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Starka virna, vestilie

Obadeea, obadeea

Starka, virna, vestilie

Obadeea, monye.

Stala, stoita, stonga raer

O, whit says du da bunshka baer?

O, whit says du da bunshka baer?

Litra mae vee drengie.

Saina, papa wara

Obadeea, obadeea

Saina, papa wara

Obadeea, monye.

Strong winds blow from the west

they may bring trouble and damage the

boat, men.

Make sure the mast is rigged securely.

Do you think the boat will be able to

carry her sail?

I’m pleased with it, boys.

Holy Father, take care of us

There may be trouble and the boat may

be damaged.

Unst Boat Song: Shetland’s oldest sur-

viving song. Words from the version by

Fair Isle family group Fridarey from their

album ”Across the Waters”.
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Abstract

There is currently no existing asymptotic theory for statistical inference

on the maximum likelihood estimators of the parameters in a mixture of

linear mixed models (MLMMs). Despite this many researchers assume the

estimators are asymptotically normally distributed with covariance matrix

given by the inverse of the information matrix. Mixture models create new

identifiability problems that are not inherited from the underlying linear

mixed model (LMM), and this subject has not been investigated for these

models. Since identifiability is a prerequisite for the existence of a consistent

estimator of the model parameters, then this is an important area of research

that has been neglected.

MLMMs are mixture models with random effects, and they are typi-

cally used in medical and genetics settings where random heterogeneity

in repeated measures data are observed between measurement units (peo-

ple, genes), but where it is assumed the units belong to one and only one

of a finite number of sub-populations or components. This is expressed

probabalistically by using a sub-population specific probability distribution

function which are often called the component distribution functions. This

thesis is motivated by the belief that the use of MLMMs in applied settings

such as these is being held back by the lack of development of the statisti-

cal inference framework. Specifically this thesis has the following primary

objectives;

i To investigate the quality of statistical inference provided by different

information matrix based methods of confidence interval construction.

ii To investigate the impact of component distribution function sepa-

ration on the quality of statistical inference, and to propose a new

method to quantify this separation.



iii To determine sufficient conditions for identifiability of MLMMs.
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Notation

N Set of natural numbers N := {0, 1, 2, ...}

N+ Set of natural numbers excluding zero N+ := {1, 2, ...}

In Set of integers In := {1, ..., n}, n ∈ N+

Rn Euclidean n-space for n ∈ N+

Rm×n Set of real m× n matrices for m,n ∈ N+

{
m
aij
}I,J
i,j=1,1

I × J matrix with elements aij , i ∈ II , j ∈ IJ

{
c
ai
}I
i=1

I × 1 column vector with elements ai, i ∈ II{
r
aj
}J
j=1

1× J row vector with elements aj , j ∈ IJ

tr(A) For an m×m matrix A tr(A), the trace of A, is the sum of
the diagonal elements of A

vec(A) If the m × n matrix A has ai ∈ Rm, i ∈ In, as its
ithcolumn, then vec(A) is the mn × 1 vector defined by
vec(A) :=

{
c
ai
}n
i=1

v(A) Transformation of a m×m matrix A into a m(m+ 1)/2× 1
vector obtained by deleting all the elements of vec(A) that
are above the diagonal of A

D̃m If A is a symmetric m × m matrix then the duplication
matrix D̃q is a m2×m(m+ 1) matrix that transforms v(A)

into vec(A) via the relationship D̃mv(A) = vec(A)

⊗ Kronecker product of two matrices defined so that if A and
B are m× n and p× q matrices respectively, and where A
has elements aij , i ∈ Im, j ∈ In, then A⊗B is the mp× nq
matrix defined by A⊗B :=

{
m
aijB

}m,n
i,j=1,1

viii



Dvec(X) (f(X)) For f : S −→ R , S ⊆ Rn×q, and for X :=
{
m
xi,j
}n,q
i,j=1,1

,

Dvec(X) (f(X)) is the 1 × nq vector of partial derivatives
of f with respect to vec(X) defined as Dvec(X) (f(X)) :=

[vec
{
m
∂f/∂xij

}n,q
i,j=1,1

]
ᵀ

Dx (f(x)) For f : S −→ Rm
, S ⊆ Rn, and for x :=

{
c
xi
}n
i=1

, f :={
c
fj(x)

}m
j=1

, fj : S −→ R , j ∈ Im, Dx (f(x)) is the m× n
Jacobian matrix of partial derivatives of f with respect to
x defined as Dx (f(x)) :=

{
m
∂fj/∂xi

}m,n
j,i=1,1

Hvec(X) (f(X)) For f : S −→ R , S ⊆ Rn×q, and for X :=
{
m
xi,j
}n,q
i,j=1,1

,

Hvec(X) (f(X)) is the (nq)2×(nq)2 Hessian matrix of second
partial derivatives of f with respect to x given byDx (g(x))
where g(x) := [Dvec(X) (f(X))]

ᵀ
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Introduction

This thesis is focused on multivariate data Yi ∈ Rni , i ∈ IN := {1, ..., N}, where

the distribution of the random vector Yi is a finite mixture of G multivariate normal

distributions, specifically where the distribution is induced by a Mixture of Linear

Mixed Models (MLMMs), which as the name suggests consists of a finite set of G

Linear Mixed Models (LMMs). The research objectives of this thesis are focused on

methods to construct confidence intervals about the model parameter estimators in

order to perform statistical inference on the model parameters, and on identifiability

problems associated with the mixture distribution.

For the general multivariate mixture distribution (not necessarily induced by a

model for the vectors Yi) we observe a random sample {Y1, ...,YN} of N vectors Yi ∈
Rni , i ∈ IN := {1, ..., N}, where Yi has a distribution with a density function that is a

finite mixture of density functions

fi(yi|θ) =
G∑
j=1

πjfij(yi|θj), (1.1)

where fig(·|θg), g ∈ IG := {1, ..., G}, is a density function with parameter θg ∈ Θg ⊆
Rnθ , θ :=

[
θ

ᵀ

1 , ...,θ
ᵀ

G,π1, ...,πG
]ᵀ
∈ Θ, where

Θ =

(θ
ᵀ

1 , ...,θ
ᵀ

G, π1, ..., πG)
ᵀ

:

G∑
j=1

πj = 1, πj ≥ 0,θj ∈ Θj , j = 1, ..., G

 . (1.2)

For MLMMs the random vectors Yi, are typically interpreted as N measurement

units (entities, objects etc.) on which a ”response” vector is obtained, where the within-
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unit responses are correlated whilst the between unit observations are independent. In

chapter 2 we describe an interpretation of LMMs which we will call the hierarchical

interpretation, whereby we associate with each Yi a normally distributed vector of

random effects Ui ∈ Rq with mean zero and covariance matrix Dg, where conditional

on Ui = ui, and if unit i belongs to component g ∈ IG, then Yi follows a Linear Mixed

Model (LMM) given by

Yi = Xiβg +Ziui + ei, (1.3)

where βg ∈ Rp is a vector of fixed effects, Xi is a ni × p matrix of covariate data,

and ei ∈ Rni is a normally distributed vector of errors with mean zero, and covariance

matrix σ2
gCi(φg). By integrating the conditional distribution of Yi|Ui = ui (Verbeke

and Molenberghs, 2009, p 24) with respect to Ui we obtain the marginal distribution of

Yi that has the gth component density function fig(·|θg) in (1.1), where the covariance

matrix Vi(ζg) for Yi has the following form

Vi(ζg) = ZiDgZ
ᵀ

i + σ2
gCi(φg), (1.4)

where Zi, Dg, and Ci(φg) are ni × q, q × q, and ni × ni matrices respectively, so that

ζg = (ψ
ᵀ

g , σ
2
g ,φ

ᵀ

g)
ᵀ
, ψg = v(Dg), is a vector of covariance parameters. Here the v(·)

function stacks the supra-diagonal elements of its matrix argument one on top of each

other. Thus ψg is a q(q + 1) × 1 vector of the unique elements of Dg. Equation 1.4

shows that the random effects induce a covariance structure for the ni components of

Yi. When G = 1 we shall say Yi follows a 1-component model, or a LMM, and we shall

use these two terms interchangeably.

Historically there has been an interest in mixture distributions where the underlying

model is an ordinary regression model yi = x
ᵀ

iβg + ei for scalar responses yi, and

covariate vector xi ∈ Rp, where the ei are normally distributed errors with variance

σ2
g . By setting ni = 1 for all i ∈ IN these component-specific models are special cases

of the General Linear Model (GLM)

Yi = Xiβg + ei, (1.5)

where Yi ∈ Rni , Xi is a ni × p matrix of covariate data, and ei ∈ Rni is a normally

distributed vector of errors with mean zero, and covariance matrix σ2
gIN . In this thesis

we shall refer to a mixture of the model in (1.5) as a Mixture of Linear Models (MLM).
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The mixture models we have introduced here are comprised of component specific re-

gression models, which for a 1-component model will give rise to a sample {Y1, ....,YN}

of responses that are independent by assumption, but because of the covariate data,

will in general not be identically distributed. For example if the Xi contain the age

of subjects in a medical study then almost certainly the ages of these subjects will be

different and so too will the mean vectors Xiβg. For this reason in general a sample of

responses that follow a MLMM or MLM will also be independent but not identically

distributed. In contrast there has been huge interest historically in iid samples with

a mixture density given in 1.1 but where no regression model is specified for the re-

sponses. To distinguish between the two approaches we will refer to the class of finite

mixture densities arising from MLMMs and MLGMs as model generated finite mixture

densities, or sometimes finite mixtures densities from MLMMs or MLGMs, and as per

the convention we will refer to the class of finite mixture densities not arising from

regression models simply as finite mixture densities.

Normally distributed responses Yi that consist of correlated measurements are often

described as clustered data because plotted against one or more of the p covariates

the within-unit correlation of the observations within the response vectors means that

the NT :=
∑N

i=1 ni total responses sometimes appear grouped together in clusters.

Similarly for responses Yi from a mixture of normal distributions, plotting the responses

against one or more of the p covariates can sometimes show that the NT total responses

appear to be in clusters. Indeed for this reason MGLMs with ni = 1 for all i ∈ IN

are often referred to as clusterwise regression models, and the classification of units

to components or clusters that occurs when estimating the model is referred to as

model-based clustering.

In this thesis we will not have much need to refer to this grouping or clustering

effect (regardless of the cause), however we will often discuss the process of assignment

of units to components by a mixture model. Historically this has been called clustering,

but to avoid confusion we will refer to this either as the assignment of units to compo-

nents, or simply as component estimation. The justification for this latter term is that

correctly determining the component memberships should lead to an accurate estima-

tion of the mixture distribution means and variances which completely characterises

normal distributions, and hence the probabalistic behaviour of the components.
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LMMs are used primarily for data where the ni repeated observations in Yi repre-

sent observations on unit i taken under different experimental conditions or at different

times (longitudinal data). The primary aim of using LMMs for these data is to em-

ploy the covariance matrices Vi(ζ) to model the within-unit correlation in the response

vectors in order to obtain unbiased estimates of β, and/or estimates of β with greater

precision than are obtained by simply ignoring the correlation. Analogously for re-

peated measurements data distributed as a mixture of normals, the main motivation

for the use of MLMMs is primarily to obtain unbiased and/or more precise estimates of

the fixed effects compared to those obtained by simply ignoring the mixture by using a

LMM. In contrast when component estimation rather than the parameters themselves

are of primary concern then by definition (it is assumed sub-populations exist) mixture

models or some other classification tool are used rather than LMMs or GLMs. Histori-

cally this has been the main motivation behind the use of clusterwise regression models

which have been used extensively.

Two areas where MLMMs have been used is in medical and genetics settings. For

example to analyse microarray data that consist of measurements on a large number of

genes, where the genes were the units (Celeux et al. (2005)), and to analyse repeated

measures data from patients in clinical trials, where the people are the units, for example

Grün and Hornik (2011) and Xu and Hedeker (2002). For the genetic settings the

main motivation for the use of mixture models is as a classification tool, whereas in

the medical settings the main motivation is to obtain unbiased and/or more precise

parameter estimates. One non-medical example of MLMMs is that of Coke and Tsao

(2010) who apply MLMMs to electricity load series data, which are long time series of

household electricity load values (households are the units) taken at hourly intervals

over the time period of one year. The primary purpose of fitting a MLMM here was the

component estimation rather than the parameter estimates, specifically the electricity

company was interested in dividing their customers into groups that were homogeneous

with respect to their electricity usage patterns.

We have described that plotting the responses from a LMM and a mixture model

against one or more covariates can often reveal the clustering in the responses. For

mixture models however the clusters in general will not, and indeed should not, be com-

pletely determined by any single covariate in the model, because this will cause numer-
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ical instabilities during parameter estimation due to the model being non-identifiable,

or close to non-identifiable.

Of course this is an extreme example, but we would still expect similar problems

if the range of covariate values within each component was very narrow rather than

two single points such that the covariate ”almost” identifies the two components. In

this situation we might be close to having a non-identifiable mixture model. The main

point is that whilst the values of the covariates should in combination serve to classify

the units to the components, no single covariate should be able to perfectly, or almost

perfectly achieve this classification. In more formal language we have that all of the

covariate data in this example concentrate on two (p − 2)-dimensional hyperplanes,

and for clusterwise regression models Hennig (2000) has shown that this relationship

between the number of components and hyperplanes can be used instrumentally in a

sufficient condition for identifiability.

Using a counter example to identifiability Hennig (2000) shows for a two component

model an example where the concentration of covariate data on two hyperplanes leads

to a non-identifiable mixture model but at the same time identifiable one component

models. Thus mixture models bring with them their own identifiability problems not

inherited from the underlying model. In chapter 4 we investigate this identifiability

problem in MLMMs, and in this respect prove two theorems establishing sufficient

conditions for identifiability, and derive a corollary from one of these establishing suffi-

cient conditions for identifiability for a MLMM with no autocorrelation structure in the

within-unit covariance matrices. As far as we can determine these are new results for

MLMMs which show that some rank restrictions on the design matrices for both the

fixed and random effects can lead to the information from just a single unit identifying

both the 1-component and the mixture model. Interestingly this result only holds triv-

ially for clusterwise regression in the sense that the result holds only if a single variable

is included in the regression model. The difference is caused by the greater information

contained within the units for MLMMs compared to MGLMs, which can be thought of

a consisting of N units each with only a single response.

In this thesis we will specify Ci(φg) as an autoregressive correlation matrix of

order r, which is equivalent to assuming the within-unit errors contained in ei follow

an autoregressive process of order r. To our knowledge this use of an autoregressive

correlation matrix for the correlation structure of the within-unit errors in a MLMM
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has not before been used, although similar assumptions have been used before but in

slightly different ways. For example in a Bayesian setting Fruehwirth-Schnatter and

Kaufmann (2008) use a MLMM where each yij , j = 1, ..., ni, follow an AR(1) process

with random coefficients, and in a frequentist setting Bartolucci et al. (2011) uses a

MLMM where Ui follows a AR(1) process. The only model we can find that permits

serial dependence in the within-unit errors is by Coke and Tsao (2010) who assume the

errors follow an antedependence model, which is a model for non-stationary correlation.

Furthermore no regression components were used, and σ2
g was assumed constant across

components.

Although all of these methods imply the responses follow an AR process, they do

so in ways that are not equivalent. For example the method we use does not imply the

random effects Ui are autocorrelated, and vice-versa. We also describe in subsection

A.1 that the AR process must be stationary, which refers to a state of ”statistical

equilibrium”, in order for the resulting covariance matrix Ci(φg) of ei to be stationary.

In turn this implies certain conditions must be met by the autoregressive parameters

contained in φg. Since the covariance matrix of the responses, the random effects and

the within-unit errors have different forms, then it is likely these conditions will be

different depending which of these quantities are assumed to follow the autoregressive

process. Thus we feel the use of an AR correlation matrix as specified in this thesis is

different enough to add value to the existing literature.

In section 3.1, for finite mixture densities we summarise the relevant literature

regarding statistical inference for the model parameters using maximum likelihood es-

timators (MLEs). We describe there how an important asymptotic result from general

maximum likelihood theory (i.e. not necessarily for mixture models) for iid samples

applies to mixture models. This result is in fact an amalgamation of results from mul-

tiple authors but is widely attributed solely to Redner and Walker (1984), and states

that the MLE θ̂ is asymptotically distributed with mean θ, and variance given by the

inverse of the information matrix. To our knowledge no such analogous result exists for

non-iid samples, and hence for most MLMMs, however many researchers nonetheless

still use it as if it has been proven to hold.

One area that needs explaining when trying to apply such iid results is that of

identifiability of the model when regression parameters are used. In particular the

conditions ensuring identifiability must be specified, and so too must the method of how

6



these conditions are maintained as N tends to infinity. In this respect Hennig (2000) has

provided some sufficient conditions for identifiability of clusterwise regression models,

but currently no consistency proof for these models use these conditions, nor provides

an adequate alternative. Thus the question of consistency is not fully closed even for

clusterwise regression, and so it is not surprising the same is true for MLMMs.

For the reasons just described it is our opinion that such generalisations from the

iid to the non-iid setting are made too readily, often without even mentioning this

problem. Thus one of the primary objectives of this thesis was to investigate, through

simulations, whether the iid theory works well for MLMMs. Accordingly in section 3.2

we describe three closely related methods of constructing confidence intervals around

the MLMM parameter estimates in order to perform inference about the model parame-

ters. These methods are concerned with approximating the mixture model information

matrix, since direct calculation is not possible. These three methods extend the work

of Boldea and Magnus (2009) who use these methods for finite mixture densities, and

thus represent new methods of inference for the parameteres of MLMMs.

We describe a fourth method of confidence interval construction in subsection 3.4.3

which uses the LMM information matrix within each component, or ”component-

wise” to provide confidence intervals for the component distribution parameters θj ,

j = 1, ..., G, but not the mixing proportions. The idea for componentwise inference

comes from the R package ”Flexmix”, and also from Grün (2008), and to our knowl-

edge this is the first time such a method has been evaluated for its ability to perform

inference in the MLMM. This componentwise method of inference relies upon the model

component distribution functions being ”well separated” - a concept we describe in de-

tail in subsection 3.4.1, but that briefly relates essentially to component distribution

functions being easily distinguished from each other. Traditionally this metric has

been based on distances between the means of the densities, but in subsection 3.4.1

we propose a new method of measuring separation based upon how easily the model

parameters can be distinguished from one another.

