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1 Introduction

Bayesian implementation is frequently criticized because it can be sensitive
to the precise information that agents (and the designer) have about the
characteristics of other agents. This seems especially important in practice
because it is not clear how agents form beliefs about others. Dominant-
strategy implementation responds to this criticism by requiring that each
agent�s strategy be optimal, not only against the actual strategies of other
agents, but against all possible strategies of other agents. In particular,
dominant strategy implementation requires that each agent�s strategy be
independent of the actual type of other agents, and in this sense is robust to
informational errors.

Unfortunately, as Gibbard (1973) and Satterthwaite (1975) have shown,
if there are at least three social alternatives and preferences are unrestricted,
then only dictatorial choice rules are dominant-strategy implementable. On
the other hand, for environments in which preferences are quasi-linear in
money and agents preferences are independent of the information held by
others, the celebrated Vickrey-Clarke-Groves mechanisms provide dominant-
strategy implementation of the e¢ cient choice function.

The assumption of private values is very restrictive: in many interest-
ing situations, each agents�valuation of alternatives depends on information
known only by other agents. The literature on implementation with interde-
pendent values has typically maintained quasi-linear utilities as an assump-
tion that is necessary (in view of the Gibbard-Satterthwaite results) and
reasonable (when �nancial stakes are moderate). In such environments, in-
sisting on robustness to the information of others is formalized as ex-post im-
plementation, which requires the strategy of each agent to be optimal against
the strategies of other agents for every possible realization of types (as op-
posed to Bayesian implementation, which requires that the strategy of each
agent be optimal against the strategies of other agents for the given distrib-
ution of types).2 Ex-post implementation is weaker than dominant-strategy
implementation since it assumes that other agents follow their equilibrium

2The notion of ex-post equilibrium corresponds to uniform equilibrium, as de�ned by
d�Aspremont and Gerard Varet (1979), and to uniform incentive compatibility as de�ned
by Holmstrom and Myerson (1983). The term ex-post equilibrium is due to Cremer and
McLean (1985).
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strategy � but it shares the appealing property that agents need not know
the distribution of others�signals in order to �nd it optimal to follow their
equilibrium strategies.

Our main result is a generic impossibility theorem for ex-post implemen-
tation of deterministic social choice functions: restricting to environments in
which utilities are quasi-linear but interdependent and types (or signals) are
multi-dimensional, we show that, for generic valuation functions, the only
deterministic social choice rules that are ex-post implementable are constant
. Our assertion is uniform over deterministic social choice rules, and hence
is much stronger than the assertion that, for each given deterministic so-
cial choice rule, the set of valuations for which the given rule is not ex-post
implementable is generic.

The environments we consider include many familiar and practical so-
cial choice problems. For instance, consider the decision about whether to
improve a roadway, and how to assign costs. Construction will typically af-
fect �rms along the roadway in a number of ways, such as lack of customer
access during construction and increased customer access after completion.
In particular, signals are multi-dimensional. Moreover, valuations are inter-
dependent, because the estimates of each �rm are imperfect (and would be
improved by knowing the estimates of each other �rm), because of competi-
tion between the �rms, and because of positive spillovers across �rms.

Our analysis proceeds in two steps. The �rst step shows that if any
non-constant determinstic choice function is ex-post implementable then a
certain geometric condition on utility functions must be satis�ed; the second
step shows that this geometric condition is not satis�ed for generic utility
functions. This is done both for a topological and for a measure-theoretic
notion of genericity.

The geometric condition connects the agents�rates of information substi-
tution, which measure how marginal variations in the several dimensions of
one agent�s signal a¤ect the agents�payo¤s. The condition is derived from
the taxation principle which implies that, in an ex-post incentive compatible
mechanism, all agents have the same indi¤erence sets (the sets of states at
which the agent is indi¤erent between two given alternatives). We show that,
on these common indi¤erence sets, marginal variations in signals must a¤ect
all agents�valuations in the same way. For multi-dimensional signals, the
existence of transfers that equate the implied rates of information substitu-
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tion amounts to the assertion that valuations satisfy a system of di¤erential
equations of a particular kind. We then show that generic valuations do not
satisfy any such system of di¤erential equations.

One way to put the present work in perspective is to recall the literature
on e¢ cient ex-post implementation. A number of authors have shown that
e¢ cient ex-post implementation is possible when signals are one-dimensional
and satisfy a single-crossing property (see Cremer andMcLean, 1985; Maskin,
1992; Ausubel, 1997; Dasgupta and Maskin, 2000; Jehiel and Moldovanu,
2001; Bergemann and Välimäki, 2002; and Perry and Reny, 2002). Maskin
(2003) o¤ers an excellent survey3.

The restriction to one-dimensional signals is essential. It is not a-priori
obvious what the analog of the single-crossing property is for settings with
multi-dimensional signals, nor whether it would imply e¢ cient implementabil-
ity. When at least one agent�s signal is two-dimensional (and the distribu-
tion of signals is independent across agents), Jehiel and Moldovanu (2001)
have shown that, for generic valuations, the e¢ cient social choice rule is not
Bayesian implementable, and hence a fortiori not ex-post implementable4.
But, the impossibility of implementing the e¢ cient social choice rule does
not imply the impossibility of implementing other social choice rules. The
present paper shows that, no matter what de�nition of single-crossing one
uses, the set of valuations for which non-trivial implementation is possible
is non-generic. Thus, the impossibility result of the present paper is much
stronger than the impossibility result of Jehiel and Moldovanu. The proof
of the present impossibility theorem is much more di¢ cult as well. Jehiel
and Moldovanu (2001) show that e¢ cient implementation implies that the
preferences of one agent must be aligned with the social preferences; we show
that non-constant implementation implies that the preferences of two agents
must be aligned with each other. The important di¤erence is that the social
preferences are �xed by the valuation functions, whereas the preferences of
any pair of agents can be altered by an endogenous transfer.

3The single-crossing property is satis�ed for open sets of preferences in the one-
dimensional framework studied by these authors. Yet, it is by no means satis�ed by
all preferences, and there are open sets of valuation functions that do not satisfy the
single-crossing property.

4McLean and Postlewaite (2004) allow for multidimensional signals and obtain approx-
imate e¢ ciency in a Bayes-Nash equilibrium. Their agents are "informationally small".
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A second way to put our work in perspective is to recall the literature
on robust mechanism design. Wilson (1987) has pointed out that the success
of many of the schemes that rely on Bayes-Nash implementation depend on
the beliefs of the agents or of the mechanism designer in a sensitive way: if
the agents or the designer are mistaken in their beliefs, the actual outcome
of a supposedly optimal mechanism may be far from the intended one. To
address this problem, it seems natural to require that the designer wants to
implement a social choice function that depends only on the payo¤-relevant
types (the marginal distribution of which is more likely to be known to the
designer) but not on the belief-types of the agents. Bergemann and Morris
(2005) show that if a social choice function is Bayes-Nash implementable for
every system of beliefs and higher order beliefs that can be associated with
the given payo¤-types, then it must be ex-post implementable5. Combining
their result with ours implies in the present context that the designer can
only implement constant choice rules. In particular, our impossibility result
draws attention to a potential disadvantage of the �belief free�approach: in
a simple example, we show that the designer may prefer a belief-dependent
choice function over any belief-independent choice function (which would be
trivial by our main result), even if she adopts the worst case scenario about
agents�beliefs.

