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Abstract

We study multi-object auctions where agents have private and ad-
ditive valuations for heterogeneous objects. We focus on the rev-
enue properties of a class of dominant strategy mechanisms where a
weight is assigned to each partition of objects. The weights influence
the probability with which partitions are chosen in the mechanism.
This class contains efficient auctions, pure bundling auctions, mixed
bundling auctions, auctions with reserve prices and auctions with pre-
packaged bundles. For any number of objects and bidders, both the
pure bundling auction and separate, efficient auctions for the single ob-
jects are revenue-inferior to an auction that involves mixed bundling.

1 Introduction

Very little is known about the revenue maximizing auction for multiple, het-
erogeneous objects, and we doubt that the problem is analytically tractable.
It is well known that reserve prices may increase expected revenue by inef-
ficiently withholding the objects. An important and different insight is that
an optimal auction will not necessarily allocate the objects to the buyers
that value them most1. Palfrey (1983) introduced the study of bundling to
the auction literature, and showed that a pure bundling auction is revenue

∗The authors are grateful for financial support from the Max Planck Research Prize. We
wish to thank Paul Milgrom, the associate editor and three referees for helpful comments
that greatly improved the paper. Jehiel and Moldovanu wish to thank Ennio Stacchetti for
many insightful discussions that shaped some of the ideas presented here. Jehiel: Paris-
Jourdan Sciences Economiques, and University College, London, jehiel@enpc.fr; Meyer-
ter-Vehn: SAP AG, moritz mtv@web.de; Moldovanu: University of Bonn; mold@uni-
bonn.de

1This, in principle, leaves scope for a resale market. As we want to focus on the role
of bundling, we assume here that the resale-market is absent.
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superior to separate (and efficient) auctions if there are only two bidders2.
Under pure bundling, a single bidder gets all objects if she has the highest
value for the entire bundle, although other bidders attach higher values to
parts of the bundle. Under some assumptions on the distribution of valua-
tions, Chakraborty (1999) showed that there is a critical number of bidders,
below which bundling outperforms separate auctions, and above which sep-
arate auctions outperform the bundling auction. This analysis suggests that
pure bundling may increase revenue by increasing competition (i.e., by ”im-
porting” demand from one object to another), but that it may also decrease
revenue by creating inefficiencies. The logic behind Chakraborty’s result is
that, with many bidders, the inefficiency effect outweighs the competition
effect.
The main purpose of this paper is to construct and analyze the properties

of a class of mixed bundling auctions that improve upon both pure bundling
and upon separate, efficient auctions. Moreover, we offer a methodology that
can be used to identify the most promising bundling strategy.
In our model, valuations for bundles are equal to the sum of the valua-

tions for the included objects, so that bundling is solely driven by strategic
considerations of the auctioneer rather than by technological features of the
demand functions (such as complementarities).
The constructed mechanisms assign to each partition of objects among

the agents a partition-specific weight. For each realization of values, the im-
plemented partition is the one that maximizes the sum of the bidders’ values
and the assigned weight. Thus, our mechanisms can be seen as weighted
Vickrey-Clarke-Groves mechanisms, and it is a dominant strategy for bid-
ders to reveal their true values. For example, assigning a positive weight to
all partitions where some bundle of objects is not sold corresponds to intro-
ducing a reserve price on this bundle. Assigning a large positive weight to all
partitions where the objects are sold to a single buyer corresponds to a pure
bundling auction, while a smaller weight on such partitions will sometimes
allow for separate sales, thus yielding mixed bundling.
The advantages of mixed bundling have been previously pointed out by

the literature on monopolistic pricing. One might think that the optimal
pricing strategy for a monopolist selling two goods (for which customers’
valuations are known to be additive) is to price each good at the price a
single-product monopolist would optimally charge. Adams and Yellen (1976)
show (via examples) that this is not necessarily the case. McAfee et al.
(1989) generalize the non-optimality of additive pricing to arbitrarily dis-

2Jehiel and Moldovanu (2001) exploit Palfrey’s results from the perspective of the
revenue equivalence theorem.
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tributed valuations, and suggest a class of situations in which the optimal
prices include a discount for bundles - this is referred to as mixed bundling
by Adams and Yellen3. Manelli and Vincent (2001) determine necessary con-
ditions for the optimal monopolistic prices for each bundle of objects, and
study how non-deterministic sale mechanisms may improve upon determinis-
tic ones. Armstrong (1996) considers a more general model where objects are
divisible, and he looks for optimal tariffs. His main result is that the seller
will always want to withhold sales from some low-type buyers, no matter how
profitable selling some quantity to them might be. We can apply Armstrong’s
argument to our auction model in order to show that the revenue of both pure
and mixed bundling auctions can be increased by introducing reserve prices.
Rochet and Choné (1998) further analyze the multi-product monopoly prob-
lem (by relaxing some of the assumptions used by Armstrong), and show how
bunching (i.e. different types get the same allocation) is a robust feature of
the optimal mechanism.
Since monopoly pricing can be viewed as an auction design with a unique

potential bidder, one contribution of this paper is to generalize the idea
of mixed bundling from monopoly pricing to the more involved theory of
auctions.
Most of the auction literature (and, in particular, that literature searching

for optimal mechanisms) has studied models where each bidder’s information
can be represented by a one-dimensional signal. Most prominently, Myerson
(1981) and Riley and Samuelson (1981) find the revenue-maximizing auction4

(in the class of Bayes-Nash implementable allocation rules) for the private
values, one-object case. If bidders are ex-ante symmetric, the optimal auction
is a second-price auction with a reserve price. Hence this mechanism is
implementable in dominant strategies, and, as mentioned above, belongs to
the class of mechanisms discussed here.
Models with one-dimensional signals are of limited use for studies of auc-

tions for multiple, heterogeneous objects. Jehiel, Moldovanu and Stacchetti
(1999) have shown that the main difficulty with multi-dimensional signals is
that incentive compatibility constraints5 yield a complex integrability con-
dition on the vector of interim expected probabilities with which buyers get

3In other cases the optimal prices contain a surcharge for the bundle instead of a dis-
count. This raises the problem of deterring customers from buying the objects separately
in order to evade the surcharge.

