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Abstract In addition to motor functions, it has become

clear that in humans the cerebellum plays a significant role

in cognition too, through connections with associative

areas in the cerebral cortex. Classical anatomy indicates

that neo-cerebellar regions are connected with the contra-

lateral cerebral cortex through the dentate nucleus, superior

cerebellar peduncle, red nucleus and ventrolateral anterior

nucleus of the thalamus. The anatomical existence of these

connections has been demonstrated using virus retrograde

transport techniques in monkeys and rats ex vivo. In this

study, using advanced diffusion MRI tractography we show

that it is possible to calculate streamlines to reconstruct the

pathway connecting the cerebellar cortex with contralateral

cerebral cortex in humans in vivo. Corresponding areas of

the cerebellar and cerebral cortex encompassed similar

proportion (about 80 %) of the tract, suggesting that the

majority of streamlines passing through the superior cere-

bellar peduncle connect the cerebellar hemispheres through

the ventrolateral thalamus with contralateral associative

areas. This result demonstrates that this kind of tractogra-

phy is a useful tool to map connections between the cere-

bellum and the cerebral cortex and moreover could be used

to support specific theories about the abnormal communi-

cation along these pathways in cognitive dysfunctions in

pathologies ranging from dyslexia to autism.
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Introduction

The cerebellum is a brain structure forming complex large-

scale connections, whose integrative functions are still

poorly understood. Besides a well-known role in motor

learning and control (Holmes 1939; Evarts and Thach

1969), recent works have demonstrated a crucial role of the

cerebellum in a number of other functions including cog-

nition (Middleton and Strick 1994; Schmahmann and Ca-

plan 2006). Tract-tracing and functional investigations both

in non-human primates and in humans have shown pro-

jections from the dentate nucleus of the cerebellum to

prefrontal and posterior parietal cortices via the thalamus

supporting the hypothesis of a significant role for the cer-

ebellum in higher cognitive and emotional processes

(Middleton and Strick 1994; Schmahmann and Pandya

1995; Kelly and Strick 2003; Ramnani 2006; Strick et al.

2009). However, evidence in humans is more limited

compared to that in non-human primates due to technical

challenges of assessing in vivo the long polysynaptic

connections between the cerebellum and the cerebral cor-

tex (Snider and Eldred 1952; Nandi et al. 2002).

Recent developments in MRI technology have enabled

the study of the anatomical cerebellar connections in vivo

in humans using diffusion tensor imaging (DTI) and trac-

tography (Habas and Cabanis 2007a, b; Jissendi et al. 2008;

Doron et al. 2010; Anderson et al. 2011; Hyam et al. 2012).

These techniques have already provided a visualization of

afferent and efferent projections through the superior cer-

ebellar peduncles (SCPs), the red nuclei (RN) and the

thalamic projections to the cortex (Behrens et al. 2003a;

Salamon et al. 2005). A major problem of these studies is

that the diffusion tensor model has intrinsic limitations; in

particular, it does not directly resolve crossing fibre

structures (Alexander et al. 2001, 2002; Tuch et al. 2002;

Jissendi et al. 2008; Tournier et al. 2011). The consequence

is that tractography methods based on the diffusion tensor

(DT) properties allow only partial reconstruction of cere-

bellar white matter tracts, and therefore have limited

capability to reveal complex anatomical cerebello-thalamo-

cortical circuits (Salamon et al. 2007). Some investigations

have used alternative techniques, which overcome the

intrinsic limitations of the DT model: diffusion spectrum

imaging (DSI) (Wedeen et al. 2005) was used to study the

intra-cerebellar connections in vivo in humans (Granziera

et al. 2009) while multi-tensor reconstruction (Behrens

et al. 2007) and constrained spherical deconvolution (CSD)

(Tournier et al. 2007, 2012) were used to identify the

dentate-rubro-thalamic pathway, originating from the

dentate nucleus in the cerebellum and terminating in the

contralateral ventrolateral (VL) and ventroanterior (VA)

nuclei of the thalamus (Kwon et al. 2011; Van Baarsen

et al. 2013; Akhlaghi et al. 2013). However, nobody has yet

reconstructed the cerebello-thalamo-cortical pathway

respecting the predicted decussation occurring just after the

exit of the pathway from the SCP and leading it to the

contralateral thalamus and cerebral cortex in a cohort of

healthy subjects.

In this paper, we used advanced diffusion imaging

methods to reconstruct, in humans in vivo, the pathway

connecting the cerebellar cortex to the contralateral

cerebral cortex, passing through the SCP, the RN and the

thalamus. Figure 1 shows a schematic view of the most

important connections that we expect to find in the

cerebello-cerebral circuit. While recognizing that trac-

tography provides only indirect evidence of anatomical

connectivity between regions and cannot distinguish

between direct connections and pathways involving syn-

apses (like the cerebello-thalamo-cortical pathway) (Ca-

tani et al. 2012; Jones et al. 2013), we aimed to assess the

usefulness of tractography for investigations of such

large-scale neural circuits. In particular, we aimed to

ascertain whether (1) pathways connecting the cerebellar

cortex with the contralateral cerebral cortex can be

reconstructed from in vivo diffusion data; (2) there is a

consistency of the tract involvement in cortical areas of

the cerebrum and cerebellum with similar function or

anatomical meaning; (3) the majority of streamlines

passing through the SCP connects the cerebellar hemi-

sphere with contralateral associative areas, as has been

hypothesized based on the supposed parallel evolution of

these two brain structures (Sultan 2002). Achieving these

aims would support the hypothesis that the cerebellum

takes part in central circuits involved in higher brain

functions and cognitive processing (Habas et al. 2009;

Krienen and Buckner 2009; Buckner et al. 2011), and

underpin future studies of abnormal communication along

these pathways, which could be implicated in pathologies

recently shown to involve the cerebellum, such as dys-

lexia and autism (Schmahmann and Caplan 2006;

D’Angelo and Casali 2013).
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Materials and methods

In this paper, the reconstruction of the contralateral

cerebello-thalamo-cortical pathway was achieved by

combining two advanced diffusion techniques: tract

reconstruction based on CSD, which can model multiple

fibre populations within a voxel and is able to resolve

the decussation of the trans-hemispheric connection, and

super-resolution maps based on track-density imaging

(TDI) (Calamante et al. 2010), which allowed accurate

seed and target region placement. TDI maps improve

resolution and white matter contrast compared with

conventional DTI maps (such as mean diffusivity, MD,

and fractional anisotropy, FA) and can be generated from

high angular resolution diffusion imaging (HARDI)

datasets (Calamante et al. 2010). After reconstruction of

the cerebello-thalamo-cortical connections, a number of

‘‘tractography metrics’’ were defined in an attempt to

quantify the pattern of the connections for specific

cerebral and cerebellar cortical regions. Given the well-

known challenges in quantifying connectivity based on

tractography (Jones et al. 2013), we defined two simple

metrics that, while imperfect, should nonetheless provide

sufficiently robust evidence to support our conclusions.

