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Abstract—Technology drives advances in science. Giving sci-
entists access to more powerful tools for collecting and under-
standing data enables them to both ask and answer new kinds
questions that were previously beyond their reach. Of these new
tools at their disposal, machine learning offers the opportunity to
understand and analyze data at unprecedented scales and levels
of detail.

The standard machine learning pipeline consists of data label-
ing, feature extraction, training, and evaluation. However, without
expert machine learning knowledge, it is difficult for scientists
to optimally construct this pipeline to fully leverage machine
learning in their work. Using ecology as a motivating example,
we analyze a typical scientist’s data collection and processing
workflow and highlight many problems facing practitioners when
attempting to capitalize on advances in machine learning and
pattern recognition. Understanding these shortcomings allows us
to outline several novel and underexplored research directions.
We end with recommendations to motivate progress in future
cross-disciplinary work.
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I. INTRODUCTION

A growing body of evidence links human health and
well-being to ecosystems and the services they provide e.g.
air and water purification, carbon storage [1], [2]. However,
ecosystems are being changed at unprecedented rates as land
is converted to anthropogenic use and increasing climate
variability changes distributions of animals and plants [3], [4].
Monitoring ecosystem and species declines is critical to model
and predict impacts of global change. Technological advances
in remote audio and visual sensors have meant that ecologists
or groups of citizen scientists are regularly deploying large
sensor arrays to gather data on biodiversity change [5], [6].
As a result there are now ecological datasets of unprecedented
sizes in a range of formats (e.g. audio, images and video).

While data acquisition has become easier and less ex-
pensive, extracting signals of interest from these large, un-

structured, noisy datasets poses numerous challenges. In the
past, biologists would manually code the data, hand-labeling
it according to features of interest (such as the presence of
relevant species). Some crowdsourcing and citizen science
projects have also been shown to be effective at mobilizing
large groups of individuals to help with the annotation [7],
[8], [9], [10]. Unfortunately, in many scenarios annotations
from non-experts can be noisy, and it can thus be expensive to
recruit the large numbers of skilled labelers required for big
datasets [11].

A more scaleable solution is to apply the tools of statistical
machine learning to the problem of signal extraction. In the
last two decades, the use of machine learning as an alterna-
tive to manual human labeling has started to gain traction
in ecology [12], [13], [14]. However, large-scale datasets
typically require at least two types of expertise for signal
extraction: domain expertise (e.g. expertise in biology and
ecology) and expertise in data processing and analysis. Domain
expertise drives signal acquisition and interpretation needs,
while expertise in data analysis provides the requisite skills
to reliably extract valid signals from the data. Often, these
two skill sets are not held by the same person, requiring tight
collaborations between domain experts. In the ideal, the time
spent extracting signals from the data would be reduced in
order to maximize the amount of time spent engaging with the
underlying science. Even more ideal, is empowering biologists
to perform signal extraction and analysis without the need for
external collaborations.

In many instances, biology researchers are consumers of
machine learning tools. Typically, their concerns reside less
with the design of the underlying algorithms, and more with
how the tools can be leveraged to help them study changes
in biodiversity over time. However, at present, effective use
of machine learning techniques often requires a significant
amount of in-depth, model-specific, knowledge of these models
and their theoretical underpinnings. This is problematic for
scientists who simply desire to apply these tools to their
specific problems. This disconnect between the products of



the machine learning research community and the potential
users of this technology has been noticed by others. Recently,
Wagstaff [15] argued that the machine learning community
has become overly focused on algorithmic improvements at
the expense of pursuing real-world impact in end application
domains. Additionally, it is not always clear that progress
made on benchmark datasets, which can often be strongly
biased [16], translates to improvements in real-world prob-
lems [15].