4Bulow and Roberts (1989) illustrate the parallels between optimal auction design and
monopolistic pricing for one object.

5These constraints reduce to a monotonicity condition when private information is
one-dimensional.
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the various bundles6. Thus, under this constraint the maximization problem
is very hard - this is the main obstacle in front of a characterization of the
revenue-maximizing multi-object auction. Instead of trying to characterize
such an auction, we focus here on a large class of mechanisms that includes
pure and mixed bundling, as well as separate, efficient auctions. A major
practical advantage is that revenue maximization in this class reduces to an
optimization problem over vectors of real numbers (the weights attached to
the partitions) that can be numerically solved by any personal computer.
Armstrong (2000) and Avery and Hendershott (2000) study 2-object auc-

tions in discrete settings. In particular, Armstrong finds that the revenue
maximizing auction is efficient. The discrepancy to our results stems from
Armstrong’s assumption that valuations are binary, i.e. they can either be
”high” or ”low”, but not ”intermediate”. This leaves no scope for mixed
bundling, as analyzed in this paper7.
As the focus of this paper is to identify and describe a tractable way of

improving auction revenues rather than to characterize the optimal auction,
we do not consider here how Bayes-Nash implementation might improve rev-
enues over dominant strategy implementation. Mookerjee and Reichelstein
(1992) describe a class of mechanism design problems (including the quest for
a revenue-maximizing one object auction) where using the stronger require-
ment of dominant strategies is without loss of generality. Their result does
not hold for general models with multidimensional signals, and very little is
known about this issue in such contexts.
The paper is organized as follows: Section 2 lays out the model, and

introduces the weighted Clarke-Groves-Vickrey mechanisms. In Section 3 we
first calculate derivatives of revenue and expected revenue with respect to the
weights attached to each partition of objects (Theorem 1). In Subsection 3.1
we use this Theorem to show how to improve upon pure bundling and pre-
packaged auctions (Proposition 1). In Subsection 3.2 we use the Theorem in
order to show how to improve upon separate, efficient auctions (Proposition
2). This results also identifies the most promising directions for increasing the
weights on partitions around the efficient auction (where all weights are zero).
The results in this Subsection depend on a condition on the distribution
of values that requires symmetry among agents and independence across
objects. Proposition 3 in Subsection 3.3 combines the above insights, and

6These authors also translate the integrability constraint into a geometric condition
about the boundaries of the regions in the type spaces where various allocations are chosen.
The condition says that the vector representing the ”jump” in the allocation must be
perpendicular to the boundary where the jump occurs.

7Armstrong notes that when the type spaces increases in size, the revenue-maximizing
auction should not be expected to remain eficient.
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shows that a simple mixed bundling auction improves both upon the pure
bundling auction and upon the efficient auction. This Subsection ends with
a numerical example where we solve for the optimal level of mixed bundling.
Proposition 4 in Subsection 3.4 shows that the revenue enhancing effect of
mixed bundling is robust to the introduction of (optimal) reserve prices.
Section 3.5 contains an example showing that the optimal weighted Vickrey-
Clarke-Groves mechanism may be asymmetric even in symmetric situations.
Section 4 concludes.

2 The Model

A seller s owns a set K of K heterogeneous objects. There is a set N =
{1, .., i, j, .., N} of potential buyers (whom we also call bidders, or agents).
Each bidder i privately knows her valuation vik for of each object k. For the
seller, we assume vsk = 0. We assume that agent i’s valuation for a subset
Pi ⊆ K of objects is given by8 viP i :=

P
k∈Pi v

i
k, and that her utility function

is quasi-linear in money. Thus, a bidder receiving bundle Pi for a payment
of T has a utility of

P
k∈Pi v

i
k − T .

We assume that vik can take values on an interval
£
vk, v

k
¤ ⊆ R+0 , and that

v = (vik)i,k is distributed according to a continuous, strictly positive density

function f : Ω→ R+0 where Ω =
Q
k∈K

£
vk, v

k
¤N
. The K-dimensional type of

agent i is denoted by vi ∈Qk∈K
£
vk, v

k
¤
, and v−i ∈Qk∈K

£
vk, v

k
¤N−1

denotes
the K (N − 1)-dimensional vector of all but bidder i’s valuations.
The outcome of an auction is a labeled partition P = (Ps, P1, ..., PN) ∈ P

of objects and a vector of transfers (ti)i∈{1...N} ∈ RN . The interpretation is
that bidder i ∈ {1, ..., N} receives bundle Pi, the seller keeps the bundle Ps,
and bidder i makes a payment of ti to the seller. Pbun ⊂ P denotes the subset
of pure bundling allocations, i.e. P ∈ Pbun ⇒ ∃i ∈ N , such that Pi = K.
We study deterministic, dominant strategy, direct revelation mechanisms

(g, t) : Ω→ P×RN that specify for each vector of valuations v an allocation
g (v) and payments from each agent ti (v). By payoff equivalence (see e.g.
Green and Laffont (1979) , and Holmstrom (1979)), the payments in any
dominant strategy mechanism are, up to a constant, pinned down by the
allocation rule g.
Two such mechanisms immediately come to mind: separate Vickrey auc-

tions (one for each object), and a Vickrey auction for the bundle of all the

8This model immediately extends to any kind of complementarities or substitutabilities
between objects. We focus on additive valuations in order to single out the strategic effect
of bundling.
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objects:
1) In the separate auctions every object goes to the bidder who values it

most: g (v) = argmaxP∈P
nP

j∈N v
j
Pj

o
. This allocation rule is implemented

in dominant strategies by the well-known second-price transfer rule which
charges bidder i the highest rejected bid on each object she receives.
2) In the (pure) bundling auction the set of all objects goes to the bidder

who values highest the entire lot: g (v) = argmaxP∈Pbun
nP

j∈N v
j
Pj

o
. Charg-

ing the successful bidder the highest rejected bid on the entire lot makes this
mechanism strategy-proof.

