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Abstract

A common feature of many distributed systems, including web social networks,
peer-to-peer systems and Ambient Intelligence systems, is cooperation in terms
of information exchange among heterogeneous entities. In order to facilitate
the exchange of information, we first need ways to evaluate it. The concept
of conviviality was recently proposed for modeling and measuring cooperation
among agents in multiagent systems. In this paper, we introduce conviviality
as a property of Multi-Context Systems (MCS). We first present how to use
conviviality to model and evaluate interactions among different contexts, which
represent heterogeneous entities in a distributed system. Then, as one cause of
logical conflicts in MCS is due to the exchange of information between mutually
inconsistent contexts, we show how inconsistency can be resolved using the
conviviality property. We illustrate our work with an example from web social
networks.

1 Introduction
Multi-Context Systems (MCS) [19, 18, 9] are logical formalizations of distributed
context theories connected through a set of bridge rules, which enable information
flow between contexts. A context can be thought of as a logical theory - a set of
axioms and inference rules - that models local knowledge. Intuitively, MCS can
be used as a representation model for any information system that involves dis-
tributed, heterogeneous knowledge agents such as peer-to-peer systems, distributed
ontologies (e.g., Linked Open Data) or Ambient Intelligence systems. In fact, several

Vol. 1 No. 1 2014
IFCoLog Journal of Logic and its Applications



Bikakis, Caire and Le Traon

applications have already been developed on top of MCS or other logic-based con-
text formalizations including (a) the CYC common sense knowledge base [23]; (b)
contextualized ontology languages, such as Distributed Description Logics [5] and
C-OWL [6]; (c) context-based agent architectures [24, 25]; and (d) distributed rea-
soning algorithms for Mobile Social Networks [1] and Ambient Intelligence systems
[2].

The individual entities that such systems consist of cooperate by sharing infor-
mation. By reasoning with the information they import they are able to derive new
knowledge. These features are enabled by the notions of contexts, bridge rules and
contextual reasoning used in MCS. But, how can we then evaluate the ways in which
a system enables this cooperation? How can we characterise a MCS based on the
opportunities for information exchange that it provides to its contexts? To answer
such questions, we build on previous work on modeling conviviality in a version of
MCS called Contextual Defeasible Logic [12]. Here we extend these results for the
general MCS model, and introduce measures for information dependencies based
again on the notion of conviviality.

Defined by Illich as “individual freedom realized in personal interdependence”
[21], conviviality was introduced as a social science concept for multiagent systems to
highlight soft qualitative requirements like user friendliness of systems. Multiagent
systems technology can be used to realize tools for conviviality when “freedom” is
interpreted as choice [10]. Tools for conviviality are concerned in particular with
dynamic aspects of conviviality, such as the emergence of conviviality from the
sharing of properties or behaviors whereby each member’s perception is that their
personal needs are taken care of.

Conviviality is measured by counting the possible ways to cooperate, indicating
degree of choice or freedom to engage in coalitions [11]. The authors’ coalitional
theory is based on dependence networks [13, 28], labeled directed graphs where nodes
represent agents, (thus the graph represents a social network), and each labeled edge
represents that the former agent depends on the latter one to achieve some goal
(represented by the label).

The focus on dependence networks and specifically on their cycles is a reasonable
way of formalizing conviviality as something related to the freedom of choice of
individuals plus the subsidiary relations – interdependence for task achievement
– among fellow members of a social system. In distributed information systems,
individual freedom is linked to an agent’s choice to keep personal knowledge and
beliefs at the local level, while interdependence is understood as reciprocity, i.e.
cooperation. Participating human and artificial entities depend on each other to
increase their local knowledge.

