
Proving Termination of Programs Automatically
with AProVE?

J. Giesl1, M. Brockschmidt2, F. Emmes1, F. Frohn1, C. Fuhs3, C. Otto,
M. Plücker1, P. Schneider-Kamp4, T. Ströder1, S. Swiderski, and R. Thiemann5

1 RWTH Aachen University, Germany
2 Microsoft Research Cambridge, UK

3 University College London, UK
4 University of Southern Denmark, Denmark

5 University of Innsbruck, Austria

Abstract. AProVE is a system for automatic termination and complex-
ity proofs of Java, C, Haskell, Prolog, and term rewrite systems (TRSs).
To analyze programs in high-level languages, AProVE automatically con-
verts them to TRSs. Then, a wide range of techniques is employed to
prove termination and to infer complexity bounds for the resulting TRSs.
The generated proofs can be exported to check their correctness using au-
tomatic certifiers. For use in software construction, we present an AProVE
plug-in for the popular Eclipse software development environment.

1 Introduction

AProVE (Automated Program Verification Environment) is a tool for automatic
termination and complexity analysis. While previous versions (described in [19,
20]) only analyzed termination of term rewriting, the new version of AProVE also
analyzes termination of Java, C, Haskell, and Prolog programs. Moreover, it also
features techniques for automatic complexity analysis and permits the certi-
fication of automatically generated termination proofs. To analyze programs,
AProVE uses an approach based on symbolic execution and abstraction [11] to
transform the input program into a symbolic execution graph6 that represents
all possible computations of the input program. Language-specific features (such
as sharing effects of heap operations in Java, pointer arithmetic and memory
safety in C, higher-order functions and lazy evaluation in Haskell, or extra-logical
predicates in Prolog) are handled when generating this graph. Thus, the exact
definition of the graph depends on the considered programming language. For
termination or complexity analysis, the graph is transformed into a TRS. The
success of AProVE at the annual international Termination Competition demon-
strates that our rewriting-based approach is well suited for termination analysis
of real-world programming languages.7 A graphical overview of our approach is

? Supported by the DFG grant GI 274/6-1 and the FWF grant P22767. Most of the
research was done while the authors except R. Thiemann were at RWTH Aachen.

6 In earlier papers, this was often called a termination graph.
7 See http://www.termination-portal.org/wiki/Termination_Competition



Java

C

Haskell

Prolog

Symbolic
Execution
Graph

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

displayed on the side.8

Technical details on the
techniques for transform-
ing programs to TRSs and
for analyzing TRSs can be
found in [5–9, 15–18, 21–23, 27, 28, 30]. In the current paper, we focus on their
implementation in AProVE, which we now made available as a plug-in for the
popular Eclipse software development environment [13]. In this way, AProVE
can already be applied during program construction (e.g., by analyzing termina-
tion of single Java methods for user-specified classes of inputs). In addition to the
full version of AProVE, we also made AProVE’s front-ends for the different pro-
gramming languages available as separate programs. Thus, they can be coupled
with other external tools that operate on TRSs, integer transition systems, or
symbolic execution graphs. These external tools can then be used as alternative
back-ends. Finally, AProVE can also be accessed directly via a web interface [2].

We describe the use of AProVE for the different programming languages
and TRSs in Sect. 2. To increase the reliability of the generated proofs, AProVE
supports their certification, cf. Sect. 3. We end with a short conclusion in Sect. 4.

2 AProVE and its Graphical User Interface in Eclipse

AProVE and its graphical user interface are available as an Eclipse plug-in at
[2] under “Download”. After the initial installation, “Check for Updates” in the
“Help” menu of Eclipse also checks for updates of AProVE. As Eclipse and AProVE
are written in Java, they can be used on most operating systems.