The rest of the paper is organized as follows: In Section 2 we describe the
mechanism design problem, we de�ne the ex-post equilibrium concept, and
we derive a helpful �taxation principle.�In Section 3 we provide a geomet-
ric condition on valuations that must hold in order for a non-trivial ex-post
implementable and deterministic choice function to exist, and we apply the
geometric intuition to a speci�c example, yielding generic impossibility in
that case. In Section 4 we present the various employed notions of genericity,
and we derive the impossibility result by showing that the above geomet-
ric conditions induce a system of di¤erential equations that has no solution
generically. In Section 5 we describe connections to related work, and we
discuss our main assumptions and result. In particular, we review several
interesting, but non-generic settings where non-trivial implementation is pos-
sible. Section 6 gathers several concluding remarks. Proofs are collected in
Section 7.

5See Dekel et al. (2004) for a critique of the use of Nash equilibria in models without
common priors. Their critique is attenuated in a mechanism design setting where the
designer can recommend a plan of actions to the agents.
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2 The Model

For ease of exposition, we consider a setting with two agents i 2 N =
f1; 2g, who will be a¤ected by a decision between two alternatives k 2 K.
(Because this �2 by 2�model is embedded in every model with more agents
and alternatives, the impossibility result for this special setting immediately
extends to the general setting of N agents and K alternatives.)

Agent i�s utility ui = vik � ti is determined by a quasi-linear utility func-
tion, taking into account the chosen alternative k and a monetary payment
ti 2 R. Her valuation vik = vik (s) for alternative k depends on the state of
the world s 2 S.

Each agent holds private information si 2 Si on the state of the world
s 2 S. The signal si results from an exogenous draw. There is no loss of
generality in assuming that the agents�joint information (si)i2N completely
determines the state of the world s. We thus identify states of the world
with signal combinations: S =

Q
i2NS

i. When we focus on one agent i, we
denote the other agent by �i with signal s�i 2 S�i. We assume Si = [0; 1]d

i

,
and assume v to be a smooth function on S. (Assuming Si to be the closure
of any open connected subset of Rdi would su¢ ce as well.) We denote by
rsi the di-dimensional vector of derivatives with respect to si, and by @�
the directional derivative in direction � 2 Rdi. Two vectors x; y 2 Rd are
co-directional if x = �y for � � 0.

We consider deterministic choice functions  : S ! K, with the property
that there are transfers functions ti : S ! R, such that truth-telling is an
ex-post equilibrium in the incomplete information game that is induced
by the direct revelation mechanism

�
 ; (ti)i2N

�
, i.e.

vi (s) (s)� ti (s) � vi (esi;s�i) (s)� ti
�esi; s�i� (1)

for all si; esi 2 Si and s�i 2 S�i, where s := (si; s�i) 6. We shall call such  
implementable. We call a choice function  trivial, if it is constant on the
interior intS of the type space.7

6Since we exclude random choice rules, a "social choice rule" implicitly stands hence-
forth for a "deterministic social choice rule".

7Restricting attention to the interior of the type space is justi�ed since the interior
has full measure. This assumption is necessary since the main geometric argument in the
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By requiring optimality of i�s truth-telling for every realization of other
agents information s�i, equation (1) treats s�i as if it was known to agent i.
Her incentive constraint is thus equivalent to a monopolistic screening prob-
lem for every s�i. Thus, the central authority can post personalized prices
tik (s

�i) for the various alternatives, and let the individuals choose among
them. In equilibrium all agents must agree on a most favorable alternative,
yielding:

Lemma 2.1 (Ex-Post Taxation Principle) (see Chung and Ely, 2003)
The choice function  is implementable if and only if for all i 2 N , k 2 K
and s�i 2 S�i, there are transfers (tik (s�i))k 2 (R [ f1g)

2 such that:

 (s) 2 argmax
k2K

�
vik (s)� tik

�
s�i
�	
. (2)

The proof of our main result, Theorem 4.2 consists of two major steps:
Proposition 3.3 in the next Section shows that the existence of a non-trivial
ex-post implementable choice function implies a geometric condition on the
gradients of the relative valuation functions; Proposition 4.3 in Section 4
shows that this geometric condition cannot be satis�ed generically.

3 The Geometry of Ex-Post Implementation

Because agents�incentives are only responsive to di¤erences in payo¤s, it is
convenient to focus on relative valuations �i and relative transfers � i :

�i (s) = vik (s)� vil (s) ; �
i
�
s�i
�
= tik

�
s�i
�
� til

�
s�i
�

For technical simplicity, we assume that relative valuations satisfy the mild
requirement rsi�

i (s) 6= 0 for all s 2 S.8

proof fails on the boundary of the type space. Alternatively, we could have assumed open
type spaces to start with.

8That is, agent i�s relative valuation is everywhere responsive to i�s own signal. Theorem
4.2 can be adapted to allow for relative valuations that are not everywhere responsive
to own signals � and in particular to allow for interior maxima � but the additional
complication makes the argument less transparent without seeming to add any useful
insights.
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The geometric condition derived in Proposition 3.3 below relies on an
argument on the intersection of the closures of the areas in the signal space
S where alternatives k and l, respectively, are chosen (in other words, this
intersection is the boundary that separates the two areas.)

De�nition 3.1 The indi¤erence set I of a choice function  is de�ned by:

I :=  �1 fkg \  �1 flg \ intS

For an indi¤erence signal bs 2 I, we de�ne the indi¤erence set with �xed bsi
to be

I i (bs) := �s 2 I : si = bsi	
The taxation principle states that, in an incentive compatible mechanism,

all agents agree that the chosen alternative is the most favorable one. If
relative transfers � are continuous, this implies that the indi¤erence set of
the choice function and the indi¤erence sets of all agents must coincide. The
following lemma formalizes this assertion.

Lemma 3.2 Let ( ; t) be a non-trivial ex-post incentive compatible mecha-
nism with continuous relative transfers � i.

1. The indi¤erence set of the choice function  coincides with the indif-
ference set of each of the agents, i.e., for every bs 2 intS and i 2 f1; 2g,
we have9

�i (bs)� � i
�bs�i� = 0 , bs 2 I (3)

2. For all bs 2 I, I i (bs) coincides with fs 2 intS : si = bsi; ��i(s) = ��i(bs)g:
I i (bs) is a (d�i � 1)-dimensional sub-manifold of intS.

If relative transfers are di¤erentiable, the gradient of an agent�s payo¤
function is perpendicular to her indi¤erence set. Thus, the coincidence of

9Continuity of �i and � i as well as rsi�i (s) 6= 0 are necessary for this result. Whereas
the assumptions on �i are standard, the assumption on the endogenous function � i is only
used for this intermediate result. The case of discontinuous � i is covered by point two of
Proposition 3.3 which does not depend on this result.
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the agents�indi¤erence sets as expressed in (3) implies that the gradients of
agents�payo¤ functions must be co-directional on the indi¤erence set:�

rsi�
i (s)

rs�i�
i (s)�rs�i�

i (s�i)

�
and

�
rsi�

�i (s)�rsi�
�i (si)

rs�i�
�i (s)

�
are co-directional on I (4)

If condition (4) were to fail, there would be a perturbation s" of s that makes
alternative k favorable for agent i and l more favorable to j, contradicting
the taxation principle.

