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Abstract 

This thesis aimed to design novel sensor proteins that can identify and measure 

various metal ions in vivo and in situ.  Metal ions play key role in the metabolism of the 

cell, and monitoring of calcium has helped interrogate cellular processes such as 

fertilisation, contraction and apoptosis.  Real-time monitoring of more divalent metal 

ions like zinc and copper is required to gain much needed insight into brain function and 

associated disorders, such as Alzheimer’s and Parkinson’s disease.   

Aequorin is a calcium-regulated photoprotein originally isolated from the 

jellyfish Aequorea victoria.  Due to its high sensitivity to calcium and its non-invasive 

nature, aequorin has been used as a real-time indicator of calcium ions in biological 

systems for more than forty years.  The protein complex consists of the polypeptide 

chain apoaequorin and a tightly bound chromophore (coelenterazine).  Trace amounts of 

calcium ions trigger conformational changes in the protein, which in turn facilitate the 

intermolecular oxidation of coelenterazine and concomitant production of CO2 and a 

flash of blue light.   

Aequorin’s light emitting reaction can also be triggered by a range of other 

divalent and trivalent cations, leading however to significantly lower light yields.  

Based on aequorin’s promiscuity towards other ions, this project tested the hypothesis 

that aequorin’s preference for certain cations could be manipulated through mutations 

engineered in one or more of the three calcium-binding loops (EF-hands).   

In order to test the hypothesis, the following six stages were performed:  cloning 

of the apoaequorin gene for expression in E. coli; development of a high-throughput 

assay for expression and measurement of bioluminescent activity in microwells; design 

of a library containing forty eight mutant variants of aequorin; screening of the library 

against seven metal ions; protein purification of wild-type aequorin and one selected 

mutant; analysis of activity and kinetics of purified wild type and one chosen mutant 

against all seven ions.   

This work produced mutants with shifted selectivity towards new metal ions at 

the cost of luminescence yield.  The impact of mutations is analysed and it is suggested 

that one of the EF-hands (EF-I) is likely to serve as a gatekeeper to aequorin’s 

selectivity.  It was also shown that at least one mutant utilised zinc ions (that wild type 

failed to utilise) to achieve low levels of bioluminescent activity. 
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1 Introduction 

Protein aequorin has been used as the preferred intracellular calcium sensor for 

more than three decades (Shimomura, 1995b).  This introduction aims to illustrate why 

it may be possible to expand the repertoire of aequorin to serve as a reporter for other 

ions such as zinc, cadmium, copper and lead, and thus help map brain disease states 

associated with such ions, like various forms of dementia (i.e.  Parkinson’s and 

Alzheimer’s disease), anxiety and psychosis. 

This chapter initially offers background information on what bioluminescence is and 

how it differs from other forms of light, e.g.  fluorescence, and then reviews 

intracellular biosensing methods based on light emission. The ion-binding properties, 

structure and bioluminescence reaction of aequorin are described, along with its use as a 

calcium probe in biomedical research.  An overview of geometries and distances of ion 

binding in metalloproteins is presented, in order to gain some insight of how metals are 

coordinated in various protein environments.  Protein engineering methods and their 

potential applications for altering aequorin’s ion selectivity are discussed along with 

examples of previous mutagenesis studies of calcium-binding sites. Finally, it is 

suggested that methods currently used for ion measurement in living cells are not 

sufficient to fully understand the role of divalent metals in cellular and tissue 

biochemistry and how mutants of aequorin could fill that gap. 

1.1 Bioluminescence  

1.1.1 Definitions  

Luminescence is the emission of light by a substance that has not been heated 

and in bioluminescence it is typically the result of an oxidation reaction in which 

chemical energy is converted to light energy within a living organism.  If  the 

compounds that generate light are synthetic chemicals, the phenomenon is called 

chemiluminescence (Van Dyke et al., 2002).  To distinguish bioluminescence from 

other light emitting phenomena used in chemistry and biology, it would be appropriate 

to highlight the differences between them (Figure 1-1).  
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Figure 1-1  Classification of light-emitting phenomena (Wong, 2006). 

 

Fluorescence is the emission of light that occurs where electromagnetic 

radiation, often ultraviolet light, is absorbed and “excites” an electron from a lower 

energy atomic orbital into a higher one.  The electron then releases energy in the form 

of light when it falls back to a lower energy state.  Light emission lasts only as long as 

the excitation energy is provided.  Unlike fluorescence, phosphorescence continues for a 

short while after the source of excitation energy is removed and produces light at longer 

wavelengths (lower energy) (Atkins, 2006).   

The two reactants in bioluminescence are often referred to as luciferins and 

luciferases.  Luciferins are the substrate molecules reacted upon to produce light and are 

a family of heterocyclic compounds with structures that vary between organisms (Tran, 

1993).  Luciferases are the enzymes that catalyse the oxidation of the substrate 

luciferins.  None of the major luciferases share sequence homology with each other, but 

Heating involved? 

Mechanical force? 

Excited by light? 

By a living organism? 

Fast? 

Incandescence 

Triboluminescence 

Fluorescence Phosphorescence 

Bioluminescence Chemiluminescence 



- 26 - 

are grouped together as a wide range of enzymes that catalyse the oxidation of substrate 

luciferins (Greer and Szalay, 2002). 

The bioluminescence reaction produces a chemical intermediate that can form at 

least one excited-state compound.  The excited compound relaxes to ground state 

producing non-reactive oxyluciferin and releasing photons (Greer and Szalay, 2002).  A 

simplified schematic of the bioluminescence reaction is provided below (Tran, 1993): 

 hvinOxyluciferinOxyluciferOHOLuciferin Luciferase +→ →++ *
22  

Only a handful of basic luciferin–luciferase systems account for the luciferase 

boluminescence found in many phyla and hundreds of taxa in nature.  This project 

concentrates on coelenterazine bioluminescence.  This phenomenon is found in sea 

animals known as coelenterates.  High-energy complexes that contain luciferin as a 

coelenterazine derived compound, luciferase as a protein chain, require molecular 

oxygen as a co-factor and calcium ions as a trigger of the enzymatic oxidation are 

known as photoproteins (Greer and Szalay, 2002).   

1.1.2 Bioluminescence in nature 

As a predominantly marine phenomenon, it was observed by man from times 

immemorial (Harvey, 1952).  The ability to produce light is a feature of many different 

groups of living organisms, but not shared by any of the higher vertebrates (Herring, 

1978).  Perhaps the most striking biological fact regarding the emission of light by 

animals and plants is the great numbers of totally unrelated and diverse organisms that 

have developed this ability.  Furthermore, one species in a genus may be luminous and 

another closely allied species may contain no trace of luminosity.  Behaviour based on 

natural bioluminescence is attributed to baiting, startle or camouflage and courtship 

(Greer and Szalay, 2002).    

Bioluminescent marine species include:  cnidaria (hydrozoa-hydroids, scyphozoa 

(medusae) and anthozoa (corals, sea pens, etc)), ctenophora (comb-jellies), mollusca 

(includes snails, squid, clams etc), arthropoda (includes sea spiders, millipedes, 

centipedes, insects), echinodermata (starfish).  On land it is most commonly seen as 

glowing fungus on wood (known as foxfire), in the railroad worm and in the few 

families of luminous insects such as fireflies (Haddock, 2004). 
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1.1.3 Aequorea victoria, the bioluminescent jellyfish 

The jellyfish Aequorea victoria (Figure 1-2) is shaped like a hemispherical 

umbrella or bell, (Figure 1-2 and Figure 1-3) with up to 5-10 cm in diameter.  The light 

emitting organs emit blue-green light and are located along the rim of the umbrella.  

This light captured the curiosity of scientists to extract and investigate the molecules 

responsible for light emission.  In the early 1960s (Shimomura, 2005, Shimomura et al., 

1962).  The work contributed two of the most widely used bioreporters to biological 

research:  aequorin and green fluorescent protein (GFP), used respectively as an 

intracellular calcium probe and as an imaging tool for gene expression and intracellular 

processes monitoring (Prendergast, 2000, Shimomura, 2005, Miyawaki, 2008). 

In the jellyfish, the function of aequorin and GFP are coupled:  blue light 

produced by aequorin is absorbed by GFP and emitted as light shifted towards the green 

(~505nm).  Why or how jellyfish use their bioluminescent capabilities is not well 

understood.  They do not glow continuously in the field; in fact, light emission is rarely 

seen in undisturbed animals (Mills, 2008). 

The evolutionary origins of bioluminescence remain obscure.  Rees and co-

workers (1998) have proposed that the anti-oxidative properties of the bioluminescence 

substrates (e.g. coelenterazine) were utilised in emergent bioluminescent systems for the 

detoxification of deleterious oxygen species.  Coelenterazine, which is received by 

jellyfish through their diet (Haddock et al., 2001), is highly reactive towards the 

superoxide anion or peroxides. 

Table 1-1  Aequorea victoria taxonomy (Myers, 2009) 
Kingdom:  Animalia (animals) 

Phylum:   Cnidaria (obsolete term:  Coelenterata) 

Class:      Hydrozoa (hydralike animals, hydroids and hydrozoans) 

Suborder:   Leptomedusae 

Family:   Aequoreidae 

Genus:   Aequorea 

Species:   Aequorea victoria  
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Figure 1-2  View of Aequorea victoria (a).  Picture reproduced from Shimomura (2005).   

Figure 1-3  View of Aequorea victoria (b).  Bottom view of the jellyfish taken in 
daylight and in the dark.  Left:  daylight view;  the overall glow reflects the flash of the 
camera.  Right:  taken in the dark.  The light organs of the jellyfish are located at the rim 
of the “umbrella”.  The bright formation in the centre of the jellyfish is its highly 
expandable mouth (Mills, 2008).  Picture reproduced from Shimomura (2005) and 
(2009).   

1.1.4 Flash- and glow-type luminescence 

The difference between flash- and glow-type luminescence is illustrated in 

Figure 1-4.  Glow-type luminescence involves sustained equilibrium and kinetic 

reactions.  Each type has distinct advantages and disadvantages.  In terms of their use in 

bioanalytical techniques, flash reactions are more useful when studying quick reactions 
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real-time, however they are more difficult to reproduce consistently and require 

equipment that ensures rapid and thorough mixing (Van Dyke et al., 2002).   
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Figure 1-4  Typical schematics of flash- and glow-type luminescence. 

 

1.2 Bioreporters 

1.2.1 Definitions 

A bioreporter is typically an enzyme or bacterium that produces a measurable 

signal in response to a specific chemical or physical agent in its environment.  

Biosensors usually refer to a device that incorporates a bioreporter molecule or 

organism with a transducer that is able to convert the recognition event into a 

measurable signal (Merriam-Webster, 2009, Van Dyke et al., 2002).  The terms 

biosensor and bioreporter are often used interchangeably in literature to refer to the 

molecules or organisms that produce the signal.   
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1.2.2 Need for ion bioreporters 

Metal ions perform a wide variety of specific functions associated with life 

processes.  In many cases, metal ions (e.g.  Zn2+, Mg2+, Ca2+) stabilise the structure of 

folded proteins, while in other cases they help to fix a particular physiologically active 

conformation of the protein.  Metal ions are integral part of many enzymes and are 

indispensable in several catalytic reactions, e.g.  hydrolytic, redox and isomerisation 

reactions.  Alkali and alkaline earth ions, especially Na+, K+ and Ca2+ also play a vital 

role in triggering cellular responses. 

The determination of metal concentration for extracellular components is 

performed by well established methods such as gas chromatography (GC), high 

pressure liquid chromatography (HPLC), and other analytical techniques.  Such 

methods require large equipment and/or highly trained personnel, which limits them to 

central facilities such as scientific institutes, hospitals and universities.  The need for in 

situ environmental monitoring led to the development of portable handheld devices 

which process samples quickly and efficiently.  Such devices are often “whole-cell 

biosensors” based on bacteria or fungi, that are genetically engineered to express 

bioluminescent or fluorescent proteins as a response to specific analytes in their 

environment, or to slow down their metabolic activity and stop emitting light in the 

presence of a deleterious analyte (Bachmann, 2003, Daunert et al., 2000, Keane et al., 

2002, Kohlmeier et al., 2007, Yagi, 2007, Belkin, 2003).   

To study the transients of metal ions from one part of the cell to the other is a 

problem that cannot be solved with devices of the aforementioned scale.  There have 

been extensive studies of intracellular Ca2+ (Allen and Blinks, 1978, Alvarez and 

Montero, 2002, Brini et al., 1997, Brini et al., 1995, Diarra et al., 1999, Shimomura, 

2005, Truong et al., 2001).  However, the study of biologically relevant trace metals 

such as zinc, and copper and contaminants such as cadmium and lead is far less 

advanced.  The increasing interest in brain degenerative diseases and other mental 

disorders and the recent association of metal ions with brain disease states (Faller and 

Hureau, 2009, Garzon-Rodriguez et al., 1999, Han et al., 2008, Karr et al., 2004, Miura 

et al., 2000, Streltsov et al., 2008, Talmard et al., 2007, Tougu et al., 2008), calls for 

new, in vivo and in situ, real-time intracellular metal ion sensors.   
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1.2.3 Desirable characteristics for bioreporters 

Scientists can choose the cellular interrogation system to suit the requirements of 

their experiments, but the available toolbox for intracellular monitoring is still limited 

and a long list of analytes is awaiting their bioreporters (Czarnik, 1995, Martin, 2008a).  

Reporters aimed at monitoring a target analyte have the following preferable 

characteristics.    

• Selectivity:  Reporters ideally respond to the presence of one analyte only.  In 

practice, complete selectivity is an unachievable ideal.  However, many 

potentially interfering species are either not present in biological samples or in 

the cellular compartment of interest in sufficient concentrations to cause a 

detectable interference.  The supply of competitive metals in cells is maintained 

in limited supply through the function of metal importers, exporters and metal 

stores, making proteins compete for metals rather than the other way around 

(Waldron et al., 2009). 

• High sensitivity:  A large change in signal in response to small changes in 

analyte concentrations would enable better quantitation of cellular signals. 

• Dynamic range:  The reporter must respond to physiologically relevant 

concentrations of the target ion in various compartments of the cell.  The 

concentration range may be very wide.  For example, in the cytoplasm of resting 

cells Ca2+ is maintained at ~100 nM, while in the endoplasmic reticulum (ER) it 

is stored at hundreds of micromolar (Palmer, 2009).   

• High signal-to-noise-ratio:  As a rule of thumb, it is desirable that light 

readings are higher than three standard deviations of the background noise. 

• Cellular localisation:  Localisation of probes to individual compartments of the 

cell enables the dissection of the origin and destination of ion signals. 

• Non-invasive:  Probes are preferred that do not interfere with cellular functions.   

• Safety:  Non-toxic and non-radioactive probes are preferred. 

• Fast-response kinetics:  Rapid measurement allows real-time monitoring of 

cellular functions. 

• Quantitative:  While qualitative (presence or absence of analyte) data is useful, 

more advanced studies require time-dependent quantitation of analyte 

concentrations. 
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• Signal wavelength:  Optical signals are often attenuated when monitored 

through certain thicknesses of tissue.  Red and infrared wavelengths are 

preferable as they penetrate through tissue more effectively than the other 

colours. 

1.2.4 Signal transduction methods 

Fluorescent, bioluminescent and radioactive labels are used in wide range of 

bioanalytical techniques (Van Dyke et al., 2002).  Radioactive labels are less preferred 

than fluorescent or bioluminescent ones due to safety handling considerations.  A 

comparison of sensitivity of methods is presented in Table 1-2.   

Table 1-2  Comparative sensitivity of detection methods (Van Dyke et al., 2002). 
Methods   Limit of detection 

Luminescence   10-19 M 

Radioisotope   10-18 M  

Fluorescence   10-12 M 

Absorbance   10 -9 M 

 

The main constraints are linked to the fact that fluorescence requires light 

excitation, which generates autofluorescence, photobleaching, and phototoxicity.  

Background fluorescence (or autofluorescence) is an inherent problem in biological 

samples, and as the scale of the samples decreases and lower level of detection is 

required, background fluorescence becomes more evident.  Bioluminescence is a 

relatively rare phenomenon in non-marine organisms and usually absent in the types of 

systems studied in biomedical sciences.  This allows for the detection of the proteins at 

extremely low levels, making these photoproteins attractive labels for analytical 

applications (Lewis and Daunert, 2000).   

Photobleaching and phototoxicity limit the duration of recording, while the 

autofluorescence prevents the recording of deep structures.  Fast phenomena can be 

monitored, with short time imaging, while the imaging of deep structures still remains 

difficult.  The real contribution of the phototoxicity to the signal itself is difficult to 

evaluate, since it is inherent to the technique (i.e. light excitation).  Additionally, the 
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excitation required is in some cases within the ultraviolet range.  UV exposure can be 

lethal to the cells in long running experiments.  Bioluminescence does not require light 

excitation and consequently, does not generate auto-fluorescence.  In terms of tissue 

depth, bioluminescence was used to monitor calcium ion activity in the ellipsoid body, 

which is located relatively deep within the brain (Martin, 2008b).   

Table 1-3  Comparison of bioluminescent and fluorescent reporters (Martin, 2008b). 
Bioluminescent reporter Fluorescent reporter 

Non-invasive (genetically encoded) Invasive (dye) or non-invasive 
(genetically encoded) 

Very good signal-to-noise ratio Generally brighter, but low signal-to-
noise ratio 

No excitation required Requires light excitation 

Bifunctional:  visualisation of localisation by 
fluorescence 
 

Autofluorescence 

Non-toxic Phototoxicity 

Long-term imaging (hours or few days of 
constant monitoring) 
 

Photobleaching 

Moderate spatial resolution Very good spatial resolution 

In vivo whole-animal imaging High temporal resolution when imaging  
for short durations 

 

A limitation of bioluminescence is that such reporters currently do not have the 

multiplexing capability that fluorescent labels do, where a wide variety of fluorescent 

markers can be utilised in a single assay and easily distinguished from one another.  

Attempts to change this are underway, and it is now possible to resolve signals from a 

dual bioluminescent assay based on the different kinetics of the bioluminescent reporter 

molecules (Rowe et al., 2008a).   
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1.2.5 Current methods for intracellular ion monitoring 

With non-destructive monitoring and accurate detection of weak optical signals, 

bioluminescent molecules have been used in a plethora of intracellular assays:  

monitoring important biological molecules (e.g. calcium, ATP);  whole cell biosensor 

assays and tracking the survival of implanted cells in stem-cell based therapies e.g. 

regeneration of injured cardiac tissue, among others (Roura et al., 2013, Scott et al., 

2011).  A compilation of intracellular metal ion sensors – with calcium being the most 

exhaustively studied metal ion – is provided in Table 10-1 of Appendix Chapter 1.  

1. Fluorescent dyes 

Small fluorophores which bind to metal ions and cause either a change in 

fluorescence intensity or a spectral shift are available.  This enables tracking if calcium 

ion dynamics in live cells using fluorescence microscopy.  The dyes are added to the 

medium of the cells or tissue under study and allowed to diffuse into the sample, but 

typically lack a highly defined cellular localisation.  To overcome this drawback 

reporter proteins were developed  (Palmer, 2009).   

2. Reporter proteins 

Reporter proteins (e.g. aequorin) respond to the presence of an ion via a binding 

event that causes a structural change leading to bioluminescence or fluorescence of the 

protein.  Transfection or transgenic technologies are used to express the protein in the 

cell, often fused to signal peptide sequences (e.g. ompA) to direct the protein to the 

desired intracellular location.  Aequorin is the most widely used reporter protein for 

calcium ion monitoring;.  it is not fully functional without its synthetic chromophore 

substrate (coelenterazine or chemical analogues thereof) that must be added to the cell 

medium. 

3. Reporter protein chimeras 

Fluorescent protein chimeras are practical alternatives to bioluminescent 

proteins.  GFP (Green fluorescent protein) or GFP variants are genetically fused to the 

functional domain of another protein (e.g. the calcium-binding region of calmodulin), or 

with a whole protein (e.g. aequorin).  The resulting chimera can be localised 
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subcellularly with the help of an appropriate signal peptide.  In this case, binding of an 

analyte (e.g. metal ion) alters the structure of the fused peptide which in turn affects the 

fluorescent properties of the GFP.   

In recent years considerable progress is being made in this field.  Genetically 

encoded FRET (Fluorescence resonance energy transfer) sensors are currently in 

development to monitor levels of magnesium, zinc and cadmium ions in transition metal 

homeostasis.  Improvements are still needed; the success of these sensors depends on 

the sensitivity of the sensors, on achieving significant ratiometric changes of 

fluorescence signal upon ion binding and on successful intracellular calibration of the 

sensors, as in vitro calibration is not useful.  Future scope is to achieve simultaneous 

imaging of multiple metals and in different locations of the cell (Vinkenborg, 2010, 

Vinkenborg et al., 2009). 

4. In situ fluorescent tagging of proteins 

Another option employed recently has been to express and localise proteins that 

incorporate a peptide “linker”.  The linker can bind covalently to an appropriate 

fluorophore that is added to the cell medium (Brun et al., 2009).  The fusion peptide is 

expressed in the cell and after a short incubation period the fluorophore labels the 

expressed localised peptide.  This method can be used to tag and quantify the amount 

and location of the expressed protein, or act as a reporter that tracks changes of the 

fluophore when an analyte, such as Ca2+, binds to the protein or to the fluophore.  A 

wide range of fluorophores are available that emit light at different wavelengths 

(Covalys Biosciences, 2009). 

5. Microinjection 

Microinjection of ion dyes or reporter proteins into cells was used for the 

delivery of reporters.  It is a laborious and limited method, now becoming obsolete due 

to the development of the systems described above (Creton et al., 1999, Blinks, 1990). 
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1.3 Aequorin:  a calcium-sensitive photoprotein 

1.3.1 Introduction 

Aequorin is calcium-sensitive photoprotein originating from the jellyfish 

Aequorea victoria (Shimomura, 2005, Shimomura et al., 1962).  The active protein is 

formed from apoaequorin, the luminophore coelenterazine and molecular oxygen (Tsuji 

et al., 1986, Dikici et al., 2009).  The apoaequorin DNA encodes for 196 amino acids.  

Coelenterazine (MW 423) is an imidazolopyrazine that forms a hydroperoxy derivative 

with molecular oxygen, and is tightly but non-covalently bound within the photoprotein 

as an oxidation reaction intermediate (Ohmiya and Hirano, 1996, Vysotski and Lee, 

2004).   

Bioluminescent reaction in aequorin 

Upon binding traces of Ca2+ aequorin undergoes a conformational change which 

triggers the oxidative decarboxylation of coelenterazine into coelenteramide (Figure 

1-5).  Products of this reaction are a flash of blue light (λmax ≈ 469 nm), CO2 and Blue 

Fluorescent Protein (BFP), which consists of the apoprotein loosely bound to 

coelenteramide (Shimomura and Inouye, 1999).  The emission of light is caused by the 

decay of the bound coelenteramide from an excited state to the ground state (Ohmiya 

and Hirano, 1996).  A schematic of the aequorin bioluminescent reaction is presented in 

Figure 1-5.   

The reaction was found to follow first order kinetics (Shimomura et al., 1962), 

with reaction rate constants of luminescence ranging from:  0.95−1.33 s-1 for eight 

different purified isoforms of native aequorin (isoaequorins).  Luminescence activities 

for the same isoaequorins were found to range from 4.35−5.16×1015 photons/mg 

aequorin (Shimomura, 1986), which correspond to approximately 0.16−0.2 photons per 

molecule of aequorin. 

Crystallographic structures  

Aequorin has a compact globular shape with a hydrophobic cavity in the centre 

of the molecule.  Two different conformations of aequorin have been crystallised, 

shown in Figure 1-7):  PDB ID:1EJ3 is fully active aequorin, prior to any addition of 
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calcium, at 2.3 Å resolution (Head et al., 2000) and PDB ID:  1SL8 is calcium-loaded 

apoaequorin, without coelenterazine at 1.7 Å resolution (Deng et al., 2005).  The latter 

is as of yet and to the best knowledge of the author, the closest structure to the “post-

calcium-binding” conformation.   

Calcium in the EF-hands and Coelenterazine in the hydrophobic core 

The protein scaffold is formed by sets of four helices comprising helix-turn-helix 

(HTH) motifs called EF-hands.  The EF-hands are arranged in pairs:  EF-I and EF-II in 

the N-terminal region and EF-III and EF-IV in the C-terminal region (Figure 1-7, Figure 

1-8).  The anatomy of a typical EF-hand motif is presented in Section 1.3.4.  In 

aequorin, three out of four EF-hand structures (EF-I, EF-III and EF-IV) are “canonical” 

EF-hands and serve as Ca2+-binding sites.  Their presence was already known from 

analysis of the protein primary sequence (Inouye et al., 1985, Charbonneau et al., 1985) 

even before the crystallographic structure was resolved.  Each loop contains twelve 

sequentially arranged amino acids, with residues in loop positions 1, 3, 5, 7 and 9 

coordinating to each calcium ion (Head et al., 2000).  In the crystal structure of calcium-

bound apoaequorin (Figure 1-8), each of the canonical EF-hand loops is occupied by 

one calcium ion, coordinated in the characteristic pentagonal bipyramidal configuration 

(Deng et al., 2004).  EF-II lacks the necessary amino acids to facilitate binding of 

calcium.  Since it is apparently unable to bind calcium in aequorin, this domain might 

instead have a role in the enzymatic function, such as forming a stable scaffold against 

which the rest of the molecule moves upon the binding of calcium ions (Head et al., 

2000). 

Hydroperoxy-coelenterazine (an “activated” coelenterazine) is accommodated in 

the hydrophobic core of the aequorin.  The coelenterazine binding pocket is highly 

hydrophobic and is formed by residues originating from each of the helices (Vysotski 

and Lee, 2004).  

Stoichiometry of calcium ions 

Previous studies have suggested that occupancy of two of the three calcium-

binding sites in aequorin is sufficient to trigger activation (Shimomura, 1995a, 

Shimomura and Inouye, 1996).   

A log-log plot of light intensity as a function of calcium concentration over a 

range of 10-9 to 10-2 M produced a sigmoidal curve with a lag phase, logarithmic phase 
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and saturated phase (Figure 1-6).  The lag phase of the sigmoidal curve was attributed to 

binding of calcium by the EDTA in solution.  Only when EDTA is saturated with 

calcium is any additional calcium available to aequorin which utilises it for the 

triggering of luminescence.  The logarithmic phase occurred at physiologically relevant 

concentrations of calcium (10-7−10-5 M) and had a slope of 2.0−2.5 (Allen et al., 1977).  

Based on the slope of the logarithmic curve the authors suggested that a molecule of 

aequorin must bind at least two calcium ions.  The exponential part of the sigmoidal 

curve corresponds to the utilisation of the available calcium while the plateau of the 

sigmoidal curve shows that metal binding sites of aequorin are saturated and additional 

calcium does not contribute to increased activity. 

Studies determining the stoichiometry of Ca2+ by luminometric titration proved 

that the light emission from aequorin is proportional to the amount of Ca2+ added and 

that two Ca2+ per protein molecule are needed to exhaust the luminescence capability of 

an aequorin sample (Shimomura, 1995a).  The requirement for two calcium ions in the 

luminescence reaction justifies a slope of approximately 2.0−2.5 log-log plot of the 

relationship  between calcium concentration and light intensity reported by Allen and 

co-workers (1977). 

Further work by Shimomura and Inouye (1996) used titration of recombinant 

aequorin with calcium solution and measured concentration of free calcium by the use 

of a calcium-sensitive electrode.  Three calcium ions were bound by aequorin, which is 

also consistent with the crystal structures of calcium-bound apoaequorin and other 

photoproteins (Deng et al., 2005) and the two out of three binding sites were found to 

have 20-fold higher affinity for calcium ions compared to the third site, although it 

would not be possible to identify which site this was.  Coupled with the fact that 

approximately two ions are needed to exhaust the luminescent reaction, the third 

binding site could be unrelated or simply not required for the luminescent reaction. 

Slopes greater than 2 could be artifacts (Shimomura, 1995a); main cause for 

artifacts would be the presence of EDTA in the calcium buffer solutions when studying 

the relationship between light intensity and calcium concentration;  the authors 

suggested that EDTA may inhibit light emission by binding to aequorin, the effect 

becoming more pronounced in buffers of low calcium concentration and higher EDTA 

concentration.  Higher calcium concentrations may lead to recycling of calcium and 

slight increase of light emission occurring in the plateau. 
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Calcium-independent luminescence 

Aequorin emits light even in the absence of calcium ions; at very low levels of 

calcium (<10-8 M) the protein gives off a very low and calcium-independent 

concentration level of light termed as “calcium-independent luminescence”; however, 

the light intensity is increased up to one million-fold or more on the addition of calcium 

(Allen et al., 1977).  Detailed structural information on aequorin and theories on how 

binding of calcium ions may result in the de-stabilisation of the hydroperoxy-

coelenterazine are presented in Chapter 5. 
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Figure 1-5  Schematic of the bioluminescent reaction of photoprotein aequorin (Ohmiya 
and Hirano, 1996).  “Apo” refers to the apoaequorin polypeptide chain. 

Figure 1-6  Schematic of sigmoidal curve for light emission versus Ca2+ concentration. 
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1.3.2 Uses of aequorin 

Calcium concentration levels regulate a wide range of biological processes in 

eukaryotic cells, including gene expression, muscle contraction, glycolysis, cell division 

and growth (Dudev and Lim, 2003).  Due to its high sensitivity to calcium, instant 

response to calcium concentration changes, its non-invasive nature and the lack of 

background interference signals, aequorin has been well suited in its use as a calcium 

indicator for more than three decades.  The bioluminescent reaction proceeds within the 

physiological pH range and its rate varies steeply with calcium concentration between 

the biologically relevant range between 10-7 and 10-5 M (Hastings et al., 1969). 

Initial applications of aequorin required microinjection of protein purified from 

jellyfish, into cells (Allen and Blinks, 1978, Blinks et al., 2000).  Subsequent cloning of 

its gene (Inouye et al., 1985, Prasher et al., 1985, Charbonneau et al., 1985) allowed for 

the recombinant expression of apoaequorin and the genetic transformation of bacteria, 

yeasts, plants, and animal cells.  Fusion of apoaequorin with signal peptide sequences 

allowed its targeting to specific cellular compartments (Sala-Newby et al., 2000).  A 

few select examples are:  the monitoring of gene expression in hamster ovary eggs 

(Inouye et al., 1992), analysis of calcium ion homoeostasis at the subcellular level using 

aequorin targeted to specific organelles (Chiesa et al., 2001), use as a reporter enzyme 

in studying gene expression in mammalian cells (Tanahashi et al., 1990) and analysis of 

Ca2+ homeostasis in primary cultures of skeletal muscle myotubes (Brini, 2008, Brini et 

al., 1997). 

Small peptides were fused at both the C- and N-terminal of aequorin, resulting in 

functional new proteins.  It was shown that aequorin can tolerate fusions at both termini 

so long as the C-terminal proline is intact (Deo and Daunert, 2001, Lewis and Daunert, 

2000).  Thus it is possible to incorporate an affinity or fluorescent tag on one terminus 

and a peptide of interest at the other (Deo et al., 2001).  Using this capability, aequorin 

and its variants have been used as bioluminescent labels in immunoassays (Deo and 

Daunert, 2001, Deo et al., 2001, Dikici et al., 2009, Shrestha et al., 2002) and as a tool 

for the search of GPCR (G-protein coupled receptors) ligands in the drug discovery 

(Dupriez VJ, 2002).  The addition of an N-terminus hexahistidine tag allowed metal 

affinity purification resulting in highy pure and functional aequorin (Glynou et al., 

2003).   
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1.3.3 Properties of aequorin 

Rapid loss of aequorin luminescence activity occurs at elevated temperatures 

(Shimomura et al., 1962).  The total light emitted is independent of pH over a wide 

range of 5.1−8.3.  The reaction rate constants, however, are pH dependent.  It increases 

with alkalinity from a near plateau between 6.5 and 7.5 and decreases in the same 

manner as enzyme activity when pH is lower than 6.5 (Shimomura et al., 1962).  The 

protein is unstable at pH lower than 4.0.  When calcium and EDTA are equimolar, the 

velocity is about half of maximum, whereas only a slight excess of Ca2+ results in nearly 

maximum velocity.   

Due to high sensitivity of the protein to Ca2+, certain precautions need to be 

taken when handling aequorin or apoaequorin:  use of only high purity chemicals is 

recommended, avoidance of any contact of solutions with soft (soda-lime) glass or 

metal parts where that is possible.  EDTA and EGTA have been used to preserve the 

luminescent activity of aequorin until its use and to prepare calcium-buffer solutions for 

calibrating the light emission of aequorin (Shimomura, 1991).  When the concentration 

of EDTA exceeds that of Ca2+ no luminescence is emitted.   

As oxygen is incorporated in the holoprotein structure, Ca2+-triggered light 

emission can occur in a vessel completely evacuated by air (Shimomura et al., 1962), 

but an active aequorin complex cannot be regenerated in the absence of molecular 

oxygen (Shimomura and Johnson, 1975b).  Coelenterazine is also retained by aequorin 

during purification by gel filtration, whereas coelenteramide is easily diffusible from the 

spent Blue Fluorescent Protein complex.   

(NH4)2SO4 is useful during long term storage due to the stabilising effect it has 

on the protein (Shimomura and Inouye, 1999).  Aequorin solution aliquots can be stored 

at 4º C and −20º C for a few months without any loss of luminescent activity, but 

−80º C is required for long-term storage (Shimomura et al., 1962). 
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Figure 1-7  3-D model of aequorin with coelenterazine in the hydrophobic core.  The 
EF-hand Ca2+-binding loops are coloured green and bound coelenterazine hyperoxide is 
coloured orange.  PDB ID:  1EJ3 (Head et al., 2000), 3-D model rendered with Pymol 
(DeLano, 2002). 

Figure 1-8  Apoaequorin with calcium ions in the Ca2+-binding loops (EF-hands).  PDB 
ID:  1SL8 (Deng et al., 2005), 3-D model rendered with Pymol (DeLano, 2002). 
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Figure 1-9  Conformation states of a photoprotein.  Apoprotein (state I), photoprotein 
(with 2-hydroperoxycoelenterazine, without Ca2+) (state II), Ca2+-discharged 
photoprotein (protein with the reaction product, coelenteramide, and bound Ca2+) (state 
III), Ca2+-discharged photoprotein without Ca2+ (protein with coelenteramide without 
Ca2+) (state IV), Ca2+-loaded apoprotein (state V).  The photoprotein conformational 
states were revealed by HSQC-NMR spectroscopy study of obelin (Deng et al., 2005, 
Lee, 2001).  Figure was reproduced from Deng and co-workers (2005). 
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1.3.4 EF-hand motif:  general features 

The EF-hand motif consists of two perpendicular alpha helices (each 10 to 12 

residues long) with a 10 to 15 residue loop region between, forming a single calcium-

binding site (helix-loop-helix).  One calcium ion interacts with residues contained 

within the loop region.  It is found in a broad range of functionally diverse calcium-

binding proteins, known as the EF-hand protein superfamily.  The EF-hand has been 

fine-tuned to selectively bind Ca2+ against the background of up to 105-fold higher 

concentrations of Na+, K+, and Mg2+.  Depending on length and the amino acid content 

of their loops, EF-hands are categorised as “canonical” and “non-canonical”. 

Figure 1-10  The EF-hand calcium-binding loop.  On the left:  A schematic of the 
calcium coordination sphere with the entering and exiting helices in red, the 
coordinating protein ligands in blue and coordinating water molecule (W) in blue.  
Purple highlights the conserved hydrophobic residue that forms the short β-sheet in the 
paired EF-hand.  Also indicated are the most common amino acids found at the critical 
positions.  On the right:  calcium coordination by the canonical EF-hand (EF-I of CaM 
(PDB ID:  1EXR) illustrating the pentagonal bipyramidal coordination of the calcium 
ion.  The calcium ion is in yellow, the side-chain oxygen atoms in red, and the 
coordinating water in blue.  Backbone NH groups are indicated in black.  Figure 
reproduced from Gifford et al (2007). 
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“Canonical” EF-hands represent the vast majority of the EF-hand motifs.  Their 

loop contains twelve amino acids, each one being important for calcium coordination.  

Residues in positions 1, 3, 5, 9, and 12 of the loop region are highly conserved and 

provide oxygen ligands necessary for binding of calcium, while position 7 of the loop 

ligates the calcium ion with a main-chain carbonyl oxygen.  The most common residues 

coordinating calcium and their respective positions in the canonical loop are listed in 

Table 1-4.  In most EF-hand proteins the residue at position 12 is a glutamate, which 

contributes both its side-chain oxygens for calcium coordination.  The calcium ion is 

coordinated in a pentagonal bipyramidal array with an average 2.4 Å separation to 

oxygen atoms (Figure 1-10).  Frequently one or two water molecules are also involved 

in ligating calcium (Strynadka and James, 1989).   

Table 1-4  Amino acid sequence preference in the EF-hand loop.  Table recreated from 
Gifford et al (2007). 
EF-loop 
position 

1 2 3 4 5 6 7 8 9 10 11 12 

Coordinating 
ligand 

X 
sc  

Y 
sc  

Z 
sc  

-Y 
bb  

-X 
sc*   

-Z 
sc2 

Most  
common 

Asp 
100% 

Lys 
29% 

Asp 
76% 

Gly 
56% 

Asp 
52% 

Gly 
92% 

Thr 
23% 

Ile 
68% 

Asp 
32% 

Phe 
23% 

Glu 
29% 

Glu 
92% 

Frequently 
observed 

 Ala 
Gln 
Thr 
Val 
Ile 
Ser 
Glu 
Arg 

Asn Lys 
Arg 
Asn 

Ser 
Asn 

 Phe 
Lys 
Gln 
Tyr 
Glu 
Arg 

Val 
Leu 

Ser 
Thr 
Glu 
Asn 
Gly 
Gln 

Tyr 
Ala 
Thr 
Leu 
Glu 
Lys 

Asp 
Lys 
Ala 
Pro 
Asn 

Asp 

The Ca2+ ligands are indicated by both their position in the EF-loop and in the coordinating 
array.  (sc) indicates side chain coordination and (bb) indicates coordination via the backbone.  
The asterisk (*) indicates that the oxygen ligand is typically provided by a water molecule that 
is hydrogen-bonded to the side chain of the amino acid at position 9.  The most common amino 
acids at each position are noted with their corresponding percentages of occurrence, followed by 
those that occur with a frequency greater than 5% in known EF-loops.   

 

“Non-canonical” EF-loops can also bind Ca2+ in a pentagonal bipyramidal or 

octahedral coordination.  The length of the loops ranges from eleven amino acids (rarest 

cases) to fourteen and sometimes fifteen amino acids.  They may carry substitutions that 

disable Ca2+-binding or insertions that bring the coordinating residues too far apart to 

bind calcium in the canonical manner.  However, they compensate for these adversities 

by offering oxygen from their main-chain carbonyl groups for ligating calcium, in some 
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cases even turning inside-out to accommodate this coordination and in some cases 

exhibit high affinity for calcium (Strynadka and James, 1989).   

The role of EF-hands in proteins can be regulatory or structural.  In regulatory 

EF-hand proteins binding of calcium induces a conformational change that is 

transmitted to their target proteins, and (often) ultimately results in catalysing enzymatic 

reactions.  In structural EF-hand proteins, EF-hand domains do not undergo significant 

conformational changes but seem to play a role in buffering leverls of intracellular 

calcium ions (Gifford et al., 2007). 

EF-hands tend to occur in pairs, which form a discrete domain so that most 

family members have two, four or six EF-hands.  This pairing also enables 

communication, and many EF-hands display positive cooperativity.  The ability of an 

EF-hand to bind Ca2+ depends on its selectivity over Mg2+ (a cation with similar 

chemical properties to Ca2+ and with a cytoplasmic concentration several orders of 

magnitude higher).  Variation in calcium binding affinity for different EF-hand proteins 

is due to the amino-acid composition of the residues at the coordinating positions  

(dissociation constants for Ca2+ range from 0.5×10-3 to 0.3×10-9 M) (Dudev and Lim, 

2003).   

 

1.3.4.1  EF-hands and cooperativity 

EF-hands tend to occur in pairs, which form a discrete domain so that most 

family members have two, four or six EF-hands.  This pairing also enables 

communication, and many EF-hands display positive cooperativity.  The 

conformational effects of Ca2+ binding are varied, function-dependent and in some 

cases, minimal.  EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the 

intrinsic binding ability of the EF-hand as well as the degree of cooperativity in Ca2+ 

binding to paired EF-hands. Relatively little is known about the mechanisms of 

cooperativity or dynamic conformational effects of Ca2+ binding of the other EF-hand 

proteins as most research in this field to date has focused on the model members CaM, 

TnC and calbindin D9K (Gifford et al., 2007). 
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1.3.5 Proposed mechanism for the bioluminescence reaction 

Despite the availability of the tertiary structure, the precise catalytic mechanism 

of the photoprotein remains unsolved (Prendergast, 2000).  The bioluminescence 

reaction mechanism has been partially deciphered on the basis of detailed structure-

activity studies of both the apoprotein and coelenterazine (Ohmiya and Hirano, 1996) as 

well as on the resolved crystal structure of aequorin (Head et al., 2000), and is assumed 

to follow the same mechanistic pathway as the proposed mechanism of a 

chemiluminescence reaction pathway proposed by Ohmiya and Hirano (1996).  Figure 

1-11 shows the mechanism proposed by Prendergast (2000):  a) a reactive carbanion is 

formed as result of distortion of the ground state of coelenterazine  b) the carbanion 

attacks molecular oxygen bound by the protein, forming coelenterazine hydroperoxide  

c) coelenterazine hydroperoxide is stabilised by Tyr184 of the protein chain  d) a 

conformational change in the protein (caused by binding of calcium ions) allows the 

attack of hydroperoxy anion on the reactive carbonyl  e) leading to the formation of an 

unstable, intermediate dioxetanone  f) the dioxetanone undergoes scission to produce 

CO2 and enolate ion in an excited state, which emits light when relaxing to ground state. 

1.3.6 Regeneration of aequorin 

The enzymatic function of aequorin was proven when it was shown that it could 

be recharged repeatedly and reversibly (Shimomura and Johnson, 1975b).  BFP (Blue 

Fluorescent Protein) is a complex consisting of apoaequorin non-covalently bound to 

coelenteramide and calcium ions, which can be dissociated into its components.  The 

regeneration procedure requires removal of Ca2+ with a chelating agent such as EGTA 

or EDTA, separation of the protein from coelenteramide and incubation with molecular 

oxygen and coelenterazine (Figure 1-12).  BFP can be dissociated into apoprotein and 

coelenteramide by gel filtration or treatment by ether (Ohmiya and Hirano, 1996).  A 

reducing (thiol) agent such as DTT or β-mercaptoethanol is added to facilitate the 

harbouring of coelenterazine into the hydrophobic cavity of the apoaequorin.   

 

 



- 48 - 

R1

N

N

OH

N

O

CH2

H

CH2

OH

R2

R3

R2

N

N

N

O R3

R1

Histidyl side chain

Coelenterazine

Protein-bound 
molecular oxygen

O

O

-

H
+

Carbanion

OH

O

R2

N

N

N

O R3

R1

O
H O

H

Hydroperoxide

O

R2

N

N

N

O R3

R1

O
-

-

-

Dioxetanone

-
N

NR1 R2

N
-

O O

O

R3

CO2

Excited enolate anion

N

NR1 R2

N

O
-

R3
* 

Tyr184

a b c

d e f

 

Figure 1-11  Proposed reaction for the bioluminescence of aequorin.  Picture reproduced 
from Prendergast, 2000.  Description in Section 1.3.5. 

 

 

 

 

 

 

 

 

 

Figure 1-12  Regeneration of aequorin.   
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1.3.7 Ion selectivity of aequorin 

The selectivity of aequorin bioluminescence against various cations has been the 

object of some debate (Shimomura et al., 1962, Izutsu et al., 1972, Shimomura and 

Johnson, 1973, Izutsu et al., 1974).  Originally believed to be triggered by calcium and 

rare earth metal ions only, it was shown that aequorin may also respond to a number of 

other cations, yielding lesser light outputs and depending on conditions such as pH and 

presence of various metal chelators.  Table 1–5 is a synopsis of aequorin metal 

selectivity studies:  fifteen cations in the form of salts of chloride, sulfate or acetate 

were tested for possible activation of the bioluminescence reaction.   

             Table 1-5  Aequorin tested against ions for triggering light-emitting reaction 
Ion Charge Ionic radius (Å) Atomic Number Activity? 

Sodium +1 0.095 11 Inhibition 

Potassium +1 0.133 19 Inhibition 

Ammonium +1 0.143 7 Inhibition 

Magnesium +2 0.065 12 No 

Copper +2 0.069 29 Low 

Cobalt +2 0.075 27 Low 

Iron +2 0.076 26 No 

Manganese +2 0.08 25 No 

Cadmium +2 0.095 48 Yes 

Calcium +2 0.106 20 Yes 

Europium +2 0.112 63 Yes 

Strontium +2 0.113 38 Low 

Barium +2 0.135 56 Low 

Lead +2 1.19 82 Yes 

Iron +3 0.064 26 No 

All ions were tested by Shimomura and co-workers (1962) and verified by Shimomura and 
Johnson (1973), unless stated otherwise.  Inhibition caused by monovalent cations was reported 
by Moisescu and co-workers (1975).  Strontium-triggered luminescence was used in monitoring 
changes of free Ca2+ concentration in the endoplasmic reticulum (ER) (Montero et al., 1995). 
 

Most divalent cations failed to initiate a light-emitting reaction, while the rare 

earth metals (here represented by Eu2) and Sr2+ were found to successfully substitute for 
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Ca2+ (relative potencies of the different cations have been estimated as Eu2+>Ca2+>Sr2+).  

The fact that Mg2+, K+ and Na+ ions do not initiate luminescence, but inhibit the Ca2+-

triggered reaction suggests that they compete with Ca2+ for the binding sites without 

triggering luminescence (Ohmiya and Hirano, 1996).  Previously contradicting results 

(Shimomura et al., 1962, Izutsu et al., 1972) were put down to the presence of 

contaminating calcium during protein handling and metal ion preparations and to pH 

buffering or lack thereof (Shimomura and Johnson, 1973).   

As a conclusion, the luminescence reaction of aequorin is highly specific for 

Ca2+ at pH 7.5-8.0 and in the absence of rare earth metals or strontium (the latter 

condition is typically met when performing intracellular studies) (Shimomura and 

Johnson, 1973).  Since then the usefulness of aequorin as an intracellular calcium 

indicator has been widely established (see Section 1.3.2).  It may be possible that given 

the appropriate coordination environment, ions other than Ca2+ could potentially induce 

the required structural changes for evoking the luminescence yielding reaction. 

1.3.8 Other photoproteins 

Since the discovery of aequorin, more jellyfish photoproteins have been isolated, 

which use the same, or a very similar, chromophore (Tsuji et al., 1995).  Photoproteins 

mitrocomin, clytin and obelin showed very strong amino acid sequence identities with 

aequorin.  The amino acid sequences of apo-photoproteins of aequorin, clytin (or 

phialidin), mitrocomin and obelin have been aligned with the amino acid sequences of 

non-luminescent Ca2+-binding proteins:  human and bovine calmodulin (a typical Ca2+-

binding protein), parvalbumin, troponin C, intestinal Ca2+-binding protein and 

sarcoplasmin Ca2+-binding protein (Table 1-6 and Table 10-2).  The Ca2+-binding sites 

of all these proteins share conserved positions (Table 10-2).  The distance between the 

second and third EF-hand in aequorin and the third and fourth EF-hand structures in 

bovine calmodulin is conserved, suggesting that both have a common evolutionary 

origin (Tsuji et al., 1986).  The photoprotein group differed from other Ca2+-binding 

proteins in that they contained a relatively large number of cysteine, tryptophan, 

histidine, proline and tyrosine residues, suggesting that these residues may have evolved 

as part of the light-emitting mechanism (Tsuji et al., 1995). 
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Table 1-6  Identity between aequorin and other Ca2+-binding proteins.  Mitrocomin, 
obelin and clytin are also photoproteins.  The remaining proteins bind calcium but have 
no light emitting capabilities.  Pairwise alignment and identity calculation was 
performed with BioEdit (Hall, 2007). 

Pairwise alignment of aequorin with:  Reference Identity 

Mitrocomin  GenBank:  AAA29298.1 69% 

Obelin PDB:  1SL7 63% 

Clytin GenBank:  BAG49091.1 58% 

Human calmodulin GenBank:  CAA36839.1 19 % 

Bovine calmodulin PDB:  1PRWA 19% 

Human parvalbumin GenBank:  CAA44792.1 12% 

Intestinal Ca2+-binding protein PDB ID 1B1G 5% 

Sarcoplasmic Ca2+-binding protein PBD ID 2SAS 10% 

Troponin C GenBank:  AAA30011.1 3% 

1.4 Coordination of metals in proteins 

Proteins that chelate metal ions specifically are called metalloproteins.  One third 

of all proteins belong in this category (Palmer, 2002).  Properties of the protein-metal 

interactions, such as coordination geometry, side chain interactions, overall charge and 

size of cavity, all play a role in ion binding and selectivity (Dudev and Lim, 2003).  

There are currently no generic rules on the binding and selectivity of metal ions in 

proteins.  However, the factors required for metal binding are relatively well understood 

and metal-ion binding sites have been attractive targets in protein engineering (Lu and 

Valentine, 1997). 

Metal-ligand (M–L) distances play a central role in metal discrimination in 

proteins.  They reflect the properties of the metal complex, namely the electronic 

distributions of the metal and the ligands, their polarising abilities and interactions, as 

well as the metal coordination number (CN) and coordination geometry, which are key 

factors governing the structure and reactivity of a metal complex (Cotton and 

Wilkinson, 1988).  It has been proposed that it is the protein matrix that dictates the 

specific role of a metal ion and M–L distances have been used to distinguish between 

catalytic versus structural role for Zn2+ in proteins (Kuppuraj et al., 2009).   
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Native metal ions fulfil the best “fit” conditions in metalloproteins, and when 

substituted with an alien ion, their structures adopt different arrangements.  For 

example, Cd2+ can replace the native Zn2+ in Zn-finger motifs in the same tetrahedral 

coordination as the native ion, but it cannot maintain the requisite conformation for the 

DNA-binding function of Zn-finger proteins due to increased metal-protein ligand 

distances (Kuppuraj et al., 2009).  

The preferred coordination geometry for some selected metal ions derived from 

statistical analysis (Harding, 2006) and data collection/observation (Dudev and Lim, 

2003, Rulisek and Vondrasek, 1998), are summarised in Table 1-7 and more analytical 

information is given in the Appendix Chapter 1(Table 10-3).  

Analysis of the preferred coordination geometries and distances in the 

Cambridge Structural Database (CSD) for organic molecules and metal-organic 

compounds (Allen, 2002) shows that small metal ions exhibit a strong preference for a 

particular coordination but the larger metal ions are found in two or more geometries 

with comparable frequencies.  In Table 1-9 some of the existing metal binding sites are 

listed and experimental dissociation constants are provided.  Table 1-8  summarises 

distances of O, N and S around metal ions, taken from PDB and CSD structures.  For 

Asn and Gln, M—O distances are expected to be similar or very slightly longer to 

monodentate carboxylates.  For Ser and Thr, expected M—O distances are between 

those for water and for monodentate carboxylate.  For Tyr, expected M—O distances 

are shorter by ~0.1 Å than for monodentate carboxylate (Kuppuraj et al., 2009).   

Table 1-7  Summary of preferred coordination geometries of metal ions derived from 
PDB and CSD.  The results of the original analysis are presented in Table 10-3.   

Metal ion Preferred coordination geometries 

Co2+ Octahedral 

Cu2+ Square pyramidal or square planar 

Zn2+ Tetrahedral 

Cd2+ Tetrahedral, often octahedral 

Ca2+ Octahedral 

Pb2+ Tetrahedral 
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Table 1-8  Distances around metal ions from the PDB and CSD.  Resolution of PDB 
and CSD structures was less than 1.25 Å and 0.065 Å respectively.  Table reproduced 
from Harding (2006). 

 
*** most reliable values (standard deviation is ≤0.05 Å);  ** standard deviation is ~0.10 Å;       
* standard deviation is 0.15–0.20 Å;  No asterisk:  least reliable 
 
 

For some types of complexes, mainly those of Co2+, Cu2+ and Zn2+, several 

different coordination numbers are found.  The complexes involving water and 

carboxylate donors have metal-ion coordination number six; some Zn2+ and Cu2+ 

complexes are four or five-coordinate and Ca2+ may also be seven- or eight-coordinate.  

Where imidazole is present, most Zn2+ complexes are four-coordinate. Cu2+ is found in 

four-, five- and six-coordinate examples.  In thiolate complexes the common 

coordination numbers are 4 and 6 for Co2+ and mostly 4 for Zn2+, while all the Cu2+ 

complexes are three-coordinate. 

Generally, M–L distances increase with cationic radius but also with metal 

coordination number due to increased electronic and steric repulsion among the 

coordinating ligands.  Donor atoms that can transfer more negative charge to the metal 

centre also result in shorter M–L distances.  It was noted however that the size and 

charge donating ability of the coordinating atom is affected by the size, charge and 

volume of the other constituent atoms of the same ligand.  Exceptional M–L distances 

can also occur.  For example, zinc can make one or more abnormally long (2.3–2.5 Å) 

bonds in addition to the existing four or more typical bond lengths (Harding, 2006).  

Copper ions with coordination numbers 5 or 6 have also resulted in distances in the 

range 2.10–2.91 Å, depending on the ligand (Harding, 2006). 

In order of decreasing prevalence, Ca2+ is typically coordinated to carboxylates, 

carbonyls, water and hydroxyl oxygen atoms, with a coordination number in proteins 

ranging from six to eight.  The ionic radius of a calcium ion is always higher than that 

of Mg2+ for a given coordination number.  In the EF-hands of aequorin calcium binds to 
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six ligands from amino-acid residues and one water molecule, with a coordination 

number of 7 in a pentagonal bipyramidal geometry. 

Zn2+ is most commonly found in the zinc-finger family of proteins which are 

DNA-binding domains that contain zinc-binding motifs including Cys2His2, Cys3His 

and Cys4 metal-binding sites.  Zinc prefers soft ligands such as the sulfide from Cys 

and imidazole nitrogen atom from His, but is also found coordinated to Asp and Glu 

side chains.  In Zn-finger proteins the zinc usually prefers a tetrahedral coordination, but 

it can also adopt five- or six-coordinate geometries.   

Mg2+ binds to ligands of low polarisability, with oxygen being the most preferred 

coordinating atom, followed by nitrogen.  All Mg2+-binding sites in proteins contain at 

least one carboxyl ligand.  Non-charged protein ligands include the side chains of 

Asn/Gln and the backbone carbonyl groups, followed by the Ser/Thr, His, and Tyr side 

chains.  Mg2+ nearly always prefers an octahedral ligand coordination geometry, which 

is complemented by water ligands.  The few Mg2+-binding sequence motifs that have 

been identified include -NADFDGD-, -YXDD- or -LXDD- Table 1-9 (Lu and 

Valentine, 1997). 

 

 



- 55 - 

Table 1-9  Metal-binding sites and experimental metal binding constants for ion-binding proteins.   

1:  Psoriasin is the only member of the S100 EF-hand CaB family that doesn’t bind calcium.  Instead, it exhibits affinity for zinc  2:  Pseudo or variant-EF-
hand is the N-terminal, 14-amino acid EF-hand loop found in members of the S100 protein family.  The N-terminal EF-hand amino acid sequence in protein 
S100b is QYSGREGDKHKLKK (Brodersen et al., 1999).  3:  Canonical EF-hand is the C-terminal, 12-amino acid EF-hand loop normally found in all CaB 
proteins.  The same formation serves as calcium binding site in aequorin (Charbonneau et al., 1985).  NA:  Not available in the particular reference. 

molecule Ca site Zn site Mg site Cu site Kd (M ) Reference 

pseudo EF-hand2    2.8×10-7 
  pseudo EF-hand  3.7×10-4  

canonical EF-hand3    5×10-8 
calmodulin 

  canonical EF-hand  1.7×10-3 

Dudev and Lim, 2003 

pseudo EF-hand    1.8×10-5 
calmodulin 

canonical EF-hand    2.4×10-6 
Porumb et al, 1977 

NA    3.7×1010 
parvalbumin  

  NA  1×10-5  
Dudev and Lim, 2003 

S100A7 (psoriasin) 1  
His-X4-His within pseudo EF-

hand 
  1×10-4 Brodersen, 1999 

S100B  His-X4-His   NA Brodersen, 1999 
S100B    NA 4.6×10-7 Nishikawa et al, 1997 

PrP (priorin protein)     -HGGGW - <5×10-6 Burns et al, 2002 
Different RNA polymerases   -NADFDGD-  NA  Dudev, 2003 

DNA polymerase I    -NADFDGD-  NA Dudev, 2003 
HIV reverse transcriptase   -NADFDGD-  NA  Dudev, 2003 
Reverse transcriptase and 

telomerase 
  

-YXDD- 
-LXDD- 

 NA  Dudev, 2003 

Zinc finger family protein  Cys2His2   NA  Baudier et al, 1986 
Zinc finger family proteins  Cys3His, Cys4   NA  Baudier et al, 1986 

De novo RBP A  His-X-His and His 3   3.6×10-8 Muller and Skerra, 1994 
De novo RBP B  His-X-His and His 3   4.4×10-7 Regan, 1995 
Metallotheionins  NA    1.4×10-13 Heizmann and Cox, 1998 

 

- 55 - 

- 



- 56 - 

1.5 Protein engineering 

Protein engineering is the process of creating new proteins with desirable traits 

and has evolved since the mid 1980s when the first protein mutants were created 

(Ulmer, 1983), into two main branches:  rational design and directed evolution. 

1.5.1 Rational design 

Rational design is specific, deliberate design of a protein, based on knowledge of 

the protein’s structure and function and/or use of structural homology in order to 

achieve new or improved properties.  Rational design relies on well-developed 

mutagenesis techniques and typically involves a limited number of mutations.   