2.1 Analyzing Programming Languages

The screenshot on the next page shows the main features of our AProVE plug-
in. Here, AProVE is applied on a Java (resp. Java Bytecode (JBC)) program in
the file List.jar and tries to prove termination of the main method of the class
List, which in turn calls the method contains. (The source code is shown in the
editor window (B).) Files in an Eclipse project can be analyzed by right-clicking
on the file in Eclipse’s Project Explorer (A) and selecting “Launch AProVE”.9

When AProVE is launched, the proof (progress) can be inspected in the Proof
Tree View (C). Here, problems (e.g., programs, symbolic execution graphs, TRSs,
. . . ) alternate with proof steps that modify problems, where “⇐” indicates sound
and “⇔” indicates sound and complete steps. This information is used to propa-
gate information from child nodes to the parent node. A green (resp. red) bullet
in front of a problem means that termination of the problem is proved (resp. dis-
proved) and a yellow bullet denotes an unsuccessful (or unfinished) proof. Since
the root of the proof tree is always the input problem, the color of its bullet

8 While termination can be analyzed for Java, C, Haskell, Prolog, and TRSs, the current
version of AProVE analyzes complexity only for Prolog and TRSs.

9 An initial “ExampleProject” with several examples in different programming lan-
guages can be created by clicking on the “AProVE” entry in Eclipse’s menu bar.

2



A
B

C

E

D

indicates whether AProVE could show its termination resp. non-termination.
To handle Java-specific features, AProVE first constructs a symbolic execution

graph (D) from the program [5–7, 28]. From the cycles of this graph, TRSs
are created whose termination implies termination of the original program.10

Double-clicking on a problem or proof step in the proof tree shows detailed
information about them. For example, the symbolic execution graph can be
inspected by double-clicking on the node JBCTerminationGraph and selecting the
Graph tab in the Problem View (D). This graph can be navigated with the mouse,
allowing to zoom in on specific nodes or edges. Similarly, one of the generated
TRSs is shown in the Problem View (E). For non-termination proofs [6], witness
executions are provided in the Problem View. In contrast to termination proofs,
these analyses are performed directly on the symbolic execution graph.

The buttons in the upper right part of the Proof Tree View (C) interact with

AProVE (e.g., aborts the analysis). When AProVE is launched, the termination
proof is attempted with a time-out of 60 seconds. If it is aborted, one can right-
click on a node in the proof tree and by selecting “Run”, one can continue the
proof at this node (here, one may also specify a new time-out).

For Java programs, there are two options to specify which parts of the pro-
gram are analyzed. AProVE can be launched on a jar (Java archive) file, and then
tries to prove termination of the main method of the archive’s “main class”.11 Al-
ternatively, to use AProVE during software development, single Java methods can
be analyzed. Eclipse’s Outline View (reachable via “Window” and “Show View”)
shows the methods of a class opened by a double-click in Eclipse’s Project Ex-

10 These TRSs are represented as dependency pair problems [21] (“QDP” in (C)).
11 See http://www.termination-portal.org/wiki/Java_Bytecode for the conven-

tions of the Termination Competition, which also specify certain restrictions on the
Java programs. In particular, similar to many other termination provers, AProVE
treats built-in data types like int in Java as unbounded integers Z. Thus, a termi-
nation proof is only valid under the assumption that no overflows occur.

3



plorer. An initial “JavaProject” with a class List can be created via the “AProVE”
entry in Eclipse’s menu bar. Right-clicking on a method in the Outline View
and choosing “Launch AProVE” leads to the
configuration dialog on the side. It can be
used to specify the sharing and shape of the
method’s input values. Each argument can
be tree-shaped, DAG-shaped, or arbitrary
(i.e., possibly cyclic) [7]. Furthermore, one
can specify which arguments may be shar-
ing. Similarly, one can provide assumptions
about the contents of static fields. There
are also two short-cut buttons which lead
to the best- and the worst-case assumption.
Moreover, under “AProVE options”, one can
adjust the desired time-out for the termina-
tion proof and under “Problem selection”,
one has the option to replace AProVE’s de-
fault strategy with alternative user-defined
strategies (a general change of AProVE’s
strategy is possible via the “AProVE” en-
try in Eclipse’s main menu).

C [30], Haskell [22], and Prolog [23] are
handled similarly. The function, start terms, or queries to be analyzed can
be specified in the input file (as in the Termination Competition). Other-
wise the user is prompted when the analysis starts. For Prolog, AProVE can also
infer asymptotic upper bounds on the number of evaluation steps (i.e., unifica-
tion attempts) and prove determinacy (i.e., that there is at most one solution).