Condition (4) says that the payo¤ functions of agent i and �i have the
same rate of information substitution: the relative e¤ect on payo¤s of chang-
ing any two dimensions of the signal must coincide for all agents. While
condition (4) carries the main geometric intuition, one might not immedi-
ately see the considerable restrictions it implies, as the transfer functions � i

and ��i are chosen endogenously. The following proposition, which will serve
as the basis for the genericity argument in Section 4, shows a condition that
follows from (4) and that does not rely on the transfer functions.

Proposition 3.3 Let ( ; t) be a non-trivial ex-post incentive compatible mech-
anism.

1. If the relative transfers � i are continuous on intS�i for all i 2 f1; 2g
then there are an indi¤erence signal bs 2 I, and a vector y 2 Rdi such
that

rsi�
i (s) and (rsi�

�i (s)� y)

are co-directional for every s 2 I i (bs) . (5)

2. If relative transfers ��i are discontinuous at a signal pro�le bsi 2 intSi
for some i 2 f1; 2g then agent i�s incentives are locally independent
of s�i. That is, there are a vector y 2 Rdi and a non-empty open set
Q � S�i such that

rsi�
i(bsi; q) and y

are co-directional for every q 2 Q. (6)
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For di¤erentiable relative transfer functions, a proof for Proposition 3.3
is simple: Condition (5) is the upper half of Condition (4) after setting y =
rsi�

�i (si). The full proof is slightly more complicated because the relative
transfer functions are not known to be di¤erentiable, or even continuous.

As an illustration, we apply Proposition 3.3 to a setting with bi-linear
valuations and 2-dimensional signals si = (sik; s

i
l) 2 [0; 1]

2. In this case, non-
trivial implementation implies a simple algebraic condition (easily seen not
to hold generically) on the coe¢ cients of the valuation functions. Proposition
7.3 will generalize this example to the class of all polynomials of degree less
than a su¢ ciently large integer.

Example 3.4 De�ne valuations v by:

vik (s) = aiks
i
k + biks

i
ks
�i
k = sik

�
aik + biks

�i
k

�
vil (s) = ails

i
l + bils

i
ls
�i
l = sil

�
ail + bils

�i
l

�
where aik; b

i
k; a

i
l; b

i
l 6= 0: Thus,

�i(s) = aiks
i
k � ails

i
l + biks

i
ks
�i
k � bils

i
ls
�i
l :

For a vector y =
�
yk
yl

�
, we have

rsi�
i (s) =

�
aik + biks

�i
k

�ail � bils
�i
l

�
(rsi�

�i (s)� y) =

�
b�ik s

�i
k � yk

�b�il s�il � yl

�
It is readily veri�ed that bilb

�i
k � bikb

�i
l = 0 is necessary for such vectors to

remain co-directional when we vary s�ik and s�il (see Appendix for details).
It follows from Proposition 3.3 that a non-trivial choice function  is imple-
mentable only if

bilb
�i
k � bikb

�i
l = 0: (7)

The above condition is obviously non-generic: the set of parameters where it
is satis�ed has zero Lebesgue-measure in the 8-dimensional space of coe¢ -
cients that parameterize the bi-linear valuations in this example.
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4 Generic Impossibility

We now show that the geometric conditions 5 and 6 derived in Proposition
3.3 cannot be generically satis�ed.

We use two notions of genericity. The �rst is topological. If E is a
complete metric space, recall that every open subset U � E also admits
a complete metric. A subset A � U is residual in U if A contains the
countable intersection

T
�2NA� of open and dense sets A� � U . Residual

sets are generally viewed as (topologically) large, and their complements as
small. In particular, the Baire Category Theorem guarantees that residual
sets of complete metric spaces are dense.

The second notion of genericity is measure-theoretic. Let E be a complete
metric topological vector space, U an open subset of E and A a Borel subset
of U: We say that A is �nitely shy in U if there is a �nite dimensional
subspace F � E such that A meets every translate of F in a set of Lebesgue
measure 0 (equivalently, if every translate of A meets F in a set of Lebesgue
measure 0).10. A Borel set A � U is �nitely prevalent in U if the relative
complement U n A is �nitely shy in U . Hunt et al. (1992) and Anderson
and Zame (2001) have argued that �nite prevalence, and prevalence, which
is a generalization, provide a sensible measure-theoretic notion of �largeness�
for in�nite-dimensional spaces of parameters. In particular, if E = Rn then
B = U n A is �nitely prevalent in U if and only if the Lebesgue measure of
A is 0.

In general, these two notions of genericity are di¤erent � even in �nite
dimensional spaces. However, aside from a technical issue on the degree of
di¤erentiability required of the relative valuation function under considera-
tion, we show that ex-post implementation is generically impossible in both
the topological and the measure-theoretic sense.

De�nition 4.1 For each m � 1, Let Cm(S;R2) be the (Banach) space of
maps S ! R2 that admit an m-times continuously di¤erentiable extension
10If F has dimension n; say, any linear isomorphism between F and Rn induces a

measure on F . All such measures are mutually absolutely continuous, and have the same
null sets. Hence, it is consistent to abuse terminology by saying that a subset of F � or
any translate of F � has Lebesgue measure 0 if it has measure 0 for one � hence all �
of these induced measures.
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to an open neighborhood of S, equipped with the topology of uniform conver-
gence of maps and m derivatives. Let Hm � Cm(S;R2) be the open subset
consisting of those pairs of relative valuation functions (�1; �2) 2 Cm(S;R2)
for which the partial gradients rsi�

i do not vanish anywhere on S.

Theorem 4.2 Assume that the individual signal spaces have dimensions
d1 � 2 and d2 � 2; respectively. Fix an integer r > 2d1+1

d1�1 ; set d = d1 + d2

and p = dr + 2d1 + 1� 2d1r.

1. There is a residual subset G1 � H1 such that for every (�1; �2) 2 G1,
only trivial social choice functions are ex-post implementable.

2. There is a residual and �nitely prevalent subset Gp+1 � Hp+1 such
that for every (�1; �2) 2 Gp+1, only trivial choice functions are ex-post
implementable.

