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ABSTRACT 

There is growing recognition that the risk of many diseases in later life, such as type-2 diabetes 

or breast cancer,  is affected by adult as well as early life variables, including those operating prior to 

conception and during the pre-natal period.  Most of these risk factors are correlated because of common 

biological and/or social pathways , while some are intrinsically ordered over time.  The study of how 

they jointly influence later (`distal’) disease outcomes  is referred to as life course epidemiology.  This 

area of research raises several issues that are relevant to the current debate on causal inference in 

epidemiology. The authors give a brief overview of the main analytical and practical problems and 

consider a range of modelling approaches, their differences being determined by the degree with which 

relationships present (or presumed) among the correlated explanatory variables are explicitly 

acknowledged. Standard multiple regression (i.e. univariate) models are compared to multivariate 

models where several outcomes are jointly specified.  Issues arising from measurement error and 

missing data are addressed.  Examples originated from two UK cohorts are used to illustrate alternative 

modelling strategies. It is concluded that more than one analytical approach should be adopted to gain 

more insight into the underlying mechanisms . 

 

KEYWORDS:  Correlated data, intermediate exposures, life course, path analysis, structural equation 

models 
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In the last decade there has been a growing realization that prenatal and early life biological 

and social factors may play an important role in the aetiology of many later-life conditions (1-9), in 

addition to - or in synergism with - those of well-established adult exposures.  This field of enquiry is 

now referred to as life course epidemiology (10).  

Studying complex inter-relationships of biological and social variables over time requires  

longitudinal information spanning broad periods of life.  It also raises analytic problems because 

temporal and -possibly- causal hierarchies among the exposures need to be taken into account (11,12).  

For example, breast cancer risk factors operate at a number of stages in the life course (Figure 1).  They 

also may influence each other, e.g. childhood weight  is inversely correlated with on timing of puberty 

(13) and -directly or indirectly- on later obesity (14).  Age at puberty and adult obesity affect breast 

cancer risk (15) and thus may mediate the effect of childhood weight.  If standard multiple regression 

models are used to study these variables, the effect of childhood weight would be estimated holding all 

other exposures constant, thus missing the life course perspective , as we show below.  Alternatively, if a 

multivariate approach is used, where for example age at menarche, adult obesity and breast cancer risk 

are joint outcomes, their interrelationships would be explicitly estimated, albeit within an assumed 

multivariate structure.  

We discuss these problems by introducing a sequence of increasingly complex models to deal 

with the temporal and causal hierarchies among the exposure variables.  We compare them in terms of 

interpretability as well as flexibility in dealing with missing data and measurement errors, both of which 

are common features in life course studies.  We illustrate issues and models with two examples :  the first 

studies intergenerational influences on size at birth using data from a Scottish cohort of children 

recruited in 1962; the second examines childhood height and its impact on adult leg length with data 

from a UK birth cohort of women born in 1946. Our aim is to present a broad analytical framework for 
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studies in life course epidemiology and to highlight its relevance to the current debate on causal 

modelling (16-18).   

 

MODELS FOR DISTAL OUTCOMES 

When a structure among the exposure variables is known or presumed, a distinction can be 

made between variables that act at the inception (`background’) or in the middle (`intermediate’) of the 

process which leads to the main (`distal’) outcome of interest (16).  In the breast cancer example 

described above childhood weight is a background variable, age at menarche and adult obesity 

intermediate variables and breast cancer the distal outcome.  

Statistical models can only offer simplified representations of reality (19). We classify those 

relevant in life -course epidemiology according to the degree to which they explicitly acknowledge  the 

relations among the ir components.  

 

Univariate models 

Typically univariate models express the expectation of the outcome of interest, E(Y) (or a 

suitable transformation g(.)), as a function of several explanatory variables, X1,X2,…,Xk , 

 g(E(Y))  =  ß0 +  ß1 X1 +  ß2 X2 +….+  ßk Xk                       (1) 

where g(.) is the link function used in generalised linear models (20) and  the coefficient ßj  (j=1,…,k) 

represents the effect attributed to one unit increase in Xj  when all the other variables are held constant.   

If g(.) is the identity function, and Y is continuous, equation (1) represents a linear regression model.  

 

A univariate model can be fitted with only background variables, thus avoiding the inclusion of 

exposures that may be on the causal pathway.  This was the approach adopted in the early studies 
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linking birth weight with coronary heart disease (21).  Its estimated coefficients thus measure the effect  

of each background variable, controlled for that of the others.  The longer the time-gap between 

background variables and distal outcome, however, the greater is the possibility of intervening 

modifying effects (see the debate surrounding the foetal programming hypothesis : 1-3,22-24).    