These are the proportion of each cortical region that is

reached by the tractography algorithm and the proportion

of the total cortical volume reached by the tractography

algorithm that is contained within each cortical region;

neither of these is expected to be overly influenced by

streamline count. For completeness, we also report the

streamline counts reaching each cortical region.

Subjects

The study was carried out on 15 right-handed healthy

adults (7 males and 8 females; mean age 36.1 years and

range 22–64 years) with no previous history of neurolog-

ical symptoms. All participants gave written informed

consent. The study protocol was approved by the local

institutional research ethics committee.

MRI acquisition

All data were acquired on a Philips Achieva 3T MRI

scanner (Philips Healthcare, Best, The Netherlands) using a

32-channel head coil. The HARDI scan consisted of a

cardiac-gated SE echo-planar imaging (EPI) sequence

acquired axial-oblique and aligned with the anterior com-

missure/posterior commissure line, for a total scan time of

approximately 20 min. The imaging parameters were

TR & 24 s (depending on the cardiac rate), TE = 68 ms,

SENSE factor = 3.1, acquisition matrix = 96 9 112,

2 mm isotropic voxel and 72 axial slices with no gap. The

diffusion weighting was distributed along 61 optimized

non-collinear directions with a b value of 1,200 s/mm2

(Cook et al. 2007). For each set of diffusion-weighted data,

7 volumes with no diffusion weighting (b0) were acquired.

For anatomical reference a whole brain high-resolution

3D sagittal T1-weighted (3DT1w) fast field echo (FFE)

scan was acquired using the following parameters:

TR = 6.9 ms, TE = 3.1 ms, TI = 824 ms, acquisition

matrix = 256 9 256, 1 mm isotropic voxel, 180 sagittal

slices, acquisition time 6 min 31 s.

Fig. 1 The most important

connections in the cerebello-

cortical circuit. Projections from

the basal ganglia (through the

subthalamic nucleus, STN) go

mainly to the thalamic nuclei

(VA/VL). The cerebellum sends

its output through the superior

cerebellar peduncle (SCP), the

contralateral red nucleus (RN),

and VA/VL of the thalamus to

various cerebral areas including

the motor cortex (MC), the

prefrontal cortex (PFC), the

parietal cortex (PC), and the

temporal cortex (TC). The

decussation (d) of the cerebello-

thalamo-cortical pathway is

indicated by the yellow circle.

Modified from D’Angelo and

Casali (2013)
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Diffusion analysis and fibre tracking

HARDI data were analysed using the FSL (FMRIB Soft-

ware Library, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and

MRtrix (http://www.brain.org.au/software/mrtrix/) soft-

ware packages, following these steps:

1. Pre-processing: Eddy current correction and brain

extraction (Smith 2006) were performed using FSL.

2. Structural-diffusion data alignment: The high-resolu-

tion 3DT1w volume was realigned to the diffusion

data by inverting the full-affine transformation (12

degrees of freedom, FLIRT, FSL) (Jenkinson et al.

2002) from diffusion to high-resolution space.

3. Decussation realignment: For each participant, the

3DT1w volume in diffusion space (obtained in step 2)

was realigned along the superior/inferior direction to

the MNI-152 template using a rigid body transforma-

tion (6 degrees of freedom) with nearest neighbour

interpolation. This transformation was chosen to align

the decussation region between all subjects to com-

pare parameter values along the aligned tracts while

minimizing potential biases that could be introduced

when using non-linear registration of diffusion data;

hence, we chose to perform the analysis in the

individual subjects’ space. The transformations were

then applied to the diffusion-weighted data. This

space will be considered the subject’s native space

from this point onward, rather than the acquired

space.

4. Whole brain tractography: To generate the TDI maps,

whole brain tractography was performed with MRtrix

using an algorithm that combines the CSD technique

with probabilistic streamlines tractography (Tournier

et al. 2012); the relevant parameters were seed = w-

hole brain, step size = 0.1 mm, maximum angle

between steps = 10�, maximum harmonics

order = 8, termination criteria: exit the brain or when

the CSD fibre-orientation distribution amplitude was

\0.1. Streamlines were generated by randomly

seeding throughout the whole brain until the desired

total of 2.5 million streamlines had been selected.

5. TDI map: From the streamlines obtained in step 4, a

TDI map was created as the total number of

streamlines passing within each element of a user-

defined super-resolution grid (Calamante et al. 2010);

for this study a 1-mm resolution grid was used.

6. Cerebello-thalamo-cortical pathways: Cerebello-tha-

lamo-cortical pathways were reconstructed by com-

bining the CSD algorithm with probabilistic

tractography and by tracking the bundle passing

through two regions of interest (ROIs) (Schmahmann

et al. 1999; Habas and Cabanis 2007a, b; Kwon et al.

2011): the SCP and the contralateral RN. These

pathways were reconstructed by randomly seeding

streamlines throughout the SCP seed ROI (see step 7)

until 3,000 streamlines were reconstructed. For clar-

ity, from this point onward the word ‘‘tract’’ is meant

to indicate the tractography reconstruction of the

cerebello-thalamo-cortical connection. To compare

this with the conventional diffusion tensor model,

cerebello-thalamo-cortical pathways were also recon-

structed using a DTI-based streamline deterministic

tractography by randomly seeding streamlines

throughout the seed ROI defined by the SCP, and

using the following parameters: step size = 0.1 mm,

maximum angle between steps = 4.5�, initial FA

C0.2, termination criteria: exit the brain or when the

FA was\0.1; once again, a total of 3,000 streamlines

were reconstructed. No contralateral target ROI was

defined because with this approach tracts run only

ipsilaterally.

7. Seed/target ROIs placement: SCP and RN masks

were placed using the high-resolution TDI images.

The seed ROI was defined as a sphere with 2 mm

radius centred on the SCP in each cerebellar

hemisphere and was identified in the coronal plane,

as described by Calamante et al. (2010), while the

target ROI on the whole contralateral RN was

recognized as a very hypointense region (Calamante

et al. 2013).