Site-directed mutagenesis (SDM) is a PCR-based method that allows single point 

mutations in the amino acid sequence (replacement, deletion or insertion of a residue) 

(Old, 1994).  Variations of the methods allow alterations in multiple adjacent amino 

acids (Stratagene, 2005)or mutations at up to five different selected sites of the amino 

acid sequence (Hogrefe et al., 2002).   

Seebeck and Hilvert (2003) reported the conversion of a pyridoxal phosphate 

(PLP)-dependent alanine racemase into an aldolase via a single active-site mutation 

Tyr265Ala.  Lawson and co-workers (2009) increased solubility and decreased 

aggregation of 11 beta-hydroxysteroid dehydrogenase type 1 by replacing key 

hydrophobic surface residues with charged glutamic acid. 

The prediction of specific mutations that elicit the desired effect is still very 

difficult in many cases (Dalby, 2003).  Computational protein design algorithms, 

potential functions such as CharmM (Brooks et al., 1983, MacKerel Jr et al., 1998), and 

molecular dynamics simulations (Karplus and Kuriyan, 2005) are available to assist 

rational design, but their low accuracy often results in a need for repeated cycles of 

engineering and experimental testing.  

A branch of protein engineering is the de novo protein design of new 

polypeptides from scratch (DeGrado, 1997).  The number of possible amino acid 

sequence variations is enormous, but only a subset of these variations will fold reliably 

and quickly to a single native state.  De novo protein design involves identifying such 
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sequences, and preferably those with a physiologically active native state.  The holy 

grail of protein engineering is the “true” design of a protein to any specification; that is 

writing down a single sequence that will perform a desired function. 

Successful results in rational protein design depend upon the availability of 

reliable structural information, an understanding of the mechanism of the protein 

function, and either a good predictive method for identifying the structure adopted by 

the newly mutated residues, or otherwise blind faith and intuition.  In computation, the 

limitation is often in the experimental testing; the rate at which hypotheses, 

improvements or new approaches can be verified or rejected is low (Plückthun and 

Mayo, 2007).  Much research currently is taking place into the understanding of protein 

folding and protein recognition for protein design principles, but the details that dictate 

function are still elusive.  An alternative protein engineering approach requiring little or 

no understanding of the tertiary structure and function of the protein of interest is 

directed evolution.   

1.5.2 Directed evolution 

The detailed structural knowledge of a protein is often unavailable, and even 

when it is available, it can be extremely difficult to predict the effects of various 

mutations.  Directed evolution borrows from nature's toolbox of mutational mechanisms 

to alter proteins without requiring any prior knowledge of their structure (Stemmer, 

1994, Arnold, 2001, Arnold et al., 2001, Arnold, 1993, Arnold, 1998).  One directed 

evolution technique applies random point mutagenesis to a protein by for example, 

error-prone PCR (Zhou et al., 1991, Zhao et al., 1998, You and Arnold, 1996) followed 

by a screening regime to identify variants with the desired qualities.  Further rounds of 

mutation and selection are then applied.  This process mimics natural evolution and can 

produce results superior to rational protein design (Dalby, 2003, Dalby, 2011).  DNA 

shuffling is a mix and match of DNA fragments from successful variants to produce 

improved variants (Stemmer, 1994).  This method mimics recombination occuring 

naturally in sexual reproduction.  More recent DNA shuffling techniques such as 

SHIPREC (Sieber et al., 2001), ITCHY (Chopra and Ranganathan, 2003) and 

SCRATCHY (Lutz et al., 2001) swap fragments between completely different non-

homologous proteins.  Using the latter approaches it is possible to explore and combine 
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distant regions of sequence space in combinations that would not have been attempted 

through rational design;  new chimeric proteins with functionality and native folds can 

be created using this approach (Carbone and Arnold, 2007).   

Directed evolution can produce variants with desired properties often through 

mutations that would not have been predicted from knowledge of the original protein’s 

structure.  To success probability of directed evolution depends on having large mutant 

libraries, high-throughput protocols for screening of desired qualities and expensive 

automation to support these functions.  A challenge pertaining to any mutational 

approach – but more so to directed evolution – is that not all desired activities can be 

easily screened for (Goddard and Reymond, 2004).   

1.5.3 Integration of random and rational approaches 

Rational design and directed evolution techniques are not mutually exclusive; 

most researchers use various combinations of rational desing and directed evolution 

strategies to improve or alter proteins.  The best approach is a matter of personal 

preference and decided judged on a case by case basis.  Typically, the protein 

engineering strategy comprises of the following stages:  (1) choice of locations for 

changes based on structural knowledge, homology modelling, sequence comparisons 

and/or computational modelling;  (2) applying random or rational mutagenesis methods 

(using single or multiple substitutions, recombination, permutation, insertions and 

deletions) in the selected regions;  (3) screening or selection for desired properties. 

(Bornscheuer and Kazlauskas, 2009). 

Beneficial mutations for altering specificity and enhancing enantioselectivity are 

most often occurring in enzyme binding sites (Dalby, 2011, Morley and Kazlauskas, 

2005, Kazlauskas, 2005) random mutagenesis within specific regions of binding sites 

can offer an efficient mutational strategy.  Substitutions that increase the catalytic 

activity have been identified within binding/catalytic sites but also are scattered widely 

throughout the protein (Kazlauskas and Bornscheuer, 2009), suggesting that wider areas 

should also be targeted.  

The knowledge of a protein’s structure and computational methods are still not 

solely sufficient to predict and design the most effective mutations.  DeSantis and co-

workers used site saturation mutagenesis (SSM) to find a nitrilase variant with increased 
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enantioselectivity toward an intermediate for the synthesis of atorvastatin.  Dumon and 

co-workers (Dumon et al., 2008) achieved a 25 °C increase in thermostability of 

xylanase by using a combination of random and rational approaches (Gene site 

saturation mutagenesis, GSSM) followed by rounds of GeneReassembly Library 

construction, whereby combinatorial segments were blended;  subtle but beneficial 

changes were created.  The molecular basis for the increased thermostability was 

extraordinarily subtle and these changes would not have been predicted through 

knowledge of protein structure or confirmed computationally.    

The capabilities of protein engineering are constantly expanding through 

advances in computation, mutational/evolutionary technologies, structural biology and 

screening/selection capabilities.  Combination of all the relevant available options will 

be the winning strategy for protein design in the foreseeable future (Plückthun and 

Mayo, 2007).   

1.5.4 Metalloprotein engineering 

The area of design and redesign of metal binding sites is one with an increasing 

publication rate over the past two decades.  The approach consists of starting with a 

naturally occurring, folded, and stable protein scaffold.  By modifying local portions of 

the protein without causing significant perturbation to its folded structure and stability, a 

functional protein with altered or enhanced activity can be created.  Nature has used the 

same approach successfully.  Thousands of protein 3D structures can be classified into a 

limited number of basic scaffolds, while the active-site diversity (such as metal binding 

sites in metalloproteins) has been achieved by evolutionary fine-tuning (Lu and 

Valentine, 1997). 

Metal-binding sites in proteins are attractive targets in protein engineering due to 

their importance in biological functions and relative simplicity compared to other 

protein ligands (Regan, 1995).   

Metal-binding sites have been engineered into proteins for use in immobilised 

metal affinity chromatography.  One example of this approach is a high-affinity zinc site 

engineered into recombinant serum retinol-binding protein (Schmidt et al., 1996).  

Redesign of metal sites in order to change their specificity has also been achieved.  

Restriction endonuclease EcoRV metal-binding specificity was switched from Mg2+ to 
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Mn2+ by a single Ile→Leu mutation (Vipond et al., 1996, Lu and Valentine, 1997).  

Another example was the redesign of the classical blue copper proteins azurin into 

purple CuA protein containing a mixed-valence binuclear copper site, through the use of 

loop-directed mutagenesis (Hay et al., 1996) (Lu and Valentine, 1997).  Cavity 

complementation is a method also used to redesign metal-binding sites.  It involves 

changing one of the ligands to a smaller, non-coordinating ligand such as glycine or 

alanine, thus creating a 'cavity' within the metal-binding site.  Adding different 

exogenous ligands can complement the cavity sterically.  This can either restore the 

activity or result in a new structure and activity (Lu and Valentine, 1997). 

Computational design approaches have also been used to design metal binding 

sites in protein scaffolds (DeGrado, 1997, Kaplan and DeGrado, 2004, Nanda et al., 

2005).  However, this approach is still somewhat embryonic as the ability of the current 

generation of molecular dynamics force fields to properly describe metal pockets is 

severely lacking due to the intrinsic difficulty of handling polarisation and charge 

transfer contributions (Dal Peraro et al., 2007). 

1.6 Overview 

1.6.1 Aequorin mutants as potential bioreporters 

Aequorin has been the preferred intracellular calcium sensor, used for 

interrogating a wide range of biological processes in eukaryotic cells, including gene 

expression, muscle contraction, glycolysis, cell division and growth (Dudev and Lim, 

2003).  Many metal ions play a key role in the metabolism of the cell, and particularly 

zinc and copper have been found to participate in brain function and have been 

associated with degenerative brain diseases.  Currently, the scientific toolbox lacks 

established intracellular reporters with a set of advantages similar to that of aequorin.   

The wealth of knowledge available in the literature that explores the preferred 

coordination and parameters affecting ion binding in proteins could be very useful in 

altering the specificity of the protein for other ions.  Previous mutational studies on 

aequorin and the EF-hand domains of other proteins suggest that it is possible to 

modulate the affinity of the calcium-binding loop, shift the spectral emission, and alter 
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the kinetics of the light-emitting reaction mechanism through mutagenesis of aequorin 

(Section 5.2). 

1.6.2 Potential activator ions for aequorin mutants 

The metal ions tested in the scope of this work as potential activators for 

aequorin and mutant variants thereof are:  calcium, zinc, copper, cadmium, lanthanum, 

cobalt and lead.  Since considerable time, effort and resources would be invested in 

creating both the library and the screening assay, it made sense to include as many ions 

as possible in order to allow space for serendipity.  As it is not possible to predict the 

effects of the mutations, it may be that by serendipity, the preference of aequorin could 

be tweaked towards an ion that is not at the top of the list in terms of biological 

relevance, but still of great value for environmental studies.   

Monovalent ions were excluded on the basis of their low charge and reported 

inhibition (Section 1.3.7, Table 1–5).  Divalent ions would be more likely to bind tightly 

to the EF-hand loop and at least one member of the lanthanides (trivalent) would be 

used as these metals are known aequorin activators (Le Clainche et al., 2003).  Calcium, 

as the natural activator and lanthanum (as representative of the lanthanide group) were 

obvious choices.  Zinc and copper became primary choices for study as they are 

associated with brain diseases which have become of ever increasing interest in the 

recent years (Barkalifa et al., 2009, Faller, 2009, Gu et al., 2009, Marino et al., 2010).  

Cadmium prefers coordination geometry similar to that of calcium and has been used as 

a substitute for calcium in crystallographic studies, thus it would be interesting to 

observe its effect on aequorin mutants.  Cobalt and lead were chosen on the basis that 

aequorin potentially showed some positive response to these ions.  Iron (valence II and 

III) was excluded based on Table 1–5 and magnesium was excluded as it is known to 

stabilise aequorin and prevent calcium-independent luminescence (Ohashi et al., 2005) 

which means it is bound in the EF-hands without triggering the light emitting reaction.   
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1.7 Aims and organisation of thesis 

The main aim of this project was to create a novel metal ion sensor through 

protein engineering, using wild-type aequorin as template.  The envisaged molecule 

would have new specificity for a divalent ion other than calcium but otherwise retain its 

ion-triggered light-emitting reaction.  Hence, it would have the potential to offer as 

much insight into the role of different metal ions as aequorin has for intracellular 

calcium.  In order to pursue the main aim, the work in this project was broken down into 

several stages, addressed in Chapters 3 to 8. 

Subcloning of the apoaequorin gene into a suitable expression vector is described 

in Chapter 3.  Chapter 4 discusses the development of a high-throughput screen capable 

of identifying the desired activity in mutant microwell cultures.  Protein engineering can 

lead to dramatic changes (positive or deleterious in the majority of cases) or small, 

gradual steps towards a desired protein function.  The sensitivity of such a screen must 

be maximised in order to identify slight changes within the mutant library.  Steps taken 

for this purpose included:  (1) selecting between expression vectors for the best 

candidate;  (2) selecting the E. coli strain for the highest expression of the mutant 

library;  (3) developing an effective procedure for reconstitution of the holoprotein 

mutants;  (4) producing the highest possible activity levels from the functional protein 

variants;  (5) extracting the maximum value from the screen.   

The structure of aequorin in relation to calcium binding and light emission is 

discussed in Chapter 1 and additional insight gained from analytical structural analysis 

of aequorin (published and author’s own) and published mutational studies of aequorin 

and other calcium-binding formations are presented in Chapter 5.   

The mutational strategy is discussed in Chapter 5.  Even though both rational and 

directed evolution methods, and various combinations of both are promising, an EF-

loop targeted mutational strategy was chosen as it was considered more likely to 

drastically change the ion selectivity within the time constraints of the project.  The 

focus is on the individual residues in the calcium coordinating positions of each EF-

hand; they were substituted with cysteine and histidine, which are the prevalent residues 

in copper and zinc-binding sites.  More mutations (alanine substitutions and impairment 

of EF-hand flexibility) were introduced to study the importance of specific amino acids 

or individual EF-hands.  A total of forty eight mutants were designed. 
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Implementation of the high-throughput screening assay on the aequorin library is 

described in Chapter 6, where the complete library of mutants was tested against seven 

different metal ions.  The screening results were analysed in detail and a few selected 

mutants were chosen as candidates for further analysis.  Chapter 7 describes the 

preparation of high purity wild-type aequorin and one of the selected mutants 

(Asn28Cys/Ser32His) for testing against the set of the seven ions and Chapter 8 studies 

the response of the purified molecules to the same set of ions without the potential 

interferences from bacterial culture components of the crude screen.  Conclusions drawn 

and future work arising from this research are presented in Chapter 9. 
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2 Materials and Methods 

This chapter is organised as follows:  Standard buffers and media, standard 

materials and methods in cell culture, DNA, protein and metal ion solution preparations.  

Where modifications of any of the procedures were necessary for method development 

or sample preparation, those will be described in the respective sections of Chapters 3-8.  

Automation-based methods (liquid handling and colony picking) are described in 

Chapter 4. 

2.1 Preparation of buffers and media 

All chemicals used were of Molecular Biology grade and purchased from Sigma-

Aldrich Company Ltd, unless stated otherwise.  Buffers and media for molecular 

biology were prepared according to (Sambrook et al., 1989).  Standard molecular 

biology protocols for glycerol stocks, overnight cultures, and streaked plates were from 

the same reference, unless otherwise stated.  All solutions and buffers were prepared 

with R.O. water from an Elix Millipore purification system. 

2.1.1 LB medium 

LB (Luria Bertani) medium was prepared by dissolving 10 g tryptone, 5 g yeast 

extract and 10 g NaCl in 1 L of deionized water. The pH of LB medium was adjusted to 

7.0 with concentrated NaOH solution and the medium was autoclaved at 121 °C and 

1.2 atm for 20 min.   

2.1.2 LB agar 

LB agar was prepared by adding 2% w/v bacteriological agar in LB medium.  It 

was used to fill Petri dishes (agar plates) for growth of solid cultures.  The mix was 

sterilised by autoclaving as above.  Petri dishes were partially filled with warm liquid 

LB agar containing added antibiotics.  
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2.1.3 YT agar 

YT (yeast extract and tryptone) agar is a nutrient-rich medium designed for 

growth of recombinant strains of E. coli on agar plates.  YT was prepared by dissolving 

8 g tryptone, 5 g yeast extract and 5 g NaCl and 15 g of bacteriological agar in 1 L of 

deionised water, with adjustment to pH 7.0 and autoclaving as above. 

2.1.4 SOC medium 

SOC (Super Optimal broth with catabolite suppression) medium is a nutrient-

rich bacterial growth medium which results in higher transformation efficiencies of 

plasmids.  SOC medium was prepared by dissolving 20 g tryptone, 5 g yeast extract,  

0.58 g NaCl and 0.19 g KCl in 1 L of deionized water and pH was adjusted to 7.0 with 

concentrated NaOH solution.  After autoclaving, the following filter-sterilised solutions 

were added:  20 mM glucose and 10mM MgCl2. 

2.1.5 Kanamycin 

Kanamycin stock solutions were prepared at 10 mg/mL in RO water, sterilised 

by filtration through a 0.2 µM Minisart® filter (Sartorius Stedim Biotech), aliquoted into 

1.5 mL eppendorfs and stored at −20 °C.  Working concentration of kanamycin in liquid 

cultures and agar plates was 50 µg/mL.  Preparations containing 50 µg/mL of 

kanamycin are denoted Kan+ in the text. 

2.1.6 Ampicillin 

Ampicillin stock solutions were prepared at 10 mg/mL in RO water, sterilised by 

filtration through a 0.2 micron Minisart® filter and aliquoted into 1.5 mL eppendorfs 

and stored at −20°C.  Working concentration of ampicillin in liquid cultures and agar 

plates was 150 µg/mL.  Preparations containing 150 µg/mL of ampicillin are denoted 

Amp+ in the text. 
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2.1.7 X-gal 

X-gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside) is used to indicate 

whether a cell expresses the β-galactosidase enzyme, which is encoded by the lacZ 

gene, in a technique called blue/white screening. If X-gal and an inducer of β-

galactosidase (usually IPTG) are added in a bacterial culture, colonies carrying a 

plasmid which encodes for the lacZ gene are able to produce the enzyme β-

galactosidase which can then cleave the X-gal present within the nutrient agar, resulting 

in a blue colony.  Bacteria which are not transformed with a plasmid encoding for the 

lacZ gene or where the lacZ gene has been interrupted by a cloned DNA sequence 

remain white.  Blue/white screening was not applicable in the case of E. coli strain 

BL21(DE3)1SHOT which encodes for lacZ in its genomic DNA. 

X-gal stock solution was prepared at 20 mg/ml by dissolving into DMSO 

(dimethyl sulfoxide).  Tubes containing the stock solution were wrapped in foil for 

protection against light and stored at −20 °C.  X-gal solutions do not require sterilisation 

(Sambrook et al., 1989).  X-gal was either spread on top of pre-made agar plates (40 µL 

of stock solution) or poured into melted agar at ~55 °C (final concentration 40 µL/mL).  

IPTG was added to 0.1 mM final concentration in the media.   

2.1.8 Tris-HCl buffer 

1 M stock solutions of Tris-HCl (tris(hydroxymethyl)aminomethane 

hydrochloride) of pH 7.2, 7.5 and 7.8, molecular biology grade, were purchased from 

Sigma-Aldrich.  This ensured the lowest possible (and measured) contamination from 

various metal ions which may activate aequorin or aequorin variants. 

2.1.9 EDTA 

0.5 M EDTA (ethylenediamine tetraacetic acid) stock solution at pH 8.0 was 

purchased from Sigma-Aldrich at molecular biology grade. EDTA solution is prepared 

by dissolving the appropriate mass of EDTA disodium salt in deionized water and 

adjusting the pH to 8.0 with NaOH concentrated solution. 
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2.2 Cell culture 

2.2.1 E. coli strains 

2.2.1.1 TOP10 electrocompetent 

E. coli TOP10 electrocompetent cells (Invitrogen) were used for routine cloning:  

transformation and storage of plasmids, production of plasmid DNA.  Their genotype is:  

F– mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆(ara leu) 

7697 galU galK rpsL (StrR) endA1 nupG.   

2.2.1.2 BL21Star™(DE3) 

BL21Star™(DE3) electrocompetent cells from Invitrogen and Lucigen were 

used in this work.  E. coli BL21Star™ (DE3) electrocompetent cells (Invitrogen) were 

used in protein expression applications.  This strain is suitable for production from 

target genes cloned into T7 driven expression vectors and deficient in RNAseE 

(me131).  The Invitrogen BL21Star™ (DE3) genotype is:  F– ompT hsdSB(rB–, mB–) 

gal dcm rne131 (DE3).    

BL21(DE3) E. cloni™ electrocompetent cells from Lucigen were also used in 

protein expression applications.  This strain exhibits high transformation efficiency and 

is suitable for production from target genes cloned into T7 driven expression vectors 

and deficient in the lon and ompT proteases.  The Lucigen BL21(DE3) E. cloni™ 

genotype is:  F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80dlacZ∆M15∆lacX74 endA1 

recA1araD139 ∆(ara, leu)7697 galU galK rpsL nupG λ- tonA. 

2.2.2 Streaked plates 

Streaking a plate allows the bacteria to be spread out so that a colony from a 

single bacterium can be isolated from a culture sample.  Cultures were streaked out on 

Petri dishes containing Kan+ (or Amp+ where appropriate) LB agar.  Each plate was 

incubated at 37 °C overnight and stored at 4-6 °C for approximately one week. 
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2.2.3 Overnight cultures 

A single colony was picked from a Petri dish using a sterile loop or sterile 

toothpick into 5 mL of LB medium in a 50-mL Falcon tube.  The tube was incubated 

overnight at 37 °C with 225 rpm agitation. 

2.2.4 Shake flask cultures 

Appropriate volume of the overnight culture was added to sterile LB medium in 

250-, 500-mL or 2-L Erlenmeyer flask and incubated for 8 h at 37°C with 225 rpm 

agitation.  For a 5% inoculation 5 mL of overnight culture was added to 95 mL fresh 

medium in a 500-mL flask. 

2.2.5 Glycerol stocks 

Glycerol stocks at 20% (v/v) were used for long term storage of DNA constructs.  

To create a glycerol stock, a single colony of each clone was picked from an agar plate 

and grown overnight as described in Section 2.2.3.  Samples from the overnight culture 

and 40% v/v sterile glycerol solution were mixed in a one to one volume ratio and 

aliquots were stored stored at –80°C, in sterile eppendorf tubes or microplates. 

2.2.6 Sonication 

Sonication was performed in an MSE Soniprep 150 (Sanyo Europe Ltd.).  One 

milliliter of culture was transferred into a 1.5-mL eppendorf tube which in turn was 

packed into a small beaker containing ice.  The sonicator probe was placed in the 

culture and the cells were lysed on ice using a protocol of 10 s on/off for 10 cycles at 

8 µm amplitude. Cell debris was removed by centrifugation at 1,600 rpm for 20 min. 
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2.3 DNA  

2.3.1 Preparation of plasmid DNA 

Isolation of plasmid DNA from E. coli cultures was performed using Qiaprep 

mini- and midi-preparation kits, purchased from Qiagen Ltd. and the procedure 

followed was according to the manual. 

Purification of DNA products from polymerase chain reaction mixtures was 

performed using Qiaquick PCR purification kit and according to Qiagen’s manual. 

DNA gel extraction from low melt agarose electrophoresis gels was performed using 

Qiaex II Gel Extraction kit from Qiagen Ltd. 

2.3.2 PCR amplification 

PCR reactions were performed on a Techgene Thermo Cycler or a Techne 

thermal cycler, when gradient PCR was required.  Samples were loaded and prepared 

with DNAse and RNAse-free, low-retention tips and eppendorfs from Molecular 

Bioproducts Inc.  PfuTurbo
® DNA polymerase was from Stratagene Inc. and ProofStart 

DNA polymerase was purchased from Qiagen.  The template method used is presented 

in Table 2-2; where any deviations where applicable, those will be presented in the 

relevant sections. 

Table 2-1  PCR mix – general cloning 
Component Volume 

10× Reaction Buffer 5 µl 

5–50 ng of dsDNA template X µl 

125 ng of oligonucleotide primer #1 1.25 µl (stock 100ng/µl) 

125 ng of oligonucleotide primer #2 1.25 µl (stock 100 g/µl) 

dNTP mix 1 µl 

ddH20 up to 50 µl 

PfuTurbo DNA polymerase (2.5 U/µl) 1 µl 
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Table 2-2  PCR cycles – general cloning 
PCR Step Duration (min) Temperature (°C) 

Initial activation  
(required with HotStart enzymes, e.g. ProofStart) 

 
5 

 
95 

3-step cycling, 35 cycles:   

Denaturation 1 94 

Annealing 1 69* 

Extension 1 72 

Final extension 7 72 

End of PCR cycling: Indefinite 4 

* a range of annealing temperatures was tested (50-72 ºC).  69 °C were found to be the optimum 
for all amplifications of the apoaequorin gene (Section 3.3.3 and 3.4.2.2), while 60 °C were 
sufficient for the amplification of pET components (Section 3.4.2.2). 

 

 

2.3.3 QuikChange® site-directed mutagenesis 

QuikChange® II SDM (Stratagene Ltd.) is a rapid four-step procedure 

(Stratagene, 2004b).  The basic procedure is shown in Figure 2-1.  It utilises supercoiled 

dsDNA vector as template and two oligonucleotide primers containing the desired 

mutation.  PfuTurbo
® DNA polymerase is used to extend the primers and generate a 

mutated plasmid containing staggered nicks.  The product is then treated with 

endonuclease Dpn I to digest the methylated parental DNA template and to select for 

mutation-containing synthesised DNA (non-methylated).  The nicked vector DNA 

containing the desired mutations is transformed into electrocompetent cells.  After 

transformation the nicks in the mutated plasmid are repaired by the host cell. 
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Figure 2-1  Schematic of QuikChange® II Site-Directed mutagenesis method.  Image 
reproduced from Stratagene (2004b). 

 

In this work QuikChange® Site-Directed Mutagenesis (SDM) protocol was used 

with only minor variations.  PfuUltra High Fidelity DNA polymerase (used instead of 

PfuTurbo for its higher fidelity) was used to extend the primers and generate a mutated 

plasmid containing staggered nicks.  Primers were approximately 45 bases in length, 

with a melting temperature of ≥78°C.  A 25 µl QuikChange® reaction mix (Table 2–3) 

was submitted to a program of temperature cycling (Table 2–4) in a PCR thermal cycler 

(Techne Ltd.).  Typically, a master mix would be created for the number of reactions 

carried out on the day and aliquoted out; DMSO, MgSO4, Qsolution or water would be 

added, where applicable, for a final volume of 25 µl.  The QuikChange® reaction was 

digested with 0.6 µL (or 1.53 U) of Dpn I (Stratagene Ltd.) for one hour at 37 °C, 

followed by a second addition of 0.6 µL Dpn I in the mix and incubation for an 

additional hour at 37 °C.  One microliter of the digestion was transformed into 

competent E. coli TOP10 electrocompetent cells (Invitrogen) by electroporation 

(Section 2.2.1.1 and 2.3.8).  The transformed cells were spread on LB Kan+ agar.  

Plasmid DNA was prepared (Section 2.3.1) from overnight cultures (Section 2.2.3) of 

one colony per PCR reaction, checked for correct size on DNA agarose gels (Section 

2.3.9) and mutations were verified through sequencing (Section 2.3.4). 
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             Table 2-3  PCR mix – QuikChange® 
Component Volume (µL) 

10x reaction buffer * 2.5 

dNTP mix (10 mM of each) 1 

Sense Primer (62.5 ng per 25 µl reaction) Variable 

Antisense Primer (62.5 ng per 25 µl reaction) Variable 

Pfu UltraHigh Fidelity (2.5 U/µL) 0.25 

Template DNA (5 ng in 25 µl) 0.25 

25 mM MgSO4 Optional 

DMSO Optional 

Qsolution Optional 

RNAse-free H2O Top up to final volume 

Total Volume (µL)  25 

* 10× Reaction Buffer contains: 100 mM KCl, 100 mM(NH4)2SO4, 200 mM Tris-HCl (pH 8.8), 
20 mM MgSO4, 1% Triton® X-100, 1 mg/ml nuclease-free bovine serum albumin (BSA).  
Qsolution: PCR additive (proprietory content) by Qiagen, for amplification of templates that are 
GC-rich or have extensive secondary structure.  Additional concentrations in the final mix of the 
optional chemicals for each reaction are presented in Table 6 1.  
 

        Table 2-4  PCR cycles – QuikChange® 
PCR Step Duration (min) Temperature (°C) 

Initial activation  
(applies only to ProofStart) 

 
30 s 

 
95 

3-step cycling, 35 cycles: 12–18  

Denaturation 30 s 94 

Annealing 1 min * 

Extension 1 min/kb of plasmid length 68 or 72 

Final extension 5 min 72 

End of PCR cycling: Indefinite 4 

*  a range of annealing temperatures was tested (50–69 ºC).  Final temperatures per individual 
reaction for all QuikChange® mutants in Table 6-1. 
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2.3.4 Sequencing 

All DNA samples were sequenced at the Scientific Support Services of the 

Wolfson Institute for Biomedical Research, UCL.  For the sequencing reactions the 

following amount of DNA was prepared:  100 ng/µL for plasmids, 1 ng/µL per 100 bp 

for PCR product, at 10 µL of template per reaction.  Primers were prepared at 

2-5 pmoles/µL at 6 µL per reaction.  

2.3.5 Oligonucleotides for amplification and sequencing 

Primer sequences were designed using Bioedit software.  Calculation of 

annealing temperatures and testing of oligos for dimers and hairpin loops was 

performed on AnnHyb (Friard, 2004).  All primers were from Operon Biotecnologies 

GmbH, with the exception of primers M13-20, M13-40 (supplied by Wolfson Institute) 

and primers T7 promoter, T7 terminator purchased from Novagen.  Sequences of the 

primers used for PCR and sequencing reactions are shown in Table 3-1 and Table 3-3.  

Primers M13-For and M13-Rev were supplied in the TOPO® ligation kit (Invitrogen).  

Where restriction sites were to be introduced (refer to TOPO® cloning Section 3.4.2) the 

design of primers met the following criteria:  (1) restriction sequences should be unique 

both in the template and in the destination plasmid;  (2)  corresponding restriction 

enzymes would leave cohesive ends,  (3)  restriction sites subject to Dcm, Dam and 

EcoR methylation were excluded and (4)  all selected restriction enzymes are active in 

Universal Buffer by NEB, so that double digests can be performed. 

2.3.6 Restriction digests 

Restriction digests were performed to unravel circular, supercoiled and plasmid 

DNA dimer forms of pHAQ, pET26b and pETAQ and to shave off bases from PCR 

constructs described in Chapter 3.  A typical mixture of restriction digest is shown in 

Table 2-5.  All other digestion reactions performed were adapted to this protocol.  

Diagnostic digests were usually performed in 25 µL of final volume, while preparative 
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digests were performed in a total volume of 50 µL.  Xho I, Msc I, BamH I, Sand I and 

Nhe I restriction enzymes were purchased from New England Biolabs Inc. 

                                  Table 2-5  Double digestion reaction mixture 
Diagnostic Preparative Component 

         Volume (µL) 

H2O x 2 × x 

NEB Buffer 4 2.5 5 

BSA solution 2.5 5 

DNA template y 2 × y 

R.E.1 (1 U/µL) 1 2 

R.E.2 (2 U/µL) 0.5 1 

Final volume 25 50 

                                    x:  added water to a final volume of 25 µL  
                                    y:  appropriate volume containing 1000 ng of PCR2 or 500 ng of pET26b 
                                    R.E.1: Restriction enzyme 1 (e.g. Msc I) 
                                    R.E.2:  Restriction enzyme 2 (e.g. XhO I) 

2.3.7 Ligation 

2.3.7.1 Standard ligation 

UltraClone DNA ligation and transformation kit, containing E. cloni™ 

electrocompetent cells was purchased from Lucigen, USA, were used for the pET 

cloning approach (see Chapter 3).   

The cut vector and insert were quantified by measurement of UV Absorbance. 

The appropriate amount of insert and vector was determined in order to satisfy the 3:1 

molar ratio of insert to vector.  The ligation reaction was prepared as seen in Table 2-6 

and the components mixed by gentle pipetting. The reaction mixture was incubated at 

room temperature for 10 min and immediately after the ligation the mixture was 

incubated at 70 °C for 15 min to terminate the reaction. 
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                       Table 2-6  CloneSmart® ligation mixture 
Component Volume (µL)  

Vector x 

Insert y 

CloneDirect 10xLigation Buffer 1 

CloneSmart DNA ligase 1 

H2O z 

Final volume 10 

                        x:  appropriate volume containing 0.03 pmol vector 
                        y:  appropriate volume containing 0.1 pmol insert  
                        z:  added water for final volume of 10 µL 
 

2.3.7.2 Ligation of TOPO® open vector 

Zero Blunt® TOPO® vector kit with One Shot electrocompetent cells was 

purchased from Invitrogen and used for the TOPO® cloning approach (Chapter 3, 

Section 3.4.2). 

                           Table 2-7  TOPO® capture vector ligation mixture 
Component Volume (µL) 

Fresh PCR product (PCR4) 3 

Dilute salt solution (provided in kit) 1* 

H2O 2 

pCR® II-Blunt-TOPO® 1 

Open TOPO® capture vector 1 

Final volume 6 

                             * recommended:  0.5–4 µL 
 

The ligation mix consisted of 3 µL of blunt ended PCR product, dilute salt 

(provided in Kit), water and TOPO® open vector as shown in Table 2–7.  The mix was 

incubated for 5 min at RT.  The transformation procedure was:  2 µL of the ligation 

mixture were transferred into 50 µL of Top10 One Shot® electrocompetent E. coli that 

had been completely thawed on ice.  

Falcon tubes with 5-10 mL Luria-Bertani media containing 100 mg/L of 

ampicillin were inoculated with transformants and placed in a shaking incubator at 

37°C, 200 rpm agitation for 12 h.  Cells that contain non-recombinant vector (no insert) 
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are killed upon plating as successful ligation would cause disruption of the lethal E. coli 

gene ccdB (Bernard et al., 1994) (Invitrogen, 2004).  

2.3.8 Electrocompetent cell transformation 

Electroporation was performed on a Micro-Pulser Electroporator from Bio-Rad 

Laboratories, according to the manufacturer’s instructions for the electroporation of 

bacterial cells.  0.1 cm electroporation cuvettes were from Bio-Rad Laboratories. 

E. cloni™ electrocompetent cells (Lucigen) were left to thaw on wet ice and 

aliquoted in pre-chilled eppendorf tubes (25 µL of cells per tube).  1 µL of the heat 

denatured reaction mixture was added to the cells and stirred briefly using a sterile 

pipette tip.  The cell/DNA mixture was pipetted into pre-chilled electroporation 

cuvettes.  The cuvette was flicked downward so as to deposit the cells across the bottom 

of the well, followed by electroporation.  Within 10 s of the pulse, 980 µL of SOC 

medium were added to the cuvette and cells were resuspended by gentle pipetting.  The 

mixture was transferred to a 15 mL centrifuge tube and incubated at 250 rpm and 37 °C 

for 1 hour to allow expression of the antibiotic resistance genes.  The transformed cells 

were spread on agar plates containing 50 µg/mL kanamycin and plates were incubated 

at 37°C overnight.  This culture was used for further growth of the transformed clones 

for preparation of glycerol stocks and plasmid extraction with Qiagen miniprep kit. 

In a similar manner, One Shot TOP10® Electrocomp™ electrocompetent cells 

were transformed according to the Invitrogen Instruction Manual (Invitrogen, 2004). 

2.3.9 DNA agarose gel electrophoresis 

Agarose gel preparation and casting was according to (Sambrook et al., 1989).  

The most commonly used buffers for electrophoresis of DNA are TAE (Tris-acetate-

EDTA) and TBE (Tris-borate-EDTA).  A concentrated (10x) stock solution of TBE was 

supplied by Bio-Rad Laboratories.  Higher concentrations of agarose allow separation 

of lower molecular weight DNA molecules, while low agarose concentrations allow 

resolution of higher molecular weight DNA molecules.  Table 2–8 presents the agarose 

gel concentration used for various DNA fragment sizes. 
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                                     Table 2-8  Agarose gel concentrations 

Agarose and low-melt agarose were purchased from Sigma-Aldrich.  Agarose 

was used for visualisation and low-melt agarose for preparatory electroporation 

(followed by gel extraction). 

Typically 0.8% or 1% were used for visualisation of plasmids and 1.2% gels 

were used for visualisation of PCR constructs.  The wells of the gel lanes were loaded 

with 3 µL or 6 µL of DNA samples mixed with 6x DNA loading buffer (Novagen).  The 

wells of the lanes containing DNA ladders were loaded with 5 µL Perfect 1kb DNA 

ladder (0.5–12 Kb) or PCR markers (50 bp–2 Kb), as required, both purchased from 

Novagen.  Visualisation of DNA electrophoresis gels was performed on a Gel Doc 2000 

from Bio-Rad Laboratories. 

2.3.10 Absorbance measurement of DNA  

Measurement of DNA absorbance was performed on a UV2 spectrophotometer 

by Unicam Ltd, in quartz cuvettes by Sigma-Aldrich Company Ltd. Absorbance of 

DNA was measured at 260 nm and 280 nm after appropriate dilutions to absorbance 

values <1.0 AU (Absorbance Unit). 

DNA fragment size (Kb) % agarose gel 

1–30 0.5 

0.8–12 0.75 

0.5–10 1.0 

0.4–7 1.25 

0.2–3 1.5 

0.01–0.5 2–5 
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2.4 Protein 

2.4.1 Determination of protein 

2.4.1.1 Determination by UV absorbance 

Protein concentration of purified protein samples (used in Chapter 8) was 

determined by measuring the absorbance (A) at 280 nm and converting to concentration 

through the Beer-Lambert law:  

                 ClA E cm
⋅⋅=

%1.0

1
      Equation 2.1 

where %1.0
1cmE  is the mass extinction coefficient for a 0.1% or 1 mg/mL protein 

solution, l is the pathlength (cm) and C is the protein concentration (mg/mL).  This is an 

excellent method for measuring protein concentrations provided that an accurate value 

of %1.0
1cmE  is available and that the sample is of high purity.  A280 absorbance 

measurements of purified protein were performed on a Nanodrop (Thermo Scientific).  

The value for molar extinction coefficient of aequorin was derived from previously 

published literature %1.0
1cmE  at 280 nm =3.0 (Shimomura et al, 1990) and verified from 

280 nm absorbance measurements of pure, commercially available aequorin (Aqualite® 

Molecular probes). 

An established and well-trusted method for estimating molar extinction 

coefficient ε for proteins is the Edelhoch method (Pace et al., 1995), based on the 

protein’s content of tryptophan, tyrosine and cystine (disulfide bonds).  An extinction 

coefficient of aequorin could not be calculated using the Edelhoch method as it that 

designed for polypeptide chains; aequorin is comprised of a polypeptide chain and a 

prosthetic chromophore and the extinction coefficient of aequorin is not the product of a 

simple addition of the extinction coefficients of the participating molecules. 

2.4.1.2 Determination by Bradford assay 

For the determination of total protein concentration the Bradford assay was used 

(Bradford, 1976). Bradford is a colorimetric protein assay based on an absorbance shift 

of the dye Coomassie Brilliant Blue G-250 under acid conditions when a redder form of 

the dye is converted into a bluer form on binding to protein.  Binding of the protein 
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stabilises the blue form of Coomassie dye, thus the amount of complex present in 

solution is a measure for the protein concentration by use of an absorbance reading at 

595 nm.  Protein standard solutions must be prepared in the same buffer as the samples 

to be assayed.   

Coomassie Brilliant Blue G-250 stock solution was purchased from Bio-Rad and 

used in an appropriate dilution.  A standard curve was made using bovine serum 

albumin (BSA) from Sigma-Aldrich.  When the standard procedure was used, 1 mL of 

each sample or BSA standard solution was mixed with 1 mL of Bradford reagent 

diluted 1:2, and absorbance at 595 nm was recorded.  BSA standard solutions ranged 

from 0.015 to 0.125 mg/ml.  When performing the assay in microtiter plates, 10 µL of 

sample or BSA standard solution were mixed with 200 µL of Bradford reagent diluted 

1:5 and protein standards were ranged from 0.05 mg/ml to 0.5 mg/ml. In the Nanodrop 

determination 10 µL of sample or standard solution were mixed with 10 µL of 1:2 

diluted Bradford reagent and protein standards were 0.015–0.125 mg/ml. 

2.4.2 Protein size – SDS-PAGE 

Electrophoresis of protein samples was carried out using 12% and 15% w/v 

polyacrylamide gels.  Gels were purchased from Bio-Rad while SDS running buffer was 

prepared as in (Sambrook et al., 1989).  Each sample was diluted 1:1 (or at other 

appropriate ratio) with SDS loading buffer, purchased from Bio-Rad.  Samples were 

heated at 95 °C for 5 min prior to electrophoresis.  To determine the size of a sample 

protein, a series of standards (proteins of known molecular weight) were loaded in 

adjacent lanes of the gel.   

Precision Plus Protein™ Standards, containing ten recombinant protein bands 

(10 kDa–250 kDa) pre-stained with Coomasie Blue were purchased from Bio-Rad 

Laboratories, Inc.  These standards contain three bands (25 kDa, 50 kDa and 75 kDa) 

which are three times as intense as the other bands and pre-quantified protein 

bandswhich can be used for a rough approximation of a protein of interest. 
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Figure 2-2  Protein ladders used in SDS protein electrophoresis. 

 

2.4.2.1 Protein quantity by SDS-PAGE 

The Precision Plus Protein™ Standards contain three bands (25 kDa, 50 kDa and 

75 kDa) which are three times as intense as the other bands and pre-quantified protein 

bands which can be used for a rough approximation of a protein of interest by 

densitometry.  This method was used only as a rough guide and not relied upon for 

accurate quantification of protein.  

2.4.2.2 Protein sample purity by SDS-PAGE 

Pre-cast Ready Gel® Tris-HCl, 12% and 15% polyacrylamide gels for protein 

electrophoresis were purchased from Bio-Rad Laboratories.  The SDS running buffer 

was 50 mM Tris-HCl, 0.38 M glycine, 0.1% (w/v) SDS in RO water, adjusted to pH 

8.8.  The staining solution was 0.05% (w/v) Coomassie Brilliant Blue, 50% (v/v) 

methanol, and 10% (v/v) acetic acid in RO water.  Protein ladders used were Presision 

Plus Standards (Bio-Rad Laboratories) and Benchmark Protein Ladder (Invitrogen) 

(Section 2.4.2.1, Figure 2-2). 
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2.5 Metal ion concentration 

2.5.1 Ion solution preparation 

All metal ion salts and Tris-HCl stocks were purchased from Sigma Aldrich.  

Stock solutions were created by weighing chloride ion salts (nitrate salt in the case of 

lead) into polypropylene volumetric flasks, suitable for atomic absorption assays.  All 

metal salts were diluted in 50 mM Tris-HCl pH 7.5 buffer with the exception of lead 

nitrate, which precipitates in Tris-HCl and R.O. water was used instead.  Serial dilutions 

were performed to obtain solutions in a wide range of nominal concentrations down to a 

few micromolar (µM).  To correct for possible dilution errors and salt precipitation of 

the stock solutions, the solutions were tested for ion concentration with atomic 

absorption (Section 2.5.2) and the nominal metal ion concentrations were corrected 

where necessary.  The corrected ion concentration values were used in Chapters 7 and 8.  

Blank buffers containing 50 mM Tris-HCl 10 µM EDTA pH 7.5 were also tested for 

total calcium contamination which was found to be 2.1×10-7 M. 

 

                   Table 2-9  Metals in the form of hydrated salts.   
Salt  Purity  

Calcium chloride hexahydrate CaCl2·6H2O 99+% 

Cobalt chloride hexahydrate CoCl2·6H2O 99-102% 

Cadmium chloride  CdCl2   99.99+% 

Copper sulfate pentahydrate CuSO4·5H2O 99.99+% 

Lanthanum chloride heptahydrate LaCl3·7H2O 99.99+% 

Zinc chloride  ZnCl2 99.999+% 

Lead nitrate  Pb(NO3)2 99.99+% 
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2.5.2 Atomic absorption 

Atomic absorption measurements were conducted by ICP-AES (Inductively 

Coupled Plasma Atomic Emission Spectrometry) on a Varian VISTA PRO by the 

Natural History Museum Analytical imaging facilities department.  This method enables 

the detection of major, minor and trace elements in sample solutions.  Samples are 

dispersed into a stream of argon gas through a nebuliser and carried to an ICP.  As the 

sample atoms are excited in the ICP they lose electrons.  As they regain their lost 

electrons the sample atoms emit photons of light, with wavelengths characteristic of the 

elements present.  A spectrometer is used to separate the light emitted into the various 

wavelengths and these are detected and recorded simultaneously using a solid-state 

detector. 

2.6 Automation 

2.6.1 Automated colony picking 

A Qpix2 robot (Genetix Ltd.) was used to pick colonies of E. coli.  The robot 

was programmed to inoculate every well of a 96-DSW (deep square well) plate with 

colonies of E. coli from petri dishes.  Each plate was sealed by adjusting firmly an 

inverted shallow 96-well plate (Sarstedt Inc) and taping it over the top of the DSW 

plate.  The sealed plates were incubated for 16 hours at various agitation speeds on a 

Variomag Teleshake unit (Camlab Ltd.) at 37 °C.   

2.6.2 Automated liquid handling 

Automated liquid dispensing into microplates was carried out using a TECAN 

Genesis (TECAN Ltd, Reading, UK) robotic platform fitted with an 8-channel 

multipipette, sterile disposable filtered tips within a clean cabinet pre-sterilised using 

one in-built and one floor-mounted UV lamp.  
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2.7 Luminescence measurements 

2.7.1 Platereader 

The light measurements were performed using the FluoStar Optima microplate 

reader (BMG Lab technologies Ltd, Bucks, UK), a luminescence, fluorescence and 

absorbance reader equipped with two syringe pumps for reagent injection.  The 

luminescence mode was used (no excitation as it is not required in bioluminescence).  

Emission of light was obtained through the emission lens (no filters were used) in order 

to collect light from the all the visible spectrum.  This option offers the advantage of not 

missing light emitted in a shifted wavelength, in case this may occur with certain 

protein variants.  The BMG Fluostar Optima has a limit of detection lower than 

50 amol/well ATP, spectral range between 240 and 740 nm and a dynamic range of nine 

decades.  The instrument was checked annually for recalibration using radioactive 

luminescence standards by BMG Lab Technologies.  

 

 

Figure 2-3  Platereader layout – luminescence mode. 
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2.7.1.1 Visualisation of results 

The typical flash luminescence activity of aequorin vs time is shown in Figure 

1.4.  The activity is usually assessed by measuring the peak (and less often by 

measuring the total amount) of light derived from the flash luminescence curve.  The 

platereader software enables simultaneous visualisation of the luminescence curves of 

all of the wells of the microplate, thus allowing direct comparison between them.  In 

most cases this visual output option was adequate to inform on decisions such as which 

operating parameter was optimal or whether an operating condition met the purposes of 

the assay.   
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3 Cloning of apoaequorin gene 

This chapter describes the efforts to create an expression vector which facilitates 

production of apoaequorin in a way that allows for easy reconstitution with the 

heterocyclic compound coelenterazine in high-throughput assays and also for the 

purification of the protein (apo- or holo-form of aequorin).  Two separate cloning routes 

are described.  For clarity, this chapter in particular is divided in four main sections:  In 

Introduction (Section 3.1) the envisaged expression vector and possible cloning routes 

are identified.  Following this, Section 3.2 describes the verification and sequence of the 

apoaequorin gene in its original plasmid vector.  Each of the two subcloning routes is 

presented separately (Section 3.3 and Section 3.4) with methods, results and discussion.  

The outcome and expectations for the competing approaches will be discussed in 

Conclusions (Section 3.5).  

3.1 Introduction 

3.1.1 Envisaged expression vector 

A suitable expression vector would contain the following features: 

(1) gene encoding for apoaequorin 

(2) promoter site and ribosome-binding site (RBS) for transcription and 

translation 

(3) signal peptide sequence, e.g. pelB leader sequence:  for localisation of 

the expressed apoaequorin in the periplasmic space of the cell, where it can be easily 

reconstituted into fully charged holoprotein complex by incubation with coelenterazine 

(4) 6xHis-tag encoding sequence for potential metal affinity purification in 

Ni-NTA columns and/or Ni-NTA coated microwell plates 

5) unique restriction sites flanking the apoaequorin gene, for the future 

option of “lifting” the construct from the vector with restriction digest, in order to ligate 

into another vector. 
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3.1.2 Cloning strategies 

In order to ensure successful cloning of the apoaequorin gene in the construct 

described, two subcloning routes were pursued: 

The first route (pET cloning route) aimed to transfer the apoaequorin gene into 

the pET26b commercial expression vector by double digestion and ligation. 

The second route (TOPO® cloning route) aimed to create the desired construct 

by using a consecutive series of PCR amplifications, resulting in a blunt ended construct 

that could be ligated into an open TOPO® vector. 

The first route (pET cloning route) not immediately successful; the second route 

(TOPO® cloning) was pursued in parallel, as an alternative.  In the end both routes 

yielded successful results at the same time. 

3.2 Apoaequorin in original capture vector 

This section describes studies conducted to verify the integrity of the 

apoaequorin gene which would be used as a template for further cloning.  All general 

materials and methods used in this Section and the two Sections thereafter are described 

in Chapter 2, Section 2.1.  Cell culture methods and E. coli strains are described in 

Section 2.2 and DNA handling methods are described in Section 2.3.  Modifications and 

optimisations to the methods described in Chapter 2 are presented in the relevant 

sections.  The overall implementation of methods and verification of outcomes of both 

cloning routes was based on a general framework which is described in Figure 3–1. 

The gene encoding for apoaequorin was a kind gift from Professor Trewavas of 

the Institute of Cell and Molecular Biology, University of Edinburgh.  The gene came 

inserted in plasmid pHAQ (Figure 3–2).  pHAQ is a pBluescript vector (Figure 3–3), 

with the apoaequorin gene ligated between Sal I and Pst I restriction sites.  In the maps 

of all vectors shown, the orientation of each gene is represented by the direction of its 

arrow.  pBluescript is a high copy number plasmid vector which was designed for DNA 

cloning, DNA sequencing, in vitro mutagenesis and in vitro transcription (Stratagene, 

2004a) as shown on the relevant plasmid maps it lacks features encoding for 

periplasmic localisation and metal affinity. 
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Figure 3-1  Overview of workflow employed for cloning in this work. 
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Figure 3-2  pHAQ vector:  pBluescript backbone with apoaequorin gene inserted in the 
polylinker region between Sal I and Pst I recognition sites. 

 

 

Figure 3-3  pBluescript vector.  Image reproduced from Stratagene.com (Stratagene, 
2004a).  Apoaequorin gene was cloned into the MCS, between Sal I and Pst I restriction 
sites.           



- 89 - 

 

3.2.1 Verification of apoaequorin gene in pHAQ vector 

Electrocompetent E. coli TOP10 were transformed with pHAQ vector and the 

transformed cells were plated on LB agar-kanamycin plates.  Colony selection, 

cultivation in LB media, centrifugation of the culture and plasmid DNA purification 

were performed as described in Sections 2.2 and 2.3.  A double digest with restriction 

enzymes BamH I and Xho I was performed on the purified plasmid, followed by gel 

electrophoresis separation (1.2 % agarose gel). This was done to verify that the insert of 

the expected size was indeed within the specific restriction sites. The Xho I site is 6 bp 

upstream of the Sal I site and the BamH I site is 15 bp downstream of the Pst I site 

(Figure 3-2, Figure 3-3).  Visualisation of the gel showed two fragments of the expected 

sizes in Figure 3-4.  

The unrestricted plasmid was sequenced with standard T3 and T7 promoter 

primers which flanked the apoaequorin gene.  Using Bioedit (Hall, 2004), the resulting 

sequence was aligned with the sequence of apoaequorin retrieved from Genbank, 

Accession Number M16104 (Benson et al., 2005).  The alignment is presented in Figure 

3-8 amongst the sequencing results from pET system cloning. 

Figure 3-8 shows the sequence of the apoaequorin gene as provided in pHAQ 

(sequence name: denoted: apoaequorin_gene) aligned with the M16103 apoaequorin 

gene sequence in Genbank, Accession Number M16104 (Benson et al., 2005).  One 

base difference is observed between the two sequences:  position 424 TCTGAT in 

M16103 versus TCTGCT in the pHAQ sequence translates to a D (Asp) in M16103 

instead of an Ala in the sequence used in this work.  In Chapter 5 the translated protein 

sequence of the apoaequorin gene (used this work) is aligned for comparison with the 

translated M16103 and the published crystallographic PDB structures of the 

apoaequorin chains 1EJ3 (Head J.F., 2000) and 1SL8 (Deng et al., 2005). 
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Figure 3-4  Plasmid vector pHAQ:  agarose gel visualisation. 1.2% agarose (left) and 
2.5% low melt agarose (right) gel visualisation of:  (1) 0.5-12 Kb DNA ladder, (2) open 
circular, linear and supercoiled forms of pHAQ uncut plasmid 3,506 bp, (3) pHAQ 
double digest with BamH I and Xho I restriction enzymes.  The faint lower band at 
609 bp corresponds to apoaequorin gene plus a few flanking base pairs and upper band 
at ~2,900 bp corresponds to the remaining vector.  

3.3 pET cloning route 

The first cloning approach towards obtaining the apoaequorin gene within a 

desired expression vector (Section 3.1.1) was a “traditional” approach:  the gene of 

interest would be cut from its carrier plasmid using the appropriate restriction enzymes 

(if the carrier did not incorporate the expression features required and in the correct 

orientation).  The destination vector, one which includes the desired features and in the 

correct orientation would also be cut using the same restriction enzymes so that its 

multiple cloning site (MCS) has flanking restricted ends complementary to the ones of 

the restricted DNA fragment of interest.  The cut vector and the cut gene of interest 

(insert) are ligated in order to form a complete expression vector and the ligated product 

is transformed into competent cells.  The schematic of the pET cloning concept and its 

details is described in Figure 3-6.   

 (1)                   (3) 
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3.3.1 Vector pET26b 

The pET vector is a powerful system for the cloning and expression of 

recombinant proteins in E. coli.  Target genes are cloned in pET plasmids under control 

of strong bacteriophage T7 transcription.  It incorporates fusion tags which can facilitate 

detection and purification of the target protein, affect recombinant protein solubility in 

the cytoplasm or facilitate export to the periplasm.   

Due to its availability in the lab, pET26b (Novagen) was the vector of choice.  

Figure 3-5 shows the plasmid map and expression region details.  For the purposes of 

this project, key features of interest include the T7 promoter region, N-terminal pelB 

signal sequence for potential periplasmic localization, C-terminal 6xHis-tag sequence 

and the kanamycin resistance cassette (Figure 3-5). 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-5  pET26b vector and cloning expression region.  Image reproduced from 
www.novagen.com.   
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3.3.2 Schematic of pET cloning route 
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Figure 3-6  pET26b cloning route schematic 
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3.3.3 Methods for pET cloning 

Primer sequences used in this Section and their melting temperatures are shown 

in Table 3–1.  Primers AEQMSCI and AEQXHOI were designed to introduce the 

restriction endonuclease site for Msc I and Xho I upstream and downstream of the 

apoaequorin sequence, respectively.  The two primers were used for the amplification of 

apoaequorin gene from pHAQ while obtaining overhangs for Msc I upstream and Xho I 

downstream of the gene.  Primers For10+26, For252+20, Rev450-20 were designed for 

sequencing purposes. Their names indicate their position and direction in the 

apoaequorin gene, for example For10+26 is a forward (sense) primer which starts at 

position 10 of the apoaequorin gene and is 26 bases long. 

Amplification PCR2 was carried out in 50 µL final volume and according to the 

general methods described in Table 2-2 and 3-1, Section 2.3.2. 

Vector pET26b and the product of reaction PCR2 were digested with restriction 

enzymes Msc I and Xho I.  The digested DNA was electrophorised on low-melt agarose 

gels and the bands of desired size were extracted and purified using Qiaex II DNA 

extraction kit by Qiagen.  Vector (Figure 3-7, lane 3) and insert (Figure 3-7, lane 5) 

were ligated at 3:1 molar ratio using CloneSmart Ligase (Lucigen, USA) as described in 

Section 2.3.7.1.  Successful ligation using the Lucigen kit followed a series of 

unsuccessful ligations using T4 DNA ligase at 3:1 and 5:1 insert to vector ratio.  The 

product of ligation was used to transform electrocompetent E.cloni™ cells (Table 2–5).  

Plasmid DNA was isolated from overnight cultures and sequenced using the following 

primers:  T7 Promoter and T7 Terminator (Novagen), For10+26, For252+20 and 

Rev450-20 (Operon). 
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Table 3-1  Oligonucleotides for pET26b cloning route and sequencing 
Primer  Sequence  Tm 

(ºC) 

AEQMSCI sense 5'CGGCGATGGCCATGACCAGCGAACAATACTCAGTCA3 82.0 

AEQXHOI antisense 5'GTGGTGCTCGAGGGGGACAGCTCCACCGTAGAGC3' 84.8 

T7 promoter sense 5'TAATACGACTCACTATAGGG3' 46.8 

T7 terminator antisense 5'GCTAGTTATTGCTCAGCGG3' 52.9 

For10+26 sense 5'GAACAATACTCAGTCAAGCTTACACC3' 63.0 

For252+20 sense 5'TGAATGGCCTGAATACATCG3' 58.6 

 

 

Table 3-2  PCR amplification of apoaequorin from pHAQ 
PCR  
 Nr 

Enzyme Template (mg) Primers DMSO 
(v/v) 

 Mg2+  
(mM) 

Qsol Cycles  Ta  
(°C) 

PCR2 Pfu pHAQ 20 AEQMSCI 
AEQXHOI 

- - - 30 60 
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3.3.4 Results and discussion for pET cloning 

The incorporation of the apoaequorin gene in pET26b vector resulted in the 

plasmid named pETAQ.  Figure 3-7 shows the DNA agarose gel electrophoresis of the 

pET cloning route.  Figure 3-8 and Figure 3-9 show the sequencing results obtained for 

pETAQ, aligned with the apoaequorin sequence as was expected from the lab of 

Professor Trewawas and with the apoaequorin gene sequence obtained from Genbank 

database.  The expected one base pair difference with the Genbank entry is highlighted 

in red.  The sequencing results indicate that apoaequorin gene was successfully ligated 

between Msc I and Xho I recognition sites in pET26b, between pelB leader sequence 

and 6xHis-tag sequence.  The end codon TGA follows immediately after the 6xHis-tag 

sequence. Six base pairs between the apoaequorin gene and the 6xHis-tag came as part 

of the pET26b vector; they add two amino acids (Leu, Glu) to the C-terminal of the 

translated protein sequence before the 6xHis-tag.   