To prove the Theorem, �x valuation functions �1; �2: For each bs 2 intS
de�ne

~I i(bs) = fs 2 intS : si = bsi; ��i(s) = ��i(bs)g
For mechanisms with continuous relative transfers, we know by assumption
and by Lemma 3.2 that ~I i(bs) is a non-trivial manifold of dimension d�i�1 �
1. Moreover, for each such mechanism and for each bs 2 I, Lemma 3.2
guarantees that ~I i(bs) = I i(bs). The following Proposition (who also takes
care of mechanisms where relative transfers are not necessarily continuous)
is enough to complete the proof of the Impossibility Theorem:

Proposition 4.3 There is a residual set G1 � H1 and a residual and �nitely
prevalent subset Gp+1 � Hp+1 such that if (�1; �2) 2 G1 or (�1; �2) 2 Gp+1
then

(1) there do not exist bs 2 intS and y 2 Rd1 such that rs1�
2(s) � y and

rs1�
1(s) are co-directional for every s 2 ~I1(bs)

(2) there do not exist bs 2 intS and y 2 Rd2 such that rs2�
1(s) � y and

rs2�
2(s) are co-directional for every s 2 ~I2(bs)
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(3) there do not exist bs 2 intS, y 2 Rd1, and a non-empty open set Q � S2

such that y and rs1�
1(bs1; q) are co-directional for every q 2 Q

(4) there do not exist bs 2 intS, y 2 Rd2, and a non-empty open set Q � S1

such that y and rs2�
2(bs2; q) are co-directional for every q 2 Q

To give some �avor of the argument, �x an indi¤erence signal bs 2 I and a
vector y 2 Rdi. If rsi�

i(s) and rsi�
�i(s)� y are co-directional for every s 2

I i(bs) = fs 2 S : si = bsi; ��i(s) = ��i(bs)g, then the valuation functions �1; �2
satisfy a certain set of �rst-order di¤erential equations. It is not hard to see
that generic valuations functions do not satisfy these di¤erential equations.
However, this is not enough, because Proposition 4.3 does not say that generic
valuation functions fail to satisfy these di¤erential equations for prescribedbs and y, but rather that generic valuation functions do not satisfy these
di¤erential equations for any bs and y. But, varying bs and y does not o¤er
enough degrees of freedom to guarantee that rsi�

i(s) and rsi�
�i(s)� y are

co-directional at every point of the non-trivial manifold I i(bs).
5 Discussion

5.1 Dictatorship

In the private values setting, the Gibbard-Satterthwaite theorem asserts that
only dictatorial social choice functions are dominant strategy implementable.
It might seem that dictatorial rules should be ex-post implementable in our
interdependent valuations setting as well.

Note that �dictatorship� is ambiguous, because the dictator�s valuation
vi depends on �i�s information s�i. If a social choice rule  always selects the
alternative for which, given all signals, dictator i has the highest valuation,
then  (s) depends of course on all signals. Point 1 of Proposition 3.3 shows
that this is impossible, because the agents�incentive constraints cannot be
simultaneously satis�ed.

Secondly, a rule  that is dictatorial in the sense that  (s) depends only
on the dictator�s information si is generically not implementable either: The
relative transfer to the other agent ��i (si) implied by the taxation principle
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has to be discontinuous, and point 2 of Proposition 3.3 shows that, generi-
cally, i�s incentive constraint cannot be satis�ed for all s�i.

Lastly, the mechanism that lets agent i choose the alternative (solely
based on i�s information) does not induce a choice function according to our
terminology since i�s choice will depend both on her belief type and on her
payo¤ relevant type si. In Example 5.1 below, we show that a designer may
prefer this belief-dependent dictatorial choice rule over any ex-post imple-
mentable choice rule.

5.2 E¢ cient Implementation

As we have noted, Jehiel and Moldovanu (2001) show that for generic valu-
ations, e¢ cient Bayes implementation is impossible; hence for generic valu-
ations, e¢ cient ex-post implementation is impossible as well. Our result is
stronger because it applies to all non-constant social choice rules simultane-
ously, not just to the e¢ cient rule.

To understand the mathematical relation between the results, assume for
simplicity that only agent i holds private information; write �N = �1 + �2

and assume rsi� 6= 0. E¢ cient ex-post implementation implies that there is
a di¤erence in transfers � = � i, such that society is indi¤erent between the
alternatives if and only if this is the case for agent i. Mathematically, this
means that the level set (�i)�1 (�) must coincide with the indi¤erence set of
the e¢ cient choice function Ieff :=

�
�N
��1

(0). Hence:

rsi�
i (s) and rsi�

N (s) are co-directional for all s 2 Ieff . (8)

Thus, e¢ cient implementation is only possible if there is a congruence be-
tween the private and social rates of information substitution. In contrast,
the condition given here for non-trivial implementation requires a congruence
of private rates for any two agents i and �i:Whereas the social preference is
exogenously �xed by the agents�valuations, agent �i�s preferences depend
on the endogenous transfer ��i.
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5.3 Max-Min Beliefs and Ex-Post Implementation

Chung and Ely (2004) study a private-values auction where the distribu-
tion of payo¤-relevant types is known to the designer. They show that a
revenue-maximizing designer who adopts a worst-case scenario about the
agents�beliefs prefers a dominant-strategy mechanism over any Bayes-Nash
implementable scheme. In contrast, the example below shows in our inter-
dependent values framework that the designer may prefer a belief-dependent
choice function, even if she adopts the �worst-case�scenario about the agents�
beliefs.

Example 5.1 There are two agents competing for a single indivisible object.
Agents have two-dimensional payo¤-relevant signals si = (pi; ci) 2 [0; 1]2,
where (pi; ci) are uniformly and independently distributed on [0; 1]2. The
distributions of (pi; ci) are known to the designer. The valuation of agent i
is given by vi(si; s�i) = pi+�cic�i, where � is a small positive number. The
good must be allocated to either agent 1 or 2, and the designer is happy (gets
1) whenever the good is allocated to an agent who values the good no less
than 0:5 and not happy (gets 0) otherwise. Proposition 3.3 implies (see also
Example 5.2 below) that only trivial choice rules are ex-post implementable.
It is readily veri�ed that, as �! 0, the designer�s expected payo¤ associated
with a trivial choice rule is 0:5. Consider now a non-trivial mechanism: the
designer lets agent 1 decide �rst whether or not to buy the object at price
0:5; if agent 1 decides not to buy, the good is allocated to agent 2: Because
agent 1�s choice depends on her belief about c2; this mechanism is not ex-
post implementable for any � > 0. Assuming that the support of agent 1�s
belief remains bounded, even in the worst scenario about 1�s belief on c2, the
designer�s payo¤ converges to 1

2
+ 1

2
� 1
2
= :75 as � converges to 0.

5.4 The Limits of the Impossibility Result

In this Subsection we show how weakening the assumptions in our impossibil-
ity result opens the door to ex-post implementation in a number of interesting
cases. We explain the mechanics in terms of our previous structural results
(Propositions 3.3 and 4.3).

15



5.4.1 One strategic agent

Suppose that only agent i has private information, while the designer knows
the information of all agents other than i. In this case, Proposition 3.3 is
void of content. Let tik = tik(s

�i) be any transfer to agent i in alternative
k (this may be constantly zero). Then the non-trivial social choice function
that implements any outcome  (s) 2 argmaxk fvik(s)� tik(s

�i)g for every
signal pro�le s = (si; s�i) is ex-post implementable.

Even though this seems a trivial point, we note, by contrast, that the
e¢ cient social choice rule is not ex-post implementable in this setting (see
Jehiel and Moldovanu, 2001).

5.4.2 Separable Valuations

Suppose valuation functions are separable; i.e., there are functions f ik : S
i !

R, hik : S�i ! R, with

vik (s) = f ik
�
si
�
+ hik

�
s�i
�
.