In this paper, we draw a parallel between, on the one hand an agent and a
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Figure 1: The dependence network parallelism of contexts as agents, and bridge
rules as goals. A labeled arrow, from Agent1 to Agent2 means that the former
depends on the latter to achieve its goal1.

context, and on the other hand a goal and a bridge rule. More specifically, we use a
context to encode an agent’s knowledge in some logic language, and a bridge rule to
describe how an agent achieves its goal, namely to acquire and combine knowledge
from other agents in order to deduce new knowledge, as illustrated in Figure 1.
Therefore, the dependency from an agent A1 towards a distinct agent A2 to fulfill its
goal g1 corresponds to the context C1 depending on a distinct context C2 to acquire
knowledge through the exchange of information described in a rule r1. Furthermore,
evaluating this exchange would allow to reason about the system with respect to how
it can be reconfigured to enable more cooperation among contexts and thereby more
information sharing, opportunities to collaborate and possibility to choose among
them. Particularly, considering the potential applications of MCS, and the tools for
conviviality described above, we formulate our main research question as follows:

How to evaluate and improve the exchange of information in systems
modeled as MCS using conviviality modeling and measures?

Our main research question breaks into the following questions:

1. How to define and model conviviality for Multi-Context Systems?

2. How to measure the conviviality of Multi-Context Systems?

3. How to use conviviality as a property of Multi-Context Systems?

In this paper we address these questions by proposing the following:

1. A formal model for representing information dependencies in MCS based on
dependence networks,

97



Bikakis, Caire and Le Traon

2. Conviviality measures for MCS and

3. A potential application of these tools for the problem of inconsistency resolu-
tion in MCS.

So far, most approaches for inconsistency resolution in MCS have been based
on the invalidation or unconditional application of a subset of the bridge rules that
cause inconsistency. They differ in the preference criterion that is applied for select-
ing among the candidate solutions. In this work, we propose to use the conviviality
of the system as a preference criterion, based on the idea that removing (or apply-
ing unconditionally) a bridge rule affects the information dependency between the
connected contexts, and, as a result, the conviviality of the system. We suggest that
the optimal solution is the one that minimally reduces conviviality.

The paper is structured as follows: Section 2 describes our running example
from the social web application domain. Section 3 presents formal definitions for
MCS, as these were originally proposed in [9]. Section 4 introduces a model and
measures for conviviality in MCS. Section 5 proposes a potential use of conviviality
as a property of MCS for the problem of inconsistency resolution. Section 6, presents
and compares related works. The last section summarizes and provides insights on
our future works.

2 Running Example
In order to demonstrate the exchange of information among heterogeneous agents, we
use an example from the domain of social networks, namely a social web application,
and highlight the requirements and challenges with respect to knowledge sharing and
collective decision making.

A typical challenge for students is to find how to organize their references. They
need to record their readings and have quick and easy access to research articles.
Therefore articles need to be classified in a way that is tailored to their studies.
Furthermore, if more students contribute to this classification, more articles will be
available to the whole group for citations.

Jane, Bob and Charlie are members of uni.scholar.space. They use software
agents (A1, A2 and A3 respectively) to connect to the network in order to share
information and classify research articles that they find online. The three agents are
heterogeneous with respect to their capabilities, the knowledge that they encode,
and the logic with which they represent and reason with the available knowledge.
A1 retrieves the keywords of articles and encodes this information as well as Jane’s
research knowledge in propositional logic. A2 uses propositional logic as well to
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Agent A1

Agent A3Agent A2

Retrieves, 
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authors' names
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Sensors, corba,
centralizedComputing is complementary
 to distibutedComputing

Prof A
ubiquitousComputing is
kind of ambientComputing

Figure 2: Students’ social network for information exchange and collective classi-
fication of articles; ideal case where all agents cooperate with each other.

encode information about the authors of the articles and Bob’s research knowledge.
Finally, A3 contains an ontology about Computer Science written by Charlie in a
basic description logic.

The system enables the heterogeneous agents to exchange their local knowledge,
and take together decisions about the classification of an article by exploiting as
much as possible from the available information. Figure 2 illustrates the ideal case
where all agents are enabled to exchange information with each other and take a
collective decision about the classification of an article.