In this thesis we describe the componentwise inference method of Grün (2008), and

the way in which we apply the mixture model confidence interval methods of Boldea

and Magnus (2009) to the MLMM, as ”naive” methods of inference. This is because in

the former case we ignore the mixture model likelihood function, and in so doing ignore

the opportunity to do something more sophisticated by using a separate probability
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density function for each component in the population. In the latter case, and as we

have described, we are ignoring the fact that the iid theory we are applying has not

been proven to hold for MLMMs.

We believe the main contributions of this thesis are;

• An in depth discussion of statistical inference subjects is provided which provides

a much needed clarification on issues often superficially dealt with by researchers.

• Extensive simulation results in chapter 5 provide insight into how the proposed

naive methods of inference might in general perform in a realistic applied setting

by using sufficiently complex rather than overly simplistic models.

• The equations derived for the mixture model information matrix approximations

in chapter C will prove useful reference equations for researchers to use in order

to implement these new, albeit naive, methods of inference.

• The proposed method of quantifying component separation provides a useful al-

ternative to the many other methods that have already been proposed since the

method focuses on separation of parameters rather than the component density

means.

Finally in chapter 6 we present two examples of the application of MLMMs to a

dataset from an oncology clinical trial investigating treatment for lung cancer where the

variables analysed are quality of life scores derived from a questionnaire. The results

highlight both the usefulness and the difficulties associated with fitting mixture models.
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2

MLMMs: Model description and

estimation

2.1 Model description

Here we formally describe the hierarchical interpretation of MLMMs to which we re-

ferred in Chapter 1. In all that follows, and indeed throughout the entire thesis, unless

otherwise stated g as a subscript will denote g ∈ IG - that is the object with the sub-

script belongs to, or is associated with, component g. Let Y = {Y1, ...,YN}, Yi ∈ Rni ,
i ∈ IN , be a random sample of N units from a population that consists of G subpopula-

tions or components. Conditional on unit i belonging to component g ∈ IG, we assume

Yi follows the LMM given by

Yi = Xiβg +Ziui + ei, (2.1)

where Xi and Zi are ni × p and ni × q fixed matrices respectively, βg ∈ Rp is a fixed

vector, ui is the realized value of a random vector Ui ∈ Rq, and ei ∈ Rni is a random

vector. As per convention we shall call ei the vector of errors or within-unit errors. We

shall call Xi the matrix of covariate data, βg the fixed effects or vector of fixed effects,

ui the random effects vector and Zi the matrix of random effects covariate data. Note

that the model in (2.1) is conditional on Ui = ui.

Since the N units are a random sample from the G components, the probability

of component membership for each component is the same for all units. Thus we

define the vector of component probabilities or mixing proportions as π := [π1, ..., πG]
ᵀ
,
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(π)j ∈ [0, 1], for all j = 1, ..., G, where
∑G

j=1(π)j = 1. Describing now the component

membership in terms of random variables, let the vectors {Λ1, ...,ΛN}, Λi ∈ RG for all

i ∈ IN , be distributed as

Λi ∼ multG(1,π), (2.2)

so that {Λ1, ...,ΛN} models an iid sample from a multinomial distribution. The range

of values that Λi can take will be denoted by the set A =
{
λ(1), ...,λ(G)

}
, where λ(g),

g ∈ IG, denotes a G× 1 vector with a 1 in the gth element and zeroes elsewhere. The

notation λ
(g)
j means the jth element of λ(g), j = 1, ..., G.

In terms of our sample we observe a realization {λ1, ...,λN} of the random variables

{Λ1, ...,ΛN}, where the notation Λij and λij means the jth elements of Λi and λi

respectively for j ∈ IJ , i ∈ IN . For each λ(g) ∈ A, the probability that Λi takes

on this value, i.e., the probability that the ith unit belongs to the gth component, is

P
(
Λi = λ(g) |π

)
= πg = h

(
λ(g) |π

)
, where h is the probability mass function of Λi.

For brevity in conditional density functions we shall write λ
(g)
i to mean Λi = λ(g)

for some g ∈ IG, and λ
(g)
ij to mean the jth element of λ

(g)
i , j ∈ IG. Accordingly

P (Λi = λ(g) |π) = πg = h(λ
(g)
i |π).

For the q × 1 vector of random effects Ui we assume

Ui|λ(g)
i ∼ Nq (0,Dg) , (2.3)

where Dg is a q×q unstructured covariance matrix. We shall write the density function

for Ui|λ(g)
i as vig(ui|λ(g)

i ,Dg).

For the purposes of taking derivatives of the log likelihood function with respect to

elements of Dg, it is convenient to parameterise Dg by exploiting the fact that the off-

diagonal elements are duplicated. In this respect let ψg = v(Dg) ∈ R(q(q+1))/2, where

v(·) is the half-vec operator that stacks the columns of the lower triangular matrix ofDg

one of top of the other. Thus ψg contains the supra-diagonal elements of Dg, and Dg

can be obtained by ”unvectorising” the vector defined by vec(Dg) = Dqv(Dg), where

D̃q is the q2 × (q(q + 1)/2) duplication matrix which allows vec(Dg) to be expressed

as a function of v(Dg). This parameterization is important for chapter C where we

will be taking derivatives of the LMM and MLMM log-likelihood functions. This is

because the q2 × 1 vector vec(Dg) contains duplicate elements on account of Dg being
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symmetric, and so Hessian matrices of functions of Dg where the derivatives have been

taken with respect to vec(Dg) will be singular and hence not invertible. In contrast the

elements of the vector ψg are unique and this problem does not arise. Although this

is not a problem for first derivatives of scalar functions (since this produces a vector

not a matrix which is to be inverted) and hence for estimation, for consistency we shall

estimate ψg rather than Dg. We will also restrict ψg to the subset of R(q(q+1))/2 which

we will denote by Σv(D), where for all ψg ∈ Σv(D), ψg gives rise to a positive-definite

Dg.

For the within-unit errors we assume

ei|λ(g)
i ∼ Nni

(
0, σ2

gCi(φg)
)
, (2.4)

where σ2
g ∈ R+, φg ∈ Σφ ⊆ Rr, Ci(φg) is a ni × ni AR(r) correlation matrix that

depends on i only through ni, and Σφ is a subset of Rr such that for all φg ∈ Σφ, φ

gives rise to a stationary AR process and thus a positive-definite correlation matrix

Ci(φg) - see subsection A.1 for a more detailed discussion of the importance of the

AR process being stationary. In this appendix section we also introduce vectors τj ,

j = 1, ..., G, of quantities known as partial autocorrelations that are purported to

give rise to a more stable estimation process compared to using the AR parameters

themselves. It turns out this is helpful to us because for each g ∈ IG there exists a

one to one transformation between φg and τg ∈ Στ ⊆ Rr, where Στ := ([−1, 1]
ᵀ
)r =

[−1, 1]
ᵀ × · · · × [−1, 1]

ᵀ ⊆ Rr × · · · ×Rr. The subset Στ is equivalent to Σφ in the sense

that for all τg ∈ Στ , τg gives rise to a stationary AR(r) process and hence a positive-

definite AR correlation matrix Ci(φg). Thus we shall use this τg parameterization for

estimation, but continue to use the AR parameters for all other purposes, switching

between the two parameterizations using the aforementioned transformations.

Now equations (2.1) and (2.4) imply Yi has the distribution

Yi|ui,λ(g)
i ∼ Nni

(
Xiβg +Ziui, σ

2
gCi(φg)

)
, (2.5)

and so integrating over Ui in (2.5) we get that the distribution for Yi conditional on

λ
(g)
i is

Yi|λ(g)
i ∼ Nni (Xiβg,Vi(ζg)) , (2.6)

11



where

Vi(ζg) = ZiDgZ
ᵀ

i + σ2
gCi(φg), (2.7)

and ζg := (ψ
ᵀ

g , σ
2
g ,φ

ᵀ

g)
ᵀ ∈ Σζ ⊆ Rnζ , Σζ := Σv(D)×R+×Σφ, and nζ := q(q+1)/2+1+r.

We note that because of the definitions of Σv(D) and Σφ, Vi(ζg) will be positive-definite

for all ζg ∈ Σζ . Letting θg :=
[
β

ᵀ

g ,ψg, σ
2
g ,φ

ᵀ

g

]
, we shall write the density function for

Yi conditional on λ
(g)
i as fig(yi|λ(g)

i ,θg), where θg ∈ Ψ := Rp × Σζ ⊆ Rnθ , and

nθ := p + nζ . Similarly we shall write the distribution function for Yi conditional on

λ
(g)
i as Fig(yi|λ(g)

i ,θg).

The marginal density of Yi is given by

fi(yi|θ) =
G∑
j=1

h(λ(j)|π)fij(y|λ(j),θj)

=
G∑
j=1

πjfij(yi|λ(j)
i ,θj), (2.8)

where θ =
[
θ

ᵀ

1 , ...,θ
ᵀ

G,π1, ...,πG
]ᵀ
∈ Θ, and

Θ =

(θ
ᵀ

1 , ...,θ
ᵀ

G, π1, ..., πG)
ᵀ

:

G∑
j=1

πj = 1, πj ≥ 0,θj ∈ Ψ, j = 1, ..., G

 . (2.9)

So we see that the marginal density of Yi is a sum or a mixture of G multivariate

normal densities weighted by the elements of π. We will write the marginal distribution

function for Yi as F (Yi|θ). Now assuming Ui |= ej , i 6= j, ei |= ej , i 6= j, and Ui |= ej ,

∀(i, j) implies conditional on the ui and λ
(g)
i that the responses {Y1, ...,YN} are all

independent. Thus the joint distribution function F (Y |θ) and density function f(Y |θ)

are both an independent product of the N distribution or density functions F (Yi|θ) or

f(Yi|θ) respectively. Consequently if we let y = (y
ᵀ

1 , ...,y
ᵀ

N )
ᵀ

be the vector of realized

values then the log-likelihood for the sample is

12



L(θ|y) = log

(
N∏
i=1

fi(yi|θ)

)

=
N∑
i=1

logfi(yi|θ)

=
N∑
i=1

log

 G∑
j=1

πjfij(yi|λ(j)
i ,θj)

 . (2.10)

Throughout this thesis we will also need to discuss a different type of mixture model

than a MLMM, which for special cases is sometimes known as clusterwise regression.

This model has N units, on which multivariate responses {Y1, ...,YN} are obtained.

Conditional on the ith observation being in component g ∈ IG, the ith response is

assumed to follow the Linear Model (LM)

Yi = Xiβg + εi, (2.11)

where Xi is a ni× p matrix of fixed covariate data, βg ∈ Rp is a vector of fixed effects,

and εi ∼ N(0, σ2
gIN ). All the εi are assumed independent, and so the {Y1, ...,YN} are

independent where Yi ∼ NN (Xiβg, σ
2
gIN ) for all i ∈ IN . Thus each Yi has mixture

density given by (2.8) but where fig(y|λ(g),θg) is a normal density function with mean

vector Xiβg and covariance matrix σ2
gIN . We will call the mixture of LMs described

above as a Mixture of Linear Models (MLMs). When ni = 1 for all i ∈ IN then a MLM

is known as a clusterwise regression model.

2.2 Estimating MLMMs using the EM algorithm

In terms of obtaining maximum likelihood estimates for MLMMs, the complex depen-

dence of the mixture model likelihood function on the parameters means that in general

the likelihood equations cannot be solved analytically, and so numerical methods must

be used to derive approximate solutions to the likelihood equations. One such proce-

dure which has proven to be very popular in this respect is the EM algorithm developed

by Dempster et al. (1977). The reason for the popularity of this algorithm may be due

to the fact that often the derivatives of the so called “complete” data likelihood used

by the algorithm are much easier to derive than the derivatives of the original or “ordi-

nary” likelihood. For example for MLMMs the ordinary log likelihood function LN (θ)

13



is a logarithm of a sum, and so the score vector will contain ratios. This makes the

derivation of the Hessian matrix very tedious indeed, and so this is often reason enough

for researchers to avoid estimation methods such as the Newton-Raphson method. In

contrast, and as we will show, the complete data log likelihood function is the sum

of logarithms, which lends itself more readily to being manipulated algebraically. The

EM algorithm also enjoys certain desirable properties, namely that the ordinary log

likelihood function increases on every iteration, and that convergence to some local

optimum is guaranteed. One of the major drawbacks of the algorithm is that it can be

very slow to converge, and that it does not guarantee a global optima is found.

For any given statistical model the EM algorithm proceeds by choosing some of

the “data” (which often includes some of the parameters) as missing or unobservable,

whilst the rest of the data is observed. The missing data is observed indirectly through

the observable data. The combination of observable and missing data is called the

complete data, whilst the observable data is called the incomplete data. This choice of

what is missing or not is to some extent arbitrary, and can therefore lead to multiple

versions or variants of the EM algorithm for the same model.

For MLLMs, and for the ith unit, the two sensible choices are to either consider both

the random vectors Ui and Λi as being missing, or to only consider Λi as missing. We

shall call these two variants the first and second variants respectively. In Subsections

2.2.1 and 2.2.2 we outline the estimating equations of these EM algorithms that we

will use to obtain maximum likelihood estimates for the parameters in MLMMs. We

describe the method used to obtain starting values for these EM algorithm variants in

Sub-section 5.1.2.

2.2.1 EM algorithm: first variant

Here we very briefly outline the necessary steps to take in order to implement an

ECM algorithm, which is a particular version of the first variant of the EM algorithm.

Let the vector Ci = (Y
ᵀ

i ,U
ᵀ

i ,Λ
ᵀ

i )
ᵀ

be the “complete” data vector, where we now

think of the random vectors Ui and Λi as being observable. Accordingly we shall

write ci = (y
ᵀ

i ,u
ᵀ

i ,λ
(Ii)
i

ᵀ
)
ᵀ

as the “observed” complete data vector, and so the actual

observed vector yi can be thought of as the “incomplete” data vector. We also assume

{C1, ...,CN} are independent random variables. There may be some confusion of Ci

with Ci(φg), however we continue with this notation since Ci in this context (i.e. as

14



the complete data vector) will only appear in this section of the thesis. Letting wig be

the density for (Yi,Ui)|Λi = λ
(g)
i , then the complete data log-likelihood from (A.18) is

given by

 Lc(θ|c) =
N∑
i=1

G∑
j=1

λ
(Ii)
ij log

(
wij(yi,ui|Λi = λ(j),θj)

)
+

N∑
i=1

G∑
j′=1

λ
(Ii)
ij′ log

(
πj′
)

=
N∑
i=1

(
λ

(Ii)
i

)ᵀ

Ti(θ|yi,ui) +
N∑
i=1

λ
(Ii)
i

ᵀ
U(π), (2.12)

where Ti(θ|yi,ui) =
{
c

log
{
wij(yi,ui|Λi = λ(j),θj)

}}G
j=1

, andU(π) =
{
c

log (πj)
}G
j=1

.

The EM algorithm maximises the ordinary log-likelihood L(θ|y) by working with

Q(θ|θ′), which is the expected value of Lc(θ|C) conditional on y and θ
′
. If we let s

denote the current iteration of the EM algorithm, and θ̂(s) the estimate obtained, then

the E-step consists of calculating Q(θ|θ̂(s)) which from appendix A.3 is given by

Q(θ|θ̂(s)) = Q1(θ|θ̂(s)) +Q2(θ|θ̂(s)), (2.13)

where

Q1(θ|θ̂(s)) =
N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s))Q1ik(θ|θ̂(s)), (2.14)

where

Q1ig(θ|θ̂(s)) = −
(ni

2

)
log(2π)−

(ni
2

)
log(σ2

g)−
1

2
log (|Dg|)

− 1

2
log (|Ci(φg)|)−

1

2σ2
g

tr
(
Ci(φg)

−1Ê
(s)
i

)
− 1

2
tr
(
D−1
g Ĵ

(s)
i

)
,

(2.15)

and

Q2(θ|θ̂(s)) =

N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s)) log(πk), (2.16)

where p̂i(λ
(g)
i |yi, θ̂(s)) is the posterior probability of the ith unit belonging to the gth

component, g ∈ IG, conditional on the observed response vector for that unit, and the

current estimate of θ, and is given by
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p̂i(λ
(g)
i |yi, θ̂

(s)) =
fig(yi|λ(g)

i , θ̂
(s)
g )π̂g

(s)∑G
l=1 fil(yi|λ

(l)
i , θ̂

(s)
l )π̂l

(s)
. (2.17)

For brevity we will often denote these posterior probabilities as p̂ig. Furthermore the

equations below are needed to implement equation (2.15);

Ê
(s)
i = Σ̂

(s)
ei + µ̂

(s)
ei µ̂

(s)
ei

ᵀ
, (2.18)

Ĵ
(s)
i = Σ̂

(s)
ui + µ̂

(s)
ui µ̂

(s)
ui

ᵀ
, (2.19)

µ̂
(s)
ui = D(ψ̂(s)

g )Z
ᵀ

i Vi(ζ̂
(s)
g )−1(yi −Xiβ̂

(s)
g ), (2.20)

Σ̂
(s)
ui = D(ψ̂(s)

g )−D(ψ̂(s)
g )Z

ᵀ

i Vi(ζ̂
(s)
g )−1ZiD(ψ̂(s)

g ), (2.21)

µ̂
(s)
ei = yi −Xiβg −Ziµ̂(s)

ui , (2.22)

Σ̂
(s)
ei = ZiΣ̂

(s)
uiZ

ᵀ

i . (2.23)

We notice in (2.13) that π is contained only in Q2(θ|θ̂(s)) and that all the remaining

parameters are contained in Q1(θ|θ̂(s)). Accordingly we can perform two separate

maximisations, one for the component probabilities and one for the parameters of the

component densities. Furthermore since the parameters for the component densities

do not depend on each other, we can maximise separately for each component. Note

however from (2.17) that all component density parameters contribute to estimating

the posterior probabilities, which in turn influence each componentwise maximisation.

Thus the component density parameters are not independent of each other.