If all types of exposures (background and intermediate) are included in the same univariate 

model, the resulting regression coefficients would measure mutually adjusted effects, i.e. effects of 

background variables not mediated via the intermediate variables and effects of intermediate variables 

conditional on the background ones.  More specifically if, for example, the background variable X1 

influences the intermediate variable Xk,  ß1 would only capture the effect of X1 on Y that is not mediated 

via Xk.   

A special setting which involves the joint analysis of background and intermediate variables 

arises when repeated measures of the same exposure are taken over time. In this case, the first available 

measure acts as background for all the following ones. Consider the influence of childhood 

anthropometric variables on adult obesity (14).  Results obtained after including all childhood 

measurements in the same univariate regression mode l for the distal outcome (obesity) are difficult to 

interpret, especially if the measures are taken close to each other in time. With two repeated body size  

measures, say Z1 and Z2, taken at times t1<t2,  the model  

 

 

could be  re-written as either 

or  

g(E(Y)) =   ß0 + (ß1+ ß2) Z1 + ß2  (Z2 - Z1 )                                                                                                                                  (2b) 

g(E(Y)) =   ß0 + ß1 Z1 + ß2  Z2                                                                                                                                                          (2a) 
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where the difference  (Z2-Z1)  represents the change  in the explanatory variable, e.g. body size, occurring  

from time t1 to time t2. 

The three equations (2a)-(2c) are different parameterizations of the same model (22,23). When 

Z2 is replaced by (Z2-Z1), the conditional effect of Z1 on the transformed dependent variable, g(E(Y)), 

changes from ß1 to (ß1+ß2) (equation (2b)).  A similar switch is observed for the effect of Z2 when it is 

conditioned on (Z2-Z1) (equation (2c)). The conditional effect of the difference (Z2-Z1) is either ß2 or -ß1 , 

depending on whether you condition on the first or second measure, respectively. So different 

interpretations are possible depending upon the conditioning variable, as originally discussed by Cole 

and colleagues (22,25,26) and revisited by others (23,24).   

A model with several repeated measures, Z1,Z2, ..,ZK, taken at times t1<t2<...<tK., can be re-

parameterized in terms of the first one, Z1 , and all subsequent consecutive increments, (Zj - Zj-1 ), 

j=1,...,K.     Thus equation (2b) becomes: 
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and similarly for equation (2c). In (2d)  the coefficient for Z1 is the sum of all conditional effects  

associated with Z1 ,Z2,Z3,...,ZK, i.e. is the cumulative effect of increasing each of the Zj by one unit.   Such 

increases would happen, for example, when a unit change at time t1 has irreversible effects on all 

following values of Z.  For example one extra cm in height at age t1  has an impact on all future height 

values of a child, since his/her trajectory is shifted upwards from then on, holding everything else 

constant, and therefore a cumulative impact on the outcome.   Similarly the coefficient for each 

increment (Zj-Zj-1), (j=2,…,K),  captures the effect of increasing Z during the jth interval, with that change 

g(E(Y)) =   ß0 + (ß1+ ß2) Z2 -  ß1  (Z2 - Z1 )                                                                                                                                    (2c) 
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shifting all subsequent Z values.  An alternative parameterization, often used in life course epidemiology 

(13,14), replaces the increments with the equivalent changes per unit time (`velocities’), i.e. (Zj-Zj-1)/(tj-

tj-1).  In this case the coefficients for the jth period  are  (tj-tj-1) times the coefficients for (Zj-Zj-1). 

A graphical approach – the “life course plot”- may help interpreting the impact of each 

repeated measure (26).  It involves plotting the conditional regression coefficients against the times  

when measures were taken (after standardisation to make these coefficients comparable ). When the 

coefficients switch sign at some time tj, as in Figure 2, there is evidence that changes during (tj-1, tj) have 

an impact on the outcome of interest.  