To make the example more concrete we consider a specific article for which the
three agents have retrieved the following metadata: the article has two keywords,
sensors and corba, and is written by Prof.A. Moreover, according to A1, central-
ized computing and distributed computing are two complementary concepts; and
according to A3 ubiquitous computing is a form of ambient computing. In order to
be able to exchange information, the three users have identified the following map-
pings between the concepts that they use: for Jane (A1) the term middleware used
by Bob (A2) implies centralized computing, while the term ambient computing used
by Charlie (A3) implies distributed computing. Bob knows that corba stands for
Common Object Request Broker Architecture, and is a type of middleware. Finally,
for Charlie, articles that are written by Prof. B and are about sensors are relevant
to ubiquitous computing.

In the following sections we show how information exchange between heteroge-
neous agents such as the ones in our running example is enabled by MCS; and how we
can evaluate cooperation between agents in terms of opportunities for information
exchange by using conviviality as a property of MCS.
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3 Multi-Context Systems
We use here the definition of heterogeneous nonmonotonic MCS given in [7]. The
idea behind heterogeneous MCSs is to allow different logics to be used in different
contexts, and to model information flow among contexts via bridge rules. According
to [7], a MCS M is a set of contexts, each composed of a knowledge base with an
underlying logic, and a set of bridge rules. A logic L = (KBL, BSL, ACCL) consists
of the following components:

• KBL is the set of well-formed knowledge bases of L. Each element of KBL is
a set of formulae.

• BSL is the set of possible belief sets, where the elements of a belief set is a set
of formulae.

• ACCL: KBL → 2BSL is a function describing the semantics of the logic by
assigning to each knowledge base a set of acceptable belief sets.

As shown in [7], this definition captures the semantics of many different logics both
monotonic, e.g. propositional logic, description logics and modal logics, and non-
monotonic, e.g. default Logic, circumscription, defeasible logic and logic programs
under the answer set semantics.

A bridge rule refers in its body to other contexts and can thus add information
to a context based on what is believed or disbelieved in other contexts. Bridge rules
are added to those contexts to which they potentially add new information. Let L
= (L1, . . ., Ln) be a sequence of logics. An Lk-bridge rule r over L, 1 ≤ k ≤ n, is of
the form

r = (k : s)←(c1 : p1), . . . , (cj : pj),
not(cj+1 : pj+1), . . . ,not(cm : pm).

(1)

where ci, 1 ≤ ci ≤ n, refers to a context in M , pi is an element of some belief set
of Lci , and k refers to the context receiving information s. We denote by hb(r) the
belief formula s in the head of r. By brM = ⋃ni=1 bri we denote the set of bridge
rules in M .

A MCS M = (C1, . . . , Cn) is a set of contexts Ci = (Li, kbi, bri), 1 ≤ i ≤ n,
where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi a knowledge base, and bri a
set of Li-bridge rules over (L1, . . ., Ln). For each H ⊆ {hb(r)|r ∈ bri} it holds that
kbi ∪ H ∈ KBLi , meaning that bridge rule heads are compatible with knowledge
bases.
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Example 3.1. Agents A1, A2 and A3 of our running example can be modeled as
contexts C1, C2 and C3 respectively in a MCS M = {C1, C2, C3}. The knowledge
bases of the three contexts are:

kb1 ={sensors, corba, centralizedComputing ↔ ¬distributedComputing}
kb2 ={profA}
kb3 ={ubiquitousComputing ⊆ ambientComputing}

The bridge rules that the three agents use to exchange information and collec-
tively decide about the classification of the article are as follows:

r1 =(1 : centralizedComputing)← (2 : middleware)
r2 =(1 : distributedComputing)← (3 : ambientComputing)
r3 =(2 : middleware)← (1 : corba)
r4 =(3 : ubiquitousComputing)← (1 : sensors), (2 : profB)

A belief state of a MCS is the set of the belief sets of its contexts. Formally, a
belief state of M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) such that Si ∈ BSi.
Intuitively, S is derived from the knowledge of each context and the information
conveyed through applicable bridge rules. A bridge rule of form (1) is applicable in
a belief state S iff for 1 ≤ i ≤ j: pi ∈ Sci and for j < l ≤ m: pl /∈ Scl .