The M-step of the algorithm requires Q(θ|θ̂(s)) to be maximised with respect to

θ to obtain θ̂(s+1). Dempster et al. (1977) point out that the EM algorithm has

been criticised for being called an algorithm since it does not describe actually how

to implement the E and M steps. For this reason the complexity and feasibility of

these steps can vary widely depending on the application.
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If the M-step is sufficiently complex it is sometimes desirable to break this step

down by performing separate maximisations with respect to each component of θ whilst

fixing the other components at their current values, that is each maximisation proceeds

conditional on the values of the other components being available. This is known as

an expected conditional maximisation algorithm (ECM) and was developed by Meng

and Rubin (1993) who show an ECM algorithm is a special class of Generalized EM

algorithm (GEM) (algorithms that increase Q(θ|θ̂(s)) rather than maximise it on each

M step) that have the same convergence properties of an EM algorithm.

We now describe the steps of the ECM algorithm for the MLMMs described here.

The derivations of the derivatives for these equations can be found in chapter C. Let s

denote the current iteration of the EM algorithm, and suppose that that θ̂(s) is avail-

able. Then the ECM algorithm proceeds as follows;

1. For each i ∈ IN , and g ∈ IG, calculate the posterior probabilities using

p̂
(s+1)
ig := p̂i(λ

(g)
i |yi, θ̂

(s)) =
fig(yi|λ(g)

i , θ̂
(s)
g )π̂g

(s)

G∑
k=1

fik(yi|λ
(k)
i , θ̂

(s)
k )π̂k

(s)

. (2.24)

2. For each g ∈ IG, update π̂g
(s)

π̂g
(s+1) :=

1

N

N∑
i=1

p̂
(s+1)
ig , (2.25)

3. For each g ∈ IG, update D(ψ̂
(s)
g ) = D̂

(s)
g

D(ψ̂(s+1)
g ) := D̂(s+1)

g =
1

N∑
i=1

p̂
(s+1)
ig

N∑
i=1

p̂
(s+1)
ig Ĵ

(s)
i , (2.26)

where Ĵ
(s)
i , µ̂

(s)
ui and Σ̂

(s)
ui are given in (2.18), (2.20) and (2.21) respectively.

4. For each g ∈ IG, update σ̂
2(s)
g
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σ̂2(s+1)
g :=

1
N∑
i=1

nip̂
(s+1)
ig

N∑
i=1

p̂
(s+1)
ig tr

[
Ci(φ̂

(s)
g )−1Ê

(s)
i

(
D(ψ̂(s+1)

g )
)]
, (2.27)

where Ê
(s)
i

(
D(ψ̂

(s+1)
g )

)
is equal to Ê

(s)
i given in (2.18) and where

µ̂
(s)
ui = D(ψ̂(s+1)

g )Z
ᵀ

i

[
ZiD(ψ̂(s+1)

g )Z
ᵀ

i + σ̂2(s)
g Ci(φ̂

(s)
g )
]−1

(yi −Xiβ̂g
(s)

), (2.28)

and

Σ̂
(s)
ui = D(ψ̂(s+1)

g )−D(ψ̂(s+1)
g )Z

ᵀ

i

[
ZiD(ψ̂(s+1)

g )Z
ᵀ

i + σ̂2(s)
g Ci(φ̂

(s)
g )
]−1

ZiD(ψ̂(s+1)
g ).

(2.29)

5. For each g ∈ IG, update β̂g
(s)

β̂g
(s+1)

:=

(
N∑
i=1

p̂
(s+1)
ig X

ᵀ

i Ci(φ̂
(s)
g )−1Xi

)−1 [ N∑
i=1

p̂
(s+1)
ig X

ᵀ

i Ci(φ̂
(s)
g )−1

(
yi −Ziµ̂(s)

ui

)]
,

(2.30)

where

µ̂
(s)
ui = D(ψ̂(s+1)

g )Z
ᵀ

i

[
ZiD(ψ̂(s+1)

g )Z
ᵀ

i + σ̂2(s+1)
g Ci(φ̂

(s)
g )
]−1

(yi −Xiβ̂g
(s)

). (2.31)

6. For each g ∈ IG, update τ̂g
(s)

τ̂g
(s+1) := argmax

τg∈[−1,1]r

{
N∑
i=1

p̂
(s+1)
ig

[
− log |Ci(τg)| −

1

σ̂
2(s+1)
g

(
Ci(τg)

−1Ê
(s)
i

(
D(ψ̂(s+1)

g )
))]}

,

(2.32)

where Ê
(s)
i

(
D(ψ̂

(s+1)
g )

)
is equal to Ê

(s)
i given in (2.18) but where

µ̂
(s)
ui = D(ψ̂(s+1)

g )Z
ᵀ

i

[
ZiD(ψ̂(s+1)

g )Z
ᵀ

i + σ̂2(s+1)
g Ci(φ̂

(s)
g )
]−1

(yi −Xiβ̂g
(s+1)

), (2.33)

and

Σ̂
(s)
ui = D(ψ̂(s+1)

g )−D(ψ̂(s+1)
g )Z

ᵀ

i

[
ZiD(ψ̂(s+1)

g )Z
ᵀ

i + σ̂2(s+1)
g Ci(φ̂

(s)
g )
]−1

ZiD(ψ̂(s+1)
g ).

(2.34)

The maximisation in (2.32) is performed numerically, and τ̂g
(s) is converted to φ̂

(s)
g

using (A.10) in order to evaluate the equations 2.33 and 2.34.
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2.2.2 EM algorithm: second variant

This variant of the EM algorithm is where we assume only the component member-

ships for each unit are unknown (i.e. the multinomial random vectors Λi) rather

than the component memberships and the random effects Ui. Specifically if we let

Ci =
[
Y

ᵀ

i ,Λ
ᵀ

i

]ᵀ
be the complete data vector, and s denote the sth EM algorithm

iteration, then using the same methods shown in appendix A.3 we have

Q(θ|θ̂(s)) = E
[
Lc(θ|C)|yi, θ̂(s)

]
=

N∑
i=1

E
[
Λi,Ii log(fi,Ii(yi, |Λi,θIi))|yi, θ̂(s)

]
+

N∑
i=1

E
[
Λi,Ii |yi, θ̂(s)

]
log(πIi)

=

N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s))log(fik(yi|λ
(k)
i ,θk)) +

N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s))log(πk).

(2.35)

Since the θg for g = 1, ..., G, do not depend on each other, given that θ̂(s) and π̂(s) are

available, then the EM algorithm proceeds as follows;

1. For each i ∈ IN , and g ∈ IG, calculate the posterior probabilities using

p̂
(s+1)
ig :=

fig(yi|λ(g)
i , θ̂

(s)
g )π̂g

(s)

G∑
k=1

fik(yi|λ
(k)
i , θ̂

(s)
k )π̂k

(s)

. (2.36)

2. For g ∈ IG, compute the component density parameter vector estimates using

θ̂g
(s+1)

:= max
θg∈Ψ

{
N∑
i=1

p̂
(s+1)
ig log(fig(yi|λ(g)

i ,θg))

}
. (2.37)

3. For g ∈ IG, compute the component probabilities

π̂g
(s+1) :=

1

N

N∑
i=1

p̂
(s+1)
ig . (2.38)

We shall call the G separate maximisations in step 2 for the parameter vector of the

component densities as componentwise maximisations, or estimating the parameters

of the component densities componentwise. Note that although the componentwise

19



maximisations in step 2 are performed separately, the component density parameters

obtained depend on all the parameters of the mixture model because each maximization

depends on the posterior probabilities.
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3

Inference on the model

parameters

In this chapter we summarise the statistical theory that is relevant to performing statis-

tical inference about the parameters in a MLMM using maximum likelihood estimation.

However on account of a lack of research into inference in non-idd samples that have

mixture distributions, the ”relevant theory” we describe is the theory for iid Gaussian

mixtures - that is samples that are associated with mixture distributions generally (but

not necessarily) not induced by a regression model. The description of this iid theory

can be found in Section 3.1. Section 3.2 describes the problems encountered when try-

ing to use the information matrix that the iid theory described in Section 3.1 tells us is

the asymptotic covariance matrix of the mixture model parameters. Furthermore Sec-

tion 3.2 also describes a method for quantifying the performance of confidence intervals

in simulations that uses the concept of true parameter standard errors. Since the un-

derlying model in a MLMM is a LMM then it is of interest to consider the asymptotic

theory of the LMM, for example to determine if the methods used for the LMM can

be extended to the MLMM. For this reason in Section 3.3 we present a brief summary

of the asymptotic theory for the LMM.

Section refsec:infomatMLMM uses the previous sections to justify two methods

for performing statistical inference about the parameters in a MLMM, and results of

extensive simulations are reported in Chapter 5 that investigate the performance of

these methods.
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3.1 Inference for finite mixture densities for an iid sample

This section is concerned with statistical inference about the maximum likelihood es-

timator (MLE) of the true parameter θ0 of the mixture density f(·|θ0) from which we

have a random sample of N identically distributed response vectors. Thus we assume

an iid sample Yi ∈ Rn, i = 1, ..., N , where each Yi has the finite mixture density given

in (1.1) but with θ0 replacing θ. For the most part we will concentrate on finite mix-

ture densities, but we will also touch upon mixture densities associated with clusterwise

regression models. Although the samples associated with these densities are generally

not identically distributed, some authors have for convenience imposed conditions on

the covariate vectors in the component specific regression models to nonetheless ensure

that the sample come from the same distribution.

As in Chapter 2 we shall write Y = (Y1, ...,YN )
ᵀ

for the vector of all responses,

and y = (y1, ...,yN )
ᵀ

for the vector of all realized values. Since we will be discussing

asymptotic results, to show the dependence on the number of units N we shall write

LN (Y |θ) for the log-likelihood function of the sample which is given in (2.10), and

often for brevity we will shorten this to LN (θ). Similarly we shall write θ̂N (Y ) or θ̂N

for the MLE of θ. For reasons we will discuss shortly, the MLE θ̂N will be defined as

any θ ∈ Θ◦ that satisfies the following equations

N∑
i=1

∂logf(yi|θ)

∂θr
= 0 r = 1, ..., k, (3.1)

which are called the likelihood equations.

There are two problems associated with LN (θ) which make the estimation of θ

different from a standard maximum likelihood problem. One problem is that LN (θ)

may have the potential to take on infinite values in the parameter space Θ, and so LN (θ)

may have no global maximum. In this respect when the component densities are all

normal LN (θ) always has this potential. For example let µ1, ...,µG, and V1, ...,VG,

be the G mean vectors and covariance matrices of these component densities. A well

known pathological example is where we assume yi′ = µ1 for one of our observed

sample values yi′ . By then letting the determinant of the covariance matrix V1 tend

to zero, the log-likelihood function LN (θ) tends to infinity. Thus each sample point in

the sample has the potential to cause the log-likelihood function to be unbounded (Day
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(1969)). A special case of this example occurs for univariate normal densities where the

covariance matrices are scalar variances σ2
1, ..., σ

2
G, and where we let σ2

1 tend to zero.

In practice these pathological examples could occur if σ̂2
1 or V̂1 are estimated to be

near zero. In the multivariate setting this will often produce a covariance matrix that

is singular to working precision. Such a situation could arise if a component becomes

degraded in the sense of fewer and fewer units being assigned to that component. For

example if only one unit is assigned to component 1 then π̂1 will be estimated to be close

to zero. The second problem associated with LN (θ) is that due to label switching for

any given local maximum there will be G!− 1 other local maxima that are exactly the

same. Thus in combination these two problems mean LN (θ) does not have a unique

global maximum, indeed at best LN (θ) will have a largest local maximum which is

replicated at G! different values of θ.

One way to prevent LN (θ) from being unbounded is to work with a constrained

parameter space, limiting in some way the magnitude of the variances or the magnitude

of the determinants of the covariance matrices. For univariate component densities this

approach has been taken by Hathaway (1985) who imposes restrictions on the ratios of

the variances, and Tanaka and Takemura (2006) who use restrictions on the variances

themselves. An alternative approach is to work with the unconstrained parameter

space so that LN (θ) is still unbounded, but to search for a local rather than a global

maximser as an estimator. This latter method appears to be much more popular in

the literature, and for this reason in this section we will summarise the main results

that use this approach. Accordingly in this section, and unless otherwise stated, by a

maximum likelihood estimator θ̂ of θ we will mean an estimator that locally maximises

LN (θ).

It seems that the most widely cited results that concern the consistency and asymp-

totic distribution of θ̂ are those contained in Theorems 3.1 and 3.2 in Redner and

Walker (1984) which are concerned with finite mixture densities for multivariate re-

sponses Yi ∈ Rn. The consistency proof upon which Redner and Walker rely is that of

Peters and Walker (1978), which is concerned with a non-mixture maximum likelihood

problem where local maxima of the log-likelihood function are admitted as solutions to

the likelihood equations. Thus the estimation problem is applicable to finite mixture

densities.
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Another consistency proof can be found in Kiefer (1978) which is concerned with

model generated finite mixture densities for univariate responses Yi ∈ R1. Specifically

Kiefer (1978) studies a bivariate normal mixture density arising from a switching re-

gression model with two regimes, which is a specific type of MGLM. In general such

model-generated densities are non-iid, however by assuming the covariate data are iid

random variables, Kiefer (1978) ensures the sample are also iid. The proof uses Chanda

(1954) who, like Peters and Walker (1978), also considers a non-mixture maximum like-

lihood problem where local maxima are admitted as solutions to the likelihood equa-

tions. The proof of Kiefer (1978) consists of verifying that the hypotheses of Chanda

hold, and furthermore it is stated the proof will work for any number of regimes.

The models considered by Kiefer (1978) for the regimes include regression param-

eters, and covariate data that vary with the units. The model assumptions made by

Kiefer lead to the densities for each yi being a mixture of two univariate normal den-

sities, but where these densities are different for each unit. Since the proof of Chanda

requires an iid sample, Kiefer imposes the condition on the covariate vectors that they

are bounded iid random variables. This obviously means the sample {y1, ..., yN}, is

an iid sample with some distribution, but it is not clear that the Chanda proof would

hold with the additional densities required for the covariate vectors. Unfortunately no

mention of this issue is made, and Kiefer claims all that is required for the Chanda

proof to hold for this model is to verify that the sufficient conditions of the Chanda

proof hold. Another problem with the proof of Kiefer is that identifiability problems

arising from the regression parameters are not discussed. Identifiability means for all

θ,θ′ ∈ Θ that f(yi|θ) = f(yi|θ′) for all i ∈ IN implies and is implied by θ = θ′. In

this respect Hennig (2000) has shown that in general identifiability does not hold unless

conditions are imposed on the covariate data. For these reasons the proof by Kiefer is

not a valid one, although we will discuss the application of Chanda’s proof to mixture

densities without regression parameters.

The third consistency proof we will consider is that of Sundberg (1974) who con-

siders iid samples with non-model generated finite mixture densities for multivariate

responses Yi ∈ Rn (i.e it is assumed Yi has a mixture density rather than this density

being induced by a regression model). The focus of this paper is not finite mixture

densities but rather responses whose distributions are from the exponential family, but
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where the distributions are generated by loss of information - i.e. distributions ob-

tained by integrating out missing data from another distribution. If the component

densities are from the exponential family, then Sundberg shows that the distribution

function with which the mixture density is associated is in this class of distribution,

where the unknown component memberships represent the loss of information. Much

of the consistency proof in Sundberg (1974) uses Aitchison and Silvey (1958) whose

work is concerned with non-mixture maximum likelihood problem where local maxima

are admitted as solutions to the likelihood equations, and where constraints can be

imposed on θ.

For any statistical model lack of identifiability precludes the existence of a consistent

estimator. Thus for finite mixture densities any consistency proof must deal with the

fact that identifiability does not hold due to label switching. However we can assume for

θ,θ′ ∈ Θ, and regardless of how close θ is to θ′, as long as θ 6= θ′ that we can always

find a neighbourhood around θ in which identifiability does hold. Sundberg refers

to this as local identifiability, and it is tacitly understood that his consistency proof

is concerned with proving a consistent estimator exists in a neighborhood, however

small, of θ0 such that local identifiability holds (the same is true in the proof of Peters

and Walker (1978)). Taking an alternate approach to overcoming the label switching

problem, Kiefer (1978) states that a rule must be imposed on the parameter space Θ.

One such rule which is typically used is to impose an arbitrary ordering on the mixture

probabilities, for example to assume for all θ ∈ Θ that π1 > π2 > ... > πG. It is worth

noting that these approaches to overcome the label switching problem are only relevant

theoretically in order to permit the existence of a consistent estimator of θ0. That is

to say the MLE θ̂ still represents one of G! possible ways in which we could re-label

an estimate of θ0. Of course this is no problem because in practice the components

are unknown (in terms of what they represent) and so any labeling must necessarily be

arbitrary.

For non-mixture model problems, and for a scalar parameter θ, an important consis-

tency proof for estimators that locally maximise LN (θ) is that of Cramér (1946, pp500).

This is not only an important proof in the theory of maximum likelihood estimation

in general, but also for maximum likelihood estimation in mixture models. This is be-

cause the consistency proofs in Chanda (1954), Aitchison and Silvey (1958), and Peters

and Walker (1978) in which we are interested, were all aimed at generalizing Cramér’s
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proof to the multi-parameter setting. Before we state and describe the assumptions

that these three proofs use, we shall need to introduce some notation for this general

(i.e. not necessarily non-mixture) maximum likelihood estimation problem. There is

a re-use of some of the notation we have used before for mixture densities, however

in what follows the methods we discuss are applicable to general density functions

of which mixture densities are a subset. We will make it clear when we are talking

about mixture densities when modifications to the methods need to be made, or where

different interpretations of the results need to be used.

Let P = {µθ : θ ∈ Θ}, be a family of distributions parameterized by points in

a parameter space Θ ⊆ Rk. For each θ ∈ Θ, µθ is a probability measure on the

measurable space (Rn,Rn), where Rn are the Borel subsets of Rn. We assume for

each θ ∈ Θ that µθ has a density function fθ with respect to n-dimensional Lebesgue

measure λn, where fθ is shortened notation for f(y|θ), y ∈ Rn. We will denote by

Pf := {fθ : θ ∈ Θ} the family of density functions associated with P. Letting Θ◦

denote the interior of Θ, and for θ0 ∈ Θ◦, let Yi ∈ Rn, i ∈ IN , be N independent

observations on a random variable Ỹ with distribution µθ0 ∈P. We will use (P0,Ω)

to denote the underlying probability space on which the random variables {Y1, ...,YN}
are defined. We will also denote by Y=(Y

ᵀ

1 , ...,Y
ᵀ

N )
ᵀ ∈ RNn the joint vector of all the

random variables, and similarly y = (y
ᵀ

1 , ...,y
ᵀ

N )
ᵀ ∈ RNn the joint vector of realized

values.

