CIS. Furthermore, radial diffusivity (RD) of the spinal cord grey matter was 

independently associated with a number of measures of physical disability. A 

combination of cord atrophy and grey matter RD explained 77% of the variation 

in EDSS. These results indicate the spinal cord grey mater pathology may be of 

importance in the development of secondary progressive MS and irreversible 

physical disability. 
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10.6 Future questions 

This thesis explores a number of facets of spinal cord involvement in MS. 

However, it also raises questions that would be of interest to address in future 

studies of the spinal cord. The cross-sectional nature of this study precluded 

observation of the temporal dynamics of the MRI abnormalities accrued in the 

spinal cord. A longitudinal study could potentially address the relationship 

between an increasing number of spinal cord abnormalities detected on MRI 

(such as an increase in lesion load) and an increase in fixed disability. It will be 

especially relevant to investigate whether abnormal outer cord MTR (suggesting 

meningeal inflammation) predicts subsequent atrophy (implying axonal loss). 

This thesis also implemented multi-modal imaging of the spinal cord with an 

overall scan time that would preclude implementation in its entirety in clinical 

practise to manage individual patients. Technological alterations, such as higher 

field strength or alterations in the scan acquisition could potentially shorten the 

scanning protocol or parts thereof, thereby facilitating its future implementation. 

The methods developed in this thesis could, however, already be applied in the 

setting of a clinical trial with a standardised and quality-controlled protocol, 

where they could provide outcome measures for investigating therapies aimed at 

preventing spinal pathology. 

The coverage of the spinal cord was restricted to the upper cervical spinal cord 

in this thesis, therefore, the functional effects of spinal cord abnormalities in 

lower segments of the cord were not investigated and it may be of interest to do 
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so e.g. a quantitative MRI study of the thoraco-lumbar spinal cord in order to 

investigate the relationship between bladder dysfunction and cord pathology. 

The measures of physical disability used were largely confined to the expanded 

disability status scale (EDSS) and MS functional composite (MSFC). Although the 

EDSS and MSFC scales confer the advantage of being familiar, from their 

implementation in clinical trials, neither scale is specific for spinal cord function. 

Previous quantitative MRI studies have implemented disability measures that 

were specific for spinal cord function, such as vibration sense and hip or foot 

flexion strength (Zackowski et al., 2009; Oh et al., 2013). Sensitive measures of 

spinal cord function, such as these, may provide additional valuable information 

in future studies. 

Lastly, this thesis was confined to in vivo imaging of the spinal cord and did not 

address the pathological correlates of the abnormalities identified. An ex vivo 

study could directly investigate the relationship between the MRI abnormalities 

detected and spinal cord pathology. 
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10.7 Conclusions 

The use of multi-modal imaging in the spinal cord in this thesis has provided 

insights into the pathology of MS in this clinically eloquent structure, as well as 

demonstrating the contribution of spinal cord abnormalities (both macro and 

micro) to physical disability. Through the use of different regression analyses, 

independent contributions of spinal cord abnormalities to commonly used 

measures of physical disability (such as EDSS) were identified. Overall, these 

results suggest an emerging and important potential role for in vivo spinal cord 

MRI in future clinical trials in MS where physical disability is used as a primary 

outcome measure. 
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