Of course, separable valuation functions are non-generic. Condition 4 re-
quires that �

rsi (f
i
k � f il ) (s

i)
rs�i (h

i
k � hil) (s

�i)�rs�i�
i (s�i)

�
is co-directional on I with�

rsi
�
h�ik � h�il

�
(si)�rsi�

�i (si)
rs�i

�
f�ik � f�il

�
(s�i)

�

Note that the upper half of the above expressions is independent of s�i.
Hence, the two gradients can be equalized everywhere by setting, for exam-
ple, ��i (si) :=

�
h�ik � h�il

�
(si) � (f ik � f il ) (s

i) ( Analogously for � i (s�i)):
These transfers implement the choice function  (s) 2 argmaxk f

P
i f

i
k (s

i)g.
Under several technical conditions, Jehiel et al. (2004) have shown (using
Roberts� (1979) result about dominant strategy implementation in private
values settings) that a choice rule  is ex-post implementable only if it is an
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a¢ ne maximizer , i.e., only if it is of the form

 (s) 2 argmax
k2K

(
NX
j=1

�jf jk
�
sj
�
+ �k

)
(9)

for agent-speci�c weights �j � 0 and alternative-speci�c weights �k 2 R.11

5.4.3 One-object auctions without allocative externalities

Bikhchandani (2004) studies an one-object auction model where agents care
only about their own allocation. Because agents are indi¤erent between all
alternatives at which they are not winning, valuations are non-generic if there
are three agents or if there are two agents and the seller may keep the object.
Bikchandani shows that non-trivial ex-post implementation is possible in this
important framework.

Example 5.2 As in Example 5.1, consider two bidders i 2 f1; 2g competing
for one object with valuations vi (si; s�i) = pi + cic�i where si = (pi; ci) 2
[0; 1]2.

Consider �rst the setting in which the seller is not allowed to keep the
object. The relative valuations are �i = pi + cic�i and ��i = �p�i � cic�i.
Assume that ( ; t) is a non-trivial ex-post incentive compatible mechanism
with continuous relative transfers: Condition 5 of Proposition 3.3 requires the
existence of an indi¤erence signal bs 2 (0; 1)4, of a vector (ya; yb)T ; and of a
function � (c�i) 2 R+ such that:

�
�
c�i
�� 1

c�i

�
=

�
0� ya
�c�i � yb

�
for all c�i in a neighborhood of bc�i. By the �rst equation, � (c�i) is indepen-
dent of c�i and equal to �ya. But the second equation, � (c�i) c�i = �c�i�yb;
can be satis�ed for a continuum of c�i only if � (c�i) � �1. This contradicts
11But not every a¢ ne maximizer is implementable. Problems arise if the weight �i of

some agent i is zero; see Jehiel et al. (2004) for a way around this problem.
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the fact that � (c�i) 2 R+.12 ;13

Now suppose that the seller may keep the object. Bikchandani shows how
to ex-post implement the allocation where buyer i = 1; 2 gets the object if
pi � p�i > c�i � cic�i, and where the good is not sold otherwise. Note that
the boundary between the areas where either buyer wins consists of the two
lines with fpi = p�i; ci = c�i = 0g and fpi = p�i; ci = c�i = 1g. Thus, the in-
di¤erence set is a manifold of dimension one contained in the boundary of
the signal space, and the construction used to prove Proposition 4.3 does not
work. Note too that the object is not sold if the buyers have valuations that
are close to each other (eg., at pi = p�i = ci = c�i = 1): This must hap-
pen precisely in order to avoid a higher-dimensional boundary between the
alternatives where the object is sold. It can be shown that Bikchandani�s
mechanism is ex-post incentive-e¢ cient.

The transfers used in Bikhchandani�s subtle construction closely follow
the logic of e¢ cient implementation with interdependent values and one-
dimensional signals. This works since in one-object auctions without alloca-
tive externalities agent i�s multidimensional signal a¤ects her utility in the
unique alternative where i wins.

5.4.4 One-dimensional signals

As mentioned in the Introduction, e¢ cient, ex-post implementation is possi-
ble if all agents have one-dimensional signals, and if a single-crossing property
holds. The single-crossing property is determined by strict inequalities, and
it is satis�ed for an open set of valuations. The gradients of utility functions
are now scalars, and the parallelism condition has no bite. The impossibility
result requires that at least two agents have multi-dimensional signals. When
only one agent has a multi-dimensional signal, the boundary between areas
where di¤erent allocations are chosen may have dimension zero, so the door
is open to possibility results, as we now illustrate:
12Alternatively, a consideration of the cross product �c�i� yb+ yac�i = 0 yields yb = 0

and ya = 1. This shows that rsi�i (s) and (rsi��i (s)� (1; 0)T ) are co-linear, but point
in opposite directions.
13Condition (2) of that Proposition isn�t satis�ed either. To see this, note that the

direction of rsi�i (s) =
�
1; c�i

�T
cannot be locally independent of s�i. Thus, non-trivial

implementation fails also with discontinuous transfers.
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Example 5.3 There are two agents i = 1; 2 and two alternatives k; l: Agent
1 has a one-dimensional signal s1 2 [0; 1] : Agent 2 has a two-dimensional
signal, s2 = (s2k; s

2
l ) 2 [0; 1]

2 : Assume that the relative valuation �1 satis�es
the condition: :

@

@s1
�1(s) > 0 (10)

(Note that the set of valuations satisfying this condition is open.) We show
how to implement a social choice function  that chooses alternative k for
high values of s1 and chooses alternative l for low values of s1. Set �rst
transfers t2(s1) such that

@

@s1
�
�2(s)� � 2(s1)

�
> 0 (11)

and
�2(s)� � 2(s1) takes on values above and below zero on S (12)

Consider now the choice function

 (s) =

�
k if �2(s)� � 2(s1) � 0
l if �2(s)� � 2(s1) < 0

(13)

By condition (11), for a �xed s2 there is s1(s2) such that

 (s) =

�
k if s1 � s1(s2)
l if s1 < s1(s2)

(14)

For agent 1 we apply the standard technique from the literature with one-
dimensional signals, and we set transfer � 1(s2) = �1 (s1(s2)) : Using the
monotonicity assumption in equation (10) we get that

 (s) =

�
k if �1(s)� � 1(s2) � 0
l if �1(s)� � 1(s2) < 0

: (15)

By equations (15) and (13) ( ; t) is incentive compatible. It is non-trivial
by equation (12). Note that for generic �, the choice function  is non-
dictatorial.
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6 Conclusion

Ex-post implementation (as opposed to Bayesian implementation) is impor-
tant if we wish to allow for the possibility that the agents or the designer
may have insu¢ cient or erroneous information about relevant features of the
environment. We have shown that non-trivial ex-post implementation is im-
possible in generic quasi-linear environments with interdependent preferences
and multidimensional signal spaces.

We see a number of directions for future research:

1) Extend the impossibility result to stochastic social choice functions.
This is technically demanding, but we expect that a similar impossibil-
ity result holds.

2) Identify additional important (non-generic) classes of valuations for
which ex-post implementation is possible.

3) In every setting for which Bayesian implementation of some social
choice function is possible with respect to some priors but ex-post im-
plementation fails, there will be some �maximal information mecha-
nism�that allows for posterior implementation a la Green and La¤ont
(1987). What are the properties of these mechanisms ?

4) Identify and characterize those situations where a designer who adopts
�worst-case� beliefs would choose an ex-post implementable mecha-
nism, and those where he would not. (This exercise will shed some
light on the price that one has to pay for employing belief-free mecha-
nisms.)