We assume the parameter space Θ is identifiable, so that µθ = µθ′ implies and is

implied by θ = θ′ for all θ,θ′ ∈ Θ. Bearing in mind that we want to apply these

non-mixture asymptotic results to mixture densities, we note that everything in the

discussion that follows holds for mixture densities if in assumptions (i)-(iii) below we

further assume Nδ1(θ0) ⊆ Θ is a small enough neighborhood of θ0 such that local

identifiability holds within the neighbourhood. In the conditions that follow, and for

brevity, for a general point y ∈ Rn we will write f instead of f(y|θ), and for any

realized value yi we will write fi instead of f(yi|θ). Finally the phrase ”for almost all”

shall be meant with respect to n-dimensional Lebesgue measure. We can now state the

assumptions used in the consistency proofs:

(i) There exists a neighborhood Nδ1(θ0) ⊆ Θ such that for all θ ∈ Nδ1(θ0), for almost

all y ∈ Rn
, the partial derivatives
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∂logf

∂θr
,

∂2logf

∂θr∂θs
,

∂3logf

∂θr∂θs∂θt
, (3.2)

exist for all r, s, t = 1, 2, ..., k.

(ii) For all θ ∈ Nδ1(θ0), for almost all y ∈ Rn

∣∣∣∣ ∂f∂θr
∣∣∣∣ < Hr(y),

∣∣∣∣ ∂2f

∂θr∂θs

∣∣∣∣ < Hrs(y),

∣∣∣∣ ∂3logf

∂θr∂θs∂θt

∣∣∣∣ < Hrst(y), (3.3)

for all r, s, t = 1, 2, ..., k, where Hr(y) and Hrs(y) are integrable with respect to λn over

Rn
, and ∫

Rn
Hrst(y)f(y|θ0)dy < M, (3.4)

for all r, s, t = 1, 2, ..., k, where 0 < M <∞.

(iii) For all θ ∈ Nδ1(θ0) the k × k information matrix I(θ) = Eθ [Dθ(log f)
ᵀ
Dθ(log f)]

whose elements are given by

(I(θ))rs =

∫
Rn

∂logf

∂θr

∂logf

∂θs
f(y|θ)dy, (3.5)

for r, s = 1, ..., k, has a finite determinant |I(θ)|, and I(θ0) is positive-definite.

Condition (i) ensures that ∂logf/∂θr, for any r = 1, ..., k, and for almost all y, has a

Taylor series expansion as a function of θr (Serfling, 1980, pp145). Note also that the

existence of ∂logf/∂θr for all r = 1, ..., k, and ∂2logf/∂θr∂θs for all r, s = 1, ..., k, in

the neighborhood Nδ1(θ0) given by (i) implies that logf is differentiable (in the vector

sense) on Θ◦ (Magnus and Neudecker, 1999, Theorem 7, pp 101). In turn this implies

logf , and hence the log-likelihood function L(Y |θ), is continuous on Θ◦ (Magnus and

Neudecker, 1999, Theorem 1, pp96). This is important when the parameter space is

restricted to a compact subset of Θ. This is because real valued continuous functions

defined on non-empty compact subsets of metric spaces will achieve a maximum and

minimum value on this subset (Binmore, 1981, Theorem 19.14, pp74). The parameter

space Θ is a metric space with the usual Euclidean distance as the distance function,

so that L(Y |θ) will achieve a maximum and minimum on this compact subset.

Condition (ii) means that
∫
Rn fdy and

∫
Rn(∂logf/∂θr)dy for any r = 1, ..., k, can

be differentiated with respect to θr under the integral sign (Serfling, 1980, pp145). This
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leads to E[∂logf/∂θr] = 0 for all r = 1, ..., k, at θ = θ0. This latter result is sometimes

used as an assumption instead of (ii), see for example Sundberg (1974).

We now very briefly outline the method of proof that Chanda uses to prove the

existence of a consistent estimator for θ0. We have already stated that Kiefer (1978),

when using the Chanda result, applies a rule to the parameter space in order to deal

with the label switching problem. However because the Chanda result is local in na-

ture, we can instead make the assumption of local identifiability in a sufficiently small

neighborhood Nδ1(θ0), and the proof mechanism goes through without change.

This concept of a sufficiently small neighborhood is also used to turn the mixture

model estimation problem which is a constrained one, into an unconstrained one. This

is important because the consistency proofs in Chanda (1954), and Peters and Walker

(1978) are all concerned with unconstrained estimation problems. This approach is

used by Redner and Walker (1984, p 211) and presumably works by using a continuity

assumption on the parameter space Θ that guarantees Nδ1(θ0) can be chosen, however

small, such that for all θ ∈ Nδ1(θ0), θ 6= θ0 that π ∈ θ satisfies the constraints∑G
j=1 (π)j = 1, (π)j ≥ 0, j = 1, ..., G. Then dropping one of the redundant mixing

proportions to form a new parameter space Θ′, Θ′ ⊆ Nδ1(θ0), means for all θ′ ∈ Θ′

that there exists a θ ∈ Θ ∩ Nδ1(θ0) such that θ′ ⊂ θ and π′ ∈ θ′, π ∈ θ such that

π′ ⊂ π and
∑G

j=1 (π)j = 1, (π)j ≥ 0, j = 1, ..., G. In this way the new mixture

model estimation problem with G − 1 parameters is unconstrained but equivalent to

the constrained estimation problem.

The proof by Aitchison and Silvey (1958) is concerned with constrained maximum

likelihood estimation problems, but Sundberg (1974) who uses this theory is applying

it to unconstrained problems, presumably by using the method described above of

converting from a constrained to an unconstrained estimation problem. Borrowing

where possible the notation of Chanda, the conditions (i)-(iii) are designed to imply

that
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Lr(θ0) := N−1
N∑
i=1

∂logf(yi|θ0)

∂θr

as−→ 0 (r = 1, ..., k),

Lrs(θ0) := −N−1
N∑
i=1

∂2logf(yi|θ0)

∂θr∂θs

as−→ (I(θ0))rs (r, s = 1, ..., k),

Lrst(θ
′) := N−1

N∑
i=1

∂3logf(yi|θ′)
∂θr∂θs∂θt

as−→ Crst (r, s, t = 1, ..., k), (3.6)

where θ′ ∈ Nδ1(θ0), and Crst < ∞. We note that by using the weak law of large

numbers Chanda gives the above results in terms of convergence in probability only.

However the strong law of large numbers can be used too which gives the almost sure

convergence results.

Now for any θ ∈ Nδ1(θ0), let d(θ,θ0) = ||θ − θ0|| so that Nd(θ,θ0)(θ0) ⊆ Nδ1(θ0) is

the neighborhood around θ0 of radius ||θ − θ0||. For any θ ∈ Nδ1(θ0), there exists a

θ′ ∈ Nd(θ,θ0)(θ0) whereby ∂logf
∂θr

can be expanded about θ0 in a Taylor series expansion

such that the likelihood equations in 3.1 scaled by N−1 can be written

Lr(θ) = Lr(θ0)−
k∑
s=1

ζsLrs(θ0) +
1

2

k∑
s=1

k∑
t=1

ζsζtLrst(θ
′) r = 1, ..., k, (3.7)

where ζs := (θs − (θ0)s). Let L(θ0) be the matrix with elements (L(θ0))rs := Lrs(θ0).

Since I(θ0) is positive-definite then I(θ0)−1 exists, which in turn implies L(θ0)−1 exists.

We will denote by L−1
rs (θ0) the elements (L(θ0)−1)rs, r, s = 1, ..., k. Putting the k

equations in (3.7) into matrix form, and multiplying through by L(θ0)−1 gives

ζr = βr +
k∑
s=1

k∑
t=1

ζsζtarst r = 1, ..., k, (3.8)

where βr =
∑k

p=1 Lp(θ0)L−1
pr (θ0), and arst =

∑k
p=1 Lpst(θ

′)L−1
pr (θ0).

For r = 1, ..., k, setting the right hand side of (3.8) to zero and solving for ζr is

equivalent to setting the right hand side of (3.7) to zero and solving for θr, and the

k solutions so obtained then represent the solution to the likelihood equations. If we

let ζ̂r = θ̂r − (θ0)r, r = 1, ..., k, denote these solutions, then ζ̂N (Y ) := θ̂N (Y ) − θ0 =

(ζ̂1, ..., ζ̂k)
ᵀ

is the vector of solutions of the likelihood equations in the neighborhood

Nδ1(θ0), regardless of how small δ1 is.

Using the results in (3.6), Chanda shows for any ε, δ2 > 0, such that Nδ2(θ0) ⊆
Nδ1(θ0), that for all sufficiently large values of N we have
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P [|ζ̂N (Y )| < δ2] > 1− ε. (3.9)

This shows that no matter how small we make the neighborhood Nδ2(θ0), and by letting

ε→ 0, a solution of the likelihood equations exists in this neighborhood with probability

tending to 1. The probability statement in (3.9) is also a probability statement about

a set SN ∈ RNn with respect to the distribution Pθ0 of the joint vector Y ∈ RNn:

if for N = 1, 2, ..., we let SN ⊆ RNn denote the set of all points y ∈ RNn such that

|ζ̂N (y)| < δ2 holds, then for any y ∈ RNn we have Pθ0{y ∈ SN} > 1 − ε for all

sufficiently large N . Since Pθ0{y ∈ SN} ≡P0{SN} for all y ∈ SN (see Cramér (1946,

pp502)), then we have a sequence of random variables {θ̂N (Y )}, and sets {SN}, such

that for all sufficiently large N , the solution θ̂N (Y ) is in the neighborhood Nδ2(θ0),

and P0{SN} > 1− ε.
From (3.9) we see that for any 0 < δ2 < δ1, and by letting ε → 0, we have that

lim
N→∞

P{|θ̂N (Y )−θ0| < δ2} = 1, and so the sequence {θ̂N (Y )} converges in probability

to θ0. Since this holds for all θ0 ∈ Θ0 the sequence {θ̂N (Y )} is consistent for θ0. Thus a

consistent solution to the scaled likelihood equations in (3.7), and thus to the likelihood

equations (3.1) themselves exist. A similar result was obtained by Aitchison and Silvey

(1958) in their Theorem 1.

We now discuss whether the consistent solution to the likelihood equations produces

a local maximum of LN (θ), and whether two distinct consistent sequences of solutions

can exist. We will need the fact that log f(y|θ), and so in turn LN (θ), are C2 functions

on Nδ1(θ0), that is both the first and second derivatives exist and are continuous on

this neighbourhood. We can derive this from assumption (i): the existence of the third

derivatives of log f(y|θ) in Nδ1(θ0) implies the second derivatives of log f(y|θ) are

continuous functions in Nδ1(θ0). Similarly the existence of the second derivatives of

log f(y|θ) implies the first derivatives of log f(y|θ) are continuous functions in Nδ1(θ0).

We first consider whether the consistent sequence of solutions produce a maximum

of LN (θ), but firstly we need the result that for sufficiently small δ3 > 0, a neighborhood

Nδ3(θ0) exists such that I(θ) is a positive-definite matrix for all θ ∈ Nδ3(θ0).

To see this let Ar(θ), r = 1, ..., k, be the r × r principle minors of I(θ), that is

A1(θ), A2(θ), ..., Ak(θ) are the sub-matrices in the upper left 1× 1, 2× 2,..., and k× k
corners respectively of I(θ). Using the fact that I(θ0) is a Hermitian matrix, we have

by Sylvester’s criterion that for all r ∈ {1, ..., k}, det(Ar(θ0)) > 0. Now (ii) implies
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that for all r, s ∈ {1, ..., k}, Eθ
[
∂2logf(Y |θ)/∂θr∂θs

]
are continuous on Nδ1(θ0), and

so (I(θ))rs are also continuous on Nδ1(θ0) (for brevity we omit this derivation). Thus

the maps gr : θ 7→ det(Ar(θ)) are continuous on Nδ1(θ0). Putting η′ = min{η1, ..., ηk},
where 0 < ηr < gr(θ0) for r ∈ {1, ...k}, we see that there exists an δ3 > 0 such that for

all r ∈ {1, ..., k}, 0 < gr(θ0) − η′ < gr(θ
′) for all θ′ ∈ Nδ3(θ0). We therefore see that

all the principle minor determinants of I(θ′) are positive in the neighborhood Nδ3(θ0).

By Sylvester’s criterion we then have that I(θ′) is positive-definite for all θ′ ∈ Nδ3(θ0).

Now for r, s ∈ {1, ..., k}, and from a first order Taylor expansion of (Hθ(θ))rs =

−NLrs(θ) about θ0 we get

−Lrs(θ̂N ) = −Lrs(θ0) +N−1Lrst(θ
′)((θ̂N )s − (θ0)s), (3.10)

where θ̂N is the consistent solution for θ0, and θ′ ∈ Nd(θ̂N ,θ0)(θ0). Now if θ̂N is

close enough to θ0 such that Nd(θ̂N ,θ0)(θ0) ⊆ Nδ1(θ0), then by (ii) N−1Lrst(θ
′) =

OP (1), which implies N−1Lrst(θ
′)((θ̂N )s − (θ0)s) = oP (1) since ((θ̂N )s − (θ0)s) tends

in probability to zero. Since from (3.6) we see that −Lrs(θ0) tends in probability to

−(I(θ0))rs, we have from (3.10) that

−Lrs(θ̂N )
P−→ −(I(θ0))rs (r, s ∈ {1, ..., k}) (3.11)

for any consistent solution θ̂N . Since −I(θ) is a negative-definite matrix for all θ ∈
Nδ3(θ0), for any ε > 0, we can take N large enough such that θ̂N ∈ Nδ1(θ0) ∩Nδ3(θ0),

and N−1Hθ(LN (θ̂N )) is negative-definite with probability greater than 1 − ε. Thus

by the multivariate characterization of maxima of C2 functions, and with probability

tending to 1 as N → ∞, the consistent sequence of solutions {θ̂N} must produce a

local maximum of the scaled likelihood equations in (3.7), and thus to the likelihood

equations (3.1) themselves. Chanda proves this result in Theorem 1.

The uniqueness of the local maximum produced by the consistent solution θ̂N can

be established if we further suppose Nδ1(θ0) is a convex set. Given this new assumption

we see from the above paragraph that N−1LN (θ) and hence LN (θ) is strictly concave on

Nδ1(θ0)∩Nδ3(θ0), which means any local maximum of LN (θ) is also a global maximum.

Thus with probability tending to 1 as N →∞ the consistent sequence of solutions {θ̂N}
must produce a global maximum of the likelihood equations. In terms of sequences

this means that if {SN} and {S′N} are two sequences of sets that give rise to two
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consistent sequences of solutions {θ̂N} and {θ̂′N}, then with probability tending to 1 as

N → ∞ the elements θ̂N and θ̂
′
N both tend to the same point - the global maximum

in Nδ1(θ0) ∩ Nδ3(θ0). This means for any ε > 0 that there exists a N ′ such that

|θ̂N − θ̂
′
N | < ε for all N > N ′. Thus a consistent sequence of solutions is uniquely

determined up to a finite number of points, and all other sequences of solutions must

be inconsistent. Chanda proved this in his Theorem 2, however it turns out his proof

was incorrect. A corrected version was given by Tarone and Gruenhage (1975) who

made the additional assumption to (i)-(iii) that Θ is a convex subset of Rk
. A similar

convexity assumption was used by Sundberg to establish this local uniqueness property.

Given the existence of a consistent estimator θ̂N (Y ), Chanda also shows that

√
N
(
θ̂N (Y )− θ0

)
D→ Nk

[
0, I(θ0)−1

]
. (3.12)

Thus to summarise: In a sufficiently small neighborhood of θ0 such that assumptions

(i)-(iii), and local identifiability holds, then with probability tending to 1 as N → ∞
there exists a unique consistent sequence of solutions {θ̂N (Y )} for θ0 that produce

local maxma of LN (θ). Furthermore θ̂N (Y ) is asymptotically normally distributed

with zero mean and covariance matrix I(θ0)−1. An analogue of this result using almost

sure convergence is given by Redner and Walker (1984) in Theorem 3.1 where Peters

and Walker (1978) is used to give the strong consistency result.

The above result may appear better than it actually is, since in practice LN (θ)

may have multiple solutions for any particular N , but the theory does not tell us which

solution of the likelihood equations we should pick - only pre-knowledge of θ0 would

tell us this. As Sundberg states, the above result holds if θ0 is replaced by any θ ∈ Θ

that is equivalent to θ0, where equivalent means f(Y |θ0) = f(Y |θ) almost everywhere.

We shall denote this equivalence as θ0 ∼ θ, and the set of all points equivalent to θ0

as Θ(θ0). So if θ′ ∈ Θ(θ0) then a consistent sequence of solutions {θ̂′N (Y )} exists for

θ′, and θ̂
′
N (Y ) is asymptotically normally distributed with zero mean and covariance

matrix I(θ′)−1. If pπ represents a permutation of the component labels such that

pπ(θ0) = θ′ then {pπ(θ̂N (Y ))} = {θ̂′N (Y )}. Thus the consistent estimators of the

G! different versions of θ0 contained in Θ(θ0) can be obtained from θ̂N (Y ) by label

switching.

Sundberg extends the previously described result to equivalence classes by prov-

ing a theorem concerned with restricting the parameter space to a compact subset
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K ⊆ Θ, where K contains an element of the equivalence class Θ0 := Θ(θ0). Us-

ing properties of distributions from the exponential family, in Theorem 7.1 Sundberg

shows that if θmax
N ∈ K is the maximum point of LN (θ), then dist(θmax

N ,Θ0)
as→ 0,

where dist(θmax
N ,Θ0) = inf

θ0∈Θ0

||θmax
N − θ0||. The maximum point θmax

N always exists

since by assumption (i), LN (θ) always attains a maximum and minimum value on K.