All our programming language front-ends first construct symbolic execution
graphs, which are then used to extract the information relevant for termination
as a TRS. Thus, analyzing implementations of the same algorithm in different
languages leads to very similar TRSs, as AProVE identifies that the reason for
termination is always the same. For example, implementations of a contains al-
gorithm in different languages all terminate for the same reason on (finite acyclic)
lists, since the length of the list decreases in each recursive call or iteration.

2.2 Analyzing Term Rewrite Systems

To prove termination of TRSs, AProVE implements a combination of numerous
techniques within the dependency pair framework [21]. To deal with the pre-
defined type of integers in programming languages, AProVE also handles TRSs
with built-in integers, using extensions of the dependency pair framework pro-
posed in [16, 18]. To solve the arising search problems (e.g., for well-founded
orders), AProVE relies on SAT- and SMT-based techniques like [1, 9, 17, 29]. As
SAT solvers, AProVE uses SAT4J [24] and MiniSAT [14]. Like AProVE, SAT4J is
implemented in Java and hence, AProVE calls it for small SAT instances, where
it is very efficient. MiniSAT is used on larger SAT instances, but as it is invoked

4



as an external process, it leads to a small overhead. As SMT solvers, AProVE
uses Yices [12] and Z3 [25]. Non-termination of TRSs is detected by suitable
adaptions of narrowing [15].

For complexity analysis,
AProVE infers runtime comple-
xity of innermost rewriting.
Runtime complexity means
that one only considers ini-
tial terms f(t1, . . . , tm) where
t1, . . . , tm represent data (thus,
they are already in normal
form). This corresponds to the
setting in program analysis.
Similarly, the analysis of innermost rewriting is motivated by the fact that the
transformations from Sect. 2.1 yield TRSs where it suffices to consider innermost
rewriting in the back-end. (Polynomial) upper bounds on the runtime complex-
ity are inferred by an adaption of dependency pairs for complexity analysis [27].
To solve the resulting search problems, AProVE re-uses the techniques from ter-
mination analysis to generate suitable well-founded orders. As shown in the
screenshot, AProVE easily infers that the above TRS has linear asymptotic com-
plexity. More precisely, the at the root node of the proof tree means that
initial terms f(t1, . . . , tm) of size n only have evaluations of length O(n).12

3 Partial Certification of Generated Proofs

Like any large software product, AProVE had (and very likely still has) bugs.
To allow verification of its results, it can export generated termination proofs as
machine-readable CPF (Certification Problem Format)13 files by clicking on the

button of the Proof Tree View. Independent certifiers can then check the valid-
ity of all proof steps. Examples for such certifiers are CeTA [31], CiME/Coccinelle
[10], and CoLoR/Rainbow [4]. Their correctness has been formally proved using
Isabelle/HOL [26] or Coq [3]. To certify a proof in AProVE’s GUI, one can also

call CeTA directly using the button of the Proof Tree View.
Some proof techniques (like the transformation of programming languages to

TRSs in AProVE) are not yet formalized in CPF. Until now, proofs with such
steps could not be certified at all. As a solution, we extended CPF by an additio-
nal element unknownProof for proof steps which are not supported by CPF. In the
certification, unknownProof is treated as an axiom of the form P0 ←− P1∧. . .∧Pn.
This allows to prove P1, . . . , Pn instead of the desired property P0. Each Pi

can be an arbitrary property such as (non-)termination of some TRS, and Pi’s
subproof can be checked by the certifier again. In this way, it is possible to certify

12 Moreover, proof steps also result in complexities (e.g., or ). More precisely, in each
proof step, a problem P is transformed into a new problem P ′ and a complexity c.
Then the complexity of P is bounded by the maximum of P ′’s complexity and of c.

13 See http://cl-informatik.uibk.ac.at/software/cpf/

5



large parts of every termination proof generated by AProVE. For example, now
90% of AProVE’s proof steps for termination analysis of the 4367 TRSs in the
termination problem data base (TPDB)14 can be certified by CeTA.

Moreover, we added a new CPF element unknownInput for properties that
cannot be expressed in CPF, like termination of a Java program. The only ap-
plicable proof step to such a property is unknownProof. Using unknownInput,
CPF files for every proof can be generated. Now the program transformations in
AProVE’s front-end correspond to unknown proof steps on unknown inputs, but
the reasoning in AProVE’s back-end can still be checked by a certifier (i.e., proof
steps can transform unknownInput into objects that are expressible in CPF).