The ORF of pETAQ was explored using the ExPASy Translate tool (Gasteiger et 

al., 2003) and the translated protein sequence was aligned with the M16103 translated 

apoaequorin in Figure 3-10.  The translated protein sequence of the pETAQ ORF was 

compared to the translated M16103 gene.  The pelB peptide leader is indeed expressed 

upstream of the apoaequorin gene (black font, amino acid numbering 1-23).  The 

alignment shows that the one base pair difference leads to one amino acid difference at 

position 143, counting from the beginning of the apoaequorin gene (or position 165 

counting from the beginning of the pelB peptide) and that 2 extra amino acids are added 

at the C-terminus upstream of the six histidines. 
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Figure 3-7  Agarose gel visualisation of pET26b cloning route. (1) open circular, linear 
and supercoiled forms of pET26b uncut plasmid (5,360bp), (2) pET26b single digest 
with Msc I restriction enzyme (5,360bp) (3) vector for ligation (5,293 bp):  pET26b 
plasmid following double digest reaction with Msc I and Xho I restriction enzymes, (4) 
gel:  blunt ended PCR2 construct (611bp), (5) insert for ligation (605 bp) PCR2 
following double digest reaction with Msc I and Xho I restriction enzymes, (6) pETAQ 
plasmid: open circular, linear and supercoiled forms.  Lanes (1) to (5) were of 1.2% 
agarose gels and (6) was of 1.4% agarose gel.  (7) pETAQ single digest with Xho I, 
band at ~5.9 Kb(8) pETAQ double digest with Xho I and Msc I restriction enzymes.  
The faint lower band at ~588 bp corresponds to apoaequorin gene plus a few flanking 
base pairs and upper band at ~5.3 Kb corresponds to the remaining vector. 
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Figure 3-8  pETAQ DNA sequencing results (a).  Multiple alignment of pETAQ plasmid sequence with the apoaequorin gene sequence received 
from Professor Trewawas lab, apoaequorin gene sequence described in Genbank M16103 and the desired features of T7 promoter region, pelB 
leader sequence and 6xHis-tag.  Multi-alignment was performed using software Bioedit (Hall, 2004) and MultAlin (Corpet, 1988). 
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Figure 3-9  pETAQ DNA sequencing results (b).  Figure 3-8 continued.  Multiple alignment of pETAQ plasmid sequence with the apoaequorin 
gene sequence received from Professor Trewawas lab, the apoaequorin gene sequence described in Genbank M16103 and the desired features of 
T7 promoter region, pelB leader sequence and 6xHis-tag.  Multi-alignment was performed using software Bioedit (Hall, 2004) and MultAlin 
(Corpet, 1988).  
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Figure 3-10  pETAQ open reading frame.  M16103_translate is the translated protein sequence of M16103, used as reference sequence. 
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3.4 TOPO® cloning route 

The second cloning approach towards obtaining the apoaequorin gene within a 

desired expression vector (Section 3.1.1) was decided as backup to the pET cloning 

route and as a result of initially unsuccessful pET vector and apoaequorin insert ligation 

attempts (Section 3.3.3). 

This approach would avoid restriction digests and sticky (cohesive) end ligation 

methods.  The envisaged DNA construct (Section 3.1.1) incorporating the apoaequorin 

gene behind a strong promoter, pelB leader sequence for periplasmic localisation and 

6xHis-tag for metal affinity purification would be constructed through a series of PCR 

amplifications.  The DNA construct produced this way would be inserted into a suitable 

capture vector using blunt ended ligation.  The pCR®-Blunt TOPO® vector had 

successfully been used for blunt ended cloning in the lab and hence was the capture 

vector of choice.  The TOPO® cloning route is illustrated in Figure 3-12. 

The pCR®-Blunt II-TOPO® open capture vector incorporating genes for 

replication, transcription and antibiotic resistance was from Invitrogen Ltd. shown in 

Figure 3-11.  TOPO® already contains a T7 promoter for eukaryotic RNA; the T7 

promoter region from pET system would be utilised for E. coli expression.   
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Figure 3-11  TOPO® capture vector.  Image adapted from www.invitrogen.com.  
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3.4.1 Schematic of TOPO® cloning route 
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3.4.2 Methods for TOPO® cloning 

3.4.2.1 Design of primers 

Primer sequences and melting temperatures are shown in Table 3-3.  Primers 

PET26bFOR and PET26bREV are specific to the T7 promoter region and pelB 

sequence of plasmid pET26b respectively.  Primer PET26bFOR contains an overhang 

with Nhe I restriction site and T7 promoter at the end of the gene encoding for the N-

terminus of the protein.  Primer PET26bREV (antisense) contains an overhang with the 

first 29 bases of the apoaequorin gene.  

Primers AEQMSCI, AEQXHOI, AEQfor and AEQrev are specific to the 

apoaequorin gene.  AEQMSCI and AEQXHOI had been previously designed to 

introduce the restriction endonuclease site for Msc I and Xho I upstream and 

downstream of the apoaequorin sequence, respectively and had been used for pET 

cloning route. AEQfor was designed to add the last 25bp of pelB leader of pET26b to 

the upstream of the apoaequorin gene.  AEQrev was designed in order to add 6xHis-tag, 

end codon TAA and restriction site SanD I to the C-terminus of the protein.  Restriction 

sites SanD I and Nhe I were chosen as unique restriction sites at the N- and C-terminus 

end of the construct respectively, according to the criteria set in Section 2.3.5. 

3.4.2.2 PCR amplifications  

PCR amplifications were carried out in mixtures of 25 or 50 µL final volumes, 

using the general methods described in Table 2-2 and 3-1, Section 2.3.2.  The reactions 

required several optimisation attempts and the final optimum conditions for each 

reaction are shown in Table 3-4.  The success of each step of the series of PCR reactions 

was initially verified by DNA agarose gel electrophoresis.  When more than one size of 

products was generated despite optimisation attempts, the band of the desired size was 

excised and extracted from low melting-point agarose gel and purified (Section 2.3.1) 

for use in subsequent PCR steps. 

PCR1:  The T7 promoter and pelB signal encoding region of template plasmid 

pET26b were amplified using primers PET26bFOR and PET26bREV. In the resulting 

blunt-ended construct, this region is flanked by restriction site Nhe I at the 5’ end and by 

the first 25 bp encoding for the apoaequorin gene at the 3’ end. 
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PCR0:  Attempt to amplify the apoaequorin gene, flanked by the last 25 bp of the 

pelB signal sequence at the 5’ end and a sequence encoding for 6 His-tags, end codon 

and recognition site for restriction enzyme SanD I using pHAQ as template and primers 

AEQFOR and AEQREV.  Despite numerous optimisation attempts this reaction was 

unsuccessful, which led to PCR3.  For the reaction PCR3 the template used was the 

product of PCR2 (previously used in pET cloning route), instead of the full plasmid 

pHAQ. 

PCR2:  The apoaequorin gene was amplified from template pHAQ, flanked by 

Msc I and Xho I restriction enzyme recognition sites at the 5’ and 3’ end respectively, 

using primers AEQMSCI and AEQXHOI. This construct served as an intermediate 

template for reaction PCR3. 

PCR3:  This reaction resulted in the amplification of the apoaequorin gene, 

flanked by the last 25bp of the pelB signal sequence at the 5’ end and a sequence 

encoding for 6 His-tags, end codon and recognition site for restriction enzyme SanD I.  

It was not possible to acquire a product of the desired length by using pHAQ as a 

template with primers AEQFOR and AEQREV, despite numerous optimisation 

attempts. For reaction PCR3 the template used was the product of PCR2, instead of 

plasmid pHAQ.  

PCR4:  Creation of the final construct using primers PET26bFOR and 

AEQREV.  This has been the most successful of a series of several attempts to optimise 

this reaction.  Gel visualisation suggests possible formation of more constructs than the 

one of the desired size (721 bp).  Band of the desired size was extracted from low melt 

agarose gel for further ligation step with TOPO® open vector.  

PCR4 product and TOPO® were ligated and the resulting plasmid was used to 

transform electrocompetent E. coli Top10 (Table 2–7).  Plasmid DNA was isolated 

from overnight cultures of the transformed cells and sequenced using standard primers 

M13 For and M13 Rev. The sequencing results indicated that the desired construct was 

successfully ligated into TOPO® vector. The resulting plasmid was named TOPAQ. 
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Table 3-3  Oligonucleotides for TOPO® cloning route and sequencing 
Name   Sequence Tm (ºC) 

PET26bFOR sense 5'GCTAGCATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATA3' 78.2 

PET26bREV antisense 5'TGACTGAGTATTGTTCGCTGGTCATGGCCATCGCCGGCTGGGCAGCG3' 79.6 

AEQMSCI  sense 5'CGGCGATGGCCATGACCAGCGAACAATACTCAGTCA3' 82.0 

AEQXHOI  antisense 5'GTGGTGCTCGAGGGGGACAGCTCCACCGTAGAGC3' 84.8 

AEQFOR  sense 5'CCTCGCTGCCCAGCCGGCGATGGCCATGACCAGCGAAC AATACTCAGTCA3' 80.3 

AEQREV antisense 5'GGGTCCCTTAGTGGTGGTGGTGGTGGTGGGGGACAGCTCCACCGTAGAGCTTTT3' 80.7 

M13-for sense 5'GTAAAACGACGGCCAG3' 49.6 

M13-rev antisense 5'CAGGAAACAGCTATGAC3' 46.1 

For10+26 sense 5'GAACAATACTCAGTCAAGCTTACACC3' 63.0 

Table 3-4  PCR conditions for TOPO® cloning 
Reaction Sense primer Antisense primer Templates Enzyme DMSO (v/v) Qsol (v/v) Mg2+ (mM)  Nr cycles Ta (ºC) 

PCR1 PET26bFOR PET26bREV pET26b Pfu 2%  1.5 30 60 

PCR2 AEQMSCI  AEQXHOI  pHAQ Pfu   1.5 30 60 

PCR3 AEQFOR AEQREV PCR2 ProofStart 4% 20% 1.5 30 68 

PCR4 PET26bFOR AEQREV PCR1 and PCR3 ProofStart   2.5 30 68 
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3.4.2.3 TOPO® ligation 

TOPO® ligation was performed according to the manufacturer’s instructions and 

as described in Section 2.3.7.2. 

Table 3-5  PCR mix for TOPO® cloning reactions 
Component Volume 

(µL) 
PCR1  PCR2 PCR3 PCR4 

10x optimal buffer 5 5 5 10 5 

25mM MgSO4 Variable - - - 3 

dNTP mix (10 mM of each) 1.5 1 1 3 1.5 

Sense Primer Variable 1 1 2 1 

Antisense Primer Variable 1 1 2 1 

ProofStart/Pfu polymerase (2.5U/ µL) 1 1 
(Pfu) 
 

1 
(Pfu) 

2 
(Proof) 

1 
(Proof) 

RNAse-free H2O Variable 39.4 40.6 55.4 25.7 

Template DNA (20ng final) Variable 0.6 0.4 1.6 1 

Template DNA 2 (applies only to 
creation of construct PCR4) 

Variable - - - 0.8 

DMSO Variable 1 - 4 - 

Qsolution Variable - - 20 10 

Total Volume 50 50 50 100 50 
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3.4.3 Results and discussion for TOPO® cloning 

The incorporation of the apoaequorin gene in TOPO® open vector resulted in the 

plasmid named TOPAQ.  Figure 3-13 shows the DNA agarose gel electrophoresis of the 

TOPO® cloning route.  Figure 3-14 to Figure 3-16 show the sequencing results obtained 

for TOPAQ, aligned with the apoaequorin sequence as was expected from the lab of 

Professor Trewawas and with the apoaequorin gene sequence obtained from Genbank 

database.  As with pETAQ results, the expected one base pair difference with the 

Genbank entry is highlighted in red.  The sequencing results indicate that apoaequorin 

gene was PCR amplified downstream of T7 promoter region and pelB leader sequence 

and 6xHis-tag sequence.  The end codon TGA follows immediately after the 6xHis-tag 

sequence.  The construct is flanked by SanD I and Nhe I restriction sites.  The ORF of 

the expressed sequence in TOPAQ is aligned with the theoretical expected apoaequorin 

sequence in Figure 3-17.  TOPO® vector already contains a T7 promoter priming site 

downstream of the blunt ended cloning site.  The apoaequorin DNA construct created in 

Section 3.4.2.2 contains its own T7 region and lac operator as those were amplified by 

PCR from pET26b template.  The direction of the insert in TOPO® was reverse-oriented 

to the vector numbering shown in Figure 3-11.   
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Figure 3-13  Agarose gel visualisation of TOPO® cloning route.  PCR0:  Attempts to 
amplify apoaequorin gene using primers AEQFOR and AEQREV, using pHAQ as 
template.  There is no product of the desired size (642 bp).  Contamination seen on gel 
picture is suspected to be primer-dimer formations, possibly due to a specificity 
problem of the primers and template.  This problem was circumvented by consecutive 
reactions PCR2 and PCR3.  PCR1:  Amplification of T7 promoter and pelB leader using 
primers PET26bFOR and PET26bREV. PCR product was of expected size (209 bp).  
PCR2:  Amplification of apoaequorin gene using primers AEQMSCI and AEQXHOI. 
Product of the desired size (611 bp) seems to have been produced. This fragment was 
used as template for PCR3.  PCR3:  Amplification of apoaequorin gene using primers 
AEQFOR and AEQREV. Product of the desired size (634 bp) seems to have been 
produced.  This product was used in combination with PCR1 product, as template for 
PCR4.  PCR 4:  Production of the final construct using primers PET for and AEQREV.  
This has been the most successful of a series of several attempts to optimise this 
reaction.  Faint bands near the product of the desired size (721 bp) indicate presence of 
some contamination.  The band of desired size was extracted from the gel in order to be 
used for ligation into the open capture vector.  Lane (1):  TOPAQ uncut plasmid open 
circular, linear and supercoiled forms, Lane (2):  TOPAQ digested with Msc I, fragment 
~4.22 Kb.  
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Figure 3-14  TOPAQ DNA sequencing results (a).  Multiple alignment of TOPAQ plasmid sequence with the apoaequorin gene sequence 
received from Professor Trewawas lab, the apoaequorin gene sequence described in Genbank M16103 and the desired features of T7 promoter 
region, pelB leader sequence and 6xHis-tag.  Multi-alignment was performed using software Bioedit (Hall, 2004) and MultAlin (Corpet, 1988). 
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Figure 3-15  TOPAQ DNA sequencing results (b).  Figure 3-14 continued.  Multiple alignment of TOPAQ plasmid sequence with the 
apoaequorin gene sequence received from Professor Trewawas lab, the apoaequorin gene sequence described in Genbank M16103 and the 
desired features of T7 promoter region, pelB leader sequence and 6xHis-tag.  Multi-alignment was performed using software Bioedit (Hall, 
2004) and MultAlin (Corpet, 1988). 
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Figure 3-16  TOPAQ DNA sequencing results (c).  Figure 3-15 continued.  Multiple alignment of TOPAQ plasmid sequence with the 
apoaequorin gene sequence received from Professor Trewawas lab, the apoaequorin gene sequence described in Genbank M16103 and the 
desired features of T7 promoter region, pelB leader sequence and 6xHis-tag.  Multi-alignment was performed using software Bioedit (Hall, 
2004) and MultAlin (Corpet, 1988). 
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Figure 3-17  TOPAQ open reading frame.  M16103_translate is the translated protein sequence of M16103, used as reference sequence. 
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3.5 Conclusions 

The gene encoding for apoaequorin was successfully subcloned into two 

different plasmid vectors:  pETAQ is a pET26b derivative and TOPAQ is a pCR-Blunt 

II-TOPO® derivative, both containing the apoaequorin cDNA (one base pair difference 

from GenBank Accession No. M16103), the pelB signal peptide sequence and 6xHis-

tag fusion downstream of the T7 promoter.  Both are inducible expression systems. 

T7 was chosen in both cloning approaches as it is a very strong promoter and T7 

RNA polymerase transcribes the ORF very quickly.  However there are problems 

associated with overproduction of recombinant proteins and not efficient 

expression/release at the periplasmic space.  Translocation across the cell membrane of 

E. coli is still not well understood; a leader (e.g. pelB, ompT, CBD or DsbA/C) is 

necessary, but not sufficient for export into the periplasm.  Translocation also can 

depend on the mature domain of the target protein, which is recognised by SecB, the 

major chaperone of export (Wickner et al., 1991). 

Based on the features of the two vectors, their expression performance could 

differ; for example, the pET vectors are optimised for high expression levels.  TOPO®, 

as well as pBluescript vectors containing T3 and T7 bacteriophage promoters allow 

efficient in vitro synthesis of strand-specific RNA.   

Even with the T7 promoter present in both vectors, the pET system is 

specifically designed for protein expression having some specific features that allow 

and maximize the performances in the host cell strain.  pET vectors ensure high level of 

activity of the polymerase and high translation efficiency mediated by the T7 gene 10 

translation initiation signals, which is not present in TOPO® vector.  In pET the gene 

encoding the protein of interest may be cloned directly after the gene 10 initiation codon 

using cloning sites engineered for optimal expression of the cloned protein-coding 

sequence; the gene 10 transcription terminator is also included downstream of the 

cloning sites to allow efficient termination of transcription, preventing transcriptional 

read-through of unwanted plasmid sequences and increasing the RNA polymerase 

density on the sequence of interest—allowing high level accumulation of the specific 

protein-coding RNA transcripts.  TOPO® also lacks the ribosome binding site (RBS). 
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As both approaches were successful, the resulting vectors were both tested for 

expression of luminescent activity in microplate studies (Chapter 4) and a high 

throughput expression assay was developed with the vector providing the highest levels 

of expression (Chapter 4) and subsequently used in library creation (Chapter 5), 

screening (Chapter 6) and protein kinetics (Chapter 7 as preparation for Chapter 8).   

An alternative cloning approach would be to engineer the pelB leader sequence 

and 6xHis-tag sequence into pHAQ (pBluescript derivative).  As pBluescript lacks a 

strong STOP sequence and RBS, protein expression would likely be lower compared to 

the pET system. 
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4 High-throughput expression and screening 

This chapter describes the development of a high-throughput method which 

facilitates the production of aequorin wild type and mutants by E. coli in 96-well plates, 

followed by an activity assay against several potential activators (metal ions).  The 

envisaged assay was required to serve as a preliminary screen in order to identify 

promising mutants for purification and further in-depth analysis.  It builds upon the 

work described in Chapter 3, which yielded two plasmid vectors (pETAQ and TOPAQ) 

encoding for the apoaequorin gene.  Hierarchical optimisation was employed for the 

development of the final high-throughput protocol. 

4.1 Introduction 

4.1.1 Steps to developing a high-throughput process 

The high-throughput process should include cell growth, expression of 

apoprotein, incubation with coelenterazine for the reconstitution of functional aequorin 

in the cell medium and testing of aequorin mutant libraries for activation by seven 

different ions (as chosen in Chapter 5):  calcium, zinc, copper, lead, cobalt, cadmium 

and lanthanum.  The protocol should describe all the steps between handling of bacterial 

colonies in agar plates and measuring activity of the produced aequorin variants.  Figure 

4-1 presents the required stages of such a method and contains some main 

considerations pertaining to each stage.  As the assay is meant to be a preliminary/crude 

screen for the assessment of aequorin mutant libraries, the design of the individual steps 

must satisfy a set of general high-throughput screen requirements adapted to the 

properties and behaviour of the aequorin system (see Section 4.1.2). 
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Figure 4-1  Box diagram of the steps required for a complete HTS protocol.  Some main 
considerations pertaining to each step are included. 

 

4.1.2 Requirements for a high-throughput assay 

Several factors contribute to a suitable high-throughput assay for aequorin 

activity as expressed from E. coli in a microplate format: 

(1)  High expression of native apoaequorin 

(2)  Ease of activation to holo-aequorin with simple addition of coelenterazine to 

the medium.  This requires either cell lysis or secretion of the apo-aequorin into the 

periplasm.  

(3)  Practicality/ease of use.  Assays with the fewest processing steps are 

generally more robust, accurate, cheaper to use and easier to automate. 

(4)  Low limits of detection (high signal-to-noise ratio).  Some emergent 

activities from new ions may be very low at first.  Sensitivity will allow these to be 

detected. 
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(5)  Reproducibility and low standard deviation.  Few repeats are carried out for 

high-throughput assays initially as “hits” can be re-evaluated later.  High reproducibility 

and low error makes it less likely that “hits” will be missed. 

(6)  Size of library and automation.  The microplate format and use of 

automation enables the processing of large library sizes.  Flexibility of this protocol to 

adapt to different mutational strategies in this and future work will allow the processing 

of large libraries (directed evolution) as well as selected individual mutants (rational 

approach). 
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4.2  Materials 

4.2.1 Chemicals  

Standard buffers and media and reagents used in this chapter are described in 

Chapter 2.  Coelenterazine (1 mg) in lyophilised form was purchased from Sigma 

Aldrich and stored in -20 °C.  When ready to use, 1 mL of ice cold ethanol was used to 

resuspend and mix the coelenterazine by pippeting and transferred into a pre-chilled 

eppendorf tube and kept on ice.  The tubes were covered with foil and dim light 

conditions were used in order to protect the chromophore from light.  Polypropylene 

volumetric flasks suitable for atomic absorption were used in order to minimise metal 

ion contamination of the protein samples.  For the preparation of coelenterazine 

solutions the flasks and eppendorf tubes used were pre-chilled and covered in foil for 

protection against light and heat and kept on ice.  

4.2.2 Consumables  

All microplates used were of the 96-well format.  Deep square well (DSW) 

microplates used for bacterial cultures and mixing of apoprotein with coelenterazine 

were from Sarsted.  Clear Shallow clear round-well flat bottom ( F type) microplates 

used for optical density (OD) measurements of bacterial cultures and as lids for the 

DSW plates were also from Sarsted.  Luminescence measurements were performed in 

Lumitrac™ white polystyrene, F-type (flat-bottom) 96 well microtiter plates (Greiner 

Bio One Ltd., Gloucestershire, UK).   
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4.3 Method development strategy 

4.3.1 Building the assay protocol 

The assay design was based on published work by Shimomura and Inouye 

(1999) who described a simple method for the production of aequorin at bench scale.  

The method exploits the fact that apoaequorin is genetically fused with a signal peptide, 

is transferred to the periplasm and can be extracted into the medium and reconstituted 

with coelenterazine into fully functional aequorin in one step.  In summary, E. coli cells 

with a plasmid expression vector that included the apoaequorin cDNA downstream of 

the ompA signal peptide sequence were cultivated in LB medium using standard cell 

growth conditions.  Luminescent activity was measured using one of two ways, 

depending on the requirements:  

(1)  0.1 mL of bacterial suspension was incubated with 1 mL of 20 mM Tris 

buffer (pH 7.5) containing 10 mM EDTA, 5 mM 2-mercaptoethanol, and 1 mM 

coelenterazine at 0 °C for 3 h to regenerate aequorin, while allowing oxygen diffusion 

to occur.   

(2)  The bacterial suspension was centrifuged and the cell pellets are cooled and 

dispersed in a buffer containing EDTA, dithiothreitol and coelenterazine, then left to 

incubate for 1 h, while allowing diffusion of oxygen to occur.   

In both (1) and (2) options, after overnight storage at 0 °C and centrifugation, a 

clear supernatant was produced that contains aequorin (Shimomura and Inouye, 1999).  

The method was adapted to the 96-well microplate scale, based on the expression 

levels of the bacterial system, the operating capabilities of equipment and other 

considerations (i.e. sensitivity, robustness, cost, time restrains and availability).  A range 

of other methods have been described for obtaining purified aequorin and these are 

considered in Chapter 7 (Protein Purification, Section 7.1).   

Some of the principal questions concerning the application of microwell format 

for aequorin production were:  (1) could adequate luminescent activities be achieved in 

the microwells?  (2) could microwell cultures produce consistent activities across the 

microplate with reproducibility across microplates?  (3) what were the optimal 

conditions in order to achieve maximum activity?  (4) was there external or well-to-well 

cross-contamination? 
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The following sections explore what is possible and practical in achieving a HTS 

protocol for aequorin activity which satisfies the criteria mentioned in Section 4.1.2.  A 

number of experimental setups were used to test different conditions and to gradually 

optimise the process for sensitivity, signal-to-noise and assay variability.  Each 

experimental setup is described in the relevant section.   

4.3.2 Experimental setup A 

 

Figure 4-2  Experimental setup A for defining process parameters. 

 

E. coli BL21(DE3) Star (F– ompT hsdSB(rB–, mB–) gal dcm rne131 (DE3)) 

(Invitrogen) electrocompetent cells were transformed with plasmid expression vectors 

pETAQ or TOPAQ, brought forward from Chapter 3.  Single colonies were used to 

inoculate 10 mL of LB medium in Falcon tubes containing 50 µg/ml of kanamycin and 

left to incubate overnight at 37 °C in an orbital shaker at 250 rpm.  One milliliter of 

each overnight seed culture was used for a 10% inoculation into fresh medium (10 mL 

final volume, 50 µg/ml of kanamycin) in falcon tubes and grown at 37 °C and 250 rpm 

for up to 7 h.   

One culture was induced by addition of IPTG at the start of incubation 

(time = 0 h), one culture was induced at 2.5 h and one culture was not induced.  During 

the incubation 1 mL samples were collected at times 2.5, 5 and 7 h.  The samples were 
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measured for cell optical density (OD), 100 µL of neat culture was saved for further 

processing, and 500 µL of culture were centrifuged at 12,000 rpm for 10 min and the 

resulting supernatant and cell pellets were stored separately for further processing.  The 

neat culture, cell pellets and supernatant were stored on ice in order to hinder further 

growth and protein production.   

When samples from all time points were collected, a cold (0–4°C) solution was 

prepared that contained 2 µM coelenterazine, 20 mM Tris-HCl, 10 mM EDTA and 

5 mM 2-mercaptoethanol, pH 7.7.  The wells of a pre-chilled 96-DSW plate were filled 

with 950 µL of the coelenterazine solution.  One hundred microliters of each of the cell 

culture samples and of the culture supernatant were transferred into wells of the DSW 

plate according to their category (type of vector, time of harvest, time of induction).  

The cell pellets were dissolved by pipetting in 1 mL of coelenterazine solution and 

transferred into wells of the DSW plate as described previously.  The position of each 

sample in the 96-well plate is highlighted in Figures Figure 4-7 to  

Figure 4-9).  The DSW microplate was covered with an inverted shallow 96-well 

plate (Sarstedt Inc) and placed on a table top thermomixer (Eppendorf Inc) with 

intermittent shaking at 1000 rpm for 3 h, temperature control at 1 °C and the whole set 

up placed in a cold cabinet (4–8 °C).   

After the end of the cold incubation with coelenterazine solution, 100 µL of each 

well were transferred into the respective wells of a Lumitrac™ shallow well plate using 

an 8-channel multipipette.  The activity of the regenerated aequorin in the 100 µL 

mixtures was assayed in the FluoStar platereader, by measuring the light emission of the 

sample when an equal volume of 10 mM CaCl2 solution was injected.  
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4.3.3 Experimental setup B  

Figure 4-3  Experimental setup B for defining process parameters 

 

 

Two E. coli BL21(DE3) electrocompetent high expression strains available in 

the lab were transformed with plasmid expression vector pETAQ.  The transformed 

cells were spread on agar plates (Sections 2.2.2 and 2.3.8).  Single colonies were picked 

from the agar plates manually and were used to inoculate 10 mL of Kan+ LB medium in 

falcon tubes.  These seed cultures were left to incubate overnight at 37 °C and 250 rpm.   

The wells of a 96-DSW plate were filled with LB Kan+ medium (450 µL).  this 

plate would serve as the “day culture plate”.  The overnight seed cultures in the falcon 

tubes were used for a ~10% inoculation into a new DSW plate containing 450 µL of 

Kan+ LB medium (500 µL final volume), making sure that the starting OD of the two 

different strain microcultures was equal.  The LB medium of the microwells was topped 

up to the final volume of 500 µL.  This plate was incubated at 37 °C and 1000 rpm for 

up to 7 h.  Induction with IPTG was performed at 1 h after inoculation (corresponding 

to OD 0.6–0.8).  Samples of the culture were collected at various time points and kept 

on ice for further processing.   

At the end of incubation, 100 µL of each of the collected samples were 

transferred into the corresponding wells of a new DSW plate, each containing 950 µL of 

cold coelenterazine solution 4 µM, 20 mM Tris-HCl, 10 mM EDTA and 5 mM 2-

mercaptoethanol, pH 7.7.  The DSW was covered with an inverted shallow 96-well 
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plate (Sarstedt Inc), placed on a table top thermomixer (Eppendorf Inc) with intermittent 

stirring at 1000 rpm and 1 °C overnight and placed in a cold cabinet (4–8 °C).  After the 

end of the cold incubation with coelenterazine solution, 100 µL of each well was 

transferred into the corresponding wells of a Lumitrac™ shallow well plate using a the 

liquid handling robotics of Tecan.  The activity of the regenerated aequorin in the 

100 µL mixtures was assayed in the FluoStar platereader, by measuring the light 

emission of the sample when an equal volume of 100 mM CaCl2 solution in 20 mM 

Tris-HCl, pH 7.5 was injected. 

 

4.3.4 Experimental setup C 

Figure 4-4  Experimental setup C for defining process parameters 

 

E. coli BL21(DE3) electrocompetent cells (Lucigen) were transformed with 

plasmid expression vector pETAQ (expressing wild type apoaequorin).  The 

transformed cells were spread on agar plates (Sections 2.2.2 and 2.3.8).  The wells of a 

96-DSW plate were filled with LB Kan+ medium (950 µL).  Qpix2 robot was used to 

inoculate each well of this “seed culture plate” with colonies from the agar plate.  The 

plate was left to incubate overnight at 37 °C and 1000 rpm.  The overnight seed culture 

was used for a 10% inoculation into a new DSW plate containing 450 µL of Kan+ LB 

medium (500 µL final volume).  This “day culture plate” was incubated at 37 °C and 

1,000 rpm for up to 10 h.  Induction with IPTG was performed at OD 0.6–0.8 or 1 h 
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after inoculation.  Samples of the culture could be collected at various time points or at 

the end of the day culture (depending on the type of question being answered) and saved 

on ice for further processing.   

At the end of incubation, 100 µL of each of the collected samples were 

transferred in the wells of the same corresponding position in a new DSW plate, 

containing 950 µL of cold coelenterazine solution 4 µM, 20 mM Tris-HCl, 10 mM 

EDTA and 5 mM 2-mercaptoethanol, pH 7.7.  The DSW was covered with an inverted 

shallow 96-well plate (Sarstedt Inc) and placed on a table top thermomixer (Eppendorf 

Inc) with intermittent stirring at 1000 rpm and 1 °C overnight and placed in a cold 

cabinet (4–8 °C).  After the end of the cold incubation with coelenterazine solution, 

100 µL of each well was transferred into the respective wells of a Lumitrac™ shallow 

well plate using the Tecan liquid handling robot.  The activity of the regenerated 

aequorin in the 100 µL mixtures was assayed in the FluoStar platereader, by measuring 

the light emission of the sample when an equal volume of 100 mM CaCl2 solution was 

injected.  

4.4 Results and discussion 

4.4.1 Measurement of cell density in microplates 

Measurement of optical density in microplate format is necessary in order to 

monitor and validate a high-throughput expression method.  Optical density 

measurements for a serial dilution of bacterial culture were made in microplates (using 

the Tecan Magellan absorbance reader) and in standard cuvettes in benchtop 

spectrophotometer.  The association between the measurements is presented in Figure 

4-5 and was found to correlate linearly with an R2 value of 0.998.  The slope of 

approximately 1.5 reflects the different pathlengths used in the two formats.  These data 

show that the platereader selected for plate-based measurements was sufficiently 

accurate to reproduce values obtained in a cuvette based spectrophotometer. 
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Figure 4-5  Correlation of cell culture optical densities in microplates and cuvettes.  
OD(600 nm) values of cell culture were measured in 96-well microplates using 
Magellan platereader and the corresponding OD (600 nm) were measured in a benchtop 
spectrophotometer. 
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Figure 4-6  Linearity of OD (600 nm) versus dilution.  The original culture was of 
OD(600 nm)=2.0 in Magellan platereader, pathlength corresponding to 200 µL total 
volume in a 96-microplate well.  The dashed line includes the neat culture, whereas the 
continuous line excludes the neat sample. 

Figure 4-6 further explores the linearity of readings obtained in the Tecan 

Magellan platereader as the bacterial samples were diluted.  These data show that the 

dynamic range of the platereader was sufficiently accurate for cell density 
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measurements in the range if OD(600nm) of 0–1.0.  Having determined this, the 

platereader was adopted for all further optimisations of strain and vector development, 

cell culture and bioluminescent assays. 

4.4.2 Process parameters 

4.4.2.1 Choice of vector 

This initial experiment to compare different plasmid vectors for the aequorin 

bioluminescence assay was based on experimental setup A (Section 4.3.2).  The two 

expression vectors were assessed in conjunction with two different E. coli high 

expression strains in order to determine the expression system with the highest 

luminescence activity for testing mutant variants of aequorin in microwell assays.  The 

variation in luminescence profiles obtained as a function of time are shown in Figure 

4-7 using the different strains.  It can be seen that BL21(DE3)Star cells produce higher 

luminescence when carrying pETAQ vector than TOPAQ vector.  The results of the 

comparison are consistent using cell suspension, cell culture supernatant or resuspended 

cell paste obtained from cell culture centrifugation. 

Figure 4-7  Choice of expression vector.  Graphical output of luminescence traces 
versus time. Each well represents a different experimental condition. In each trace 
depicted, y-axis represents Relative Luminescence Units and the x-axis represents time 
(8 s total measurement time, readings taken at 0.1 s intervals).  The highest producers 
(highlighted in blue) are cultures expressing the pETAQ vector.  Platereader gain set at 
2,000.  Experiment carried out as described in Section 4.3.2 (Experimental setup A) and 
generic Section 2.7 (Luminescence measurements).   
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4.4.2.2 Part of culture as screening material 

Figure 4-8  Part of culture to be used for the screening process. Experimental settings as 
in Figure 4–7. Comparing luminescence curves from cell suspension, supernatant and 
(resuspeded) cell paste, sufficient amount of luminescence is produced from cell 
suspension (highlighted in pink) to use as high-thoughput screening platform.    

This experiment was based on experimental setup A.  It answers the question:  

which part of the culture produces adequate luminescence in the most practical, easily 

automatable method?  As seen in Figure 4-8, the cell suspension of the microwells 

produces enough signal for screening.  Cell paste produces the maximum signal, but 

requires the extra steps of microplate centrifugation, supernatant removal and 

resuspension of pellets, which would prolong and complicate the assay.  Therefore the 

cell suspension is an adequate and practical choice as HTS material.  

4.4.2.3 IPTG induction 

This experiment was based on experimental setup A.  It answers the question:  

“when to induce with IPTG?”  Nine hundred microliters of 100 mM IPTG stock were 

diluted with 2.1 mL LB and 10 µL of the mix were transferred into each well using a 

multipipette.  As seen in Figure 4–9, microwell cultures were induced at time 0, 2.5 h 

and one set was not induced at all.  The relatively high activity at early induction is 

most likely attributable to the high inoculation (10%) from overnight culture, whereas 

“leaky” T7 expression is likely to be responsible for activity in non-induced cultures.  

Highest activity was observed at IPTG induction at 2.5 h, at OD~1.0, although earlier 

induction times would be preferable and were assessed in the later steps of assay 

development.  The maximum harvest time out of those tested in this set (7 h) was 

Harvested at 
time (h): 
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optimum, although longer times would be possible to achieve higher protein yields and 

luminescence activity. 

Figure 4-9  Time of induction.  Experimental settings as in Figure 4–7 and 
Section 4.3.2.  Comparison of luminescence curves from cell cultures induced with 
IPTG at time 0, 2,5 h after inoculation and not induced.  Maximal luminescence activity 
from the cell suspension was observed when inducing at 2.5 h.  

4.4.2.4 Choice of bacterial strain 

This experiment was based on experimental setup B.  E. coli BL21(DE3) Star 

(F– ompT hsdSB(rB–, mB–) gal dcm rne131 (DE3)) (Invitrogen) and E. coli (E. 

BL21(DE3) (F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80dlacZ∆M15∆lacX74 endA1 

recA1araD139 ∆(ara, leu)7697 galU galK rpsL nupG λ- tonA) (E.cloni™, Lucigen)  

electrocompetent cells were compared for expression levels of apoaequorin.  E.cloni™ 

cells exhibited slightly higher activity than the Invitrogen strain, possibly due to more 

rapid growth (ODs not shown).  

  

Figure 4-10  Choice of E. coli strain.  Graphical output of luminescence traces versus 
time.  In each trace depicted, the y-axis represents Relative Luminescence Units and the 
x-axis represents time (8 s total measurement time, readings taken at 0.1 s intervals).  
This figure compares luminescence activity produced in the cell suspension of E. coli 
BL21(DE3) cells from Lucigen and Invitrogen, both carrying expression vector 
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pETAQ. The highest producers were cultures of BL21(DE3) from Lucigen.  Experiment 
carried out as described in Section 4.3.3 (Experimental setup B) and generic Section 2.7 
(Luminescence measurements).  Platereader gain set at 2,000.   

4.4.2.5 Check for background signal 

 

Figure 4-11  Check for background signal.  Same experimental setup as Figure 4-10;  
Comparison of luminescence curves from Lucigen BL21(DE3) cell cultures carrying  
pETAQ versus those of the same cells that incorporate pET26b vector without the 
apoaequorin gene insert.  Luminescence traces in purple show that luminescence 
activity is only observed in cells that encode for apoaequorin.  Residual coelenterazine 
that is present in all experimental preparations does not cause detectable background 
luminescence.  

This experiment was based on experimental setup B.  The test was performed in 

order to verify that no background signal is produced by any component encoded in the 

host strain or expression vector pET26b (pET26b is pETAQ without the apoaequorin 

gene).  As expected, there is no background signal; bioluminescence is not naturally 

observed in E. coli.  

4.4.2.6 Activity profile across the microplate 

This experiment was based on experimental setup C.  Significant variation of 

activity across the geometry of the microwells was observed.  As seen in Figure 4-12, 

the outer wells of the microplate exhibit significantly lower activity than the central 

wells of the microplate.  A preliminary test (not shown here) proved that the step 

responsible for the variation of activity across the microplate was the overnight cold 

incubation step with coelenterazine and not the microwell culture.  In light of the 

temperature-sensitive nature of coelenterazine, there was need for better temperature 

control during the cold incubation step. 
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Originally, during this step the microplate was adjusted on a table top 

thermomixer where temperature control is delivered through the base of the microplate 

holder, with cooling capabilities of up to 15 °C lower than ambient temperature, the 

lower attainable setting being 1 °C.  In order to achieve the lowest possible ambient 

temperature, the thermomixer carrying the microplate is placed in a cold cabinet         

(4–8 °C).  These settings were clearly not sufficient for achieving uniform temperature 

across the plate. 

In order to achieve (more) uniformity of temperature (and therefore activity) 

across the microplate, thermal insulation was applied to the plate, so that the wells 

proximal to the microplate edges may retain the lowest possible temperature.  Slices of 

polystyrene foam (thickness of approximately 0.5 cm) were carved out of polystyrene 

ice boxes and taped around the 96-DSW (deep square well) plate and on top of the 

shallow well plate that served as its lid.    

As seen in Figure 4-12 and Table 4–1, uniformity of activity improved 

significantly with insulation of the microplate during O/N reconstitution.  Excluding the 

outer lines and columns further reduces variation across the remaining microplate area.  

Improved uniformity across the plate allows maximal usage of the plate area, hence 

testing more mutant variants per plate and easier direct comparison between wells of the 

same microplate. 
 

   

Figure 4-12  Activity profile across the microplate with and without thermal insulation.  
Graphical output of luminescence traces versus time from E. coli BL21(DE3) (Lucigen) 
carrying expression vector pETAQ.  In each trace depicted, y-axis represents Relative 
Luminescence Units and the x-axis represents time.  Profile across plate (left) and with 
insulation (right).  Shown here are columns 1–6 of each microplate, symmetrical to 
columns 7–12 (not shown).  Experiment carried out as described in Section 4.3.4 
(Experimental setup C) and generic Section 2.7 (Luminescence measurements).  
Platereader gain set at 2,000.   
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 Table 4-1  Variation across the microplate with and without thermal insulation 
Microplate area  Variation of activity 

without insulation 

Variation of activity 

with insulation 

  Relative STDEV Relative STDEV 

all wells 

 Peak 54% 15% 

 Total light 52% 12% 

 

all wells excluding  1 outer line and 2 outer columns 

 Peak 29% 12% 

 Total light 27% 10% 

    

all wells excluding 2 outer lines, 2 outer columns 

 Peak 24% 10% 

 Total light 22%   9% 
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4.4.2.7 Cell growth and activity versus time 
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Figure 4-13  Luminescence activity and cell density of 96-DSW cultures versus time.  
At time zero a 10% inoculation from O/N culture was performed and IPTG induction 
was at time 0.9 h at OD=0.7.   

This experiment was based on experimental setup C.  It correlates cell growth 

with activity levels in the microwell cultures.  Samples from various positions of the 

“day culture plate” were collected at time intervals and stored on ice in order to delay 

cell growth.  At the end of a nine-hour incubation the samples were mixed with 

coelenterazine solution in the central wells of a “cold incubation” plate and left 

overnight to reconstitute active aequorin.  Maximum activity was reached at 8–9 h of 

incubation and after OD had reached a plateau. 

4.4.2.8 Optimum coelenterazine concentration 

To ensure that the highest possible activities were achieved in the screening 

reactions, the concentration of coelenterazine needed to be optimised.  Apoaequorin and 

coelenterazine bind at 1:1 molar ratio, but published literature has suggested an excess 

of coelenterazine during the cold incubation step (coelenterazine being 4–6 times or 

1.2–1.3 times the calculated amount) (Shimomura and Inouye, 1999).  Bacterial 

suspension was collected from the “day culture plate” after nine hour incubation.  
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Coelenterazine solutions were prepared at a range of concentrations (1–100 µM) in 

20 mM Tris-HCl, 10 mM EDTA and 5 mM 2-mercaptoethanol buffer, pH 7.7.  One 

hundred microliters of the bacterial suspension were added to 950 µL of the prepared 

coelenterazine solutions in central wells of a pre-chilled 96-DSW plate and left for a 

cold overnight incubation, as previously described.  The optimum concentration of 

coelenterazine for the apoaequorin produced in the “day culture plate” is ~10 µM. 
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Figure 4-14  Optimum coelenterazine concentration.  Shown here are average activity 
values of duplicates. 

 

4.4.2.9 Injection, mixing 

Flash reactions require rapid and thorough mixing, which depends upon 

variables such as the force, angle, and volume of injection; the geometrical relationship 

of the injector to the container; and the speed and completeness of mixing relative to the 

kinetics of reaction (Van Dyke et al., 2002).  The highest injection speed of the FluoStar 

Platereader was used (420 µL/s) for 1:1 volume ratios of mixing in order to achieve 

most efficient and rapid mixing. 
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4.4.3 Check for cross-contamination between wells 

           

Figure 4-15  Check for cross contamination during incubation and injection.  Concept of 
layout (left) and picture of microwell injected with loading buffer containing dye.  The 
neighbouring wells were not affected.  The same concept of testing applied to bacterial 
cultures in microwells.    

This section checks for cross-contamination between wells in all of the stages 

where it might occur:  automated colony picking, microwell culture, liquid handling and 

injection during the luminescence assay in BMG.   

Figure 4-15 features a Lumitrac™ well plate for luminescence assays. The wells 

of the microplate were filled with 100 µL of RO water.  Marked wells were injected 

with blue loading buffer (1 volume of SDS loading buffer to 8 volumes of water) at 

maximum injection speed 420 µL/s.  The absorbance of the wells adjacent to the wells 

injected with blue dye was compared to the absorbance of RO water at 595 nm.  There 

was no observed difference in absorbance between the measured samples, which 

indicates there was no spillage/tranfer to neighbouring wells due to platereader 

injection.   

In a similar manner, tests using blue dye were performed in 96 DSW plates in 

order to check that 1,000 rpm shaking, liquid transfer/pippetting would not cause cross-

contamination.  Microwells of O/N culture plates were tested for bacterial 

contamination by testing OD at 600 nm:  Wells containing LB nutrient and adjacent to 

wells inoculated with E. coli did not exhibit any bacterial growth.  
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4.4.4 Yield of aequorin in microwells 

Concentration of soluble protein in the microwells was calculated using the 

Bradford method (Section 2.4.1.2) by adding 50 µL of 1:2 diluted Bradford reagent to 

50 µL of protein sample.  The total soluble protein present in the microwells of the 

“cold incubation step” was ~26.3 µg/mL, while the supernatant of a microwell at the 

end of the “cold incubation step” was 12.3 µg/mL.  Densitometry analysis of SDS-

PAGE protein gels showed that the protein sample present in the cold supernatant 

contains approximately 78% apoaequorin, hence ~9.6 µg/mL are present in the 

supernatant.  Each microwell of the cold incubation step contains ~0.4 µM aequorin.  

Taking into account the dilution of protein suspension in the cold incubation step by 

10.5 times, 4.3 µM of functional wild-type aequorin is present in each “day culure” 

well.   In terms of total soluble protein and taking into account the dilution of protein 

suspension in the cold incubation step by 10.5 times, the total soluble protein in each 

microwell of the “day culture” microplates was ~276.2 µg/mL, ~36% of which is 

apoaequorin with cleaved pelB signal peptide (therefore potentially available for release 

into the medium) and ~24% has retained the peptide leader sequence and will remain in 

the intracellular environment.  Analysis of the localisation of the protein in cell 

suspension, cell pellets and cold incubation is available in Chapter 7, Section 7.4.2. 

 

Figure 4-16  Yield of aequorin in luminescence plate microwells.  L: Benchmark™ 
Protein Ladder (Invitrogen, Figure 2-2); Lanes 1 and 4:  neat protein sample in the 
luminescence screening plate microwells, represents total protein in the well;  Lane 2:  
supernatant of centrifuged sample of Lane 1, represents extracellular protein;  Lane 3:  
supernatant after sonication and centrifugation of sample of Lane 1.  This represents the 
total soluble protein in the well.   Lane 5:  same as Lane 2, concentrated 35× (aequorin 
purity: 78%);  Lane 6:  same as Lane 3, concentrated 26× (aequorin purity: 66%). 15% 
polyacrylamide gel. All lanes were loaded with 10 µL.  Samples were prepared as in 
Section 2.4.2.  Sample concentration was performed with a 10MWCO spin filter. 
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Figure 4-17  Detailed schematic of the finalised high-throughput process  
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4.5 Conclusions 

This chapter describes the building of a high-throughput system for expression of 

apoaequorin in 96-microwell plates, the incubation of the apoprotein with the 

chromophore coelenterazine for charging of the active protein aequorin and activity 

screening against up to nine different potential activators (metal ion solutions).  The 

assay described here is a practical, automated and scalable assay which allows for the 

screening of small to large number of mutants and displays high activity signals with 

zero background noise.   

 

4.5.1 Final process 

Based on the results of this experiment, the high-throughput production and 

activity screening of aequorin libraries is presented in the schematic of Figure 4–17 and 

the detailed parameters and conditions are presented in Table 4–2.  The process is 

divided in five major steps:  

(1)  cloning 

(2)  microwell cultures 

(3)  charging of active protein 

(4)  96-well microplate library 

(5)  high-throughput screening (HTS) assay 
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                       Table 4-2  List of parameters chosen for the high-throughput assay. 
Parameters Results Section 

Vector pETAQ 4.4.2.1 

E. coli strain BL21(DE3) Lucigen 4.4.2.4 

Part of culture used Bacterial suspension 4.4.2.2 

Incubation time 8 h 4.4.2.7 

Induction time ~1 h 4.4.2.3 

Coelenterazine 10 µM 4.4.2.8 

Background signal None at Gain 2,000 4.4.2.5 

Variation across plate Apply insulation 4.4.2.6 

Injection Max speed 420 µL/min 4.4.2.9 

Cross-contamination none 4.4.3 

 

4.5.1.1 Cloning and microwell cultures 

Colonies of E. coli BL21(DE3) cells (Lucigen) carrying plasmid pETAQ (for 

wild-type apoaequorin) or variants thereof (for mutant apoaequorin) are picked from 

(50 µg/mL) Kan+ agar plates into conical bottom 96-DSW (deep square well) plates 

(“seed culture plates”).  Each well contains LB Kan+ medium (950 µL, 50 µg/mL 

kanamycin).  Colony picking can be manual, using sterile inoculation loops, or 

automatic, using the QPix2 robotic colony picker, depending on whether the library 

consists of selected mutants or a large number of random mutants.  Each individual 

microplate is inoculated with at least three wild-type colonies in assigned wells and 

these positions are kept constant throughout the entire library.  These wells containing 

wild type will serve as internal controls and the proposed library layout is explained 

analytically in Section 6.2.1.   

All liquid handling of microplates is automated using the Tecan Genesis robot. 

The top of each 96-DSW plate is covered by an inverted shallow 96-well plate (Sarstedt 

Inc), sealed onto the DSW plate using autoclave tape.  The 96-DSW plate is then 

secured on a table top thermomixer (Eppendorf Inc) with shaking at 1,000 rpm, which 

in turn is placed in a 37 °C incubator/cabinet for the duration of the fermentation.  This 



- 139 - 

method of sealing prevents evaporation, but sufficient air is trapped above each culture 

to permit aerobic growth. 

The “seed culture plate” is incubated overnight at 37 °C and 1,000 rpm.  

Following the overnight incubation, the seed culture is used for a 10% inoculation into a 

new DSW plate containing 450 µL of Kan+ LB medium (500 µL final volume).  This 

“day culture plate” is incubated at 37°C and 1000 rpm for 8 h.  Induction with IPTG is 

performed at 1 h after inoculation, which corresponds to OD ~0.8.   

If a library of random mutants were to be assessed, the seed culture plate would 

be copied into a glycerol stock plate for the later identification of interesting mutant 

variants by sequencing.   

4.5.1.2 Charging of active protein 

At the end of the 8 h fermentation, the plate is left to cool to room temperature 

and 100 µL of cell suspension are transferred into a pre-chilled 96-DSW plate, 

containing 950 µL of cold coelenterazine solution 10 µM, 20 mM Tris-HCl, 10 mM 

EDTA and 5 mM 2-mercaptoethanol, pH 7.7.  This “cold incubation plate” is covered 

with an inverted shallow 96-well plate (Sarstedt Inc), insulated thermally using 

polystyrene foam and secured on a table top thermomixer (Eppendorf Inc) with 

overnight intermittent stirring at 1,000 rpm and 1 °C, which in turn is placed in a cold 

cabinet (4-8 °C). 

4.5.1.3 96-well microplate library 

After the end of the cold incubation with coelenterazine solution, Tecan robotics 

are used to make nine identical library copies in white shallow Lumitrac™ 96-well 

plates.  More analytically, 100 µL from the wells of the “cold incubation plate” are 

transferred into the respective wells of each of the Lumitrac™ microplates.  This allows 

for the same library to be tested against up to a maximum of nine potential activators.  

In practice seven potential activators were tested while the two out of the nine replicate 

plates were kept as backup in case a screening run required repetition (e.g. if 

luminescence readings were too high or too low and gain required adjustment). 

4.5.1.4 High-throughput screening assay   

The activity of the libraries against the potential activators is assayed using the 

FluoStar Platereader (BMG Lab technologies Ltd, Bucks, UK).  Light emission from 
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each well is measured when an equal volume (100 µL) of an activator ion solution is 

injected at maximum speed (420 µL/s).  Light measurements started before injection (in 

order for any background signal to be detected) and the duration of reading was 15 s.  

At the Gain setting equal to 2,000, wild-type aequorin in microplates produced light 

counts in the scale of 106 against zero background signal. 

Data deriving from luminescent assays performed in microplate format were 

exported in .xls format and copied onto template Microsoft Excel worksheets for data 

processing. 

4.5.2 Further improvements to the method 

A seamlessly automated process could be achieved with further adjustments to 

the setup, such as temperature control within the enclosure of the Tecan robot (for both 

heating to 37 °C and cooling to 1 °C).  The ionic strength and pH conditions of the 

luminescence assay were not explored in this chapter, but they were revisited in 

Chapter 7 which deals with purification of the proteins.  A potentially useful further 

development would be to explore or establish an association between the kinetics of 

aequorin luminescence in the crude library conditions with the kinetics of purified 

protein. 
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5 Aequorin structure and mutant library design 

Aim of this chapter is to enhance the understanding of the structure of aequorin 

and its response to calcium ions.  This knowledge will be useful in: 

a) selecting an appropriate strategy for mutant library design.  The envisaged 

variants would exhibit altered ion-binding properties.  This library will be screened 

against new potential activator ions in Chapter 6.  

b) discussion and interpretation of the library screening results presented in 

Chapter 6 and of further studies on purified fractions in Chapter 8. 

Section 5.1 is a literature review of the detailed structural analysis published on 

aequorin.  It builds on the general information given in Chapter 1, Section 1.3 and 

highlights important positions and amino acids in the protein structure and their 

interdependent relationship/nature.  The published crystallographic structures of 

aequorin without calcium and apoaequorin with calcium are examined in detail in terms 

of the repositioning of the residues as a result of population of the EF-loops by calcium 

ions.   

Sections 5.2 and 5.3 are a compilation of previous mutagenesis studies 

performed on aequorin or other calcium-binding proteins and peptides in order to study 

or enhance properties such as metal affinity, intensity, sensitivity and thermostability.  

As function of the protein is attributed to changes in its structure this compilation is a 

library of what has already been tried by researchers and a possible basis on how to 

proceed with further mutagenic studies. 

In Section 5.4 the aequorin crystallographic structures are further analysed by the 

author, particularly relating to the metal-ligand distances within each of the EF-hands 

and the extent of structural rearrangement undergone by the protein in order to 

accommodate calcium ions.   

Assuming the “native” octahedral coordination is required for optimal triggering 

of the bioluminescent reaction; seven metal ions were modelled by simple replacement 

into the coordinate position of calcium in the ion binding loops of EF-I to examine their 

potential for coordination in this specific protein conformation.  Finally, the library of 

mutants is chosen in Section 5.6.3. 
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5.1 Aequorin:  detailed structure 

This section zooms into the crystallographic structures of the fully functional 

protein containing coelenterazine (PDB ID:  1EJ3, Figure 1-7) and the apoaequorin 

molecule with three calcium ions bound (PDB ID:  1SL8, Figure 1-8) shown in Section 

1.3.1.  The coelenterazine binding cavity is illustrated in Figure 5-1 and Figure 5-2 and 

the calcium ions bound within the EF-hands are shown in Figure 5-3.  Coupling of the 

EF-hands is illustrated in Figure 5-6 and Figure 5-7.  Some images were reproduced 

from published work and some were created in Pymol (DeLano, 2002) in order to aid in 

visualisation and analysis.   

Numbering of amino acids in aequorin structure is according to the 1EJ3 

structure numbering throughout the text, unless stated otherwise.  From alignment of the 

amino acid sequences of 1EJ3, 1SL8 and the translated sequence of wild-type aequorin 

used in this thesis, the numbering of amino acids across the three sequences is: 

31_7__

31_281_

EJNumberingaequorintypewildNumbering

EJNumberingSLNumbering

+=−

+=
 

For example, Glu35 in 1EJ3 is Glu37 in 1SL8 and Glu42 in wild-type 

apoaequorin expressed in this work. 

5.1.1 Coelenterazine-binding cavity and calcium-binding EF-hands 

The hydrophobic cavity has a volume of approximately 600 Å3 and binds 

coelenterazine in the form of coelenterazine-2-hydroperoxide.  The hydroperoxide 

group is attached at the C2 position of the ligand, as shown in Figure 5-1 and Figure 5-2 

(Head et al., 2000).  It appears to be stabilised by hydrogen bonding to the phenolic 

oxygen of Tyr184 which is itself hydrogen bonded to the Nϵ2 of His169.  The imidazole 

of His169 is situated close to the carbonyl oxygen of C3 on the ligand and to the indole 

of Trp173 (Head et al., 2000). 

The following side-chain interactions in the binding cavity may position 

coelenterazine in the binding site and contribute to the mechanism of aequorin action:  

(1) the phenolic OH of Tyr132 hydrogen bonds to N1. It is also linked through 

hydrogen bonds by a water molecule to His58.  This histidine imidazole is adjacent to 

the indole ring of Trp108 which partly overlays the imidazopyrazinone ring system, 
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coming as close as 3.6 Å;  (2) The p-OH of the phenol attached at C6 of coelenterazine 

is positioned at the centre of a triangle made by the third set of Tyr–His–Trp, consisting 

of the phenolic oxygen of Tyr82, the Nϵ1 of His16 and the Nδ1 of Trp86; (3) The p-OH 

group on the benzyl substituent at C2 of the ligand is hydrogen bonded to a water 

molecule which itself interacts with the carbonyl oxygen of Ile105 and the side-chain 

oxygen of Thr166 (Figure 5-1 and Figure 5-2). 

Tyr184 is part of an extended loop structure at the C-terminal of aequorin 

(residues 177-189, numbering according to 1EJ3) which lies in a space between the first 

helix of EF hand I and the first helix of EF hand IV and closes the coelenterazine-

binding cavity.  Numerous hydrogen bonds are formed in this region anchoring the C-

terminal chain in its conformation and positioning the side chain of Tyr184 adjacent to 

both His169 and the ligand. Some of these hydrogen bonds also couple the C-terminal 

chain with both of the flanking helices (Head et al., 2000).  

The calcium-loaded apoproteins retain the same compact scaffold and overall 

fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxy-

coelenterazine (see Section 5.5).  Binding of Ca2+ into the loops of the EF-hands leads 

to subtle structural shifts in the photoprotein that destabilise hydroperoxy-coelenterazine 

and lead to decarboxylation of the hydroperoxide and rapid emission of 

bioluminescence (Liu et al., 2006).  