 

Multivariate models 

Multivariate models deal with several outcomes simultaneously .  In this context they would 

explicitly define a presumed process underlying intermediate and distal outcomes.  For example, 

variables may be arranged as in Figure 3a, where Y is the distal outcome and X1 , X2 and X3 the  

explanatory variables.  In this  diagram, X3 is assumed to be directly affected by X1 and X2 and thus is an 

intermediate variable , while X1 and X2 are background variables. Its algebraic equivalent is a system of 

simultaneous equations, with as many equations as there are intermediate and distal outcomes, which 

takes the name of path analysis (27): 

 

Here, as before, E(.) stands for expectation while  gy(.) and  g3(.) are  link functions.  When 

gy(Y) and g3(X3) are conditionally normally distributed estimation can be carried out by maximum 

likelihood (ML) or, avoiding the normality assumptions, by 3-stage least squares (28).   The indirect 

effects of a background variable, X1  say, on the distal outcome can be computed by multiplying the 

 gy(E(Y))  =  ß0 +  ß1 X1 +  ß2 X2 +  ß3 X3 
                                                                                                                                           (3)                                          
 g3(E(X3)) = a0 + a1 X1 + a2 X2 
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standardised coefficients (i.e. the effects for 1 standard deviation (SD) increase in X1) found along each 

of the paths leading from X1 to Y and then summing them  (18, 29). In Figure 3a, there is only one 

indirect path from X1  to Y, via X3.  Thus, if X1 and X3  are standardized and the path model is correct 

(30), the indirect effect of  X1  is  a1 multiplied by  ß3. 

When Y and X3 are not normally distributed, penalized maximum likelihood (31,32) or non-

parametric maximum likelihood estimation are used, with the latter recently suggested to improve the 

estimation properties (33). 

When some of the variables are proxies for factors that could not be (or were not) measured 

precisely, latent variables can be introduced within this framework.  For example, several dietary 

variables may be available via a Food Frequency Questionnaire aiming to measure `usual diet’ (34). 

Thus each of them is a proxy, or `manifestation’, of an unmeasurable construct that nevertheless is of 

interest. Similarly repeated height observations during childhood are manifestations of an underlying 

growth pattern.   

In Figure 3b three variables, X1, X2 and X3 , act as proxy (or `manifest’) measures for the 

unmeasurable/ unmeasured variable U (the convention is to use squares for observed variables and 

circles for latent variables). The effect of U on Y can be estimated by specifying how the three proxies 

are linearly related to U and also how U is related to Y: 

 

E(X1) = µ1 +  ?1U 
 
E(X2) = µ2 +  ?2U 
                                                                                                                                                                        (4) 
E(X3) = µ3 +  ?3U 
 
gy(E(Y)) = ß0 +  ß1U 
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Usually the latent variable U is assumed to be normally distributed and the parameters µ1, µ2 

and µ3  are set to be zero.  The link function for Y, gy(E(.)), however could be of any form. Other observed 

variables could be influencing Y; in this case the last equation in (4) would have an additional term ß4 X4. 

The first three equations in (4) define the measurement part of the model because U is not 

observed, but proxied by X1, X2 and X3.  The fourth equation defines the structural part, i.e. the relation 

between the unmeasured variable U and the distal outcome Y (35).  Together, the measurement and 

structural models form a structural equation model (SEM; 29). 

Because U is not directly observed and does not usually have a quantifiable metric, its 

influence on the manifest variables can only be measured in terms of an arbitrary metric.  One 

convention is to use the first of the proxy variables as reference and thus adopt its metric, e.g. that of X1, 

so that the effect of the latent variable on Y becomes expressed in terms of X1 units.  Alternatively, the 

variance of the latent construct is fixed to be 1 and its effect on Y estimated in terms of 1 SD change in 

the latent variable.    

As for path analysis, estimation can be carried out by maximum, penalized maximum (31,32) 

or non-parametric maximum likelihood (33), depending on the link functions.  Generalizations to 

include more than one latent variable (and relationships among them) are straightforward, although 

issues of identifiability constrain the ir numbers (29).  Generalizations to discrete latent variables are also 

within the scope of these models.  They involve the concept of latent classes, the probability of 

belonging to each of them being determined by a higher level latent continuous factor (36, 37), with 

estimation carried out by maximum likelihood with the expectation-maximization (EM)  algorithm (36, 

38,39).   Multivariate models such as these can be fitted in M-Plus (40) and Stata (33). 

  



statsissues_17Mar05  11 

Data quality issues 

A major difficulty that arises when analysing life course studies derives from varying data 

quality.  Because the focus is on different time periods , data from multiple sources (including routine 

data, e.g. cancer registries) are merged although their variable definition may vary, as well as their 

completeness.  The number of subjects with complete data on any subset of the variables of interest can 

therefore be reduced to a small fraction of the total while the precision of a variable may depend on 

when it was collected, for example because of changes in units (as for birth weight, measured in pounds 

or kg).  Thus measurement errors and missing values affect life course studies to a greater extent than 

standard observational studies.   