Equilibrium semantics selects certain belief states of a MCS as acceptable. Intu-
itively, for a MCSM = (C1, . . . , Cn), an equilibrium is a belief state S = (S1, . . . , Sn)
where each context Ci respects all bridge rules that are applicable in S and accepts
Si. Formally, S is an equilibrium of M , iff for 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hb(r)|r ∈ bri applicable in S}).

Example 3.2. In our running example, S = (S1, S2, S3) is the only equilibrium of
the system:

S = ({sensors, corba, centralizedComputing}, {profA,middleware}, ∅).

S3 is an empty set, since r4, which is the only bridge rule in C3, is not applicable in
S, because profB /∈ S2.

4 The Conviviality Property in MCS
We recall from Section 1, that dependence networks have been proposed as a model
for representing social dependencies among the agents of a multiagent system. They
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have also been used as the underlying model for formalizing and measuring convivi-
ality in such systems. In this section, we describe how dependence networks can
be used to model information dependencies among the contexts of a MCS and how
conviviality measures can then be applied to MCS.

Our approach is based on the following ideas. First, cooperation in MCS can be
understood as information sharing among its contexts. Second, this cooperation is
enabled by the bridge rules of the system. Hence, finally, bridge rules actually rep-
resent information dependencies among contexts. On one hand, the more bridges
between the contexts, the more possibilities for cooperation and information ex-
change. On the other hand, no bridge rules would mean that the different contexts
represent autonomous systems, which do not share their local knowledge.

4.1 Model

Conviviality can be modeled by the reciprocity-based coalitions, or group of agents,
that may be formed [11]. Some coalitions, however, provide more opportunities for
their participants to cooperate than others, being thereby more convivial. Depen-
dence networks are used to represent the interdependencies among the participants
of the coalitions. Abstracting from tasks and plans that agents may have to achieve
their goals, a dependence network for a multiagent system is defined [11] as follows:

Definition 4.1 (Dependence network). A dependence network (DN) is a tuple
〈A,G, dep,≥〉 where: A is a set of agents, G is a set of goals, dep : A× A→ 2G is
a function that relates with each pair of agents, the sets of goals on which the first
agent depends on the second, and ≥: A→ 2G×2G is for each agent a total pre-order
on sets of goals occurring in its dependencies: G1 >(a) G2.

To capture the notions of context and bridge rule, we build on Definition 4.1 and
introduce a new definition, Definition 4.2, for a dependence network that corresponds
to a MCS, as follows:

Definition 4.2 (Dependence network for MCS). A dependence network correspond-
ing to a MCS M , denoted as DN(M), is a tuple 〈C, brM , dep,≥〉 where: C is the
set of contexts in M ; brM is the set of bridge rules in M ; dep : C × C → 2brM
is a function that is constructed as follows: for each bridge rule r (in the form of
(1)) in brM add the following dependencies: dep(k, ci) = {r} where k is the context
appearing in the head of r and ci stands for each distinct context appearing in the
body of r; and ≥: C → 2brM × 2brM is for each context a total pre-order on sets of
its bridge rules.
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Figure 3: The dependence network DN(M) of MCS M of the running example,
in which a specific article is under examination.

In other words, a bridge rule r creates one dependency between context k, which
appears in the head of r, and each of contexts ci that appear in the body of r. The
intuition behind this is that k depends on the information it receives from each ci
to achieve its goal, which is to apply r in order to infer s.

We should also note here that the total preorder that each context defines on
the sets of bridge rules may reflect the local preferences of a context, e.g., in the
way that these are defined and used in Contextual Defeasible Logic [2]. For sake of
simplicity, we do not use this feature in the conviviality model that we describe in
this paper. However, it is among our plans to integrate it in future extensions of
this work. To graphically represent dependence networks, we use nodes for contexts
and labeled arrows for dependencies among the contexts that the arrows connect.
An arrow from context a to context b, labeled as r, means that a depends on b to
apply rule r.