2.1 General λ-auctions

We now define a large class of auctions that encompass many well-known
formats, including the two mentioned above:

Definition 1 For a given real vector λ = {λP}P∈P let

gλ (v) := argmax
P∈P

(X
j∈N

vjPj + λP

)
(1)

and

g−iλ (v) := argmax
P∈P

(X
j 6=i
vjPj + v

i
P i + λP

)

The λ-auction (gλ, tλ)is defined by the allocation rule
9 g = gλ (v) , and by

the transfer rule

tiλ (v) = −
ÃX
j 6=i
vjgλ(v)j

+ λgλ(v)

!
+ τ iλ (v) (2)

where τ iλ (v) =

µP
j 6=i v

j

g−iλ (v)j

¶
+ vi

g−iλ (v)i
+ λg−iλ (v).

To interpret the above definition, we suggest a conceptual ”trick”: Con-
sider an additional, fictitious agent who does not hold private information
and cannot receive objects, but who attaches a value of λP to allocation

9To circumvent the problem of tie-breaks in cases where argmax sets are not singletons,
we assume throughout the paper that ties are broken according to a fixed order on P. The
tie-breaking rule doe not matter given our assumption of an atomless distribution.
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P . The λ-auction is then the Vickrey-Clarke-Groves mechanism for the en-
larged set of agents. The precise value of τ iλ (v

−i) - which is irrelevant for the
dominance argument - is determined so that vi, the lowest type of bidder i,
always receives zero utility in the truth-telling equilibrium of the λ-auction,
in analogy to the Clarke mechanism. Note also that a bidder who receives
no objects makes no payments10.
Together with payoff-equivalence, the above observations immediately

yield:

Lemma 1 1) Truth-telling is a dominant strategy in an λ-auction. 2) Ex-
post participation constraints are satisfied, and the lowest type of a bidder has
a utility of zero in the truth-telling equilibrium. 3) Given the allocation rule
gλ, the transfer rule tλ is the unique one with the above properties. Thus, tλ
is the highest transfer rule implementing gλ.

We now show how several well-known auction formats fit into the class
of λ-auctions.

Example 1 • Separate second-price auctions for the K objects with re-
serve price rk for object k are represented by the λ-auction where λP =P

k∈Ps rk, i.e. the weight on an allocation is the sum of the reservation
prices over all the objects that are not sold.

• The pure bundling auction is represented by the λ-auction where λP =P
k

¡
v̄k − vk

¢
for pure bundling allocations P ⊂ Pbun , and λP = 0 else.

This ensures that argmaxP∈P
nP

j∈N v
j
Pj
+ λP

o
∈ Pbun for all possible

realizations of v.

• More generally, consider any partition Q = {Q1, .., Qτ} of K. A pre-
packaged auction with partition Q is represented by the λ-auction where
λP =

P
k

¡
v̄k − vk

¢
if the allocation P is compatible with the partition

Q (i.e. each sub-bundle Qµ is allocated to one bidders
11) , and λP = 0

else.

• Pure bundling with reserve price r on the bundle is represented by the λ-
auction where λP =

P
k

¡
v̄k − vk

¢
for P ∈ Pbun, λP =

P
k

¡
v̄k − vk

¢
+r

for P with Ps = K, and λP = 0 else.

10This is because in this case g−iλ (v) = gλ (v) and v
i
g−iλ (v)i

= 0, as i receives no object.
11This means:∀µ ∈ {1, ..., τ} ,∃i ∈ N : Qµ ⊆ Pi.
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Weighted VCG mechanisms have been used by Roberts (1979) in order to
characterize all dominant-strategy (not necessarily efficient) implementable
choice rules in a general social choice setting. Note that, however large, the
class of choice rules implemented by λ-auctions is, it is a strict subclass of
dominant-strategy implementable choice rules12. Contrary to a conjecture
in a earlier version of this paper, it is not even true that all anonymous
allocation mechanisms are λ-auctions13. We focus on λ−auctions since this
class is analytically tractable, and since, as illustrated above, it includes well
known auction formats and their ”convex combinations”.

3 Optimal Bundling

In this Section we study how expected revenue depends on the choice of the
λ parameters. The main working horse for the subsequent results is Theorem
1 which computes partial derivatives of revenue with respect to λ. We then
apply this result in order to show how to improve the revenue from the pure
bundling auction by making it slightly less inefficient, and how to improve
upon the revenue of efficient auctions by rendering them slightly less efficient.
After looking at these extreme cases, we focus on mixed-bundling auctions,
a one-dimensional subclass of λ-auctions, which generalizes the idea of a
discount on a bundle of objects in monopolistic mixed bundling.
Let us first introduce some notation. Given fixed, truthfully reported