Several methods are available to deal with measurement errors (41). For example, when data 

on two or more proxy variables for an exposure of interest are collected, calibration methods can be used 

within a univariate approach (42,43).  Alternatively, as described above, multivariate models that 

include latent variables can be fitted (44).   When the data are affected by missing values, analyses based 

on complete-records (via univariate or multivariate models) are rarely appropriate because the incorrect 

assumption of a “missing completely at random” mechanism would lead to biased results (45).  If 

missingness can be assumed to be “at random” (i.e. MAR) either of two closely related (46) approaches 

can be used: imputation methods with univariate models  (47) , and ML plus the EM algorithm (36), or 

Bayesian simulations (48), with multivariate models.  When instead data are suspected to be  

systematically missing because of unmeasured factors, extensive sensitivity analyses- either in 

univariate or multivariate models- should be performed (49-52).  
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EXAMPLES AND DATA 

Two examples arising in the analysis of two UK cohorts will be used for illustration.  The first 

investigates how maternal and grand-maternal factors influence the size at birth of an offspring using the 

Children of the 1950s Study.  This cohort includes all people who in 1962 participated in a reading 

survey while attending primary school in Aberdeen (Scotland; 53,54).  Data were collected from the 

participants’ obstetric records and on characteristics of their parents and grand-parents. In 1999-2000, 

4497 female study members (78% of the total) were anonymously linked to Scottish maternity records  

leading to birth data on their offspring.  Thus information on three generations (the grandparents, 

denoted G0, the study participants, G1, and their offspring, G2) can be studied. 

The second example focuses on how adult leg-length, which has been used in cancer and 

cardiovascular epidemiology as a marker of childhood environmental factors (55,56), is determined by 

different periods of childhood growth.  The leg-length of participants in the  Medical Research Council 

National Survey of Health and Development (NSHD) was measured by a trained nurse when aged 43 

years.  The NSHD is a socially stratified birth cohort which includes 2547 women and 2815 men born 

during the week 3-9 March 1946 (57-59) and followed prospectively, with childhood height measured at 

ages 2, 4, 6, 7, 11, and 14/15 years by trained personnel.  

 

RESULTS 

Example 1: Intergenerational influences on size at birth 

We aimed to investigate how strongly intergenerational factors influence a baby’s size at birth 

(defined as birth weight standardised for gestational age) using data from the Children of the 1950s  

Study (Figure 4;54). For illustration we consider only biological G1 and G0 factors (birth size of the 
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mother, and height and parity of mother and grand-mother) and restrict the analyses to 1724 first 

singleton baby girls .   

Fitting a univariate linear regression model for G2 birth size on all potential explanatory 

variables shows that all maternal factors have positive effects, unlike the  grand-maternal ones (Table 1a). 

Thus offspring (G2) size at birth is larger when the mother (G1) is taller, holding constant all other 

variables, but is reduced (although not significantly) when, again holding all other variables constant, 

her grand-mother (G0) is taller or had more children. The negative G0 height effect should be 

interpreted in conjunction with the positive G1 effect , since these two variables are de facto repeated 

measures of the same variable.  A clearer interpretation would focus on the ir difference , and conclude  

that the taller a G1 woman is relative to her mother the larger her offspring (estimated ß2=0.18 in 

equation (2b)).                                                                                                                           . 

By instead fitting the path analysis model equivalent to Figure 4 we can deal with these 

relationships simultaneously (Table 1b). The estimated direct effect coefficients corresponding to the 

arrows leading to the multivariate outcomes (within double boxes) show that G1 adult height increases 

with G0 adult height and G1 birth size but decreases with increasing G0 parity (i.e. was lower in larger 

families) while G1 birth size increases with increasing G0 parity and G0 adult height.  By multiplying 

the standardized parameters along the relevant pathways, the indirect effects on G2 birth size of G0 

parity, G0 adult height and G1 birth size can be estimated (Table 2). They show that, although G0 height 

has a negative direct effect (i.e. not mediated), its indirect effect via G1 birth size and G1 height is 

positive, leading to a positive and significant total effect (0.13= 0.49*0.18 (via G1 height) +0.20*0.19 

(via G1 birth size)+0.20*0.19*0.18 (via G1 birth size and height); Table 2).  So, although the univariate 

model gave an insight into intergenerational direct effects, the path model led to a more comprehensive 

summary of the ir inter-relationships. 
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Example 2: Childhood growth and adult leg-length  

We used data on 2349 the female participants in NSHD, for whom at least one childhood 

height or adult leg-length was available, to investigate which childhood periods are most associated with 

adult leg-length.  A series of univariate regression models for adult leg-length were fitted adding each 

childhood height measure one at a time, starting from age 2 years. Because of missing values these  

models are based on different numbers of observations (Table 3a).  