8. MNI normalization: 3DT1w images from all partic-

ipants were normalized to the MNI-152 template

using a non-linear registration algorithm with nearest

neighbour interpolation from the FSL library

(FNIRT) (Klein et al. 2009).

9. Atlases-diffusion data alignment: The atlas of Brod-

mann areas (BA) and of the cerebellum (SUIT)

(Diedrichsen et al. 2009) was aligned to native space

of each subject by inverting the warping transforma-

tion obtained in step 8 to more accurately study the

cerebellar pathways.

10. Parcellation of cerebral and cerebellar cortices: For

all participants, in native space, cerebral and cerebel-

lar cortices were parcellated in two ways: one based

on anatomical grounds, the other on a functional

basis.

Anatomical parcellation consisted of the following

areas:

• Cerebrum: prefrontal cortex, frontal, parietal,

temporal, occipital and limbic lobes (Brodmann

2006);

• Cerebellum: anterior, VI, lateral Crus I–II, VIIb/

VIII and inferior lobules (Schmahmann et al.

1999).
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Functional parcellation consisted in the following

areas:

• Cerebrum: motor, associative, primary sensory,

primary auditory and primary visual areas (Brod-

mann 2006);

• Cerebellum: primary motor, sensory motor and

cognitive/sensory areas (Diedrichsen et al. 2009).

Deep grey matter nuclei were segmented using

FIRST (FSL). The following areas were consid-

ered in the analysis: basal ganglia (caudate,

putamen and pallidus), thalamus, nucleus accum-

bens, amygdala and hippocampus.

11. Quantification of cROItract, i.e. the percentage of each

cortical region (cROI) within the tract: as shown by

Fig. 2 this index reflects the proportion of the

parcellated cortical region under consideration (cROI)

that is involved in the cerebello-thalamo-cortical

pathway. For each parcellation and for each subject

in native space, cROItract was calculated as the

percentage number of voxels within the parcellation

that were reached by any number of streamlines

within the tract.

12. Quantification of trGMcROI, i.e. the proportion of the

overall tract grey matter (GM) belonging to a specific

cROI: as shown by Fig. 2 this index reflects the

proportion of the total cortical GM involved in the

tract that belongs to a particular parcellated cortical

region. For each parcellation and for each subject in

native space, trGMROI was calculated as the percent-

age of all cortical voxels reached by any streamline in

the tract that belong to the particular cROI of interest.

This analysis was also performed for the deep GM

nuclei, by computing the metric over all voxels within

the deep GM regions.

13. Quantification of TSC, i.e. the total streamline count:

this measure reflects the number of the streamlines

reaching the cortex rather than the number of voxels

of the tract included in the cortex. For each cortical

parcellation TSC was calculated with MRtrix isolat-

ing from a tract only the streamlines that entered a

given region.

14. Mean cerebello-thalamo-cortical pathway: To assess

the consistency of the tracts in MNI space and for

display purposes the tracts from all subjects were

normalized using the same transformation calculated

for 3DT1w images in step 8. A mean image of

tracts was calculated from the binarized tracts for

each subject (Ciccarelli et al. 2003). Voxels were

assigned the count of the number of subjects with

that specific voxel included in the mask. The mean

tracts’ image was thresholded to include voxels

common to at least 20 % of subjects. The unthres-

holded left and right mean tracts in MNI space are

available on request.

15. Thalamus parcellation: Since the thalamus is a

synaptic relay, to assess whether the reconstructed

cerebello-thalamo-cortical pathways actually

reflected the thalamo-cortical connectivity, the thal-

amus was parcellated as indicated by Behrens et al.

(2003a, b) and the mean cerebello-thalamo-cortical

pathway was superimposed in MNI space.

Results

The reconstruction of the cerebello-thalamo-cortical

pathway

The combination of using the CSD algorithm and

probabilistic tractography successfully reconstructed the

cerebello-thalamo-cortical pathways in all subjects.

Seeding from the SCP, streamlines were identified con-

necting the cerebellar cortex to the contralateral cortical

hemisphere, passing through the contralateral RN. Fig-

ure 3 shows a comparison between the cerebello-tha-

lamo-cortical pathway reconstructed using DTI and the

streamline deterministic tractography (Fig. 3a) and a

combination of CSD and the probabilistic tractography

(Fig. 3b) in a representative subject. As can be seen in

Fig. 3a, the DTI approach fails to reconstruct contralat-

eral connections, which is a problem that cannot be

resolved even with the usage of a contralateral target

ROI. To select the contralateral connections it is there-

fore necessary to start from a non-tensor-based approach

Fig. 2 The two tractography metrics: cROItr and trGMcROI. Each

different colour (green, red, yellow) and capital letter represents a

different cortical parcellation (cROI) while each lowercase letter

represents the cortical region reached by the tract for each cROI
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such as CSD, which produces streamlines running both

ipsi and contralaterally (Fig. 3b); to isolate just the

contralateral pathway it is necessary to add of a target

region that we chose to be the contralateral red nucleus

(Fig. 3c). Figure 4 also shows a 2D rendering of both

cerebello-thalamo-cortical pathways from a representative

subject. In particular, Fig. 4a shows the tracts colour-

coded by direction in order to represent their anatomy,

while Fig. 4b shows the same tracts using a single colour

per tract in order to distinguish left from right-side

streamlines highlighting their extensions into the cerebral

and cerebellar cortices.

To highlight the extent of the cerebello-thalamo-cor-

tical pathway, Fig. 5 shows different views of the average

tract across all subjects in MNI space. Figure 5a shows

the distribution of streamlines in the cerebral cortex: the

reconstructed tracts reach the prefrontal, frontal and

temporal cortices with a high density of streamlines.

Figure 5b shows streamlines distribution in the cerebellar

cortex: the highest density of streamlines is observed in

lateral Crus I–II and in lateral lobules VIIb/VIII.

Figure 5c shows that specific deep grey matter nuclei

were reached by a high number of streamlines, especially

the VA and VL nuclei in the thalami and the caudate

nuclei (but also putamen and pallidus) in the basal gan-

glia. The tracts also show that most of the cerebellar

streamlines are ipsilateral to the SCP seed, with a mini-

mal portion of streamlines crossing contralaterally; the

connection to the cortex, instead, runs contralaterally to

the SCP seed (as imposed by the presence of the way-

point region of the contralateral RN) with a small number

of streamlines running into the septum.