Example 4.3. In our running example, the dependence network that corresponds
to MCS M is DN(M) = 〈C, brM , dep,≥〉 where:

• C = {C1, C2, C3} is the set of contexts in M

• brM = {r1, r2, r3, r4} is the set of bridge rules in M

• The dependencies, as per Definition 4.2, are the following:
dep(C1, C3) = {r2}, dep(C3, C1) = {r4}, dep(C1, C2) = {r1},
dep(C2, C1) = {r3}, dep(C3, C2) = {r4};

The graphical representation of the dependence network is illustrated in Figure
3. The figure should be read as follows: each node corresponds to one of the contexts
inM . Dependencies are derived from the four bridge rules ofM . For example, there
are two dependencies labeled by r4: each of them connects C3, which appears in the
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head of r4, to each distinct context appearing in the body of r4, namely C1 and C2
respectively. This actually means that to apply rule r4 in order to prove that the
paper under examination is about ubiquitous computing, C3 depends on information
about the keywords of the paper that it imports from C1 and information about the
authors of the paper that it imports from C2.

To evaluate MCS in terms of the information exchange we introduce appropriate
measures in the next section.

4.2 Measures
Conviviality measures were introduced to compare the conviviality of multiagent sys-
tems [11], for example before and after making a change such as adding a new norm
or policy. Furthermore, to evaluate conviviality in a more precise way, the authors
introduced formal conviviality measures for dependence networks using a coalitional
game theoretic framework. Based on Illich’s definition of conviviality as “individual
freedom realized in personal interdependency", the notions of interdependency and
choice, if freedom is interpreted as choice, are emphasized. Such measures provide
insights into the type of attributes that may be measured in a convivial system and
thus evaluate the quality of the system from this point of view. The conviviality
measures we present here reflect the following hypotheses:

H1 The cycles identified in a dependence network are considered as coalitions, i.e.,
grouping of contexts. Such coalitions are used to evaluate conviviality in the
network. Cycles are the smallest graph topology expressing interdependence,
thereby conviviality, and are therefore considered atomic relations of interde-
pendence. When referring to cycles, we implicitly signify simple cycles, i.e.,
where all nodes are distinct[14]; we also discard self-loops and logical loops.
When referring to conviviality, we refer to potential interaction, not actual
interaction.

H1 is based on two intuitions: (a) bridge rules represent potential ways of informa-
tion exchange (actual information exchange occurs only when such rules are applied);
and (b) self-loops, which are created by bridge rules that contain elements of the
same context in their heads and bodies, and logical loops (e.g. a loop created by two
bridge rules of the form: r1 = (C1 : a) ← (C2 : b) and r2 = (C2 : b) ← (C1 : a)) do
not actually enable information exchange between contexts, and should not therefore
be taken into account when measuring conviviality.

H2 Conviviality in a dependence network is evaluated in a bounded domain, i.e.,
over a [min,max] interval. This allows to read the values obtained by any
evaluation method.
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This allows the comparison of different systems in terms of conviviality.

H3 There is more conviviality in larger coalitions than in smaller ones.

The intuition for H3 is that a greater number of collaborating contexts in a MCS
offers a greater source of knowledge. This means that a large coalition of contexts
can reach more informative conclusions or take more informative decisions compared
to smaller coalitions.

H4 The more coalitions in the dependence network, the higher the conviviality
measure (ceteris paribus).

H4 reflects the fact that the number of opportunities for information exchange for
a context increases with the number of coalitions that the context participates in,
which, in turn, increases with the number of bridge rules defined in this context.

Some coalitions provide more opportunities for their participating contexts to
cooperate than others, being thereby more convivial. For a cooperative system mod-
eled as MCS, the top goal should be to maximize conviviality. It should, therefore,
fulfil the following two requirements:

R1 Maximize the size of the coalitions, i.e., maximize the number of contexts in-
volved in the coalitions.

R2 Maximize the number of these coalitions.