Due to this new partial certification, three bugs of AProVE have been revealed
(and fixed) which could be exploited to prove termination of a non-terminating
TRS. These bugs had not been discovered before by certification, as the errors
occurred when analyzing TRSs resulting from logic programs. If one is only
interested in completely certified proofs, the “AProVE” entry in Eclipse’s main
menu allows to change AProVE’s default strategy to a “certifiable” strategy which
tries to use proof techniques that can be exported to CPF whenever possible.

4 Conclusion

We presented a new version of AProVE to analyze termination of TRSs and pro-
grams for four languages from prevailing programming paradigms. Moreover,
AProVE analyzes the runtime complexity of Prolog programs and TRSs. We are
currently working on extending AProVE’s complexity analysis to Java as well [8].

AProVE’s power is demonstrated by its performance in the annual Termina-
tion Competition, where it won almost all categories related to termination of Ja-
va, Haskell, Prolog, and to termination or innermost runtime complexity of TRSs.
Moreover, AProVE participated very successfully in the SV-COMP competi-
tion15 at TACAS which featured a category for termination of C programs for
the first time in 2014. AProVE’s automatically generated termination proofs can
be exported to (partially) check them by automatic certifiers. Our tool is avail-
able as a plug-in of the well-known Eclipse software development environment.
Moreover, the front-ends of AProVE for the different programming languages are
also available separately in order to couple them with alternative back-ends. To
download AProVE or to access it via a web interface, we refer to [2].

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: SAS ’10

2. AProVE: http://aprove.informatik.rwth-aachen.de/
3. Bertot, Y., Castéran, P.: Coq’Art. Springer (2004)
4. Blanqui, F., Koprowski, A.: CoLoR: A Coq library on well-founded rewrite rela-

tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science 4, 827–859 (2011)

14 The TPDB is the collection of examples used in the annual Termination Competition.
15 See http://sv-comp.sosy-lab.org/2014/

6



5. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive Java
Bytecode programs by term rewriting. In: RTA ’11

6. Brockschmidt, M., Ströder, T., Otto, C., Giesl, J.: Automated detection of non-
termination and NullPointerExceptions for Java Bytecode. In: FoVeOOS ’11

7. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: CAV ’12

8. Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C., Giesl, J.: Alternating runtime
and size complexity analysis of integer programs. In: TACAS ’14

9. Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: SAT solving for termi-
nation proofs with recursive path orders and DPs. JAR 49(1), 53–93 (2012)

10. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: RTA ’11

11. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL ’77

12. Dutertre, B., de Moura, L.M.: The Yices SMT solver (2006), tool paper at
http://yices.csl.sri.com/tool-paper.pdf

13. Eclipse: http://www.eclipse.org/
14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT ’03
15. Emmes, F., Enger, T., Giesl, J.: Proving non-looping non-termination automati-

cally. In: IJCAR ’12
16. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler

intermediate languages. In: RTA ’11
17. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: SAT ’07
18. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termination

of integer term rewriting. In: RTA ’09
19. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination

proofs with AProVE. In: RTA ’04
20. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination

proofs in the dependency pair framework. In: IJCAR ’06
21. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving

dependency pairs. JAR 37(3), 155–203 (2006)
22. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Au-

tom. term. proofs for Haskell by term rewriting. TOPLAS 33(2), 7:1–7:39 (2011)
23. Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic eval-

uation graphs and term rewriting – A general methodology for analyzing logic
programs. In: PPDP ’12

24. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. JSAT 7, 59–64 (2010)
25. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS ’08
26. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic. Springer (2002)
27. Noschinski, L., Emmes, F., Giesl, J.: Analyzing innermost runtime complexity of

term rewriting by dependency pairs. JAR 51(1), 27–56 (2013)
28. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-

ysis of Java Bytecode by term rewriting. In: RTA ’10
29. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-

ing functions. In: VMCAI ’04
30. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-

Kamp, P.: Proving termination and memory safety for programs with pointer arith-
metic. In: IJCAR ’14

31. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
TPHOLs ’09

7