12In contrast to Roberts (1979), there is no simple characterization of all dominant
strategy implementable choice rules in our framework. For example allocating goods only
to bidder i, according to an arbitrary function of bidder j’s signal is implementable. The
reason is, basically, the absence of allocative externalities. If bidders’ preferences were
allowed to depend on the entire profile of allocations (as opposed to their allocation only),
Roberts’ result would apply and the set of allocation rules implementable in dominant
strategy would be the set of affine maximizers (i.e., the same as λ-auctions except that the
weight given to the various bidders may be different). See Bickchandani et al. (2004), Gui
et al. (2004) and Lavi et al. (2004) for recent research on the study of dominant strategy
implementation in externality-free environments.
13Consider the following 1-object allocation mechanism: bidder i receives the good for

a payment of ti = 2vj if vi > 2vj ; bidder j receives the good for a payment of tj = 2vi if
vj > 2vi; the seller keeps the object in all other cases. This mechanism is easily seen to
be strategy-proof but it is not a λ-auction. We are grateful to a referee that offered this
counter-example.
.
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valuations v in the λ-auction, denote by

Rλ (v) =
X
i

tiλ (v) ,

Sλ (v) =
X
i

vigλ(v)i ,

BSλ (v) = Sλ (v)−Rλ (v) =
X
i

³
vigλ(v)i − tiλ (v)

´
realized revenue, social surplus and bidder surplus, respectively. Also, de-
note by R (λ) = Ev [Rλ (v)] , S (λ) = Ev [Sλ (v)], and BS (λ) = Ev [BSλ (v)]
expected revenue, expected social surplus, and expected bidder surplus, re-
spectively.

Theorem 1 1. Fix v and P ∈ P. Let I be the indicator function, and let
P 00 = argmaxP 0 6=P

nP
j∈N v

j
P 0j
+ λP 0

o
, function. The revenue Rλ (v) is

a piecewise linear function of λP , and has a single discontinuity of

(
P

j v
j
Pj
−Pj v

j
P 00j
) at λ∗P :=

³P
j∈N v

j
P 00j

´
+λP 00 −

P
j∈N v

j
Pj
. Whenever

differentiable, its derivative is given by:

∂

∂λP
Rλ (v) =

X
i

³
−I{(λ,v):gλ(v)=P} + I{(λ,v):g−iλ (v)=P}

´
(3)

2. Expected revenue is a differentiable function of λP with partial deriva-
tive given by:

∂R

∂λP
(λ) =

∂S

∂λP
(λ) +

X
i∈N

¡−Pr (gλ (v) = P ) + Pr ¡g−iλ (v) = P
¢¢

(4)

Proof. 1) The revenue effect of changing λ can be decomposed into a
surplus generation effect, and a surplus extraction effect :

Rλ (v) = Sλ (v)−BSλ (v) .
Social surplus depends on λ only via the chosen allocation gλ (v). Therefore
Sλ (v) is a step function of λP with a discontinuity of (

P
j∈N v

j
Pj
−Pj∈N v

j
P 00j
)

at the point λ∗P where the allocation switches from P 00 to P , i.e, at

λ∗P :=
X
j∈N

vjP 00j
+ λP 00 −

X
j∈N

vjPj .

Thus, its derivative is zero whenever it is well-defined.
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Bidder i’s surplus is given by:

vigλ(v)i − tiλ (v) =
X

vjgλ(v)j
+ λgλ(v) − τ iλ (v)

=
X

vjgλ(v)j
+ λgλ(v) −

X
j 6=i
vj
g−iλ (v)j

− vi
g−iλ (v)i

− λg−iλ (v).

The bidders’ surplus is given by:

BSλ (v) =
X
i

"
max
P∈P

(X
j∈N

vjPj + λP

)
−max

P

(X
j 6=i
vjPj + v

i
Pi
+ λP

)#

Thus, BSλ (v) is the difference of maxima of continuous functions. As such,
it is continuous and piecewise linear in λP . Its derivative is given by:

∂

∂λP
BSλ (v) =

X
i

³
I{(λ,v):gλ(v)=P} − I{(λ,v):g−iλ (v)=P}

´
The claim follows by combining the two insights above.
2) Again, we compute the revenue effect as the difference of the effects on

total surplus, and on bidder surplus. The latter is computed by integration
of equation 3 with respect to v:

∂

∂λP
BS (λ) =

∂

∂λP
Ev [BSλ (v)]

= Ev
·

∂

∂λP
BSλ (v)

¸
= Ev

"X
i

I{(λ,v):gλ(v)=P} − I{(λ,v):g−iλ (v)=P}
#

=
X
i

¡
Pr (gλ (v) = P )− Pr

¡
g−iλ (v) = P

¢¢
For the second equation, we used Lebesgue’s theorem and the Lipschitz-
continuity of BSλ (v) in λ in order to exchange the order of differentiation
and integration.
It remains to show that, unlike realized social surplus, expected social

surplus is differentiable as a function of λP , i.e. that
∂S
∂λP

(λ) exists. To do
so, denote by

∂λ (P, P
0) :=

(
v ∈ Ω : P,P 0 ∈ argmax

P∈P

ÃX
j∈N

vjPj + λP

!)
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the boundary in the type space between areas where gλ chooses allocations
P and P 0, respectively, and by dNK−1v the NK − 1 dimensional Lebesgue
measure. With this notation, we compute ∂S

∂λP
(λ) by applying Leibniz’s

rule to integrate the discontinuity of realized social surplus Sλ (v) over all
valuations at which the discontinuity occurs:

∂S

∂λP
(λ) =

X
P 0∈P

Z
∂λ(P,P 0)

ÃX
j∈N

vjPj −
X
j∈N

vjP 0j

!
f (v) dNK−1v

Given the continuity of f , this expression is well defined for all λ.
Recall the interpretation of the λ-auction as the efficient auction for soci-

ety including a virtual agent whose preferences are determined by λ. Chang-
ing these preferences affects the externality that agent i imposes on the vir-
tual agent, and this translates into a change of agent i’s payment. For a
fixed allocation gλ (v) , the marginal externality is given by the term under
the summation in equation (3). When the allocation gλ (v) is affected by the
change in λ, the aggregated externality on the virtual agent that results from
changing the allocation from P 00 to P equals the discontinuity in aggregated
payments of the real agents:

λP 00 − λ∗P :=
X
j

vjPj −
X
j

vjP 00j
.