Based on requirements R1 and R2, we define the conviviality of a MCS M as:

Θ =
L=|C|∑

L=2
P (|C| − 2, L− 2)× dLM , (2)

Ω = |C|(|C| − 1)×Θ, (3)

Conv(M) =

∑

ci,cj∈C,i6=j
coal(ci, cj)

Ω (4)

where |C| is the number of contexts in M , L is the cycle length, P is the usual
permutation defined in combinatorics, coal(ci, cj) for any distinct ci, cj ∈ C is the
number of cycles that contain the ordered pair (ci, cj) in DN(M), such that the
cycles do not represent logical loops, and Ω denotes the maximal number of pairs of
contexts in cycles (which produces the normalization mentioned in Hypothesis H2).
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dM is the maximum number of dependencies that a context inM may have on other
contexts of M :

dM = max
k∈M

|C|∑

i=1
dep(k, ci) (5)

Example 4.4. The dependence network of M , which is graphically represented in
Figure 3 has three cycles: {(C1, C2, r1), (C2, C1, r3)}, {(C1, C3, r2), (C3, C1, r4)} and
{(C1, C3, r2), (C3, C2, r4), (C2, C1, r3)}. The ordered pair (C1, C2) is only in the first
cycle, therefore coal(C1, C2) = 1. In the same way we calculate coal(C2, C1) = 2,
coal(C1, C3) = 2, coal(C3, C1) = 1, coal(C2, C3) = 0, coal(C3, C2) = 1. Following
Equation 2 and assuming that dM = 1, we calculate the conviviality of M as:

Conv(M) = 7/Ω = 0.58, where Ω = 12.

We note that Conv(M) is almost maximal as adding only one bridge rule, namely
from C2 to C3, results in a fully connected graph, i.e., maximal conviviality.

Computational complexity: For our measures, the number of cycles going
through every possible pair of contexts is needed. The computational complexity for
counting cycles can be computed using first the measures based on graph properties,
that is in O(|C|+|brM |). Then, for each pair and cycle, a check must be performed to
evaluate if the pair is in the cycle. Therefore, the complexity is O((|C||C−1|)(|C|+
|brM |)).

In the next section we show how one can use conviviality measures for MCS to
compare different states of a distributed information system and improve it in terms
of cooperativeness.

5 Inconsistency Resolution
As we previously argued, conviviality is a property that characterizes the cooper-
ativeness of a MCS, namely the alternative ways in which the agents can share
information in order to derive new knowledge. By evaluating conviviality, we are
able to propose different ways in which cooperation can be increased, e.g., by sug-
gesting new connections between the agents - or in other words mappings between
their contexts. Consider, for example, a system in which an agent does not import
data from any other agent. Recommending other agents from which the first agent
can potentially import information from, can increase the conviviality of the system,
which will in turn lead not only to enriching the local knowledge of the agent, but
also the knowledge of the whole system.

106



Tools for Conviviality

5.1 Problem Description

Another way of using conviviality as a property of MCS, which we describe in more
detail in this section, is for the problem of inconsistency resolution. In a MCS, even
if contexts are locally consistent, their bridge rules may render the whole system
inconsistent. This is formally described in [9] as a lack of an equilibrium. All
techniques that have been proposed so far for inconsistency resolution are based on
the same intuition: a subset of the bridge rules that cause inconsistency must be
invalidated and another subset must be unconditionally applied, so that the entire
system becomes consistent again. For nonmonotonic MCS, this has been formally
defined in [15] as diagnosis:

“Given a MCS M, a diagnosis of M is a pair (D1, D2), D1, D2 ⊆ brM , s.t.
M [brM\D1 ∪ heads(D2)] 6|= ⊥”. D±(M) is the set of all such diagnoses, while with
M [R] we denote the MCS obtained from M by replacing its bridge rules brM with
R; thereforeM [brM\D1∪heads(D2)] is the MCS obtained fromM by removing the
rules in D1 and adding the heads of the rules in D2.

In other words, if we deactivate the rules in D1 and apply the rules in D2 in
unconditional form, M will become consistent. In a MCS it is possible that there is
more than one diagnosis that can restore consistency.

Example 5.1. In our running example, consider the case that profB is also iden-
tified by C2 as one of the authors of the paper under examination. In this case kb2
would also contain profB: kb2 = {profA, profB}.