For completeness, we have also displayed the cerebello-

thalamo-cortical pathway from cerebellar cortex to cerebral

cortex by showing slice-by-slice its extension in Supple-

mentary Materials (Supplementary Figure 1). This also

demonstrates connections between the cerebellum and

septal regions. For simplicity, we have chosen to show only

the cerebello-thalamo-cortical pathway seeded in the left

SCP.

To highlight the extension of the tract in the thalamic

relay, Fig. 6 shows different views of the average tract

across all subjects overlaid onto the parcellated thalamus in

MNI space. The highest density of streamlines is seen in

the VA and VL nuclei of the thalamus, which correspond to

areas principally connected with prefrontal and frontal

(motor) cortices (Behrens et al. 2003a; Zhang et al. 2008;

Mang et al. 2012). A few streamlines reached the anterior

thalamic area and from there the temporal lobe. An even

smaller contingent of streamlines reached posterior tha-

lamic nuclei and the pulvinar and from there the parietal

and occipital lobes.

Fig. 3 Example of cerebello-thalamo-cortical pathway from a repre-

sentative subject. This is a 2D rendering of streamlines extending over

a volume of 5 mm, but mapped to a section of 1 mm thick. The same

seed ROI (a–c) was placed on left superior cerebellar peduncle. a The

tract was reconstructed using DTI and streamline tractography. No

target ROI was drawn. b The tract was reconstructed using a

combination of the CSD algorithm and probabilistic tractography. No

target ROI was drawn. c The tract was reconstructed as in b with a

target ROI drawn on the whole contralateral red nucleus. d Details of

the fibre-orientation distribution (FOD) within the decussation region.

e Details of the FOD and tract within the decussation region

Fig. 4 2D rendering of both left and right cerebello-thalamo-cortical

pathways from a representative subject. a The tracts are colour-coded

by direction to follow the anatomy and the directionality of both left

and right tracts. b The tracts are reported using a single solid colour

for each tract to distinguish the streamlines from the left (red) and

right (blue) pathways
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Tractography metric results

The destination of SCP streamlines in different brain

structures, including cerebellar and cerebral cortices and

deep grey matter nuclei, was evaluated using three

parameters: cROItract, trGMcROI and TSC (see steps 11–13

of the ‘‘Materials and methods’’). In turn, cerebral and

cerebellar cortices were parcellated into two sets of regions

based on either their anatomical or functional basis (see

step 10 of the methods) (Schmahmann et al. 1999; Died-

richsen et al. 2009).

Anatomical parcellation Table 1 reports cROItract,

trGMcROI and TSC (averaged across subjects) for left and

right tracts added together in all cerebral and cerebellar

cortical areas as defined by anatomical parcellation. In the

cerebrum, the prefrontal cortex showed the highest value of

the three tractography metrics. In the cerebellum, the area

of lobule VIIb–VIII showed the highest value of cROItract

and Crus I–II showed the highest value of trGMcROI, while

the anterior lobule showed the highest TSC value.

Functional parcellation Table 2 reports cROItract,

trGMcROI and TSC (averaged across subjects) for left and

right tracts added together in all cerebral and cerebellar

cortical areas defined on their functional bases. In the

cerebrum, the motor area showed the highest value of

cROItract, while the associative area showed the highest

value of trGMcROI and TSC. In the cerebellum, the sensory

motor area showed the highest value of cROItract, while the

Fig. 5 Tridimensional view of

the average cerebello-thalamo-

cortical pathway across all

subjects in MNI space. Cerebral

(a), cerebellar (b) and deep grey

matter (c) atlases are overlaid to

assist visualization of cerebellar

connections. a Distribution of

left (red) and right (blue) tracts

in the cerebral cortex: the

reconstructed tracts reach the

prefrontal (yellow), frontal

(fuchsia) and temporal (violet)

cortices with greater density of

streamlines. b Streamlines

distribution in the cerebellar

cortex: the lateral Crus I–II

(fuchsia) and the lateral lobules

VIIb/VIII (green) are showing

the greatest density of tracts.

c Streamlines distribution of

deep grey matter nuclei: the

thalami (violet), the caudate

(light blue) and the putamen

(fuchsia) show the greatest

trGMcROI

Fig. 6 Extension of the left cerebello-thalamo-cortical pathway

overlapped to the parcellated thalami in a representative subject.

L indicates the left side of the brain. a 2D rendering: the highest

density of streamlines is seen in the VA and VL nuclei of the

thalamus, which correspond to areas principally connected with

prefrontal (yellow) and frontal (orange and blue) cortices. b Tridi-

mensional representation of the tract: the VA and VL nuclei of the

right thalamus (yellow, orange and blue) are hidden from the tract
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cognitive and sensory area showed the highest value of

trGMcROI and the primary motor area showed the highest

value of TSC.

Deep grey matter parcellation Table 3 reports cROItract,

trGMcROI and TSC (averaged across subjects) for left and

right tracts added together in deep grey matter nuclei. The

pallidi showed the highest value of cROItract, while the

thalami showed the highest value of trGMcROI and of TSC.

Tractography suggests that the cerebello-thalamo-cor-

tical pathway spreads out to many different areas of the

brain. We also compared the proportions of the tract that

reached the cerebellar and cerebral cortices in anatomically

and functionally corresponding areas, providing evidence

for the presence of structural connectivity between these

regions. The results are visualized in Fig. 7, where the

mean values of trGMcROI and of TSC are shown for each

parcellation of the cerebral and cerebellar cortices.

Anatomical parcellation

The main findings from Table 1 are as follows:

• Correspondence between trGMcROI of the anterior

cerebellum (lobules I–V and lobule VI) and the cerebral

frontal lobe, with values of 14 % ± 4 % and

16 % ± 5 %, respectively.

• Correspondence between trGMcROI of the prefrontal

cortex and the lateral Crus I–II, with values of

38 % ± 11 % and 48 % ± 4 %, respectively.

Functional parcellation

The main findings from Table 2 are as follows:

• The hemispheres of the cerebellum and the cortical

associative areas have comparable trGMcROI of

79 % ± 4 % and 80 % ± 8 %, respectively.