7 Proofs

7.1 The Geometric Characterization

Proof of Lemma 3.2. 1) �i (bs) � � i (bs�i) = 0 and rsi�
i (bs) 6= 0 imply

that there are s0i; s00i arbitrarily close to bsi such that �i (s00i; bs�i)� � i (bs�i) <
20



0 < �i (s0i; bs�i) � � i (bs�i). Applying the taxation principle to agent i yields
 (s0i; bs�i) = k and  1 (s00i; bs�i) = l. Hence bs 2 I.
For the converse, assume that �i (bs)� � i (bs�i) > 0, say. By continuity, we

have �i (s)� � i (s) > 0, and thus  (s) = k, for all s in a neighborhood of bs.
Thus, bs =2 I.
2) I i (bs) = fs 2 intS : si = bsi; ��i(s) = ��i(bs)g is immediate from the

above. Since we assumed that rs�i�
�i is non-vanishing, we can apply the

implicit function theorem to conclude that I i (bs) is a d�i � 1 dimensional
manifold

To prove Proposition 3.3, we �rst state a simple Lemma.

Lemma 7.1 Let � and � be smooth functions on an open set X � RN .
Assume that there exists x 2 X such that � (x) = � (x) = 0, but r� (x) and
r� (x) are not co-directional. Then there exists x0 arbitrarily close to x such
that � (x0) < 0 < � (x0).

Proof. As r� (x) and r� (x) are not co-directional, there exists a direc-
tion � 2 RN with � � r� (x) < 0 < � � r� (x). For x0 = x + "�, with " > 0,
we get � (x0) < 0 < � (x0), as desired. This argument is illustrated in Figure
1.

Proof of Proposition 3.3. Consider an ex-post incentive compatible
mechanism ( ; t) and the associated relative valuations and transfers.

1) If � is di¤erentiable, the discussion preceding the Proposition together
with Lemma 7.1 completes the proof. More generally, we need to deal with
two sub-cases:

1.a) The direction of the gradient rsi�
i (s) does not depend on s 2

I i (bs). Instead of showing that ��i is di¤erentiable, we directly construct
the vector y: Denote the orthogonal complement of rsi�

i (s) by (r�i)? �
Rdi and let � 2 (r�i)?. Fix for a moment s�i with (bsi; s�i) 2 I i (bs) : By
Lemma 3.2, ��i (�; s�i) � ��i (�) must equal zero on the sub-manifold fsi :
�i (si; s�i) = �i (bsi; s�i)g . Thus, restricted to that manifold, ��i is di¤eren-
tiable and we have @���i (bsi; s�i) = @��

�i (bsi). Therefore, ��rsi�
�i (bsi; s�i) =

@��
�i (bsi; s�i) is independent of (bsi; s�i) 2 I i (bs).Set now y := rsi�

�i (bs) +
�rsi�

i (bs). By construction, we have � � (rsi�
�i (bsi; s�i)� y) = 0 for � 2
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ξ1(0)
dξ(x)

dφ(x)

x'

Figure 1: If the gradients of � and � are not co-directional at x, the functions
disagree at some x0, i.e. � (x0) < 0 < � (x0).

(r�i)?. By choosing � su¢ ciently large, rsi�
i (s) and (rsi�

�i (bsi; s�i)� y)
must be co-directional, and condition (5) is satis�ed.

1.b) The direction of the gradient rsi�
i (s) varies in s 2 I i (bs). In this

case we will show that ��i is di¤erentiable at some esi close to bsi. As a �rst
step, we show that the directional derivatives @���i (bsi) in directions � 2
rsi�

i (bsi; s�i)? exist. Fix s 2 I i (bs) and � 2 rsi�
i (s)? such that there are

s; s 2 I i (bs) close to s with � �rsi�
i (s) > 0 > � �rsi�

i (s). By agent i�s incen-
tive constraint, we have  

�bsi + "�; s�i
�
= k and  (bsi + "�; s�i) = l for small

enough " > 0 (compare this argument to the one for Lemma 7.1). In turn,

agent (�i)�s incentive constraint implies @���i (s) � � ��i(bsi+"�)���i(bsi)
"

�
@��

�i (s). As s�i and s�i approach s�i,and " approaches zero, this entails
@��

�i (bsi) = @��
�i (bsi; s�i). By assumption, rsi�

i (bsi; s�i)? varies (contin-
uously) in s�i. Therefore, @���i (bsi) exists for an open set of directions
� 2 � � Rdi. In order to conclude, we need to show that these directional
derivatives are continuous in si. Consider esi = bsi + "� for some � 2 � and
" 2 R su¢ ciently small. By the above argument, there is a neighborhood
U of esi, such that the directional derivatives @���i (si) for � 2 � � Rdi and
si 2 U exist and are continuous in si. Thus, ��i is di¤erentiable for si 2 U
and, after replacing bsi by esi, we can conclude. For an intuition consider

22



~ i

US i

ρ

S

^ i
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Figure 2: An illustration of Si � R2: the directional derivatives @�� j (bsi)
exist for directions � inside the cone. As rsi�

i (si; sj) is continuous in si,
these directional derivatives also exist in a neighborhood U of esi and are
continuous.

Figure 2.

2) Assume now that the relative transfer ��i is discontinuous at some bsi 2
intSi :We can assume w.l.o.g. that ��i (si) 2 T�i (si) := [infs�i f��i (si; s�i)g ;
sups�i f��i (si; s�i)g] for all si.14 By assumption, there is a sequence of i�s
signals (sin)n2N such that limn s

i
n = bsi but such that ��i (sin) does not converge

to ��i (bsi). Modulo taking a subsequence, we can assume that limn �
�i (sin) =

��i (bsi) + ", for " > 0, say. Consider eS�i := fs�i 2 S�i : ��i (bsi; s�i) 2�
��i (bsi) + "

4
; ��i (bsi) + "

2

�
g:15 These types s�i 2 eS�i of agent �i prefer k

when the relative payment is ��i (bsi), but prefer l when the relative payment
is ��i (bsi)+ ". Therefore,  (bsi; s�i) = k , but  (sin; s

�i) = l for large enough
n.16 As limn s

�i
n = bs�i, we can apply the taxation principle to agent i to ob-

14If ��i
�
si
�
< infs�i

�
��i

�
si; s�i

�	
, say, we have 0 < �i

�
si; s�i

�
+ ��i

�
si
�
for all s�i,

and agent �i will �choose�outcome k, no matter what her signal s�i is. This is still the
case, after we change ��i

�
si
�
to infs�i

�
��i

�
si; s�i

�	
.

15Note that Si (") is not empty. Taking ��i
�
sin
�
2 T�i

�
sin
�
to the limit, yields

that ��i
�bsi� + " 2 T�i

�bsi�. Together with ��i
�bsi� 2 T�i

�bsi�, this yields�
��i

�bsi� ; ��i �bsi�+ "� � T�i �bsi� = [infs�i ���i �si; s�i�	 ; sups�i ���i �si; s�i�	].
16Speci�cally, n such that: ��i

�
sin; s

�i� < ��i �bsi; s�i�+ "
4 � �

�i �bsi�+ 3"
4 < �

�i �sin�
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tain �i (bsi; s�i)� � i (s�i) = 0, for all s�i 2 eS�i (recall that �i is continuous).
We now show that the gradients rsi�

i (bsi; s�i) are co-directional for all
s�i 2 eS�i. This proves the desired result since eS�i is open, and since it
contains the manifolds

�
s = (bsi; s�i) : ��i (s) = ��i (bsi) + "

3

	
.