In contrast to the traditional machine learning pipeline,
interactive machine learning (IML) is concerned with saving
the user time by explicitly including them as part of the
annotation and training loop e.g. [17]. IML assists the end
user by helping them choose features, models, and model
parameters. Here the user is not just a labeler, but instead
their role is both guide and explorer. Early work in this field
would involve users by asking them to label training data
and indicate when the output of the system is incorrect, thus
signaling that the current model is inadequate or insufficiently
tuned to the problem [17]. This process results in an iteratively
and automatically created predictive recognition system tuned
with the training data available. When the user is satisfied with
the performance of the system, they can then apply the system
to the specific problem at hand or continue to interactively
supervise learning. More recent research in IML goes further,
and seeks to provide individuals with tools to actively explore,
find patterns, and generally understand the data as the concepts
they are interested in evolve and change [18].

Drawing upon observations conducted during an ongoing
collaboration between researchers in ecology, statistical ma-
chine learning, computer vision, and human-computer inter-
action, we describe how biodiversity scientists employ the
traditional machine learning pipeline. This analysis allows us
to highlight several areas of research that are under explored
by the mainstream machine learning and pattern recognition
communities.

II. DATA UNDERSTANDING PIPELINE

Here we outline the main steps in the workflow of a
biologist tasked with posing and answering a novel research
question where there is a strong dependence on data collection
and model building. This pipeline, depicted in Figure 1, is not
intended to be representative of every specific case, but instead
provides a framework to allow us to understand a general
workflow. It is worth pointing out that these steps need not be
linear, but potentially consist of feedback loops at any stage.

A. Hypothesis Formation

As a first step, the scientist defines the problem domain
they are interested in working on. An ecologist may be
interested in problems such as estimating species distributions
their interactions, or the study of particular habitats, amongst
others. The initial hypothesis may be broad, and in cases it
is likely to be adapted as the understanding of the problem
changes.

B. Data Collection and Capture

The choice of hypothesis defines the types of data that will
be required. Traditionally, data collection was a very laborious

and time consuming process. In the case of species distribution
modeling, it would have been necessary to go into the field,
potentially up to several times over many years, to manually
record the presence or absence of different species in an area.
It is also fraught with other potential problems, such as the
difficulty of accessing remote regions, observer bias, and the
challenges associated with monitoring illusive species.

Newer technology in the form of remote sensing has
made it possible to automatically collect some of this data.
Camera traps with motion sensors are frequently used to
capture images of any objects that move in front of them [5].
They were originally developed for commercial hunters but
are now becoming more widely used in terrestrial biodiversity
monitoring and conservation [19]. The data collector’s job is
to place the cameras in the wild and move them whenever
is deemed necessary. Images from these cameras can then
be recovered manually or, for more sophisticated cameras,
remotely using satellite or mobile phone networks [19]. Audio
recording is also an effective way to determine species counts
for certain animals [20], [21]. Audio recording technology
has also enabled teams of citizen scientists to assist in data
capture [6].

Another advantage of automated data collection is that
it enables the acquisition of very fine grained information.
For example, the use of video to record species interactions
allows researchers to capture information about animal position
and motion that can be difficult to record manually. It is
also possible to determine behavior and interactions between
individuals [22].

C. Data Exploration

After collecting the data, the next step is to explore it in
order to identify potential patterns and trends within. At this
stage, the goal is not to densely label every item in the dataset,
but to instead get a basic understanding of the variation present.
For this activity, it is desirable to have a method that allows for
fast exploration. For audio and images, one standard solution
is to take random samples of the data to see what it contains.
However, this sampling may not be effective if the signal of
interest is only present in a very small subset of the entire
dataset. On completion of the initial data exploration stage, it
may be deemed necessary to go back and collect more data.

D. Production of Set of Canonical Examples

Once there is a general understanding of what the data
contains, the next step is to produce a set of reference
examples. This is similar to the construction of a field guide
— a reference set of examples that depicts the main classes
of interest. For species identification in images, this may take
the form of a set of example images containing the desired
species. For audio, this can be a selection of short audio clips.
Unless the audio is collected in a controlled manner e.g. by also
performing visual identification of the species when recording,
it may often be necessary to obtain a separate database of
known animal sounds as there is no way of verifying what is
actually contained in the audio that has been collected.