Table 1 ROItract, trGMcROI and TSC values in cerebral and cere-

bellar cortical areas defined on anatomical bases

Structure cROItract

Mean (SD)

(%)

trGMcROI

Mean (SD)

(%)

TSC

Mean (SD)

Cerebrum

Prefrontal cortex 5.6 (1.4) 38 (11) 2,013 (478)

Frontal lobe 2.9 (1.2) 16 (5) 736 (267)

Parietal lobe 0.7 (0.3) 4 (2) 169 (91)

Temporal lobe 2.5 (0.7) 35 (5) 1,778 (441)

Occipital lobe 0.6 (0.7) 3 (3) 290 (171)

Limbic lobe 1.4 (0.5) 3 (1) 233 (85)

Cerebellum

Anterior lobule (I–

V)

4.9 (1.3) 4 (1) 5,192 (867)

Lobule VI 9.3 (3.1) 10 (3) 1,202 (525)

Lateral Crus I–II 19.9 (2.6) 48 (4) 2,861 (469)

Lobules VIIb/VIII 20.4 (4.2) 31 (5) 3,024 (634)

Inferior lobule (IX–

X)

9.6 (3.5) 5 (3) 1,805 (874)

Data are expressed as mean (SD) for each brain area. Left and right

measurers were added together. Bold values represent the maxima

values

cROItract percentage of each cortical region within the tract, trGMcROI

proportion of the overall tract grey matter belonging to a specific

cortical region, TSC total streamline count

Table 2 ROItract, trGMcROI and TSC values in cerebral and cere-

bellar cortical areas defined on functional bases

Structure cROItract

Mean (SD)

trGMcROI

Mean (SD)

(%)

TSC

Mean (SD)

Cerebrum

Motor area 3.2 (1.6) 14 (5) 608 (265)

Associative areas 2.8 (0.4) 80 (8) 3,284 (336)

Primary somatosensory

area

1.6 (0.8) 2 (1) 111 (64)

Primary visual area 0.7 (0.6) 3 (3) 290 (171)

Primary auditory area 0.4 (0.4) 1 (1) 15 (10)

Cerebellum

Primary motor area 4.9 (1.3) 4 (1) 5,192 (867)

Cognitive/sensory area 15.2 (1.9) 79 (4) 4,429 (365)

Sensory motor area 58.1 (12.4) 17 (3) 2,543 (688)

Data are expressed as mean (SD) for each brain area. Left and right

measurers were added together. Bold values represent the maxima

values

cROItract percentage of each cortical region within the tract, trGMcROI

proportion of the overall tract grey matter belonging to a specific

cortical region, TSC total streamline count

Table 3 cROItract, trGMcROI and TSC values in deep grey matter

nuclei

Deep GM structure cROItract

Mean (SD)

trGMcROI

Mean (SD) (%)

TSC

Mean (SD)

Caudati 32.7 (8.7) 26 (6) 1,440 (467)

Thalami 18.0 (6.2) 34 (11) 3,491 (726)

Accumbens 19.1 (10.1) 3 (2) 546 (528)

Amygdalae 1.0 (0.6) 0 (0) 37 (21)

Hippocampi 0.3 (0.2) 0 (0) 53 (124)

Pallidi 39.4 (9.1) 19 (4) 2,156 (705)

Putamen 13.5 (3.8) 18 (4) 1,552 (365)

Data are expressed as mean (SD) for each brain area. Left and right

measurers were added together. Bold values represent the maxima

values

cROItract percentage of each cortical region within the tract, trGMcROI

proportion of the overall tract grey matter belonging to a specific

cortical region, TSC total streamline count
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• The primary auditory and visual cortices show negli-

gible values of trGMcROI of 1 % ± 1 % and

3 % ± 3 %, respectively.

Discussion

In this study, we show that tractography can realistically be

used to map the pathway connecting the cerebellar hemi-

spheres with the contralateral cerebral cortex passing

through the SCP, RN and thalamus, despite the

complications introduced by synapses and the decussation

just after the SCP. Based on the more details of the TDI maps,

the SCP was used as seed and the contralateral RN as target.

The combination of a CSD algorithm with probabilistic

tractography then allowed the reconstruction of the cere-

bellar connections towards several regions of the cerebral

cortex. Quantitative analysis of tract projections passing

through the SCP and RN showed that the cerebellar hemi-

spheres on one side and the associative cerebral cortex on the

other encompassed about 80 % of the tract. Our findings

provide structural reconstruction in humans in vivo of the

crossed-fibre pathways from cerebellar to cerebral cortex in

Fig. 7 Histograms of mean values of trGMcROI and TSC for each

region of the cerebral cortex and of the cerebellar cortex. PFC

prefrontal cortex, FC frontal cortex, PC parietal cortex, TE temporal

cortex, OCC occipital cortex, LC limbic cortex, MOT motor, ASS

associative, SOM-SEN somatosensory, PVIS primary visual, PAUD

primary auditory, PMOT primary motor, COGN cognitive/sensory,

SEN-MOT sensory motor. a trGMcROI values of all cerebral and

cerebellar regions created on anatomical bases. PFC and Lateral Crus

I–II have the highest values in cerebrum and cerebellum, respectively.

b TSC values of all regions created on anatomical bases. PFC and

lobules I–V have the highest values in cerebrum and cerebellum,

respectively. c trGMcROI values of all regions created on functional

bases. ASS and COGN areas have the highest values in cerebrum and

cerebellum, respectively. d TSC values of all regions created on

functional bases. ASS and PMOT areas have the highest values in

cerebrum and cerebellum, respectively
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accordance with predictions by ex vivo anatomical investi-

gations (Voogd 2003; Standring 2008) and support the

hypothesis of a prominent connectivity of lateral cerebellum

to contralateral associative areas (Buckner et al. 2011).

It is however important to emphasize that tractography

methods are inherently incapable of distinguishing between

single neuron pathways and connections involving syn-

apses, such as those assessed in this study. Nevertheless,

tractography is currently the only in vivo in human method

for investigating structural connectivity of specific systems

and can be used to obtain reliable results, provided certain

conditions are met; these are discussed in detail in the

‘‘Limitations of the present study’’ section below.

The reconstruction of the cerebello-thalamo-cortical

pathway

Recent studies have assessed cerebellar tract reconstruction

using different types of tractography in vivo in human

subjects (Salamon et al. 2007; Habas and Cabanis 2007a, b;

Jissendi et al. 2008; Granziera et al. 2009; Doron et al.

2010; Anderson et al. 2011; Kwon et al. 2011; Hyam et al.