Assume that this is not the case for s0�i; s00�i 2 eS�i ("). We assume
w.l.o.g. that ��i (bsi; s0�i) < ��i (bsi; s00�i). By Lemma 7.1, there is esi, arbi-
trarily close to bsi, with �i (esi; s00�i) + � i (s00�i) < 0 < �i (esi; s0�i) + � i (s0�i).
Thus,  (esi; s0�i) = k and  (esi; s00�i) = l. However, for esi close enough to bsi,
continuity of �i yields �i (esi; s0�i) < �i (esi; s00�i). This yields a contradiction
to the monotonicity of  and concludes the argument.

Proof for Example 3.4. If ( ; t) is a non-trivial incentive compatible
ex-post mechanism with continuous relative transfers � i, condition (5) must
be satis�ed: there is bs 2 I, � := �i (bs) and (yk; yl)T 2 R2, such that for all
s 2 I i (bs) �

aik + biks
�i
k

�ail � bils
�i
l

�
and

�
b�ik s

�i
k � yk

�b�il s�il � yl

�
are collinear

For this to be true at some s, the cross product of these vectors must vanish,
implying the following condition :�

aik + biks
�i
k

� �
�b�il s�il � yl

�
�
�
�ail � bils

�i
l

� �
b�ik s

�i
k � yk

�
= 0. (16)

We now argue, that the above condition can be satis�ed for all s in the set
I i (bs) only if the coe¢ cients a; b satisfy the algebraic condition (7).
The one-dimensional indi¤erence set I i (bs) can be parametrized by s�ik =
�

a�ik +b�ik bsik + a�il +b�il bsil
a�ik +b�ik bsik s�il , where � = ��i (bs). As a�ik ; b

�i
k ; a

�i
l ; b

�i
l 6= 0; we

can assume w.l.o.g. that a�ik + b�ik bsik 6= 0; and a�il + b�il bsil 6= 0. Substi-
tuting for s�ik in condition (16), we see that this equation can only hold on
all of I i (bs) if the coe¢ cient of the quadratic term in s�il vanishes, i.e. if
a�il +b�il bsil
a�ik +b�ik bsik

�
�bikb�il + bilb

�i
k

�
= 0: This implies condition (7). Finally, for the

case of discontinuous transfers � i, condition (6) reduces here to bik = bil = 0;
so that condition (7) is satis�ed.
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7.2 Generic Impossibility

We turn now to the proof of the genericity assertion, Proposition 4.3. Write
d = d1+d2, and let P2dr be the space of polynomials on Rd of degree at most
2dr. We need the following lemma, whose simple proof is left to the reader.

Lemma 7.2 Let s1; : : : ; sr be distinct points in Rd and let fai : 1 � i � rg
and faij : 1 � i � r; 1 � j � dg be families of real numbers. There is a
polynomial P 2 P2dr such that for all i; j:

P (si) = ai
@P

@xj
(si) = aij

Recall that we �xed r > 2d1+1
d1�1 and de�ned p = dr + 2d1 + 1� 2d1r. For

each i, let �i : Rd ! Rdi be the projection. We will derive both parts of
Proposition 4.3 from the following �nite dimensional Proposition.

Proposition 7.3 Let L � Ck+1(S;R2) be any �nite-dimensional subspace
that contains P2dr � P2dr, let M be any translate of L in Cp+1(S;R2), and
let M0 = Hp+1 \ M. There are subsets M1;M2;M3;M4 � M0 that
are residual and have full Lebesgue measure in M0 and enjoy the following
properties.

1. If (�1; �2) 2 M1 then there do not exist bs 2 intS and y 2 Rd1 such
that rs1�

1(s) and rs1�
2(s)� y are collinear for every s 2 ~I1(bs).

2. If (�1; �2) 2 M2 then there do not exist bs 2 intS and y 2 Rd2 such
that rs2�

2(s) and rs2�
1(s)� y are collinear for every s 2 ~I2(bs).

3. If (�1; �2) 2 M3 then there do not exist bs 2 intS, y 2 Rd1, and a
non-empty open set Q � S2 such that rs1�

1(bs1; q) and y are collinear
for every q 2 Q.

4. If (�1; �2) 2 M4 then there do not exist bs 2 intS, a vector y 2 Rd2,
and a non-empty open set Q � S1 such that rs2�

2(bs2; q) and y are
collinear for every q 2 Q.
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Moreover, the intersection M� =
T
Mi is also residual and has full

Lebesgue measure in M0, and every pair (�1; �2) 2 M� enjoys the four
properties above.

Proof. Write (intS)(r) for the open subset of (intS)r consisting of dis-
tinct r-tuples. To constructM1, write

V = (intS)(r) � Rr � Rd1 � Rd1 � R

For each n = 1; : : : ; r de�ne

�n :M0 � V ! Rd1 � Rd1 � R = R2d1+1

by

�n(�
1; �2; s1; : : : ; sr;�1; : : : ; �r; y; w; c)

=
�
rs1�

1(sn)� �n[rs1�
2(sn)� y]; �1(sn)� w; �2(sn)� c

�
Finally, write

� = (�1; : : : ; �r) :M0 � V ! R(2d1+1)r

Because the components of � are either linear functions or evaluations of �rst
derivatives of (p + 1)-times continuously di¤erentiable functions, � itself is
p-times continuously di¤erentiable. Using Lemma 7.2, it is easy to check that
for every (�1; �2; v) 2M0�V the directional derivatives of � in directions in
P2dr � P2dr � V span R(2d1+1)r. In particular, for each (�1; �2; v) 2M0 � V
the di¤erentialD� is onto. Hence, the transversality theorem (see Mas-Colell
(1985) for instance) provides a subsetM1 �M0 that is residual and of full
measure such that, for each (�1; �2) 2M1, the set

J(�1; �2) = fv 2 V : �(�1; �2; v) = 0g

is either empty or is a manifold of dimension

dr + r + d1 + d1 + 1� (2d1 + 1)r = dr + 2d1 + 1� 2d1r

To see thatM1 has the desired property (1), suppose not, so that there existbs 2 intS and y 2 Rd1 such that rs1�
1(s) and rs1�

2(s) � y are collinear
for each s 2 ~I1(bs). If z1; : : : ; zr are distinct points of ~I1(bs) then we can �nd
�1; : : : ; �r 2 R such that

rs1�
1(zi) = �i

�
rs1�

2(zi)� y
�
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Hence �
z1; : : : ; zr;�1; : : : ; �r; y; �

1(bs); �2(bs)� 2 J(�1; �2)
Equivalently, ~I1(bs)(r) is a subset of the projection of J(�1; �2) into (intS)(r).
Because ~I1(bs) has dimension d2� 1 and projection does not raise the dimen-
sion of a manifold, it follows that J(�1; �2) must have dimension at least
(d2 � 1)r. However, our computation of the dimension of J(�1; �2) implies
that

dr + 2d1 + 1� 2d1r � (d2 � 1)r
and equivalently, that

2d1 + 1

d1 � 1 � r

Since this contradicts our choice of r, we conclude thatM1 has the desired
property. To construct M2 we proceed exactly as above, except that we
reverse the roles of �1; �2 . The constructions of M3;M4 use a variant of
this same construction. ForM3, write