E. Establish Targets and Goals of Analysis

Once the scientist has a sense of the specific questions
to ask, the next step is to define how the data needs to be
labeled and processed to achieve this. This step determines
what level of annotation will be required in the labeling stage.
It also determines the types of features necessary to represent
the data for the problem at hand. In species identification,
it may only be necessary to classify a short clip of audio
or an image as containing a particular species or not (i.e.
classification). Alternatively, the precise location of the species
may also be required (i.e. detection). Another common task is
to determine the relationship between a particular input and a
continuous output that one wishes to measure (i.e. regression).
The subsequent labeling and annotation can be very time
consuming, and as a result, a better understanding of the goals
of analysis can reduce this effort by only focusing on the
relevant and necessary annotation.

FE Data Preprocessing

Once the goals of the data analysis have been established,
it is then often necessary to preprocess the data to make it
more amenable for later use. A typical first step is to define a
directory structure for the dataset so that it is organized based
on some high level property e.g. object class, location, time.
Conditioned on the type and quality of data, additional ‘clean
up’ can be performed. This can range from removing irrelevant
borders in images, remove silent sections and denoising audio,
and trimming video to the location in time of interest. It may
also be necessary to bring together different data sources e.g.
aligning different map layers from aerial imagery. This stage
is closely linked with the later labeling of the data but it differs
in that most of the tasks can be fully automated.

G. Feature Extraction

The collected data in its raw form is usually unsuitable as
an input for most machine learning algorithms. For images,
the dimensionality of the input images may be on the order of
millions, typically far exceeding the number of training exam-
ples available. In the feature extraction step, a representation
is chosen for the data with the intention that it best captures
the signal of interest, while being invariant to the remaining
noise present. The choice of ‘good’ features is not trivial,
and this step often necessitates problem-specific intuition on
the part of the scientist. A poor choice of representation can
make the subsequent model learning stage very difficult, if not
impossible.

Designing feature representations is an area of active
research in many domains. It can be coarsely divided into
two categories, 1) hand-tuned and 2) automatically learned
features. For the task of image classification, a widely used
representation is the bag of visual words model [23] inspired
by the bag of words model used in text representation. In
this model, image patches are represented by local image
descriptors, e.g. SIFT features [24], which are then quantized
into one of a number of ‘visual words’ creating a final fixed
length vectorized output. Extensions of this model include
introducing spatial information in the form of spatial image
pyramid matching [25] and higher dimensional encodings that
represent the similarity between each image descriptor and

each visual word [26]. This type of representation has also
proved popular for action classification in video sequences
where the current state of the art uses spatio-temporal features
that encode appearance and motion information of small
blocks of time [27]. For object detection in images, i.e. object
localizing, a common approach for rigid object classes is to use
histograms of gradient based features [28]. For audio, MFCC
features [29] generated from spectrograms are commonly used
as a general representation. It is possible to incorporate domain
specific knowledge, such as information about the signal
structure [14]. However, representations that do not require
any problem specific knowledge are more easily adapted to
other related tasks [30].

In contrast to these manually designed features, the goal of
feature learning is to learn the best representation directly from
the data. Methods such as convolutional neural nets [31], [32]
have recently performed very well on image and audio clas-
sification tasks [33], [34]. The disadvantage of many feature
learning approaches is that they can be very computationally
expensive.

H. Building Labeling Infrastructure

Depending on the uniqueness of the data, custom tools for
annotation may need to be developed. These tools can come
in different forms, from standalone desktop applications [35]
to web-based tools [19], [7], [11], [36] that can facilitate
crowd annotation. The size, annotation type, and complexity
of the data dictates the tool requirements. Typically in the
machine learning and pattern recognition communities, the
data is assumed to be labeled in advance. In comparison
to designing new machine learning algorithms, the problem
of designing new annotation interfaces has received far less
attention.