Figure 5-3 shows a close up of each of the calcium binding EF-hands 

coordinating a calcium ion.  Metal-ligand distances were measured using  Pymol 

(DeLano, 2002).  NMR and X-ray data by Ohashi and co-workers showed that the loop 

conformation of EF-IV exhibits more structural flexibility than EF-I and EF-III  (Ohashi 

et al., 2005).  
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Figure 5-1  Peroxidised coelenterazine in the hydrophobic core of aequorin, showing all 
distances to protein atoms within 3.6 Å and some other local interactions.  Distances are 
mean of the distances measured A and B chain of the crystallised dimer.  Hydrogen 
bonds are indicated by dotted lines, other distances are indicated with dashed lines.  
Atom numbering is shown for the imidazopyrazinone ring system.  Figure reproduced 
from Head and co-workers (2000).   

 

Figure 5-2  Coelenterazine binding site in the hydrophobic core of aequorin.  
Coelenterazine is shown as yellow sticks.  The residues believed to stabilise 
coelenterazine through hydrogen bonds are shown as red sticks and the residues within 
close proximity (up to 3.6 Å) are shown as orange sticks.  Water molecules participating 
in the hydrogen bonding network are depicted as red spheres.  The water molecule 
hydrogen bonding to His58 and Tyr132 is visible from this angle.  Distances and 
interactions are shown analytically in Figure 5-21.  PDB ID: 1EJ3.  Picture rendered 
using Pymol (DeLano, 2002). 
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Figure 5-3  Calcium binding in EF-I, EF-III and EF-IV hands of aequorin.  One calcium 
ion (cyan coloured sphere) is bound in pentagonal bipyramidal configuration.             
Coordinating oxygens from residues at positions 3,5,7 and 12 form a planar pentagon 
and position 1 and one oxygen from a water molecule (hydrogen bonded to position 9) 
are axial coordinating residues.  Picture rendered and interatomic distances between 
calcium ions and each coordinating oxygen atom were calculated using Pymol (DeLano, 
2002).  

EF-I EF-III 

EF-IV 
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5.1.2 H-bond coupling of EF-hands 

Deng and co-workers (2005) described the extensive hydrophobic interactions 

between the two sets of EF-hand pairs EF-I with EF-II and EF-III with EF-IV and the 

effect of calcium binding to the coupling (Deng et al., 2005).  

The loops of EF-I and EF-II are bound by means of hydrogen bonds between 

main-chain nitrogen and carbonyl oxygen atoms of Ile31 and Thr77, the side-chain Oδ1 

of Asp34, and the main-chain nitrogen atom of Gly74, and between Nζ of Lys30 and the 

side-chain oxygen atom of Glu76 (Figure 5-4) (Deng et al, 2005).   

The binding of calcium ion in loop I of aequorin abolishes the hydrogen bond 

between Lys30 and Glu76.  The accommodation of calcium in the loop makes the 

hydrogen bond distances between the main-chain nitrogen atom of Ile31 and the main-

chain carbonyl oxygen atom of Thr77, and the main-chain carbonyl oxygen atom of 

Ile31 and the main-chain nitrogen atom of Thr77 shorter. The hydrogen bond distances 

between Oδ1 of Asp34 and the main-chain nitrogen atom of Gly74 that bind helices B 

and C of aequorin increase in distance upon calcium binding.   

The interaction between the loops of EF-III and EF-IV occurs mainly through 

hydrogen bonds between main-chain atoms of Ile124 and Leu160 and between the 

main-chain carbonyl oxygen atom of Gly122 and the main-chain nitrogen atom of 

Val162 (Figure 5-5).  In the calcium-loaded state of aequorin, the hydrogen bond 

distances between the main-chain nitrogen atom of Ile124 and the main-chain carbonyl 

oxygen atom of Leu160, and the main-chain carbonyl oxygen atom of Ile124 and the 

main-chain nitrogen atom of Leu160 become shorter than in the calcium-free state. The 

hydrogen bonding between Gly122 and Val162 is abolished after calcium binding 

(Figure 5-5).  Gly122, Ile124 occupy positions 6 and 8 of loop EF-III and Leu160 and 

Val162 occupy positions 8 and 10 of the loop, respectively.  

Within van der Waals interaction range (3.6–4.5 Å) from the residues 

participating in H-bond coupling between the EF-hand loops lie residues which directly 

coordinate coelenterazine or are within close proximity (Figure 5-6).  Tyr82 (directly 

coordinates coelenterazine) and Met19 (close proximity) are within the range in the N-

terminus EF-hand pair and Thr166 (directly coordinates coelenterazine and is in close 

proximity to His169 and Trp129, Phe113, Met165 and Trp108). 
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Figure 5-4  Coupling of EF-I and EF-II of aequorin by means of hydrogen bonds.  The 
left hand side shows the calcium-free conformation and the right hand side the Ca2+-
bound conformation.  Image reproduced from Deng et al (2005). 

 

 

Figure 5-5  Coupling of EF-III and EF-IV of aequorin by means of hydrogen bonds.  
The left hand side shows the calcium-free conformation and the right hand side the 
Ca2+-bound conformation.  Image reproduced from Deng et al (2005). 
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Figure 5-6  EF-hand pair coupling residues, van der Waals distance range and cavity of 
aequorin.  The EF-I-EF-II hydrogen bonding residues are shown as green sticks, the EF-
III-EF-IV hydrogen bonding residues are shown as dark blue sticks.  In the protein core 
coelenterazine is shown as yellow sticks.  As in Figure 5-2, red sticks are amino acids 
that directly bind to coelenterazine and orange sticks are in close proximity of the 
chromophore.  The grey transparent surfaces indicate regions of van der Waals 
interactions with the amino acids involved in EF-hand coupling hydrogen bonds.  Some 
of the amino acids which stabilise coelenterazine (Tyr82, Met19, Thr166, Trp129, 
Phe113, Met165, Trp108) lie within these regions.  Image created using Pymol 
(DeLano, 2002). 
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5.1.3 Theories on signal transduction following calcium binding 

The mechanism of signal transduction upon calcium binding is still under 

discussion and the exact number of Ca2+ ions required for bioluminescence is discussed 

in Section 1.3.1.  The holo-aequorin and apoaequorin structures provide some insights.  

The sequence of molecular events occurring in a photoprotein molecule has been 

hypothesised based on structural data and the assumed mechanism for triggering the 

bioluminescence.   

When calcium binds at either or both EF-I and EF-IV the helices of these ‘hands’ 

change their relative orientations.  Displacement of the helices flanking the C-terminal 

tail disrupts the local hydrogen-bonding network, resulting in a relocation of the side 

chain of Tyr184 (see Figure 5-10).  This in turn disrupts the hydrogen bonds to His169 

and the peroxide.  No longer stabilised, the peroxide would be free to attack the adjacent 

carbon C3 (Figure 5-2) to initiate the light-emitting reaction (Figure 1-11).  Depending 

on the extent of the shift in the flanking helices during calcium activation, the C-

terminal ‘tail’ could become partly or completely uncoupled from the helices (see 

Figure 5-10), thus affecting the rate of bioluminescence (Head et al., 2000).  

A concurring hypothesis by Deng and co-workers (2005) suggests that 

displacement of His169 that lies in helix H is a crucial step for triggering the 

bioluminescence (Figure 5-11).  Binding of one Ca2+ to the loop of EF-IV preceding 

helix H, and needing a significant repositioning of the coordinating residues to properly 

accommodate the Ca2+, would propagate to a repositioning of His169.  Due to the 

existence of hydrogen-bonding networks and other types of interaction between the EF-

hand motifs (Section 5.1.2), particularly between loops III and IV, binding of Ca2+ to 

each of the loops will not be independent (Deng et al., 2005).  A possible sequence of 

molecular events has been proposed to connect binding of calcium to the triggering of 

bioluminescence in photoprotein obelin and a similar cascade of events is expected for 

aequorin.   

The events proposed are as follows, with residues numbered according to the 

aequorin sequence PDB ID 1EJ3: 

(1) One calcium ion is preferentially bound to loop I as observed in the soaked 

obelin structure (Liu et al., 2003) and expected from the “preformed” nature of this loop 

itself (Deng et al., 2005).  
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(2) The binding of calcium ion to the EF-I loop and optimisation of the 

pentagonal, bipyramidal geometry (Figure 5-3) produces a “twist” of the EF-I around a 

pivot point by means of changes in hydrogen bond distances between the main-chain 

atoms of Ile31 and Ile77. The accommodation of the calcium ion also changes slightly 

the inter-helical angle between helices A and B.  

(3) All these changes produce a pulling of helix A in the direction of the N-

terminus of the protein.  

(4) Since helix A is tightly bound with helix H and the C-terminus through 

numerous hydrogen bonds, the changes in helix A will result in a displacement of helix 

H and the C-terminus.  For this reason, the binding of only one calcium ion into the 

Ca2+-binding loop of the EF-I could be sufficient to trigger bioluminescence.  

(5) The binding of a calcium ion to loop of EF-IV and the optimisation of the 

pentagonal, bipyramidal geometry produces a “twist” of the EF-IV around a pivot point 

by means of changes in hydrogen bond distances between the main-chain atoms of 

Ile124 and Leu160.  A small change of inter-helical angle is induced between helices H 

and G.  

(6) The displacement of helix G produces a rearrangement of helix F, which is 

hydrogen-bonded with helix G. The displacement of helix F can therefore adjust the 

Ca2+-binding loop of EF-III, increasing its affinity for calcium and facilitating its 

binding.  The accommodation of calcium into this Ca2+-binding loop completes the 

rearrangements of helices F and E of EF-III and again leads to an additional stimulation 

of the bioluminescence.  The accommodation of the third calcium ion and the 

rearrangements in EF-III complete all the structural rearrangements in the photoprotein 

molecule, producing a final conformation that is optimal for effective bioluminescence 

(Deng et al., 2005). 

Based on this sequence of events, Deng and co-workers (2004) and Vysotski and 

Lee (2004) have suggested that binding of even one calcium ion in EF-I will be enough 

to set off bioluminescence and that binding of the other two calcium ions is a co-

operative event leading to greater stimulation of bioluminescence.  In terms of binding 

preference, Liu and co-workers (2003) found that after exposing obelin crystals to a 

trace of calcium, one calcium ion was bound in the loop of EF-I and according to Deng 

and co-workers (2004) and Vysotski and Lee (2004) the second calcium ion binds to the 

loop of EF-IV. 
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The likelihood that each binding event will trigger a bioluminescence response 

depends on three factors:  (1) the on-rate for Ca2+ binding, which is probably 

proportional to the binding affinity;  (2) the degree of residue shift for Ca2+ ligation and 

the rate of propagation of this change to helix H and 3) the amount of any position shift 

that His169 undergoes as a result (Deng et al., 2005). 

5.2 Previous mutagenesis on aequorin 

After an in-depth study of the protein structure, this section is dedicated in 

compilation of some interesting mutational studies conducted on aequorin.  Selected 

mutations are also presented in Table 5-1.   

5.2.1 Calcium sensitivity  

It is possible to alter the sensitivity of aequorin’s response to trace amounts of 

calcium by changing the chromophore attached to the protein chain, rather than by 

altering the protein itself.  Analogues of coelenterazine were previously synthesised to 

produce semi-synthetic aequorins, namely cp-, i-, br- and n-aequorin (Table 5–2 and 

Figure 5-8) taken after the names of the chromophore moieties.  Crystal structures of 

their complexes with aequorin at resolutions of 1.6–1.8 Å show that their overall 

structures were almost identical to native aequorin, though some significant differences 

were found in the interactions between the substituents of the coelenterazine moiety and 

the amino acid residues in the binding pocket.  The differences of various semi-

synthetic aequorins in Ca2+-sensitivity and reaction rate are explained by the capability 

of the involved groups and structures to undergo conformational changes in response to 

the Ca2+-binding (Toma et al., 2005).  Depending on the bulk of their C2-substitutions, 

the coelenterazine analogues can interfere with or increase the conformational freedom 

of the protein to promote the light-emitting reaction, with implications on the light yield 

and rate of light production (Toma et al., 2005).  These results add to previous work by 

Shimomura and co-workers, (1993) who created semi-synthetic aequorins using 15 

different chromophore analogues, which also displayed a wide range of Ca2+-sensitivity. 

Shifts of aequorin sensitivity were also achieved through mutations in the protein 

chain.  This work is presented in the next section (Section 5.2.2). 
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5.2.2 Impaired EF-hands / central Gly→Arg mutations 

From mutational studies in each of the three binding sites of aequorin, it has been 

elucidated that not all of the EF-hands share the same importance in calcium-triggered 

luminescence.  To determine the importance of each of the Ca2+-binding sites, amino 

acid substitutions were made at the three EF-hand loops. 

Tsuji and co-workers (1986) targeted the highly conserved central glycine at 

position 6 of the EF-hand loop (see Section 1.3.4 and Figure 1-10).  This site was 

independently mutated to arginine at each of the three functional EF-hands in aequorin. 

Mutation of the third calcium binding site (EF–IV) gave no significant loss of activity 

relative to the wild type, suggesting that the binding of Ca2+ to this site may be 

unnecessary for light emission.  By contrast, the same mutations directed to EF-I and 

EF-III, significantly reduced luminescence activity by 100% and 50% respectively 

(Tsuji et al., 1986).  Therefore, the authors concluded that two calcium ions may be 

sufficient for initiating the bioluminescence reaction. 

In a similar study, Tricoire and co-workers (2006) created aequorin mutants with 

the first or last residue of the Ca2+-binding loops (an Asp or Glu) replaced by Gly; these 

substitutions removed oxygen ligands essential for calcium coordination (Tricoire et al., 

2006).  Interestingly, the sensitivity of aequorin towards calcium increased for mutants 

with impaired EF-I and decreased for mutants with impaired EF-III and EF-IV.  Among 

the mutants with only one EF-hand intact, sensitivity for calcium decreased for EF-I+ 

EF-III¯  EF-IV¯  and increased for EF-I¯  EF-III+ EF-IV¯  and with EF-I¯  EF-III¯  EF-IV+ 

suggesting that EF-I has lower affinity for calcium (Tricoire et al, 2006).   

The two studies appear at odds with each other, which may be a result of indirect 

effects due to the different mutational strategies as well as different types of reported 

outputs; Tsuji and co-workers measured intensity but not sensitivity whereas Tricoire 

and co-workers (2006) presented sensitivity but no intensity results.  However, the latter 

did publish half-times of light decay curves for each mutant.  Coupled with the premise 

that the total light remained constant, the half-life of the decay curves could provide an 

indication of relative intensity amongst the mutants:  higher values of half-life would 

suggest lower initial light intensity.  Based on this premise, mutations which removed 

essential oxygen ligands in EF-I resulted in greater loss of initial intensity than similar 

mutations in EF-III and EF-IV.  It is also worth noting that mutations at different sites 



- 153 - 

within the loop yielded varied half-life times, e.g. Asp117Gly at position 1 of the EF-III 

loop yielded a longer half-life decay (28.6 ± 1.3 s) than Glu128Gly at position 12. 

Even though both mutational strategies aim to impair EF-hands it is worth 

considering the nature of the substitutions and their potential effect on protein function.  

The central glycine of the loop at position 6 is highly conserved in most calcium-

binding proteins and in all known photoproteins (see Section 1.3.4).  A survey on the 

architecture of metal coordination groups showed that glycine has a particular 

significance in calcium coordination groups, especially in the position adjacent to a 

donor residue (Harding, 2004).  It is found adjacent to donor residues more frequently 

(20% probability) than random statistics would predict (6.9% probability); sometimes it 

provides a `turn' in the protein-chain direction and at high coordination numbers (e.g. 

calcium binding) or small chelate loops its small size may be helpful in allowing the 

protein chain to make the required coordinate links to a metal atom (Harding, 2004).   

It is reasonable to assume that mutation of central glycine to a longer and more 

bulky arginine introduces rigidity in a position which is flexible throughout the family, 

thus affecting ion binding, signal transduction or both.  Replacing calcium-coordinating 

Glu or Asp with Gly replaces conserved binding residues, with a small and flexible 

glycine which is unlikely to be sterically perturbing, so the protein can possibly “work 

around it” using its remaining oxygen ligands.  However it does remove one 

(Asp→Gly) or two coordinating oxygen atoms (Glu→Gly) from the loop, a loss 

expected to decrease the loop’s affinity to calcium ion.  Lack of binding at the entrance 

and exit of the loop (positions 1 and 12) would limit the response of the loop upon 

calcium binding and its effect on the entering and exiting helices, which in turn serve to 

transduce the signal (or binding effect) to the rest of the molecule (Section 5.1.3). 

As the EF-hands are coupled in pairs and “communicate” with the coelenterazine 

binding site through a hydrogen bond network (Sections 5.1.2 and 5.1.3), both strategies 

can cause structural disruption beyond the loop and hence disrupt the signal 

transduction to the protein core.   
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5.2.3 Spectral shift 

Rowe and co-workers (2008a) developed a method for discriminating two semi-

synthetic aequorin variants (each incorporating a different coelenterazine analogue) 

from one another using time resolution.  Two aequorin variants were paired with 

different coelenterazine analogues and their signals were resolved from one another 

using the difference in decay kinetics and half-life times.  The resulting aequorins were 

used to develop simultaneous, dual-analyte, single-well immunoassays.   

Taking this approach one step further, Dikici and co-workers (2009) changed the 

emission characteristics of aequorin by mutating the aequorin protein chain as well as 

by pairing the mutants with ten different coelenterazine analogues to yield semi-

synthetic aequorins.  The mutations targeted residues of aequorin known to play a role 

in the light emitting reaction (residues His16, Met19, Tyr82, Trp86, Trp108, Phe113 

and Tyr132).  The result was a set of semi-synthetic photoprotein mutants with 

significantly altered bioluminescent properties:  emission wavelengths, decay kinetics, 

and stability (Dikici et al., 2009).   

5.2.4 Intensity 

In vitro evolution experiments by Tsuzuki and co-workers (2005) obtained high 

intensity yielding aequorin mutants.  Mutations neighboured the His16 or His169 

coelenterazine-binding residues or were located in the first EF-hand (amino acid 

numbering according to PDB ID:  1EJ3).  In particular, high intensity mutants were 

Lys17Arg Val25Ala, Asn26Asp, Gln168Arg and Leu170Ile.  Other mutations located in 

the EF-hand loops or their vicinity resulted in lower peak intensities and slow decay 

times.  A prevailing characteristic of these mutants was removal of at least one oxygen 

donor, e.g. Glu35Gly, Asp117Gly, Glu128Gly, and Asp135Gly.   
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5.2.5 Thermostability 

The screen described in Section 5.2.4 produced two aequorin mutants with 

increased thermostability (Gln168Arg and Leu170Ile) and one mutant (Phe149Ser) with 

decreased thermostability (Figure 5-7).  Two random libraries were created based on 

Gln168 and Leu170 respectively and screened for the impact of these positions on 

thermostability.  The experimental results in conjunction with crystal structures of 

aequorin in published literature suggested that both Phe149 and Gln168 fulfill a dual 

purpose:  they stabilise the coelenterazine peroxide and contribute to triggering of light 

by linking EF-III to the coelenterazine-binding residues Trp129 and His169 (Tsuzuki et 

al., 2005).   

 

Figure 5-7  Aequorin and positions of interesting mutations.  Three-dimensional 
representation of aequorin with bound coelenterazine (yellow sticks).  The Ca2+-binding 
loops are transparent blue and the rest of the protein is transparent green.  Amino acids 
that were found to contribute to the bioluminescent activity and/or stabilisation of 
bound coelenterazine are highlighted as red sticks (His16, His58, His169, Trp108, 
Trp173).  Amino acids that have been linked to thermostability are highlighted as 
magenta sticks (Gln168, Leu170).  PDB 1EJ3, 3D model rendered with Pymol 
(DeLano, 2002).   
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Table 5-1  Previous mutational work on aequorin.  Selected literature. 
Type of alterations  Location  

in aequorin 

Property altered Effect on 

activity 

References 

Q168R, L170I Hydrophobic core Thermostability ↑ (Tsuzuki et al., 2005) 

F149S Hydrophobic core Thermostability ↓ (Tsuzuki et al., 2005) 

Coelenterazine 

analogues 

Hydrophobic core Calcium sensitivity ↑ , ↓ (Shimomura et al., 1993, Toma et al., 2005) 

Central Gly→Arg Centre of EF-I loop Flexibility  ↓ (Tsuji et al., 1986) 

Central Gly→Arg Centre of EF-III 

loop 

Flexibility  ↓ (Tsuji et al., 1986) 

Central Gly→Arg Centre of EF-IV 

loop 

Flexibility ↓ (Tsuji et al., 1986) 

Fusion with 6xHis N-terminal Metal affinity tag − (Glynou et al., 2003) 

Fusion N- and/or  
C-terminal 

Metal affinity tag − (Deo et al., 2001, Lewis and Daunert, 2000) 

Deletion of Pro C-terminal Light emission, 

stability 

↓ (Nomura et al., 1991, Watkins and Campbell, 

1993) 
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Figure 5-8  Coelenterazine and nine analogues.  Different coelenterazine analogues were incorporated in mutant variants of photoproteins 
aequorin and obelin to create photoproteins with altered light emission characteristics.  Figure reproduced from Rowe et al (2008b).   

        Table 5-2  Properties of aequorin with coelenterazine and some of its analogues.  Data taken from Shimomura and co-workers (1993). 

Coelenterazine Analogue  Emission maxima  
(nm)  

Relative Luminescence 
Capacity1  

Relative Intensity2 Half-Rise Time3 
(ms)  

native  466 1 1 6–30 

cp  442 0.63 28 2–5 

f  472 0.8 20 6–30 

h  466 0.75 16 6–30 

hcp  445 0.65 500 2–5 

n  468 0.25 0.15 6–30 

1:  Relative luminescence capacity = total time-integrated emission of aequorin in saturating Ca2+ relative to native aequorin = 1.0  2:  Relative intensity at 
100 nM Ca2+.  3:  Half-rise time = time for the luminescence signal to reach 50% of the maximum after addition of 1 mM Ca2+ to a standard of aequorin 
reconstituted with the coelenterazine analogue of interest.   
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5.3 Mutation of other calcium-binding structures 

Valuable information on the metal-binding requirements of EF-hands has come 

from studies with synthetic peptides, de novo proteins and even non-EF-hand proteins 

that have calcium coordination similar to that of the EF-hands.  Such systems come with 

benefits such as lack of the complexities associated with cooperativity, engineered 

tyrosines within or near the loop for fluorescence monitoring and use of terbium instead 

of calcium for its phosphorescence properties.   

5.3.1 Short peptides with calcium-binding ability 

Researchers have attempted to study the ion binding affinities of the EF-hands 

isolated from the complex protein scaffold.  Le Clainche and co-workers (2003) created 

33-34 amino acid peptides corresponding to the helix-turn-helix EF-hand motif of the 

calcium binding site I from Paramecium tetraurelia calmodulin.  Isolated from the rest 

of the protein these peptides were able to acquire native-like conformations due to the 

incorporation of a disulfide bond to bridge the two helical regions.  The disulfide-

stabilised peptides acquired a calcium-dependent helical conformation and native-like 

affinity for calcium and lanthanide ions (Le Clainche et al., 2006, Le Clainche et al., 

2003).  Their work showed that metal selectivity of the calcium binding loop can be 

modulated by specific mutations in metal coordinating and non-coordinating positions.   

Replacement of Glu by Asp at position 12 in the calcium binding loop resulted in 

loss of calcium affinity but preserved lanthanide affinity.  The mutation is presumed to 

leave more space in the binding loop for larger ions.  The presence of carboxylate 

oxygens at positions 1, 3, 5 and 12 of the loop allowed for high affinities for terbium 

and particularly the presence of Asp at position 5 of the loop was decisive in 

maintaining high affinity for terbium. 

Interestingly, while at position 3 Asp→Asn abolished calcium affinity of the 

peptide system, the equivalent sites in aequorin are normally Asn.  However this may 

indicate the effects of the neighbouring sequence, including the different structural 

constraints on the loop for the small peptide such as the impact of the engineered 
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disulfide bond and also the introduction of a tyrosine residue at position 7 (used as a 

fluorescent probe of metal binding in the peptides). 

Alanine substitutions at non-coordinating residues did not abolish calcium 

binding to the peptide, but significantly reduced the affinity, as did alanine substitutions 

in the helix preceding the loop. 

Finally, Oishi and co-workers (1992) investigated the affinities of EF-hands I, III 

and IV for Ca2+ by using 20-22 amino acid synthetic peptide fragments.  The 

dissociation constants for Ca2+ showed the binding affinity order of III, I and IV (Oishi 

et al., 1992).   

5.3.2 EF-hand loops in model proteins 

A study by Drake and co-workers (1996) examines the contribution of the ninth 

position of the Ca2+-coordinating EF-loop of the E. coli galactose binding protein to the 

tuning of calcium affinity and selectivity.  It was proposed that position 9 (see Section 

1.3.4 Figure 1-10) serves in:  (1) charge selectivity, which may stem from the 

electrostatic repulsion between the coordinating oxygens and (2) size selectivity, which 

may involve complex interactions between multiple coordinating side chains. 

Position 9 of the EF-hand was substituted with residues commonly found in 

other EF-hand loop sequences.  The Ca2+ affinities and ionic selectivities of the new 

loop variants were compared with those for ions of groups Ia, IIa, and IIIa of the 

Periodic Table and for the lanthanides.  Variants with neutral side chains of different 

sizes (Gly, Ala, Ser, Thr, Asn, Gln) exhibited similar affinities for calcium ions and 

excluded Na+, K+, and Mg2+.  Acidic residues (Glu, Asp) reduced affinity for calcium 

and significantly enhanced affinity toward trivalent cations.  All mutants exhibited a 

partial loss of ion size selectivity and favoured lanthanide binding.  In a relevant study, 

Drake and Falke (1996) used the same EF-hand model to propose that position 9 of the 

EF-hand loop serves as a “gateway” to modulate the kinetics of Tb3+ binding. 

A similar study was carried out for the E. coli receptor for D-galactose and D-

glucose (GGR), which contains one single Ca2+-binding site.  The effects of metal ion 

size and charge on the affinity (Kd) of metal binding was studied for spherical ions from 

groups IA, IIA, IIIA of the periodic table and some of the lanthanides (Snyder et al., 

1990).  GGR was at the time of publication structurally the closest known relative of the 
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EF-hand class. It has the significant experimental advantage that only one Ca2+-site is 

present in the molecule, hence was considered ideal for a systematic study of Ca2+-site 

affinity.   

Monovalent ions exhibited very low affinities.  Divalent group IIA exhibited 

affinities related to their size with optimal binding at an effective ionic radius between 

those of Mg2+ (0.81 Å) and Ca2+ (1.06 Å) (Snyder et al., 1990).  Comparison of the 

dissociation constants for the binding of spherical ions from groups IA, IIA and IIA and 

the lanthanides indicated that both charge and size were important parameters in 

determining the specificity of the GGR Ca2+-binding site, with monovalent ions being 

excluded on the basis of charge. 
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5.4 Structural analysis methods 

5.4.1 Crystallographic structure examination 

The structures of calcium-free aequorin (PDB ID:  1EJ3) and calcium-bound 

apoaequorin (PDB ID:  1SL8) were visualised in Pymol (DeLano, 2002) and used to 

calculate distances between the centres of the metal ion and coordinating oxygen atoms.  

The upper limit for hydrogen bond distances between donor and acceptor atom was set 

to 3.2 Å and the range for accepted van der Waals distances was set to 3.6−4.5 Å.  

Structural alignment between 1SL8 and 1EJ3 was also performed in Pymol.  

5.4.2 Interatomic overlap calculations 

Interatomic overlap (D-r-R) was defined as the interatomic distance between 

calcium and each of the oxygen ligands in the pentagonal bipyramidal coordination 

(PDB ID: 1SL8) subtracted by the sum of their atomic radii (Figure 5-9).  When          

D-r-R<0 there is overlap of the atoms which suggests tight binding.  In Pymol this 

would be indicated as steric clash between the metal ion and the coordinating rotamer of 

the residue (image not shown).  The ionic radii of metal ions tested were taken from 

Shannon (1976) (Appendix Chapter 5, Table 10-12).  Some metal ions were assigned 

more than one ionic radii in line with the metal-ligand distances found in different 

coordination geometries in protein metal-binding sites.  When more than one ionic 

radius was used for the atomic overlap calculations, the highest ionic radius of the metal 

was included in the range. 
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Figure 5-9 Atomic overlap.  Distances and overlap between neighbouring atoms.  The 
distance is calculated from the crystal structures and the ionic radii are from Shannon 
(1976).  

Distance – (r + R) > 0 

r R r R 
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             overlap 
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5.5 Results and discussion 

This section designs the mutations to be made and screened in Chapter 6.  

Observations arising from structural analysis of Sections 5.5.1-5.6 combined with the 

literature review conducted in Sections 5.1-5.3 could help elucidate properties of the 

EF-hand and response towards calcium and potentially new ions and subsequently help 

identify targets for mutational studies.  Where information is retrieved from published 

bibliography, this is clearly stated in the text.   

5.5.1 Calcium-free versus calcium-bound aequorin structure 

Figure 5-10 shows the structural alignment of the two crystallographic structures 

1EJ3 and 1SL8 and Figure 5-11 presents detailed views of the EF-hands with and 

without calcium bound. 

There is very little gross structural difference among Ca2+-bound apoaequorin 

(1SL8) and Ca2+-free aequorin (1EJ3), but closer examination reveals that there are 

local changes (Deng et al., 2005).  The overall conformation of the molecules remains 

intact with one notable difference in the C-terminus where the C-terminus “tail” is 

released into the solvent leaving the hydrophobic core exposed and the bond between 

Tyr184 and hydroperoxy-coelenterazine disrupted.  
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Figure 5-10  Structurally aligned calcium-free aequorin (1EJ3, chain B) and calcium-
bound apoaequorin (1SL8).  1EJ3 is coloured green and 1SL8 is coloured blue.  The 
calcium ions of 1SL8 are represented as red spheres.  Stabilised coelenterazine in the 
centre of 1EJ3 is coloured yellow.  Tyr184 of the C-terminus is shown as sticks; in 1EJ3 
(green) it is hydrogen bonded to hydroperoxy-coelenterazine.  The hydrogen bond is 
shown as red dashes.   
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5.5.2 Movement of residues to coordinate calcium 

This section compares the three functional EF-hands of the two crystallographic 

structures 1SL8 and 1EJ3.  Figure 5-11 shows that some of the coordinating residues 

move further than others in order to achieve coordination of calcium.  The distances 

travelled before and after calcium binding by the coordinating oxygen (O) and the α-

carbon of the respective residue are presented in Table 5-3. 

Observations on the changes in conformation of the EF-hands due to binding of calcium 
ions 

Upon binding of calcium ion by the loop of EF-I, both helices are “pulled” 

upwards towards the loop.  Asp24 is pulled closer to calcium to coordinate it.  The 

distance between the entry and exit of the loop, assigned as the exit of helix A and 

entrance of helix B in the Pymol representation of the molecule, was 11.81 Å and 

9.75 Å in 1EJ3 and 1SL8 respectively, showing a contraction of the loop.  The most 

structural rearrangement occurs in the first half (the N-terminus) of the loop (positions 

1-5) with Asn26 (position 3 in the loop) changing orientation to face inwards and Asn28 

(position 5 in the loop) rotating to coordinate the calcium ion. 

In EF-III the entrance and exit of the loop are identified as Asp117 and Thr125.  

The distances between them are 7.68 Å and 8 Å in 1EJ3 and 1SL8 respectively, 

indicating little or no contraction at the entry and exit points of the loop.  Residues at 

positions 3 and 5 rotate to bind calcium ion, but overall there is minimal backbone 

distortion.  As in EF-I, the most obvious rearrangements occur in the N-terminal half of 

the loop. 

EF-IV is overall more disordered prior to calcium binding than are EF-I or EF-

III.  As in EF-III, the maximum structural re-adjustment occurs in the N-terminal half of 

the loop.  The entering helix (helix G) is pulled upwards towards calcium.  Interestingly, 

the entrance and exit of the loop are identified at different positions in 1EJ3 and 1SL8.  

In 1EJ3, the entrance and exit of the loop are Cys152 and Val162 (distance 10.7 Å) 

whereas in 1SL8 they are Asp155 and Asp163 (distance 8 Å), exhibiting considerable 

contraction.  This observation however is made with caution, as the limits between helix 

and loop in the Pymol representation of the molecule are indicative and depend on the 
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definitions of secondary structure used by the software.  Aspartate at position 9 changes 

orientation with the side chain oxygens facing towards the loop.   

As seen in Figure 5-11 and summarised in Table 5-3, in EF-I and EF-III:  

residues at positions 3 and 5 rotate or change orientation upon calcium binding.  In EF-

IV residue at position 1 rotates but residues at positions 3 and 5 are displaced in parallel 

orientation compared to their calcium-free state.  Interestingly, position 9 in EF-IV is 

occupied by aspartate which changes orientation upon calcium binding, which is not 

observed in serine at position 9 of EF-I and EF-III.  Potentially position 9 is of special 

significance in EF-IV than in the other EF-hands.  In EF-IV residues at position 1 and 

12 respond by rotation/change in orientation, while residues at positions 3 and 5 move 

in parallel compared to their calcium-free state.  Overall, residues at positions 1 and 12 

are likely to be critical in achieving loop contraction upon binding and thus “pulling” 

the entering and exiting helices of each loop. 

The local differences in response to calcium binding by the EF-hand loops are 

likely to be associated with their intrinsic affinities and their ability to transduce the 

conformational shifts towards destabilisation of hydroperoxy-coelenterazine. 
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Figure 5-11  Shifts in the EF-hands upon calcium binding.  Isolated fragments from 
Figure 5-10.  1EJ3 (calcium-free) is coloured green and 1SL8 (calcium-bound) is 
coloured blue.  The entering (N-terminus) helix of each EF-hand is shown on the left 
hand aide and the exiting helix (C-terminus) is shown on the right hand side.  Calcium 
ions are shown as transparent yellow spheres.  The coordinating residues are shown as 
sticks, both in the Ca2+-bound and Ca2+-free conformation. All oxygen atoms are 
coloured red.  Coordinating water molecules were omitted from this picture.  Picture 
was rendered in Pymol (DeLano, 2002).  
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Table 5-3  Shifts of residue positions between Ca2+-free and Ca2+-bound EF-hands.  
Distances were calculated between the α-carbon atoms of the superimposed 1EJ3 
(calcium-free) and 1SL8 (calcium bound) structures for each residue in the loop.  For 
the coordinating residues (marked in bold letters), distances between oxygen 
coordinating atoms were calculated.  Amino acid numbering shown for both structures. 
EF-hand a.a. in1EJ3 a.a. in SL8 Position O-O, Å Cα- Cα comments 
EF-I N24 N26 1 1.8 2.5  
 V25 V27 2  4.41 Same orientation 
 N26 N28 3 4.9 3.3 Orientation out→in 
 H27 H29 4  2.3 Some twist 
 N28 N30 5 3.8 0.5 Rotates 
 G29 G31 6  0.59 Same orientation 
 K30 R32 7 1.0 1.0  
       
 S32 S34 9 0.9 1.1  
       
       
 E35 E37 12 1.6 (O1) 

1.3 (O2) 

1.51  

EF-III D117 D119 1 0.9 0.9  
 K118 K120 2  2.3 Change orientation 
 D119 D121 3 2.9 3.2 Rotates 
 Q120 Q122 4  2.6 Slight rotation 
 N121 N123 5 6.6 3.9 Rotates 
 G122 G124 6  3.1  
 A123 A125 7 0.7 1.3  
 I124 I126 8  1  
 T125 S127 9 1.1 1.1  
 L126 L128 10  1.4 parallel 
 D127 D129 11  1.3  
 E128 E130 12 1.0 (O1) 

1.1 (O2) 

1.1  

EF-IV D153 D155 1 6.4 2.4 Rotates 
 I154 I156 2  5.2 Change orientation 
 D155 D157 3 5.8 5.6 Move parallel 
 E156 E158 4  6.0 Same orientation 
 S157 S159 5 5.4 5.4 Move parallel 
 G158 G160 6  1.8  
 E159 E161 7 1.0 1.1 Move parallel 
       
 D161 D163 9 3.3 1.3 Orientation out→in 
 V162 V164 10  1.9  
 D163 D165 11  0.65 Change orientation 
 E164 E166 12 5.5 (O1) 

4.1 (O2) 

0.8 Orientation out→in 
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5.5.3 Overlap of atomic radii in the ion-binding loop 

It is reasonable to assume that the octahedral bipyramidal coordination of 

calcium as seen in structure 1SL8 is the optimal for exerting the maximum effect upon 

ion binding.  This section replaces the calcium ion in the loop of EF-I (PDB ID:  1SL8) 

with each of the additional six metal ions chosen in Section 1.6.2 and calculates the 

distance D and D-r-R (see Section 5.4.2).  For all ions other than calcium this is a 

hypothetical calculation and illustrates the effect of the cavity size in potential for tight 

binding, or lack thereof.  Two basic assumptions are made:  (1) the metal ions are 

spherical and (2) the local protein environment would “choose” the coordination and 

place the ions in the native calcium-binding geometry, despite of the fact that the 

preferred coordinating geometries of these metals in existing metalloproteins are 

different (Section 1.4).  In Figure 5-12 to Figure 5-14 D-r-R is calculated between the 

ion and every coordinating oxygen atom at positions 1, 3, 5, 7, 9 and 12 in the loop.  At 

position 9 the distance is calculated from the oxygen of a water molecule (Section 1.3.4 

and Figure 5-3) and position 12 offers two oxygen atoms from glutamate, assigned in 

the graphs as pos 12-1 and pos 12-2.   

Negative values of D-r-R show potential for overlap between the oxygen ligands 

and the metal ion, hence tight binding.   

As shown in Figure 5-12, calcium, lanthanum and cadmium can overlap with the 

coordinating oxygens of the loop.  Lead also shows potential for atomic overlap (Figure 

5-13) which varies depending on the coordination number the ionic radius corresponds 

to.  Smaller ions cobalt, zinc and copper cannot be reached by all the oxygen ligands 

(Figure 5-14).  It is worth noting that oxygen is not the preferred ligand for these metals 

(Section 1.4).  It is possible that in reality these ions would bind in different 

coordination geometries engaging fewer ligands from the ion EF-hand loop.  This in 

turn would affect the signal transduction to the protein core where luminescence is 

produced. 

 

 



- 170 - 

 

pos 1

pos 3

pos 5

pos 7

pos 9

pos 12-1
pos 12-2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

D
-R

-r
 (

A
)

 

pos 1

pos 3

pos 5

pos 7

pos 9

pos 12-1
pos 12-2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

D
-R

-r
 (

A
)

 

 

pos 1

pos 3

pos 5

pos 7

pos 9

pos 12-1

pos 12-2

-0.5

-0.4

-0.3

-0.2

-0.1

0

D
-R

-r
 (

A
)

 

Figure 5-12  Metal-ligand atomic overlap in EF-I of aequorin (a).  Interatomic distances 
taken from 1SL8 crystallographic structure of calcium-bound EF-I and applied to 
calcium, lanthanum and cadmium ions.  Ionic radii for each ion correspond to the 
coordination numbers shown in each graph.  
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Figure 5-13  Metal-ligand atomic overlap in EF-I of aequorin (b).  Interatomic distances 
taken from 1SL8 crystallographic structure of calcium-bound EF-I and applied to lead 
ions for ionic radii corresponding to three different coordination numbers/geometries. 
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Figure 5-14  Metal-ligand atomic overlap in EF-I of aequorin (c).  Interatomic distances 
taken from 1SL8 crystallographic structure of calcium-bound EF-I and applied to 
cobalt, copper and two different coordination geometries of zinc ions.   
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5.6 Conclusions 

5.6.1 Conclusions from structural analysis 

The decisive conformational shift for the light emitting reaction is associated 

with the release of the C-terminus “tail” of the protein, which carries Tyr184, a residue 

that stabilises the hydroperoxy of coelenterazine and interacts with His169.  This C-

terminus displacement of aequorin is the only major conformational change obvious at 

first glance.  It is also clear that the more subtle local conformational shifts upon 

binding of calcium ultimately propagate into the major shift and bioluminescence 

reaction (Section 5.5).   

The binding of calcium ion by the EF-hands requires different levels of re-

adjustments of the loops.  EF-IV seems to undergo the most extensive local 

rearrangements to accommodate calcium amongst the three calcium binding EF-hands.  

Residues of EF-III seems to be already pre-positioned for calcium binding judging from 

the extent of loop contraction and residue rearrangement while EF-I and EF-IV may be 

carrying the most weight in the transduction of the conformational shifts upon binding 

of calcium (Section 5.5.2).   

In each of the loops the N-terminal side (positions 1-5) undergoes more 

extensive rearrangements upon calcium binding than does the C-terminal side (positions 

6-12).  In terms of EF-hand coupling, it occurs between the C-terminal part of the 

participating loops (EF-I with EF-II and EF-III with EF-IV).  The residues participating 

in hydrogen bonding between the pairs or EF-hands are within van der Waals range 

from residues which directly stabilise coelenterazine or are within close proximity of it 

(Section 5.1.2 and Figure 5-6).  The coordinating residues may rotate, change 

orientation or move in parallel compared to their calcium-free state to achieve calcium 

binding, and there is some variability in the type of response among the three EF-hands.  

This variability could be associated with their metal binding affinity and their role in 

transduction of the conformational shift.  Overall, positions 1, 3 and 5 are important in 

binding of a new ion while positions 1 and 12 mark the entry and exit of the loop. 
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The size of the EF-loop cavity favours metals of similar ionic size as calcium.  A 

theoretical substitution of calcium by six other metal ions in the loop of EF-I (PDB ID:  

1SL8) shows that metal ions with ionic size similar to that of calcium (lead, lanthanum, 

cadmium) are more likely to assume tighter binding in the native coordination geometry 

than smaller ions which will not be reached by all required ligands for this geometry 

(Section 5.5.3).  Instead the smaller ions could attract fewer ligands from the protein 

environment and hence trigger reduced signal transduction. 

5.6.2 Conclusions from previous mutational studies 

The central glycine of each EF-hand is highly conserved and its replacement 

with the more rigid and bulky arginine can result in loss of luminescence, possibly by 

impeding adequate structural response to calcium (Section 5.2.2).  This strategy can be 

used to potentially “knockout” EF-hands one by one and hence elucidate their 

contribution to overall activity.  Removal of coordinating side chain oxygens from 

positions 1, 3, 5 and 12 of the loops also results in reduction of aequorin’s activity by 

reducing affinity for calcium (Sections 5.2.2, 5.2.4, 5.3.1).  Position 9, which 

coordinates indirectly to calcium through a water molecule, could serve for size and 

charge selectivity as well as a “gateway” to modulate binding kinetics (Section 5.3.2).  

Alanine substitutions at non-coordinating positions in the EF-hand loop or its preceding 

helix reduced affinity for calcium (Section 5.3.1).  Spectral tuning is possible by 

mutating residues within the coelenterazine binding site or in close proximity to it as 

well as by using coelenterazine analogues, however this topic is outside the scope of 

this work.  

Finally, the effect of mutations is highly dependent on the surrounding protein 

environment; one type of substitution in a certain position of the EF-hand would not 

necessarily have the same effect in two different EF-hand proteins. 

5.6.3 Choice of mutant library 

The goal was to create an aequorin library with a high likelihood of including 

desirable mutations in key positions of the molecule.  Ideally these mutations should 

lead to altered metal ion selectivity while preserving luminescence activity.   
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While directed evolution (Section 1.5.2) and random-rational approaches 

(Section 1.5.3) present possible routes to altering the ion selectivity of aequorin, the 

availability of the crystallographic structures 1SL8 and 1EJ3 enables the direction of 

mutations to the ion binding sites.  The examination of crystallographic structure and 

literature review presented in the previous sections were combined with common sense 

and curiosity.  The priority was to introduce specific mutations in specific positions of 

the EF-hand loops.  The mutations designed can be divided in the following categories:  

(1) histidine and cysteine substitutions, (2) alanine substitutions, (3) central Gly→Arg 

mutations, (4) double mutations.  The forty eight mutants that were designed are 

presented in Table 5-4 and Table 5-5 and annotated in regards to their position in the 

protein and the nature of their substitution.  The reasoning behind the choices is outlined 

below.   

Preference amongst EF-hands 

EF-I and EF-III were targeted first as they are more optimally pre-positioned to 

bind calcium than EF-IV, which suggests they may carry more weight in ion selectivity.  

Amongst the two, EF-I was studied more extensively because in published literature its 

impairment was reported to be the most detrimental to aequorin activity amongst the 

other EF-hands.   

Mutations of coordinating and non-coordinating residues 

Coordinating residues were prime targets for mutations as they are directly 

responsible for binding of calcium; however, non-coordinating residues were also 

targeted to a lesser extent.  The logic behind this was that mutations at non-coordinating 

positions could potentially introduce a new rearrangement for metal binding.  These 

positions could also be more “forgiving” to radical mutations as their amino acids are 

not highly conserved (Table 1-4).  This statement excludes glycine at position 6 of the 

EF-hand loop which was targeted for different reasons, as explained in this section. 

Histidine and cysteine substitutions 

In aequorin there are three calcium-binding EF-hands (EF-I, EF-III and EF-IV), 

with six calcium-coordinating residues in each, four out of which are highly conserved 

and two not as highly conserved (Section 1.3.3 and Table 1-4).  All published 

mutational work has highlighted substitutions of these residues by glycine (e.g. 
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Asp→Gly, Glu→Gly) or by other conserved coordinating residues (e.g. Asp→Asn, 

Glu→Asp).   

To the best of the author’s knowledge, the selectivity of the EF-hands has never 

been engineered towards binding of smaller (e.g. zinc, copper and cobalt) or softer ions, 

(cadmium, lead).  Cysteine and histidine would normally be found in metal-binding 

sites of zinc and copper but are “exotic” to the EF-hand.  For this reason these amino 

acids were deemed as highly likely to alter the ion selectivity of the EF-hand loops.  

Each of the coordinating residues of EF-I and EF-III were individually 

substituted by histidine and cysteine. Some non-coordinating residues were also 

targeted in both EF-hands.  Histidine and cysteine have never been purposely 

introduced in the EF-hand loop before, nor have such mutants been isolated from 

previous high-throughput mutagenesis screens.   

Alanine substitutions (or alanine scan) 

In this group of mutants each of the coordinating, conserved residues at positions 

1, 3, 5, 9 and 12 (position 9 is less conserved) of EF-I were replaced by alanine.  These 

substitutions can help appreciate the significance of each of the essential side chains by 

removing them.   

Central Gly →Arg mutations 

Impairing the EF-hands by introducing rigidity in the loops (Gly→Arg at 

position 6) has been used to assess the importance of each EF-hand in the luminescence 

reaction, however these mutants were only tested against calcium (Section 5.2.2).  

These mutants were re-created in order to be screened against each of the seven metal 

ions of interest.  This set consists of mutants with one or both impaired EF-hands.  In 

the initial (mutant design and screening) stages of this work, the set of Gly→Arg 

mutants were referred to as “knockout mutants” due to the expectation from published 

literature that this type of mutation would abolish activity.  This choice of nomenclature 

however was revisited upon examination of the screening results and comparison with 

the effect of other mutations with similar or more dramatic effect. 

Double mutations 

Variants of this set carried two mutations each:  two substitutions within EF-I or 

one substitution in EF-I and one in EF-III.  These combinations always target the 
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coordinating residue at position 5 of EF-I (Asn30) which was found to significantly 

rearrange itself in space in order to bind calcium (Section 5.5.2).  The use of combined 

mutations was deemed as a more drastic measure to alter the protein’s ion selectivity.  

Options not pursued – ideas for future work 

Due to time constraints the library did not include more mutants in EF-IV, which 

was a prospect for future studies.  Further rounds of either localised random 

mutagenesis or random mutagenesis – both achievable with alterations of the 

MEGAWHOP (megaprimer PCR of whole plasmid) method (Miyazaki and 

Takenouchi, 2002) – could possibly serve for restoration of activity and/or further fine-

tuning of selectivity of the molecule.  Such a strategy would potentially address aspects 

such as cooperativity between the EF-hands and intricate hydrogen bonding network 

interactions, which are notoriously hard to predict and engineer with rational 

mutagenesis at our current level of insight on aequorin function. 
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Table 5-4  Mutants Nr 1–23.  Amino acid numbering according to PDB IDs 1SL8 and 
1EJ3 and numbering of mutated positions within each EF-hand. 
Nr#  Amino acid Nr 

according to 1EJ3 

Amino acid Nr 

according to 1SL8 

position 

in EF-I 

position 

in EF-III 

position 

in EF-IV 

Alanine scan:  replaces coordinating and conserved positions 1,3,5,9 and 12 with 
alanine 
1 Asp24Ala Asp26Ala 1   

2 Asn26Ala Asn28Ala 3   

3 Asn28Ala Asn30Ala 5   

4 Ser32Ala Ser34Ala 9   

5 Glu35Ala Glu37Ala 12   

Central Gly→Arg mutations in EF-I, EF-III and EF-IV 

6 Gly29Arg Gly31Arg 6   

7 Gly122Arg Gly124Arg  6  

8 Gly158Arg Gly160Arg   6 

9 Gly29Arg/Gly122Arg Gly31Arg/Gly124Arg 6 6  

10 Gly29Arg/Gly158Arg Gly31Arg/Gly160Arg 6  6 

11 Gly122Arg/Gly158Arg Gly124Arg/Gly160Arg  6 6 

Histidine substitutions in EF-I 

12 Asp24His Asp26His 1   

13 Val25His Val27His 2   

14 Asn26His Asn28His 3   

15 Asn28His Asn30His 5   

16 Ser32His Ser34His 9   

17 Glu35His Glu37His 12   

Cysteine substitutions in EF-I 

18 Asp24Cys Asp26Cys 1   

19 Val25Cys Val27Cys 2   

20 Asn26Cys Asn28Cys 3   

21 Asn28Cys Asn30Cys 5   

22 Ser32Cys Ser34Cys 9   

23 Glu35Cys Glu37Cys 12   
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Table 5-5  Mutants Nr 24–48.  Amino acid numbering as in Table 5-4. 
Nr#  Amino acid Nr 

according to 1EJ3 

Amino acid Nr 

according to 1SL8 

position 

in EF-I 

position 

in EF-III 

position 

in EF-IV 

Histidine substitutions in EF-III    

24 Asp117His Asp119His  1  

25 Asp119His Asp121His  3  

26 Asp121His Asp123His  5  

27 Ala123His Ala125His  7  

28 Ser125His Ser127His  9  

29 Asp127His Asp129His  11  

30 Glu128His Glu130His  12  

Cysteine substitutions in EF-III 

31 Asp117Cys Asp119Cys  1  

32 Asp119Cys Asp121Cys  3  

33 Asp121Cys Asp123Cys  5  

34 Ala123Cys Ala125Cys  7  

35 Ser125Cys Ser127Cys  9  

36 Asp127Cys Asp129Cys  11  

37 Glu128Cys Glu130Cys  12  

Double mutations in EF-I 

38 Asn28Cys/Glu35His Asn30Cys/Glu37His 5, 12   

39 Asn28His/Glu35Cys Asn30His/Glu37Cys 5, 12   

40 Asn28Cys/Ser32His Asn30Cys/Ser34His 5, 9   

Double mutations in EF-I and EF-III 

41 Asn28Cys/Asp119His Asn30Cys/Asp121His 5 3  

47 Asn28Cys/Asp121His Asn30Cys/Asp121His 5 5  

42 Asn28Cys/Ser125His Asn30Cys/Ser127His 5 9  

43 Asn28Cys/Asp127His Asn30Cys/Asp129His 5 11  

44 Asn28Cys/Asp119Cys Asn30Cys/Asp121Cys 5 3  

45 Asn28Cys/Asp121Cys Asn30Cys/Asp123Cys 5 5  

46 Asn28Cys/Asp127Cys Asn30Cys/Asp129Cys 5 11  

48 Asn28Cys/Ser125Cys Asn30Cys/Ser127Cys 5 9  
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6 Library screening and mutant selection 

This chapter describes the creation of the mutant DNA library brought forward 

from Chapter 5 (see Table 5–4 and 5–5) using PCR mutagenesis methods, followed by 

high-throughput screening of the library against seven potential activator ions:  Co2+, 

Cu2+, Zn2+, Cd2+, Ca2+, La3+ and Pb2+ using the methods developed in Chapter 4.  The 

mutants will be assessed in terms of retained activity and relative selectivity compared 

to wild-type aequorin and a select number of mutants will be proposed as potential 

candidates for further study.  One mutant plus wild-type aequorin will be carried 

forward for purification (Chapter 7) and study of their response towards the same set of 

metal ions (Chapter 8) without background interferences present in the crude lysate used 

in this chapter.   

6.1 Introduction 

6.1.1 Creation of mutant library 

The available mutational approaches are described in Sections 1.5.1–1.5.3.  

Site-directed mutagenesis (SDM) was the sensible mutagenic method for the creation of 

the library specified in Chapter 5 (Table 5-4 and Table 5–5).  The most practical SDM 

protocol available was QuikChange® (Stratagene, 2004) (Section 1.5.1, Section 2.3.3).  

The manufacturer’s protocol for QuikChange® is supplied in general Materials and 

Methods Chapter 2, Section 2.3.3 and its implementation (including variations from the 

basic protocol) is described in Section 6.2.1.  Wild-type apoaequorin gene in plasmid 

pETAQ (Chapter 4, Table 4.2) was used as template for mutagenesis and E. coli TOP10 

cells were used for DNA preparations. 

6.1.2 Previous work in methods of aequorin mutagenesis 

Due to its advantages, QuikChange® has been employed in the most recent work 

involving rational mutagenesis;  Row and co-workers (2008b) and Dikici and co-
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workers (2009) used it to target aequorin residues involved in the stabilisation of 

hydroperoxy-coelenterazine.   

Before this method was available, Tsuji and co-workers (1986) employed site-

specific mutagenesis in order to introduce single mutations in aequorin (Section 5.2.2) 

based on a method by Morinaga and co-workers (1984);  the desired mutations were 

incorporated in a synthesised oligonucleotide strand (mutagen).  The apoaequorin gene 

was encoded in a plasmid vector also encoding for β-lactamase (allowing ampicillin 

resistance).  One sample of this plasmid was digested in order to remove a portion of the 

gene for β-lactamase and the cleaved fragment treated with the Klenow fragment of 

DNA polymerase I and dNTPs for creating blunt ends.  Another sample was digested in 

order to remove a portion of the aequorin gene to be mutagenised.  Both fragments 

(plasmid with portion of β-lactamase gene cleaved off and plasmid with portion of 

apoaequorin cleaved off) were mixed with the synthetic oligonucleotide and the mixture 

was denatured at 100 °C for 3 min, followed by gradual cooling for the complementary 

fragments to re-anneal.  The mixture of re-natured DNA was treated with the Klenow 

fragment and dNTPs (for creating blunt ends), T4 ligase for blunt ended ligation and 

transformed into E. coli and the ampicillin-resistant transformants were isolated.  This 

method yielded 13% yield for a single base substitution and was simpler than previous 

methods requiring an M13 phage vector for gene expression (Morinaga et al., 1984).   

Tsuzuki and co-workers (2005) used random mutagenesis approach in order to 

find aequorin mutants with improved thermostability and random-rational approach in 

order to further explore specific sites highlighted from the random approach (Section 

5.2.2 and 5.2.5).  In vitro evolution by DNA shuffling was the method used for random 

mutagenesis.  The cDNA sequence encoding for apoaequorin was cleaved with DNAse I 

and fragments 50-300bp isolated through extraction from a DNA electrophoresis gel.  

The isolated fragments were used in a primerless PCR for DNA shuffling to occur.  The 

product of this PCR was used as template for a second round of PCR with primers 

designed to flank the start and finish of the entire apoaequorin gene while adding 

appropriate restriction sites (Kpn I and EcoR I) at each end.  Digestion with Kpn I and 

EcoR I followed and the digested fragment was inserted into a plasmid vector under 

control of Plac promoter (for β-galactosidase production) and further transformed into 

E. coli.  The transformants were plated on agar plates containing ampicillin and their 

colonies picked into wells of 96-well microplates.  The colonies were grown into the 
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microplates and aequorin was reconstituted by addition and of coelenterazine into each 

well and screening for luminescence after injection with calcium solution.   

The forty brightest mutants were selected and grown into new cultures for the 

isolation of plasmid DNA.  These plasmids were mixed in equal proportions and co-

amplified using primers that flanked the start and finish of the entire apoaequorin gene 

(used also in the second round of PCR).  The product of this amplification was entered 

in a new round of DNA shuffling for in vitro evolution.   

The same authors (Tsuzuki et al., 2005, Tricoire et al., 2006) employed rational-

random approach by creating randomised mutants in two specific positions in the 

apoaequorin sequence (Gln168 and Leu170) appearing to be crucial in bioluminescence 

yield.   

As a first step, mutagenesis of the Gln168 and Leu170 was performed by a PCR 

step with a mutagenic sense primer containing NNS codons at the two positions of 

interest.  The same primer introduced a silent mutation one codon upstream of codon 

Gln168 encoding for a unique restriction site (Mlu I).  The antisense primer did not 

introduce any mutations but included one unique restriction site (EcoR I) which was 

part of wild-type apoaequorin sequence.   

The products of the first PCR step were used as template for a second round, in 

which the population of all mutagenised fragments was amplified using a new sense 

primer that included the unique restriction site (Mlu I) upstream of the mutated codons 

but did not include the mutated codons and the same antisense primer as the first round 

PCR.  A unique Mlu I site was also created upstream of the Gln168 codon by 

introducing silent mutations in the wild-type apoaequorin cDNA within the plasmid 

vector.  The product of the second round of PCR was digested using Mlu I and EcoR I 

as was the plasmid carrying wild type apoaequorin and the silent mutation allowing Mlu 

I digestion and the digested mutagenised fragments of aequorin were ligated into the 

vector.  The resulting population of plasmids was transformed into E. coli and protein 

expression and screening was similar as in the DNA shuffling mutants. 

6.1.3 Screening of mutant library 

This is a library of 48 mutants and wild type in a total of four 96-well 

microplates.  Each plate was injected with each of the seven test ions:  calcium, 
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cadmium, cobalt, copper, lanthanum, lead and zinc.  The screening process was 

developed in Chapter 4 (Section 4.5.1, Figure 4.17) and implemented as described in 

Section 6.2.2.  Raw data from each microwell of the library will consist of relative 

luminescence units (RLUs) versus time (milliseconds). 