2012). Most of these studies have investigated cerebello-

thalamo-cortical pathways (Salamon et al. 2007; Habas and

Cabanis 2007a, b; Jissendi et al. 2008; Doron et al. 2010;

Anderson et al. 2011) and a few others have reconstructed

intra-cerebellar pathways (Granziera et al. 2009; Takahashi

et al. 2013; Dell’Acqua et al. 2013). Several of these

studies used the DT model and showed pathways passing

through the SCPs and running ipsilaterally towards the

cerebral cortex (Salamon et al. 2007; Habas and Cabanis

2007a, b; Jissendi et al. 2008; Doron et al. 2010; Anderson

et al. 2011; Hyam et al. 2012). Some other studies instead

exploited more complex models to reconstruct portions of

the pathway or the intra-cerebellum connections in vivo

(Granziera et al. 2009; Kwon et al. 2011; Van Baarsen

et al. 2013; Akhlaghi et al. 2013) and post-mortem (Ta-

kahashi et al. 2013; Dell’Acqua et al. 2013). The decus-

sation of the SCP is expected to occur from classical

neuroanatomical descriptions (Voogd 2003; Standring

2008), but its reconstruction using MRI techniques in vivo

in humans has only been achieved by a few studies using

advanced diffusion approaches (Tuch et al. 2002; Tuch

2004; Wedeen et al. 2008; Tournier et al. 2012; Fernandez-

Miranda et al. 2012; Van Baarsen et al. 2013; Akhlaghi

et al. 2013). To the best of our knowledge, only two studies

used advanced techniques, e.g. CSD and probabilistic

tractography, to reconstruct the dentate–rubral and dentate–

thalamic pathways in pathological conditions. Akhlaghi

et al. (2013) demonstrated that the dentate-thalamo-cortical

tracts of patients with Friedreich ataxia showed a decreased

FA value and an increased MD value compared with

controls, while Van Baarsen et al. (2013) demonstrated, in

a single patient with cerebellar mutism, that changes in FA

and MD values along the dentate-rubro-thalamic tract and

its alterations might be the cause of the mutism. Both of

these studies assessed how specific pathologies affected

structural characteristics of the tracts of interest rather than

investigating cerebellar involvement in cognitive pro-

cesses, therefore offering complementary information to

our findings. These observations confirm the importance of

anatomical and functional studies of cerebellar connections

in understanding pathologies.

In this paper we have shown contralateral connections

between the cerebellum and the prefrontal, frontal and

parietal cortices via the thalamus in humans in vivo, which

we achieved by implementing a pipeline with two key

points: the selection of a non-Gaussian diffusion model and

the definition of a seed and a target ROI (Palesi et al.

2013). We chose to combine a method based on CSD with

probabilistic tractography, because this approach has been

shown to allow tracking through complex crossing fibre

regions (Tournier et al. 2012; Akhlaghi et al. 2013). Using

this approach we could reconstruct the contralateral cere-

bello-thalamo-cortical pathways originating from both left

and right SCPs, which are completely missed using DT-

based tractography methods. In fact, streamline DTI trac-

tography techniques are unable to resolve the convergence

of differently oriented tracts into the same area, as occurs

in the white matter in the medullary core of the cerebellum.

This intrinsic limitation could only be partially overcome

using probabilistic tractography. To better represent the

fibre structure, non-tensor models must be used that are

known to address these fibre-crossing issues. The further

use of a seed and contralateral target ROI, placed on high-

resolution TDI images, warranted the selection of stream-

lines crossing at the decussation point as we expected from

anatomical knowledge. Notice that the use of a seed and

contralateral target ROIs cannot help resolving the lack of

crossing streamlines when using the DT model.

The pathways that we generated show anatomical con-

sistency between subjects, involving several areas of the

cerebellar cortex, cerebral cortex and deep grey matter

nuclei, passing through the VA and VL nuclei of the

thalamus, caudate and putamen. In particular, most cere-

bellar streamlines are ipsilateral compared to the SCP seed,

while a minimal proportion of streamlines cross over to the

contralateral side. These findings are anatomically plausi-

ble (Watt and Mihailoff 1983; Noda et al. 1990).

Tractography metric results

Having shown that the cerebello-thalamo-cortical pathway

reconstructed by tractography was in accordance with

findings from tract-tracing studies, as discussed above, we

introduced metrics that reflect how different grey matter
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areas could be involved in the reconstructed tracts, allow-

ing us to make further observations regarding the charac-

teristics of the cerebello-thalamo-cortical pathway. In

particular, comparable proportions of cortex were reached

by the tract in anatomically and functionally corresponding

areas of the cerebellar and cerebral cortices. Thus, areas

expected to be connected from functional studies are also

characterized by similar tractography metrics, in accor-

dance with suggestions of strong links between the devel-

opments of corresponding regions (Sultan 2002).

From the anatomical parcellation point of view

(Table 1), our results were in agreement with classical

literature results by finding that the anterior cerebellum

(lobules I–VI) and the cerebral frontal lobe were similarly

involved in the tract (trGMcROI was 14 and 16 %, respec-

tively). These findings support a correspondence between

these two areas, in line with the expected topography of

primary motor and premotor areas (Snider and Eldred

1952; Grodd et al. 2001; Kelly and Strick 2003). Indeed,

these regions are known to be reciprocally connected and

to subserve motor and premotor functions (Schmahmann

et al. 1999; Diedrichsen et al. 2009; Krienen and Buckner

2009).

From a cognitive point of view we would expect to find

anatomical correspondence between prefrontal cortex and

the lateral Crus I–II (Habas et al. 2009; Krienen and

Buckner 2009). Our data show that indeed there is similar

involvement between lateral Crus I–II and prefrontal areas

(trGMcROI was 48 ± 4 and 38 ± 11 %, respectively).

Furthermore, our results are supported by recent tract-

tracing and electro-physiological studies on primates and

rats demonstrating that the cerebellum is effectively linked

to the prefrontal cortex forming ‘‘closed-loop’’ connections

(Middleton and Strick 2001; Mittleman et al. 2008; Ar-

guello et al. 2012; Watson et al. 2014). Indeed, the cere-

bellar pathway extended considerably into prefrontal

cortical areas in agreement with ex vivo anatomical

determinations, which have shown that the cerebellum is

reciprocally connected with the medial prefrontal cortex

(PFC) (Watson et al. 2009), the dorsolateral PFC (Kelly

and Strick 2003), and the anterior PFC (Krienen and

Buckner 2009). The medial PFC is important in saccadic

movements and cognitive control (Ridderinkhof et al.