For an illustration, consider a single-good auctioneer setting a reserve
price, and recall that a reserve price corresponds to a weight on the alloca-
tion where the auctioneer keeps the object. To determine the optimal reserve
price, the auctioneer is trading off the marginal loss of efficiency due to miss-
ing the opportunity to sell, against the marginal gain of additional revenue.
For any realized v, the efficiency loss is captured by the discontinuity of
Rλ (v). The marginal revenue from agent i is captured by the term under
the summation in equation (3): it equals 1 for realizations of v in which only
the valuation of agent i exceeds the reserve price. In expectation, the effi-
ciency loss is captured by the first term of equation (4) , while the expected
marginal revenue from i equals agent i’s expected externality on the virtual
agent, represented by the term under summation in equation (4).

3.1 Improving upon pure bundling and pre-packaged
auctions

We now apply Theorem 1 to the pure bundling auction, and we show how to
increase revenue by allowing separate sales for extreme realizations. Recall
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that the pure bundling auction is represented by the λ-auction where λP =P
k

¡
v̄k − vk

¢
for P ⊂ Pbun , and λP = 0 else. Decreasing the parameter λP

for P ∈ Pbun will allow allocations other than pure bundling to be chosen.

Definition 2 The c-bundling auction (gc, tc) is the λ-auction with:

λP :=

½
c if P ∈ Pbun
0 else.

We denote by Rc (v) the revenue of a c-bundling auction for a given realiza-
tion of v, and by R(c) the expected revenue. Let c∗ := inf {c : gc (Ω) ⊆ Pbun}
be the smallest value of c for which the c-bundling auction is the pure bundling
auction14.

Proposition 1 1. For sufficiently small ε > 0, and for any realization
of v, the revenue of the (c∗ − ε)- bundling auction is higher than the
revenue of the pure bundling auction: Rc∗−ε (v) ≥ Rc∗ (v) , with strict
inequality for v such that gc∗−ε (v) /∈ Pbun. In particular, R(c∗ − ε) >
R(c∗) for generic distribution functions.

2. The revenue of a pre-packaged auction with partition Q is increased by
uniformly lowering the parameter λP on all allocations P compatible
with Q below the corresponding threshold value c∗Q .

Proof. 1) Consider first v with gc∗−ε (v) ∈ Pbun. By part 1 of Theorem
1 we get that

Rc∗ (v)−Rc∗−ε (v) =

Z c∗

c∗−ε

∂

∂c
Rc (v) dc

=

Z c∗

c∗−ε

X
P∈Pbun

X
i

³
−I{(c,v):gc(v)=P} + I{(λ,v):g−ic (v)=P}

´
dc

=
X
i

Z c∗

c∗−ε

³
−I{(c,v):gc(v)∈Pbun} + I{(λ,v):g−ic (v)∈Pbun}

´
dc

As gc (v) ∈ Pbun for c ∈ [c∗ − ε; c∗], the integrand is non-positive and the
result follows.
Consider now v with gc∗−ε (v) /∈ Pbun. Denote by

ec(v) := inf {c ∈ [c∗ − ε; c∗] : gc (v) ∈ Pbun}
14We assume that ties in the c∗-bundling auction are broken in favor of pure bundling

allocations.
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the lowest value of c for which a pure bundling allocation is chosen at real-
ization v. By Theorem 1 the discontinuity of R (c) at c = ec(v) equals exactly
−ec(v). We get:

Rc∗ (v)−Rc∗−ε (v)
=
X
i

Z c∗

c∗−ε

³
−I{(c,v):gc(v)∈Pbun} + I{(λ,v):g−ic (v)∈Pbun}

´
dc− ec(v)

As the first term is bounded above by Nε, this expression is strictly negative
for small enough ε.
2) The pre-packaged auction with partition Q can be interpreted as a

set of separate pure-bundling auctions for each of the packages Qµ. Thus,
the result follows by applying part 1 to each of these separate pure-bundling
auctions.

3.2 Improving upon the efficient auction

By definition, the social surplus S (λ) is maximized at the efficient auction
where λ = 0. Therefore, ∇S (0) = 0. Together with Theorem 1, this obser-
vation yields:

Corollary 2

∂R

∂λP
(0) =

X
i∈N

¡−Pr (g0 (v) = P ) + Pr ¡g−i0 (v) = P¢¢
Thus, a necessary condition for the efficient auction to maximize revenue

in the class of (λP )P∈P-auctions is :

∀P ∈ P,
X
i∈N

¡−Pr (g0 (v) = P ) + Pr ¡g−i0 (v) = P¢¢ = 0 (5)

This is a highly non-generic condition on the density function governing
the distribution of the signals v. In other words, by introducing a small λP
for some P one can almost always improve upon the efficient auction15.
We now use Corollary 2 in order to identify the most promising directions

in which to improve on the efficient auction. The results in the rest of this
subsection use the following condition:

15 The FOC need not be sufficient for a global maximum, as R (λ) need not be a concave
function of λ. Subsection 3.5 contains an example showing that the best λ-auction may be
asymmetric even in symmetric situations, thereby illustrating the potential non-concavity
of R(λ).

13



Condition 3 (SAIO ) Valuations v = (vik)i,k are distributed symmetrically
across agents and independently across objects. Formally, the density func-
tion f satisfies: 1) f (..., vi, ..., vj, ...) = f (..., vj, ..., vi, ...) , and 2) f (v) =Q
k∈K fk (vk), where fk :

£
vk, v

k
¤N → R+0 is the marginal density with respect

to object k.