Image annotations come in different forms and necessitate
different interface components for each specific task such
as specifying the position of objects [37] or associating a
label with each pixel individually [38]. For video, it may be
necessary to annotate the location [39], actions performed, and
behavior of each object [35]. Videos may also need to be
trimmed to localize events more finely in time [40]. Audio
annotation tools can present both audio and visual cues to aid
the user [7].

1. Labeling

As noted in the previous section, data annotation can
require the use of custom built tools. Once the tools are
built, the signal extraction can be performed manually, by one
or more individuals, or in a semi-automated fashion. Using
crowdsourcing, it is possible to collect annotations from citizen
scientists [7], [9] or by using online marketplaces for human
intelligence tasks [41], [11]. For example, the Bat Detective
project [7] uses citizen scientists to help locate bat calls
in thousands of audio recordings. However, crowdsourcing
may not be viable in every case, as building the labeling
infrastructure and recruiting a user base can be costly and
take time. Crowd sourced annotations can be very noisy,
thus requiring additional processing and careful screening of
users [42], [43], [11].



Active learning [44] attempts to reduce the user effort by
only asking them to annotate data that the model is most unsure
about and which will bring about the greatest reduction in the
predicted future error [45]. Its goal is minimize the amount of
time they need to spend labeling data. In the past, active learn-
ing has been applied to tasks such as action recognition [40],
object tracking [39], semantic segmentation [46], object de-
tection using crowd sourced annotations [47], amongst many
other tasks. An essential aspect of the labeling process is ensur-
ing reliable and valid labels results. Numerous research efforts
have examined different mechanisms to ensure quality labels
in crowdsourcing environments (both paid and volunteer) [48],
[49].

J. Choice of Statistical Model

The choice of model will be driven by a number of factors
including model speed, accuracy, interpretability, simplicity,
and problem complexity. Modern linear maximum margin clas-
sifiers [50] and their kernel based extensions have proven very
popular in a variety of domains. The feature selection and en-
semble nature of classifiers such as Random Forests [S1] make
them more robust to the presence of noise. Fully Bayesian
probabilistic models with prior distributions are useful in cases
when there is a lack of training data. Gaussian process models
for regression are particularly useful as they give uncertainty
estimates [52]. Moreover, the model is in many cases dictated
by the hypothesis. For example if one has a hypothesis about
the rate of bird migration from one region to another, it may
be desirable for the chosen model to explicitly describe this
process and have parameters which are interpretable by the
scientists. For scientists without a background in statistical
modeling, this step can be particularly mysterious, and thus
making the best modeling choice for their problem can be
difficult.

K. Model Optimization

Once the data has been labeled, its features extracted, and
the statistical model chosen, it is then necessary to optimize
the model parameters to best fit/explain the data. This step
can also be referred to as model training. The choice of
model will dictate the complexity of this step. Simple linear
discriminative models can be much quicker to optimize than
fully generative ones. In practice, there may be several different
algorithms available to perform the optimization and the choice
of optimization scheme will depend on the structure of the
problem. Conditioned on the type of model, it may be possi-
ble to use specialized hardware such as computing clusters
or GPUs to speed up the training. Modern developments
in machine learning and Bayesian inference have decoupled
the problem of parameter optimization, inference, from the
model specification. This allows one to freely design an
arbitrarily complex model without worrying about parameter
estimation and inference. Recent advances in Markov Chain
Monte Carlo [53], [54], allow for efficient, exact, inference
of complex models. Also approximate inference methods such
as Expectation Propagation [55] and Variational approxima-
tions [56] can be used when one wants to trade accuracy
for computational time. Such methods have been developed
into software packages such as STAN [57], Infer.NET [58]
and OpenBUGS [59] which are available for scientists to use.

However, some understanding of probabilistic modeling is still
required.