2004) and is strongly involved in determining behaviour on

the basis of expectations (Amodio and Frith 2006). More-

over, this cortical area plays a key role in fear extinction

processes (Morgan et al. 1993; Milad and Quirk 2002). The

dorsolateral PFC is particularly important in working

memory (Petrides 2000), mental preparation for imminent

actions (Pochon et al. 2001), and procedural learning

(Pascual-Leone et al. 1996) and its functional alteration is

involved in major psychoses (Weinberger et al. 1986,

1988; Dolan et al. 1993). The anterior PFC is less well

understood (Ramnani and Owen 2004) but its main func-

tion could be that of integrating multiple distinct cognitive

processes during goal-directed complex behaviours.

Therefore, the fact that there is a possible correspondence

of tractography metrics between cortices with similar

functional roles, as reported here, supports the hypothesis

of a route through which the cerebellum can influence both

cognitive tasks through connections with various areas of

the PFC and sensory and motor tasks through connections

with frontal and parietal cortices (Schmahmann and

Pandya 1993; D’Angelo and Casali 2013).

The observation that the parietal cortex only encom-

passed 4 % of the tract-connected GM is likely due to the

low number of streamlines connecting between the cere-

bellum and the posterior thalamic nuclei (Fig. 6). Indeed

studies focused on thalamic connectivity (Behrens et al.

2003b; Zhang et al. 2008; Mang et al. 2012) have dem-

onstrated that the VA and VL nuclei of the thalamus are

mainly connected with motor areas and the prefrontal

cortex rather than the parietal cortex, which is in turn

principally connected with the posterior thalamic nuclei

receiving somatosensory information from pathway

ascending from spinal cord and brain-stem. From ex vivo

experiments it is known that the cerebellum sends outputs

through the posterior VL of thalamus to the inferior parietal

lobe (Clower et al. 2001), which is involved in response to

the sight of an object, as well as to the act of grasping it, in

reach-to-grasp arm movements (Tunik et al. 2005), and in

the creation of cross-modal sensorial representations of

objects (Grefkes et al. 2004). Therefore, the combination of

findings from imaging studies on thalamo-cortical con-

nectivity and from ex vivo experiments suggests the exis-

tence of a physiological connection between the

cerebellum and the parietal cortex through the posterior VL

thalamic nucleus. Our findings are in agreement with this

hypothesis because the cerebello-thalamo-cortical pathway

that we reconstructed mainly connects the cerebellum with

the VA and VL thalamic nuclei. Further evidence of the

coherence between our results and the literature is repre-

sented by the scarce connection we observed between the

cerebellum and the parietal cortex through the posterior VL

thalamic nucleus. Moreover, indications from literature

suggest functional connectivity between the cerebellum

and the parietal cortex (Buckner et al. 2011) but the exis-

tence of a direct anatomical pathway is still debated

(Clower et al. 2005).

The temporal lobe encompassed 35 % of the tract-con-

nected GM. Although the exact nature of connections

between the temporal lobe (including the hippocampus and

amygdala) and the cerebellum is still unclear, this con-

nectivity is in line with studies showing that the temporal

cortex indeed contributes to the cortico-pontine pathway

both in humans and in macaque monkeys (Ramnani 2006).
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Indeed fMRI resting state (He et al. 2004) and dynamic

causal modelling (Booth et al. 2007) have revealed func-

tional connectivity between cerebellum and temporal areas,

although this may in part depend on connections emitted by

the fastigial nuclei through the middle cerebellar peduncle

(at least in monkeys and cats) (Heath and Harper 1974).

Of the functional parcellation results (Table 2), the most

striking finding was that the hemispheres of the cerebellum

and the cortical associative areas encompassed 79 and

80 % of the tract GM, respectively. The associative cortex

comprises the prefrontal (BA 9–12, 25, 46–47), parietal

(except BA 1–3) and temporal (except BA 41–42) cortices

and the limbic lobe. Since prefrontal, limbic and parts of

parietal and temporal cortices are known to be involved in

cognitive processes at different level of complexity

(D’Angelo and Casali 2013), our results supports the the-

ory that lateral areas of the cerebellum are also involved in

higher cognitive processes (Schmahmann et al. 1999;

Strick et al. 2009; Diedrichsen et al. 2009; Habas et al.

2009; Krienen and Buckner 2009; Watson et al. 2014).

The primary auditory and visual cortices only consti-

tuted 1 and 3 % of the tract-connected GM (Table 2),

respectively, in line with the results from Buckner et al.

(2011) who, using fMRI, have shown that primary auditory

and visual cortices did not appear functionally connected

with the cerebellum. On the other hand, these streamlines

may be underestimated in this tractography study due to

their relative position with respect to the cerebellum.

Indeed, fibres connecting the cerebellum with visual and

auditory areas (located in the occipital and temporal lobes,

respectively) might have high curvature and therefore be

partially undetected by tractography methods (e.g. see

discussion in Buckner et al. 2011). A fairly recent DTI

study (Doron et al. 2010) suggests that the cerebellum is

strongly connected with the precentral gyrus and the

superior frontal gyrus, which take part in motor and ocu-

lomotor processes as well as in the processing of spatial

working memory (Du Boisgueheneuc et al. 2006). How-

ever, the very important role played by the cerebellum in

controlling the execution of saccades, in elaborating the

visuospatial information concerning the eye target (Tilikete

et al. 2006; Guerrasio et al. 2010) and in controlling ves-

tibulo-ocular reflexes, depends on connections emitted by

the fastigial and vestibular nuclei through the inferior and

middle cerebellar peduncles, which cannot be detected by

placing a seed in the SCP.

An additional observation is the presence of a conspic-

uous number of streamlines connecting the cerebellum to

the basal ganglia via the RN and the thalamus (Middleton

and Strick 2002). Although the anatomo-functional rela-

tionship between basal ganglia and cerebellum remains

unclear, a fast synaptic connection has recently been

reported between these two structures (Chen and

Khodakhah 2012), which also show coherent activity in

fMRI recording (Mastropasqua et al. 2013). Moreover,

basal ganglia are secondarily affected by atrophy in the

presence of cerebellar damage (Dayan et al. 2013; Olivito

et al. 2013). It has been postulated that a functional rela-

tionship between basal ganglia and cerebellum could be

important for controlling movement (Amaral 2000).

However, although our observation is in line with this

concept, we have to point out that the present technique

cannot be used to determine either the direction of the

streamlines (projecting to or from the thalamus) or whether

there are effective synaptic connections allowing commu-

nication between cerebellum and basal ganglia through the

thalamus. Therefore, the nature of observed streamlines

apparently connecting cerebellum and basal ganglia

remains to be clarified.