Before processing the raw data arising from the high-throughput screen, it is 

important to set the metrics for meaningful comparison and clarifying the relevant 

terminology.  Selectivity is key in assessing the response of the mutants towards 

calcium and new ions.  The terms selectivity or specificity are in many cases used 

interchangeably in analytical chemistry, biochemistry and enzymology.  Selectivity 

describes “whether the analyte can be measured without interferences from other 

components in the mixture” (Persson and Vessman, 2001).  According to IUPAC 

(2001) “specificity is the ultimate of selectivity” and only a method which is perfectly 

selective for an analyte is said to be specific (den Boef and Hulanicki, 1983).  

In previous work on aequorin mutagenesis the performance of aequorin variants 

has been presented as relative to that of wild type (Tsuji et al., 1986, Tsuzuki et al., 

2005) or in terms of the half-life of the luminescence decay curves compared to that of 

wild type in the context of kinetics studies (Tricoire et al., 2006).  Relative activity of 

mutants compared to that of wild type has also been considered in this chapter but 

additional metrics stem from the expectations arising from the mutations.  Aequorin has 

three calcium binding EF-hands containing six calcium-coordinating amino acids each.  

In this work, only one or two amino acids were mutated at a time.  Realistically, single 

point or double mutations are unlikely to turn around the ion selectivity of a molecule 

that relies on up to three sites and eighteen amino acids for this function.   

Each mutant of the library will be assessed in terms of (1)  yield of mutant versus 

wild type for every metal ion tested and (2)  shift of a mutant’s response from calcium 

towards a new ion compared to the equivalent shift of wild type.  Details on the 

calculation of the metrics used are presented in Section 6.2.3.  Ranking of the mutants 

according to these metrics is aided by the use of matrix plots and bar plots (Figure 6-8 

to Figure 6-17).  Bar plots allow visual assessment of the performance of the mutants 

and identification of salient traits.  Matrix plots were constructed to visualise possible 

correlations between traits and to identify determinants of selectivity between different 

metal ions. 
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6.2 Methods 

6.2.1 Mutant library construction 

Mutagenic primers were designed to flank the residues to be replaced and as 

described in Section 2.3.5.  Due to the large number of primers created, these are 

presented in Appendix Chapter 6, Tables Table 10-6 to Table 10-11.  Their length was 

50–60 bp, which exceeds the usual requirement of 18–25 bp;  this was found to reduce 

the occurrence of by-products due to multiple insertions of primer sequence in the final 

construct.  

The QuikChange® Site-Directed Mutagenesis (Stratagene Ltd.) protocol and 

PCR reaction mix were as described in in Section 2.3.2 and Tables 2-2 to 2-4.  The was 

made up as described.  PCR cycles are presented in Table 2-4.  Any variations or 

deviations applicable to individual PCR reactions (e.g. additional Mg2+ and DMSO or 

changes in annealing temperature) are captured in Table 6-1.  The QuikChange® 

reaction was initially performed in a TechGene thermal cycler (Techne Ltd.).  Due to an 

initial low success rate and in order to speed up the process of attaining successful PCR 

reactions, multiple reactions were run per mutant, including variations in the PCR mix 

and annealing temperatures.  A temperature gradient PCR thermal cycler was used 

(Techne Ltd.) for this purpose.  

After the PCR reaction, the stages of digestion with Dpn I, transformation in 

E. coli and selection of transformants were performed as described in section 2.3.2.  

Growth of bacterial cultures and preparation of plasmid DNA was performed as 

described in Section 2.2.1 to 2.2.4 and Section 2.3.1.  Existence of the desired mutations 

was verified by sequencing (Section 2.3.4).  Where the QuikChange® reaction yielded 

more than one product (visualised through DNA gel electrophoresis) the entire miniprep 

of the transformed cells would then be run on a low-melt agarose gel and only the band 

of the desired size would be extracted and sent for sequencing.  An example of such a 

case is presented in Figure 6-4.  Sequencing results for the reactions are supplied in 

their original Bioedit file format as Supplementary Material.   

Expression of apoaequorin mutant in E. coli cultures and cold incubation with 

coelenterazine for production of aequorin variants were conducted in microplate format 

as dictated in Chapter 4, Section 4.5.1 and Figure 4-17.   
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Table 6-1  PCR conditions for creating mutants Nr 1–48.  Annealing temperatures are 
deviations from the template protocol of Table 2–4.  Concentrations of magnesium 
sulfate, DMSO and Qsolution in the final reaction mix are additional to the 
concentration shown in Table 2-3.  Numbering of mutants as in Table 5-4 and Table 
5-5.   

Nr   Ta 

(°C) 

Mg2+ 

(mM) 

DMSO 

  (v/v) 

Qsol 

(v/v) 

   Nr   Ta 

(°C) 

Mg2+ 

(mM) 

DMSO 

  (v/v) 

Qsol 

(v/v) 

1 69 0.5 2%     25 68 0.5 2%  

2 69 0.5 2%     26 68 0.5 2%  

3 69 0.5 2%     27 67.5 0.5 2%  

4 69 0.5 2%     28 68 0.5 2%  

5 69 0.5 2%     29 68 0.5 2%  

6 67.5 0.5 2%     30 68 0.5 2%  

7 67.5 0.5 2%     31 68 0.5 2%  

8 51       32 68 0.5 2%  

9 67.5 0.5 2%     33 68 0.5 2%  

10 53  0.8%     34 67.5 0.5 2%  

11 53  0.8%     35 68 0.5 2%  

12 61.5 0.5      36 68 0.5 2%  

13 62 0.5 2%     37 68 0.5 2%  

14 64  2% 10%    38 62 0.4 2.2%  

15 56.3 0.75      39 62 0.4 2.2%  

16 69 0.5 2%     40 62 0.4 2.2%  

17 63   4%    41 67 0.5 2%  

18 63       42 67 0.5 2%  

19 62 0.5 2%     43 67 0.5 2%  

20 57 0.5 2%     44 67 0.5 2%  

21 65 1 2%     45 67 0.5 2%  

22 62 0.5 2%     46 67 0.5 2%  

23 64  2%     47 67 0.5 2%  

24 68 0.5 2%     48 67 0.5 2%  

       Mutant Nr 21:  DNA polymerase KOD (Novagen) was used for a successful reaction  
       instead of PfuUltra High Fidelity polymerase.   
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6.2.2 Mutant library layout and screening 

The forty eight mutants of the library were arranged in a total of four sub-

libraries in 96-well microplate format.  A typical layout of each microplate is presented 

in Figure 6-1.  In each microplate, the wells marked with X1,X2,…,X48 were 

inoculated with a single colony of E. coli cells expressing either wild-type or a mutant 

of apoaequorin.  Each mutant and wild type was arranged in triplicates as shown in 

Figure 6-1.  In order to avoid position-related bias within the plate (e.g. effects of 

temperature and humidity gradient which can ultimately affect protein yield and 

activity), bacteria expressing wild-type apoaequorin were always grown in wells 

X4,X5,X6 (positions B4,C4,D4 in microplate coordinates) and in wells X28,X29,X30 

(positions E4,F4,G4 in microplate coordinates), while the rest were used for mutant 

variants.  The outer wells of each plate were not inoculated, as they are associated with 

high errors, as illustrated in Chapter 4.  They were however filled with the same liquid 

media as the inoculated wells at all stages of microwell aequorin production in order to 

help maintain constant temperature throughout the microplate.  Based on this layout, 

each microplate can hold a maximum of 14 triplicate sets of aequorin variants and two 

triplicate sets of the wild type.  Wild type produced in wells B4,C4,D4 was used as 

internal reference for each plate. 

Figure 6-1  Typical layout of each microplate of the mutant library.  Wells highlighted 
in blue contain wild-type protein throughout the library.  The remaining wells contain 
mutant variants of aequorin.  The black line grid between the wells marks the positions 
of triplicates.   
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Wild type produced in E4,F4,G4 of each plate was harvested and pooled.  This 

sample was used for the determination of optimal luminescence reading parameters (e.g. 

gain settings, optimal concentration of each metal ion to be injected) on the BMG 

microplate reader.  In some plates (Figure 6-2) additional wild type was produced in 

wells X22,X23,X24 (microplate coordinates B10,C10,D10) or X46,X47,X48 

(microplate coordinates E10,F10,G10) in case additional wild type would be required.  

It was important to set the luminescence screening settings based on the properties of 

aequorin produced under the same conditions as the microplate library under study.  

These wild type samples were stored at –20º C separately from the microplates so that 

optimisation experiments for screening parameters could be carried out without need to 

thaw the library.   

Figure 6-2 shows the exact position of the mutants in the each of the four plates 

of the library during the entire process form inoculation into microwells through to 

high-throughput screening against metal ions.  The numbering of the forty eight mutants 

is according to Table 5-4 and Table 5-5 and they are arranged in triplicates.  
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Figure 6-2  Layout of wild type and mutants in the four plates of the library.  
Numbering of mutants as in Table 5-4 and 5-5.  In Plate-3: In mutant denoted 6* the 
codon for arginine was CGA and in mutant 6 the codon was CGT.  Both were used for 
construction of the mutant library but only readings for mutant Nr 6 were used in data 
processing.  Mutants Nr 28 and 35 were repeated in Plate-4. 
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6.2.2.1 Metal ion concentrations for library injection 

For practical reasons only one concentration per metal ion could be used to 

screen the entire library.  It was suspected that high concentrations of certain metals 

could prove deleterious for aequorin activity but there was no published work on the 

subject.  It was also understood that the optimal concentration of each ion for each of 

the forty eight mutant variants may differ.  Determination of optimal conditions (metal 

ion concentration and photomultiplier gain) would be based on performance of wild 

type only.   

The experiments were performed using wild type in the presence of a range of 

concentrations of each metal.  The wild type was from wells E4,F4,G4 of the microplate 

library (Section 6.2.2). 

Metal ion preparations were according to Section 2.5.1.  Solutions of calcium 

chloride, zinc chloride, cadmium chloride, copper sulfate, lanthanum chloride and 

cobalt chloride were prepared at nominal concentrations of 1, 5, 10, 12.5, 20 and 

30 mM in 50 mM Tris-HCl pH 7.5.  Lead nitrate was prepared in RO water.  

Concentrations of metals were at the millimolar range as the protein suspension was in 

~10 mM EDTA (Section 4.5, Figure 4.17). 

100 µL of protein solution was injected with metal ion solution at 1:1 volume 

ratio and the light output measured in the FluoStar Platereader (Section 2.7).  At 

constant gain settings, protein solutions were injected with the range of metal salt 

concentrations in order to find the optimum.  The light readings from all the wells tested 

were plotted against the nominal concentrations of the metal ion solutions.  The 

resulting curves are provided in Supplementary Material.   

The titration curves showed that there was indeed an optimum concentration for 

each metal; low concentrations would trigger low response whereas for certain metals 

higher concentrations seemed to cause aequorin inhibition.  The optimal concentration 

of each metal was used for the screening of the mutant library and is shown in Table 

6-2.   

6.2.2.2 Gain settings 

Initial tests of Section 6.2.2.1 demonstrated that one uniform gain setting for all 

metals might result in missing low activity levels from poor performers (if the gain is 

set relatively low) or in over the linear range readings from high performers.   
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The point mutations introduced in aequorin were likely to bring about minor 

shifts to protein response towards various metals accompanied by major loss in light 

production.  The desired output of the screening process was to capture even minor 

improvements occurring at low light levels.  This required using high gain settings for 

ions that cause low level aequorin response.  Conversely, the combination of wild type 

with calcium was expected to yield high levels of activity and would need to be read at 

low gains. 

Gain settings for each ion were determined by trial and error at photomultiplier 

gains within the range of 1,650 to 2,200 in order to ensure that readings would not 

exceed the instrument’s range.  The settings chosen for the screening of the library are 

shown in Table 6-2.   

Table 6-2  Metal ion stock concentrations and platereader gain settings for library 
screening. 

Metal Ion salt Concentration for library injection (mM) Platereader Gain 

CaCl2 25 1,650 

CdCl2 20 1,900 

CoCl2   12.5 2,200 

CuSO4   12.5 2,150 

ZnCl2 25 2,000 

LaCl3   2.5 1,850 

Pb(NO3)2   12.5 2,150 
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6.2.3 Data processing of high-throughput screening 

A schematic of the concept behind data processing is shown in Figure 6-3.  

Every microplate contains an internal reference of wild-type aequorin in triplicate (wells 

B4,C4,D4).  The average mean of the luminescence peak (or in lack of a clear peak, the 

highest luminescence reading) is calculated and divided by the respective mean of the 

internal control wild type.  This ratio is called C and is a measure of the performance of 

the mutant compared to wild type, for each ion.  Using an internal control takes into 

account factors that may influence the production of aequorin variants in each 

microplate (Figure 4-17).  Hence, measure of activity C is comparable between different 

plates and across the library (Equation 2): 
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D=1 means no change in selectivity compared to calcium. 

D<1 means selectivity towards Ca2+ was enhanced as affinity for other ions was 

even further diminished comparatively to calcium. 

D>1 is preferential selectivity of mutant for X2+ (or La3+) versus Ca2+. 
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True selectivity is defined when the competing substances are present in the test 

sample, which is not the case in this initial screen.  Derivation of measures C and D are 

described schematically in Figure 6-3.  The calculations were carried out using Excel 

(Microsoft Ltd) and the results were arranged in Excel and Minitab (Minitab Ltd).  In 

Figure 6-2 it is shown that all mutants were arranged in triplicates.  If the % deviation 

amongst the measured triplicate values was ≥20% the raw data was examined and 

outliers amongst the triplicates were excluded.  In such a case the final values of C and 

D would represent the average C and D for a duplicate set.   
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Figure 6-3  Illustration of measures of activity (C) and selectivity (D) in data 
processing.  As an example, Plate-1 injected with calcium and Plate-1 injected with zinc 
are compared.  In blue oval shape are the triplicate sets of wild type and in red ovals are 
the triplicate sets of one mutant variant.  For each mutant, the ratio of the mean average 
peak luminescence of the mutant (red) over the wild type (blue) gives value C 
corresponding to the ion tested in each plate (symbol in red square boxes).  The ratio of 
the C value for any given ion over C value for calcium is value D corresponding to that 
particular ion (symbol in square green box).  Metrics C and D can be used for 
comparisons across the entire library due to the internal references in each plate.  
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6.3 Results 

6.3.1 Library creation results 

The size of the plasmids carrying mutated apoaequorin sequence was verified by 

agarose DNA gel electrophoresis and successful mutations were verified with 

sequencing.  Figure 6-4 and Figure 6-5 present a typical set of DNA gel visualisations 

of mutants Asn28Cys and Asn28Cys/Ser32His respectively.   

 

 

Figure 6-4  DNA agarose gel electrophoresis of mutant Asn28Cys.  0.8% agarose gel.  
Lanes 1, 3, 5 and 7: 0.5–12 Kb DNA marker;  Lane 2:  primerless PCR (control) 
containing  template pETAQ (wild type) in very faint band;  Lane 4:  product of PCR 
with primers “Asn28Cys for” and “Asn28Cys rev” (primer sequences in Appendix 
Chapter 6, Table 10-7 and Table 10-11).  The product of QuikChange® amplification is 
an open circular plasmid, hence the dominant band of ~6 Kb;  Lane 6:  5 µL of plasmid 
miniprep of transformed E. coli with PCR product of Lane 4.  Remaining amount of 
plasmid was run on low-melt agarose gel and the lowest band (supercoiled form) 
extracted using QIAquick® gel extraction kit.  Lane 8:  product of gel extraction low-
melt agarose gel.  This sample was sequenced and upon verification of desired results 
stored as part of the mutant DNA library.  
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Figure 6-5  DNA agarose gel electrophoresis of mutant Asn28Cys/Ser32His.  0.8% 
agarose gel.  Lanes 2 and 3: 0.5–12 Kb DNA ladder;  Lane 1:  product of PCR with 
template plasmid containing mutation Asn28Cys and primers “Ser32His for” and 
“Ser32His rev” (primer sequences in Appendix Chapter 6, Table 10-8 and 10-11).  The 
product of the QuikChange® PCR amplification is an open circular plasmid, hence the 
dominant band of ~6 Kb;  Lane 4:  plasmid miniprep from E. coli cells transformed with 
material of Lane 1.   

 

Figure 10-1 (Appendix Chapter 6) shows a typical set of sequencing results for 

Asn28Cys mutant aligned with the sequence of wild-type apoaequorin.  The sequencing 

results for the library of mutants are presented in Supplementary Material in Bioedit file 

format.   
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6.3.2 Library screening results 

The schematic output of screening results (four plates, seven ions per plate) as 

displayed by the platereader software after the completion of each test run is shown in 

Figure 6-6 and Figure 6-7.  In this style of representation each well contains the trace of 

luminescence counts versus time.  The raw screening data is presented in 

Supplementary Material.   

Processing of the raw data show metrics of activity C and selectivity D 

(definitions in Section 6.2.3) for all mutants and the results are shown in Figure 6–8 to 

Figure 6–10, which will be discussed in Section 6.4.  Figure 6–8 shows the activity of 

the mutants compared to that of wild type for each of the seven ions tested.  The 

mutants are grouped according to type of mutation and location in the molecule (also 

refer to Table 5-4 and Table 5-5):  cysteine and histidine mutants in EF-I or EF-III;  

single and double Gly→Arg mutants;  alanine replacements in EF-I;  double mutations 

in EF-I and double mutations in EF-I and EF-III combined.  Their position in the 

molecule and substitution type is shown on the x-axis.   

Figure 6-9 plots D in the y-axis.  D takes into account not only the activity of 

mutants in response to each new ion, but also their response towards calcium, in that 

way serving as a measure of selectivity.  As high D values do not necessarily guarantee 

high protein activity, the x-axis is also highlighted to mark mutants with C values >10% 

and >50% so it would be possible to select mutants with high D and reasonable C.  

Figure 6-10 is an alternative presentation of D for each mutant.  Logarithmic scale is 

used for values of D in order to visually aid assessment of the entire library:  D=1 

corresponds to wild type and the higher the D value the greater the shift of selectivity 

towards new ions and further away from calcium.   

Figure 6-11 and Figure 6-12 are alternative representations of values C and D 

respectively.  The same data as in Figure 6-9 and Figure 6-10 is presented in individual 

value plots and arranged according to the EF-hand targeted (EF-I or EF-III), the final 

substitution (His or Cys) and the exact position in the EF-hand loop targeted (positions 

1, 2, 3, 5, 7, 9, 11, 12).  This type of representation can reveal potential trends 

associated with these groupings.  Central Gly→Arg mutants were excluded from these 

graphs.  
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Figure 6-13 to Figure 6-15 are matrix plots of the metric of selectivity D for all 

the metal ions tested.  In each of the three graphs the data points are coloured according 

to EF-hand mutated (Figure 6-13), position in the EF-hand loop (Figure 6-14) and type 

of mutation (Figure 6-15).  Matrix plots can help identify pairwise associations between 

parameters, clustering of groups or presence of outliers. 

Figure 6-16 plots the metrics of selectivity D against retained activity C for the 

entire library and against all of the metals tested.  An ideal outcome would be a mutant 

that rates highly in both metrics.  

Figure 6-17 plots the retained activity for the single and double Gly→Arg 

mutants in order to assess the importance of each of the EF-hands I, III and IV in the 

activity of aequorin with each of the seven metal ions tested. 
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            plate-1                                                     plate-2 

Figure 6-6  Visualisation of raw screening data, plates 1 and 2 of aequorin library.  Each 
well represents a luminescence versus time curve.  The wells of plates 1 to 4 contain 
protein injected with each of the seven metal ion solutions as candidates for triggering 
luminescence.  The experimental design is described in Section 6.2.2 and discussed in 
6.3.2.  The position of wild type and mutants in each plate was according to the layout 
in Figure 6-1 and 6-2.  Gain settings for luminescence measurements and concentrations 
for each metal ion injected are presented in Table 6-2.  Data analysis was according to 
Figure 6-3.  
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             plate-3                                                    plate-4 

Figure 6-7  Visualisation of raw screening data, plates 3 and 4 of aequorin library.  
Continued from Figure 6-6. 
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Figure 6-8  % Activity (C) compared to wild type against all ions tested, for the entire library.   
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Figure 6-9  D as metric for ion selectivity shift of mutants.  Highlighted labels:  light blue for mutants exhibiting C≥50% and yellow for 
10%≤C≤50%.   
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Figure 6-10  D on logarithmic scale.  An alternative representation of Figure 6-9, clearly sets apart the cases where D>1.  D for wild type=1.  
D>1 indicates a stronger preference than wild type toward ions other than calcium. light blue for mutants exhibiting C≥50% and yellow for 
10%≤C≤50% 



- 203 - 

IIII

100%

50%

0%C
 C

o
b

al
t

HisCysAla

100%

50%

0%C
 C

o
b

al
t

1211975321

100%

50%

0%C
 C

o
b

al
t

IIII

80%

40%

0%

C
 C

o
p

p
e

r

HisCysAla

80%

40%

0%C
 C

o
p

p
e

r

1211975321

80%

40%

0%C
 C

o
p

p
e

r

IIII

100%

50%

0%C
 Z

in
c

HisCysAla

100%

50%

0%C
 Z

in
c

1211975321

100%

50%

0%C
 Z

in
c

IIII

100%

50%

0%

C
 C

ad
m

iu
m

HisCysAla

100%

50%

0%

C
 C

ad
m

iu
m

1211975321

100%

50%

0%

C
 C

ad
m

iu
m

IIII

100%

50%

0%C
 C

al
ci

u
m

HisCysAla

100%

50%

0%

C
 C

al
ci

u
m

1211975321

100%

50%

0%

C
 C

al
ci

u
m

IIII

200%

100%

0%

C
 L

an
th

an
u

m

HisCysAla

200%

100%

0%

C
 L

an
th

an
u

m

1211975321

200%

100%

0%

C
 L

an
th

an
u

m

IIII

100%

50%

0%

EF-Hand mutated

C
 L

e
ad

HisCysAla

100%

50%

0%

Type of mutation

C
 L

e
ad

1211975321

100%

50%

0%

Position in the loop
C

 L
e

ad
 

Figure 6-11  C (activity compared to wt) of single mutations.  Arranged by site (EF-hand and position in the loop) and type (Ala, Cys, His) of 
mutation.   



- 204 - 

IIII

16

8

0D
 C

o
b

al
t

HisCysAla

16

8

0D
 C

o
b

al
t

1211975321

16

8

0D
 C

o
b

al
t

IIII

50

25

0D
 C

o
p

p
e

r

HisCysAla

50

25

0D
 C

o
p

p
e

r

1211975321

50

25

0D
 C

o
p

p
e

r

IIII

40

20

0

D
 Z

in
c

HisCysAla

40

20

0

D
 Z

in
c

1211975321

40

20

0

D
 Z

in
c

IIII

8

4

0

D
 C

ad
m

iu
m

HisCysAla

8

4

0
D

 C
ad

m
iu

m

1211975321

8

4

0

D
 C

ad
m

iu
m

IIII

1.5

1.0

0.5

D
 C

al
ci

u
m

HisCysAla

1.5

1.0

0.5

D
 C

al
ci

u
m

1211975321

1.5

1.0

0.5

D
 C

al
ci

u
m

IIII

10

5

0

D
 L

an
th

an
u

m

HisCysAla

40

20

0

Type of mutation

D
 L

e
ad

1211975321

10

5

0

D
 L

an
th

an
u

m

IIII

40

20

0

EF-Hand mutated

D
 L

e
ad

HisCysAla

10

5

0

D
 L

an
th

an
u

m

1211975321

40

20

0

Position in the loop
D

 L
e

ad
 

Figure 6-12  Selectivity (D) of single mutations.  Arranged by site of mutation (EF-hand and position in the loop) and type. 
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Figure 6-13  Matrix plot of D, arranged by number of EF-hand mutated.  Metric D is a dimentionless number. 
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Figure 6-14  Matrix plot of D, arranged by position mutated in the EF-hand loop. 
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Figure 6-15  Matrix plot of D, arranged by type of substitution in the EF-hand loop. 
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Figure 6-16  D versus C for all the mutants.  Any shift of ion selectivity is associated 
with loss of activity for the entire mutant library. 
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Figure 6-17  Activity of central Gly mutants (impaired EF-hands).  Top:  All ions.  
Bottom:  Calcium only.  Figure 6-17 zooms into the central Gly→Arg set of mutants 
from Figure 6-8 in order to aid visualisation. 
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6.4 Discussion 

In Chapters 1 and 5 aequorin was shown to be a complicated allosteric and 

cooperative system.  Calcium ions bind in the solvent-exposed EF-hands and the effect 

of this binding is transduced to the hydrophobic core of the protein where organic 

compound coelenterazine is bound as an oxidation intermediate.  Destabilisation of the 

oxidation intermediate leads to its decarboxylation and emission of blue light.  Upon ion 

binding the EF-hands undergo only a slight conformational change but an intricate 

network of hydrogen bonds connects the sites of ion binding with the sites of 

coelenterazine binding.   

The effect of mutations placed in the EF-hand loops will be discussed in terms of 

aequorin’s response to its natural activator (calcium and substitute lanthanum) and 

candidate activators (zinc, copper, cadmium, cobalt and lead). 

The discussion of the library screening results will focus on salient points 

followed by some more detailed observations on the effect of position and type of 

mutation on the metrics of protein’s yield (C) and ion selectivity (D). 

6.4.1 Overall effect on yield 

The first striking observation is that the vast majority of mutations lead to 

significant loss of yield compared to wild type.  This applies to all ions tested.  The only 

exception includes one mutant’s response to lanthanum and will be discussed.  Loss of 

protein function is not surprising for two reasons:  (1)  canonical EF-hands are finely-

tuned to be highly selective for calcium and (2)  the mutants of this library contain only 

single or double mutations out of a total of eighteen ion coordinating positions in the 

entire protein.  These mutations are not expected to completely transform the ion 

binding sites in favour of new ions whilst fully retaining the intricate network of 

allosteric activation of aequorin. 
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6.4.2 Selectivity (D) versus retained activity (C) 

The second major observation is that there is trade off between yield (C) and 

shift of selectivity (D).  This effect is best illustrated in Figure 6-17.  Increase of D 

comes at the cost of C and vice versa, highly retained activity C is associated with low 

or no change in selectivity.  This again is not a surprising outcome in protein 

engineering, especially as a result of an initial round of mutation. 

6.4.3 EF-I versus EF-III 

Retained activity 

At first glance of Figures 6-8 and 6-11 it would appear that EF-III is overall 

more tolerant to mutations than EF-I.  Upon careful examination it can be seen that 

substitutions at all coordinating positions lead to 50–100% loss of luminescence in both 

EF-I and EF-III, for all ions tested.  Mutants in EF-III exhibiting higher yields carry 

substitutions at positions not mutated in EF-I:  position 7 (coordinating through 

backbone oxygen and non-conserved) and position 11 (non-coordinating and non-

conserved).  

Selectivity 

Shift of selectivity (D) is markedly different in the two studied EF-hands (Figure 

6-9, 6-10 and 6-12), in contrast to the comparable loss of retained activity (C) which is 

more uniform across the library.  Some mutants in EF-I exhibited significant increase of 

D, whilst D remained very low in all EF-III mutants.  This leads to the conclusion that 

EF-I is responsible for the selectivity of aequorin against various metal ions, whereas 

EF-III does not appear to be as suitable for modulating ion selectivity.   

The contribution of EF-I and EF-IV is discussed in Section 5.1.3:  the exiting 

helix of EF-I contains residues that directly hydrogen-bond to coelenterazine or are 

within close proximity (Figures 5-1 to 5-6).  Aequorin’s C-terminal tail is flanked by the 

entering helices of both EF-I and EF-IV.  Movement of EF-I or EF-IV helices can 

disrupt the hydrogen bond network around the C-terminal tail which would cause 

relocation of Tyr184 side chain and disrupt hydrogen bonds to His169 and the peroxide.  

A possible sequence of events following binding of calcium was proposed by Head and 



- 212 - 

co-workers (2000), Deng and co-workers (2004) and Vysotski and Lee (2004) and 

summarised in Section 5.1.3. 

6.4.4 Ala-scan mutants and importance of side chains 

The alanine mutants (designed in Section 5.6.3) illustrate the effect of removal of 

the side-chain oxygens from the calcium-coordinating positions 1, 3, 5, 9 and 12 of EF-

I.  These results serve as references for the effect of the side-chain substitutions of 

histidine and cysteine at the respective positions of EF-I.  Whereas the alanine 

substitutions completely remove the ability to coordinate ions through a side chain 

oxygen, the histidine and cysteine substitutions introduce the possibility to coordinate 

ions using an imidazole nitrogen or a sulfur of a sulfhydryl group, respectively.   

Salient observations 

All alanine mutants result in sharp loss of activity (C) compared to wild type 

(Figure 6.9) and increase of the selectivity measure D.  Every single one of the 

conserved coordinating amino acids is very important to activity.  Increase of D can 

occur from either reduction of affinity for calcium or increase of affinity for other ions, 

or both.  As activity triggered by calcium is reflected in the denominator of the fraction 

defining D (Equation 6.2), a reduced response to calcium is sufficient to increase the 

value of D.  

Increase of D occurs in positions 5 and 12 of the EF-I loop.  Values of D among 

alanine, histidine and cysteine substitutions of EF-I are comparable, which suggests that 

the elimination of the coordinating side chains of aspartate, asparagine or glutamate is in 

fact the highest contributor to the shift of selectivity away from calcium.  However, 

there is some differentiation in D values for different ions depending on the type of 

substitution, suggesting that histidine and cysteine do indeed fulfil some requirement for 

triggering luminescence.  These subtle differences will be presented in Section 6.4.6. 

6.4.5 Importance of loop positions 

Out of the coordinating positions, the entry (position 1) and exit (position 12) of 

the loops are least tolerant to mutations in both EF-hands.  The other coordinating 
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positions of the loop exhibit different levels of tolerance to mutation depending on the 

EF-hand they belong to.  For example, position 5 in EF-I does not tolerate mutations 

whereas in EF-III it appears to be more tolerant.  Position 3 is more tolerant to 

mutations in EF-I whereas position 9 is more tolerant in EF-III.  All mutants that stand 

out in terms of selectivity contain substitutions at positions 5 and 12.  As a conclusion, 

positions 1 and 12 must be essential for activity, followed by positions 3, 5 and 9 which 

may also be endowed with modulator roles in ion binding.   

6.4.6 Type of substitution 

The type of substitution (histidine or cysteine) contributes to the selectivity 

towards various ions.  Whereas the alanine mutants served as reference in the 

coordinating positions of EF-I, the matrix plot of Figure 6-15 presents a general 

overview of the selectivity of mutants according to the type of substitution for all of the 

ions and positions tested.  Some preferences can be extracted.  For example, copper 

prefers histidine over cysteine while zinc prefers cysteine as well as histidine ligands.  

There is a preference between lead and alanine and between lanthanum and cysteine.  

However any interpretations of preference must take into account the context of the 

protein environment.  Figures 6-12 to 6-14 capture the positioning and type of mutation 

but not the effect of steric, electrostatic effects, van der Waals and hydrogen bonds in 

the extended environment.   

Mutants’ increase of D for lead can partly be explained with the help of 

Figure  5-13: lead may require only four (IV coordinate binding) or six (VI coordinate 

binding) out of the eight oxygens that coordinate calcium in the native EF-hand of 

aequorin, whereas the loss of one coordinating oxygen is detrimental to correct calcium 

coordination.   

Substitution of glutamate at position 12 removes two Ca2+-coordinating oxygens 

and introduces nitrogen or sulfur instead.  Substitution of asparagine at position 5 

removes one side chain oxygen.  Asn→His at position 5 of EF-I loop favours zinc and 

lead, Asn→Ala favours copper and lead and Asn→Cys exhibits the least discrimination 

among metals.  At position 12 of EF-I Glu→His favours zinc, copper and lead while 

Glu→Cys favours zinc and lanthanum and Glu→Ala favours copper and lead. At 

position 9 Ser→His favours zinc, which does not occur for Ser→Cys or Ser→Ala.   
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The matrix plots of Figures 6-13 to 6-15 can aid in identifying correlations in the 

shift of selectivity for groups of ions.  Ideally the envisaged mutant would exhibit high 

D values for one ion and very low values for all the remaining ions.  Clusters of points 

or points falling onto a y=x line would suggest that increase in selectivity is not 

evolving separately for different ions.  For example, preference for zinc and copper is 

linked which suggests certain mutants would not make good biosensors for one in the 

presence of the other.  However this study cannot determine dissociation constants 

which would be the required indicator as to whether one ion would be selected from a 

background of potential competitors.  In conclusion, it can be seen that selectivity can 

potentially be tweaked through combined mutations in the metal binding loop of EF-I. 

The exception: one high performer towards lanthanum 

The mutation of position 7 of EF-III from alanine to cysteine (Ala123Cys) 

resulted in the only aequorin variant that responds to another ion (lanthanum) more 

efficiently than it does to calcium (Figure 6–9).  The nucleophilic sulfur of cysteine 

attracts the increased (trivalent) positive charge of lanthanum and its small size 

increases the cavity size of the EF-hand loop to accommodate the slightly larger 

lanthanum ion.  Cysteine is not a ligand normally found in calcium-binding sites and its 

shorter side chain could make it more difficult to coordinate to calcium ion, although 

calcium is coordinated to the backbone oxygen of position 7. 

Lanthanum is large enough to reach the cysteine and can still use the remaining 

intact coordinating amino acids for successful coordination.  The high tolerance of 

mutations in this position, as well as in position 11, suggests that these could be used as 

a means to alter the ion binding properties of the EF-hand without destroying the 

mechanism of allosteric activation. 

The principle of ion discrimination through modulation of cavity size was shown 

in Section 5.3.1.  In particular, Le Clainche and co-workers (2003) abolished calcium 

affinity and enhanced terbium affinity by replacing Glu with Asp in position 12 of EF-

hand-like peptides.   
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6.4.7 Impairment of EF-hands:  central Gly mutants 

The central Gly mutants (Gly→Arg at position 6 of each loop) were created in 

order to compare the significance of the three EF-hands in the bioluminescent reaction.  

Two previously published strategies towards impairment of the EF-hands are discussed 

in Section 5.2.2.  The mutational strategy by Tsuji and co-workers (1986) (Gly→Arg 

substitution of the highly conserved central glycine of each loop) was chosen to 

“disable” each of the EF-hands of aequorin (Section 5.2.2).  Arginine is meant to 

introduce rigidity in the ion binding loop and prevent the mutated EF-hand from 

assuming the required conformation upon ion binding (section 5.2.2).  It is possible 

however that an EF-hand may already be in the right order before being populated by 

the ion, requiring minimal adjustment upon ion binding (Section 5.2.2). 

An alternative strategy for impairing EF-hands by Tricoire and co-workers 

(2006) consisted of replacing the position 12 glutamate with glycine, thus removing one 

essential amino acid that carries two coordinating side chain oxygens.  These mutants 

were still able to carry out cooperative ion binding, as indicated by the sigmoidal shape 

of activity versus Ca2+ concentration curves (Tricoire et al, 2006).  Although the 

strategy by Tricoire and co-workers was not applied for EF-hand impairment, positions 

1 and 12 of the loop were targeted with His, Cys and Ala substitutions.  Tricoire and co-

workers (2006) showed that impairment of EF-I resulted in higher calcium sensitivity 

whereas impairment of EF-III or EF-IV resulted to lower calcium sensitivity.  As a 

result, low calcium affinity was assigned to EF-I and high affinity to the C-terminal EF-

hand pair, EF-III and EF-IV. 

The results obtained in this work show that the substitution central Gly→Arg is 

less damaging than removal of a single coordinating side chain, as shown by the 

groupings of mutants in Figure 6-8.  Amongst the single central Gly mutations (Figure 

6-17A,B), impairement of EF-I results in greater loss of activity towards calcium, 

followed by impairment of EF-IV and EF-III.  Amongst the double central Gly mutants, 

the one with only EF-I intact exhibits the highest activity, followed by the mutant with 

intact EF-IV.  Both these findings suggest that EF-I is more important to activity than 

EF-III and EF-IV and hence more likely to dictate selectivity.   

The results agree qualitatively with the findings by Tsuji and co-workers (1986) 

in terms of the importance of EF-I, but not regarding EF-III and EF-IV.  In their work, 

Gly→Arg in EF-I resulted in the loss of almost 100% activity, in EF-III ~50% loss and 
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in EF-IV almost no loss of activity.  Based on this results, the authors suggested that 

EF-IV is not necessary for activation of aequorin by calcium.  The differences may be 

attributed to using a different experimental system (conditions and aequorin wild type). 

EF-III is more tolerant to central Gly→Arg substitution than EF-I and EF-IV, 

probably due to being already preformed for the binding of calcium (Sections 5.5.2 and 

5.6.1) and flexibility is not critical.  Population of calcium in the loop may already have 

been in the right order, despite the particular mutation.   

Interestingly, impairing EF-IV reduces C and D for zinc, more so than it does for 

the other ions, an observation made on both single and double central Gly mutants 

(Figure 6-17A).  This suggests that EF-IV is more actively implicated in the response to 

zinc than the other EF-hands and that the flexibility offered by the central glycine in the 

loop is comparatively more important for zinc binding.  Considering the low ionic 

radius of zinc in its preferred geometries (refer to Section 1.4 and Table 9-4 to Table 9-

6), the dependency on loop flexibility is also consistent with the fact that ligands of the 

EF-hand would have to reach further towards the metal in order to coordinate it. 

Mutants with impaired EF-I exhibit the lowest activity.  Impairment of EF-III 

results in the least loss of activity amongst the single central Gly mutants.  Out of the 

single intact EF-hands (double central Gly mutants) the variant carrying only EF-III 

intact exhibits the maximum loss of activity.  EF-I is more susceptible to change of 

selectivity towards most of the metal ions tested (Figure 6-9), which agrees with the 

proposition in published work that EF-I is endowed with lower affinity towards calcium 

compared to the other EF-hands (Tricoire et al., 2006). 

Positions 1 and 12 of the loop are important in its rearrangement and position 12 

is believed to be important for cooperativity (Gifford et al., 2007).  In wild-type 

aequorin an ion as small as zinc or copper cannot be coordinated by both residues as it 

is not possible to be within required distance from both.   

The EF-I calcium-binding loop’s preference for ions other than calcium can be 

further manipulated.  In order for a smaller ion – e.g. zinc – to be tightly bound in the 

EF-hand and exert the required transduction of the binding effect to the protein core, the 

metal will have to be within a range of distances from the coordinating atoms, as 

observed in existing protein metal binding sites (Section 1.4, Table 1-8). 
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6.4.8 Double mutations 

Mutations in this group were directed at a limited set of positions of loop EF-I 

and EF-III: position 5, 9 and 12.  In the variants featuring double mutations, new ion 

selectivity is much higher when both mutations are in EF-I than when one mutation is in 

EF-I and one in EF-III.  All of the double mutants tested exhibit increase of D with lead.  

Asn28Cys/Glu35His favours copper while Asn28Cys/Ser32His favours zinc. 

6.4.9 Software for prediction of mutation effects 

The substitutions will have steric and electrostatic effects, influence the 

hydrogen bond network, the hydrophobic and van den Waals interactions in the local 

environment and where applicable, formation of disulfide bridges.  One possible means 

to predict the effects of mutations would be to use molecular modelling software such 

as ModLoop (Fiser and Sali, 2003).  ModLoop predicts conformation of loops in protein 

structures by satisfaction of spatial restraints.  However, a control simulation of the loop 

of native Ca2+-bound apoaequorin (PDB ID: 1SL8) resulted in an arrangement of the 

loop resembling that of calcium-free aequorin, PDB ID: 1EJ3.  This was an expected 

outcome as the software cannot take into account the presence of bound metals.  The 

coordination of calcium overcomes considerable steric clashes which would not be 

allowed in a local energy minimisation calculation but which are overcome by the 

electrostatic attraction between the oxygen ligands and calcium.  Due to lack of 

predictive power in this case, molecular modelling software were not used to simulate 

mutated, ion bound loops.  The effects of mutations were discussed based on properties 

of the respective amino acids, their position in the protein and previous structural 

knowledge of aequorin and other EF-hand like structures.  
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6.5 Conclusions 

This chapter was divided in two parts:  

(1)  A library of forty-eight mutant variants of the apoaequorin gene was 

successfully created using QuikChange® Site-directed mutagenesis.  Expression of the 

apoaequorin variants and reconstitution of aequorin mutants was carried out in 

microplates.  The choice of mutations is explained in Chapter 5, Section 5.6.3.   

(2)  High-throughput screening of the aequorin mutant library was carried out 

against seven different metal ions (calcium, lanthanum, cadmium, zinc, copper, cobalt, 

lead).  The results were discussed in terms of two assigned metrics: one for yield (C) 

and one for ion selectivity (D).  The main conclusions from the library screening follow.   

In aequorin, EF-I is the gatekeeper for ion selectivity (Section 6.2.3 for definition 

of metrics for retained activity C and ion selectivity D).  EF-IV has significant potential 

as determinant of ion selectivity but was not investigated to the same extent as were EF-

I and EF-III.  It is potentially more important to the binding of zinc, a finding which 

arose from impaired EF-hand mutants (central Gly→Arg).  In Chapter 5, analysis of the 

crystallographic structure of the EF-hands with and without calcium bound revealed that 

among the three calcium-binding EF-hands, EF-IV undergoes the most extensive spatial 

rearrangement in order to bind calcium in the optimal conformation (Section 5.5.2).  

The helices flanking the loops of EF-I and EF-IV contain amino acids that directly and 

indirectly stabilise the hydroperoxy-coelenterazine (Section 5.1.3).  Conformational 

shifts in the loops of EF-I and EF-IV can move their respective helices and destabilise 

the peroxide.  Future work on shifting ion selectivity of aequorin should include 

mutations in EF-IV.   

EF-III does not seem to be endowed with ion selectivity properties in aequorin.  

Every mutant in EF-III exhibited very low values for the metric of selectivity D.  

Results from impaired EF-hand mutants (central Gly→Arg) suggest that flexibility is 

least required in EF-III, which agrees with the structural observation that the loop of 

EF-III is preformed to bind calcium (Section 5.1.3 and 6.4.3).   

Selectivity towards new ions increases (and shifts away from calcium) at the cost 

of activity.  All conserved coordinating positions are very important to calcium binding 

and loss of a single coordinating side chain oxygen resulted in dramatic loss of activity 

in both EF-I and EF-III.   
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As expected, the coordinating and conserved positions 1 and 12 (entry and exit) 

of EF-hand loops are the least tolerant to mutations.  They are also 100% conserved 

amongst the entire EF-hand superfamily, as shown in Table 1–4, Section 1.3.4.  Non-

coordinating (position 11) or coordinating but not conserved (position 7) residues are 

generally more tolerant to mutations and may be used to fine tune ion selectivity.  

Within EF-I, positions 5 and 12 are most important for shifts of ion selectivity.  

Positions 3 and 9 are not prominent in shifting of selectivity (Section 6.4.5) but could be 

important in modulating activity.  The importance of positions 3 and 5 is consistent with 

the extensive structural rearrangement of the N-terminus (positions 1–5) of the EF-hand 

loops upon calcium binding, as seen in the comparison between aequorin structures with 

(1SL8) and without calcium (1EJ3) (Section 5.5.2).  The ion selectivity of the loops and 

the transduction of the signal to the protein core could potentially be modulated through 

a combination of mutations involving coordinating and non-coordinating residues.  This 

agrees with the conclusions by Le Clainche and co-workers (2003 and 2006).  

The effect of mutations is environment-dependent:  location in the protein (e.g. 

EF-hand), position in the binding loop, type of substitution and type of metal tested all 

play a role in the effect of the mutation on selectivity and activity.  Effects of the same 

substitutions are not necessarily the same across different EF-hands of aequorin 

(Section 6.4.5).  Mutation Asp→Asn causes complete loss of calcium affinity in short 

EF-hand like peptides (Le Clainche et al, 2003 and Le Clainche et al, 2006) but in 

aequorin position 3 is conserved Asn.  Oishi and co-workers (1992) working on the 

loops of EF-I, EF-III and EF-IV of aequorin as 22 amino acid fragments found different 

order of calcium binding affinity (EF-III>EF-I>EF-IV) than Tricoire and co-workers 

(2006) in aequorin (EF-III and EF-IV>EF-I), while and Liu and co-workers (2003) 

showed that in crystals of obelin (photoprotein homologous to aequorin) EF-I loop was 

the first to be populated by a calcium ion. 

In this mutant library, selectivity is not shifted toward one new ion independently 

from the rest (Section 6.4.6).  Additional studies would be required in order to achieve 

high affinity for one ion against a background of other metals in a mixture. 

This experimental setup measures activity (light output) only; it does not capture 

structural changes upon ion binding nor does it measure free concentration of metal 

ions, which would then allow direct estimation of binding affinity.  Selectivity (D) is 

inferred by comparing activity for new ions to activity for calcium. 
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6.5.1 Choice of mutant for further study 

A number of mutants stood out as potential candidates for further 

characterisation, based on increased selectivity for new ions over calcium, compared to 

the wild type.  All the mutants carried substitutions in EF-I only.  Amongst the single 

mutants the ones that stood out were Asn28His, Asn28Cys, (at position 5 of the loop), 

Glu35His and Glu35Cys (at position 12 of the loop).  Amongst the double mutants the 

ones that stood out were Asn28His/Glu35Cys, Asn28Cys/Ser32His and 

Asn28Cys/Glu35His.  Asn28Cys/Ser32His exhibited higher selectivity for zinc and 

lead, but not copper;  Asn28His/Glu35Cys exhibited higher selectivity for lead;  

Asn28Cys/Glu35His exhibited higher selectivity for copper and lead.   

A variant with improved lanthanum activity, Ala123Cys was not deemed as a 

priority for further testing.  An aequorin mutant with improved lanthanum activity had 

already been reported by Le Clainche and co-workers (2003), hence focus was drawn to 

mutants that had the potential for improved response to other metals.   

Due to time constraints, only one mutant could be purified and further 

characterised (Chapters 7 and 8).  Asn28Cys/Ser32His was chosen for its high 

selectivity metric D towards zinc, for the fact that two essential side chain oxygens were 

replaced and finally due to high cell growth in 500-mL cultures after transformation into 

high expression E. coli (Lucigen) cells. 
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7 Protein purification 

This chapter describes the production and purification of wild-type aequorin and 

mutant Asn28Cys/Ser32His so that their activity may be further assessed (in Chapter 8).  

Mutant Asn28Cys/Ser32His emerged as an interesting candidate for further study 

amongst other aequorin variants, as explained in Chapter 6.  The size and purity of 

recombinant aequorin obtained was verified by combination of luminescence activity 

measurements, SDS-PAGE protein electrophoresis, spectrometry, Bradford protein 

assay and Mass Spectrometry.  The steps involved in this chapter are summarised in 

Figure 7-15 and further described in the respective subsections.  Commercially available 

pure recombinant aequorin was also purified under the same conditions as wild-type 

and mutant Asn28Cys/Ser32His in order to subject it to the same conditions – exposure 

to the same chemicals, light and duration of process. 

7.1 Introduction  

A range of methods for the purification of apoaequorin and reconstitution of 

fully charged aequorin have been described in literature.  Shimomura and Inouye (1999) 

described a method for preparing 40–60 µg/mL purified recombinant aequorin from 

E. coli cultures.  Apoaequorin was expressed in the periplasmic space of E. coli, 

extracted from the cells and regenerated into aequorin in one step, by incubation with a 

buffer solution containing coelenterazine.  A signal peptide sequence from the 

Escherichia coli outer membrane protein A (ompA) was used to express and translocate 

apoaequorin into the periplasmic space of E. coli cells.  The signal peptide sequence is 

cleaved by proteases as it enters the periplasm.  Apoaequorin is expected to leak from 

the periplasm, driven by a concentration gradient and bind coelenterazine in the 

medium.  Some of the apoaequorin chain may bind to coelenterazine to form a 

holoprotein while still in the periplasm, as coelenterazine readily permeates cell 

membranes from the media.  Shimomura and Shimomura (1981) had previously 

proposed that conversion of apoaequorin into aequorin increases protein stability and 

resistance to proteases and presumed that aequorin’s more rigid conformation facilitates 

its extraction from the periplasm into the medium (Shimomura and Inouye, 1999).  Due 

to the mild in situ extraction conditions, impurities in the extract were minimal.  After 
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obtaining the supernatant, purification was carried out in two chromatographic steps:  

anion exchange (AEX) and hydrophobic interaction chromatography (HIC).   

A fusion of apoaequorin cDNA to ompA peptide sequence was previously used 

by Inouye and co-workers (1989).  When the apoaequorin cDNA was expressed in 

E. coli, a large excess of the recombinant protein was produced and released into the 

culture medium.  Purification of the protein was accomplished by acid precipitation and 

anion exchange (DEAE-cellulose) chromatography to 95% purity (Inouye et al., 1989).  

An alternative method made use of the 6×His-tag sequence fused at the C-

terminus of apoaequorin (Chapter 3).  Glynou and co-workers (2003) reported a one-

step purification and refolding of recombinant photoprotein aequorin by immobilized 

metal-ion affinity chromatography, utilising a hexahistidine tag fused to the N-terminus 

of apoaequorin (Glynou et al., 2003).  The yield of this method was   14–20 µg/mL of 

purified aequorin from an E. coli culture (Glynou et al., 2003).  

In this Chapter, purification of aequorin made use of the periplasmic 

translocation of apoaequorin and one-step extraction and reconstitution with 

coelenterazine into the medium according to Shimomura and Inouye (1999).  Size 

exclusion chromatography was employed post aequorin reconstitution (instead of AEX 

and HIC) in the interest of minimising purification development time. 

7.2 Materials 

Commercial recombinant aequorin (AquaLite®) was purchased from Molecular 

Probes in units of 25 µg as lyophilized powder of a 1 mg/mL solution in 5 mM HEPES, 

0.1 M KCl, 30 mM glucose and 5 µM EDTA, pH 7.1.  Coelenterazine was purchased as 

1 mg powder from Sigma-Aldrich.  It was resuspended in 1 mL of ice cold ethanol to a 

1 mg/mL solution immediately before use. 

All other chemicals were of the highest grade (Sigma Aldrich Ltd.) and the 

theoretical maximum calcium contamination of stock solutions was calculated to be less 

than 2 µM (Section 2.5).  Low retention plastics, RNAse and DNAse-free tips and 

eppendorfs were from Simport and Molecular BioProducts Inc. 
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7.3 Methods 

7.3.1 Culture 

7.3.1.1 Host strain and plasmid 

E. coli host strain E. cloni
® BL21(DE3) (Lucigen Corp.) was transformed with 

the expression plasmid pETAQ.  Plasmid pETAQ is a derivative of pET26b plasmid 

(Novagen) containing the apoaequorin cDNA and flanking DNA sequences that fuse a 

pelB signal peptide sequence at the N-terminus and a 6×His-tag at the C-terminus of the 

expressed apoaequorin (Section 3.3.2).  This system is inducible by isopropyl-β-D-

thiogalactopyranoside (IPTG) (Novagen, 2003).  

7.3.1.2 Cell growth 

A single colony was grown overnight in 7 mL of Luria-Bertani (LB) medium 

containing 50 µg/mL kanamycin at 37 °C (seed culture), as described in Sections 

2.2.2−2.2.3.  Two consecutive 5% inoculations were performed into fresh medium in a 

500-mL flask (100 mL culture) and in a 2-L flask (500 mL culture) at 37 °C for 8 hours 

at 200 rpm.  At the end of the 500 mL incubation, the bacterial suspension was divided 

into 50-mL falcon tubes and centrifuged at 4,500 rpm for 30 min.  The supernatant 

contained negligible quantity of total apoaequorin (Shimomura and Inouye, (1999) and 

Section 4.4.2.2) and was decanted;  any remaining supernatant was carefully removed 

from the pellets by pipetting.  The cell paste was stored at −80 °C.   

7.3.2 Regeneration and extraction of aequorin 

7.3.2.1 One-step extraction and charging of active aequorin 

The falcon tubes containing frozen cell paste were removed from −80°C storage 

and left to thaw on ice for approximately 20 min.  To extract apoaequorin from the cells 

and reconstitute active aequorin the following procedure was followed:  the thawed cell 

pellet in each falcon tube was dispersed in 17.5 mL of ice-cold buffer containing 

50 mM Tris-HCl 10 mM EDTA and 2-mercaptoethanol or DTT (Appendix Chapter 7), 

pH 7.5 at 23 °C.  The suspension was transferred into a 50-mL plastic beaker and stirred 

at ~250 rpm on ice using a magnetic stirrer.  700 µL of 1 mg/mL coelenterazine solution 
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(Section 7.2) were added to the stirred suspension in a dropwise manner, resulting in 

92 µM coelenterazine concentration in the final mix.  The beaker was covered with foil 

(coelenterazine is light-sensitive), placed in 4°C storage and left to stir overnight while 

allowing diffusion of oxygen to occur.  Choice of the beaker geometry was such that the 

depth of the suspension was less than 3 cm to facilitate the diffusion of oxygen 

(Shimomura and Inouye, 1999).  Following the overnight incubation the mixture was 

centrifuged at 13,000 rpm for 30 min at 4°C.  A clear supernatant was produced that 

contained fully functional aequorin and the cell pellets were discarded. 

Reconstitution with coelenterazine was initially performed in microwells 

(Section 7.4.1.1) where it was used to screen conditions for shake flask cultures;  culture 

samples collected at different time points were measured for OD and activity post-

reconstitution with coelenterazine.  100 µL of the collected samples were transferred 

into the corresponding wells of a new DSW plate, each containing 950 µL of cold 

coelenterazine solution 4 µM, 50 mM Tris-HCl, 10 mM EDTA and 5 mM 2-

mercaptoethanol, pH 7.5.  The DSW was covered with an inverted shallow 96-well 

plate (Sarstedt Inc), placed on a table top thermomixer (Eppendorf Inc) with intermittent 

stirring at 1,000 rpm and 1 °C;  this was placed overnight in a cold cabinet (4–8 °C).  

The protocol was based on Shimomura and Inouye (1999) who had used a lower protein 

expression strain;  in retrospect it was understood that 4 µM of coelenterazine was not 

sufficient for the apoaequorin produced in shake flasks in this work.  The coelenterazine 

content was consequently increased in the finalised protocol for production of aequorin 

in 500 mL cultures (Figure 7–15).  After the end of the cold incubation with 

coelenterazine solution, 100 µL of each well were transferred into the corresponding 

wells of a Lumitrac™ shallow well plate using automated liquid handling (Tecan).  The 

activity of the regenerated aequorin was then assayed as described in Section 7.3.4. 

7.3.2.2 Periplasmic fraction 

Periplasmic extraction of apoaequorin from E. coli cultures by osmotic shock 

was performed using the protocol by Ausubel (1989) found in the Novagen pET system 

manual (2003).  This preparation did not include coelenterazine for the reconstitution of 

active aequorin, but was an investigatory experiment to determine the localisation of 

apoaequorin in the cell.  Cell pellet from 40 mL of E. coli culture was harvested by 

centrifugation and resuspended thoroughly in 30 mL of 30 mM Tris-HCl pH 8.0, 20% 

sucrose.  EDTA solution (0.5 M pH 8.0) was added to final concentration of 1 mM.  
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PMSF was added to final concentration of 0.2 mM for protection against proteases and 

the mix was stirred slowly at room temperature for 10 min.  The cells were collected by 

centrifugation at 10,000×g at 4°C for 10 min, the supernatant was removed and 

discarded.  The pellet was resuspended in 30 mL of ice-cold 5 mM MgSO4 and the cell 

suspension was stirred slowly for 10 min on ice.  Periplasmic proteins should be 

released into the buffer during this step.  The mix was centrifuged at 4°C for 10 min at 

10,000×g and the shocked cells were separated from the periplasmic proteins 

(supernatant).  One milliliter samples were collected for SDS-PAGE analysis and 

activity assays.  The cell pellet was kept on ice for SDS-PAGE analysis of the soluble 

and insoluble cytoplasmic fractions.  The periplasmic fraction (supernatant) was 

concentrated through spin filtration.  Samples collected for SDS analysis were mixed 

with an equal volume of SDS loading buffer, immediately heated for 3 min at 85 °C to 

denature the proteins and stored at −20 °C. 

7.3.3 Concentration of aequorin 

7.3.3.1 Spin-filtration 

Spin filters were used for the concentration and desalting of aequorin samples 

prior to size exclusion chromatography.  Vivaspin® spin-filters (Vivascience, Germany) 

and Amicon Centriplus® (Milipore, Germany) are centrifugaly operated, disposable 

ultrafiltration devices.  Proteins are separated by size.  They enable concentration of 

samples up to 30-fold and handle sample volumes of 0.5−15 mL (minimum final 

volume 200 µL).  For maximum recovery the molecular weight cut-off (MWCO) should 

be at least 50% smaller than the molecular size of the species of interest (rule of thumb: 

1/5 to 1/3 of the protein size).  Spin filters of 10,000 30,000 and 100,000 kDa nominal 

MWCO were tested for the preparation of aequorin solutions past the coelenterazine 

incubation step.   

Centrifugation was performed in 2−3 repeats at 4,000×g, 4°C for 15 min 

according to manufacturer’s instructions (Vivascience, 2002) until the desired 

concentrate volume was reached.  The spin columns were initially loaded with RO 

water to remove glycerine and sodium azide present in the membranes, followed by 

50 mM Tris-HCl, 10 mM EDTA solution to remove cations which might contaminate 

the protein sample.  At the end of centrifugation a yellow coloured liquid containing 
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concentrated aequorin (yellow indicates coelenterazine) was recovered from the 

concentrate pocket (retentate).  10,000 MWCO spin filters were used for desalting of 

aequorin samples prior to mass spectroscopy analysis or concentration prior to SDS-

PAGE analysis. 