L. Model Validation

It can be easy to overfit the model to the training data,
resulting in poor predictive power on the unseen test set. As
a result, it is essential to estimate the generalizability of the
trained model. Assessing the model’s quality can be performed
in a variety of ways. The standard approach is to choose
an appropriate error measure for the task at hand, e.g. mean
squared error for regression, and evaluate the model on a hold
out test set. This test set is a subset of data that has also been
labeled but not used in training. An alternative is to perform
cross validation by splitting the data into several potentially
non-overlapping subsets and training (optimizing the model)
on all the subsets but one, and then evaluating the model
on the remaining subset. This ‘leave-one-out’ testing is then
performed in turn for each subset. During optimization there
may be several different parameter or hyper parameter settings
for the model. The model with the best test performance is
chosen by comparing the different parameter settings.

M. Model Use

The remainder of the unlabelled data can now be evaluated
using the trained model. This step can be time consuming if
there is a large quantity of data to process. There may also
be speed/quality tradeoffs that need to be made. The accuracy
of the model might have to be compromised if it is required
to run in real-time in the case of detection in audio or video.
These requirements can sometimes also affect the choice of
the model from the previous step.

N. Hypothesis Testing

Now that the entire collected dataset has been labelled, both
manually by the scientist and automatically by the model, it
is possible to test the initial hypothesis. This may be achieved
in a frequentist manner or, more increasingly, by Bayesian
means [60].

O. Publicizing of Results and Method

If the initial hypothesis is deemed to be of interest to the
community at large, the final step is to publish the findings. In
a subset of cases the data and code are also made available.
Recently we have seen the creation of peer-reviewed scientific
data journals whose sole purpose is to archive both the data
and its associated meta-data. Code can be archived on public
repositories which have mechanisms to allow other users to
expand it and address any bugs or performance issues.

III. CURRENT RESEARCH EFFORTS

For an overview of which data-understanding pipeline com-
ponents are addressed by the pattern recognition community,
we performed an analysis on papers from ICPR 2012. A
similar survey focused only on dataset use and interpretation
at ICML 2011 was conducted by Wagstaff [15].

Of the 301 regular papers presented at ICPR 2012, we
categorized them based on the pipeline described previously.
Of these papers, 149 contained (either directly or indirectly)
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Fig. 2. Counts of the number of papers from ICPR 2012 featuring components
from the data understanding pipeline. Of the 301 regular papers, 149 featured
at least one step from our pipeline.

with at least one of our pipeline steps. We categorized these
149 papers into the following non-mutually exclusive cate-
gories. 1) Human interaction. Papers that involve humans in the
labeling or learning process. 2) Representation. Papers where
the proposed methodology is related to finding representations
for different types of data. Examples in this category include
sparse coding, dimensionality reduction, and feature selection.
3) Model choice. Papers where a new model is proposed or
a known model is applied to a new domain. Examples in this
category include classification papers, and tracking algorithms.
4) Model optimisation. Papers that propose new optimisation
methods, such as ant colony optimisation, and approximate
algorithms for estimating parameters of known models. 5)
Interpretation. Papers which describe a methodology with good
interpretation capabilities that is also demonstrated through
experimentation. 6) Synthetic data. Papers where synthetic
data is used in the experiments. 7) Benchmark data. Papers
which use available benchmark data from public repositories
such as UCI [61]. 8) Real data. Papers that use real data. 9)
Preprocessing. Papers that fit into the data preprocessing step
of the pipeline. Examples include pre-segmentation, filtering,
and denoising. 10) Software provided. Papers that include a
link or mention that code for the proposed methodology is
provided by the authors.

Figure 2 summarizes our findings. We can see that many
of the papers are concerned with feature representation, model
choice, and evaluation on benchmark data — the standard
machine learning pipeline. Only a limited number of papers
consider human interaction as part of this process. In terms
of evaluation, benchmark datasets feature heavily, while real
data is used less frequently. A very small amount of papers
explicitly state that their code will be made available.