V = intS1 � (intS2)(r) � Rd1 � Rr

For each n = 1; : : : ; r de�ne

�n :M0 � V ! Rd1

by
�n(�

1; �2; bs1; q1; : : : ; qr; y;�1; : : : ; �r) = rs1�
1(bs1; qn)� �ny

Finally, write
� = (�1; : : : ; �r) :M0 � V ! Rd1r

As above, we use the transversality theorem to �nd a residual set of full
measureM3 �M0 such that if (�1; �2) 2M3 then

J(�1; �2) = fv : (bs1; q1; : : : ; qr; y;�1; : : : ; �r) : �(�1; �2; v) = 0g
is a manifold of dimension

2d1 + (d2 � d1)r + r � d1r = 2d1 + r + (d2 � d1)r

We claim that if (�1; �2) 2M3 then there does not exist bs1 2 intS1, y 2 Rd1
and an open set Q � intS2 such that rs1�

1(bs1; q) and y are collinear for
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each q 2 Q. To see this, we argue exactly as before: if such existed then the
dimension of J(�1; �2) would be at least as large as rd2, whence

2d1 + r + (d2 � d1)r � r

and

r � 2d1

d1 � 1 <
2d1 + 1

d1 � 1
This contradicts our choice of r, so we conclude that M3 has the desired
property. To construct M4 we proceed exactly as above, except that we
reverse the roles of �1; �2. Finally,M� is residual and of full measure because
it is the intersection of a �nite number of sets with these properties.

With Proposition 7.3 in hand, we turn to the proof of Proposition 4.3.

Proof for Proposition 4.3. We begin by constructing Gp+1 as the
intersection of four setsW1; : : : ;W4, corresponding to the various properties,
and then use Proposition 7.3 to show that Gp+1 has the desired properties.

To construct W1 and W2 we proceed in the following way. First choose
and �x an increasing sequence of compact sets L1; L2; : : : ; whose union is
intS1. For each index m, let C(m) be the set of pairs (�1; �2) 2 Hp+1 for
which there exist bs 2 Lm, y 2 Rd1 with jyj � m, and a subset Z � ~I1(bs) such
that:

- for every z 2 Z there is a � 2 R such that �1(z)��[�2(z)� y] = 0 and
j�j � m

- the projection of Z into some d2�1-dimensional subspace of Rd contains
a ball of radius at least 1=m:

It is straightforward to check that each C(m) is a closed subset of Hp+1,
so the complement Hp+1 n C(m) is open. Set

W1 =
1\
m=1

�
Hp+1 n C(m)

�
We constructW2 in exactly the same way, except that the roles of �1; �2 are
reversed.
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To construct W3 and W4, we proceed as follows. For each index m, let
Q(m) be the set of pairs (�1; �2) 2 Hp+1 for which there exist bs 2 Lm,
y 2 Rd1 with jyj � m, and a ball B � S2 such that:

- for every b 2 B there is a � 2 R such that �1(bs1; b) � �y = 0 and
j�j � m

- the radius of B is at least 1=m

It is easy to see that Q(m) is closed, and hence that Hp+1 nQ(m) is open.
Set

W3 =
1\
m=1

�
Hp+1 nQ(m)

�
We constructW4 in exactly the same way, except that the roles of �1; �2 are
reversed.

Set Gp+1 =
T
Wi. By de�nition, Gp+1is the countable intersection of open

sets, and, in particular, is a Borel set. To see that Gp+1 is �nitely prevalent
in Hp+1, de�ne L = P2dr and letM be any translate of L. The construction
of Gk+1 and Proposition 7.3 guarantee that�

Hp+1 n Gp+1
�
\M �M�

Hence Proposition 7.3 implies that Hp+1 nGp+1 meets every translate of L in
a set of Lebesgue measure 0. By de�nition, therefore, Hp+1 n Gp+1 is �nitely
shy in Hp+1 , and Gp+1 is �nitely prevalent in Hp+1.

To see that Gp+1 is residual in Hp+1, let F � Cp+1(S;R2) be any �nite
dimensional subspace that contains P2dr. It follows from Proposition 7.3 that
Gp+1 \ F has full Lebesgue measure in Hp+1 \ F ; in particular, Gp+1 \ F is
dense in Hp+1 \ F . Because Cp+1(S;R2) is the union of �nite dimensional
subspaces that contain F0 , we conclude that Gp+1 is dense in Hp+1. Because
our construction guarantees that Gp+1 is the countable intersection of open
sets, we conclude that it is residual in Hp+1, as desired.

To construct G1 we proceed in almost the same way, except that we work
in H1 instead of in Hp+1. For each index m, let C(m) be the set of pairs
(�1; �2) 2 H1 for which there exist y 2 Rd1 with jyj � m and a subset
Z � Lm such that
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- for every z 2 Z there is a � 2 R such that �1(z)��[�2(z)� y] = 0 and
j�j � m

- the projection of Z into some d2�1-dimensional subspace of Rd contains
a ball of radius at least 1=m:

It is straightforward to check that each C(m) is a closed subset of H1, so
the complement H1 n C(m) is open. Set

V1 =
1\
m=1

�
H1 n C(m)

�
We construct V2 in exactly the same way, except that the roles of �1; �2 are
reversed. For each index m, let Q(m) be the set of pairs (�1; �2) 2 H1 for
which there exist bs1 2 Lm, y 2 Rd

1
with jyj � m, and a ball B � S2 such

that

- for every b 2 B there is a � 2 R such that �1(bs1; b) � �y = 0 and
j�j � m

- the radius of B is at least 1=m:It is easy to see that Q(m) is closed,
and hence that H1 nQ(m) is open.

Set

V3 =
1\
m=1

�
H1 nQ(m)

�
We construct V4 in exactly the same way, except that the roles of �1; �2 are

reversed. Now set G1 =
T
Vi. By de�nition, G1 is the countable intersection

of open sets. In order to show that it is residual in H1; we need only show
it is dense. To this end, view Cp+1(S;R2) as a subset of C1(S;R2); and note
that Gp+1 � G1 and Hp+1 � H1. Malgrange (1966) shows that Cp+1(S;R2)
is dense in C1(S;R2): Because Hp+1 is open in Cp+1(S;R2) , it follows that
Hp+1 is dense in H1. Our above construction shows that Gp+1 is dense in
Hp+1, and hence in H1. Because Gp+1 � G1 it follows that G1 is dense in
H1. By construction, G1 is the countable intersection of open sets, so that,
as asserted, it is residual in H1.
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Remark 7.4 The relevant property required of the space of polynomials of
degree at most 2dr is embodied in Lemma 7.2: given r distinct points, we can
�nd polynomials whose values and �rst partials can be speci�ed arbitrarily
at those points. Any other space with this property would do as well. Note,
however, that the space of separable relative valuation functions does not
have this property: If � is a separable relative valuation function and the �rst
d1 coordinates of s1 and s2 coincide then

@�

@xi
(s1) =

@�

@xi
(s2)

for 1 � i � d1.
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