Finally, our analysis also revealed streamlines reaching

the septum. Again, although connections between the cer-

ebellum and deep parts of the limbic system (including the

septum) have been suggested (Heath et al. 1978), the

synaptic nature and directionality of this pathway as well as

functional evidence in humans await experimental

confirmation.

Limitations of the present study

While tractography is compelling in being applicable

in vivo non-invasively, and hence in human subjects, it

suffers from well-documented shortcomings. Although

these have already been reported in several tractography

publications, these limitations are discussed here in the

context of the specific pathway under investigation in this

study.

First of all, MRI tractography cannot distinguish

between efferent and afferent fibres, since water diffuses

equally in both anterograde and retrograde directions. The

present results therefore cannot be used to inform models

that rely on the determination of the direction of axon

potential propagation.

Second, tractography methods cannot at present dis-

criminate between direct and indirect connections between

regions, since the diffusion weighted signal is influenced

by the average microstructural architecture over the scale

of an imaging voxel, and not by the directionality of the

signalling process or the presence of synapses. Indeed, the

cerebello-thalamo-cortical pathways are known to be

polysynaptic and are not expected to form a direct con-

nection between the cerebral and cerebellar cortices. In

particular, it must be acknowledged that the connections to/

from the VA and VL nuclei of the thalamus are complex,

including not only fibres from the SCP but potentially also

fibres from the basal ganglia. However, while tractography

cannot identify regions of synapses, it is a mathematical
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algorithm with predefined rules and as such it may none-

theless be able to delineate onward connections if these

rules are respected; for example, fibre-tracking algorithms

typically require a certain degree of alignment between the

fibre orientations estimated in neighbouring voxels; pro-

vided this requirement is satisfied, the algorithm will pro-

ceed through a region of synapses. If on the other hand the

fitting of the fibre orientation distribution is noisy or does

not capture the correct microstructure, the tractography

algorithm could terminate even if there is continuity of the

underlying biological tract.

One further limitation of tractography studies in general

is that diffusion MRI data are rarely acquired at resolutions

higher than 2 mm isotropic; this low spatial resolution is a

considerable limitation when reconstructing pathways that

converge onto a small structure and subsequently diverge

towards a wider area of the brain. Here, we used a com-

bination of CSD and super-resolution track-density imag-

ing at 1 mm resolution to minimize this problem.

Another issue is related to the fact that tractography

algorithms preferentially choose streamlines with minimal

bending and there is a dependency of tract volume on path

length and the tractography algorithm itself. Connections

from the VA thalamic nucleus towards the prefrontal cor-

tex have the highest trGMcROI and TSC and also are

characterized by minimal bending. Moreover, the anterior

lobule of the cerebellum has the highest value of TSC and

it is also the closest cerebellar region to the SCP seed point

of the tract. However, the observed anatomical difference

among these areas matches the expected difference in

functional connectivity (Habas et al. 2009; Krienen and

Buckner 2009), suggesting that, for this specific applica-

tion, streamline connectivity revealed by our technique is

not critically affected by anatomical constraints.

A final consideration on the validation of tractography

results (Mori and van Zijl 2002) is that while tractography

can indeed provide macroscopic neuroanatomical infor-

mation on white matter pathways by reconstructing fibre

structures that contain bundles of axons running along the

same orientation, it cannot distinguish individual axonal

pathways, whose diameter is typically less than 10 lm. For

this reason, tractography cannot claim that the recon-

structed tracts are anatomically accurate, and in fact results

should be validated using other techniques. The most

common way to infer information about axonal connec-

tivity is using virus retrograde transport and chemical tract-

tracing techniques in animals (Middleton and Strick 2002;

Kelly and Strick 2003; Clower et al. 2005). The principal

issue is that these techniques provide information at cel-

lular level that cannot be compared directly to MR-derived

results. Moreover, tract-tracing techniques cannot be

applied to humans, where most information has come from

post-mortem histological data (McNab et al. 2009; Miller

et al. 2011; Seehaus et al. 2013; Dell’Acqua et al. 2013).

An approach combining post-mortem dissection with

advanced tractography seems best suited to characterize

white matter architecture in humans and validate tractog-

raphy results (Catani et al. 2012; Dell’Acqua et al. 2013),

but requires the use of non-conventional scanners. A fur-

ther way to validate tractography results is to compare the

core of major white matter tracts with classical anatomical

knowledge, because trajectories and locations of these

tracts are fairly well known. However, the subcortical

portions of the reconstructed tracts remain problematic due

to the high uncertainty of fibre direction at the grey/white

matter border.

Recent developments in tracking methods (e.g. Smith

et al. 2012, 2013) may help minimize some of these effects

in future work, and thus provide a more accurate estimate

of the connections between cerebellar and cerebral corti-

ces. Nonetheless, most of these limitations are inherent to

diffusion MRI and will invariably need to be taken into

consideration when interpreting any tractography results.

Conclusions

We have shown that our advanced imaging methods allow

visualization of the pathway connecting the cerebellar

hemispheres with the contralateral cerebral cortex, passing

through the SCP, red nucleus and VL and VA nuclei of the

thalamus. The demonstration of congruent trGMcROI of the

cerebral and cerebellar cortices in functionally corre-

sponding areas bears relevant functional implications.

First, this result supports the coevolution of the two

structures proposed on the basis of comparative cortical

surface measurement across vertebrates (Sultan 2002).

Secondly, since the cerebellar network has almost identical

structure in all its sections and is organized in parallel

poorly interacting modules (Standring 2008), it is possible

that a similar computational cerebellar algorithm is applied

to different cortical functions, ranging from motor control

to sensory perception and cognition. This observation has

special relevance for the generation of computational

schemes and models of cerebro-cerebellar network loops

(Ito 2008). Given that our advanced imaging analysis was

successful using high-quality data acquired on standard

clinical scanners, this method has immediate potential in

the assessment of cerebellar structural connectivity in

neurological conditions, for example in dyslexia and aut-

ism (e.g. Bauman and Kemper 2005; Boso et al. 2010) for

which a cerebellar origin has been proposed (for review see

D’Angelo and Casali 2013).

Acknowledgments This work was supported by Multiple Sclerosis

Society of Great Britain and Northern Ireland; University College of

Brain Struct Funct

123



London Hospital/University College of London Comprehensive

Biomedical Research Centre; Neurological Institute ‘‘C. Mondino’’ of

Pavia; University of Pavia; Multiple Sclerosis International Federa-
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