7.3.4 Luminescence assay 

Luminescence assays were performed on the size exclusion chromatography 

fractions in order to determine the active aequorin fractions.  Volumes of 25−75 µL of 

sample were pipetted in microwells of a Lumitrac™ 96-well plate and injected with 

100 µL of 10 mM CaCl2 50 mM Tris-HCl pH 7.5 buffer solution, using the auto-

injector of the BMG platereader at 23 °C.  Platereader gain settings are specified in 

Supplementary Material.  Luminescence assays were also performed in order to 

associate cell growth and activity with bacterial incubation time.  These assays used 

crude bacterial sample (refer to Section 7.3.2.1 for methods and Section 7.4.1.1 for 

results).  One hundred microliters of the regenerated aequorin mixtures were assayed in 

the FluoStar platereader, by measuring the light emission of the sample when an equal 

volume of 100 mM CaCl2 solution in 20 mM Tris-HCl, pH 7.5 was injected. 

7.3.5 Size exclusion chromatography 

A 10mm internal diameter Pharmacia HR column was used, previously packed 

to a bed height of 27.5 cm (total gel volume 21 mL) with resin Pharmacia Superdex 75 

Prep Grade (Amersham Biosciences, Freiburg, Germany).  This resin is suitable for 

optimum molecular weight separation range of 3,000 to 70,000 (globular proteins).  The 

column was operated with an AKTAprime™ purification system and Unicorn™ 

software (GE Healthcare, Uppsala, Sweden). 

The quality of the column packing was checked by performing an acetone pulse 

test:  200 µL of 20 mg/mL acetone solution was pumped into the column through a 

200 µL sample loop at 1.2 mL/min (equivalent to 60 cm/h).  Efficiency and peak 

symmetry were calculated according to the manufacturer’s protocol (GE Healthcare, 

2006).  N=12,612 plates (acceptable values N≥10,000) per meter and Peak symmetry 

Af=1.07 (acceptable range:  0.7 ≤Af ≤1.3) were found to be satisfactory.   
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Due to the temperature-sensitive nature of aequorin, the column and all buffers 

used during the purification process were kept at 0−4°C.  The column was washed with 

50 mM Tris-HCl solutions of decreasing EDTA concentrations (10 mM − 100 µM 

EDTA, 2−3 column volumes per wash) to remove any residual calcium and finally 

equilibrated with 50 mM Tris-HCl, 100 µM EDTA buffer, pH 7.5 (5−10 column 

volumes) until the baseline was stable. 

The flowrate was adjusted in order to keep within the maximum pressure for the 

column (5 bar, 70 psi).  During purification the flowrate was set at 0.2 mL/min 

(manufacturer’s recommended rate: 10−15 cm/h) and for cleaning and equilibration it 

was raised to 0.5 mL/min (GE Healthcare, 2006).  Lower flowrates allow for higher 

resolution of the purified fractions.  Wild type and mutant samples were loaded at 

250 µL (within 0.5−3% of the total gel volume of 21 mL).  Commercial aequorin 

(AquaLite®) was loaded at 15 µg (15 µL of 1 µg/µL stock solution) through a partially 

filled 200 µL loop (remaining volume was equilibration buffer).  

Sanitisation, storage and cleaning-in-place (CIP) were performed according to 

manufacturer’s instructions (GE Healthcare, 2006).  Cleaning-in-place was performed 

in order to remove precipitated proteins and non-specifically bound proteins and 

lipoproteins.  The column was washed at 0.4 mL/min (corresponding to 20 cm/h) and 

reversed flow direction with 0.5 M NaOH solution.  This step was followed by a 

washing step with 70% ethanol at the same flowrate and flow direction.  The column 

was finally washed with two bed volumes of 20% ethanol and stored at 4 °C.  Before 

further use, the column was equilibrated with five bed volumes of buffer. 

 

7.3.5.1 Protein size by mass spectrometry 

Mass Spectrometry analysis was performed on a KRATOS AXIMA CFR V2.3.4 

mass spectrometer by the scientific support services at the Wolfson Institute for 

Biomedical Research, UCL.  KRATOS AXIMA is a matrix-assisted laser desorption - 

ionisation (MALDI) time-of-flight instrument which gives mono-isotopic resolution of 

3,000 up to a mass of 6,000.  It can analyse masses up to approximately 150,000 Da 

both in positive and negative mode, which is very useful for determination of intact 

proteins. 

The analysis was performed on aequorin fractions with luminescent activity 

eluted from the size exclusion chromatography step in order to verify protein.  The 
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purified aequorin samples (recombinant wild type, mutant Asn28Cys/Ser32His and 

AquaLite®) were desalted using spin filtration columns of 10,000 MWCO membrane 

filters (Section 7.2.1.2).  Proteins equine apomyoglobin (16.9 kDa) and rabbit aldolase 

(39.21 kDa) were used as size standards in 5 µL samples of 10 pmol/µL. 

7.3.6 Protein handling considerations 

Calcium is a nearly ubiquitous ion, which even in trace concentrations could 

trigger the bioluminescence reaction of aequorin.  Due to aequorin’s high sensitivity to 

calcium, unprotected aequorin must be handled with extreme care and kept from contact 

with ordinary glass and other substances capable of liberating calcium ions (Blinks et 

al., 2000, Hastings et al., 1969).  Considering native aequorin’s (low) sensitivity and 

mutants’ possible increased sensitivity toward other (than calcium) metal ions, EDTA 

was the cation chelator of choice for all preparatory work; EGTA would be better suited 

for the chelation of calcium but EDTA chelates a wider range of divalent ions more 

effectively.  Glass and metal surfaces were avoided where possible.  The glass syringe 

pump and metal syringe nozzle of the platereader were rinsed with decreasing 

concentrations of EDTA in Tris-HCl buffer (first pass:  10 mM EDTA, final pass:  

10 µM EDTA).  Plasticware were also rinsed with a 50 mM Tris-HCl, 10 mM EDTA 

solution prior to contact with apoaequorin or aequorin.   

Aequorin’s sensitivity to light and temperature is due to its prosthetic group, 

coelenterazine.  Samples containing coelenterazine or active aequorin were kept on ice, 

centrifugation was performed at 4 °C and chromatographic separation was performed at 

4−6 °C (for handling during chromatography refer to Section 7.3.5).  Samples were 

protected from light where possible and tubes were covered with foil. 
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7.4 Results and Discussion 

The purification protocol was based on Shimomura and Inouye (1999) due to the 

simplicity of the process and the use of mild operation conditions.  Two options for 

active protein assays emerge from the published work:  (1) to obtain aequorin in a crude 

bacterial suspension through minimal processing (2) to isolate cell paste and subject it 

to further purification steps.  The first option was deemed acceptable for a crude, initial 

HTS method amenable to automation (Chapter 4 and Chapter 6) but it contains 

impurities and requires high concentrations of a metal chelator (e.g. 10 mM EDTA or 

EGTA) to ensure aequorin is not discharged by calcium or other cations present in the 

mixture.  The second option yields highly purified protein in a buffer of choice with 

minimal chelator concentrations required, all necessary conditions for detailed kinetics 

analysis.  In the HTS protocol (Chapter 4 and Chapter 6), the purity of aequorin was 

78% in a solution containing 20 mM Tris-HCl, 10 mM EDTA, 5 mM 2-

mercaptoethanol, pH 7.7.  In this preparation the desired protein purity would be at least 

95% in a 50 mM Tris-HCl, 100 µM EDTA buffer, pH 7.5.  EDTA concentration would 

be further decreased by dilution for the kinetics experiments of Chapter 8. 

7.4.1 Bacterial cell culture 

7.4.1.1 OD and activity versus incubation time 

In this section the optimum incubation time before harvesting of cells was 

determined.  The activity of the produced aequorin is plotted in association with optical 

density (OD) of the cell culture versus incubation time. 

500 mL cultures were grown in 2-L shake flasks as described in Section 7.3.1.2, 

with the exception of conducting a 10% inoculation from the 100 mL culture into the 

500 mL culture.  The culture was induced at 2 hours (cell culture OD≈1.0) with IPTG at 

a final concentration of 0.6 mM.  One milliliter samples of the culture were collected at 

various time points for OD (immediate measurement) and activity measurement 

(samples kept on ice for further processing and assayed in one microplate).  Samples 

were transferred into a DSW plate containing buffered coelenterazine and incubated at 

1 °C overnight with occasional agitation to fully equilibrate the protein into its holo 
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form.  Luminescence activity of each sample was assayed in the BMG FluoStar 

platereader. 
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Figure 7-1  Luminescence activity and cell density of 500 mL cultures versus time.  
Two replicates per time point (N=2).  Time zero corresponds to 10% inoculation from 
the overnight 100 mL culture.  IPTG was added to a final concentration of 0.6 mM.  
Experimental setup and discussion in Section 7.3.1.2 and 7.4.1.1.   

In Figure 7-1 it is shown that little apoaequorin (hence aequorin) is formed until 

after induction.  The production of apoaequorin rapidly increases between 3−4 hours of 

incubation and approximately 30 min after induction.  Then the total luminescence 

activity measured appears to plateau even though cell density continues to increase 

slightly from 4−10 h.  This would normally suggest that it would have been possible to 

harvest at approximately four hours after induction, had it not been for the limiting 

amount of coelenterazine (4 µM) added in this initial test (Section 7.3.2.1).  Later 

measurements of total protein concentration and aequorin purity in shake flasks led to 

the usage of much higher coelenterazine concentration (92 µM) during the cold 

incubation step.  Figure 7-1 still provides dependable association between OD and 

activity until 5 h of incubation when coelenterazine became limiting.  Harvesting at later 

time points was retained when using the higher coelenterazine concentration as Figure 

7-1 showed no evidence that the aequorin was being significantly degraded.   

IPTG induction 
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7.4.2 Localisation of protein 

7.4.2.1 Localisation of protein in the cell 

In Section 4.4.2.2 it was demonstrated through activity studies that only a small 

quantity of apoaequorin is secreted in the culture medium during incubation.  This 

section now examines the localisation and availability/solubility of apoaequorin in the 

cell pellet of the bacterial culture.  The cells were retrieved by centrifugation and the 

pellet was re-solubilised with Tris-HCl buffer.  The suspension was then sonicated to 

break open the cells and re-centrifuged to separate the soluble proteins in the 

supernatant from the insoluble proteins attached to the cell debris.   

SDS-PAGE results from Figure 7-2 and Figure 7-3 clearly indicate that a 

substantial portion of apoaequorin produced in the cell is in the form of insoluble 

aggregates.  These aggregates will be further discussed in Section 7.4.2.2. 

 

 

Figure 7-2  Localisation of apoaequorin in the cell pellet – (a).  L: Benchmark Protein 
Ladder™ (Invitrogen, Figure 2-2); Lane 1: Bacterial pellet, isolated by centrifugation of 
cell culture; the cells were resuspended in volume of Tris-HCl buffer equal to the 
volume of the cell culture centrifuged.  This lane represents total protein in the cell.  
Lane 2:  The resuspended pellet represented in Lane 1 was sonicated and centrifuged.  
The supernatant of the sonicated mixture represents soluble protein, loaded in Lane 2. 
The precipitated fraction of the sonicated and centrifuged sample represents the 
insoluble protein in the cells, shown in Lane 3.  Lanes 1, 2 and 3 were loaded with 
10 µL total volume, consisting of sample pre-mixed 1:1 with Biorad SDS loading buffer 
and heated to 95 °C for 5 min (Section 2.4.2).  Lane L was loaded with 10 µL of protein 
ladder. 
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Figure 7-3  Localisation of apoaequorin in the cell pellet – (b).  Corresponding to 10 and 
20 cycles of sonication.  Total protein (Lanes 1 and 2) corresponds to Lane 1 of 
Figure 7-2.  Soluble protein (Lanes 3 and 4) corresponds to Lane 2 of Figure 7-2.  
Insoluble protein (Lanes 5 and 6) corresponds to Lane 3 of Figure 7-2.  The samples 
were prepared as described in Figure 7-2. 10 µL loaded per lane. 

7.4.2.2 Localisation of protein after coelenterazine incubation 

This section examines the localisation of apoaequorin post incubation with 

coelenterazine.  Incubation with cold coelenterazine solution was performed as 

described in Section 7.3.2.1.  The suspension (cells in coelenterazine buffer) contains 

two proteins of sizes between 20 kDa and 25 kDa, visualised as two clearly 

distinguishable bands in Figure 7-4.  The smaller size protein is secreted in the 

coelenterazine buffer during the cold incubation (Lane 5).  The bigger band is retained 

in the cell pellet (Lane 4).  The smaller size band is soluble (Lane 2) as it appears in the 

soluble supernatant after sonication and centrifugation of the suspension. 

The two bands between 20 kDa and 25 kDa both contain apoaequorin.  This is 

verified in Section 7.4.2.3 where it is proven that bands of this size and intensity are 

only encoded in pETAQ and not the bacterial strain or pET26b.  Taking into account 

that the size difference between the two bands is ~1 kDa (size of pelB leader peptide), 

that the bigger size band remains as insoluble within the cell and that the lower size 

band is secreted in the medium, it is reasonable to assume that the lower size band is 

apoaequorin that can be reconstituted into aequorin and the bigger band is apoaequorin 

still attached to the pelB leader peptide.  Overall, most of expressed recombinant protein 

remained within the cells.  A reasonable explanation is that the E. cloni
® machinery is 

not sufficient to cleave such large quantities of overexpressed protein.   
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Figure 7-4  Localisation of apoaequorin after charging with coelenterazine.  
L:  Benchmark protein ladder (Invitrogen, Figure 2-2).  Lane 1:  O/N suspension after 
cold incubation with coelenterazine (contains total protein).  Lane 2:  supernatant after 
centrifugation of sonicated O/N suspension (contains total soluble protein).  Lane 3:  
Sample of lane 2, diluted 3-fold.  Lane 4:  Resuspended pellet after centrifugation of 
sonicated O/N suspension (contains insoluble protein attached to cells) Lane 5:  
Supernatant after centrifugation of O/N suspension.  Contains soluble protein secreted 
by cells during the O/N incubation with coelenterazine solution.  Apoequorin band 
purity:  72%.  Lane 6:  Sample of lane 5 concentrated by spin centrifugation using 
Vivaspin6 columns (13,000 rpm, 30 min).  Diluted 1:5 with Tris buffer.  Lane 7:  
Sample of lane 5 concentrated by Amicon centriplus centrifugal filter (Milipore) 
(13,000 rpm, 30 min).  Diluted 1:5 with Tris buffer.  All lanes were loaded at 10 µL 
total volume of sample (including Laemli loading buffer) or protein ladder.  

The total protein concentration by Bradford assay of the protein secreted from 

50 mL cell paste into 17.5 mL of coelenterazine solution was 0.275 mg/mL.  This 

corresponds to a yield of 0.096 mg/mL of soluble apoprotein retrievable from the cell 

culture.  Taking into account SDS-PAGE protein gel densitometry, this mixture 

contains 72% apoaequorin chain which if folded and reconstituted correctly can yield a 

maximum of 0.069 mg/mL functional aequorin or 6.9 mg per 100 mL of cell culture.  

The SDS-PAGE of Figure 7–4 was run under reducing conditions which would dissolve 

apoaequorin or aequorin aggregates and display only the linearised polypeptide bands.  

Size exclusion HPLC or a native SDS-PAGE assay would reveal the presence of 

potentially higher order aequorin/apoaequorin structures.  The yield calculations in this 

section assume no loss of protein due to formation of aggregates post secretion from the 

periplasm. 
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7.4.2.3 Periplasmic fraction 

The procedure followed is described in Section 7.3.2.2.  Periplasmic extraction 

from cell pellets producing apoaequorin was performed in order to:  (1) gain more 

insight into the localisation of recombinant apoaequorin the cell culture and (2) explore 

this method’s potential as a purification step.  The protocol was performed on cultures 

of E. cloni
® cells carrying vectors pETAQ and pET26b.  The latter was used as control 

for E. coli host proteins and proteins encoded in the pET26b vector without apoaequorin 

expression.  

Comparing the expression profile from cultures carrying each vector, it is clear 

that the high intensity bands between 20 kDa and 25 kDa are indeed related to 

apoaequorin expression and not host cell proteins (Figure 7-5 and Figure 7-6).  The 

periplasmic extraction process leaves a considerable amount of apoaequorin within the 

cells.  Most of the apoaequorin produced does not reach the periplasm and is retained in 

the cytoplasm (Lane 6 of Figure 7-5).  This conclusion agrees well with the findings of 

Section 7.4.2.2. 

Periplasmic extraction can be used as an intermediate stage in the purification of 

apoaequorin from an E. coli culture.  Further dialysis can lead to apoaequorin of high 

purity (Lanes 7,8 of Figure 7-5) although purity and yield were not estimated.  The 

periplasmic extraction method by Ausubel (1980) using sucrose and magnesium 

sulphate was not used going forward in this work.  The final purification protocol used 

the simpler one-step extraction and reconstitution with coelenterazine by Shimomura 

and Inouye (1999). 
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Figure 7-5  Periplasmic extraction SDS gel – (a) of cultures carrying pETAQ and 
pET26b.  L1:  Protein ladder:  PrecisionPlus™ Protein Standards (Invitrogen)  Lane 1:  
E. coli cells expressing pETAQ (referred to as wild type in the text), resuspended in 
sucrose solution.  Lane 2:  E. coli cells expressing pET26b, resuspended in sucrose 
solution.  Lane 3:  Periplasmic fraction of Lane 1 sample.  Lane 4:  Spin-concentrated 
sample of Lane 3.  Lane 5:  Periplasmic fraction of Lane 2 sample, spin-concentrated.  
Lane 6:  pellet of E. coli cells expressing pETAQ, post periplasmic extraction.  Lane 7:  
Dialysed sample from Lane 4.  Lane 8:  Spin-concentrated sample of Lane 7.  L2:  
Protein ladder:  Benchmark™ Protein ladder (Bio-Rad Laboratories).  All lanes were 
loaded at 10 µL total volume of sample (including Laemli loading buffer) or protein 
ladder. 

                      

 

 

Figure 7-6  Periplasmic extraction SDS gel – (b), of cultures carrying pETAQ and 
pET26b. L1:  Protein ladder:  PrecisionPlus™ Protein Standards (Invitrogen)  Lane 1:  
pellet of E coli cells expressing pETAQ (referred to as wild type in the text) after the 
periplasmic extraction procedure.  Same as Lane 6 in Figure 7-5.  Lane 2:  Periplasmic 
fraction of Lane 1, spin-concentrated.  Same as Lane 4 in Figure 7-5.  Lane 3:  wash 1 
of periplasmic extraction from E. coli cells expressing pETAQ.  Lane 4:  elution step of 
periplasmic extraction from E. coli cells expressing pETAQ.  L2:  Protein ladder:  
Benchmark™ Protein ladder (Bio-rad Laboratories).  Lane 5:  pellet of E. coli cells 
expressing pET26b (not containing the apoaequorin gene) post periplasmic extraction.  
Lane 6:  Spin-concentrated periplasmic extraction from E. coli cells expressing pET26b.  
Same as Lane 5 of Figure 7-5.  Lane 7:  wash 1 of periplasmic extraction from E. coli 
cells expressing pET26b.  Lane 8:  elution step of periplasmic extraction from E. coli 
cells expressing pET26b.  All lanes were loaded at 10 µL total volume. 
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7.4.3 Clarification of protein sample 

Centrifugation and filtration were tested as means of clarification of protein 

sample from particulate matter (such as cell debris and lipids) that may clog 

chromatography columns.  This section compares clarification of the aequorin-

coelenterazine suspension by (1) two consecutive centrifugation steps or (2) filtration 

through a low protein-binding 0.2 µM polyvinylidene fluoride (PVDF) filter.  The 

activity of the protein sample was measured pre- and post-clarification (Figure 7-7).  

Using filtration, activity was reduced by approximately 78%;  this may be due to 

aequorin being retained within the filter or activity lost due to cations leaching from the 

filter membrane and discharging aequorin.  Bradford and SDS-PAGE assays would be 

appropriate analytics to further investigate this, but as the aim was to maximise activity 

of the retrieved sample, the filtration step was not used.  

For all further protein sample clarifications, two consecutive runs of 

centrifugation at a maximum speed of 13,000 rpm at 4 °C were used, where the 

supernatant was retrieved at both steps (Figure 7-15).   
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Figure 7-7  Clarification of aequorin suspension after coelenterazine incubation. 
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7.4.4 Enrichment of aequorin prior to chromatography 

7.4.4.1 Spin-filtration 

Limited sample volume can be loaded onto a size exclusion column, in this case 

approximately 250 µL.  Prior to size exclusion chromatography, aequorin was 

concentrated using 30,000 MWCO spin columns (Section 7.3.3.1).  An additional spin-

filtration step was considered in order to test the hypothesis that aequorin could be 

separated from the impurities to >95% purity based on size, by employing spin columns 

of 30,000 and 100,000 MWCO.  The retentate of the 30,000 MWCO centrifugation was 

filtered through a 100,000 MWCO spin column.  Aequorin and a wide range of 

impurities were found both in the retentate, as seen in Figure 7-8.  Aequorin was not 

separated from higher molecular weight impurities successfully using different 

molecular weight cut-off filters;  the MWCO values are nominal, with pore sizes of 

wide distribution and the outcome depends on shape of the proteins, speed, duration and 

temperature of centrifugation. Only the 30,000 MWCO filtration/concentration step was 

incorporated in the final purification protocol (Section 7.4.2.2).  

 

                                       

 

Figure 7-8  Aequorin suspension concentated using Minisart® filters.  The suspension 
contained reconstituted aequorin following incubation with coelenterazine.  
L:  Benchmark™ protein ladder (10 µL).  Lane 1:  Flowthrough of 30,000 MWCO.  
Lane 2:  retentate of 30,000 MWCO (aequorin purity: 78.2%).  Lane 3:  Sample of Lane 
2 filtered through 100,000 MWCO.  This lane is the flowthrough (aequorin purity: 
88.6%, host cell protein ~50 kDa: 7.7%).  Lane 4:  retentate of 100,000 MWCO 
(aequorin purity: 52%).  Spin-centrifugation was for 2×15 min, at 4,000×g, volume 
reduction factor was 17.  Protein standards were loaded at 10 µL per lane and protein 
samples were loaded at 15 µL per lane (including 1:1 mixing with SDS loading dye). 
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7.4.4.2 Mass spectrometry of spin-concentrated sample 

The concentrated protein sample (Section 7.4.4.1) was analysed using mass 

spectrometry (Section 7.3.5.1) to verify protein mass.  The sample of Figure 7-9 

corresponds to Lane 3 of Figure 7-8.  The peak at 23,563 Da is aequorin monomer 

(expected value: 23,535 Da) and the peak at 47,263 Da is possibly a host cell protein, 

also appearing in Lane 3 of Figure 7-8.  According to densitometry results these two 

bands account for ≥95% of the protein content of the sample.  The actual sample put 

through size exclusion chromatography was prepared in the same way as the sample in 

Lane 2 of Figure 7-8;  this features aequorin of lower purity by 10% but was chosen in 

order to keep the processing steps and hence protein loss to a minimum.  
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Figure 7-9  Mass spectrometry of aequorin sample prior to chromatographic 
purification. 

7.4.5 Storage of purified fractions 

Protein fractions were kept on ice thoughout the duration of the wet lab work.  

After the active fractions were identified though activity assays, these were subjected to 

flash-freezing using acetone and dry ice and stored at −80 °C.   

7.4.6 Size exclusion chromatography of aequorin:  wild-type, mutant 

and commercial aequorin 

Size exclusion purification was performed as described in Section 7.3.5.  Figure 

7-10  features the chromatograms of absorbance at 280 nm matched with activity assays 

of the collected fractions (Section 7.3.4) for recombinant wild-type aequorin, mutant 
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Asn28Cys/Ser32His and commercial aequorin (AquaLite®).  The UV traces of 

recombinant wild type and mutant Asn28Cys/Ser32His display three peaks: Peak 1, 

Peak2 and Peak 3 eluting at 8, 10 and 12 mL respectively.  These peaks are not well 

resolved.  All chromatograms and raw data are appended in Supplementary Material.   

Only one peak (Peak 1) at 12 mL is observed in the chromatogram of pure 

AquaLite®.  Peak 1 exhibits the highest activity within each chromatogram and is 

expected to be the higly active monomer of aequorin.  In a normal plot (Figure 7-10) 

both Peak 2 and Peak 3 appear completely inactive but on a logarithmic scale 

(Supplementary Material) it can be seen that there is some little activity in both.  SDS-

PAGE analysis of Peak 2 in both wild type and mutant reveals multiple high molecular 

weight bands (Supplementary Material) and displays the least luminescence activity.  

This minimal activity may be attributed to the activity of the preceding unresolved 

Peak 3 and succeeding Peak 1.   

Interestingly, Peak 3 is proportionally more intense in the plot of mutant 

aequorin and it appears to have increased at the cost of Peak 1, compared to the UV 

trace of the wild type.  It is possible that this particular mutant was expressed at very 

low levels (not analysed in this work).  Mutant Asn28Cys/Ser32His has a solvent-

exposed cysteine in EF-I loop which may encourage the formation of higher order 

aggregates of little or no activity, though disulfide bridges.  It is possible that such 

aggregates of mutant aequorin may have formed after secretion from the cells (due to 

insufficient reducing agent in the solutions), thus decreasing the Asn28Cys/Ser32His 

monomer available for purification.  Formation of aequorin/apoaequorin aggregates 

would explain the decrease of Peak 1 and increase of Peak 3 in the mutant plot and 

partially explain the low luminescence activity of Peak 3.  However, SDS-PAGE 

analysis of the Peak 3 showed no discernible band at the size of aequorin.  The 

difference in UV intensity of Peaks 2 and 3 between wild type and mutant could be 

attributed to variations in protein expression levels in the E. coli cultures.   

Due to the poor resolution of the peaks, only partial fractions of Peak 1 of wild 

type and mutant were used for the kinetics experiments of Chapter 8, in order to avoid 

contamination of the descending Peak 2 and maintain high sample purity.  The samples 

used in kinetics work (Chapter 8) are analysed in Sections 7.4.7 and 7.4.8. 
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Figure 7-10  Elution profiles from size exclusion chromatography matched with activity 
of the eluted fractions.  The midpoints of fraction volumes were used as x-axis for the 
activity plots.  Luminescence activity RLUs (relative luminescence units) are not 
comparable across the three plots as they were performed at different gain settings 
(1,100 900 and 2,000 from top to bottom) to avoid out of range readings. 
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7.4.7 SDS-PAGE of purified samples 

Figure 7-11 presents SDS-PAGE analysis of purified wild type, mutant and 

commercial aequorin from size exclusion chromatography, to be used in the work of 

Chapter 8. 

               

Figure 7-11  SDS-PAGE visualisation of purified aequorin samples.  Lane L:  Standard 
Benchmark™ protein Ladder (Invitrogen). Lane 1:  supernatant of the aequorin 
suspension from high-throughput screening wells, concentrated 35-fold (aequorin 
purity:  78%).  Lane 2:  Total soluble protein of the aequorin suspension from high-
throughput screening wells.  The suspension was sonicated, centrifuged and the 
supernatant was concentrated 26-fold (aequorin purity:  66%).  Lane 3:  purified wild-
type aequorin from size exclusion chromatography, concentrated 3-fold.  Aequorin 
purity: 98%.  Lane 4:  purified mutant Asn28Cys/Ser32His, concentrated 3.5-fold.  
Aequorin purity: 97%.  Lane 5:  AquaLite® (commercially available aequorin from 
Molecular Probes).  Aequorin purity: 100%.  All samples (except Lane 5) were 
concentrated by spin centrifugation using a 10,000 MWCO spin column (Sartorius).  
Total loading volume per lane (including Laemli loading buffer):  Ladder: 10 µL, Lanes 
1-3:  15 µL, Lane 5 (AquaLite®): 10 µL.   

Gel image densitometry was used to obtain a rough estimate of purity.  Lanes 1 

and 2 of Figure 7-11 show the aequorin obtained from the supernatant and total soluble 

protein from high-throughput screening wells, for which the purity of aequorin was 79% 

and 66% respectively. Lanes 3 and 4 show the aequorin obtained size exclusion 

purification for wild type and the Asn28Cys/Ser32His mutant, for which 98% and 97% 

aequorin purity was obtained respectively.   
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7.4.8 Mass spectrometry of purified samples 

The molecular mass of aequorin was estimated through mass spectrometry at 

22,927 Da (Figure 7-12) with potentially a second peak at 23,350 Da.  Considering the 

estimation of the commercial standard (discussed below), these are both reasonably 

close to the estimate of 23,535 Da (including the 6×His tag), calculated theoretically 

using the Compute pI/Mw tool of the ExPASy Proteomics server (Gasteiger et al., 

2005).  The coelenterazine (MW 423 Da) is presumably dissociated from the protein 

during the ionisation process, although the second smaller peak present at 

approximately 23,350 Da indicates a small residual population of the holo-aequorin. 

The Asn28Cys/Ser32His mutant (Figure 7-13) gave a mass of 22,996 Da and a 

second peak of 23,392 Da.  The two mutations were expected to increase the mass by 

41 Da, whereas an increase of 69 Da was measured when compared to the 

experimentally determined wild type mass of 22,927 Da.  This is an acceptable error in 

MALDI mass determination and this change at least qualitatively confirms the 

purification of the mutant.  The second peak, with approximately 400 Da greater mass 

again indicates a population retained the coelenterazine during analysis.   

The commercial AquaLite® sample gave a mass of 21,332 Da.  The expected 

mass is 22,000 Da according to the supplier (Molecular Probes, 2001).   

Given the above reduction of ~600 Da in mass determination for the commercial 

standard, the same apparent losses from the main peaks of wild type and mutant 

compared to their expected values can be attributed to assay-related calibration error (all 

three samples were estimated against the same calibration run).  Any additional, non-

assay related errors would be attributed to truncation at the C- or N-terminus.  The mass 

difference between the first and second peaks in both wild type and mutant are 

consistent with retention of the chromophore during analysis.  Such a peak may also be 

present in the trace of Figure 7-9, however the reduced resolution and peak broadening 

of that trace would potentially mask it. 

From the mass spectrometry it is reasonable to infer that the wild type and 

mutant samples obtained are very pure as few alternative peaks were observed, although 

accurate quantitative measurements cannot be obtained from MALDI data.  
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Figure 7-12  Mass spectrometry analysis of purified wild-type aequorin.  Molecular 
weights are in Dalton.  Protein concentration in the sample was approximately 
157 µg/mL. 
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Figure 7-13  Mass spectrometry analysis of mutant Asn28Cys/Ser32His.  Protein 
concentration in the sample was approximately 107 µg/mL.    
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Figure 7-14  Mass spectrometry analysis of commercial aequorin AquaLite® (Molecular 
Probes) purified using the same size exclusion chromatography protocol as wild type 
(Figure 7-12) and mutant (Figure 7-13).  Protein concentration in the sample was 
approximately 44.17 µg/mL. 
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7.5 Conclusions 

A protocol for the purification of active aequorin and variants in bench scale was 

developed.  The method yields target protein of high purity (Table 7-1) using mild 

extraction conditions and limited number of purification steps.  The finalised procedure 

for the purification of recombinant aequorin and operating parameters are summarised 

in Figure 7-15.   

This approach was sufficient to obtain small amounts of protein for the work 

performed in Chapter 8 and the use of size exclusion chromatography required minimal 

development time compared to separations based on ion exchange, hydrophobic or 

mixed-mode interactions.  The histidine tag fused to apoaequorin that was originally 

envisaged for metal affinity purification (Chapter 3) was not used in this work, although 

an exploratory run with Ni-NTA chromatography was performed (not shown in this 

work). 

A considerable amount (approximately half) of the apoaequorin produced in the 

bacterial culture was not utilised for two reasons:  (1) significant portion of apoaequorin 

remained in the form of insoluble aggregates within the cytoplasm, possibly as the cell 

machinery failed to cleave the pelB leader peptide from the entire population of 

expressed protein (Section 7.4.2.2);  to re-solubilise apoaequorin aggregates would 

require a different path of purification, use of denaturants and omission of the pelB 

leader from the DNA construct  (2) only limited amount of protein can be processed 

through a size exclusion column at one time.  Mass balance of aequorin size band 

between the coelenterazine extraction mix and the purified fractions show minimal to 

zero loss of protein (Supplementary material) during the size exclusion step, which was 

expected.  
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Figure 7-15  Final protocol for the purification of aequorin. 

Table 7-1  Yield and purity of purified aequorin. 
 Yield 

(mg per 100 mL culture ) 
Purity 

Wild type 2.60 98% 

Asn28Cys/Ser32His 1.04 97% 

 

2-L 0.5-L 

Thaw 
pellets  
 
0°C 

Resuspend in:  
50 mM Tris-HCl 
10 mM EDTA 
10 mM DTT 

 
–80°C 
  storage 

2×Centrifuge 
Retain supernatant 

  Cold 
incubation 
 
O/N, 0°C 

 Coelenterazine 

    4°C 
 
10,000×g 

    Retain pellets 
Discard supernatant 

           Charging of active protein             Enrichment of protein prior to SEC 

Concentration by 
2–3×centrifugation  
in spin-columns 

  RT 
 
4,000×g 

Activity assay of fractions  Size exclusion chromatography 

  4°C 
 
4,000×g 

0–4°C 
 

  37°C 
 
8–12 h 
200 rpm 
 

  37°C 
 
  O/N 
200 rpm 
 

 37°C 
 
 8 h 
200 rpm 
 

0.2 mL/min 
 

L
ig

ht
  

Time 

–80 °C 
 

   Freezing and storage 

                   Fermentation                    Harvest 



- 246 - 

7.5.1 Improvements to the process 

The resolution of size exclusion chromatography separation can be improved by 

increasing the length of the column, reducing the volume of sample loaded to stricter 

specifications of <1% of bed volume and reducing the flowrate to 0.1 mL/min from 

0.2 mL/min used in this study.  Superdex 75 prep grade has a fractionation range 3,000–

70,000 Da but molecular markers would be tested first on the SEC column to ensure the 

desired size separation is achieved before processing the valuable aequorin sample.  

In terms of analytics, GP-HPLC would be used for accurate estimation of protein 

purity instead of SDS-PAGE densitometry employed in this work.  Both native and 

reducing SDS-PAGE would be employed for analysis of the purification fractions to 

identify aequorin aggregates.  Silver staining method would be employed if higher 

detection sensitivity was needed. 

If higher quantities of aequorin were required, available options would be to 

purify the apoaequorin from the periplasmic extract (without coelenterazine) using 

anion exchange chromatography as a capture step – aequorin has a low pI of 4.82 

(Nanolight, 2010) – followed by hydrophobic chromatography if required.  In such a 

case, reconstitution with coelenterazine would be performed on purified apoaequorin, 

and dialysis or buffer exchange step using appropriate chromatographic media (e.g. 

Superdex 30) would also be required. 

The activity assays would all be performed at one common gain setting or more 

material would have to be sacrificed to perform assays at multiple gain settings in order 

to avoid out of range readings.  This would allow specific activity values to be 

calculated and compared across all samples. 

Published literature on aequorin reports activity in RLUs in various 

luminometers of each laboratory and these values are not directly comparable.  

Shimomura and co-workers (1990) calculated that 1 mg of pure aequorin emitted 

4.80×1015 quanta at room temperature by calibration with the Cypridina 

bioluminescence reaction (Shimomura and Johnson, 1970).  A more modern method for 

associating luminescence units to a standardised light source is the use of radioactive 

standards, e.g. Glowell™ luminometric standards by LUX Biotechnology which emit 

stable light and can readily bolt into the wells of a standard 96-well microplate.  This 

would allow comparison of specific activity of aequorin samples across in-house 

experiments and published work alike. 
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8 Response of wild-type aequorin and mutant 

Asn28Cys/Ser32His to seven metal ions 

In this chapter the purified wild-type aequorin and mutant Asn28Cys/Ser32His 

were tested for their response against seven candidate activator ions calcium, 

lanthanum, cadmium, lead, zinc, copper and cobalt.  The work described in the previous 

chapters compiled literature review and theoretical structural study of aequorin 

(Chapters 1 and 5), designed an expression system for production of aequorin in high-

throughput microplate format (Chapters 3 and 4) and created and screened a library of 

mutant aequorin variants against seven metal ions in high-throughput mode (Chapter 6);  

one variant was chosen for further investigation, to be purified (Chapter 7) and studied 

alongside wild-type aequorin (Chapter 8) without the interference of contaminants 

present in the crude screen of Chapter 4. 

The purified wild-type and mutant aequorin were tested against each of the seven 

metal ion solutions at a wide range of metal concentrations.  The light response against 

time was recorded.   

Section 8.1 provides theoretical background on binding and kinetics useful for 

data interpretation.  Section 8.2 compiles experimental methods and data processing 

specific to this chapter.  Luminescence curves (light versus time) of aequorin wild type 

and mutant were plotted for each candidate activator ion in Section 8.3.1.  Response 

curves (light versus metal ion concentration) that were compiled using the luminescence 

curve dataset were plotted in Section 8.3.2.  The shapes of the luminescence curves are 

associated with the speed of reaction and fall under one of two types (sharp or glow-

type).  The shapes of the response curves indicate whether the ions serve as activators or 

inhibitors and allow an estimate of sensitivity of each protein to each ion.   

In Section 8.3.3 a comparison is drawn between the seven ions as activators of 

wild-type and mutant aequorin.  In Section 8.3.5 aequorin was injected with calcium 

and zinc (Double ion experiments) in order to test the premise that the mutated EF-hand 

can be triggered by the new ion (zinc) while the intact EF-hands are still triggered by 

calcium, thus achieving improved mutant aequorin response to zinc compared to wild 

type.   

The kinetics of the sharp curves are discussed in Section 8.3.4.1 and the kinetics 

of glow curves in Section 8.3.4.2.  The shapes of the luminescence, concentration-
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response curves, yield and sensitivity are discussed in relation to ionic size and 

coordination of metal binding in Section 8.3.6.   

8.1 Introduction 

Work on aequorin to date has focused on the effect of calcium as its native 

activator.  Rare earth metals (e.g. lanthanum, strontium) were found to act as calcium 

substitutes in triggering aequorin luminescence, however these ions are less biologically 

relevant.  The novelty of the work described in this chapter lies in testing unusual 

candidates as triggers for aequorin luminescence:  cadmium, zinc, copper, cobalt and 

lead, as well as the known activators calcium and lanthanum.   

Asn28Cys/Ser32His was one of the interesting mutants emerging from the high-

throughput screening of Chapter 6, chosen for its potential to exhibit altered selectivity 

towards new metal ions.  It contains two mutations in the calcium-binding loop of     

EF-hand I which replace two conserved ligands for calcium ions with ligands usually 

found in zinc and copper binding sites; its other EF-hands remain intact.  It is envisaged 

to have decreased affinity for calcium and increased affinity for new metals compared 

to wild type.  A mutant with such features has not been designed and studied before, 

neither has it emerged from screening of randomised aequorin mutant libraries, as its 

low luminescence yield would have excluded it from a selection process based on high 

yields alone.   

In the crude screen of Chapter 4, only one concentration of each metal ion was 

tested on each of the variants of the aequorin library.  The concentration for each ion 

was decided based on optimal activity yielded from wild-type aequorin in cell 

suspension.  Work in this chapter will show that the same metal ion concentration that is 

optimal for wild type can in fact be inhibitory for a mutant variant.  This finding was 

taken into account in the experimental design of this Chapter. 

8.1.1 Binding studies 

Sections 8.1.1 and 8.1.4 discuss the differences between binding and 

concentration-response curves, as these concepts will be useful in data analysis.  To 

study binding reactions quantitatively, the complex must be monitored separately from 
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the free biomolecules.  This can be done via measuring changes in the solution in which 

the reaction occurs (e.g. temperature, absorbance and light emission) or by employing a 

secondary solution assay to probe changes in one of the biomolecules (Goodrich and 

Kugel, 2006).  A number of fluorescence techniques (fluorescence resonance energy 

transfer, fluorescence anisotropy, induced fluorescence and fluorescence quenching) 

allow binding to be studied by monitoring changes in fluorescence due to association 

between a protein and a ligand.  Such assays can monitor changes in a natural 

fluorophore (e.g. a tryptophan) present in a molecule or a label by fluorescent dye.  

Another way is to separate complexes from the free biomolecules based on differences 

in size, charge or conformation (Goodrich and Kugel, 2006). 

8.1.2 Affinity and apparent affinity 

Affinity describes the strength of an interaction between two molecules.  To 

understand affinity constants (dissociation constant Kd and binding constant Kb) it is 

helpful to consider the rate constants governing the association and dissociation of the 

two molecules (Goodrich and Kugel, 2006).  In a bimolecular reaction: 

ABBA
k

k

1

1
→←+

−

      Equation 8.1 

The dissociation constant Kd is equal to the reverse rate constant divided by the 

forward rate constant (Equation 8.2) and is expressed in units of M.   

1

1

k

k
K d

−=        Equation 8.2 

Binding constant (Kb) is the reciprocal of Kd: 

d

b
K

K
1

=        Equation 8.3 

An interaction with a low Kd (high affinity) will likely have a large k1 and small 

k-1 meaning that A and B will associate rapidly and the AB complex will dissociate 

slowly.  Kd can be related to the concentrations of the three components that are present 

at equilibrium (A, B and AB): 
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=        Equation 8.4 

where: ][A , ][B and ][AB  are the molar concentrations of the reaction 

components at equilibrium. 

At equilibrium, the population of A molecules will consist of free A and A 

bound in AB complexes: 

][][][ ABAATotal +=       Equation 8.5 

][][][ ABBBTotal +=       Equation 8.6 

The forward and reverse rate constants do not need to be known to measure the 

affinity constant; Kd can be measured directly (under equilibrium conditions) as 

follows. 

Equation 8.2 is transformed into: 

][
][

][
][

BK

B

A

AB

dTotal +
=       Equation 8.7 

where [AB]/[ATotal] is the fraction of A put into the reaction that is in the AB 

complex at equilibrium.  If the right half of Equation 8.7 is divided by Kd it can be 

transformed into: 
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      Equation 8.8 

When [AB]/ [ATotal] is plotted on the y-axis and [B] is plotted on the x-axis, Kd is 

equal to the concentration of free B ([B]) at which the fraction bound ([AB]/[ATotal]) is 

half the maximum value.  Equation 8.7 derives a hyperbola when x-axis is linear and 

one sigmoidal when a logarithmic axis is used (Figure 8-1).  In both cases Kd is the 

concentration of B at which the fraction bound is 0.5, best expressed in Equation 8.8. 
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Figure 8-1 Bimolecular binding curves plotted on a linear x-axis in (A) and a 
logarithmic x-axis (B).  The dissociation consant Kd is 10 nM in both plots.  Figure 
reproduced from Goodrich and Kugel (2006).  This is a non-cooperative system.  In a 
cooperative system both the linear and logarithmic axis plots would be sigmoidal. 

To experimentally measure the Kd using Equation 8.7 or Equation 8.8 a series of 

reactions are performed in which the concentration of A is kept constant and the 

concentration of B is varied, and the concentration of AB complex – and possibly B 

unbound – is determined.   

In principle, any concentration of A can be used.  In practise it is simplest to 

determine a Kd when the concentration of A in the reactions is significantly lower than 

the Kd for the interaction [ATotal]<<Kd  (ideally 100-fold below the Kd).  When 

[ATotal]<< Kd, the amount of B in the AB complex is only a small fraction of total B, 

hence free [B] approximates [BTotal] ([B]≈[BTotal]).  This simplifies performing 

experiments, as free [B] does not have to be measured at equilibrium and [BTotal] (the 

total concentration of B in the reaction mix) can be plotted on the x-axis instead of free 

[B].  The Kd can then be determined using Equation 8.7.  If [ATotal] is not significantly 

lower than Kd, free [B] must be measured at equilibrium in each reaction as [B] does not 

approximate [B]Total under these conditions (Figure 8-2). 

In summary, the simplest way to measure a Kd is to set [ATotal]<<Kd, plot 

[AB]/[ATotal] versus [BTotal] and fit the data with Equation 8.7.  If these conditions 

cannot be met, free [B] must be measured for each [BTotal].  

Experiments to measure affinity constants must be performed under equilibrium 

conditions, where there is no overall change in the concentrations of the free and bound 

species in the reaction over time.  Another experimental consideration is that in most 

assays one biomolecule is labelled (fluorescently or radioactively) to facilitate detecting 
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that molecule and the AB complex.  The Kd is affected by assay conditions such as pH, 

temperature, salt concentration and the presence of divalent ions.   

If one of the biomolecules in a bimolecular reaction is an enzyme, it might be 

possible to use the enzymatic reaction to measure the binding affinity between the 

enzyme and a second biomolecule (e.g. a regulator).  A Kd measured in this way is 

referred to as an apparent Kd because the assay used to make the measurement is 

indirect (i.e. it does not directly monitor binding). 

 

Figure 8-2 Bimolecular binding curves illustrating two experimental extremes: 
[ATotal] << Kd and [ATotal]>> Kd. In all plots, the Kd is 10 nM. [ATotal] is 0.1 nM in (A) 
and 1000 nM in (B).  Figure reproduced from Goodrich and Kugel (2006). 

8.1.3 Allostery and cooperativity 

In allostery a regulatory substance binds to a subunit of a mutli-subunit protein at 

a site other than the protein’s active site.  The binding alters the conformation and 
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functional properties of the molecule (Dorland, 2010).  Cooperative binding is a special 

case of allostery that occurs in macromolecules with more than one binding sites.  

Binding to one site changes the binding affinity of the other subunits by induction of 

conformational changes at the other binding sites.  Cooperative enzymes typically 

display a sigmoidal (S-shaped) plot of reaction rate versus substrate concentration” 

(IUPAC, 1997). 

The Hill equation was formulated in 1910 to describe the sigmoidal O2 binding 

curve of haemoglobin (Hill, 1910).  It is a simple, empirical equation that predicts the 

fraction of the macromolecule saturated by ligand as a function of ligand concentration.   

For the association between enzyme A and x  identical molecules of ligand B the 

equilibrium between A and B can be described: 

xABxBA →←+       Equation 8.9  

The equilibrium between A and B can be described: 

n

d

n

Total

x

AK

A

A

AB

][

][
][

][

+
=       Equation 8.10 

where: n=Hill coefficient and Kd is the dissociation constant. 

In the case of positive cooperativity, the Hill coefficient is the slope of the 

ascending sigmoidal curve in a semi-log plot.  The Hill equation provides useful means 

of assessing cooperativity in systems containing multiple B molecules binding to A, as 

long as its limitations are understood.   

One common misuse of n is to estimate the number of B molecules bound to 

each molecule of A (Weiss, 1997).  Another common misuse is to consider n=1 as 

indicator of completely independent binding (non-cooperative) and n<1 as indicator of 

negative cooperativity; these assumptions are not universally correct.  The Hill equation 

can only provide clear evidence for positive cooperativity when n>1, however it cannot 

be used to determine negative or non-cooperative systems without also taking into 

account the relative affinities of each different site on A for binding B (Goodrich and 

Kugel, 2006).  It cannot provide accurate measurements of the Kd for the interaction of 

B at any site of A or the exact number of B molecules that bind to A.  Coefficient n is 

only a minimum estimate of the number of binding sites involved (Weiss, 1997). 

k1 

k-1 
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8.1.4 Concentration-response curves 

Concentration-response (or dose-response) curves are graphs that help 

characterise the effect of various compounds on enzymes/receptors.  The x-axis plots 

concentration of a substance (e.g. a drug or hormone) and the-y-axis plots response.  

Response could be almost any measurable biological function, such as enzyme activity, 

contraction of a muscle, change in heart rate etc (Motulsky and Christopoulos, 2003).  A 

standard concentration-response curve (Figure 8-3) is defined by four parameters:  the 

baseline response (Bottom), the maximum response (Top), the slope, and the 

concentration that provokes a response halfway between baseline and maximum (half 

maximal effective concentration EC50).   

Some of the standard shapes of many systems concentration-response curves are 

shown in Figure 8-3 to Figure 8-5.  Stimulation is indicated when the curve goes uphill 

from low to high concentration of regulator (Figure 8-3).  The substance may produce a 

full or only a partial response.  Inhibition is indicated by a downward curve (Figure 

8-4).  Some substances may stimulate respone at low concentrations and inhibit 

response at high concentrations, or vice-versa.  This is expressed in bell-shaped 

concentration-response curves (Figure 8-5).  Such a model is used qualitatively as a lot 

of data would be needed to determine all its parameters (Motulsky and Christopoulos, 

2003).  

A hyperbola is descriptive of many binding phenomena.  Although this 

dependence appears sigmoidal in semi-log plots, real cooperative systems exhibit 

sigmoidal behaviour even in linear plots (Section 8.1.1, Figure 8-1) (Bisswanger, 2008).  

Since the linkage between binding and response can be very complex, any shape is 

possible for concentration-response curves.  However, many concentration-response 

curves have shapes “almost identical to hyperbolic/sigmoidal binding curves, even when 

multiple steps intervene between binding and measured response”.  The shape of 

concentration-response curves will often be similar to that of a single-step binding curve 

(Motulsky and Christopoulos, 2003). 
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Figure 8-3  Sigmoidal concentration-response curve – stimulation.  Figure reproduced 
from Motulski and Christopoulos (2003).  

   

Figure 8-4  Concentration-response curve – inhibition.  Figure reproduced from 
Motulski and Christopoulos (2003).  

    

Figure 8-5  Bell-shaped concentration-response curve.  Figure reproduced from 
Motulski and Christopoulos (2003). 
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The EC50 is determined by two properties of the regulator molecule:  (1) its 

affinity (how tightly it binds to the enzyme) and (2) its efficacy (intensity of the 

response once bound).  A single concentration-response experiment will encompass the 

effects of both affinity and efficacy.  If a substance binds with high affinity and low 

efficacy it will produce the same concentration-response curve as one that binds with 

low affinity and high efficacy.   

The EC50 is not a direct measure of drug affinity and usually not necessarily the 

same as the Kd for the binding of a substance to its receptor.  The EC50 is merely the 

concentration of substance required to “provoke a response halfway between the 

baseline and maximum responses” (Motulsky and Christopoulos, 2003).  In the cases 

where the concentration of an inhibitor is varied (concentration-response curve moves 

downhill), IC50 is the concentration that causes 50% inhibition (IUPAC, 2010).  

8.1.5 The aequorin system 

Enzymes are biomolecules that catalyse chemical reactions and are not 

consumed by the reactions they catalyse (Berg et al., 2002).  Aequorin is not a typical 

enzyme, as the catalysed substrate is bound within the protein chain (hydroperoxy-

coelenterazine) and when the reaction is completed the spent substrate remains loosely 

bound to the protein chain (Section 1.3.1).  One molecule of aequorin can only process 

one molecule of coelenterazine.  The spent substrate (coelenteramide) can be separated 

from the protein chain by size exclusion chromatography and calcium (activator ion) 

bound in the EF-hands is removed by chelating agents such as EGTA or EDTA.  In 

order to achieve regeneration of fully active aequorin fresh coelenterazine must be 

added (Section 1.3.8).   

The activators for the bioluminescent reaction are calcium ions which act 

allosterically: in aequorin the activation points are the solvent accessible calcium 

binding EF-hands, whereas the reaction of coelenterazine oxidation occurs in the core of 

the protein (Section 1.3.1).  Two to three calcium ions bind with positive cooperativity, 

i.e. the binding event of the first increases the affinity of aequorin for the consecutive 

calcium ions; it is also known that two calcium ions are required to complete the 

reaction and that even one can trigger the reaction, although with considerably lower 

rate (Section 1.3.7).  Aequorin function does not conform to Michaelis-Menten kinetics 
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but produces a characteristic sigmoidal curve that declares positive cooperativity 

between the calcium binding sites (Section 1.3.1). 

8.1.5.1 Fundamental work on the kinetics of aequorin 

Hastings and co-workers (1969) performed some fundamental experiments to 

explore the mechanism of aequorin luminescence using rapid mixing techniques 

(double-stopped flow apparatus).  The onset of light emission was found to be fairly 

rapid with a pseudo-first order rate constant of about 100 s-1 (half rise time of about 

6 ms) and virtually independent of calcium concentration over the range examined.  The 

decay of light intensity was exponential over at least one order of magnitude with rate 

constants between 1–1.2 s-1.  The rate of decay was found to increase with increasing 

calcium concentrations from a very low value below 10-7 M to a maximum reached 

between 10-5 and 10-4 M.  This rate represented the rate of aequorin utilisation.  Both the 

rate of rise and rate of decay were found to be influenced by temperature, as shown in 

Table 8–1 (Hastings et al., 1969).  The ultimate photon yield was found to be constant 

over a wide range of calcium concentrations tested (Hastings et al., 1969).  

                    Table 8-1  Aequorin kinetic constants in published literature. 
Kinetic constants of aequorin at 5 °C at 25 °C at 50 °C 

Rate constant for rise (s-1) 461 100–3002 6901 

Rate constant for decay (s-1) 0.51 1.0–1.22 71 

                      1: Hastings et al, 1969 
                      2: Loschen and Chance (1971) in Shimomura (2006) 
 

The authors conducted experiments to determine whether the relatively long 

duration of light emission in a great excess of calcium should be attributed to the 

continued presence of free calcium or to the decay of some rapidly formed reaction 

intermediate that could yield light without calcium.  These experiments used mixed 

solutions containing aequorin and calcium in the presence and absence of chelating 

agents.  EDTA was added to bioluminescence reactions already in progress in order to 

deplete free calcium from the solution and calcium already bound to aequorin.  The 

addition of excess of EDTA resulted in continuation of luminescence but with a very 

rapid exponential extinction, indicating that the light emission normally extending over 

a second or more requires the continued presence of free calcium (Hastings et al., 

1969).   
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The authors also concluded that aequorin forms an intermediate in the 

luminescence reaction that, once formed, irreversibly leads to the emission of light 

without the continued presence of free calcium.  The lifetime of this intermediate was 

found to be t1/2≈7 ms at 19 °C.   

A hypothetical reaction scheme (stoichiometry unspecified) that would 

accommodate these results was constructed (Equation 8.11):   

 
A Ca2+

+
k1

k-1

ACa
k2 k3 k4X YY* +

  Equation 8.11 

The first step of the proposed mechanism is the very rapid and reversible binding 

of calcium to aequorin.  The authors proposed that – provided maximally effective 

calcium is present – the rate of the overall reaction is limited by the rate of the second 

step (k2 approximately 1 s-1) in which the intermediate X is formed.  X gives rise to an 

excited singlet state Y* (such states typically have lifetimes of nanoseconds) at a rate 

governed by k3, which is in the order of 100 s-1.  Calcium ions initiate the cascade of 

events, but X→Y* does not require the presence of calcium (Hastings et al., 1969).   

In later publications it was proven that the excited singlet state Y* is the excited 

hydroperoxy-coelenterazine (Shimomura and Johnson, 1972, Shimomura and Johnson, 

1975a, Head et al., 2000, Shimomura and Teranishi, 2000).  If one did not assume the 

existence of the intermediate X, the rate of decay of light intensity found on quenching 

with EDTA might be attributed to the rate of dissociation of ACa (governed by k-1).  In 

this case, however, one would expect the rise-time of the luminescence reaction to be 

dependent on calcium concentration.  Thus  k-1 was assumed to be considerably greater 

than k3 (Hastings et al., 1969).  

8.1.5.2 A model of double exponential decay 

It was previously known that for wild type aequorin the decay rate of the flash-

type luminescence curve (see Section 1.1.4 for distinction between flash- and glow-type 

luminescence) increases with calcium concentration, while the total light emitted (light 

integral) remains relatively constant (Section 8.1.5.1).  In a recently published study 

Tricoire and co-workers (2006) focused only on the decay of the bioluminescent 

reaction.  This was the first published proposal of a double exponential decay model of 

aequorin luminescence.  The authors deemed that a single exponential component was 

not enough to describe aequorin luminescence decay because the semi-log plot of 

luminescence decay versus time was not linear. 

hν 
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The authors used random mutagenesis and functional screening to isolate 

mutants exhibiting flash-type luminescence with slow decay rate.  They proposed that 

the decay of aequorin’s flash-type luminescence reaction comprises of two exponential 

components: one fast and one slow.  The authors proposed that variations of these two 

components dictate the peak of the luminescence curve.  The decay traces of wild type 

and mutant aequorins were fitted with two exponentials according to Equation 8.12: 

SF t

S

t

F eIeIy
ττ // −−

×+×=       Equation 8.12 

where τF and τS are the time constants of the fast and slow component 

respectively and IF and IS are the initial maximum intensities of the fast and slow 

component.  The light integrals ΣF and ΣS of these components (where total light ΣT is 

ΣT = ΣF + ΣS) were also determined 

SSS I τ×=Σ         Equation 8.13 

FFF I τ×=Σ         Equation 8.14 

Tricoire and co-workers proposed a model of aequorin calcium dependence 

taking into account the variations of decay rate with calcium concentration as a key 

determinant of light intensity.  They suggested that the fast and slow components 

coexist across different aequorin variants and calcium concentrations.  The authors also 

propose that the concept of parallel slow and fast decay agrees with the increase of light 

intensity and decay rate with increasing calcium concentrations, given that the light 

integral is constant at all calcium concentrations.  The kinetics of slow decay mutants 

for a given EF-hand were found to be similar and deemed to result from the disruption 

of a link between an EF-hand domain and coelenterazine binding residues and not from 

the reduction of its calcium affinity (Tricoire et al., 2006).   
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8.2 Materials and methods 

8.2.1 Aequorin and coelenterazine 

Purified fractions of wild-type aequorin and purified mutant Asn28Cys/Ser32His 

were prepared as described in Chapter 7.  Commercially available recombinant aequorin 

AquaLite® was obtained in lyophilised form from Molecular Probes and purified with 

the same chromatographic methods used for wild-type and mutant Asn28Cys/Ser32His 

in Chapter 7.   

8.2.2 Protein concentration 

The concentration of purified aliquots of wild-type and mutant aequorin was 

determined by absorbance at 280 nm on the NanoDrop® ND-1000 (NanoDrop 

Technologies, Rockland, US).   

Shimomura and Shimomura (1981) determined that in order to maintain constant 

specific activity aequorin must be used at concentrations <10 µg/mL.  Appropriate serial 

dilutions of the purified aequorin fractions were made in 50 mM Tris-HCl 10 µM 

EDTA pH 7.5 for a final concentration of 5.1 µg/mL (approximately 0.21 µM).  After 

1:1 mixing with metal ion solutions the final concentration of aequorin was 2.55 µg/mL 

(approximately 0.11 µM).  This concentration of protein in the final mixture is 

sufficiently low compared to previously reported values of aequorin calcium affinity – 

13 µM reported by Kendall and co-workers (1992) – to allow estimation of an apparent 

affinity from the concentration-response curves of the aequorins versus the different 

metals. 