Proposition 2 Assume that condition SAIO is met, and denote by #P :=
# {i ∈ N : Pi 6= ∅} , the number of bidders receiving some objects in alloca-
tion P . We have

∂R

∂λP
(0) =

NK−1(N −#P )− (N − 1)K
NK−1 (N − 1)K , for P with Ps = ∅ (6)

∂R

∂λP
(0) = 0, for P with Ps 6= ∅

In particular, introducing a bundling parameter λP = c for all P ∈
Pbun leads to an increase in expected revenue versus the expected revenue
in the efficient auction.

Proof. Consider first P with Ps = ∅.As the density function f is assumed
to be symmetrical across bidders, the probability Pr (k ∈ g0 (v)i) of bidder i
having the highest valuation for some object k equals 1

N
. As valuations are

assumed to be independent across objects, the probability of an allocation
P being efficient is obtained by multiplying this constant probability over
all objects: Pr (g0 (v) = P ) =

1
NK . To determine Pr

¡
g−i0 (v) = P

¢
we apply

the same logic, and we obtain Pr
¡
g−i0 (v) = P

¢
= 1

(N−1)K if Pi = ∅ , and
Pr
¡
g−i0 (v) = P

¢
= 0 else.

Using Corollary 2, we obtain:

∂R

∂λP
(0) =

X
i∈N
[−Pr (g0 (v) = P ) + Pr

¡
g−i0 (v) = P

¢
]

= − N

NK
+
N −#P
(N − 1)K =

NK−1(N −#P )− (N − 1)K
NK−1 (N − 1)K

For P with Ps 6= ∅ the result follows from noticing that Pr (g0 (v) = P ) =
Pr
¡
g−i0 (v) = P

¢
= 0. Introducing a small reserve price has an expected

marginal effect of zero as both the size of the effect, and the probability of
the realization of the case are marginal16.

16It is worth bearing in mind, that the partial derivatives at the efficient auction need
not be a good indicator for the impact of significantly increasing λP . It is well known that
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The second part of the Proposition follows by observing that #P = 1 for
P ∈ Pbun. Thus, we obtain

∂R

∂c
(0) =

X
P∈Pbun

∂R

∂λP
(0) = N

NK−1(N − 1)− (N − 1)K
NK−1 (N − 1)K

= N (N − 1) (N
K−1 − (N − 1)K−1
NK−1 (N − 1)K ) > 0.

Remark 1 Note that ∂R
∂λP

(0) is decreasing in #P , positive for #P = 1, neg-
ative for #P = min {N,K} and positive for every fixed #P ≤ min {N,K}−1
as either N orK tends towards infinity. Thus, in the space of parameter com-
binations λ = (λP )P∈P increasing λP locally around the efficient auction has
the highest positive impact for P ∈ Pbun. Raising λP for partitions P that
allocate objects to all bidders, #P = N , or that sell the objects as singletons,
#P = K, decreases expected revenue.

Remark 2 To broaden our focus let us consider raising λP for all allocations
P that are derived from a partition Q: Q1 ] ...]Qτ , i.e. for all P such that
∀µ ∈ {1, ..., τ} , ∃i : Qµ = Pi. By definition, precisely τ agents receive objects
in each of these allocations. To compute the number of such P , observe that
there are N possibilities to allocate bundle Q1, N − 1 possibilities to allocate
bundle Q2, and so on. Thus, we getX

P derived from Q

∂R

∂λP
(0) =

N !

(N − τ)!

NK−1(N − τ)− (N − 1)K
NK−1 (N − 1)K

The revenue impact only depends on τ , the number of sub-bundles in the
partition, but not on whether Q divides up the objects evenly or not. Similarly
to equation 6 , the obtained expression is positive for small τ and becomes
negative for τ close to min {N,K} . But now it is not strictly decreasing in
τ . Therefore the largest impact comes from raising λP for all P with an
intermediate τ . For example, in a setting with 5 bidders and 3 objects, we
obtain that, optimally, τ = 2. Thus, the partition Q should contain two sub-
bundles of one and two objects, respectively.

the introduction of a ”large” reserve price can have a large impact on expected revenue.
Note also that the optimal one-object auction for heterogeneous bidders as in Myerson

(1981) need not be an λ-auction. This is because, in general, it sets different reserve prices
for different agents, which a λ-auction can not do.
.
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The next example shows that, without condition SAIO, ∂R
∂λP

(0) may be
negative even for P with #P = 1.

Example 2 Let
£
vk, v

k
¤
= [0, 1] and assume that vi are i.i.d. but that there is

correlation between objects. Specifically let vi be distributed on [0, 1]K in a way

that puts probability 1
2
uniformly on

£
0, 1

2

¤K
and probability 1

2
on the ”upper

diagonal”
n
(x, ..., x) ∈ [0, 1]K : x ≥ 1

2

o
. Here ∂R

∂λP
(0) < 0 for P ∈ Pbun.

Proof. Let P ∈ Pbun. Due to symmetry between agents we have that
∂R

∂λP
(0) =

1

N

X
i∈N

¡
Pr
¡
g−i0 (v) ∈ Pbun

¢− Pr (g0 (v) ∈ Pbun)¢
Let us first evaluate Pr (g0 (v) ∈ Pbun): With probability 1−

¡
1
2

¢N
there is at

least one agent i with signal vi on the upper diagonal, in which case there
is a bidder who has the highest valuation for all objects. With probability¡
1
2

¢N
this is not the case, and the probability of there being an overall winner

is
¡
1
N

¢K−1
. Thus

Pr (g0 (v) ∈ Pbun) = 1−
µ
1

2

¶N
+

µ
1

2

¶N µ
1

N

¶K−1
(7)