Using the above result, if we let θmax
N denote the global maximum of LN (θ) on the

compact subset K ⊆ Θ, then with probability 1 as N →∞ some member of Θ0, θmax
0

say, is eventually equal to θmax
N . Since θ0 ∈ Θ0 then LN (θ0) = LN (θmax

0 ) = LN (θmax
N )

almost everywhere (using the definition of Θ0), so we see with probability 1 as N →∞
that θ0, and indeed any θ′ ∈ Θ0, produce a log-likelihood function value that is the

same as the global maximum on K. Accordingly if {θ̂N (Y )} are a consistent sequence

of roots that are local maxima of LN (θ) proven to exist by Sundberg, and say they

are consistent for θ′ ∈ Θ0 in some neighborhood Nδ(θ
′), then with probability tending

to 1 as N → ∞ we have that LN (θ̂N (Y )) is almost everywhere equal to the global

maximum of LN (θ) on K. This result obviously holds for all points in Θ0, and so

whichever point of Θ0 the sequence {θ̂N (Y )} is consistent for, with probability tending

to 1 as N → ∞, LN (θ̂N (Y )) is almost everywhere equal to the global maximum of

LN (θ) on K. We note that some of the points of Θ0 may be outside of K.

We defer interpretation of the Theorem 7.1 of Sundberg for mixture densities until

after we have described a similar result in Theorem 3.2 of Redner and Walker (1984).

The result states that if K is any compact subset of Θ such that θ0 ∈ K◦, C is the

set of points in K where f(ỹ|θ) is almost-everywhere equal to f(ỹ|θ0), and D is any

closed subset of K with no points in common with C, then with probability 1

lim sup
N→∞ θ∈D

N∏
i=1

f(yi|θ)

N∏
i=1

f(yi|θ0)

= 0. (3.13)

Assume that {θ̂N (Y )} is a strongly consistent sequence of solutions for θ′ ∈ Θ0 in

the neighborhood Nδ(θ
′). Then with probability 1 as N → ∞ we have θ̂N (Y ) → θ0,

and also that θ̂N (Y ), and hence θ′, produces a local maximum of LN (θ) on Nδ(θ
′).

Since LN (θ′) = LN (θ′′) almost everywhere for all θ′′ ∈ Θ0, then with probability 1 as

N → ∞ we have LN (θ̂N (Y )) = LN (θ0) almost everywhere. Let N(C) ⊆ K be any

open neighbourhood containing C, then K − N(C) is a closed subset of K that has
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no points in common with C. By (3.13) we have that with probability 1 as N → ∞,

any θ ∈ K such that LN (θ) ≥ LN (θ0) cannot be contained in K −N(C). So we must

have θ′ ∈ Kc or θ′ ∈ N(C) which implies θ′ ∈ K. We conclude with probability 1 as

N →∞ that θ̂N (Y ) either produces a global maximum of LN (θ) on K, or a value of

LN (θ) outside K that is almost everywhere equal to LN (θ0).

Now for mixture densities since we are assuming identifiability holds up to label

switching, then the set C in Theorem 3.2 of Redner and Walker is equal to the equiv-

alence class Θ0. This means that all the global maxima of LN (θ) on K can be found

through label-switching of θ̂N (Y ). However points in Θ0 not in K cannot be guar-

anteed to produce global maxima of LN (θ), but they will produce values of LN (θ)

almost everywhere equal to LN (θ0). The same interpretation holds using Theorem 7.1

of Sundberg.

To conclude, it has been shown by Sundberg (1974) for mixtures of densities from

the exponential family, and by Redner and Walker (1984) for mixtures of general den-

sities, that the multi parameter analogue of the result given by Cramér (1946, p500)

holds. That is with probability tending to 1 (or with probability 1 for the Redner and

Walker result) there exists a unique consistent sequence of solutions {θ̂N (Y )} to the

likelihood equations in some neighborhood Nδ(θ0) of θ0 that yield a local maximum of

LN (θ0), and that θ̂N (Y ) is asymptotically normally distributed with zero mean and

covariance matrix I(θ0)−1. In both cases identifiability up to label switching on Θ is

assumed. Furthermore the concept of local identifiability was also used which assumes

the neighborhood Nδ(θ0) is small enough such that no label switched versions of θ0

exist in Nδ(θ0).

For mixture densities with no regression parameters that induce an iid sample of

random variables, the results of Chanda (1954) can also be used to derive the same result

(again identifiability up to label switching and local identifiability on a neighborhood

need to be used). In this respect the application of this result by Kiefer (1978) to

mixture densities from a non-iid sample generated from a switching regression model

is questionable, indeed Kiefer has a footnote effectively admitting this. Finally both

Sundberg and Redner and Walker show that if a compact subset K ⊆ Θ can be found

with θ0 ∈ K◦, then at least one of the consistent sequences of solutions {θ̂′N (Y )} for a

point in Θ0 approaches a global maximum on K, and all the other global maxima on

K can be found through label switching of θ̂
′
N (Y ).
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3.2 Approximating the information matrix for iid Gaus-

sian mixtures

In this section we describe a simulation study by Boldea and Magnus (2009) the aim of

which was to quantify for small sample sizes the performance of the estimated standard

errors for θ̂, where the standard errors were obtained from the inverse of the sample

information matrix IN (θ̂). Boldea and Magnus study multivariate responses from iid

samples that are distributed according to a finite Gaussian mixture, and so only mean

vectors and covariance matrices of normal distributions are required to be estimated

rather than regression or covariance parameters. The use of the information matrix to

obtain standard errors implies Boldea and Magnus are using the theory of Redner and

Walker (1984) that was described in Section 3.1. We include a section here on the work

of Boldea and Magnus because in Section 3.4 we propose to adapt their approach to

statistical inference and apply it to MLMMs. Boldea and Magnus describe computa-

tional difficulties regarding taking expectations of the mixture likelihood function and

so they propose a number of approximations to the information matrix I(θ0) which are

readily calculable. For this reason we include the next Subsection (3.2.1) that provides

an outline of the relevant theory justifying these approximations.

3.2.1 Consistent estimators of the information matrix

For this section we introduce the random variable Ỹ ∈ Rn with distribution µθ0 , where

θ0 ∈ Θ, and Θ ⊆ Rk. The distribution µθ0 is a probability measure on the measurable

space (Rn,Rn), and D := {µθ : θ ∈ Θ} is the family of such distributions parametrized

by points in Θ. We further suppose each µθ has a general (i.e. not necessarily a

mixture) density function f(·|θ) with respect to n-dimensional Lebesgue measure. We

then assume we have an iid sample {Y1, ...,YN} of random variables, each of which has

the same distribution as Ỹ . These assumptions imply for any θ0 ∈ Θ that f(·|θ0) is

the true density function for Ỹ , rather than another unknown density function g(·|θ0)

say. Unless otherwise stated all of the results in this section assume that f(·|θ0) is the

true density function for Ỹ .

The Fisher expected information matrix I(θ), or just information matrix for short,

evaluated at θ ∈ Θ◦ is defined as
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I(θ) = Eθ

[
Dθ

(
logf(Ỹ |θ))

)ᵀ

Dθ

(
logf(Ỹ |θ))

)]
, (3.14)

where Dθ

(
logf(Ỹ |θ))

)ᵀ

is the k × 1 gradient vector (or score vector) of logf(Ỹ |θ).

Recalling that λn denotes n-dimensional Lebesgue measure, consider now some regular-

ity conditions known as the Fisher information regularity conditions (Schervish, 1995,

p 111)

(FI i) There exists a B ∈ Rn with λn(Bc) = 0, such that for all θ ∈ Θ◦, ∂logf/∂θr

exists for all y ∈ B and for each r = 1, ..., k,

(FI ii)
∫
Rn f(y|θ)dy can be differentiated under the integral sign with respect to θr

for all r = 1, ..., k,

(FI iii) The set C = {y ∈ Rn : f(y|θ) > 0} is the same for all θ ∈ Θ.

Given these regularity conditions I(θ) can be written

I(θ) = varθ

[
Dθ

(
logf(Ỹ |θ))

)ᵀ]
. (3.15)

This can easily be seen by noting that

Eθ

[
Dθ

(
logf(Ỹ |θ)

)]
=

∫
Rn

Dθ [f(y|θ)]

f(y|θ)
f(y|θ)dy

= Dθ

[∫
Rn
f(y|θ)dy

]
= 0, (3.16)

where the last line of (3.16) follows because f(Ỹ |θ) integrates to one. Note that (3.16)

depends on f(·|θ) being the true density function of Ỹ for any θ ∈ Θ◦. Using the

fact that for any random vector X with expectation α we have var(X) = E[XX
ᵀ
] +

E[X]E[X]
ᵀ

we get the result in (3.15).

There is another useful way of writing IN (θ), which relies on being able to differen-

tiate
∫
Rn ∂f(y|θ)/∂θrdy under the integral sign with respect to θr, for all r ∈ {1, ..., k},

which is equivalent to modifying (FI ii) to assume
∫
Rn f(y|θ)dy can be differentiated

twice under the integral sign. Given this assumption we have
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I(θ) = −Eθ
[
Hθ(logf(Ỹ |θ)

]
. (3.17)

This can also be easily seen by noting that

Hθ [log f(Ỹ |θ)] =
Hθ [f(Ỹ |θ)]

f(Ỹ |θ)
− Dθ [f(Ỹ |θ)]

ᵀ
Dθ [f(Ỹ |θ)]

f(Ỹ |θ)2
, (3.18)

and so

−Eθ
[
Hθ(logf(Ỹ |θ)

]
= −Dθ

[
Dθ

[∫
Rn
f(y|θ)dy

]]
+Eθ

[
Dθ

(
logf(Ỹ |θ))

)ᵀ

Dθ

(
logf(Ỹ |θ))

)]
. (3.19)

Using the same reasoning which led to the result (3.16), we see that the first term on

the right hand side of (3.19) is zero, which using the definition of I(θ) in (3.14) gives

the result in (3.17). Note again by virtue of relying on (3.16) that (3.19) depends on

f(·|θ) being the true density function of Ỹ for any θ ∈ Θ◦.

Defining IYi(θ) and IN (θ) to be the information matrices as functions of Yi, i ∈ IN ,

and Y respectively where Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ
, then since the sample is independent from

Lehmann and Casella (1998, Theorem 5.8, pp119) we have

IN (θ) =
N∑
i=1

IYi(θ), (3.20)

where

IYi(θ) = Eθ

[
Dθ (logf(Yi|θ)))

ᵀ
Dθ (logf(Yi|θ)))

]
,

= varθ

[
Dθ (logf(Yi|θ)))

ᵀ
]
,

= −Eθ [Hθ(logf(Yi|θ)] , (3.21)

using the identities in (3.14), (3.15) and (3.17). Now assume {θ̂N (Y )} is a strongly

consistent sequence of solutions for θ0, and that I(θ) is continuous on Rk, so that by the

Continuous Mapping Theorem (Van Der Vaart, 1998, p 7) we have I(θ̂N (Y ))
a.s.−→ I(θ0).

Since the sample is iid then IN (θ) = NIỸ (θ) = NI(θ), which impliesN−1IN (θ̂N (Y ))
a.s.−→

I(θ0). This holds for all θ0 ∈ Θ◦ and so N−1IN (θ̂N (Y )) is a strongly consistent esti-

mator of I(θ0).
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We now introduce and discuss two more random matrices which again under cer-

tain regularity conditions converge in probability to I(θ0). Define the observed Fisher

information matrix as

J(θ) = −Hθ(logf(Ỹ |θ)), (3.22)

and the outer product of the score vector as

S(θ) = Dθ(logf(Ỹ |θ))
ᵀ
Dθ(logf(Ỹ |θ)). (3.23)

Letting JN (θ) and JYi(θ) be the observed information matrices for Y and all the Yi

respectively, then again by independence we have that JN (θ) =
∑N

i=1 JYi(θ). Similarly

letting SN (θ) and SYi(θ) be the outer product of the score vectors for Y and all the

Yi respectively, then SN (θ) =
∑N

i=1 SYi(θ).

Now (JN (θ))rs = −
∑N

i=1(Hθ(logf(Yi|θ))rs is element (r, s) of JN (θ), for r, s ∈
{1, ..., k}. If the sample is iid, and if we assume Eθ[(Hθ(logf(Y1|θ))rs] < ∞, then

by the strong law of large numbers (SLLN) the average of (JN (θ))rs converges al-

most surely to −Eθ[(Hθ(logf(Ỹ |θ))rs] = (IỸ (θ))rs = (I(θ))rs using (3.17). Thus

N−1(JN (θ))rs
a.s.−→ (I(θ))rs for all r, s ∈ {1, ..., k}, and so N−1JN (θ)

a.s.−→ I(θ). Unfor-

tunately we cannot simply conclude N−1JN (θ̂N (Y ))
a.s.−→ I(θ0) by arguing as before

for the estimator N−1IN (θ̂N (Y )) of I(θ0). An alternative approach uses a uniform law

of large numbers (ULLN). We now describe this approach.

Let us temporarily adopt the notation J(Ỹ ,θ) := J(θ) in order to be explicit about

the dependence of J(θ) on the random vector Ỹ . We shall also work elementwise with

(J(Ỹ ,θ))rs and (JN (θ))rs =
∑N

i=1(J(Yi,θ))rs, r, s ∈ {1, ..., k}, for this discussion. The

function (J(·,θ))rs is real-valued on the set Rn × Θ◦, and we will suppose that it is

Lebesgue measurable for every θ ∈ Θ◦. A uniform (strong) law of large numbers defines

a set of conditions under which

sup
θ∈Θ

∣∣N−1(JN (θ))rs −Eθ [(J(Y1,θ))rs]
∣∣ =

sup
θ∈Θ

∣∣∣∣N−1
∑N

i=1
(J(Yi,θ))rs − (I(θ))rs

∣∣∣∣ a.s−→ 0. (3.24)
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The conditions that must be satisfied in order that (3.24) holds are (a) Θ◦ is a compact

set; (b) (J(Ỹ ,θ))rs is a continuous function on Θ◦ with probability 1; (c) for each

θ ∈ Θ◦ (J(Ỹ ,θ))rs is dominated by a function h(Ỹ ), i.e. |(J(Ỹ ,θ))rs| < h(Ỹ ); and

(d) for each θ ∈ Θ◦ Eθ[h(Ỹ )] < ∞;. These conditions come from Jennrich (1969,

Theorem 2).

Now for any yi ∈ Rn, i ∈ IN and θ′ ∈ S ⊆ Θ◦, the following inequality obviously

holds∣∣∣∣N−1
∑N

i=1
(J(yi,θ

′))rs − (I(θ′))rs

∣∣∣∣ ≤ sup
θ∈S

∣∣∣∣N−1
∑N

i=1
(J(yi,θ))rs − (I(θ))rs

∣∣∣∣ .
(3.25)

Suppose that {θ̂N (Y )} is a strongly consistent sequence of estimators for θ0, and let

ΘN1 = BδN1
(θ0) ⊆ K ⊆ Θ◦ be an open ball in Rk with radius δN1 → 0 as N1 →∞, and

suppose K is compact. Then since θ̂N (Y ) ∈ ΘN1 for fixed N1, and for N sufficiently

large enough, then we have that P [lim
N
{θ̂N (Y ) ∈ ΘN1}] = 1 for sufficiently large N .

Together with (3.25) this implies

P

[
lim
N→∞

{∣∣∣∣N−1
∑N

i=1
(J(Yi, θ̂N (Y )))rs − (I(θ̂N (Y )))rs

∣∣∣∣ ≤
sup
θ∈ΘN1

∣∣∣∣N−1
∑N

i=1
(J(Yi,θ))rs − (I(θ))rs

∣∣∣∣
}]

= 1. (3.26)

Now ΘN1 ⊆ Θ◦ implies conditions (a)-(d) of Jennrich (1969, Theorem 2) apply to ΘN1 .

Thus (3.24) and (3.26) imply

P

[
lim
N→∞

{∣∣∣∣N−1
∑N

i=1
(J(Yi, θ̂N (Y )))rs − (I(θ̂N (Y )))rs

∣∣∣∣ = 0

}]
= 1. (3.27)

Since (I(θ̂N (Y )))rs
a.s.−→ I(θ0) then (3.27) implies thatN−1(JN (θ̂N (Y )))rs

a.s.−→ (I(θ0))rs.

Note that (3.26) holds however small ΘN1 is, and so the result in (3.27) is independent

of the choice of N1 other than N1 must be chosen such that ΘN1 ⊆ Θ◦. This result holds

for all r, s = 1, ..., k, and so in terms of matrices we have N−1JN (θ̂N (Y ))
a.s.−→ I(θ0).

A similar analysis applies to SN (θ) where we use the fact that the average of the

summands in (SN (θ))rs =
∑N

i=1(Dθ(logf(Yi|θ))
ᵀ
Dθ(logf(Yi|θ)))rs converge almost

surely to (I(θ))rs using the SLLN and (3.15). Thus N−1(SN (θ))rs
a.s.−→ (I(θ))rs for

all r, s = 1, ..., k, and so N−1SN (θ)
a.s.−→ I(θ). Again we cannot use the Continuous
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Mapping Theorem (Van Der Vaart, 1998, p 7) to conclude N−1SN (θ̂N (Y ))
a.s.−→ I(θ0)

but rather we apply conditions (a)-(d) of Jennrich (1969, Theorem 2) to S(Ỹ ,θ) :=

S(θ) to obtain a strong ULLN as before.

An alternative approach to the ULLN is as follows, and concerns weak rather than

strong convergence. We know from the WLLN for any ε > 0 that

lim
N→∞

P
[∣∣N−1(SN (θ0))rs − (I(θ0))rs

∣∣ < ε
]

= 1. (3.28)

If we can then show that

lim
N→∞

P
[∣∣∣N−1(SN (θ̂N (Y )))rs −N−1(SN (θ0))rs

∣∣∣ < ε
]

= 1, (3.29)

i.e. if N−1(SN (θ̂N (Y )))rs
P−→ lim

N→∞
(N−1(SN (θ0))rs), then

∣∣∣(N−1(SN (θ̂N (Y )))rs − I(θ0)
∣∣∣ =∣∣∣N−1(SN (θ0))rs − (I(θ0))rs +N−1(SN (θ̂N (Y )))rs −N−1(SN (θ0))rs

∣∣∣ ≤
∣∣N−1(SN (θ0))rs − (I(θ0))rs

∣∣+
∣∣∣N−1(SN (θ̂N (Y )))rs −N−1(SN (θ0))rs

∣∣∣ , (3.30)

implies

lim
N→∞

P
[∣∣∣(N−1(SN (θ̂N (Y )))rs − I(θ0)

∣∣∣ < ε
]

= 1, (3.31)

which gives the desired result that N−1(SN (θ̂N (Y )))rs
P−→ (I(θ0))rs). The key result

in (3.29) is obtained if the collection of random variables G := {N−1(SN (θ))rs : θ ∈
Θ◦}n∈N is stochastically equicontinuous at θ0 ∈ Θ◦.