Protein samples were handled as described in Section 7.3.6 in order to avoid 

contact with contaminating calcium in vessels as well as inactivation due to prolonged 

exposure at room temperature.  The 5.1 µg/mL protein solutions were kept on ice in a 

universal tube that had been previously rinsed with 50 mM Tris-HCl, 10 µM EDTA 

buffer so that any metal ions which may be present on the tube surface would be 

chelated and removed.   
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8.2.3 Concentration range of metal ions 

Salts of calcium, lanthanum, cadmium, zinc, copper, cobalt and lead Table 2–9 

were dissolved in 50 mM Tris-HCl buffer, pH 7.5 and their actual metal ion content was 

determined by elemental analysis (Section 2.5.2).  The concentrations of all metal ion 

solutions would include the concentration range from 10-7 M to 10-3  M that is relevant 

for biomedical and environmental studies (Pinton et al., 2007, Shimomura, 1991, 

Shimomura, 2006, Tricoire et al., 2006).  Nominal dilutions were made over a range of 

10-7 M to 10-2 M for all metal ions studied.  The values of the nominal concentrations 

were corrected using total ion determination data (Section 2.5.2).  As EDTA would be 

present in the final bioluminescence mixture of protein and metal ions, only free 

(unchelated by EDTA) metal ions would be available for aequorin binding.   

The WinMAXC32 v2.51 Chelator program (Patton, 2002) was used to calculate 

the free concentration of each metal solution in the final (luminescence measurement) 

mix taking into account the total metal ion concentration, 2.3x10-7 M total 

contaminating calcium (traces of which are present in all chemical preparations) and the 

program in-built affinity constants of EDTA for all metal ions used.  The original range 

of evenly spaced nominal ion concentrations (10-7 to 10-2 M) resulted in a much wider 

range of calculated free (unchelated) metal ion concentrations (10-16 M to 10-2 M) due to 

the chelating effect of EDTA (up to 10 µM) in the final mix.   

According to studies by Shimomura and Shimomura (1984) aequorin’s detection 

limit of calcium ions is 1 nM in low ionic strength buffers and 100 nM in 0.15 KCl 

solutions.  In this work 0.25 nM of free calcium in 50 mM Tris-HCl 5 µM EDTA 

pH 7.5 (negative control buffer) did not trigger luminescence above noise level.  6.4 nM 

of free calcium in 50 mM Tris-HCl 5 µM EDTA pH 7.5 was found to trigger 

measurable luminescence in wild-type aequorin.   

8.2.4 Experimental setup and platereader settings 

Aequorin activity was measured in a BMG FluoStar Optima platereader (Section 

2.7.1) by injecting 50 µL of protein solution (5.1 µg/mL wild-type or mutant aequorin in 

50 µM Tris-HCl 10 µM EDTA) into microwells containing 50 µL of variable metal ion 
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concentrations in 50 mM Tris pH 7.5 (Section 8.2.3).  The measurements were 

performed in Lumitrac™ 96-well plates at 21–23 °C. 

Measurements were performed in triplicate (unless stated otherwise).  Injection 

was set to maximum speed (420 µL/s) for rapid mixing and luminescence was measured 

for a total duration of 15 s.  Recording of luminescence started at time 0 s and the 

injection of protein into the wells started at 0.3 s in order to capture any background 

signal before and during injection.  Data were collected with 0.1 s integration time.  

Where background noise was detected, it was subtracted from light readings before 

further data analysis.   

Due to significant differences in light intensity across different combinations of 

aequorins and metal ions, a uniform gain setting across all experiments would either 

cause over-range readings (e.g. wild type plus calcium) or no detection in others (e.g. 

mutant plus zinc).  The gain settings of the photomultiplier tube were altered in order to 

adjust the sensitivity of the light readings through trial and error.  The gain settings of 

the photomultiplier ranged from gain 2,000 to 4,000.  At low gain settings no 

background signal was detected.  Low levels of noise were captured at gain ≥ 3,500.  

The absolute luminescence output values are not directly comparable across the entire 

dataset, but only within each plate or across plates processed at the same gain settings.   

In order to protect the protein administered through the syringe from traces of 

contaminating calcium, the syringe pump and tubing were rinsed with 50 mM Tris-HCl 

buffer solutions with decreasing concentrations of EDTA (first wash: 10 mM, final 

wash: 10 µM EDTA) for the removal of metal ions and finally primed with 1 mL of 

sacrificial protein sample. 

Addition of high calcium concentrations to protein solutions containing EDTA 

can cause a drop in pH.  It has been reported that aequorin’s stability is maximal within 

the pH range 6.0–8.0 (Shimomura, 2006, Shimomura and Johnson, 1969, Shimomura 

and Johnson, 1970).  Changes in pH were measured for representative samples of each 

set of experiment.   

Solutions containing low and high concentrations of each of the metal ions used 

in this chapter were mixed 1:1 with the buffer aequorin was diluted in (50 mM Tris-HCl 

10 µM EDTA, pH 7.5) in order to assess the effect of EDTA in the final mix on pH.  

The pH of all the solutions remained between 7.1–7.4 post-mixing, with the exception 

of solutions containing lead.  As lead precipitated in Tris-HCl, it was diluted in R.O. 

water instead (Section 2.5.1) and the pH of the solutions was 5.0–5.2 prior to mixing.  
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Post-mixing pH was 7.5 at the lowest and 2.96 at the highest concentration of lead 

tested.  The lack of pH buffering in the lead system is expected to affect the protein’s 

stability and activity.  This will be taken into consideration in discussion of results. 

8.2.5 Method for double ion experiment   

Forty microliters of increasing zinc concentration solutions (1.5 µM to 5.5 mM 

before mixing) were pipetted into microwells.  Forty microliters of 5.1 µg/mL purified 

aequorin (wild-type or mutant) in 50 mM Tris-HCl EDTA 10 µM EDTA pH 7.5, were 

injected into the microwells at time 0.3 s and the reaction was allowed to proceed until 

time 10 s.  At 10 s, 40 µL of 50 mM Tris-HCl 50 µM CaCl2 (shown in Section 8.3.2 to 

be sufficient amount of calcium to complete the luminescence reaction and reach 

plateau in the dose response curves) were injected into the microwells in order to 

provide aequorin with enough calcium to successfully activate the luminescence 

reaction.   

8.2.6 Data processing 

8.2.6.1 Luminescence curves and concentration-response curves 

Light versus time data were originally processed in Microsoft Excel and the peak 

and sum of luminescence counts during measurement time (15 s) were obtained.  The 

term “Peak luminescence” was assigned to the single maximum luminescence 

measurement of each well.  This term is relevant to the flash-type luminescent reactions 

and perhaps less relevant for glow-type reactions (Section 1.1.5, Figure 1.4).   

Concentration-response curves were populated with the peak of the 

luminescence trace curve for every concentration of each ion tested versus ion 

concentration.  As luminescence counts vary across different instruments and across 

different gain settings of the same instrument, the values of luminescence peaks were 

normalised to the maximum peak observed for that particular ion and the y-axes of the 

concentration-response curves were presented as percentage of maximum for the 

particular set of data (aequorin molecule and metal ion).  The concentration-response 

curves were plotted in SigmaPlot software v.11.0 (Systat Software Inc., Chicago, USA) 

and EC50 values (and IC50 where applicable) were determined.   
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8.2.6.2 Exponential model fitting 

Luminescence exponential decays were analysed with SigmaPlot software.  Fast 

and slow components of double exponentials are described by their fast and slow time 

constants (τF and τS respectively), and their light integrals (ΣF and ΣS respectively), 

while the total light integral ΣT=ΣF+ΣS is defined in Section 8.1.5.2. 

The model of double exponential decay published by Tricoire and co-workers 

(2006) (Section 8.1.5.2) is appropriate only to the reactions exhibiting flash 

luminescence.  Based on this work, Equation 8.15 was fitted to the time resolved data 

points past the peak of the luminescence curve using SigmaPlot.  The data points of 

each individual dataset (i.e. corresponding to each ion concentration for wild type or 

mutant) were normalised by the luminescence peak of the dataset.  Equation 8.15 is an 

adaptation of Equation 8.12 to using normalised data points: 

SF tt
eceay

ττ // −− ×+×=       Equation 8.15 

where τF and τS are the time constants of the fast and slow component 

respectively and a and c are the fractions of the initial maximum intensities of the fast 

and slow component, where a+c=1 (or 100% of total light contribution). 

8.2.6.3 Estimation of glow luminescence kinetics 

In the case of glow luminescence traces, a useful metric of the speed of decay 

would normally be the time required for light to fall to half of the maximum value 

recorded (t1/2).  In this work, measuring t1/2 was not possible because – for most 

experiments – the decay was too slow to extract this parameter within the 15 s window 

of each experiment.  Instead time was fixed at 15 s and the ratios between luminescence 

at 15 s over maximum luminescence of the glow curve were compared.  Thus, by 

quantifying the progress of the decaying curve, an indirect measure of the progression 

of bioluminescence reaction (or reaction rate) was obtained, which was named P15s/Max 

and defined as shown in Equation 8.9.  Specifically, from each glow luminescence 

curve P15s/Max was calculated: 

Max

s
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L

L
P 15

/15 1−=        Equation 8.16 

where: 

L15s is the luminescence at 15 s and  
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LMax is the maximum value of luminescence  

Subtracting the luminescence ratio from 1 served to produce a metric of the 

progress of the reaction: higher values for P15s/Max correspond to higher reaction 

kinetics.  This metric by its definition can give information of reaction kinetics only and 

cannot be used to describe processes related with yield of light.   

Upon implementation, this proved to be a robust metric in that the variance 

among triplicate experiments was very low.  At very low and very high ion 

concentrations low levels of luminescence and high noise prevented accurate estimation 

of L15s and LMax and such data points were discarded.   

The glow curves are associated with low yield production.  For this reason high 

gain settings were applied in the platereader which in turn resulted in noisy data in 

several cases.  To mitigate this effect, averaging was used both for the estimation of 

both LMax and of L15s.  Specifically, to determine the maximum response observed, the 

raw data was processed using a moving average filter.  A moving average is commonly 

used with time series data to smooth out short-term fluctuations and highlight longer-

term trends or cycles.  For each time point the average of the two preceding points, the 

current point and the two following points was calculated.  To minimise the effect of 

noise on L15s value, this was calculated as the mean of the five last data points (for time 

14.5 to 14.9 s).   

8.2.7 Artefacts from syringe injection 

Artefacts are common occurrences in luminescence and fluorescence readings 

and they are often associated with injection events.  They are different to background 

noise as to their timing and duration:  background noise is present in blank samples or 

samples where a reaction has not been initiated and its values are fairly stable; the 

experimental results can be corrected for noise by means of a simple subtraction.  

Artefacts are different in that they can occur in one or more specific instances during a 

experiment, e.g. more often associated with injection or other events.  Frictional forces 

due to a very rapid injection can excite the probe and produce an injection artefact (Van 

Dyke et al., 2002).  In this work, luminescence artefacts associated with the event of 

injection were identified and removed from the data set.  
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8.2.8 Assay objectives and limitations 

The purpose of the assay was to assess the response of aequorin wild-type and its 

mutant variant Asn28Cys/Ser32His to various metal ions and compare the different ions 

in their ability to induce luminescence in aequorin. 

The experimental setup consists of mixing protein with metal ion solutions and 

recording the light output.  It is important to note the assay’s limitations.  There is no 

direct or indirect measurement of the amount of ions free in solution or bound by the 

protein, hence binding curves are not attainable.  Structural/conformational changes 

occurring in the protein as a result addition of ions were not monitored.  The assay did 

not record any potential spectral changes in light emission but measured all visible light 

as produced by the luminescence reaction.   

With these limitations in mind, the following types of information can be 

elicited: 

• qualitative and quantitative analysis on the effect (activating or inhibitory) of 

ions on luminescence activity of aequorin wild-type and mutant by plotting 

concentration-response curves 

• the rate of luminescence can be quantified into a (set of) kinetic constants or 

characteristic times 

• a measure for sensitivity for each ion can be introduced, by identifying the 

lowest ion concentration at which bioluminescence proceeds or by means of 

estimating EC50. 

These metrics are fairly easy to estimate and are quite relevant in the applications 

of aequorin as a metal biosensor.   
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8.3 Results and discussion 

Seven metal ions – calcium, lanthanum, cadmium, lead, zinc, copper and 

cobalt – were tested as potential activators of wild type and mutant aequorin.  

Luminescence response (activity) versus time was monitored.   

Section 8.3.1 presents one typical shape of the luminescence traces for each 

combination of protein-metal tested.  The shape of the curves will be discussed and 

maximum values from each luminescence curve at every ion concentration will be used 

to compile concentration-response curves in Section 8.3.2.  Concentration-response 

curves show sensitivity of the protein to each metal and the effect of each metal as an 

activator or inhibitor at the ranges of concentrations tested.  In Section 8.3.3 the ions are 

compared to each other for their ability to trigger light production in wild-type and 

mutant aequorin. 

Kinetic parameters for the experimental results were derived using two methods 

of analysis depending on the shape of the luminescence traces in Sections 8.3.4.1and 

8.3.4.2.   

Double ion experiments in Section 8.3.5 show the effect of two ions on aequorin 

(zinc and calcium), with zinc envisaged to bind to and possibly activate the mutated EF-

hand loop and calcium to bind to the non-mutated EF-hands.  

The experimental results regarding shape of luminescence curves, concentration-

response curves, sensitivity and yield are discussed in relation to structural parameters 

derived in Chapter 5. 

8.3.1 Luminescence curves: flash and glow-type 

The light intensity (luminescence) was recorded as described in Section 8.2.4. 

Luminescence was plotted against time for each metal ion concentration.  Both wild 

type and mutant were tested with twelve metal ion concentrations of seven different 

metal ions and each experimental condition was performed in triplicate.  For simplicity 

one representative luminescence trace from each aequorin-metal set was chosen to 

illustrate the shape of the graphs in Figure 8-6 (wild type) and Figure 8-7 (mutant).   
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From the entire dataset of time course experiments with wild-type aequorin and 

all concentrations of calcium (Supplementary Material), it was interesting to notice that 

the rise time was independent of calcium concentration (luminescence peak occurred at 

1 s) but the rate of decay was affected by calcium concentration.  Both observations are 

in agreement with published literature (Hastings et al., 1969).  

Although luminescence traces may vary slightly in sharpness between different 

ion concentrations for each aequorin-metal combination, the curves overall fall under 

two distinct shapes.  Luminescence triggered by calcium, lanthanum and lead is flash-

type, characterised by a sharp onset and sharp decay of light (Figure 8-6) Luminescence 

traces triggered by cobalt and zinc are glow-type, characterised by a slow rise to a fairly 

broad peak followed by a slow decay (Figure 8-7).   

Luminescence curves triggered by copper were classified as glow-type because 

the shapes of the traces varied from a non-sharp peak to a “classic” glow-type shape 

depending on the concentration of copper (Supplementary Material).  Cadmium 

presents a special case in that it triggers luminescence traces of a unique shape that 

seems to be a contribution of a sharp response followed by a glow-type luminescence 

curve with a slow decay.   

The classification of the shape of luminescence curves is the same in wild-type 

aequorin and variant Asn28Cys/Ser32His, but overall the kinetics of decay in the 

mutant are slower compared to wild type.  In wild-type aequorin, luminescence reached 

a sharp peak at 1 to 1.1 s, with the injection occurring between 0.3 and 0.4 s.  Gain 

settings varied across different ions and different proteins (Appendix Chapter 8, Table 

10-14) therefore the output of luminescence units on the y-axes cannot be compared 

across the different plots.  

Table 8-2  Luminescence curve shapes. 
 Wild-type aequorin___ Mutant Asn28Cys/Ser32His 
Calcium Flash-type Flash-type 
Lanthanum Flash-type Flash-type 
Lead Flash-type Flash-type 
Cadmium combination combination 
Cobalt Glow-type* Glow-type* 
Zinc Glow-type Glow-type 
Copper Glow-type Glow-type 
*Borderline flash-type 
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Figure 8-6  Light versus time – Wild-type aequorin.  Tested with Ca2+, La3+, Pb2+, Cd2+, 
Cu2+, Zn2+, Co2+ at the respective ion concentrations that trigger maximal response of 
activity and correspond to the peak of the concentration-response curves in Figure 8-8. 
2.55 µg/mL of protein post mix, pH 7.45 (lead at pH ~5), T=23 °C. 
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Figure 8-7 Light versus time – Mutant Asn28Cys/Ser32His. Tested with Ca2+, La3+, 
Pb2+, Cd2+, Cu2+, Zn2+, Co2+ at the respective ion concentrations that trigger maximal 
response of activity and correspond to the peak of the concentration-response curves in 
Figure 8-9.   2.55 µg/mL of protein post mix, pH 7.45 (lead at pH ~5), T=23 °C.                         
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8.3.2 Concentration-response curves 

Concentration-response (or concentration-response) curves were drawn to study 

the effect of varying concentrations of metal on wild-type and mutant aequorin.  

Triplicates of a range of ion concentrations per aequorin-metal combination were used.  

To simplify comparisons all results were normalised by the highest measured activity of 

each set so that the y-axis of response is the percentile of maximum response achieved 

within each set of aequorin-metal combination (e.g. wild type and calcium, mutant and 

calcium etc). 

A visual inspection of the concentration-response curves reveals that the 

different ions exert different effect on wild-type and mutant aequorin.  The sigmoidal 

curves of wild type triggered by each of calcium, lanthanum and cadmium suggest 

cooperative binding (both linear and semi-logarithmic plots were sigmoidal).  The 

sigmoidal curve of wild type plus calcium agrees well with the sigmoidal curve of 

commercial aequorin AquaLite® (Figure 8-8), which indicates that the preparation of 

aequorin in this work and the presence of His-tag and two additional amino acids at the 

C-terminus (Section 3.3.4, Figure 3-8 and Figure 3-9) did not alter its properties in 

regard to shape of the bioluminescence trace and calcium sensitivity.  Additionally, it 

will be shown in Section 8.3.4.1 that kinetics of wild type and mutant aequorin are very 

similar.   

The profiles of mutant aequorin triggered by each of calcium, cadmium and 

lanthanum resemble a sigmoidal curve but are not as concrete as the profiles of wild 

type with the same ions.  In the case of lanthanum, it hints toward a sigmoidal shape but 

very few non-zero points were available.  For biomedical systems however, 

concentrations of free lanthanum higher than 0.1 M would not be applicable.  It is 

noteworthy that mutant aequorin shows dramatically decreased sensitivity to lanthanum 

compared to wild type.   

The concentration-response curves of lead, cobalt, zinc and copper with wild 

type and mutant are all bell shaped (Section 8.1.4).  This indicates a departure from the 

cooperative binding model.  At low concentrations these ions act as partial activators of 

aequorin until a maximum is reached.  At higher concentrations they have an inhibitory 

effect on aequorin luminescence for both wild type and mutant.  In terms of ion 

sensitivity, wild-type was found to be more sensitive to all other ions than its native 

activator calcium, as expressed by the maximum values (and consequently the EC50) 
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occurring at significantly lower concentrations of metals.  However the activity 

produced with other ions as activators was significantly lower than the wild-type plus 

calcium combination, summarised in Figure 8-10, Section 8.3.3.  Characteristic values 

and qualitative observations of the concentration-response curves are summarised in 

Table 8-3.  Due to lack of some data points in the interesting “ascending range” of some 

of the concentration-response curves, it was not possible to extract exact values but only 

ranges for EC50 and IC50 (where applicable).  

Overall, mutant aequorin exhibited increase of sensitivity to calcium and zinc 

(reduction of EC50 of approximately one order of magnitude) compared to wild type.  

The opposite effect was seen with lanthanum, where mutant aequorin almost lost its 

sensitivity as shown by an estimated increase of EC50 of between four and seven orders 

of magnitude compared to wild type (Table 8-3).  The sensitivity to cadmium remained 

relatively unchanged.  Comparisons of sensitivity to copper, cobalt and lead were not 

possible due to lack of data in the very low ranges where the respective EC50 values 

resided. 

These results can be further discussed in terms of physical processes.  In general, 

increase of sensitivity (decrease of EC50) means either faster or stronger binding, or 

faster light production by the activated intermediate.  

The increase of mutant sensitivity to calcium agrees with findings by Tricoire 

and co-workers (2006) in regard to effect of mutations in EF-I.  The authors reported the 

“seemingly paradoxical” increase of calcium sensitivity in mutants that contained 

altered EF-I but a decrease of sensitivity in mutants that contained altered EF-III or EF-

IV.  As a result they assumed that EF-I must have lower calcium affinity than EF-III 

and EF-IV; the exact increase in sensitivity was not quantified as the ascending range in 

the mutant concentration-response curve was outside the calcium concentration range 

tested by the authors.  The work in this section only included mutated EF-I with 

different type of amino acid sunstitutions from Tricoire’s work (EF-I mutations in this 

work: Asn29Cys/Ser32His and in Tricoire:  Asn26Asp, Glu35Gly and Val44Ala) but 

the agreement in respect to increase of calcium sensitivity is still interesting.   

The dramatic decrease of lanthanum sensitivity in the mutant alludes to EF-I 

being crucial in the binding of lanthanum.  Indeed, in the analysis of the mutant library 

in Chapter 6 the metric of selectivity shift (D) for lanthanum and mutant 

Asn28Cys/Ser32His was very low compared to that for zinc and copper.  
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From the compilation of Table 8-3 an association emerges between the shape of 

the luminescence curves with the shape of the concentration-response curves.  Flash-

type luminescence curves contribute to sigmoidal concentration-response curves 

whereas glow-type luminescence curves contribute to bell-shaped concentration-

response curves.  Some seeming variations from this rule are cadmium, lead and cobalt.  

Cadmium triggers a combination of flash and glow luminescence and its flash-type 

contribution most likely leads to a sigmoidal concentration-response curve.  

Luminescence triggered by cobalt was classified as glow-type, however its 

luminescence versus time traces are sharper than the glow-type traces produced by zinc 

and copper and more blunt than the classical flash-type curves of calcium, lanthanum 

and lead (traces of the entire dataset are provided in Supplementary Material).  The 

relative sharpness of some of the traces by cobalt would contribute to a sigmoidal 

concentration-response curve. 

Lead triggers flash-type luminescence but at higher concentrations an inhibition 

effect is observed that leads to a bell-shaped concentration-response curve.   

On enzyme inhibition due to metal ions 

It is possible for heavy metals, such as lead, silver and mercury, to act as anzyme 

inhibitors by bonding with side groups such as -SH, -COO-, -OH (Hovde, 2011).  

‘Sulfur-seeking’ metals, such as cadmium and copper, would be expected to bind 

mainly to thiols and zinc would be expected to bind mainly to carboxylic acids at 

cytoplasmic pH (Martell and Smith, 1982).   

Binding to the active site can cause competitive reversible or irreversible 

inhibition and binding to a site other than the active site causing non-competitive 

reversible inhibition.  In biological systems, heavy metal toxicity is caused by tight 

binding of a metal such as mercury, lead, aluminum, or iron, to a functional group at the 

active site of an enzyme.  At high concentrations heavy metals are relatively non-

specific for the enzymes they inhibit and inhibit a large number of enzymes.   

In the case of aequorin it is expected that metal ions binding to the EF-hands 

causing partial or no activation, by definition also cause at least partial inactivation of 

aequorin.  It is entirely possible that at higher concentrations they also bind to sites 

other than the ion-binding loops causing additional inhibition with the cumulative 

inhibition effect manifested in the downslope of the bell-shaped curves and reduction at 

the high concentrations of lead’s sigmoidal concentration-response curve.  
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Figure 8-8  Concentration-response curves of wild-type aequorin.  Tested with Ca2+, 
La3+, Pb2+, Cd2+, Cu2+, Zn2+, Co2+. 2.55 µg/mL protein post mixing, pH 7.45 (lead at 
pH ~5.0), T=23 °C. 
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Figure 8-9  Concentration-response curves of mutant Asn28Cys/Ser32His.  Tested with 
Ca2+, La3+, Pb2+, Cd2+, Cu2+, Zn2+, Co2+. 2.55 µg/mL protein post mixing, pH 7.45 (lead 
at pH ~5.0), T=23 °C. 
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Table 8-3  Summary of characteristics of luminescence versus time and concentration-response curves.  When values for EC50 and IC50 could not 
be drawn from the plots due to lack of data points, a range of potential values is provided instead. 
 wild-type aequorin  mutant Asn28Cys/Ser32His 

 EC50 (M)  IC50 (M) luminescence 
curve 

concentration-
response curve 

 EC50 (M)   IC50 (M) luminescence 
curve 

concentration-
response curve 

Ca2+ 1.2×10-5 –1.6×10-5 n.a. flash-type sigmoidal  2×10-6 n.a. flash-type sigmoidal 

Zn2+ 10-13 –10-10 1.3×10-4 glow-type bell-shaped  2×10-14 2×10-5 glow-type bell-shaped 

Cu2+ 3×10-15 –3×10-8 n.d. glow-type bell-shaped  10-14 –10-8 3×10-2 glow-type bell-shaped 

Co2+ 10-12 –2×10-10 5×10-5 glow-type bell-shaped  5×10-13 –2×10-10 10-4 glow-type bell-shaped 

Cd2+ 10-5 n.a. combination sigmoidal  3×10-5 n.a. combination sigmoidal 

Pb2+ 10-14 –10-13 9×10-5 flash-type bell-shaped  2×10-15 –10-12 2×10-4 flash-type bell-shaped 

La3+ 5×10-11 –10-8 n.a. flash-type sigmoidal  9×10-4 n.a. flash-type sigmoidal (?) 

n.d.: not determined 
n.a.: not applicable 
IC50 values are only applicable in bell-shaped concentration-response curves 
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8.3.3 Light yield comparison across all metals with wild-type and 

mutant aequorin 

In biomedical research or environmental monitoring the minimum measurable 

output of a luminescent biosensor would be the peak or sum (cumulative light) of 

emitted light during the duration of the experiment.  In this Section, the peak and sum of 

luminescence for the experiment duration (15 s) are compared between:  

• purified wild-type aequorin with each of the metal ions tested (Figure 8-10) 

• purified mutant Asn28Cys/Ser32His with each of the metal ions tested (Figure 
8-11) 

As discussed in Section 8.1.4, the maximum response occurs with different 

concentrations of different ions and varies between wild-type and mutant aequorin.  For 

simplicity, the comparison was made at each ion’s optimum concentration with wild 

type and mutant respectively.  This decreased the number of experiments required.  The 

metal ion concentrations used in each case are presented in Table 8-4. 

Photomultiplier gain settings were an additional consideration.  In contrast to 

work in Sections 8.3.1 and 8.3.2 the gain settings within wild type experiments were 

kept constant (Gain 2,300) in order to allow direct comparison between luminescence 

outputs.  The respective gain settings used for mutant comparisons were 2,300 and 

4,000.  Gain of 2,300 allowed direct comparison across wild type and mutant aequorin 

with calcium but failed to detect light from some of the mutant-ion sets.  Gain of 4,000 

allowed luminescence from low producers (mutant variant with zinc, cobalt, copper) to 

be detected that would otherwise have been undetectable at the low gain setting of 

2,000.   

As illustrated in Figure 8-10 and Figure 8-11, the order in which metal ions exert 

the highest peak of luminescence in aequorin ranked from highest to lowest is: 

• For wild type: 

Calcium > Lanthanum > Lead > Cobalt > Cadmium > Zinc > Copper 

• For mutant Asn28Cys/Ser32His 

Lanthanum > Cadmium > Calcium > Lead > Zinc > Cobalt > Copper 
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Due to the shape and kinetics of the luminescence curves, the ranking may vary 

slightly where peak or sum of luminescence is taken into account for the entire duration 

of the experiment (15 s).  For example, the peak response of wild type to lead is 

significantly higher than response to cobalt, whereas the sum of light triggered by cobalt 

is slightly higher than that triggered by lead for the experiment duration.  This is 

associated with the different speed at which reactions proceed. 

The peak of light is the most relevant metric for two reasons:  a high intensity 

peak would allow lower limits of detection, hence increased sensitivity of the sensor; a 

sharp peak with a rapidly descending tail would mean it is possible to study rapid 

fluctuations of the analyte of interest.  In this system, high luminescence intensity seems 

to be linked to increased sharpness of peak, hence indirectly suggests fast response 

kinetics.  

Table 8-4  Metal ion concentrations used for overall yield comparisons.  The available 
metal ion concentrations in the final mix (metal ion plus protein solution) that triggered 
the highest activity.   These were used for the overall comparison of wild type and 
mutant performance with all ions.  Free ion concentration post-mixing was calculated as 
described in Section 8.2.3. 
Ion Most effective ion concentration    

for wild type 
Most effective ion concentration 
for mutant 

Calcium 10-2 10-2 

Lanthanum 8.1x10-5 1.8x10-3 

Cadmium 1.9x10-5  2.4x10-4 

Lead 7x10-6 4x10-6 

Zinc 8.4x10-6 1.8x10-12 

Copper 1.2x10-4 3.9x10-6 

Cobalt 1.9x10-5 1.9x10-5 
 

Luminescence activity of mutant plus calcium in comparison with wild-type plus 

calcium at 10-2 M and gain setting 2,300 was 0.032 % ± 0.001 % for Peak and 

0.128 % ± 0.003 % for Sum.   

In theory the total light produced by the luminescence reaction is constant 

(Hastings et al., 1969).  This should apply at all experimental conditions given infinite 

time.  In practice, infinite time is not applicable.  The sum of light readings for the 

duration of each experiment was used as it was a concrete set of results and relevant to 

the kinetics of the reaction (slower kinetics→lower sum of light in a set timeframe). 



- 279 - 

 

Figure 8-10  Wild type against each metal ion.  2.55 µg/mL aequorin, pH 7–7.5 at 23 °C 
(with the exception of lead that was diluted in R.O. water and post-mix pH was 5.0).  
Error bars are standard error of the mean.  Each metal ion injected was at the optimal 
concentration derived from the concentration-response curves in Section 8.3.2 and 
summarised in Table 8-4. 

 

Figure 8-11  Mutant Asn28Cys/Ser32His against each metal ion.  2.55 µg/mL of 
protein, pH 7–7.5 at 23 °C (with the exception of lead that was diluted in R.O. water 
and post-mix pH was 5.0).  Error bars are standard error of the mean.  Each metal ion 
injected was at the optimal concentration derived from the concentration-response 
curves in Section 8.3.2 and summarised in Table 8-4. 
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8.3.4 Analysis of bioluminescence kinetics 

In Section 8.3.1 it was shown that experimental results fall under two main 

groups in terms of the shape of luminescence curves: flash-type and glow-type.  The 

shape of luminescence curves makes them amenable to different methods of analysis in 

terms of kinetics.   

Flash-type luminescence comprises of the data sets of wild-type and mutant 

aequorin with calcium, lanthanum and lead.  Whereas the ascent from zero to the peak 

value is the same amongst the data set, the luminescence decay differs with aequorin 

type (wild type or mutant), ion type and ion concentration and were fitted to a model of 

exponential decay in Section 8.3.4.1.   

Glow-type data were processed in Section 8.3.4.2 on the basis of progression of 

the bioluminescence reaction within the time course of the experiment.  Due to the 

combination of flash- and glow-type luminescence present in the cadmium-triggered 

curves, neither method was deemed suitable. 

8.3.4.1 Flash-type luminescence:  Model of double exponential decay 

The decay luminescence of wild-type and mutant aequorin with each of calcium, 

lanthanum and lead (flash-type luminescence curves) was fitted with the double 

exponential decay model proposed by Tricoire and co-workers (2006) and introduced in 

Section 8.1.5.2.   

Time constants (τ) express of the duration of a phenomenon whereas kinetic 

constants – the inverse of time constants (k) – express the speed of a phenomenon.  

High values of τ indicate a slow luminescence branch and low values indicate a fast 

luminescence branch.  Salient observations will be discussed in regards to the values of 

the time constants and the contribution of the fast and slow component to total light. 

The slow and fast time constants (τS and τF respectively) as well as contribution 

of the slow and fast component to the integral luminescence (ΣS/ΣT and ΣF/ΣT 

respectively) were derived using SigmaPlot as described in Section 8.2.6.2 and plotted 

against a wide range of ion concentrations (Figure 8-12 and Figure 8-13).  Commercial 

aequorin Aqualite® was also tested with calcium in order to allow comparison with 

wild-type aequorin produced in this work and the results of the exponential model 

fitting are presented in Figure 8-14.   
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Tricoire and co-workers (2006) fitted each trace of luminescence decay to a sum 

of two exponentials and found that it gives better description of the data compared to 

fitting a single exponential component (Section 8.2.6.2).  This is something that was 

also observed in this work.   

Kinetics of commercial versus wild-type aequorin 

In order to verify that the His-tag and additional amino acids (resulting from pET 

cloning of Chapter 3) in aequorin did not alter the bioluminescence kinetics, kinetic 

parameters were derived for both wild-type and commercial aequorin (Aqualite®, 

Section 8.2.1).   

Both proteins exhibited the same trend of τF increasing slightly with increasing 

calcium concentrations and τS decreasing with increasing calcium concentrations until 

they both reached a plateau (Figure 8-12 and Figure 8-14).  The ranges of time constants 

for both proteins were approximately the same: 1.2–14 s (τS) for the slow and 0.2–1.3 s 

(τF) for the fast components.  A similar trend is observed in the contribution of the slow 

and fast branch to integral light (ΣS/ΣT and ΣF/ΣT respectively), with the fast branch 

increasing its contribution at higher calcium concentrations.  Since no significant 

differences were observed, the remaining analysis in this section focused on 

comparisons between wild-type and mutant aequorin. 

Effect of mutation on the fast reaction time constants 

Contrasting wild-type to mutant aequorin, no significant differences in the 

numeric values were observed among the ions causing flash luminescence (calcium, 

lanthanum and lead) (Table 8-5).  Examination of Figure 8-12 and Figure 8-13 shows 

that although some variation exists, there is a general trend.  This trend consists of a 

gradual increase of τF from 0.2 s between low and middle ion concentrations, reaching a 

plateau range around 1.2 s at high concentrations of calcium and lanthanum.  The τF 

values for wild type plus lead fluctuated between 0.1 and 1.2 s without exhibiting a 

clear trend.  The saturation of τF values at mid and high calcium concentrations was 

consistent between this work and Tricoire (2006).   

Effect of mutation on the slow reaction time constants 

In contrast to their fast counterparts, the slow time constants τS differ between 

wild-type and mutant aequorin.  As shown in Table 8-6 τS values can increase up to one 
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order of magnitude for the mutant protein.  This is clearly seen in the cases of calcium 

and lead and might possibly apply to lanthanum.  However, due to low sensitivity of 

mutant aequorin to lanthanum, the data set available for decay fitting was too limited 

(Figure 8-12 and Figure 8-13) and data were fitted at only two lanthanum 

concentrations (~10-3 and 10-2 M).  At these lanthanum concentrations time constants 

for wild type and mutant were comparable. 

The curves depicting τS follow a similar trend across different ions and type of 

protein (wild type or mutant) used.  Specifically, all curves show a slow smooth 

reduction on the value of τS with increasing metal ion concentration, which is consistent 

with the notion that by increasing ion concentrations one should expect to see faster 

kinetics.  This trend is also consistent with previously published work on wild-type 

aequorin and different variants with calcium.  

Wild type: comparison between different ions 

Contrasting the behaviour of wild-type aequorin in the presence of calcium and 

lanthanum where the branches of τS and τF tend to converge, in lead the slow and the 

fast branches move in parallel to each other (Figure 8-12, Table 8-6).  The slow time 

constants of wild type plus lead are lower (faster kinetics) than those triggered by 

calcium and lanthanum, while the fast time constants are in the same range.  However, 

the contribution of the fast branch to the total light (ΣF/ΣT) as well as the actual yields of 

light produced with lead were much less than their calcium and lanthanum counterparts 

during the time course of the experiment, which suggests reduced efficiency in light 

production.  The actual light yield comparisons were derived from the raw data used for 

the luminescence curves (Supplementary Material) and summarised in the bar chart of 

overall yield comparisons (Section 8.3.3).  Such high contibution of the slow reaction 

branch is not a desirable feature for a biosensor envisaged to capture fast metal ion 

fluctuations at real time. 

Mutant aequorin versus different ions 

In this case both the lanthanum and lead systems exhibit faster kinetics (both 

slow and fast branch) than the calcium system (Figure 8-13).  This is useful in that it 

can promote the development of a biosensor which shows a specific fast response for 

these metals.  However it should be noted that high concentrations of lead result in 
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inhibition (refer to concentration-response curves for lead in Figure 8-8, Figure 8-9 and 

Section 8.3.3). 

Fast and slow rate contributions to bioluminescence 

The most important and consistent observation regarding the contibution of the 

fast and slow branches to total light produced is that the contribution of the slow 

reaction is dominant in mutant aequorin, reaching approximately 99% for all three ions 

(Figure 8-12 and Figure 8-13).  One way to read this is that the fast branch is essentially 

blocked by the mutations. 

Extracting the fast and slow components of bioluminescence as well as 

integrating to calculate photon yield for each component is a noisy process.  When the 

time constants tend to converge to values of the same order of magnitude, the pre-

exponential components can vary significantly, as expressed by high error bars in some 

graphs.  Computationally, the slow component is expected to produce more light since 

light production persists for a longer time interval, which is reflected in the results.  The 

calculation of ΣS/ΣT and ΣF/ΣT takes into account both the time constants and the pre-

exponential terms of the fittings (Section 8.2.6.2).  Due to the nature of the calculation 

of ΣS/ΣT and ΣF/ΣT, (ΣS/ΣT + ΣF/ΣT =100%) the branches of these components are mirror 

images of each other on the plots.  In terms of contributions to total light, it is not easy 

to compare with previously published work (Tricoire et al., 2006) since the authors 

plotted ΣS and ΣF normalised by the maximum point in their curves and not by the total 

ΣT for both curves.   

Following the assumptions that the fast branch of the reaction is blocked by the 

mutations (while the slow path remains almost intact), it is reasonable to assume that the 

two branches operate independently.  
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Figure 8-12  Decay kinetics of wild-type aequorin.  Left:  slow and fast decay time 
constants (τS and τF respectively) plotted versus ion concentration (calcium, lanthanum 
and lead).  Right:  Contribution of the slow (ΣS/ΣT) and fast (ΣF/ΣT) light integrals to 
total light versus ion concentration.  Error bars are standard error of the mean. 



- 285 - 

 

 

 

Figure 8-13 Decay kinetics of mutant Asn28Cys/Ser32His aequorin variant.  Left:  slow 
and fast decay time constants (τS and τF respectively) plotted against ion concentration 
(calcium, lanthanum and lead).  Right:  Contribution of the slow (ΣS/ΣT) and fast (ΣF/ΣT) 
light integrals to total light against ion concentration.  Error bars are standard error of 
the mean. 
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Figure 8-14  Decay kinetics of commercial aequorin AquaLite®.  Left:  slow and fast 
decay time constants (τS and τF respectively) plotted against calcium concentration.  
Right:  Contribution of the slow (ΣS/ΣT) and fast (ΣF/ΣT) light integrals to total light 
against calcium concentration. 

Table 8-5  Fast time constant (τF) ranges for flash-type curves 
 AquaLite® Wild-type aequorin mutant aequorin 

Calcium 0.17–1.3  0.4–1.2 s 0.19–1.6 s 

Lanthanum n.a. 0.15–1.13 s 0.3–1.3 s 

Lead n.a. 0.07–0.66 s 0.07–0.78 s 

 

Table 8-6  Slow time constant (τS) ranges for flash-type curves 
 AquaLite® wild-type aequorin mutant aequorin 

Calcium 1.22–14.3 2.09–12 s 14.7–48.7 s 

Lanthanum n.a. 1.5–56.5 s 5.5–5.7 s *  

Lead n.a. 2.9–7.6 s 4.2–31.4 s 

*limited dataset for mutant plus lanthanum (lanthanum concentrations 10-3–10-2 M) 
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8.3.4.2 Glow-type luminescence kinetics 

In the previous section flash-type reactions were dissected in two exponential 

components for the light decay.  The very rapid ascend of the luminescence curves was 

not analysed.  In the case of glow-type luminescence triggered by the metals zinc, 

copper and cobalt, the double exponential decay model was not applicable.  The 

ascending and decay part of luminescence would require a far more intricate model that 

is beyond the scope of this work.   

This section looks at the overall kinetics of the reaction.  A simple metric, 

P15s/Max, was devised as an appropriate measure of the decay rate of the glow curves 

during the experiment duration of 15 s (Section 8.2.6.3).  High values of P15s/Max 

indicate that at 15 s the bioluminescence reaction is almost complete and therefore 

P15s/Max can be used as an indirect measure of the speed of the bioluminescence reaction.  

Values for P15s/Max were plotted for each ion for wild type and mutant in Figure 8-15.  

Table 8-7 summarises the reaction progress metric P15s/Max for all the glow-type 

experiments. 

Out of the three metals examined, zinc was found to trigger the slowest kinetics.  

The mutant plus zinc system was faster than the wild type plus zinc over the range of 

concentrations studied.  The same applies to copper at all concentrations with the 

exception of the highest concentration of 10-2 M where P15s/Max for wild type and mutant 

converged.   

In contrast to zinc and copper, the mutations did not affect the rate of 

bioluminescence for cobalt.  This difference can be attributed to the nature of the 

mutations (substitutions of Asp and Ser by His and Cys respectively) which in theory is 

conducive to enhance binding of zinc and copper (Section 1.4, Section 5.6).   
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Figure 8-15  Metric of reaction progress P15s/Max for glow-type curves.  Reaction 
progress of wild-type and mutant aequorin versus concentration of each of zinc, copper 
and cobalt.   
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Table 8-7  Ranges of P15/Max for glow-type curves.  P15/Max is a dimensionless number. 
Metal Wild-type aequorin Mutant aequorin 

Zinc 0.17–0.28 0.36–0.47 

Copper 0.28–0.82 0.46–0.82 

Cobalt 0.24–0.68 0.26–0.59 

 

8.3.5 Double ion experiments: wild type plus Zn2+ and Ca2+ 

A potentially promising result of increased sensitivity of mutant aequorin 

towards zinc (Section 8.3.2) inspired a new experiment where aequorin was injected 

with a combination of zinc and calcium.   

In the experiments described thus far, each of wild type or mutant was only 

mixed with one type of metal ion.  Mutant Asn28Cys/Ser32His was designed to provide 

a more favourable environment for zinc or copper binding but the mutations were in 

only one out of the three calcium-binding loops.  The remaining (native) EF-hands 

however retain their affinity for calcium and will still require calcium for their 

successful contribution to luminescence.  In this light, no single ion could alone evoke 

the highest possible result, as inevitably one or more EF-hands would be lacking their 

preferred activator ion.  

The premise of this experimental design was that the loop of the mutated EF-

hand (EF-I) can be populated by zinc whist the remaining intact calcium-binding loops 

of EF-III and EF-IV can be populated by their native activator, calcium.  The double ion 

experiment setup is described in Section 8.2.5.  In summary, aequorin was mixed with 

zinc at a range of concentrations.  After a few seconds the mix was enhanced with 

sufficient amount of calcium to complete the luminescence reaction.  This amount was 

determined from the concentration-response curves of wild-type and mutant plus 

calcium in Section 8.3.2. 

The two metal ions were introduced at separate times in order to allow 

monitoring of the zinc effect before addition of calcium that was likely to occupy the 

binding sites (and exclude zinc from binding) from the beginning of the experiment.  An 
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additional reason arose from results of previous experiments that showed that light yield 

produced by zinc binding was very low compared to calcium.  Mixing aequorin and 

zinc first allowed recording of zinc-induced luminescence that would be masked by the 

intensity of calcium-activated luminescence. 

If increased selectivity for zinc has been successfully introduced in EF-I of the 

mutant, then by providing both zinc and calcium EF-I would be primed with zinc and 

EF-III and EF-IV would be primed with calcium.  Zinc and calcium in combination 

should then trigger a higher luminescence yield in the mutant than calcium alone, and 

certainly higher than zinc alone.   

Both assumptions were found to be true.  Figure 8-16 shows that in wild type, 

calcium alone triggers the same luminescence yield as calcium plus low concentrations 

of zinc (~10-14 M).  At increasing concentrations of zinc the light yield decreases, 

possibly following a sigmoidal function with negative slope.  These findings suggest 

that zinc does not contribute in the activation of any EF-hand at low concentrations and 

that in the presence of the abundant activator calcium, zinc cannot compete for the 

binding sites.  As higher concentration of zinc is added, zinc competes with calcium for 

at least one binding site and at ever increasing concentrations it blocks calcium’s access 

to the calcium-binding loops.  Previous work in Section 8.3.2, Figure 8-8, showed that 

the concentration-response curves of zinc are bell-shaped with a maximum at 10-6 M.  A 

generic detrimental effect on aequorin at higher concentrations was assumed.   

In the mutant, the shape of the concentration-response curve of the double ion 

experiment is different (Figure 8-17).  Calcium alone is not performing as highly as 

calcium plus a small addition of zinc.  This observation may suggest that traces of zinc 

incurred a positive effect in the mutant that calcium alone cannot offer.  The reason for 

this change is likely to be the increase of selectivity of EF-I towards zinc and decrease 

towards calcium in mutant Asn28Cys/Ser32His.  These statements make sense 

considering the types of mutations introduced in EF-I and discussed in Chapters 5 and 

6. 

The shape of light versus time plot (Figure 8-16 A and Figure 8-17 A) though 

suggests that despite the positive shift toward zinc selectivity, the mechanism of 

bioluminescence was overall impaired, as the yield was significantly reduced and the 

characteristic sharp peak of flash luminescence of wild type was blunted in the mutant 

experiment when calcium was added.  A possible explanation is that the type of 
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mutation introduced was dispurptive to the propagation of signal between ion binding 

and emission of light. 

In many ways this experiment is more practical and more meaningful that the 

addition of single ions to aequorin, due to the importance of the cooperative function of 

the EF-hands in aequorin.  Future screening for incremental shifts of selectivity toward 

new ions could use a mix of calcium and the new ion, rather than the new ion alone.   

The main finding of this section was that in wild type 100% of maximum 

activity was achieved by using calcium alone whereas in the mutant 100% of maximum 

activity required the addition of a small amount of zinc ions.  The conclusion from this 

section is that the mutations engineered in Asn28Cys/Ser32His resulted in successful 

localised binding of zinc in EF-I with only partial activation of aequorin 

bioluminescence. 
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Figure 8-16  Wild type triggered by zinc and calcium.  40 µL of  zinc were injected into 
40 µL of  purified wild type aequorin solution at 0.3 s at a wide range of concentrations, 
followed by injection of 40 µL of  50 µM calcium at 10 s (16.7 µM final calcium 
concentration in the well).  Top:  Typical trace of luminescence versus time from the 
resulting data set.  The y-axis was set to logarithmic.  In a linear scale the effect of zinc 
would be barely visible due to the very low light yield produced compared to the light 
produced upon addition of calcium in wild-type aequorin.  Bottom:  Concentration-
response curve comprised from the Peak value of all the luminescence curves of the 
data set.  The same trend was observed when plotting the Sum of the light readings for 
the duration of the experiment.  A similar curve was produced when injecting 10 mM 
calcium (fixed) at 10 s (3.33 mM final calcium concentration in the well). 
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Variable initial [Zn2+] + fixed [Ca2+] 
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Figure 8-17  Mutant Asn28Cys/Ser32His aequorin triggered by zinc and calcium.  
40 µL of zinc were injected into 40 µL of purified wild type aequorin solution at 0.3 s at 
a wide range of concentrations, followed by injection of 40 µL of 50 µM calcium at 10 s 
(16.7 µM final calcium concentration in the well).  Top:  Typical trace of luminescence 
versus time from the resulting data set.  In contrast with Figure 8-16 the y-axis was set 
to linear scale, as the effect of zinc was comparable to that of calcium in mutant 
aequorin.  Bottom:  Concentration-response curve comprised from the Peak value of all 
the luminescence curves of the data set.  The same trend was observed when plotting the 
Sum of the light readings for the duration of the experiment.  A similar curve was 
produced when injecting 10 mM calcium (fixed) at 10 s (3.33 mM final calcium 
concentration in the well).  
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8.3.6 Correlation of ion size and shape of luminescence curve 

In this section experimental findings of this chapter - light yield, shape of 

luminescence, shape of concentration-response curves, sensitivity (EC50) - are discussed 

in relation with structural information drawn from Chapters 1 and 5.   

In Figure 8-18 the shape of the luminescence curves of aequorin was plotted 

against the coordination numbers of ions within metal-ligand complexes and its 

potential for interatomic overlap between the metal ion and the coordinating ligands in 

the loop of EF-I of aequorin.  The metric of interatomic overlap (D-r-R) was introduced 

in Section 5.4.2 as the interatomic distance (D) between calcium and each of the oxygen 

ligands in the pentagonal bipyramidal coordination (PDB ID: 1SL8) subtracted by the 

atomic radii of each pair of atoms, where r is the radius of the metal ion and R is the 

radius of the coordinating oxygen atom.  The overlap calculations were obtained by 

“fixing” each ion in the position of calcium in the crystallographic structure of calcium-

bound apoaequorin (PDB ID: 1SL8).  This positioning of the different ions is a 

simplistic assumption in order to study their potential effect within the local 

environment of the EF-I ion binding loop.  With the reasonable assumption that the 

seven-coordinate binding of calcium is optimum for triggering aequorin luminescence, 

ions thay are able to bind in a similar manner should also be effective. 

In Figure 8-18 MIN<0 (green bar) means that there is interatomic overlap 

between at least one metal-ligand (M–L) pair.  MAX<0 (blue bar) indicates that 

interatomic overlap occurs between all of the metal and each of the ligands in the 

crystallographic structure.  SUM (red bar) is the sum of the overlap between the metal 

ion and every coordinating ligand within the loop of EF-I. 

In calcium, lanthanum, cadmium and lead there is overlap in every metal-ligand 

combination, as denoted by both minimum and maximum values being negative.  

Cobalt would appear to be an exception as it produces higher yields than cadmium.  

One would expect all ions with D-r-R>0 to achieve lower yields than ions with D-r-

R<0. However cobalt triggers more light than cadmium and triggers luminescence 

curves that are overall sharper than those of zinc and copper.  Despite its small size, 

cobalt stands out amongst equally small metals and indeed yields higher luminescence 

than the larger cadmium. 
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In Figure 8-19 the metric of sensitivity EC50 of wild type to each metal ion was 

plotted against the sharpness of the luminescence curves, the ionic size and the metric of 

interatomic overlap D-r-R.   

Sharpness of luminescence reflected in the flash-type curves is associated with 

efficiency of the reaction.  However the cobalt-triggered glow-type luminescence was 

the sharpest (and therefore fastest) compared to that of zinc and copper (Section 8.3.1). 

It was not possible to derive specific EC50 values for every combination of 

aequorin type and metal ion and a range was derived instead (Table 8-3).  A causal 

correlation between sensitivity and ionic size was not derived:  native activator calcium 

has a lower sensitivity (higher values of EC50) than its most successful replacement 

lanthanum but similar to that of cadmium which is a lesser performer than lanthanum.  

The range of potential EC50 values for the poorer performers zinc, copper and cobalt 

makes aequorin more sensitive to them than calcium.  For a bioreporter, the sensitivity 

of the molecule should lie within a relevant concentration range, i.e. where fluctuations 

of the measured target molecule (metal ions in this case) occur and are of interest.  If 

studying a new metal ion that is present in very low concentrations (e.g. lower than 

those of calcium), then the envisaged biosensor must be able to detect these 

concentrations and their fluctuations if applicable, hence the EC50 value must be lower 

than that of calcium. 

What differentiates cobalt from zinc and copper is its ability to bind in octahedral 

coordination geometry, as is calcium, whereas zinc is mostly found in tetrahedral 

coordination and copper in square pyramidal and square planar coordinations in 

metalloproteins (Section 1.4, Table 1-7).  In coordination geometries that include a 

higher number of participating atoms, higher radii allow atoms to interact from a 

distance that is still not sterically prohibitive.  In aequorin calcium coordinates with the 

oxygen of a water molecule additionally to the six coordinating atoms of the EF-hand 

loop, thus making its coordination geometry pentagonal bipyramidal.  Geometry of 

binding is of great importance in achieving an efficient bioluminescence reaction.  The 

higher coordination number a new ion can bind in, the easier it will fit the native 

binding sites of aequorin. 



- 296 - 

- flash-type

- combination

- glow-type

flash

combination

flashflash

combination

glowglowglowglow

-3

-2

-1

0

1

2

3

Zn  

(IV)

Co 

(VI)

Cu 

(VI)

Zn  

(VI)

Cd  

(VI)

La  

(VI)

Ca  

(VII)

Cd  

(VII)

Pb 

(VI)

ions by ascending radii at various coordination numbers

D
-r

-R
 (

Å
)

MIN

MAX

SUM

type of luminescence

 

Figure 8-18  Is radii overlap associated with sharpness of luminescence curves?  For 
some ions, like Zn2+ and Cd2+, more than one possible radius is plotted due to strong 
preference for coordinations with lower coordination number (CN) in metal binding 
sites.  The asterisk at the glow classification for cobalt luminescence denotes the relative 
sharpness of the cobalt curves compared to the other glow-type curves of zinc and 
copper.  Coordination numbers that were considered are shown in parentheses.   
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Figure 8-19  Type of luminescence, metal ion sensitivity and interatomic distance in the 
EF-I loop of wild-type aequorin.  Long blue bars indicate a range of possible logEC50, 
as the actual value could not be estimated from the respective concentration-response 
graphs.  LogEC50 values for wild type plus metal ions were taken from Table 8-3.  As in 
Figure 8-18, more than one possible ionic radius (and hence coordination numbers) was 
considered.  Possible coordination numbers (CN) are shown in parenthesis.   
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8.4 Conclusion 

This chapter aims to describe the effect of the seven metal ions – calcium, 

lanthanum, cadmium, zinc, copper, cobalt and lead - on aequorin and its mutant variant 

Asn28Cys/Ser32His.  It does not aspire to construct a detailed mechanistic description 

of the processes involved.  Different experiments and data analysis would be required 

for this purpose. 

The experimental setup measured output of luminescence versus time (Section 

8.2.8).  The light response itself is the result of a complex set of events starting from ion 

binding and resulting in subtle conformational changes that lead to the destabilisation of 

the hydroperoxy-coelenterazine in the centre of the protein and concomitant production 

of light (Section 5.1 and 5.6.2).  Interpretation regarding the specific effect of the 

mutations or different metals on the function of the molecule is difficult, especially in 

absence of structural and binding data (Section 8.2.8).  Therefore general conclusions 

were drawn in this work. 

Ions as partial activators 

All ions other than the native activator calcium, act as partial activators for 

aequorin, each to a different extent.  Significant loss of luminescence was observed in 

mutant Asn28Cys/Ser32His with all metal and in the wild type with metals other than 

calcium and lanthanum.  The levels of activation range from <1% to 70% of native 

activity (Section 8.3.3).  Lanthanum was a successful substitute for calcium, with 

relatively high yields of luminescence and concentration-response curves being the 

same shape as that of calcium.  Low yields triggered by other ions suggest that 

cooperativity links are broken and that some of the ions act as inhibitors at higher 

concentrations (Section 8.3.2).   

In this chapter comparisons were made at each ion’s optimal concentration in 

order to assess the extent of activation/inactivation under the conditions tested.  An 

alternative way to conduct comparisons would be to focus at specific ranges of metal 

ion concentrations, as only certain ranges of metal concentration are relevant to 

different biological systems or environmental samples. This type of comparison would 

be essential when considering the suitability of a metal ion biosensor in a relevant 

environment.  
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Size, coordination of metal binding and efficiency of reaction 

The traces of luminescence versus time fell under two major categories (Table 

8-2).  Traces of the first category – which is also the case of the “classic” aequorin 

bioluminescence with native activator calcium – are characterised by a sharp increase in 

luminescence producing a distinct peak followed by a fast decay.  This type of 

luminescence was termed “flash-type” luminescence.  The second major category is 

characterised by a much smoother ascent, substitution of the distinct peak with a wide 

maximum and followed by a slow descent.  This behaviour was termed “glow-type” 

luminescence.   

Flash-type luminescence is associated with higher yields as manifestation of an 

efficient overall process of ion binding and production of light.  Radii overlap is 

necessary for flash-type and higher yields.  Analysis took into account the preferred 

coordination geometries of these ions, as well as their ionic size.  The larger ions 

calcium, lanthanum, cadmium and lead produce flash-type luminescence, whereas the 

smaller ions trigger glow-type luminescence.  This reflects the size selectivity of the 

EF-hand.  Size selectivity would be a major consideration in planning future mutational 

strategies.   

Both the requirement of the protein environment for effective binding and the 

propensity of metals to bind at specific geometries will dictate the performance of 

aequorin variants with new ions.  It will be very challenging to completely redesign the 

EF-hand loop whilst keeping the intrinsic network of interactions within the protein 

intact.  This network is necessary for the appropriate conformational changes to be 

propagated to the centre of the molecule for effective bioluminescence production. 

In terms of the effect of ions on EC50 and yield, it is not possible to uncouple the 

causal effect of binding in the EF-hands or at other sites of the protein causing 

inhibition.   

A mutant with positive response to zinc 

Experimental results showed that EF-I was successfully altered to develop a 

higher affinity towards zinc as well as to contribute to a mutant-specific improvement in 

luminescence production compared to wild type.  In the double ion experiment (Section 

8.3.5) wild-type and mutant aequorin were exposed to a combination of zinc and 
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calcium;  this approach allowed zinc the opportunity to activate the mutated EF-hand 

(EF-I) and calcium to activate the remaining native hands.   

The mutant achieved higher activity with a specific combination of zinc and 

calcium than with either zinc alone or calcium alone.  However it was acknowledged 

that this was still low level activity and that although the mutation caused a successful 

increase of selectivity towards zinc, it also caused impairement of the bioluminescence 

reaction mechanism.  