Analogously, we get that

Pr
¡
g−i0 (v) ∈ Pbun

¢
= 1−

µ
1

2

¶N−1
+

µ
1

2

¶N−1µ
1

N − 1
¶K−1

As [1− ¡1
2

¢N
+
¡
1
2

¢N ¡ 1
N

¢K−1
] is increasing in N, we obtain that

∂R

∂λP
(0) =

1

N

X
i∈N

¡
Pr
¡
g−i0 (v) ∈ Pbun

¢ − Pr (g0 (v) ∈ Pbun)¢ < 0

3.3 Mixed Bundling Auctions

So far we have made use of local arguments to show that neither pure
bundling nor separate auctions can be optimal (under SAIO). In this sub-
section, we focus on the mixed bundling auctions as introduced in Definition
2. This class is parametrized by a parameter c that acts as a surcharge on
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the payment of a bidder who receives some, but not all, of the objects (or,
equivalently, as a discount on the payment of a bidder who receives the entire
lot). By definition, this class encompasses the efficient auction, represented
by the c-bundling auction with c = 0, and the pure bundling auction, repre-
sented by the c-bundling auction with c = c∗ = inf {c : gc (Ω) ⊆ Pbun}. As a
corollary to Propositions 1 and 2, we get:

Proposition 3 Assume that condition SAIO is met. Then there exists c ∈
(0, c∗) such that the c−bundling auction achieves a higher expected revenue
than both the pure bundling auction and the efficient auction.

Proof. Expected revenue is a continuous function of c. Thus, it must have
a maximum on the closed interval [0, c∗]. Proposition 1 showed the maximum
cannot be at c = c∗,while Proposition 2 showed that the maximum cannot
be at c = 0.
To understand the comparative statics for c in the interior of [0, c∗], con-

sider the case of two bidders i, j. Then the formula for payments reduces
to:

tic (v) =

 vjK if P i = K,
vjPi + c if ∅ 6= P i ( K,
0 if P i = ∅.

(8)

Increasing the bundling parameter by ε increases revenue by 2ε for val-
uations such that the objects are sold separately. It decreases revenue dis-
continuously by c for valuations such that the ε−increase in c leads to a
bundling allocation being chosen instead of the efficient one. Figure 1 shows
the realized revenue Rc (v) for some fixed values of v as a function of c.
Proposition 2 stated that introducing mixed bundling to the efficient auc-

tion increases revenue (since the externality on the virtual bidder is added as
a surcharge on bidders’ payments). This is reflected in the positive slope of
Rc (v) at c = 0. Proposition 1 stated that making the pure bundling auction
slightly less inefficient by lowering c also increases revenue. This is reflected
in the upward jump in Rc (v) when c moves from right to left.
We now analytically compute the optimal bundling parameter in a simple

example.

Example 3 There are two bidders i, j competing for two objects A,B. Val-
uations are uniformly and independently distributed on [0, 1]. The revenue-
maximizing bundling parameter is c = 1

3
.
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c

Σ
i min vk

i

min Σi vk
i

0

Rc(v)

R

min Σi vk
i

    -Σ
i min vk

i

Figure 1: Realized Revenue R (v) as a function of c (fixing v such that
bundling is inefficient).

Proof. By Theorem 1 we know that dR(c)
dc

= dS(c)
dc

+ 2Pr(gc (v) /∈ Pbun).
As the marginal loss in expected social welfare is the inefficiency c times the
marginal probability that this inefficiency is incurred, d

dc
Pr(gc (v) ∈ Pbun),

we get that:

dR (c)

dc
= −c d

dc
Pr(gc (v) ∈ Pbun) + 2Pr(gc (v) /∈ Pbun)

Note that Pr(gc (v) /∈ Pbun) = 2Pr(gc (v) = [∅, {A} , {B}]) . Only for {vjA <
1− c, vjB > c} there are vi such that gc (v) = [∅, {A} , {B}]. The area of this
region of i0s valuations is given by

¡
1− ¡vjA + c¢¢ ¡vjB − c¢, as is illustrated

in figure 2. This yields:

Pr(gc (v) /∈ Pbun) = 2
Z 1

c

Z 1−c

0

¡
1− ¡vjA + c¢¢ ¡vjB − c¢ dvjAdvjB = 1

2
(1− c)4

Thus, we get:

dR (c)

dc
= (1− c)4 − 2c (1− c)3

Note that dR(c)
dc

= 0 for c = 1
3
. To calculate expected revenue, we use the

fact that R (0) = 2
3
(twice the expectation of the second-order statistic of

two random variables distributed uniformly on [0, 1]) , and we get
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vA
i

vB
i

0 vA
j+cvA

j-c

vB
j+c

vB
j-c

1

1

Β

Α

ΑΒ

Φ

Figure 2: i’s allocation (∅, A,B or AB) as a function of vi on a slice through
the 4-dimensional type space for fixed vjA, v

j
B.

R (c) =
2

3
+ c− 3c2 + 4c3 − 5

2
c4 +

3

5
c5.

Thus, we obtain R(0) = 2
3
, R(c∗) = R(1) = 23

30
≈ 0.766, and R(1

3
) =

637
810
≈ 0.786. The improvement caused by mixed bundling seems small in this

particular example. But, of course, it can get quite large if valuations are
increased. A meaningful calibration can only be done within the context of
specific applications.

3.4 Reserve prices

Reserve prices are known to increase revenue (see Myerson. 1981). Propo-
sitions 1 and 2 show that when the seller cannot retain the objects, neither
separate nor pure bundling auctions can be optimal. Could it be that sep-
arate auctions with well adjusted reserve prices are optimal? The following
result shows this is not so, at least when there are sufficiently many bidders
(and condition SAIO is met).
We denote by (gc,r, tc,r) the c-bundling auction with a vector of reserve
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prices r = (r1, ..., rK), i.e, the λ-auction
17 with:

λP :=

½
c if P ∈ Pbun,P

k∈Ps rk else.

Denote the expected revenue (resp. surplus, resp. bidders suprlus) of the
above auction by R (c, r) (resp. S (c, r) , BS (c, r)).