At first sight, the results are difficult to interpret because of the changing size and, occasionally, 

sign of the parameters obtained for the same height measure in different models. The only systematic 

feature of these models is the consistently larger size and significance of the estimated coefficient 

corresponding to the oldest age. Model 4 is however the exception.  Here the oldest age, 11 years, 

reflec ts stage of sexual matur ation as much as linear growth- and stage of maturation is a poor predictor 

of adult leg-length.  Thus it is not surprising that height at this age has a weak effect on adult leg-length 

when conditioned on earlier stature. 

In the model including all available childhood measures (model 5) the effects of height at age 2 

and 11 are negative , showing that, conditionally on all other childhood measures, being shorter at these 

ages leads to longer adult leg-length.  This can also be seen when plotting the equivalent standardised 

coefficients, as suggested by Cole (26; Figure 5).  When heights are replaced by height increments 

(Table 3b), the coefficients in each newly fitted model are the sum of the coefficients in the original one  

(as shown in equation (2d) ).  For example in model 5 the coefficient for height increments between age 

6 and 7 years is precisely 0.493=0.148-0.102+0.447, i.e. is the sum of the conditional height effects at 

ages 7, 11 and 15. Thus the coefficients in Table 3b capture the cumulative effect of a shift in height at 

one age as it impacts on a girl’s height at all subsequent ages.   
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Given the similarity of the coefficients for the earliest height differences , the model can be 

simplified to include only the intervals 2 to 7 years, 7 to 11 years, and 11 to 15 years (Tables 4a-4b). To 

obtain comparable measures of effects the model with yearly height velocities is also reported (Table 4c).   

Here the estimated coefficients are multiples of those found when using height increments: for example  

the coefficient for height velocity between age 2 and 7 years is five times that for the equivalent height 

difference and 0.55=0.19-0.10+0.45 is the sum of the conditional height effects.   

An equivalent multivariate analysis would assume that a girl’s growth profile is determined by 

a latent process that influences her adult leg-length.  Thus we parameterized the growth process in terms 

of average height at age 2, and height velocities between the ages of 2 and 7, 7 and 11, and 11 to 15 

years (Figure 6).  These are latent variables which are manifested by the observed heights at 2, 4, 6, 7, 

11 and 15 years (the `measurement model’ ), where the latent variables are equivalent to  random 

coefficients in a generalized linear mixed model (60-62).   The structural part of this multivariate model 

defines instead how the latent variables influence adult leg-length (Figure 7).    

The measurement and structural models were jointly fitted, the first giving estimated mean 

growth parameters (Table 5) which were consistent with both observed values (Table 4c) and standard 

growth charts (63,64).  The structural model gave estimates of the effects of the growth parameters on 

adult leg-length, which were similar to those found by the univariate model with height at age 2, 7, 11 

and 15 years.  The mainly small numerical differences between univariate and multivariate results are to 

be attributed to two main factors.  Firstly the multivariate model was fitted using all height measures, 

with the consequent impact on average height at age 2.  Secondly, the multivariate model dealt with the 

measurement error that arises when height velocities are calculated from observed data by specifying 

them as latent variables.  Thus the confidence intervals for the multivariate parameters are wider, better 

reflecting the uncertainty about the underlying growth process.  
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For comparison the multivariate estimates were obtained on the same subset of women that 

contributed to the  univariate model (N=794) .  However, assuming that the missing height and leg-length 

values occurred at random (45), the multivariate model can be re-fitted using the 2349 women who had 

at least one height or leg measure, via the EM algorithm available in M-Plus (Table 5b; 40).  The results 

are marginally different from those found earlier, reflecting the fact that the 794 women in the initial 

analyses were on average taller at younger ages, grew slower from 11 to 15 years, and had shorter leg-

length than the rest (Table 6).      