Sensitivity to metal ions 

In addition to studying the time course of the luminescence reaction, the 

response of aequorin to several concentrations of each metal ion was studied.  This 

process resulted in metrics for the sensitivity of aequorin (wild-type and mutant) to each 

ion.  Concentration-response curves were drawn to study the effect of a wide range of 

concentrations of each ion on the proteins.   

In terms of the shape of concentration-response curves, two main groups emerge: 

sigmoidal and bell-shaped.  From the dataset in this work, an overall association 

emerges between shape of luminescence and shape of concentration-response curves.  

Specifically, the datasets that agree with the flash-type luminescence produce sigmoidal 

concentration-response curves and those that produce glow-type luminescence produce 

bell-shaped concentration-response curves.  At first glance, lead and cobalt appeared to 

be exceptions.  Lead triggers flash-type luminescence but its concentration-response 

behaviour is bell-shaped both for wild-type and mutant aequorin.  However this could 

be due to non-specific enzymatic inhibition (Section 8.3.2), lack of buffering in the lead 

nitrate solutions (Section 8.2.3) and consequent loss of aequorin stability at low pH 

conditions (Section 1.3.3).  Cobalt produced sigmoidal concentration-response curve.  

The luminescence was classified as glow-type but the luminescence curves triggered by 

cobalt were sharper than those triggered by zinc and copper.   

Despite the lack of structural data, a reasonable assumption is that new ions bind 

to the EF-hands but fail to exert the full scale effect of the native activator calcium. 

Kinetics of the reactions 

For wild type, the results for the flash-type luminescence were consistent with 

previous work on the independence of the rate of ascent eluding to first order kinetics 
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and the dependence of descend (decay) of the luminescence curves on calcium 

concentrations (Hastings et al., 1969).   

For the flash luminescence reactions a previously published double exponential 

decay model (Sections 8.1.5.2 and 8.3.4.1) was applied.  The model proposed the 

existence of two branches of luminescence – one fast and one slow.  Time constants and 

estimates of contribution to total light were derived for both the postulated slow and fast 

branch of the reaction.  The results were consistent with published literature in terms of 

the values of the time constants for wild type and calcium.   

The combinations of (1) wild-type with metals other than calcium or lanthanum 

and (2) mutant aequorin with every metal tested, result in the slow branch of the 

reaction becoming even slower (increase of time constant = slower reaction) and in 

increase of the slow branch’s contribution to the total light produced.  Conversely, the 

fast branch of the reaction contributed less than 1% of total light in these cases. 

The glow-type dataset (cobalt, zinc, copper) was analysed using a simple metric 

of reaction progression for the duration of the experiments (Section 8.2.6.3 and 8.3.4.2).  

It was found that the kinetics of zinc and copper were faster in the mutant than the wild 

type, whereas in cobalt no differences were observed.  This suggests that from a kinetics 

point of view, the mutant responded to the presence of zinc and copper more positively 

than wild-type aequorin did.  Cadmium did not conform with the standard models 

(flash-type or glow-type) in that its flash-type curve was followed by a distinct glow-

type shape and as a result its kinetic behaviour was left for future analysis.   

The study of mutant Asn28Cys/Ser32His in comparison to wild-type aequorin 

yielded some step improvements on certain aspects and allowed insight on some basic 

requirements and consequences of redesigning ion selectivity in the EF-hands of 

aequorin.  Additionally, Asn28Cys/Ser32His included mutations in only one EF-hand 

out of the three of aequorin.  Further work would be needed to approach a mutant with 

shifted selectivity toward new ions that will retain high luminescence yields. 
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9 Epilogue 

9.1 Overall summary of this project 

Aequorin is a bioluminescent photoprotein that emits a flash of blue light upon 

binding of calcium ions.  Due to this property, along with its non-invasive nature and its 

response to calcium in a biologically relevant dynamic range, aequorin has been used as 

a real-time intracellular bioreporter for more than forty years.  The active protein 

comprises of a polypeptide chain (apoaequorin) that non-covalently stabilises a 

chromophore (coelenterazine) in an intermediate oxidative state (hydroperoxy-

coelenterazine) within the polypeptide’s hydrophobic core.  Coelenterazine is the source 

of bioluminescence; the decarboxylation of hydroperoxy-coelenterazine leads to release 

of energy.  Aequorin has three highly conserved calcium-binding sites (EF-hand loops) 

that are exposed to the solvent and bind calcium ions with positive cooperativity.  The 

binding of calcium results in local and global conformational changes that ultimately 

lead to the decarboxylation of the hydroperoxy-coelenterazine. 

In the early days of the protein’s discovery it was noted that aequorin is 

potentially responsive to other cations; however, aequorin was highly selective toward 

calcium at biologically relevant concentrations and produced very low light yield in the 

presence of most other ions.  Members of the lanthanide group (e.g. lanthanum, 

terbium) constituted an exception, as they were found to be good substitutes for calcium 

in aequorin bioluminescence.  This potential promiscuity of aequorin towards other 

metal ions was not pursued further; researchers might have been discouraged by the 

significantly low light yields originally reported.   

In this work, the molecule of aequorin was used as a template in a strategy of 

rational mutations with the goal of creating a novel metal ion bioreporter.  The 

envisaged molecule would have high affinity towards new metals and 

reduced/abolished affinity for calcium.  Mutations were engineered with a bias for zinc 

and copper binding, as these metals are particularly interesting in the study of 

neurological diseases.  

The structure and function of the protein was discussed in detail through 

compilation of theoretical analysis and published literature (Chapters 1 and 5).  Previous 
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mutational work on aequorin and other calcium-binding proteins was used as a guide to 

make informed choices on a mutational strategy (Chapter 5).  A library of forty eight 

aequorin mutants was designed in order to be tested against seven metal ions as 

potential activators of bioluminescence: calcium, lanthanum, zinc, copper, cadmium, 

cobalt and lead.  The mutational approach consisted of: 

(1)  replacing the calcium-coordinating residues of aequorin with amino acids 

that are known to bind zinc and copper ions (histidine and cysteine).  These residues are 

exotic to the specific positions in the EF-hands of aequorin, all other photoproteins or 

any other member of the EF-hand superfamily.  Substitutions were made either one by 

one or in pairs of two per aequorin molecule.  Mutations of this type had not been 

reported in any previous work.  

(2)  removing functional groups from the calcium-coordinating positions of the 

EF-hand loops by means of alanine replacements. This would indicate whether the 

performance of mutants is due to the loss of the calcium-coordinating side chain 

oxygens (carboxyl- or hydroxyl-) or due to the introduction of sulfur atoms and 

imidazole nitrogens (from cysteine and histidine substitutions respectively).   

(3)  replacing the highly conserved central glycine of the calcium-binding loops 

with arginine.  The central glycine does not coordinate calcium but is present in all 

calcium-binding EF-hands and in the entire EF-hand superfamily.  It is assumed to act 

as a “hinge”, allowing the coordinating residues to reach for the calcium ion.  Arginine 

was thought to reduce the loop’s flexibility and hence impair binding of calcium and 

cooperative action between the EF-hands. 

Each of the three binding sites carries six coordinating residues.  It was 

impossible to exhaust all possibilities of the desired substitutions and their combinations 

within the duration of this project.  Most of the mutational work was prioritised for the 

loop of EF-I, followed by EF-III, with the least number of mutations designed for the 

loop of EF-IV.  This “ranking” was based on published work on the potential 

importance of the three EF-hands in aequorin activity.  A random or random-rational 

approach was reserved for a later stage, once the study of specific mutations would be 

conducted. 

The gene encoding for apoaequorin was cloned into an expression system 

(Chapter 3) in order to facilitate expression and screening of the mutant library.  The 

expression vector would incorporate the following features:  (1) promoter site and 

ribosome-binding site (RBS) for transcription and translation;  (2) signal peptide 
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sequence for localisation of the expressed apoaequorin in the periplasmic space of the 

cell, e.g. pelB leader sequence;  (3) 6×His-tag encoding sequence for the option of metal 

affinity purification;  (4) unique restriction sites flanking the apoaequorin gene. 

Following the cloning step a microplate based high-throughput screening (HTS) 

process was developed to include the following steps (Chapter 4):  (1) microwell 

cultures (inoculation and induction);  (2) charging of active protein by incubation with 

coelenterazine;  (3) copies of a 96-well microplate library;  (4) high-throughput 

screening luminescence activity assay 

A library of forty eight rational aequorin variants was created using site-directed 

mutagenesis.  The library was screened using the HTS method developed and the results 

were analysed based on two metrics:  (1) metric of the shift of ion selectivity (D) and 

(2) metric of % activity compared to wild type.  The results were analysed in relation to 

the type of mutation, its position in the protein (EF-hand and position within the EF-

hand) and type of metal ion tested. 

A number of mutants stood out for their shift of selectivity towards new ions.  

Due to time constraints only one candidate (Asn28Cys/Ser32His) was selected for 

further study.  This mutant carried two substitutions in the loop of EF-I and in the HTS 

activity assay exhibited high shift of preference toward zinc.   

In order to study the bioluminescence reaction without the contaminants present 

in the crude mix (diluted cell culture) of the HTS library, wild-type apoaequorin and 

Asn28Cys/Ser32His were produced and purified at lab scale (Chapter 7). 

The purified wild type and mutant were tested against a wide range of 

concentrations for each of the seven metal ions (Chapter 8).  The outputs of the analysis 

included:  (1) shape of luminescence versus time traces (flash- or glow-type);  

(2)  determination of ion effect (activation or inhibition) through concentration-response 

curves;  (3) sensitivity of the molecule to each ion (determination of EC50);  (4) kinetics 

of the reactions in both mutant and wild type triggered by the different metals;  

(5)  comparison of all ions on their ability to activate wild-type and mutant aequorin and 

(6)  discussion of the above findings in association with the size of metal ions and 

structural characteristics of the protein. 

Double ion experiments were also performed; in these experiments the protein 

sample was injected with a combination of zinc and calcium ions.  In principle, if 

affinity for zinc increased, this experiment would allow zinc to populate – and 
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potentially “activate” – the mutated EF-hand, whilst calcium ions would populate the 

remaining native EF-hands.   

9.2 Overall conclusions 

9.2.1 Cloning of apoaequorin gene 

Two expression vectors were successfully created: pETAQ is a pET26b 

derivative and TOPAQ is a pCR-Blunt II-TOPO® derivative, both containing the 

apoaequorin cDNA, the pelB signal peptide sequence, unique restriction sites flanking 

the gene and 6xHis-tag fusion downstream of the T7 promoter.  The pET cloning 

approach used predominantly restriction digest and ligation steps whereas for the 

TOPO® route the desired features were added by sequential PCR amplifications.  The 

TOPO® route was pursued as a mitigation strategy to the pET route.  As expected, the 

pET based vector was the higher expresser (verified in Chapter 4) and was used for all 

subsequent work.   

9.2.2 High-throughput screening process 

A practical, automated microplate-based process was successfully developed and 

optimised to cover every stage of the library creation and screening starting from 

colonies of transformants:  (1) cell culture, inoculation and induction;  (2) charging of 

active protein variants in microplates;  (3) replicate copies of the library and (4) 

bioluminescence activity screen.  The method was originally developed using wild-type 

aequorin and can be used with large libraries (using automated colony picking) or 

smaller rational mutation libraries (using manual picking).  The method utilised cell 

culture suspension (not purified protein) which still allowed for high activity signals and 

zero background noise.  It served as an initial “crude” screen of the entire library of 

mutants. 
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9.2.3 Mutant library screening 

In the majority of mutants studied, shift of selectivity towards new ions (and 

away from calcium) increases at the cost of activity (Chapter 6).  The vast majority of 

mutations lead to significant loss of activity (50–100% loss) compared to wild type.  

This observation was common for all ions tested.  In contrast to metric of retained 

activity (metric C) which is fairly uniform across the library, shift of selectivity (metric 

D) is markedly different in the EF-hands studied.  Some EF-I mutations exhibit high 

values of D whereas every mutant in EF-III exhibited very low values of the same 

metric.  Aequorin was able to function with only one intact EF-hand, at low but 

detectable levels of activity.   

EF-I may be the driver of aequorin selectivity.  EF-III does not seem to be 

endowed with ion selectivity properties in aequorin.  Indeed, results from impaired EF-

hand mutants (central Gly→Arg) suggest that loop flexibility is least required in EF-III.  

The same set of results suggests that EF-IV has significant potential as determinant of 

ion selectivity.  These experimental findings agree with previous structural observations 

(Chapter 5) that EF-III is already preformed to bind calcium and the helices attached to 

EF-I and EF-IV are potentially very important in the stability/destabilisation of 

hydroperoxy-coelenterazine through hydrogen bond interactions. 

Loss of even a single conserved calcium-coordinating side chain resulted in 

dramatic loss of activity.  This became evident from the alanine substitutions as well as 

from the histidine and cysteine substitutions.  The amino acids marking the entry and 

exit of the EF-hand loops (100% conserved) were the least tolerant to mutations.  

Within EF-I, the positions most important for modulation of ion selectivity are 5 and 12.  

As expected, non-coordinating or coordinating but non-conserved residues were more 

tolerant to mutations; such residues could be mutated to fine-tune ion selectivity with 

little cost on activity levels.   

The mutants that stood out for further work carried histidine or cysteine 

substitutions in position 5 of the EF-I loop.  Asn28Cys/Ser32His exhibited higher 

selectivity for zinc and lead, but not copper; Asn28His/Glu35Cys exhibited higher 

selectivity for lead; Asn28Cys/Glu35His exhibited higher selectivity for copper and 

lead.  One variant (Ala123Cys) exhibited improved lanthanum activity compared to 

calcium; however an EF-hand-like peptide with improved lanthanum activity had 
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already been reported and was not considered to be a novel outcome to pursue in this 

work. 

9.2.4 Purification of aequorin  

Wild-type apoaequorin and its variant Asn28Cys/Ser32His were purified from 

shake flask E. coli cultures using mild extraction conditions:  one-step periplasmic cell 

extraction and incubation with coelenterazine to form active protein, followed by size 

exclusion chromatography.  This approach yielded 0.61 mg of active wild type and 

0.24 mg of active mutant Asn28Cys/Ser32His, corresponding to purified 2.6 mg of wild 

type and 1.04 mg of mutant aequorin per 100 mL of E. coli culture.  The decreased yield 

of mutant monomer compared to wild type is attributed to its solvent-exposed cysteine, 

which likely caused higher order aggregates via intermolecular disulfide bridges.  The 

size exclusion chromatogram of the mutant indicates a larger elution peak at higher 

molecular weights compared to that of wild type.   

9.2.5 Study of purified wild-type aequorin and mutant 

Asn28Cys/Ser32His 

Significant loss of luminescence was observed in all experimental conditions – 

combinations of wild-type and mutant with all metal ions – compared to the activity of 

wild type aequorin with calcium.  All ions other than calcium act as partial activators for 

wild-type aequorin, each to a different extent.  Despite the lack of structural data, a 

reasonable assumption is that new ions bind to the EF-hands but fail to exert the full 

scale effect of the “native” activator.  Confirming previous reports on the wild type, 

lanthanum was a successful substitute for calcium, producing relatively high yields of 

luminescence (~70% compared to the peak of luminescence triggered by calcium) and a 

sigmoidal concentration-response curve, suggesting cooperativity in ion binding.  The 

levels of activation by the other ions were significantly lower (ranging from <1% up to 

40% of native activity) and in some cases produced bell-shaped concentration response 

curves.  This suggests that cooperativity links are broken and that some of the ions act 

as inhibitors at higher concentrations.   
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The most significant outcome was that EF-I was successfully altered to 

contribute to a mutant-specific improvement:  Asn28Cys/Ser32His was able to utilise 

zinc for its bioluminescence reaction when wild type was not.  A combination of zinc 

and calcium produced more light in the mutant variant than calcium alone did.  This 

was not the case in wild type.  On a theoretical basis it is reasonable to claim that the 

mutations in EF-I increased affinity for zinc and decreased affinity for calcium but the 

experimental results also proved that this affinity shift translates into protein function. 

A clear association emerged between the size of the metal ions and the efficiency 

of the bioluminescence reaction as expressed by the yield, the luminescence curves and 

the concentration-response curves.  The features of bioluminescence produced by wild 

type and calcium were set the as benchmark for the most efficient bioluminescence 

function possible.  The traces of luminescence versus time fell under two major 

categories:  (1)  flash-type luminescence, including the “classic” aequorin 

bioluminescence with native activator calcium and known substitute lanthanum and 

(2)  glow-type luminescence.  

The larger ions can interact electrostatically with protein atoms that are located at 

further positions of the EF-hand loop.  They are able to bind in coordination geometries 

of higher numbers, for example in octahedral geometry, which is the closest to the 

pentagonal bipyramidal binding of calcium in aequorin.  Cobalt – a small ion with 

similar size to zinc and copper – triggers sharper luminescence traces than zinc and 

copper and produces higher yields than those triggered by cadmium – a much bigger 

ion.  In databases of protein-metal and inorganic metal complexes, cobalt is shown to 

have a propensity to bind in octahedral coordination geometries.  These results were in 

line with the notion that successful binding is dictated by both the protein environment 

and the metal ion and that coordination geometry is more important than size of the ion 

alone (although size can inform coordination geometry options). 

Analysis of kinetics was based on the shape of the luminescence traces;  flash-

type traces were fitted to exponential decay curves whilst glow-type traces were 

analysed with an ad hoc metric for reaction progression.  In the flash-type sets (aequorin 

with calcium, lanthanum or lead), the contribution of mutant aequorin or of ions other 

than calcium and lanthanum resulted in slower kinetics.  A previously published 

model/assumption of two independent luminescence decay reactions was applied to the 

decay data.  In the glow-type sets (aequorin with cobalt, zinc or copper), the mutation 

seems to have increased the speed of the reaction for zinc and copper but not for cobalt, 
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suggesting that these mutations were a positive step toward a bioreporter for these 

metals.  Cadmium was not analysed in this work due to the shape of its luminescence 

curve (combination of sharp and glow-type) but would be interesting for further study.   

9.3 Future work 

This work produced an experimental platform for expressing and testing 

aequorin mutants in a high-throughput manner;  rational mutagenesis was used to gain 

insight on the effect of key amino acid substitutions.  It also highlighted the complexity 

of the task at hand.  In an oversimplified view, the successful function of aequorin as a 

bioreporter depends on two events overall:  binding of metal ions and propagation of the 

conformational changes from the three EF-hands to the protein core.  Direction for 

future work would involve the following considerations:  (1) a strategy for simplifying 

the problem;  (2) mutational approach;  (3) an alternative protein scaffold;  

(4)  alternative applications of the envisaged molecule. 

9.3.1 Breaking down the problem 

The problem can be broken into distinct projects: one pertaining to ion binding 

affinity, followed by one pertaining to activity.  Short peptides corresponding to the EF-

hand loop can be mutated and used as models for metal binding studies.  In order for 

such peptides to acquire a native-like fold, some alterations (disulfide bonds) will need 

to be incorporated.  It is also expected that the metal affinities between the peptides and 

metal ions will vary when the same motifs are incorporated in the structure of the entire 

aequorin molecule.  However this strategy will facilitate pure binding studies and 

remove the additional complexity of allostery and cooperativity in aequorin.  This 

approach was employed by other researchers in the past and described in Chapter 5.  

The sequences of the successful peptides can then be introduced in the aequorin 

structure or into protein scaffolds other than aequorin (an option also discussed later in 

this Chapter). 
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9.3.2 Mutational strategy  

Size of the binding cavity 

Size selectivity of the metal binding cavity was found to be decisive in 

aequorin’s effective response to metal ions.  In order for the EF-hand loop to 

accommodate smaller ions, a more drastic mutational strategy may examine decreasing 

the size of the loop by removal of amino acids.  In the past the opposite was done by 

addition of a glycine or substitution for a smaller coordinating residue (Glu→Asp) in 

order to effectively increase the size of the loop.  Placing at least one histidine and one 

cysteine as close as possible to the entry and exit of the binding loop could achieve a 

more prominent conformational response as a result of metal binding. 

Shortening the loop may have serious implications in the transmission of signal 

to the core of the protein.  It may also prove to be ineffective, as despite of reduction of 

the loop size, the distance between the two flanking α-helices which mark the entry and 

exit of the loop may not actually decrease sufficiently;  this distance is dictated by the 

remaining protein structure.  Finally, shortening the loop will alter the current pairing of 

the EF-hand loops (EF-I to EF-II and EF-III to EF-IV) and risk disrupting the 

conformational transduction cascade.   

Rational mutations in the binding sites 

The results of the mutant library screening (Chapter 6) showed that removal of 

any calcium-coordinating side chains is detrimental to aequorin’s response to calcium 

and that introduction of at least one histidine or cysteine can bring about a selectivity 

shift toward zinc, copper or lead.  New rational substitutions in the loop would be 

designed based on these initial findings. 

Random-rational mutations in the first coordination shell 

As next step after implementing and screening rational mutations in a shortened 

loop, a random-rational approach could be applied within and in the close vicinity of the 

binding site (e.g. using cassette mutagenesis or MEGAWHOP).  This approach would 

require screening of large mutant libraries.   
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Random-rational mutations in the extended protein structure 

In this work the mutational strategy was based on precise structural knowledge 

of the EF-hands and of coordination preferences of metal ions in proteins (as shown in 

statistical databases).  Mutations targeted the EF-hand loop, which comprises the first 

coordination shell of metal binding.  In future work, additional rounds of random 

mutagenesis will be required in the entirety of the molecule, exploring long range 

interactions for beneficial results in:  (1) the potential for repair of the aequorin activity 

and (2) additional metal selectivity modulation through distant mutations, which has 

been shown to be possible in metalloproteins. 

9.3.3 Repairing aequorin activity 

After altering the affinity of the metal binding sites, the scope of the next stage 

would be to restore the light yield of aequorin with further rounds of random 

mutagenesis.  In this work, the property that was rewarded was the shift of selectivity 

towards new ions and not the absolute yield.  In a screen aiming for repaired activity the 

selection should be based on absolute yields. 

9.3.4 Alternative scaffold 

In order to avoid the complexities of aequorin function and even the requirement 

for addition of coelenterazine, an alternative scaffold can be proposed for a metal ion 

bioreporter.  The proposed chimeric protein would incorporate at least one EF-hand and 

domains of a fluorescent molecule – e.g. variants of the green fluorescent protein (GFP).  

Conformational changes upon ion binding would translate in altering fluorescence 

emission characteristics of the chimera.  This approach is discussed in Chapter 1 and 

Section 1.2.5).  Omitting coelenterazine would remove light and temperature constraints 

in protein stability, as well as the need for introduction of coelenterazine by diffusion or 

microinjection.  It would allow for a bioreporter that can be utilised repeatedly and not 

depleted after one use. 
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9.3.5 Alternative application 

It would also be useful to consider the landscape of other options for a protein 

molecule that selects for specific metals from its environment.  An alternative goal from 

that of a biosensor would be to use a variant of apoaequorin immobilised on a surface 

(without its cofactor coelenterazine), or use another protein with multiple EF-hands as a 

“sponge” for toxic metals in bioremediation projects. 

9.4 Analytics for future work 

The experimental setup used in this work measures luminescence (activity 

assay).  For future work it would be advisable to complement results from the activity 

assay with analytics that provide additional insight into the binding event 

(conformational response to binding of metals) and the metal uptake by the protein. 

Conformational response 

Conformational responses of polypeptides upon ion binding can potentially be 

tracked by monitoring changes in the fluorescence spectra upon titration with metal 

ions.  This is a microplate based, high-throughput and inexpensive method but it 

requires the presence of aromatic amino acids.  If not already present, aromatic residues 

would need to be introduced in the structure at least for the screening stage.  It should 

be noted that any substitutions can affect the function of the peptide under study and 

may be undesirable in the final construct of the functional protein. 

Other methods that have been used to monitor changes in the structure of 

aequorin (or isolated EF-hand peptides) in response to presence of metal ions are 

nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy 

and electrospray mass spectroscopy.  These are all low-throughput options with 

relatively high sample consumption requirements – higher than the contents of a 

microwell – and NMR in particular is the most expensive, least accessible option.  To 

use such methods, interesting candidates would be cherry-picked based on the results of 

high-throughput bioluminescence (activity) and fluorescence (conformational changes) 

screening, produced in sufficient quantities and submitted for further analysis.  The 

bioluminescence activity assay would be applicable only if working with the entire 
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aequorin molecule, whereas a fluorescence assay that tracks conformational changes 

could be applicable to any polypeptide – provided that its structural changes can be 

translated into fluorescence changes.  Fit for purpose for each method would be verified 

before finalising the analytical strategy.   

Metal uptake 

The amount of metal ion bound by the protein can be deduced from the free 

metal ion remaining in the mixture after the luminescence assay.  Metal-sensitive 

electrodes can be used to measure free metal ions in the test sample.  Another method 

would be to use ultracentrifugation in order to precipitate out the protein with any 

metals bound and use atomic adsorption spectroscopy to measure unbound metals in the 

supernatant. 

These are both low-throughput methods and the sample requirement for metal-

sensitive electrodes exceeds the capacity of microplate formats.  In this case, analysis 

would be performed on mutants selected from an activity screen and later produced in 

the milliliter (instead of microliter) scale. 

Sensitivity and selectivity 

The successful candidate must be fit for its application and environment.  

Selectivity and sensitivity of the molecule to metal ions are both very important.  A tier 

of experiments pertaining to the intended use (e.g. in vivo for real-time intracellular 

imaging) would be required to qualify the envisaged biosensor.  If the bioreporter is not 

suitable for its intended environment, information on selectivity and sensitivity may 

help identify an alternative context where the bioreporter would be of value.   

Sensitivity is related to the bioavailability of the metal ion under study.  The 

bioreporter would be tested with the relevant range of metal ion concentrations.  For 

example, aequorin has been an excellent calcium sensor partly because its EC50 is 

within the biologically relevant range of intracellular calcium concentrations.  Zinc 

would require a far more sensitive sensor to detect changes in the biologically relevant 

range of this metal.  

Selectivity is related to the bioavailability of the metal ion under study versus 

potentially competing ions.  In this mutant library, selectivity is not shifted toward one 

new ion independently from the rest (Section 6.4.6).  Additional work would be 

required in order to achieve high affinity for one ion against a background of other 
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metals in a mixture.  If competing metals are not present in the specific environment 

under study (e.g. cell, cellular compartment), exclusivity of ion binding is not necessary.  

Using aequorin as an example, the lanthanides can be excellent replacements for 

calcium, however they are not present in the biological systems routinely studied. 

9.5 Value and risks of the project 

The search for a functional aequorin mutant with altered metal selectivity was a 

high risk-high gain endeavour.  Further work would be required to increase 

understanding of the structure-function of aequorin with alternative activator ions.  The 

canonical binding site of the EF-hand superfamily evolved to selectively bind calcium 

over a background of other metals.  Cooperativity between the EF-hands and the 

allosteric activation of the protein further complicate the project. 

The three ion binding sites (EF-hands) are spatially distinct from the domain 

where light is produced (hydrophobic core of the protein).  There is no guarantee that 

successful shift of the binding loop affinities for a new metal ion can accommodate the 

necessary conformational changes for production of light.  The risk was reflected in the 

results, whereby improved response of mutant to zinc resulted in significant loss of 

activity compared to aequorin’s full potential. 

Additional risk was in assuming promiscuity of aequorin toward other metal 

ions;  this was originally reported in the 1960s but no follow up work was performed.  

There was a risk that aequorin luminescence with various ions was merely due to non-

specific binding which caused destabilisation and discharge of the protein.  In this work, 

the fact that different ions induce different types of luminescence profiles and 

concentration-response curves suggests that different ions indeed exert different impact 

on the activity of aequorin and that an attempt to study and tweak their binding was 

valid. 

In terms of the rational mutagenesis strategy, the single and double substitutions 

constituted a rather crude initial approach.  The work with forty eight mutants produced 

useful information on the importance of the three EF-hands and of specific positions 

and residues within the EF-hand loops in the response of aequorin to various metals.   

Most mutations in a protein are expected to be deleterious.  The designed 

mutations were not expected to completely transform the ion binding sites in favour of 
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new ions whilst retaining the full activity of the native protein, for the following 

reasons:  (1) canonical EF-hands are fine-tuned to be highly selective for calcium;  (2) 

the mutants of this library contain only single or double mutations out of a total of 

eighteen ion-coordinating positions across the entire molecule and (3) activity is 

dependent on successful binding followed by propagation of each binding event through 

an intricate network of cooperativity and allosteric activation.  It is highly unlikely to 

completely redesign the EF-hand loops whilst keeping the allosteric and cooperative 

functions intact so that the appropriate conformational changes are propagated to the 

centre of the molecule for effective bioluminescence production.   

In continuing to pursue the originally envisaged aequorin mutant, it should be 

noted that the mechanism of calcium binding and cooperativity have co-evolved in 

aequorin, thus the potential for a highly functional molecule with altered ion selectivity 

may not be achieved.  The options discussed in Future work (Section 9.3) can be viable 

alternatives, although they too have limitations to be considered on an individual basis.   

Finally, it is hoped that the present work may contribute to future methodologies 

of screening mutant libraries and identifying promising mutants for new applications.  

This itself is an interesting challenge, especially when there is a trade-off between two 

desired properties (e.g. selectivity and yield).  To reward only high activity mutants 

could lead to missed opportunities.  Disqualifying mutants with low activity in the first 

rounds of screening would exclude valuable candidates where activity could have been 

restored with further rounds of mutagenesis.  Also, certain desired properties cannot be 

directly measured but must be deciphered (e.g. gradual shifts in selectivity) with 

appropriate ad hoc metrics.  
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Appendix  

Appendix Chapter 1 

Table 10-1  Intracellular metal ion sensors 
 
Type of sensor 
 

 
Name 

 
Application 

 
Reference 

bioluminescent protein aequorin  (Czarnik, 1995) 
Fluorescent, synthetic Fura-2 Ca2+, Zn2+, Mn2+, Pb2+, 

Ba2+, Cd2+, Co2+, Sr2+ 
Kwan and Putney, 1990; Hinkle et al, 1992; 
Tomsig and Suszkiw, 1990; Atar et al, 1995;   

Zinpyr-labeled fusion proteins  Zn2+ Tomat et al, 2008 in(Palmer, 2009) 
Derivatives of benzylguanine linked to Indo-1 BG-Indo-1, BG-Indo-

2, BG-Indo-3 
Ca2+ (Keppler et al., 2003) and Gronemeyer et al, 

2006 in Palmer, 2009 
BG-Indo-1 derivatives reacted with SNAP-tag  SNAP-Indo-1 Ca2+ Bannwarth et al, 2009 in Palmer, 2009 
FRET-based, ECFP-calmodulin-M13-cpVenus 
(redesigned calmodulin and M13),  
interaction of domains 

Cameleon D3 Ca2+ Palmer et, 2006 & Wallace et al, 2008 in 
Chudakov et al, 2010 

FRET-based, ECFP-calmodulin-M13-cpVenus, 
interaction of domains 

Yellow Cameleon 3.6 Ca2+ Nagai et al, 2004 in Chudakov et al, 2010 

FRET-based, CFP-2x(COOH-terminal lobe of 
troponin C)-cpYFP, structural rearrangement of 
domain 

TN-XXL Ca2+ Mank et al, 2008 in Chudakov et al, 2010 

Insertion of structurally rearranging calmodulin 
domain into YFP 

Camgaroo-2 Ca2+ Griesbeck et al, 2001in Chudakov et al, 2010 

Single cpFP fused to interacting domains,  
M13-cpGFP-calmodulin 

Case12 Ca2+ Souslova et al, 2007 in Chudakov et al, 2010 
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Type of sensor 
 

 
Name 

 
Application  

 
Reference  

Single cpFP fused to interacting domains,  
M13-cpGFP-calmodulin 

GCaMP3 Ca2+ Tallini et al, 2006 & Tian et al, 2009 in 
Chudakov et al, 2010 

Fluo-3 dye  Ca2+ Czarnik, 1995 
Quin-2  Ca2+ Czarnik, 1995 
Fura-2  Ca2+ Czarnik, 1995 
SBF1  Na+ Czarnik, 1995 
PBF1  K+ Czarnik, 1995 
SPQ  Cl- Czarnik, 1995 
TMAPQ  Cl- Czarnik, 1995 
FURAPTRA (Mag-fura-2)  Mg2+ Czarnik, 1995 
FRET, Intramolecular single domain, apoK1-er, CFP 
YFP 

 Ca2+ Osibow et al, 2006 in Li et al, 2006 

FRET, Intramolecular multiple domain, CaM M13, 
CFP YFP BFP GFP 

 Ca2+ Miyawaki et al, 1997 in Li et al, 2006 

Small fluophore Zinquin Zn2+ Colvin et al, 2006 
Small fluophore ZnAF-1, ZnAF-2, 

ZnAF-3 
Zn2+ Hirano et al, 2000; Hirano et al, 2002; 

Komatsu et al, 2005  
Small fluophore FluoZin-1, FluoZin-

2, FluoZin-3 
Zn2+ Eichelsdoerfer et al, 2010; Domaille et al, 

2008 ; Gee et al, 2002 
Small fluophore FuraZin Zn2+ (Sensi et al., 1999) 
Small fluophore RhodZin-3 Zn2+ (Sensi et al., 2003) 
   (Colvin et al., 2008, Kikuchi et al., 2004) 
Phenanthroline-based Phen Green FL  Cu2+, Cu+, Fe2+, Hg2+, 

Pb2+, Cd2+, Ni2+ 
(Tougu et al., 2008)  

luxCDABE-based  Pb2+, Hg2+, Zn2+ Corbisier et al, 1996; Barkay et al, 1998; Erbe 
et al, 1996  
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Table 10-2  Multiple alignment of calcium-binding proteins a) aequorin, b) mitrocomin, c) obelin, d) clytin, e) human calcmodulin f) bovine 
calmodulin, g) human parvalbumin, h) intestinal Ca2+-binding protein, i) sarcoplasmic Ca2+-binding protein and j) troponin C using ClustalW 
(Thompson, 1994) (DNA and protein sequence IDs in Table 1–6). 
                                          EF-I       

a: T P D F D N P K W I G R H K H M F N F L D V N H N G R I S L D E M V Y 
b: T T D F D N P K W I A R H K H M F N F L D I N S N G Q I N L N E M V H 
c: K T D F D N P R W I K R H K H M F D F L D I N G N G K I T L D E I V S 
d: R P N F D N P K W V N R H K F M F N F L D I N G D G K I T L D E I V S 
e: M A D Q L T E E Q I A E F K E A F S L F D K D G D G T I T T K E L G - 
f: - A D Q L T E E Q I A E F K E A F S L F D K D G D G T I T T K E L G - 
g: M T D L L N A E D I K K A V G A F S A T D S - - - - - - - - - - - - - 
h: - - - - K S P E E L K G I F E K Y A A K E G D P N - - - - - - - - - - 
i: L N D F Q K Q K I K F T F D F F L D M N H D G S I Q D N D F E D M M T 
j: - - - - - - - - G V F Y F N M N R V F V Y G - - - - - - - - - - - - - 

Table 10-2 continued 
                                                                        

a: K A S D I V I N N L G A T P E Q A K R H K D A V E A F F G G A G M K Y 
b: K A S N I I C K K L G A T E E Q T K R H Q K C V E D F F G G A G L E Y 
c: K A S D D I C A K L E A T P E Q T K R H Q V C V E A F F R G C G M E Y 
d: K A S D D I C A K L G A T P E Q T K R H Q D A V E A F F K K I G M D Y 
e: - - - - T V M R S L G Q N P T E A E L Q D M I N E V D A D D L - - P G 
f: - - - - T V M R S L G Q N P T E A E L Q D M I N E V D A D - - - - - G 
g: - - - - - - - - - - - - - - - - - F D H K K F F Q M V G L K K - - - - 
h: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
i: R Y K E V N K G S L S D A D Y K S M Q A S L E D E W R D L K G R A D I 
j: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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Table 10-2 continued 
                                                                        

a: G V E T E W P E Y I E G W K R L A S E E L K R Y S K N Q I T L I R L W 
b: D K D T T W P E Y I E G W K R L A K T E L E R H S K N Q V T L I R L W 
c: G K E I A F P Q F L D G W K Q L A T S E L K K W A R N E P T L I R E W 
d: G K E V E F P A F V D G W K E L A N H D L K L W S Q N K K S L I R D W 
e: N G T I D F P E F L T - - - - - - - - - - M M A R K M K D T D S E E E 
f: N G T I D F P E F L T - - - - - - - - - - M M A R K M K D T D S E E E 
g: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - K S A D D 
h: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
i: N K D D V V S W E E Y L A M W E K T I A T C K S V A D L P A W C Q N R 
j: - - - - - - - - - - - - - - - - - - - - - -       - - - - - - - - - - 

 

Table 10-2 continued 
                   EF-III                                

a: G D A L F D I I D K D Q N G A I S L D E W K A Y T K S A G - - - I I Q 

b: G D A L F D I I D K D R N G S V S L D E W I Q Y T H C A G - - - I Q Q 

c: G D A V F D I F D K D G S G T I T L D E W K A Y G K I S G - - - I S P 

d: G E A V F D I F D K D G S G S I S L D E W K A Y G R I S G - - - I C S 

e: I R E A F R V F D K D G N G Y I S A A E L R H V M T N L G - - - E K L 

f: I R E A F R V F D K D G N G Y I S A A E L R H V M T N L G - - - E X L 

g: V K K V F H M L D K D K S G F I E E D E L G F I L K G F S P D A R D L 

h: - - - - - - Q L S K E E L K L L L Q T E F P S L L K G G S - - - - - - 

i: I P F L F K G M D V S G D G I V D L E E F Q N Y C K N F Q - - - - - L 

j: - - - - - - - - - T L K R G Q P N H F A L S E V G N E R Y T Y I G - - 
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Table 10-2 continued 
                           EF-IV                        

a: S S E D C E E T F R V C D I D E S G Q L D V D E M T R Q H L G F W Y T 

b: S R G Q C E A T F A H C D L D G D G K L D V D E M T R Q H L G F W Y S 

c: S Q E D C E A T F R H C D L D D S G D L D V D E M T R Q H L G F W Y T 

d: S D E D A E K T F K H C D L D N S G K L D V D E M T R Q H L G F W Y T 

e: T D E E V D E M I R E A D I D G D G Q V N Y E E F V Q M M T A K - - - 

f: T D E E V D E M I R E A D I D G D G Q V N Y E E F V Q M M T A K - - - 

g: S A K E T K M L M A A G D K D G D G K I G V D E F S T L V A E S - - - 

h: - - - T L D E L F E E L D K N G D G E V S F E E F Q V L V K K I S Q - 

i: Q C A D V P A V Y N V I T D G G K V T F D L N R Y K E L Y Y R L L T S 

j: - - - - - - - N G F T S T K C P L V I A S E H N I P Y L M D K E G N G 

Table 10-2 continued 
                                      

a:    M D P A C E K L Y G G A V P - 

b:    V D P T C E G L Y G G A V P Y 

c:    L D P E A D G L Y G N G V P - 

d:    L D P N A D G L Y G N F V P - 

e:    - - - - - - - - - - - - - - - 

f:    - - - - - - - - - - - - - - - 

g:    - - - - - - - - - - - - - - - 

h:    - - - - - - - - - - - - - - - 

i:    P A A D A G N T L M G Q K P - 

j: Y V - - - - - - - - - - - - - - - - 
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Table 10-3  Preferred coordination geometries of metal ions in CSD structures.  Table 
reproduced from Kuppuraj et al, 2009. 
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Table 10-4  Metal-ligand distances in the CSD and PDB.  The numbers of 
observations and mean distances in structures in the PDB determined at near atomic 
resolution and in the CSD with R factor < 0.065.  Sample standard deviations and 
metal-coordination numbers from all coordination geometries are included.  Table 
reproduced from Harding, 2006.   
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Table 10-5  Average metal-ligand distances for metal ions as a function of metal 
charge, coordination number (CN), donor atom’s charge and coordination number of 
ligand (number of atoms connected to the donor atom of the ligand).  Table 
reproduced from Kuppuraj et al, 2009. 
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Appendix Chapter 5 

Table 10-6  Primers for mutants Nr 1-8 
#  Numbering 

according to 
1EJ3 

Numbering 
according to 
1SL8 

position 
in       
EF-I 

position 
in         
EF-III 

position 
in        
EF-IV 

 Primer sequence 5’-3’ 

1 Asp24Ala Asp26Ala 1   For CACAAGCACATGTTTAATTTTCTTGCGGTCAACCACAATGGAAGGATCTCTC 
      Rev GAGAGATCCTTCCATTGTGGTTGACCGCAAGAAAATTAAACATGTGCTTGTG 
2 Asn26Ala Asn28Ala 3   For GCACATGTTTAATTTTCTTGATGTCGCGCACAATGGAAGGATCTCTCTTGACG 
      Rev CGTCAAGAGAGATCCTTCCATTGTGCGCGACATCAAGAAAATTAAACATGTGC 
3 Asn28Ala Asn30Ala 5   For GTTTAATTTTCTTGATGTCAACCACGCGGGAAGGATCTCTCTTGACGAGATGG 
      Rev CCATCTCGTCAAGAGAGATCCTTCCCGCGTGGTTGACATCAAGAAAATTAAAC 
4 Ser32Ala Ser34Ala 9   For CTTGATGTCAACCACAATGGAAGGATCGCGCTTGACGAGATGGTCTACAAGG 
      Rev CCTTGTAGACCATCTCGTCAAGCGCGATCCTTCCATTGTGGTTGACATCAAG 
5 Glu35Ala Glu37Ala 12   For GGAAGGATCTCTCTTGACGCGATGGTCTACAAGGCGTCCGATATTG 
      Rev CAATATCGGACGCCTTGTAGACCATCGCGTCAAGAGAGATCCTTCC 
6 Gly29Arg Gly31Arg 6   For ACCACAATCGTAGGATCTCTC 
      Rev AGATCCTACGATTGTGGTTG 
7 Gly122Arg Gly124Arg  6  For ACCAAAATCGTGCTATTTCAC 
      Rev TGAAATAGCACGATTTTGGTC 
8 Gly158Arg Gly160Arg   6 For ATGAAAGTCGTCAGCTCGATG 
      Rev ATCGAGCTGACGACTTTCATC 
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Table 10-7  Primers for mutants Nr 9-17 
#  Numbering 

according to 1EJ3 
Numbering 
according to 1SL8 

position 
in    
EF-I 

position 
in    
EF-III 

position 
in     
EF-IV 

 Primer sequence 5’-3’ 

9 Gly29Arg/Gly122Arg Gly31Arg/Gly124Arg 6 6  For Template Gly29Arg, primers of #7 
      Rev Template Gly29Arg, primers of #7 
10 Gly29Arg/Gly158Arg Gly31Arg/Gly160Arg 6  6 For Template Gly29Arg, primers of #8 
      Rev Template Gly29Arg, primers of #8 
11 Gly122Arg/Gly158Arg Gly124Arg/Gly160Arg  6 6 For Template Gly122Arg, primers of #8 
      Rev Template Gly122Arg, primers of #8 
12 Asp24His Asp26His 1   For AAGCACATGTTTAATTTTCTTCATGTCAACCACAATGGAAGG 
      Rev TTCCATTGTGGTTGACATGAAGAAAATTAAACATGTGCTTG 
13 Val25His Val27His 2   For CATGTTTAATTTTCTTGATCATAACCACAATGGAAGGATC 
      Rev GATCCTTCCATTGTGGTTATGATCAAGAAAATTAAACATG 
14 Asn26His Asn28His 3   For ATGTTTAATTTTCTTGATGTCCATCACAATGGAAGGATCTC 
      Rev AGATCCTTCCATTGTGATGGACATCAAGAAAATTAAACATG 
15 Asn28His Asn30His 5   For TTCTTGATGTCAACCACCATGGAAGGATCTCTCTTGACG 
      Rev TCGTCAAGAGAGATCCTTCCATGGTGGTTGACATCAAG 
16 Ser32His Ser34His 9   For GTCAACCACAATGGAAGGATCCATCTTGACGAGATGGTCTACAAGG 
      Rev CCTTGTAGACCATCTCGTCAAGATGGATCCTTCCATTGTGGTTGAC 
17 Glu35His Glu37His 12   For ACAATGGAAGGATCTCTCTTGACCATATGGTCTACAAGGCG 
      Rev GCCTTGTAGACCATATGGTCAAGAGAGATCCTTCCATTGTG 
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Table 10-8  Primers for mutants Nr 18-23 
#  Numbering 

according to 1EJ3 
Numbering 
according to 1SL8 

position 
in EF-I 

position 
in EF-III 

position 
in EF-IV 

 Primer sequence 5’-3’ 

18 Asp24Cys Asp26Cys 1   For AGCACATGTTTAATTTTCTTTGCGTCAACCACAATGGAAGG 
      Rev CCTTCCATTGTGGTTGACGCAAAGAAAATTAAACATGTGC 
19 Val25Cys Val27Cys 2   For CATGTTTAATTTTCTTGATCATAACCACAATGGAAGGATC 
      Rev GATCCTTCCATTGTGGTTATGATCAAGAAAATTAAACATG 
20 Asn26Cys Asn28Cys 3   For ATGTTTAATTTTCTTGATGTCTGCCACAATGGAAGGATCTC 
      Rev GAGATCCTTCCATTGTGGCAGACATCAAGAAAATTAAACATG 
21 Asn28Cys Asn30Cys 5   For TTCTTGATGTCAACCACTGCGGAAGGATCTCTCTTGACG 
      Rev CTCGTCAAGAGAGATCCTTCCGCAGTGGTTGACATCAAG 
22 Ser32Cys Ser34Cys 9   For GTCAACCACAATGGAAGGATCTGCCTTGACGAGATGGTCTACAAGG 
      Rev CCTTGTAGACCATCTCGTCAAGGCAGATCCTTCCATTGTGGTTGAC 
23 Glu35Cys Glu37Cys 12   For ACAATGGAAGGATCTCTCTTGACTGCATGGTCTACAAGGCG 
      Rev CTTGTAGACCATGCAGTCAAGAGAGATCCTTCCATTGTG 
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Table 10-9  Primers for mutants Nr 24-32 
#  Numbering 

according to 
1EJ3 

Numbering 
according to 
1SL8 

position 
in      
EF-I 

position 
in       
EF-III 

position 
in      
EF-IV 

 Primer sequence 5’-3’ 

24 Asp117His Asp119His  1  For GGTGATGCATTGTTCGATATCATTCATAAAGACCAAAATGGAGCTATTTCACTGG 
      Rev CCAGTGAAATAGCTCCATTTTGGTCTTTATGAATGATATCGAACAATGCATCACC 
25 Asp119His Asp121His  3  For CATTGTTCGATATCATTGACAAACATCAAAATGGAGCTATTTCACTGG 
      Rev CCAGTGAAATAGCTCCATTTTGATGTTTGTCAATGATATCGAACAATG 
26 Asp121His Asp123His  5  For CGATATCATTGACAAAGACCAACATGGAGCTATTTCACTGGATGAATGG 
      Rev CCATTCATCCAGTGAAATAGCTCCATGTTGGTCTTTGTCAATGATATCG 
27 Ala123His Ala125His  7  For CGATATCATTGACAAAGACCAAAATGGACATATTTCACTGGATGAATGG 
      Rev CCATTCATCCAGTGAAATGCATCCATTTTGGTCTTTGTCAATGATATCG 
28 Thr125His Ser127His  9  For GACAAAGACCAAAATGGAGCTATTCATCTGGATGAATGGAAAGCATACACC 
      Rev GGTGTATGCTTTCCATTCATCCAGATGAATAGCTCCATTTTGGTCTTTGTC 
29 Asp127His Asp129His  11  For CCAAAATGGAGCTATTTCACTGCATGAATGGAAAGCATACACCAAATCTGC 
      Rev GCAGATTTGGTGTATGCTTTCCATTCATGCAGTGAAATAGCTCCATTTTGG 
30 Glu128His Glu130His  12  For CCAAAATGGAGCTATTTCACTGGATCATTGGAAAGCATACACCAAATCTGC 
      Rev GCAGATTTGGTGTATGCTTTCCAATGATCCAGTGAAATAGCTCCATTTTGG 
31 Asp117Cys Asp119Cys  1  For GGTGATGCATTGTTCGATATCATTTGCAAAGACCAAAATGGAGCTATTTCACTGG 
      Rev CCAGTGAAATAGCTCCATTTTGGTCTTTGCAAATGATATCGAACAATGCATCACC 
32 Asp119Cys Asp121Cys  3  For CATTGTTCGATATCATTGACAAATGCCAAAATGGAGCTATTTCACTGG 
      Rev CCAGTGAAATAGCTCCATTTTGGCATTTGTCAATGATATCGAACAATG 
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Table 10-10  Primers for mutants Nr 33-40 
#  Numbering 

according to 1EJ3 
Numbering 
according to 1SL8 

position 
in     
EF-I 

position 
in     
EF-III 

position 
in     
EF-IV 

 Primer sequence 5’-3’ 

33 Asp121Cys Asp123Cys  5  For TTCGATATCATTGACAAAGACCAATGCGGAGCTATTTCACTGGATGAATGG 
      Rev CCATTCATCCAGTGAAATAGCTCCGCATTGGTCTTTGTCAATGATATCGAA 
34 Ala123Cys Ala125Cys  7  For CGATATCATTGACAAAGACCAAAATGGATGCATTTCACTGGATGAATGG 
      Rev CCATTCATCCAGTGAAATGCATCCATTTTGGTCTTTGTCAATGATATCG 
35 Thr125Cys Ser127Cys  9  For GACAAAGACCAAAATGGAGCTATTTGCCTGGATGAATGGAAAGCATACACC 
      Rev GGTGTATGCTTTCCATTCATCCAGGCAAATAGCTCCATTTTGGTCTTTGTC 
36 Asp127Cys Asp129Cys  11  For CCAAAATGGAGCTATTTCACTGTGCGAATGGAAAGCATACACCAAATCTGC 
      Rev GCAGATTTGGTGTATGCTTTCCATTCGCACAGTGAAATAGCTCCATTTTGG 
37 Glu128Cys Glu130Cys  12  For CCAAAATGGAGCTATTTCACTGGATTGCTGGAAAGCATACACCAAATCTGC 
      Rev GCAGATTTGGTGTATGCTTTCCAGCAATCCAGTGAAATAGCTCCATTTTGG 
38 Asn28Cys/Glu35His Asn30Cys/Glu37His 5, 12   For GGAAGGATCTCTCTTGACCATATGGTCTACAAGGCGTC 
      Rev GACGCCTTGTAGACCATATGGTCAAGAGAGATCCTTCC 
39 Asn28His/Glu35Cys Asn30His/Glu37Cys 5, 12   For GAAGGATCTCTCTTGACTGCATGGTCTACAAGG 
      Rev CCTTGTAGACCATGCAGTCAAGAGAGATCCTTC 
40 Asn28Cys/Ser32His Asn30Cys/Ser34His 5, 9   For GTCAACCACTGCGGAAGGATCCATCTTGACGAGATGGTCTACAAG 
      Rev CTTGTAGACCATCTCGTCAAGATGGATCCTTCCGCAGTGGTTGAC 
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Table 10-11  Primers for mutants Nr 41-48 
#  Numbering 

according to 1EJ3 
Numbering 
according to 1SL8 

position 
in EF-I 

position 
in EF-III 

position 
in EF-IV 

 Primers, template 

41 Asn28Cys/Asp119His Asn30Cys/Asp121His 5 3   template Asn28Cys, primers for Asp119His  
42 Asn28Cys/Asp121His Asn30Cys/Asp121His 5 5   template Asn28Cys, primers for Asp121His  
43 Asn28Cys/Ser125His Asn30Cys/Ser127His 5 9   template Asn28Cys, primers for Ser125His 
44 Asn28Cys/Asp127His Asn30Cys/Asp129His 5 11   template Asn28Cys, primers for Asp127His  
45 Asn28Cys/Asp119Cys Asn30Cys/Asp121Cys 5 3   template Asn28Cys, primers for Asn28Cys 
46 Asn28Cys/Asp121Cys Asn30Cys/Asp123Cys 5 5   template Asn28Cys, primers for Asp121Cys 
47 Asn28Cys/Asp127Cys Asn30Cys/Asp129Cys 5 11   template Asn28Cys, primers for Asp127Cys  
48 Asn28Cys/Ser125Cys Asn30Cys/Ser127Cys 5 9   template Asn28Cys, primers for Ser125Cys  
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Table 10-12  Ionic radii of metals according to their coordination and spin state.  
Original data from Shannon, 1976.  

Element Charge Coordination Spin State Ionic Radius 

Copper IV 2 IV       0.57 

Copper IVSQ 2 IVSQ     0.57 

Cobalt IV 2 IV   High spin 0.58 

Zinc IV 2 IV       0.6 

Cobalt VI ls 2 VI Low spin 0.65 

Copper V 2 V     0.65 

Cobalt V 2 V   0.67 

Zinc V 2 V     0.68 

Copper VI 2 VI     0.73 

Zinc VI 2 VI     0.74 

Cobalt VI  2 VI High spin 0.745 

Cadmium IV 2 IV       0.78 

Cadmium V 2 V     0.87 

Cadmium VI 2 VI     0.95 

Lead IVPY 2 IVPY       0.98 

Calcium VI 2 VI       1.00 

Cadmium VII 2 VII     1.03 

Lanthanum VI 3 VI       1.032 

Calcium VII 2 VII     1.06 

Lanthanum VII 3 VII     1.1 

Lead VI 2 VI     1.19 

Lead VII 2 VII     1.23 
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Appendix Chapter 6 

Table 10-13  Library OD(600 nm) for aequorin wild-type and mutants.  OD values were 
converted from platereader into spectrometer units as described in Chapter 4, Section 
4.4.1.  Positions of triplicates are indicated through bold outlines and the wild type 
internal controls of each plate are highlighted.  
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 10 20 30 40 50 60

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT ATGACCAGCGAACAATACTCAGTCAAGCTTACACCAGACTTCGACAACCCAAAATGGATT

Asn28Cys ATGACCAGCGAACAATACTCAGTCAAGCTTACACCAGACTTCGACAACCCAAAATGGATT

70 80 90 100 110 120

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT GGACGACACAAGCACATGTTTAATTTTCTTGATGTCAACCACAATGGAAGGATCTCTCTT

Asn28Cys GGACGACACAAGCACATGTTTAATTTTCTTGATGTCAACCACTGCGGAAGGATCTCTCTT

130 140 150 160 170 180

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT GACGAGATGGTCTACAAGGCGTCCGATATTGTTATAAACAATCTTGGAGCAACACCTGAA

Asn28Cys GACGAGATGGTCTACAAGGCGTCCGATATTGTTATAAACAATCTTGGAGCAACACCTGAA

190 200 210 220 230 240

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT CAAGCCAAACGTCACAAAGATGCTGTAGAAGCCTTCTTCGGAGGAGCTGGAATGAAATAT

Asn28Cys CAAGCCAAACGTCACAAAGATGCTGTAGAAGCCTTCTTCGGAGGAGCTGGAATGAAATAT

250 260 270 280 290 300

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT GGTGTAGAAACTGAATGGCCTGAATACATCGAAGGATGGAAAAGACTGGCTTCCGAGGAA

Asn28Cys GGTGTAGAAACTGAATGGCCTGAATACATCGAAGGATGGAAAAGACTGGCTTCCGAGGAA

310 320 330 340 350 360

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT TTGAAAAGGTATTCAAAAAACCAAATCACACTTATTCGTTTATGGGGTGATGCATTGTTC

Asn28Cys TTGAAAAGGTATTCAAAAAACCAAATCACACTTATTCGTTTATGGGGTGATGCATTGTTC

370 380 390 400 410 420

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT GATATCATTGACAAAGACCAAAATGGAGCTATTTCACTGGATGAATGGAAAGCATACACC

Asn28Cys GATATCATTGACAAAGACCAAAATGGAGCTATTTCACTGGATGAATGGAAAGCATACACC

430 440 450 460 470 480

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT AAATCTGCTGGCATCATCCAATCGTCAGAAGATTGCGAGGAAACATTCAGAGTGTGCGAT

Asn28Cys AAATCTGCTGGCATCATCCAATCGTCAGAAGATTGCGAGGAAACATTCAGAGTGTGCGAT

490 500 510 520 530 540

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT ATTGATGAAAGTGGACAGCTCGATGTTGATGAGATGACAAGACAACATTTAGGATTTTGG

Asn28Cys ATTGATGAAAGTGGACAGCTCGATGTTGATGAGATGACAAGACAACATTTAGGATTTTGG

550 560 570 580 590 600

....|....|....|....|....|....|....|....|....|....|....|....|

Aequorin WT TACACCATGGATCCTGCTTGCGAAAAGCTCTACGGTGGAGCTGTCCCCCTCGAGCACCAC

Asn28Cys TACACCATGGATCCTGCTTGCGAAAAGCTCTACGGTGGAGCTGTCCCCCTCGAGCACCAC

610

....|....|....|

Aequorin WT CACCACCACCACTGA

Asn28Cys CACCACCACCACTGA

 

Figure 10-1  Sequencing results for mutant Asn28Cys.  The mutation AAT→TGC, 
corresponding to Asn→Cys at amino acid position 5 of the loop in EF-I is highlighted. 
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Appendix Chapter 7 

Optimisation of cold incubation conditions 

The type and concentration of reducing agents was improved during this 

experiment.  Bacterial pellet containing apoaequorin and harvested from 50 mL culture 

was incubated overnight in two different ice-cold buffers:  (1) 50 mM Tris-HCl, 10 mM 

EDTA, 5 mM 2-mercaptoethanol and (2) 50 mM Tris-HCl, 10 mM EDTA, 10 mM 

DTT.   
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Figure 10-2  Optimisation of reducing agent in charging of aequorin. 
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Appendix Chapter 8 

 

Table 10-14  Gain settings used for luminescence curves. 
 Wild-type aequorin___ Mutant Asn28Cys/Ser32His 

Calcium 2,500 4,000 

Lanthanum 2,500 4,000 

Lead 2,500 4,000 

Cadmium 2,500 4,000 

Cobalt 2,500 4,000 

Zinc 3,900 4,000 

Copper 3,000 4,000 

Zinc+calcium 2,500 4,000 
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