Proposition 4 Assume that condition SAIO is met. For sufficiently large
N , it holds that ∂R

∂c
(0, r) > 0.

Proof. Let Fk:
£
vk, v

k
¤→ [0; 1] denote the cumulative distribution func-

tion for each vik. We decompose the effect on R into the effect on bidder
surplus

∂BS

∂c
(0, r) =

X
i∈N

¡−Pr (g0,r (v) ∈ Pbun) + Pr ¡g−i0,r (v) ∈ Pbun¢¢
and into the effect on social surplus ∂S

∂c
(0, r).

Consider first the effect on social surplus. By the formula from the proof
of Theorem 1 we obtain:

∂S

∂c
(0, r) =

X
P∈Pbun

X
P 0∈P

Z
∂λ(P,P 0)

ÃX
j∈N

vjPj −
X
j∈N

vjP 0j

!
f (v) dNK−1v

Since the reserve prices acts as positive weights on allocations where the
seller keeps some object, we obtain for c = 0 that λP ≤ λP 0 for P ∈ Pbun and
P 0 ∈ P. By definition,

∂λ (P, P
0) :=

(
v ∈ Ω : P,P 0 ∈ argmax

P∈P

ÃX
j∈N

vjPj + λP

!)

Thus, we obtain that
P

j∈N v
j
Pj
−Pj∈N v

j
P 0j
is non-negative on ∂λ (P,P

0) ,

and therefore that ∂S
∂c
(0, r) ≥ 0.

17Note that c acts as a discount on the reserve prices if a bidder purchases the full
bundle. This is somewhat arbitrary, as we could also define a (c, r)-auction by setting
λP =

P
k∈Ps rk + c for P = (K, ∅, ..., ∅).

20



Consider now the effect on bidders’ surplus. Denoting by Fk the one-
dimensional distribution function of vik, we get that:

Pr (g0,r (v) ∈ Pbun) =
X
i

Y
k∈K

Pr
³
v
(1)
k > rk

´
Pr
³
vik > v

j
k,∀j 6= i|v(1)k > rk

´
= N

Y
k∈K

³
1− Fk (rk)N

´
Pr
¡
vik > v

j
k,∀j 6= i

¢
=

1

NK−1
Y
k∈K

³
1− Fk (rk)N

´
and similarly:

Pr
¡
g−i0,r (v) ∈ Pbun

¢
=

1

(N − 1)K−1
Y
k∈K

³
1− Fk (rk)N−1

´
Note that the function g (N) := 1

NK−1
Q
k∈K

³
1− Fk (rk)N

´
strictly in-

creases in N for large N. Thus, the effect on bidders’ surplus is strictly
positive, and the claim follows.
If the distributions of valuations are independent across agents, we know

from Myerson (1981) that, under a regularity condition, the optimal reserve
price in a one-object auction is independent of the number of bidders. Under
these assumptions, Proposition 4 shows that, when the number of bidders
is large enough, one can always improve upon the separate auctions with
optimally set reserve prices by introducing a mixed bundling parameter c > 0
. The Proposition can also be extended to show that no pure bundling auction
with reserve price r on the pure bundle can be optimal.

3.5 Asymmetric λ-auctions

An interesting question is whether in a symmetric setting the optimal λ-
auction is symmetric in the sense that it treats the bidders anonymously.
The following example18 illustrates that this need not be the case.

Example 4 There are two bidders competing for one object. Valuations
are independently distributed across bidders, and take two values19: v with
probability p and v with probability 1− p , where v > v. The only parameter
in a symmetric single-object λ-auction is the reserve price: setting a low

18The same example may be used to illustrate that adding asymmetric bidder-specific
weights (see Roberts, 1979) may also increase revenue.
19The same conclusions will hold for distributions with continuous density approaching

the discrete one considered here.
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reserve price yields expected revenue of p2v + (1− p2)v , while setting a high
reserve price yields p(2 − p)v. We now construct an asymmetric λ-auction
that outperforms both of these, and thus all, symmetric λ-auctions.
Let λε

i = ε and λε
j = v−v where i (j) refers here to the allocation where i

(j) receives the object. For small values of ε, the allocation and the payments
in the λε-auction are given by the following table:

vj = v vj = v
vi = v i wins; ti = −ε+ v + (v − v) j wins; tj = − (v − v) + v + ε
vi = v j wins; tj = v j wins; tj = v

.
Thus, expected revenue is given by

p(1− p)(v − ε) + [1− p(1− p)]v + p2ε
= p(1− p)v + [1− p(1− p)]v + p (2p− 1) ε

This expression exceeds p2v + (1 − p2)v for p > 1
2
and exceeds p(2 − p)v

for large values of v. Thus, whenever p > 1
2
and v is sufficiently large, the

asymmetric λε-auction generates more revenue than the optimal symmetric
λ-auction.

4 Conclusion

We have identified the role of mixed bundling for raising revenue in a multi-
object auction without a resale market. We have shown that it is neither
in the self-interest of the auctioneer to sell the objects in separate, efficient
auctions, nor to force the sale of the entire bundle of objects to a single
bidder.
The direct mechanisms used in this paper (which are theoretically easy

to define and work with) can be seen as Vickrey-Clarke-Groves mechanisms
for a society with an additional ”virtual” agent, who receives no objects,
but gets utility when bundling allocations are being chosen. Thus, even
though the real agents’ valuations are assumed to be additive, the virtual
agent has ”preferences” that imply complementarity among objects. An
interesting question is whether one can implement mixed bundling via more
”intuitive” bidding mechanisms (e.g., an ascending auction). The answer
to this question is not entirely clear since complementarities are known to
distort other agents’ incentives in ascending-bid auctions (see for example
Ausubel and Milgrom, 2002).
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