 

DISCUSSION 

In this paper we have described the issues aris ing when explanatory variables are closely 

associated because of underlying temporal or biological processes, a frequent feature of life course 

studies.  Univariate and multivariate models have been compared using examples drawn from our work 

in cardiovascular and cancer epidemiology.  These were chosen for their relative simplicity, the purpose 

of the analyses being illustrative, so that thorough epidemiological investigations were restrained and 

technical details avoided. Other, more complex, applications can be found in the life course literature 

(e.g.,14,65,66).   

We have used the classification of univariate and multivariate models to contrast two main 

analytical approaches.  Univariate models are relatively easy to apply but also to misinterpret when the 

conditioning variables are ignored.  In contrast, multivariate models may seem ideally suited to deal 

with life course problems because they explicitly specify the presumed causal and temporal mechanisms 

for the distal outcome.  Further missing data problems can be dealt with directly, if a MAR assumption 

is appropriate, and measurement error problems by specifying latent variables within a SEM.  However 
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several alternative model specifications  (`structures’) might be appropriate for a particular application.  

Thus the choices may be too subjective, especially because formal comparisons are problematic (67).   

Whatever approach is adopted the main issue is how to deal with  life course dependencies  

while at the same time considering the impact of unmeasured - or  poorly measured -  factors that  

influence the pathway of interest. This is not a new topic in epidemiology (68-70), although it has 

recently become the focus of renewed interest, as demonstrated by the current debate on causal 

modelling (18,24,71-78) and on the role of statistics in causal inference (79-82).   Inspired by that debate 

we have used the distinction between univariate and multivariate modelling in the context of life course 

studies, mirror ing the distinction between descriptive and causal modelling (68). Indeed SEMs could be  

viewed as algebraic representations of causal beliefs (18). It must be stressed however that either  

approach is prone to misspecifications and thus should not be singly relied upon for causal inference  

(16). To achieve robust conclusions more than one analytical approach should be adopted with the 

results compared and inconsistencies investigated, thus carrying out sensitivity analyses in the broader 

sense (83).  
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Table  1.  Mutually adjusted coefficients obtained from a univariate regression model for offspring birth 

size*, and  from a multivariate regression model for offspring birth size, maternal birth size and maternal 

adult height in the Children of the 1950s Study (N†=1692).   

 

Table 1a 

  

Univariate model for G2 birth size 

 

Explanatory 

variables  

Units/ Coding  Coef.‡ 95% CI     

G1 birth size  1 SD     0.19 0.15, 0.24     

G1 adult height 1 SD (=6.0 cm)    0.18 0.12, 0.23     

G1 parity Parous vs. nulliparous    0.26 0.12, 0.40     

G0 adult height 1 SD (=5.6 cm)  -0.02 -0.07, 0.03     

G0 parity Parous vs. nulliparous  -0.06 -0.10,-0.03     

        

 

Table 1 b 

  

Multivariate model for G1 birth size, G1 adult height and G2 birth size  

  Direct effects on: 

 G2 birth size G1 adult height G1 birth size Explanatory 

variables Units/ Coding Coef.‡ 95% CI Coef.‡ 95% CI Coef.‡ 95% CI 

G1 birth size 1 SD     0.19 0.15, 0.24  0.19 0.15, 0.23 - - 

G1 adult height 1 SD (=6.0 cm)    0.18 0.12, 0.23 - - - - 

G1 parity Parous vs. nulliparous    0.26 0.12, 0.40 - - - - 

G0 adult height 1 SD (=5.6 cm)  -0.02 -0.07, 0.03  0.49 0.45, 0.53 0.20 0.16, 0.25 

G0 parity Parous vs. nulliparous  -0.06 -0.10,-0.03 -0.08 -0.11, -0.05 0.07 0.04, 0.11 

 

N: study size; Coef.: estimated regression coefficient; CI: confidence interval 

G0: grand-maternal; G1: maternal (index): G2: offspring. 
* Birth size is defined as birth weight standardized for gestational age and standardized to have SD=1; this corresponds to 

around 0.5-0.6 kg in birth weight at most weeks  of gestation.  
†There were 32 participants with missing values in at least one of the explanatory variables used in these models. 

‡ Mutually adjusted coefficients. 
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Table  2. Direct, indirect and  total effects estimated from the multivariate model for offspring birth sizea, 

maternal birth size and maternal adult height in the  Children of the 1950s Study (N=1692).  