To describe this derivation, in what follows we use and expand the discussion in

Jordan (2007) about stochastic equicontinuity. A collection of stochastic processes

Z := {Zn(t) : t ∈ T }N∈N is defined to be stochastic equicontinuous at t0 ∈ T if for

all η > 0, and for all ε > 0, there exists a neighborhood U(ε, η) of t0 such that

lim sup
n

P

[
sup

t∈U(ε,η)
|Zn(t)− Zn(t0)| > η

]
< ε. (3.32)
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The first thing to note is that the limsup in (3.32) relates to real numbers, in

particular numbers in the range [0, 1], and so a simple interpretation is possible. For

a sequence of real numbers {xn} we have an alternative definition of the limsup as

lim sup
n

xn = lim
n→∞

sup
m≥n

xm. If lim sup
n

xn = b say, then for every ε > 0 there exists an

N > 0 such that xn < b + ε for all n > N . Thus any number greater than the limsup

of the sequence {xn} is an eventual upper bound for the sequence - i.e. only a finite

number of points of the sequence are greater than b + ε. In particular b = 0 implies

xn → 0 as n → ∞ for a sequence of positive reals {|xn|}. Thus if {An} are sets in

some σ-field F , and (Ω,F , P ) is a probability space, then lim sup
n

P (An) = 0 implies

P (An)→ 0 as n→∞.

Now if we assume Z is stochastic equicontinuous at t0 then from (3.32) by letting

η → 0, and ε → 0 we see that lim sup
n

P [sup
t∈U0

|Zn(t) − Zn(t0)| > 0] = 0, where U0 is

the neighborhood of t0 that exists in the limit as η → 0 and ε → 0. This implies

P [sup
t∈U0

|Zn(t) − Zn(t0)| > 0] → 0 as n → ∞. Suppose now that tn
P−→ t0. Then for

any η > 0, ε > 0, we have lim sup
n

P (tn 6∈ U(ε, η)) < ε, and so lim sup
n

P (tn 6∈ U0) = 0

by again letting η → 0, and ε → 0. Thus P (tn 6∈ U0) → 0 as n → ∞. Now from our

assumptions we have that for any ε > 0, η > 0

|Zn(tn)− Zn(t0)| > η =⇒ (tn 6∈ U(ε, η)) OR

(
sup

t∈U(ε,η))
|Zn(t)− Zn(t0)| > η

)
,

(3.33)

and so by letting η → 0, ε→ 0, for any ε′/2 there exists an N such that for all n > N

P [|Zn(tn)− Zn(t0)| > 0] ≤ P (tn 6∈ U0) + P

[
sup
t∈U0

|Zn(t)− Zn(t0)| > 0

]
<
ε′

2
+
ε′

2
= ε′.

(3.34)

We conclude that Zn(τn)
P−→ Zn(τ0) as n→∞. Applying this result to the collection

of random variables G which we assume to be stochastically equicontinuous at θ0 ∈ Θ◦,

and with θ̂N (Y ) in place of tn, then gives the result in (3.29). We can similarly derive

the analogue of (3.29) for JN (θ) as well.

An interesting question of course is what conditions do we need to impose on G in

order for it to be stochastically equicontinuous at θ0. Reverting back for one moment
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to the collection of random variables Z , Theorem 3 of (Li) gives a condition that is suf-

ficient for stochastic uniform equicontinuity, which will imply stochastic equicontinuity

at any point in the set T over which Z is stochastically uniformly equicontinuous. We

write Zn(ω, t) for ω ∈ Ω to denote the dependence of Zn on some underlying probability

space (Ω,F , P ), and let E ∈ F be a zero-probability event, that is P (E) = 0. Then

Z is stochastically uniformly equicontinuous if there exists an N ∈ N such that

{
ω ∈ Ω :

∣∣Zn(ω, t)− Zn(ω, t′)
∣∣ ≤ Bnh(d(t, t′))

}c ⊆ E, (3.35)

holds for all t, t′ ∈ T , and for all n > N , where h is a non-random function, h(x) ↓ 0

as x ↓ 0, Bn = Op(1), and d(·, ·) is just the normal Euclidean distance. If we let M > 0

denote the finite real number that bounds in probability the random sequence {Bn},

then obviously (3.35) holds trivially as M gets very large. Conversely we can think

of the Zn as (almost surely) being more continuous on T the smaller M becomes. In

this sense for any n > N (3.35) can be thought of as a stochastic version of a Lipschitz

continuity condition for deterministic functions, which is a stronger form of continuity

even than uniform continuity. This is most clear when h(x) = x since the condition

in (3.35) becomes |Zn(ω, t)− Zn(ω, t′)| ≤ Bnd(t, t′) which for any n > N is precisely a

Lipschitz continuity condition with a stochastically bounded coefficient Bn.

Since for any single function Lipschitz continuity is quite a strong form of continuity,

it is likely that (3.35) will be too strong a condition to be satisfied by G . Indeed

(Li) states that although the advantage of (3.35) for forms of Zn(t) such as Zn(t) =

n−1
∑n

i=1 z(Xi, t) (which we are interested in) is that the random variables {Xi} do

not need to be independent and/or identically distributed, the condition on Zn(t) is

often transferred to z(Xi, t) which is often too strong. Of course weaker conditions may

obtained if we search for sufficient conditions for G to be stochastically equicontinuous

at θ0 rather than the uniformly so.

A third type of matrix which we shall call the sandwich estimator, is

SWN (θ̂N (Y )) = JN (θ̂N (Y ))
(
SN (θ̂N (Y ))

)−1
JN (θ̂N (Y )). (3.36)

Noting
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N−1SWN (θ̂N (Y )) =
(
N−1JN (θ̂N (Y ))

)(
N(SN (θ̂N (Y )))−1

)(
N−1JN (θ̂N (Y ))

)
,

(3.37)

and that N(SN (θ̂N (Y )))−1 as−→ I(θ0)−1 by the Continuous Mapping Theorem (Van

Der Vaart, 1998, p 7), we see that N−1SWN (θ̂N (Y ))
as−→ I(θ0)I(θ0)−1I(θ0) = I(θ0)

using Slutsky’s theorem (Van Der Vaart, 1998, p 11).

In summary the three random matrices N−1JN (θ̂N (Y )), N−1SN (θ̂N (Y )), and

N−1SWN (θ̂N (Y )) are all consistent estimators of I(θ0). Because these three esti-

mators should be close to N−1IN (θ̂N (Y )) for large enough N , then we will also refer

to these estimators as approximations to the sample information matrix. The deriva-

tions of these consistency results all rely on the two identities (3.15) and (3.17), both of

which in turn rely on the assumption for θ0 ∈ Θ that f(·|θ0) is the true density func-

tion for Ỹ . However if this density function has been misspecified and the true density

function is g(·|θ0) say, then N−1(SWN (θ̂N (Y )))−1 is still a consistent estimator of the

covariance matrix of θ̂N (Y ). For this reason (SWN (θ̂N (Y )))−1 is sometimes called the

”Robust” covariance matrix. This result is given in White (1982, Theorem 3.2) and

rests upon very similar assumptions that are outlined in Section 3.1. Because in this

work we are not focusing on misspecified models we do not describe the details of this

result here.

It was described in Section 2.2 that the EM algorithm is easily the most popular

method of estimating the parameters in a mixture model, partly to avoid taking deriva-

tives of the ordinary log-likelihood function (in particular second derivatives). Thus for

the most part many researchers will be eager to avoid using any of the three consistent

estimators of I(θ0) that we have described here. For iid samples however there is a way

to compute SN (θ̂N (Y )) using the Dθ(logf(Ci|θ))
ᵀ

(the score vectors of the complete

data log-likelihood function Lc(θ|Ci) for the ith unit), which are are typically easier

to derive than using the ordinary log-likelihood function. The result we require comes

from Louis (1982) and states that for an independent but not necessarily identically

distributed sample we have
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Dθ(logf(y|θ))
ᵀ

=

N∑
i=1

Dθ(logf(yi|θ))
ᵀ

=
N∑
i=1

Eθ
[
Dθ(logf(Ci|θ))

ᵀ |yi
]
. (3.38)

If the sample is iid, and considering the incomplete data vector yi which we condition

on as being random, then Dθ(logf(Yi|θ))
ᵀ

= Eθ [Dθ(logf(C1|θ))
ᵀ |Y1] for all i ∈ IN ,

and so (3.38) implies

SN (θ) =

N∑
i=1

Dθ(logf(Yi|θ))
ᵀ
Dθ(logf(Yi|θ))

= NEθ
[
Dθ(logf(C1|θ))

ᵀ |Y1

]
Eθ [Dθ(logf(C1|θ))|Y1] . (3.39)

Thus the consistent estimator N−1SN (θ̂N (Y )) of I(θ0) can be obtained using just the

conditional expected values of the score vectors of the complete data log-likelihood

function from one unit.

Typically a consistent estimator of the information matrix I(θ0) is used with an

asymptotic result such as

√
N(θ̂N (Y )− θ0)

D−→ Nk(0, (I(θ0))−1), (3.40)

for the purpose of performing asymptotic inference on the estimators of the model pa-

rameters in θ0. For example using a consistent estimator of I(θ0), say N−1IN (θ̂N (Y )),

we have that(
N−1IN (θ̂N (Y ))

)1/2√
N(θ̂N (Y )− θ0) =

(IN (θ̂N (Y )))1/2(θ̂N (Y )− θ0)
D−→ (I(θ0))1/2Z,

(3.41)

where Z ∼ Nk(0, (I(θ0))−1).

Now since I(θ0) is a symmetric matrix then it is possible to construct a set {x1, ...,xk}
of n orthonormal eigenvectors corresponding to the set of k eigenvalues {λ1, ..., λk} of

I(θ0). We can then construct an orthogonal matrix X = (x1, ...,xk) to obtain the
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spectral decomposition I(θ0) = XΛX
ᵀ
, where Λ = diag(λ1, ..., λk). Since I(θ0) is pos-

itive definite then λj > 0 for all j = 1, ..., k, and so the square root matrix Λ1/2 is real

and positive-definite too. This means we can find a nonnegative definite k × k matrix

(I(θ0))1/2 = XΛ1/2X
ᵀ

such that (I(θ0))1/2(I(θ0))1/2 = I(θ0), that is (I(θ0))1/2 is a

square root matrix of I(θ0). Thus the covariance matrix of the random vector in the left-

hand side of (3.41) in the limit is given by (I(θ0))1/2[(I(θ0))1/2(I(θ0))1/2]−1(I(θ0))1/2 =

Ik, and so we have using Slutsky’s Theorem (Van Der Vaart, 1998, p 11)

(IN (θ̂N (Y )))1/2(θ̂N (Y )− θ0)
D−→ Nk(0, Ik). (3.42)

Now this result says in the limit as N → ∞ that the random sequence of vec-

tors {(IN (θ̂N (Y )))1/2(θ̂N (Y )− θ0)} converges to a random variable with distribution

Nk(0, Ik). It does not say that (IN (θ̂N (Y )))1/2(θ̂N (Y ) − θ0) has this distribution

for any finite N however large. But perhaps for N large enough the distribution of

(IN (θ̂N (Y )))1/2(θ̂N (Y )− θ0) might be approximately Nk(0, Ik). So if we assume this

holds, and if we ignore the fact that (IN (θ̂N (Y )))1/2 is random we get

θ̂N (Y ) ≈ Nk(θ0, (IN (θ̂N (Y )))−1), (3.43)

where ≈ means ”distributed approximately”. Of course (3.43) can be derived in the

same way with JN (θ̂N (Y )), SN (θ̂N (Y )), and SWN (θ̂N (Y )) replacing IN (θ̂N (Y )) since

they are all consistent estimators of I(θ0).

3.2.2 Quantifying confidence interval performance - true standard er-

rors

We now describe the simulation study by Boldea and Magnus (2009) to which we

referred at the beginning of Section 3.2. In this study Boldea and Magnus used

JN (θ̂N (Y )), SN (θ̂N (Y )), and SWN (θ̂N (Y )) which are the approximations to sam-

ple information matrix IN (θ̂N (Y )) which we described in subsection (3.2.1), and three

versions of a bootstrap procedure, in order to obtain standard errors of the parameter

estimates in a 2-component Gaussian mixture using an iid sample. The parameters
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to be estimated were the elements of the mean vectors and covariance matrices of the

component distribution functions in the mixture.

The approach taken by Boldea and Magnus to evaluate the performance of these

six different methods of obtaining parameter estimate standard errors was to compare

these standard errors to estimates of the true parameter estimate standard errors. For

any given model parameter this method worked as follows: an estimate of the true

parameter estimate standard error was calculated by obtaining a very large number

(50,000) of parameter estimates and defining the true standard error to be equal to the

standard deviation of this sample of estimates. A further 10,000 parameter estimates

and their estimated standard errors were then obtained (different from the previous

50,000) using the above approximations to the sample information matrix, and the

three bootstrap procedures. These samples of estimated standard errors were then used

to quantify the performance of these different methods of standard error calculation.

Specifically the MSE of these samples were calculated using the ”true” standard error

calculated from the 50,000 replications.

The three bootstrap methods used by Boldea and Magnus were the parametric,

non-parametric, and a ”weighted” bootstrap method. Sample sizes of N = 100 and

N = 500 were used, and the component distribution means were specified to be well

separated enough such the parameter estimates were unbiased, since the intention was

to focus solely on the performance of the estimates of the standard errors. The root

mean square error (RMSE) was used as a measure of closeness of the estimated standard

errors to the true ones. Boldea and Magnus investigated four scenarios including one

where the model was correctly specified, that is the model fitted to the simulated data

sets was the same as the data generating process. We only describe these results since

this is the scenario we are interested in in this thesis.

When the model is correctly specified, and using the summary of the results for

N = 500 presented in table 4, the Hessian estimator produced a lower RMSE than

the score estimator, which in turn produced a slightly lower RMSE than the sandwich

estimator. For the bootstrap procedures the parametric method was best, producing

lower RSME values than the other two methods which produced the same RMSE values

as each other. In terms of comparing the information matrix based estimators with

the bootstrap ones, the Hessian estimator was better than the parametric bootstrap

estimator, which in turn was slightly better than the score estimator, and clearly better
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than the sandwich estimator. The score and sandwich estimators were better than the

non-parametric and weighted bootstrap estimators. For N = 100 almost the same

results are obtained with the exception that the RMSE for the parametric bootstrap is

very slightly lower than that produced by the Hessian estimator.

Thus for these simple (two components only) well separated Gaussian mixtures, for

N = 500 the Hessian based estimator proved the superior method for estimating the

true parameter standard errors for these small samples sizes, although not by much. For

N = 100 the parametric bootstrap was nominally better but the difference compared

to the Hessian estimator was so small that we can say these two methods were the

same. For both sample sizes the Score and sandwich estimators were better than the

non-parametric and the weighted bootstrap methods. Finally all of the RMSE’s for

all methods were close to zero, which Boldea and Magnus point out is in contrast to

the claim made by some authors that very large sample sizes are required for accurate

results using the information matrix. Furthermore, and as expected, the RMSE are

much smaller for N = 500 compared to N = 100.

It is worth noting that in general, and for both information matrix and bootstrap

methods, Boldea and Magnus state that the contribution of the bias to the RMSE

is small compared to the contribution from the variance, for example for the Hessian

estimator for N = 500, and averaged over all the model parameters, the ratio of the

absolute bias to the RMSE is approximately 9%. The corresponding figure is not given

for N = 100, but presumably it is larger. Furthermore Boldea and Magnus note that

the bias tends to be negative for all methods of standard error estimation. This suggests

that in small sample sizes confidence intervals constructed using these standard error

estimates may be slightly shorter than they should be, leading to a false impression of

the precision with which we can estimate the model parameters. Since the bias is small

for N = 500 then this may not be too much of a problem, however for smaller sample

sizes this bias may well be much larger. The fact that the majority of the RMSE for

N = 500 comes from the variance of the estimators is perhaps not surprising for low

samples sizes such as this.
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3.3 Inference for the LMM

The following is a very brief summary of the relevant asymptotic theory for parameter

inference in a LMM where the within-unit errors are assumed to follow a stationary

AR(r) process. There are other similar results for LMMs that use a simple within-unit

covariance structure, however the result described here will apply to those models by

setting φ = 0. We will describe the result given by Wang and Fan (2009) who actually

focus on LMMs for multiple response variables, that is where Yi is a ni × h matrix -

Wang and Fan call this multivariate longitudinal data. The results are applicable to a

LMM by setting h = 1. For brevity we will use the same notation that we introduced

in chapter 2 by setting G = 1.

Now since the sample {Y1, ...,YN} for a LMM are independent but generally not

identically distributed, it is not necessarily the case that we have

Eθ[Dθ (logf(Yi|θ)))
ᵀ
Dθ (logf(Yi|θ)))] = A for all i ∈ IN , where A is a nθ × nθ finite

matrix. Thus for these non-iid samples it is not as natural to assume that N−1IN (θ)

converges to an asymptotic information matrix I(θ), nor to impose conditions such

that this occurs, although of course such assumptions can nonetheless still be used.

Two approaches can be used for these non-iid samples. One approach is called the

deterministic scheme or fixed design, whilst another approach is called the stochastic

scheme or random design (Demidenko, 2004). The fixed scheme assumes the Xi, Zi,

and ni are fixed, and attempts to impose conditions on these fixed data that ensures

N−1IN (θ) converges to a matrix I(θ). The easiest assumption in this respect is to

simply assume this holds, and this is the approach taken by Wang and Fan. In the

stochastic scheme it is assumed that the Xi, Zi, and ni are random variables with

distributions that may depend on unknown parameters (but not θ), and that the triples

{Yi,Xi, ni} are iid, which in turn ensures the {Yi} are iid - see Demidenko (2004) for

an outline of this approach.