This addition would result in an inconsistency in kb1, caused by the activation
of rules r4 and r2. Specifically, rule r4 would become applicable, ubiquitousCom−
puting and ambientComputing would become true in C3, r2 would then become
applicable too, and distributedComputing would become true in C1 causing an
inconsistency with centralizedComputing, which has also been evaluated as true.
To resolve this conflict, one of the four bridge rules r1-r4 must be invalidated. Using
the definition of diagnosis that we presented above, this is formally described as:

D±(M) = {({r1}, ∅), ({r2}, ∅), ({r3}, ∅), ({r4}, ∅)}.

Various criteria have been proposed for selecting a diagnosis including: i.) the
number of bridge rules contained in the diagnosis - specifically in [15] pointwise
subset-minimal diagnoses are preferred, ii.) local preferences on diagnoses proposed
in [16] and iii.) local preferences on contexts and provenance information used in
Contextual Defeasible Logic [2].
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5.2 Proposed Solution

We propose using the conviviality of the resulted system as a criterion for selecting a
diagnosis. This actually means that for each diagnosis, we measure the conviviality
of the system that is derived after applying the diagnosis, and select the diagnosis
that minimally decreases conviviality. The intuition is that the system should remain
as cooperative as possible, and this is achieved by maximizing the amount of agents
involved in the derivation of a conclusion or a decision and the number of potential
ways in which a conclusion may be drawn. In the extreme case of invalidating all
bridge rules, there will be no inconsistencies; however the agents will not able to take
collective decisions - they will decide based on their local knowledge only. Overall,
we propose resolving inconsistencies, by also keeping as many bridge rules (hence
possibilities for information exchange) as possible.

Diagnoses contain two types of changes applicable in the bridge rules: invalida-
tion (removal) of a rule; and applying a rule unconditionally, which means removing
the body of the rule. These changes affect the dependencies of the system as follows:
When invalidating or adding unconditionally rule r (as defined in (1)) in a MCS M ,
all the dependencies labeled by r are removed from the dependence network of M .

Assuming that Di = (Di1, Di2) is a diagnosis that we can apply in a MCS M ,
and M(Di) is the MCS obtained M after applying Di, the optimal diagnosis is the
one that maximizes the conviviality of M(Di):

Dopt = {Di : Conv(M(Di)) = max}

Example 5.2. In the running example, there are four diagnoses that we can apply:
D1-D4. Each of them requires invalidating one of rules r1 to r4, respectively. Fig-
ures 4-7 depict the four dependence networks DN(M(Di)), which are derived after
applying Di. Dashed arrows represent the dependencies that are dropped in each
DN(M(Di)) compared to DN(M).

Following Equation 2 and the four dependence networks (Figures 4-7) the con-
viviality of each DN is:

Conv(M(D1)) = 5/Ω = 0.42 and
Conv(M(Dj)) = 2/Ω = 0.17 with j = 2, 3, 4 and Ω = 12

By applying D1 (Figure 4), only one cycle {(C1, C2, r1), (C2, C1, r3)} is removed from
the initial dependence network DN(M). However, by applying any of diagnoses
D2-D4 (Figures 5-7), two cycles are removed from DN(M). Therefore the optimal
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Figure 7: DN(M(D4))

diagnosis is D1. By applying D1 the system will have the following equilibrium S′:

S′ = ({sensors, corba, distributedComputing},
{profA, profB,middleware},
{ubiquitousComputing, ambientComputing})

6 Related Research
The present work takes as a starting point the notion of social dependence and
dependence graphs introduced by Castelfranchi and colleagues [13, 28], and further
developed with a more abstract representation, similar to ours, in Boella et al. [4]
and in the context of the concept of conviviality defined as reciprocity, in Caire et al.
[10, 11]. Dependence based coalition formation is analyzed by Sichman [27], while
other approaches are developed in [26, 17, 3].

Similarly to Grossi and Turrini [20], our approach brings together coalitional
theory and dependence theory in the study of social cooperation within multiagent
systems. However, our approach differs as it does not hinge on agreements, and that
we extend it to MCS.