 

   Direct effects Indirect effects Total effects 

Explanatory Variables  Units/ Coding Coef. 95% CI Coef. 95% CI 

 

Coef. 95% CI 

        

G1 birth size 1 SD  0.19 0.15,0.24 0.03   0.02,0.05 0.23 0.18,0.27 

G1 adult height 1 SD (=6.0 cm) 0.18 0.12,0.23 - - 0.18 0.12,0.23 

G1 parity  Parous vs nulliparous  0.26 0.12,0.40 - - 0.26 0.12,0.40 

G0 adult height 1 SD (=5.6 cm) -0.02 -0.07,0.03 0.13 0.10,0.16 0.11 0.07,0.16 

G0 parity  Parous vs nulliparous  -0.06 -0.10,-0.03 0.003 -0.01,0.01 -0.06 -0.10,-0.02 

        

        

N: study size; Coef.: estimated regression coefficient; CI: confidence interval; BW: birth weight; G0: grand-maternal; G1: 

maternal: G2: offspring 
a Birth size is defined as birth weight standardized for gestational age and standardized to have SD=1; this corresponds to 

around 0.5-0.6 kg in birth weight at most weeks  of gestation.  
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Table  3.  Univariate linear regression models for leg length at age 43 years on childhood 

height measures using either absolute childhood height measures or  absolute height at age 2 

years plus height increments after that age; women in the Medical Research Council National 

Survey of Health and Development; United Kingdom. 

Univariate linear regression models for adult leg-length (cm)

Model 1  

(N=1196) 

Model 2  

(N=1050) 

Model 3  

(N=1001) 

Model 4 

(N=920) 

 

Coef. 95% CI Coef. 95% CI Coef. 95% CI Coef. 95% CI

Table 3a       

Height (cm)  at age (years):       

 2 0.08 0.03, 0.14 -0.02 -0.08, 0.05 -0.02 -0.08, 0.04 -0.03 -0.09, 0.04

 4 0.37 0.32, 0.43 0.10 0.03, 0.18 0.05 -0.03, 0.13 0.04 -0.05, 0.12

 6 - - 0.38 0.31, 0.46 0.14  0.03, 0.24 0.15 0.04, 0.26

 7 - - - - 0.31  0.21, 0.41 0.29 0.17, 0.40

 11 - - - - - - 0.03 -0.03, 0.09

 15* - - - - - - - - 

Table 3b       

Height (cm)  at age (years)       

 2 0.45 0.40, 0.51 0.47 0.41, 0.53 0.48 0.42, 0.54 0.48  0.42, 0.54

Height  increment (cm)  between ages (years) :      

 2 and4 0.37 0.32, 0.43 0.49 0.43, 0.54 0.50 0.44, 0.55 0.51   0.45, 0.57

 4 and 6 - - 0.38 0.31, 0.46 0.44 0.37, 0.52 0.47  0.39, 0.55

 6 and 7 - - - - 0.31 0.21, 0.41 0.32  0.21, 0.43

 7 and 11 - - - - - - 0.03 -0.03, 0.09

 11 and 15* - - - - - - - - 

Coef.: estimated regression coefficient; CI: confidence interval 
* Height was measured between 14 and 15 years. 
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Table  4.  Univariate linear regression models for leg length at age 43 years on a selection of 

childhood height measures specified either as absolute measures or absolute height at age 2 

years plus height increments or absolute height at age 2 years plus height velocities*; women 

in the Medical Research Council National Survey of Health and Development; United 

Kingdom. 
 

 Univariate linear regression for adult 

leg-length  (N=794) 

 

Mean SD Coef. 95% CI 

Table 4a   

Height  (cm) at age (years):     

   2  84.7 4.8 -0.06 -0.13,  0.00 

   7  119.5 5.7 0.19  0.11,  0.28 

   11  140.9 7.2 -0.10 -0.16. -0.03 

   15 † 158.5 6.3 0.45  0.38,  0.52 

Table 4b   

Height (cm)  at 2 years 84.7 4.8 0.48 0.43, 0.54  

Height  increment (cm)  between ages (years:  

 2 and 7  34.8 5.2 0.55 0.50, 0.60 

 7 and 11  21.4 4.0 0.36 0.28, 0.43 

 11 and 15†  17.6 4.5 0.45 0.38, 0.52 

Table 4c 

Height  (cm)    at 2 years 84.68 4.80 0.48 0.43, 0.54  

Height  velocity* (cm/years)  between ages (years) :  

 2 and 7  6.95 1.04 2.74 2.48, 3.01 

 7 and 11  5.34 0.99 1.43 1.13, 1.73 

 11 and 15 † 4.39 1.13 1.81 1.54, 2.08 

 

Coef.: estimated regression coefficient; CI: confidence interval 
*Velocity is defined as height increment divided by  ages difference. 
† Height was measured between 14 and 15 years. 
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Table 5. Joint estimation of the measurement and structural models described in Figure 6 obtained using 

only complete records or all records with at least one of the measures and obtained via EM-ML assuming 

MAR; women in the Medical Research Council National Survey of Health and Development; United 

Kingdom. 