Wang and Fan present present two asymptotic results, one for the fixed effects

parameter β, and one for the vector of covariance parameters ζ = (σ2,ψ
ᵀ
,φ

ᵀ
)
ᵀ
. For

this partitioning of θ we will denote the sample information matrices as IN (β) and

IN (ζ) for β and ζ respectively, where the definition of the sample information matrix

can be found in subsection (3.2.1). For this partitioning of θ, and as we described above,

Wang and Fan assume that N−1IN (β) → I(β), and N−1IN (ζ) → I(ζ) as N → ∞
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where I(β), and I(ζ) are finite positive-definite matrices. The other assumptions they

use are: The ni are bounded above; the parameter spaces for β and ζ are compact;

θ0 ∈ Θ◦; and maxi{a
ᵀ
X

ᵀ

iXia/a
ᵀ∑N

i=1X
ᵀ

iXia} → 0 for all non-zero a ∈ Rp, which

ensures that
∑N

i=1XiVi(ζ)−1Xi is of order O(N).

Given these assumptions and some unstated regularity conditions, Wang and Fan

state that θ̂N (Y )
P−→ θ0,

√
N(β̂ − β0)

D−→ N(0, (I(β0))−1), and
√
N(ζ̂ − ζ0)

D−→
N(0, (I(ζ0))−1). Now for the LMM, and from (C.28), and (C.2), we see that IN (θ) has

a block structure with IN (β) in the top-left block, IN (ζ) in the bottom-right block, and

zeros elsewhere. Thus from Schott (2005, Theorem 7.1, pp256) we see that IN (θ̂)−1

has (IN (β̂))−1 in the top-left block, (IN (ζ̂))−1 in the bottom-right block, and zeros

elsewhere. This means that (IN (θ̂))−1 can be used to simultaneously calculate both

inverse information matrices (I(β0))−1), and (I(ζ0))−1).

3.4 Mixture model naive inference

In this section we propose two methods of statistical inference which we shall call

”naive”, since they are based on unproven theory, but nonetheless possess a certain

level of credibility that makes them worthy of further study. Both methods are con-

cerned with constructing approximate asymptotic confidence intervals around the pa-

rameter estimates in MLMMs. The methods described in subsection (3.4.2) focus on

approximating the information matrix of a MLMM, whilst the methods in subsection

(3.4.3) focus on using G separate LMM information matrices to approximate some of

the information in the full mixture model information matrix. Subsection (3.4.1) is

concerned with quantifying how well separated the parameters in a MLMM are, which

essentially quantifies how difficult it is to tell the model parameters apart between the

components. The motivation for this subsection is that this separation will determine

how well both methods of inference proposed here will work.

3.4.1 Quantifying component separation

This subsection is concerned with proposing an index to quantify how well separated the

components of a mixture distribution function are, specifically where the distribution

function is induced by an MLMM. The word ”separation” implies, as it is intended

to, that the notion of the separatedness of the components of the mixture distribution
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function relates to some sort of distance-based measure on the component distribution

functions. This is because it is clear that if the component distributions are too close to

each other then it is likely that classifying units to components will prove very difficult,

and thus it is likely this classification will be carried out with high error rates.

If the primary purpose of fitting a mixture model is the classification itself, then

the propensity of a mixture model to produce a poor classification is obviously not a

desirable property. However if the primary interest is in the parameter estimates then

high classification error rates are also not good. This is because it is almost certain

that the quality of the parameter estimates will be heavily influenced by the quality

of the classification of units to components (and vice-versa). This is because the accu-

racy of the estimated posterior probabilities will be dependent on the accuracy of the

classification, and in turn the parameter estimates all depend on the estimated poste-

rior probabilities. Because the focus of this work is not on classification we make this

statement without further explanation or justification, nor do we attempt to directly

investigate this in any of the simulations we perform in Section 5.1, but instead we

do this indirectly by investigating the relationship between component separation and

classification error rates.

We note that since the intention of the separation index is essentially prognostic

in terms of quantifying how well the mixture model works, then any separation index

should be based on the true mean vectors and covariance matrices, or the true regression

and covariance parameters. In this way the index will be independent of the estimation

procedure itself. In contrast since estimation and thus inference on the estimators is a

function of the data, it is probably desirable not to have an index that is based on just

the true parameters alone, since this would not be very informative. Instead it would

be preferable to have the index be a function of the fixed covariate data {Xi}i∈IN and

{Zi}i∈IN , since in combination the covariate data as well as the model parameters will

determine to a large extent the separatedness of the components.

Regardless of whether the mean vectors and covariance matrices of a mixture model

are parameterized by regression and covariance parameters, we feel an obvious choice

as a basis for a separation index is some function of both the distance between the

true mean vectors, and the magnitude of the entries in the true covariance matrices

of the component distribution functions. The intuition behind this choice is that for

fixed values of the component covariance matrices as the distance between the mean
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vectors reduces then the distributions become closer together and hence less well sep-

arated. Clearly the task of classifying units to components should get more difficult

if this convergence of mean vectors results in significant overlapping of the tails of the

distributions. Of course this overlapping is also a function of the component covariance

matrices. For example there may be no overlapping at all for even small amounts of

separation between the mean vectors if the covariance matrices all have small elements.

Another approach to quantifying component separation is to recognise that quanti-

fying the separatedness of the true parameters (again based upon distance) should also

give a good idea of how easy the classification of units to components is likely to be.

This may be a much better strategy when the mean vectors and covariance matrices

are parameterized by regression parameters and covariance parameters, as they are for

MLMMs and MLMs. The reason for this is that on account of the complex relation-

ship between the covariate data {Xi}i∈IN , {Z}i∈IN , and the regression and covariance

parameters, it is conceivable we could have say two mean vectors that are separated

in terms of distance, but that some of the regression parameters are not. Furthermore

this method has extra intuitive appeal in the sense that when there are only mean

vectors and covariance matrices to estimate, then this concept of separatedness of pa-

rameters in terms of distance will in essence reduce to the previous interpretation of

separatedness of components in terms of distance.

The index we now propose will measure the separation based upon distance between

two scalar parameters in a pair of components, where the parameters ”correspond” in

the two components. Formally, and recalling that nθ is the total number of parameters

in each θg, g ∈ IG, then for any two components g, g′ ∈ IG, and any s ∈ {1, ...., nθ},
let (θg)s and (θg′)s be called corresponding parameters in the component pair (g, g′).

Then let SIs(g, g′) denote the separation index between the sth corresponding pair of

parameters in the component pair (g, g′). Later we will also need to aggregate in some

way across the nθ different separation indexes in order to derive an overall measure of

separatedness of the component pair (g, g′).

If for a given MLMM the true component memberships are known, then each θg,

g ∈ IG, can be estimated componentwise as we described in subsection (3.4.3). Now

since there is nothing stopping us from constructing the componentwise ”confidence

intervals” for the true parameters, then by doing so we will immediately obtain a

mechanism to determine the separation of the two true parameters that is grounded
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in statistical theory. Thus we will base SIs(g, g′) on the componentwise ”confidence

intervals” for θg, and θg′ . We will call these intervals the true parameter intervals

(TPIs). Specifically

TPI(1−α)((θg)s) = (θg)s ± zα/2
√

((IN (θg))−1)ss, (3.44)

where zα/2 is the value of a standard normal random variable Z such that P [−zα/2 ≤

Z ≤ zα/2] = 1− α, for nominal confidence level α ∈ [0, 1]. This is simply the (1− α) ∗

100% approximate confidence interval for (θ̂g(Y ))s derived from (3.48) but with (θg)s

replacing (θ̂g(Y ))s.

Since the the TPIs in (3.44) are derived from (3.48) then the TPIs are a func-

tion of the asymptotic distribution of θ̂g(Y ). As a result the use of the additive term

zα/2
√

((IN (θg))−1)ss to create an interval is based upon sound statistical theory. How-

ever an obvious question is how can we interpret the non-randomness of (θg)s around

which we construct the TPI? To answer this question we note that IN (θg) depends on

the sample through the non-random quantities {Xi}i∈IN , {Z}i∈IN , and thus also the

sample sizes N and ni. Thus since we can think of θg as the most accurate estimate of

θg that we can obtain, then one interpretation of the TPI in (3.44) is that the interval

represents the most accurate error bound for (θ̂g(Y ))s we can obtain given the fixed

covariate data {Xi}i∈IN , {Z}i∈IN , and sample sizes {ni}i∈IN , and N .

We now describe how we will calculate SIs(g, g′). Let I1 = (a1, b1) and I2 = (a2, b2)

be the TPI for (θg)s and (θg′)s respectively. We will base our definition of SIs(g, g′)

on the following scenarios relating to how I1 and I2 can overlap: nested (NEST) where

a1 ≤ a2 < b2 ≤ b1; overlap (OVLP) where a1 < a2 ≤ b1 < b2; separate (SEP) where

b1 < a2. For OVLP and SEP these scenarios define the situation when I2 is to the

right (either totally or in part) of I1, whilst for NEST they define I2 ⊆ I1. For I1 to

the right of I2, or I1 ⊆ I2 simply reverse the roles of the two intervals. Then we define

the separation index SIs(g, g′) as
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SIs(g, g′) =



a2−b2
b1−a1

, if a1 ≤ a2 < b2 ≤ b1 (NEST)

a2−b1
b2−a1

, if a1 < a2 ≤ b1 < b2 (OVLP)

a2−b1
(b2−a2)+(b1−a1) , if b1 < a2 (SEP),

(3.45)

where it can be verified that the ranges SIs(g, g′) take on are

SIs(g, g′) ∈



[−1, 0), for a1 ≤ a2 < b2 ≤ b1 (NEST)

(−1, 0], for a1 < a2 ≤ b1 < b2 (OVLP)

(0,∞), for b1 < a2 (SEP).

(3.46)

We will use α = 0.975 so that the TPIs are 95% confidence intervals, and so match the

width of the confidence intervals we will use when we fit MLMMs in our simulations.

It may be however that some other value for α for the TPIs gives better SIs in some

respect, but we did not investiagte this subject, nor did we investigate how sensitive

the SIs are with respect to changes in α. Some of the desirable properties satisfied by

SIs(g, g′) are:

1. For fixed interval lengths ||I1|| and ||I2||, and for OVLP and SEP, SIs(g, g′) is an

increasing function of a2 − b1.

2. SIs(g, g′) attains a minimum value of −1 if and only if I1 = I2

3. SIs(g, g′) = 0 if and only if a2 = b1.

4. SIs(g, g′) < 0 for a2 < b1.

5. SIs(g, g′) > 0 for b1 < a2.
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Property 1 means for OVLP and SEP that SIs(g, g′) is determined by the distance

between the left hand end point a2 of I2, and the right hand end point b1 of I1. Thus as

I2 moves further away from I1 (to the right) then SIs(g, g′) increases, which obviously

has intuitive appeal. Property 2 implies we are assuming maximum unseparatedness

of two intervals occurs only when the two intervals are the same (this occurs in the

NEST scenario). In turn this implies we are assuming that if I1 and I2 are such that

I2 ⊆ I1 holds strictly, and regardless of how small the difference in the lengths of the

interval are, then the two intervals are more separated than when I1 = I2. Furthermore

property 4 means that the range of values SIs(g, g′) takes on in the NEST and OVLP

scenarios are almost the same. This implies we are assuming that two intervals that

overlap by a certain amount should not be viewed as being more or less separated than

two intervals that overlap by the same amount but in the OVLP scenario. Property 5

implies we view the separation of the two intervals as tending to infinity as the distance

I2 is to the right of I1 tends to infinity.

Finally we need some way of aggregating the set of separation indices of all of the

model parameters for the component pair (g, g′). In this respect we will define

SI(g, g′) = max{SI1(g, g′), ..., SInθ(g, g′)}, (3.47)

to represent a measure of the overall separatedness of components g and g′. The reason

we use the maximum of the separation indexes (rather than say the average) is that

it is possible important performance metrics such as estimator bias and variance of a

MLMM are influenced by the separatedness of even one parameter, if that separatedness

is large enough.

3.4.2 Approximating the information matrix for MLMMs

It was described in Section 3.1 that for iid mixture densities there exists a unique

strongly consistent sequence of solutions {θ̂N (Y )} to the likelihood equations, that

with probability 1 as N →∞ these solutions are a local maximum of LN (θ), and that
√
N(θ̂N (Y ) − θ0) is asymptotically normally distributed with mean 0 and covariance

matrix I(θ0)−1. Given this result, and if IN (θ̂N (Y )) is a consistent estimator of I(θ0),

we then get

θ̂N (Y ) ∼ Nnθ(θ0, (IN (θ̂N (Y )))−1), (3.48)
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where we recall that nθ is the number of parameters in the 1-component MLMM and

nΘ = (G ∗ nθ) + G is the number of parameters in the MLMM. We are currently

not aware of such a result as 3.48 for non-iid samples, however notwithstanding this

some authors apply this result to MLMMs with non-idd samples as if such a result has

been proven. Furthermore they make no mention of this, and in doing so give a false

impression that this problem has been solved.

For example Xu and Hedeker (2002), and Grün and Hornik (2011) both study

a MLMM for a non-iid sample with a simple within-unit error covariance structure,

and an unstructured random effects covariance structure. Xu and Hedeker use a Fisher

Scoring procedure to estimate the parameters of the model, but where the complete data

information matrix IcN (θ) is used instead of IN (θ). Standard errors for the parameter

estimates are then obtained by inverting IcN (θ̂N (Y )) however no justification for doing

this is given. Similarly they further make the claim that IcN (θ̂N (Y )) is almost equal

to IN (θ̂N (Y )) without any justification. In contrast Grün and Hornik obtain standard

errors for the parameter estimates by inverting the matrix SN (θ), which for iid samples

we know can be a consistent estimator of I(θ0) subject to certain assumptions (see

subsection 3.2.1). They calculate SN (θ) with the matrix obtained from the outer

product of the conditional expected value of the score vector given in equation 3.39

which is a result which again relies on an iid sample. No discussion is given justifying

their methods.

By using estimators of IN (θ), or of SN (θ), both of which for iid samples have been

proven to be consistent estimators of I(θ0), it is clear that both Xu and Hedeker (2002),

and Grün and Hornik (2011) anticipate a result such as (3.48) for the non-iid samples

associated with their MLMMs. In this section we call this approach to statistical in-

ference as ”naive” in the sense that unproven results are being superficially applied.

Now despite the ambiguity of Xu and Hedeker (2002), and Grün and Hornik (2011),

their naive approach to inference may be justified in the sense that there probably is

good reason to hope that such a result may well hold, not least because from Section

3.3 we see that a similar result holds for the LMM, which in general induces a non-iid

sample. However the methods employed there may not easily generalise to mixtures,

and furthermore identifiability problems caused by the regression and covariance pa-

rameters will also need to be addressed. In this respect there does not even exist a valid
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consistency proof for clusterwise regression models (MLMs with ni = 1 for all i ∈ IN )

since the widely cited result given in Kiefer (1978) has some flaws (see the discussion

in Section 3.1.

Using this naive approach to inference we propose to construct approximate asymp-

totic confidence intervals about the estimates for the parameters in the MLMMs we

introduced in chapter 2. Specifically we will use the Redner and Walker (1984) re-

sult “naively” for MLMMs, in the sense that such a result has not been proven for

these models. From this result the approximate asymptotic distribution of θ̂N (Y )

can be derived and is given by equation 3.48. Thus naive inference involves using the

sample information matrix IN (θ̂N (Y )) to construct approximate asymptotic normal

confidence intervals about the mixture model parameter estimates, and the intention

is to investigate using simulations the performance of these confidence intervals. In

order to implement this we need to derive IN (θ) in explicit form for the models we in-

troduced in Chapter 2, but unfortunately there are computational problems with this.

However these have been addressed by Boldea and Magnus (2009) by using alternative

matrices which are also consistent estimators of I(θ0), and so for large enough N will

approximate IN (θ).

The work of Boldea and Magnus is concerned with using the result in equation

3.48 to perform statistical inference on the parameters from finite mixture densities

with an iid sample, and thus they are justified in using this result. The problem

encountered when calculating IN (θ) is that the N summands in the log-likelihood

L(θ|y) =
∑N

i=1 log(
∑G

j=1 πjfij(yi|λ
(j)
i ,θj)) are logarithms of sums which cannot be

simplified, and so taking derivatives results in fractions. As a result, according to Boldea

and Magnus, computing the expectations is typically unfeasible. In this respect we have

already mentioned Xu and Hedeker (2002) have derived IcN (θ), where one big advantage

of using the complete data log-likelihood given in (2.12) is that its mathematical form,

by being the sum of logarithms rather than the logarithm of sums, and due to the

exponential term in the Normal density function, means we end up with a sum of

terms whose expectations can be computed.

The three consistent estimators of I(θ0) that Boldea and Magnus use to approximate

IN (θ) are N−1JN (θ̂N (Y )), N−1SN (θ̂N (Y )), and N−1SWN (θ̂N (Y )), and we described

these in subsection 3.2.1. The nice property of these estimators is that no expectations

are involved, and Boldea and Magnus have shown it is possible to derive them at least
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for MLMMs with no regression components or covariance parameters. Thus we will

use and adapt the methods of Boldea and Magnus to derive these approximations for

the MLMMs we are concerned with in this thesis, and these derivations are detailed in

subsection (C.2), and furthermore we are not currently not aware of any such derivations

for these classes of MLMMs.

Thus in practice naive inference consists of using equation 3.48 to construct asymp-

totic confidence intervals about the MLMM parameter estimates, but where we replace

IN (θ̂) with JN (θ̂N (Y )), SN (θ̂N (Y )), or SWN (θ̂N (Y )). We note that since our naive

approach to inference in this subsection is to anticipate the result in 3.48, then im-

plicit in this is also the assumption that these three information matrix estimators are

consistent estimators of I(θ0) (and thus approximate IN (θ̂N (Y )) for large N). How-

ever because the MLMMs we work with in this thesis induce non-iid samples, then the

assumptions which lead to these three estimators being consistent for I(θ0) will not

necessarily work for these models, and so even if equation 3.48 does hold for non-iid

samples, the extent of the success of naive inference will also depend to a great extent

on the accuracy of these approximations.

We described in subsection 3.2.2 how Boldea and Magnus compared the parame-

ter estimate standard errors obtained from the three approximations to IN (θ̂) to the

“true” standard errors. We criticised this method primarily because there is no clear

relationship between how well one of these methods estimates the true standard errors,

and the coverage of the confidence intervals obtained from these estimates. Obviously

coverage probabilities do not suffer from the latter problem, but of course they do not

themselves tell us anything about the standard errors used in the construction of the

intervals. Furthermore they do not tell us about the length of the confidence intervals

with which we have obtained this coverage, which will be often be important. For

example it is clear that good coverage can be attained even if parameter estimates are

very biased if the confidence intervals are long enough. Despite these disadvantages

we prefer the more direct quantification of the quality of inference that can be derived

from a particular confidence interval method that coverage probabilities permits us to

make. But we can overcome these disadvantages by also calculating the means of both

the confidence interval lengths and the parameter estimate standard errors. Thus to

investigate the quality of inference provided by the three approximations to the sample
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information matrix that we have described here, we will calculate coverage probabil-

ities, average confidence interval lengths, and averages of the standard errors. These

investigations are described in Section 5.1.