In section 5, we referred to three alternative approaches for resolving inconsis-
tencies in MCS. Two of them are based on local preferences [16, 2]. Our approach
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differs in that we take into account a global property of the system, conviviality, with
the goal of maximizing its cooperativeness. Our solution can be combined with any
of these approaches. For example, one may choose to apply the conviviality-based
approach only to those diagnoses that comply with some constraints representing
user-defined criteria, as proposed in [16]. Another solution would be to define hy-
brid criteria, which combine preferences on diagnoses, either if these are explicitly
defined as in [16] or if they are derived from preferences on contexts as in [2], with
conviviality-based criteria. A study of such combined approaches will be part of our
future work.

Our solution is more similar to the approach of [15], which selects the subset-
minimal diagnosis: for pairs A = {A1, A2}, B = {B1, B2}, the pointwise subset
relation A ⊆ B holds iff A1 ⊆ B1 and A1 ⊆ B2. Conviviality-based resolution
subsumes this approach, since, by definition, between two diagnoses D1 and D2, for
which it holds that D1 ⊆ D2, it will always select D1. Additionally, as we showed in
section 5, it can also select between diagnoses that cannot be compared using this
relation.

7 Conclusion

Today, with the rise of systems in which knowledge is distributed in a network of in-
terconnected heterogeneous and evolving knowledge resources, such as the Semantic
Web, Linked Open Data, and Ambient Intelligence, research in contextual knowl-
edge representation and reasoning has become particularly relevant. Multi-Context
Systems (MCS) are logical formalizations of distributed context theories connected
through a set of bridge rules, which enable information flow between contexts. The
individual agents, which are represented as contexts, cooperate by sharing informa-
tion through their bridge rules. By combining and reasoning on the information
they import, they are able to derive new knowledge. Evaluating the ways in which
the system enables cooperations, and characterizing a MCS based on the opportu-
nities for information exchange that it provides are therefore, key issues. The social
science concept of conviviality has recently been proposed to model and measure
the potential cooperation among agents in multiagent systems and ambient intelli-
gence systems. Furthermore, formal conviviality measures for dependence networks
using a coalitional game theoretic framework, have been introduced. Roughly, more
opportunities to work with other agents increase the conviviality of the system.

This paper is a step towards extending the concept of conviviality to MCS. First,
we describe how conviviality can be used to model cooperation in MCS. Based on
the intuition that agents depend on the information they receive from other agents
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to achieve their goals (e.g. to take more informed decisions), we define dependence
networks for MCS. Furthermore, the aim is for MCS to be as cooperative as possible,
and for agents to have as many choices as possible to cooperate with other agents.
This results in MCS being as convivial as possible. In order to evaluate conviviality,
we apply pairwise conviviality measures and allow for comparisons among different
MCS. Finally we propose a potential use of conviviality as a property of MCS for
the problem of inconsistency resolution. In MCS, conflicts may arise as a result of
importing mutually inconsistent knowledge from different contexts. Our approach
is based on the idea that the optimal solution is the one that minimally decreases
the conviviality of the system.

In further research, we contemplate the need to study alternative ways in which
a MCS can be modeled as a dependence network. For example, another way to
label dependencies among system contexts is to use the heads of the rules that these
dependencies are derived from, instead of the rules themselves. This is based on the
intuition that, the goal of applying a rule is actually to derive the conclusion that
labels the head of the rule. This would require changing the definition of dependence
networks to capture both disjunction (among rules that support the same conclusion)
and conjunction (among the premises of each rule). We also plan to study the
relation between the preference order on goals, which is included in the definition of
dependence networks, and preferences on rules, contexts or diagnoses. Furthermore,
we plan to combine the conviviality-based approach for inconsistency resolution
with the preference-based approaches proposed by [16] and [2] and develop hybrid
criteria for inconsistency resolution that take into account both local preferences
and the conviviality of the system. Finally, we will study how the concept and tools
for conviviality can be used in other distributed knowledge models, such as Linked
Open Data, Distributed Description Logics [5], E-connections [22] and managed
MCS [8], in which bridge rules are not only used to import information, but may
also implement other operations, such as deletion or revision.
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