IV. OPEN PROBLEMS

From our analysis in the previous sections, we now high-
light several components that are missing or overlooked in
the current data acquisition and understanding pipeline. By
viewing the pipeline holistically, as opposed to each step in
isolation, we hope to direct attention to these underexplored
areas. Where relevant, we point to existing related work.

A. Users

Not all annotations are equal

Active learning aims to reduce the number of annotations the
user has to provide when training a model. We know that not
all data points contribute the same amount of information [62],
[63]. The fact that not all annotation types are equal is less
explored. Some annotations are more time consuming to
provide, in terms of both physical and cognitive effort. In
the case of image segmentation, it is easier for the labeler to
provide an image level tag as opposed to an individual label
for each pixel [64].

Not all annotators are equal

Some annotators will have more domain specific knowledge
than others. When crowdsourcing annotations, it may be
more difficult and more expensive to find expert annotators. It
would be beneficial to ask the ‘easier’ questions of the non-
expert labelers and save the ‘difficult’ questions for the experts.

Annotators are not always right

Real world problems are challenging and the correct answer is
often ambiguous. Allowing the user to express their degree of
certainty for a given annotation may lead to better uncertainty
estimates in the final model. Users have also been shown
to be inconsistent when relabeling the same dataset after a
period of time [18]. Modeling the annotators ability over time
may also improve our understanding of when they should,
and should not, be trusted [43].

Annotation concepts evolve

Concept evolution refers to the inconsistency of human
labelers when presented with borderline or ambiguous
cases, or when they are still determining how the different
data classes should be defined [18]. For scientists that are
investigating new phenomena, concept evolution can be a
significant issue. New types of interface mechanisms have
demonstrated ways to mitigate this problem [18], but other
biases can creep into the labeling process, especially for
exploratory research, reducing the ability to efficiently train a
reliable system.

Accuracy is not the only measure of success

Models are typically evaluated by their accuracy at test time.
This analysis ignores the amount of supervision required by the
user to get to a given level of accuracy. For interactive machine
learning, a measure of human effort is also of importance.

B. Models

Real data is unbalanced

Often, real world data contains heavily imbalanced classes.
A camera trap may be capturing images for many weeks
before a species of interest appears. The annotator can quickly
correct false positives. However, false negatives can be very
hard to find. Also, in many situations, the number of classes
may not be known in advance. Here, methods for rare class
discovery and anomalous event detection are necessary [65],
[66].



Problems can be related

Many labeling tasks are related. Models trained for one
scenario may be very relevant for another [67]. Exploiting
this relationship will save the user time.

Model complexity is important

Real data capture and processing requirements place many
design constraints on a given model. Real-time systems have
to return a result within a given time budget. For deployed
systems, low power consumption may be critical.

C. Interfaces and Visualization

Users need help understanding model parameters
Understanding the effects of different model parameters is
difficult without detailed knowledge of how the model works.
Users need higher level controls to allow them to tune their
models without understanding the details e.g. models that
report confidence in their outputs [68], [69].

Combining models can help

Combining the output of different models is a conceptually
simple, yet powerful tool for increasing performance in many
tasks [70], [71]. Carefully designed interfaces can help users
combine several possibly complementary models without
needing to understand model specific details [72].

Feature selection is challenging

Choosing the best representation for a problem is difficult.
Presently this is a one time decision based on intuition.
Interfaces could be designed that allow the user to interactively
explore the contribution of different features [73].

High dimensional data needs to be summarized

In the data exploration phase, it is very useful to have a quick
overview of the types of variation and structure present in the
data. Two dimensional projections of the input can useful when
the data is easily separable [74]. However, for more complex
signals, alternative visualizations specific to the data modality
will be useful [75].