 

  Complete records analysis   

(N=794) 

Under MAR assumption   

(N=2349)  

    

  Coef. Expected 

mean 

95% CI Coef. Expected 

Mean 

95% CI 

        

 Measurement model for latent growth      

        

Height  (cm) at 2 years  87.3 87.0,87.6  87.3 87.0, 87.5 

Height velocity (cm/year)  between ages (years):   

 2 and 7     6.59  6.53, 6.66    6.51  6.45, 6.57 

 7 and 11    5.26  5.19, 5.34   5.27  5.22, 5.32 

 11 and 15 *   4.37  4.31, 4.43   4.41 4.36, 4.44 

      

 Structural model for  leg length  

     

Height  (cm)  at 2 years  0.48    0.39, 0.56 0.45    0.38, 0.52 

Height  velocity (cm/year) between ages (years):    

 2 and 7   2.29  1.67, 2.91 2.49    1.98, 3.00 

 7 and 11 1.79  1.34, 2.25 1.96    1.54, 2.31 

 11 and 15 * 1.96  1.47, 2.45 2.31  1.84, 2.77 

 

N: study size; Coef.: estimated regression coefficient; CI: confidence interval; EM: expectation-maximization 

algorithm; ML: maximum likelihood; MAR: missing at random.  
* Height was measured between 14 and 15 years. 
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Table  6. Characteristics of women with/without complete childhood height  and adult leg-length data; 

women in the Medical Research Council National Survey of Health and Development; United Kingdom. 
 

 

With complete records  

 

Without complete records  

 

N Mean SD N  Mean SD 

   

Height  (cm) at age (years) :  

    2  794   85.08 4.40 1079   84.38 5.05 

    7  794 119.96 5.39 1199 119.18 5.88 

    11  794 141.36 6.99 1119 140.49 7.24 

    15 † 794 158.81 6.14   932 158.15 6.42 

        

Height  velocity* (cm/years)  between ages (years) :     

 2 and 7  794 6.98 1.00   839 6.93 1.08 

 7 and 11  794 5.35 1.01 1013 5.34 0.98 

 11 and 15 † 794 4.36 1.13   841 4.42 1.14 

        

Leg-length 794 75.45 4.57   814 75.66 4.84 

      
 

* Velocity is defined as height increment divided by  ages difference. 
 † Height was measured between 14 and 15 years. 
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FIGURE 1. A simplistic time line representation of conceptual (in the ovals) and observable risk factors for breast 
cancer. 
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Figure 2. Hypothetical life course plot indicating that change in the explanatory variable between age 4 
and 6 years has a positive effect on the outcome 
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 Figure 3a – Example of path diagram* for one distal outcome (Y), one intermediate outcome (X3 ) and 

two background variables (X1, X2). 

 

 

 
 

 
 

 

 

* Arrows depicting random variation for each variable  are omitted for simplicity.  
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Figure 3b – Example of path diagram* for one distal outcome (Y) and a latent variable (U) measured by 

three proxy variables (X1 , X2, X3) 

 

 

 

 
* Arrows depicting random variation for each variable are omitted for simplicity.  Boxes are used to represent proxy 

variables, circles for latent variables. 
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Figure 4. Simplified path diagram* for intergenerational influences on birth size  

 
 

 
 

G0: grandmothers; G1: mothers (index); G2: offspring 

 
* Arrows depicting random variation for each variable are omitted for simplicity; double lined 
boxes are the dependent variables.   
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Figure 5. Life course plot of the regression coefficients in the model of leg length on standardised height 

measures from age 2 to age 15 years ; the Medical Research Council National Survey of Health and 

Development; United Kingdom; N=791. 
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Figure 6. Hypothetical piecewise linear model for childhood growth  
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Figure 7. Simplified path diagram* of the relationship between the height measurements taken at ages 2, 4, 

7, 11, and 15 years and adult leg length.  

 

 
 
* Arrows depicting random variation for each variable are omitted for simplicity.  Boxes are used to represent proxy 

variables, circles for latent variables. 
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