V. RECOMMENDATIONS

Based upon observations conducted during collaborations
between researchers in ecology, statistical machine learning,
computer vision, and human-computer interaction we outline
several recommendations for each discipline involved. This
list, while not exhaustive, lays out a set of best practices to
enhance collaboration between the different communities. Our
experience suggests that even small steps in these directions
significantly improves a good idea’s impact and citations.

A. Domain Experts

e Make datasets available under liberal licenses

e Richly annotate these datasets keeping all information such
as annotation timings

o Invest in the computational resources capable of dealing with
large quantities of data

e Encourage development of programming and modeling skills

B. Machine Learning and Statistics

e View the data understanding pipeline in its entirety, with the
scientist at its core

e Make algorithms more available - release source code and
create tools

e Seek collaborations with different communities

e Reduce jargon to make work more accessible

C. Interface Design and Visualization

e Build labeling interfaces with the human as the core com-
ponent

e Ensure these tools scale to large quantities of data

e Interact with and incorporate the state of the art in machine
learning

e Explore different visualizations for both data and models

VI. CONCLUSION

Open questions in biodiversity are extremely challenging
and have potential for real scientific and human impact. The
field produces complex datasets with associated real world
problems such as noise and class imbalance. Currently, there
exists a gap between cutting edge research in statistical ma-
chine learning and the tools that are available to practitioners.
We believe that great scientific progress will be achieved by
closing this gap and by placing more powerful tools into the
hands of domain experts. Targeting real scientific datasets,
and the scientists themselves in their respective fields, will
drive innovation in pattern recognition, image processing,
computer vision, and machine learning. These problems will
not be solved by algorithmic advancements alone, but instead
necessitate new interactive machine learning research with the
scientists’ needs placed firmly at the core.
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Fig. 1.

A) Hypothesis Formation

Defining the question to be answered.

Ex: Are bats good indicators of
biodiversity loss?

B) Data Collection and Capture

Collecting data that will help them test
their hypothesis.

Ex: Collect audio recordings of bats in
the wild over time and measure
biodiversity.

C) Data Exploration

Understanding what the data contains.

Ex: Listen to subsets of the data to
explore what has been captured.

D) Library Creation

Creation of a set of canonical examples
that are representative of the captured
data.

Ex: Extract sample calls from different
species and examples of feedings and
social calls

E) Establish Goals of Analysis

Establishing what is desired from the
data analysis.

Ex: Only interested in identifying bats,
and not classifying them into different
species.

F) Preprocessing

Cleaning up the data to make it more
amenable to further processing.

Ex: Chop the audio into short clips,
remove background noise and discard
clips which are silent.

G) Feature Extraction

Choosing a representation for the data
for extracting features.

Ex: Represent short time windows as
responses to a predefined filter bank.

H) Labeling Infrastructure

Acquisition and/or creation of the tools
necessary to perform annotation.

Ex: Build tool which displays the
spectrogram of an audio clip and allows
the user to label it as 'bat' or 'not bat'.

I) Labeling

Manual or semi-automated signal
extraction.

Ex: Annotate a subset of the entire
dataset.

J) Choice of Model

Choosing the most appropriate machine
learning model.

Ex: For speed reasons use a Random
Forest classifier.

K) Model Optimization

Use of labeled data to optimize the
parameters of the model.

Ex: Split the labeled data into training
and test sets. Train the Random Forest
on the training set.

L) Model Validation

Characterizing model reliability. Can
use cross validation or hold out test set.

Ex: Evaluate the trained model on the
labeled test set and compute the overall
detection score.

M) Model Use

Run the parameterized model on the
remaining data to extract the desired
signal from the unlabeled data.

Ex: Evaluate the model on the
remaining unlabeled data.

N) Hypothesis Testing

Interpretation of results.

Ex: Evaluate if there is a correlation
between the reduction in the numbers
bats in a region and biodiversity loss.

O) Publicizing of Results

Publish findings, release data and
method.

Ex: Write up findings and make method
code available online.

Overview of the main scientific data understanding pipeline. For each stage we give a short description and a practical example.