3.4.3 Componentwise Inference for MLMMs

The concept of componentwise inference, or more specifically the conditions under

which we expect it to produce valid statistical inference about the component den-

sity parameters in a MLMM, is linked to the quality of the classification of units to

components we can obtain using the estimated posterior probabilities. For g ∈ IG the

estimated posterior probabilities are given by

p̂i(λ
(g)
i |Yi, θ̂) =

fg(Yi|λ(g)
i , θ̂g)π̂g

G∑
k=1

fk(Yi|λ
(k)
i , θ̂k)π̂k

, (3.49)

or p̂ig for short, which we introduced in Section 2.2 within the context of the EM

algorithm, although here we are working with the random vector Yi rather than its

realized value yi. The analogous quantity using the true parameter θ0 rather than the

estimator θ̂ we will denote by pig.

Now if the components induced by the MLMM are not well separated, and if unit

i belongs to component g ∈ IG, then fg(Yi|λ(g)
i ,θg) > fj(Yi|λ(j)

i ,θj) for all j ∈ IG,

j 6= g, but we will probably also have that fj(Yi|λ(j)
i , θ̂j) is substantially greater than

zero for all j ∈ IG. Accordingly the posterior probabilities pij for all j = 1, ..., G will

take values in the whole range [0, 1], and so too will the estimated posterior probabilities

p̂ij regardless of how close the estimator θ̂ is to θ0. In contrast when the components

induced by the MLMM are well-separated then fg(Yi|λ(g)
i ,θg) ≈ 1 and fj(Yi|λ(j)

i ,θj) ≈
0 for all j ∈ IG, j 6= g, and so we will have pig ≈ 1 whilst pij ≈ 0 for all j ∈ IG, j 6= g.

We will call such a classification ”crisp” since the posterior probabilities clearly indicate

to which component each unit belongs. In this situation when the estimator θ̂ is close

to θ0 then we will also have p̂ig ≈ 1 whilst p̂ij ≈ 0 for all j ∈ IG, j 6= g, however

when the estimator θ̂ is not close to θ0 then as for non well separated components it

is possible the estimated posterior probabilities will take on values in the whole range

[0, 1].
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Given the above discussion we see that when a MLMM induces well separated

components in the population, and when the MLMM (and its associated fixed covariate

data) admits a consistent estimator θ̂ for θ0, that the classification obtained using

the estimated posterior probabilities will be crisp as long as N is large enough, and

furthermore that the classification will be almost error free. The ability to obtain a

crisp classification of units to components with negligible amounts of error is a crucial

concept for componentwise inference, and thus in turn we will have reason to frequently

refer to the MLMMs which permit such a classification - accordingly we will call such

MLMMs “well behaved”. In contrast the classification we obtain using the estimated

posterior probabilities when the components are not well separated will not necessarily

be crisp (and therefore not necessarily accurate), even with consistency, and regardless

of how large N is.

We are now in a position to introduce componentwise inference, the intuition behind

which is simple: if we knew the component memberships of the N units then we could

simply estimate the G 1-component models separately, and so we would not need

to estimate a mixture model at all. If however a MLMM is well behaved then we

might be close to this ideal situation, that is we might be able to classify the units to

components with negligible error, and so the LMM information matrix may be all we

need to perform valid inference on the component density parameters θj , j = 1, ..., G.

This very roughly speaking is what we mean by componentwise inference. Thus to

perform componentwise inference is to ignore that the estimators θ̂j , j = 1, ..., G come

from a mixture model, and to instead assume they have been estimated from G separate

LMMs. Another way of stating this is that componentwise inference naively ignores the

uncertainty in estimating the posterior probabilities, and hence the mixing proportions.

The idea for componentwise inference comes primarily from the R package called

Flexmix (although the phrase componentwise inference is not used), and also from some

ideas in Grün (2008), where we note that Bettina Grün is one of the authors of the

Flexmix package. With the exception of a warning in the Flexmix manual that com-

ponentwise inference ignores the uncertainty in estimating the posterior probabilities

there is no discussion of the rationale behind this method. In this respect, and for

Flexmix in particular, one compelling reason to use componentwise inference is conve-

nience. This is related to the fact that through user-defined code Flexmix permits users

to fit 1-component models whose form is unknown to Flexmix, and so inference is not
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possible to implement by Flexmix itself. Flexmix “solves” this problem by allowing the

user to perform inference on each of the component density parameters in turn using

the theory behind the inference of the 1-component model. This is possible through

the use of the second variant of the EM algorithm described in Subsection 2.2.2. For

example for MLMMs the user of Flexmix gets Flexmix to call code to perform the

weighted maximisation in equation (2.37) and thus permits confidence intervals to be

constructed about θ̂g.

Other than convenience, one justification for using componentwise inference can

be found by considering the second variant of the EM algorithm that we described in

Subsection 2.2.2. We can see that the componentwise maximisations in step 2 require a

weighted log-likelihood function of a LMM to be maximised, where the weights are the

posterior probabilities for the component in question. Clearly if the estimated posterior

probabilities are all either one or zero, and if this classification is correct, then these

G estimators θ̂j , j = 1, ..., G, will be precisely the estimators obtained by splitting the

data into the G components and estimating G separate LMMs.

Another way of seeing the link to the LMM is to note that for an MLMM with

simple within-unit errors Grün (2008) has shown that for each component this weighted

maximisation is equivalent to maximising an unweighted log-likelihood function of a

LMM transformed in a particular way with the estimated posterior probabilities for that

component. In this case each of the estimators of the component density parameters

θ̂j , j = 1, ..., G, produced by the second variant of the EM algorithm will have an

asymptotic normal distribution the same as that of the estimator from a LMM for

a transformed response. When the transformation is such the estimated posterior

probabilities are all either one or zero, and when the classification is correct, again we

have that the estimators of the component density parameters will be the same as those

obtained from estimating G separate LMMs. In the next sub-subsection we describe in

greater detail, and justify more formally, the use of componentwise inference.

3.4.3.1 A justification for componentwise inference

Before we justify componentwise inference more formally we firstly introduce some new

notation, and also adjust some of our previous notation we used in Chapter 2 so that

we can simultaneously discuss estimators of the component density parameters from

a MLMM, and from 1-component models. In this respect for g ∈ IG, let Y (g) =
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((Y
(g)

1 )
ᵀ
, ..., (Y

(g)
Ng

)
ᵀ
)
ᵀ

be the subset of Ng ≤ N response vectors of Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ

that follow the gth 1-component model defined by a MLMM, where Y
(g)
k for k ∈ INg :=

{1, ..., Ng} denotes that the response vector Y
(g)
k = Yi for some i ∈ IN , and that

unit i belongs to component g. Note that we also have
∑G

k=1Nk = N . Similarly let

Ŷ (g) = ((Ŷ
(g)

1 )
ᵀ
, ..., (Ŷ

(g)
Ng

)
ᵀ
)
ᵀ

for g ∈ IG denote an ”estimate” of the true assignment

of units to component g contained in Y (g), where we assume this particular assignment

has been made because p̂ig = max{p̂i1, ..., p̂iG}.
Letting f1

i (·|θg) denote the ith density function for the gth 1-component model, then

we will use L1(Y (g)|θg) =
∑Ng

i=1 logf1
i (Y

(g)
i |θg) to denote the log-likelihood function for

the gth 1-component model which for brevity we may also shorten to just L1(θg). Let-

ting θ0
j ∈ Ψ, j = 1, ..., G, denote the true component density parameters of the MLMM,

then we use θ̂1
g(Y

(g)) to denote the MLE of θ0
g , that is θ̂1

g(Y
(g)) is the estimator of θ0

g

obtained from maximising L1(Y (g)|θg). For brevity we may also shorten θ̂1
g(Y

(g)) to

θ̂1
g . We now slightly adjust our notation we used previously in Chapter 2 for the MLMM

estimator, that is α̂(Y ) = (α̂1(Y )
ᵀ
, ..., α̂G(Y )

ᵀ
, π̂(Y )

ᵀ
)
ᵀ

or α̂ = (α̂
ᵀ

1, ..., α̂
ᵀ

G, π̂
ᵀ
) for

short, will denote the MLMM estimator of θ0 ∈ Θ. Thus using this notation, for any

g ∈ IG, θ̂1
g is the 1-component model estimator of θ0

g using Y (g), whilst α̂g is the

MLMM estimator of θ0
g using Y .

We now rephrase the inference results for the LMM from Section 3.3 using this

notation. For any g ∈ IG, we have that if θ̂1
g(Y

(g)) is a consistent estimator of θ0
g then

N−1I1
Ng

(θ̂1
g(Y

(g))) is a consistent estimator of a matrix I1(θ0
g), where for any θg ∈ Ψ,

I1
Ng

(θg) is the sample information matrix for the gth 1-component model and is defined

as

I1
Ng(θg) = −

Ng∑
i=1

Eθg

[
Hθ(logf1

i (Y
(g)
i |θg)

]
. (3.50)

This combined with the fact√
Ng(θ̂1

g(Y
(g))− θ0

g)
D−→ Nnθ(0, (I

1(θ0
g))
−1), (3.51)

leads to the result that

θ̂1
g(Y

(g)) ≈ Nnθ (θ0
g , [I

1
Ng{θ̂1

g(Y
(g))}]−1). (3.52)
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The assumption that componentwise inference might work for a well-behaved MLMM

rests upon the assumption that such a model produces ”almost” independent estima-

tors of the component density parameters. The reasoning for this is as follows. Firstly

because the MLMM is able to partition with negligible amounts of error the random

vector Y into G separate response vectors Ŷ (j) (from the definition of a well-behaved

MLMM described in Subsection 3.4.3), j = 1, ..., G, and because Y has been sampled

randomly from the ”mixture” population of response vectors, then for any g ∈ IG we

have that Ŷ (g) is approximately equal to the true subset of responses Y (g) for compo-

nent g. Thus for any g ∈ IG the vector Ŷ (g) can be thought of as having been ”almost”

sampled randomly from the gth sub-population. Another consequence of being able

to classify units to components relatively error free is that the variance of the esti-

mator π̂(Y ) of π0 should be approximately zero, and furthermore so too should the

covariances between π̂(Y ) and the α̂j(Y ), j = 1, ..., G.

Secondly since the components of the population are well separated, then for any

g ∈ IG, and if α̂g(Y ) is close to θ0
g , then f1

i (Yi|α̂g(Y )) ≈ 0 if unit i does not be-

long to component g, and so in general only those units that belong to component

g should contribute significantly to the estimator α̂g(Y ) - that is we should have

α̂g(Y ) ≈ α̂g(Ŷ
(g)). Since from Subsection 3.4.2 we are assuming naively that the

MLMM estimator α̂(Y ) is consistent for θ0, then this in turn implies α̂g(Y ) will be

close to θ0
g . In this way the well separated components induced by the MLMM, and

consistency of the MLMM estimator mean we should have that the estimator α̂g(Y )

is in fact predominantly a function of Ŷ (g). Furthermore Ŷ (g) ≈ Y (g) because the

MLMM permits us to determine component memberships with negligible error. Ac-

cordingly we have α̂g(Y ) ≈ α̂g(Ŷ (g)) ≈ α̂g(Y (g)), which means the estimators α̂j(Y ),

and α̂k(Y ), for j, k ∈ IG, j 6= k should be approximately independent.

This is the justification of why a well behaved MLMM should give rise to almost

independent estimators of the component density parameters, which henceforth we shall

assume to hold true. Given this assumption we now justify more formally the concept

of componentwise inference. We start by building on the assumptions we made in

subsection 3.4.2 about α̂(Y ) where we assumed naively that

√
N(α̂(Y )− θ0)

D−→ NnΘ(0, (I(θ0))−1). (3.53)
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Given the approximate independence of the component density estimators α̂j(Y ),

j = 1, ..., G, we have that (I(θ0))−1 ≈ diag{A1, ...,AG,AG+1} where Ag, g ∈ IG, and

AG+1 = Hπ̃ (L(π̃)), are the asymptotic covariance matrices respectively of
√
N(α̂g(Y )−

θ0
g), and

√
N(π̂(Y )−π0), which are the gth and (G+1)th sub-vectors of

√
N(α̂(Y )−θ0)

respectively, and where π̃ is the vector π with the Gth parameter removed (see Chapter

C.2.2 for an explanation of why this is needed). Now because α̂g(Y ) ≈ α̂g(Ŷ (g)) ≈
α̂g(Y

(g)) we have

√
N(α̂g(Y )− θ0

g) ≈
√
N(α̂g(Y

(g))− θ0
g)

=

√
N

Ng

√
Ng(α̂g(Y

(g))− θ0
g)

=

√
π−1
g

√
Ng(α̂g(Y

(g))− θ0
g). (3.54)

We make the reasonable assumption that (I1(θ0
g))
−1, the covariance matrix of√

Ng(θ̂1
g(Y

(g)) − θ0
g), and Ag, the covariance matrix of

√
Ng(α̂g(Y

(g)) − θ0
g), are ap-

proximately the same. This is a reasonable assumption since the diagonal form of

I(θ0))−1 implies the independence of
√
Nj(α̂j(Y

(j)) − θ0
j ) and

√
Nk(α̂k(Y

(k)) − θ0
k)

for j 6= k, and so the variation of
√
Nj(α̂j(Y

(j)) − θ0
j ) should be determined only by

the variation of Y (j) and not by the variation of Y (k) for j 6= k. Furthermore since

Ng/N = πg for all N as N tends to infinity, then using 3.54 and 3.53 we see that this

assumption is equivalent to the assumption

var
[√

N(α̂g − θ0
g)
]
−→ π−1

g (Ag)

≈ π−1
g (I1(θ0

g))
−1, (3.55)

as N →∞, and so from (3.53) and (3.55), and for any g ∈ IG, we then have that

√
N(α̂g(Y )− θ0

g) ≈
√
N(α̂g(Y

(g))− θ0
g)

D−→ Nnθ(0,π
−1
g (I1(θ0

g))
−1). (3.56)

Finally if the MLMM estimator α̂(Y ) is consistent for θ0 then α̂g(Y ) is consistent for

θ0
g , and so πgN

−1
g I1

Ng
(α̂g(Y )) is a consistent estimator of πgI

1(θ0
g) ≈ πgA−1

g , and so

using 3.56 it is reasonable to assert that
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(
πgN

−1
g I1

Ng(α̂g(Y ))
) 1

2
√
N(α̂g(Y )− θ0

g)

=
(
I1
Ng(α̂g(Y ))

) 1
2
√
N(α̂g(Y )− θ0

g)
D−→ Nnθ(0, Inθ),

(3.57)

and so

α̂g(Y
(g)) ≈ Nnθ (θ0

g , (I
1
Ng(α̂g(Y )))−1). (3.58)

If we knew the true component memberships, then from 3.58 for each α̂j(Y
(g)),

j = 1, ..., G, we could derive approximate Normal confidence intervals. We will call

these confidence intervals componentwise confidence intervals, and similarly I1
Ng

(·) the

componentwise sample information matrix. In words equation 3.58 means we use the

sample of response vectors Y (g) known to be in component g in order to calculate

the componentwise sample information matrix I1
Ng

(·) in (3.50), but we evaluate this

information matrix at the estimator α̂g(Y ) of θ0
g obtained from the MLMM using the

whole sample Y .

In practice of course we do not know the true component memberships, and so even

under the favorable assumption of a well behaved MLMM, componentwise inference

as we have described it here will not work. In this respect the obvious modification

to equation 3.58 is to work with the vector of all responses Y in I1
Ng

(·), but to rely

on the estimated posterior probabilities p̂ig to ensure only those units that belong to

component g actually contribute significantly to the 1-component model information

matrix. That is instead of (3.50) we use should instead use the following equation

CWN (α̂g) = −
N∑
i=1

Eα̂g

[
Hθ(p̂iglogf1

i (Y
(g)
i |α̂g)

]
, (3.59)

where the CW stands for componentwise. When the estimated posterior probabilities

achieve a crisp classification of units to components, and when this classification is

correct, then CWN (θg) ≈ I1
Ng

(θg) for all θg ∈ Ψ. We note again that the estimated

posterior probabilities need not achieve a crisp classification even if the MLMM param-

eters have all been estimated very accurately, rather a crisp classification requires both
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accurate parameter estimates combined with an MLMM that produces well separated

components.

In this respect we are assuming a well behaved MLMM that produces well separated

components, and consistency of the MLMM parameter estimator (that we are naively

assuming) ensures the required accuracy of the estimates for a large enough number of

units. Thus in turn these assumptions imply that the estimated posterior probabilities

get closer and closer to the true classification of units to components as the number of

units tends to infinity, and that this classification becomes crisp. We then have that

CWN (α̂g(Y ))→ I1
Ng

(α̂g(Y )) as N →∞ for any g ∈ IG. But since α̂g(Y ) is consistent

for θ0
g , and since N−1I1

Ng
(θg) converges in probability to I1(θg) for all θg ∈ Ψ, we have

that N−1CWN (α̂g(Y ))
P−→ I1(θ0

g) as N →∞.

Thus if the estimated posterior probabilities converge to values that give the true

classification of units to well separated components, then N−1CWN (α̂g(Y )) is a con-

sistent estimator of I1(θ0
g), which justifies us replacing equation 3.58 with

α̂g(Y ) ≈ Nnθ (θ0
g , (CWN (α̂g(Y )))−1). (3.60)

We propose to use equations 3.60 and 3.59 to derive approximate Normal confidence

intervals for the component density parameters in a MLMM, and this is what we mean

by performing componentwise inference.

In Section C.3 we present an alternative and more formal justification for compo-

nentwise inference based on the derivatives of the log-likelihood function we derive in

Appendix C.
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4

Identifiability

This chapter is concerned with establishing sufficient conditions under which an MLMM

is identifiable, that is to say we want to establish the conditions under which, proba-

bilistically, the parametrization of the model is unique. Theoretically such a concept is

crucial because non-uniqueness in the parametrization means there do not exist either

asymptotically unbiased nor consistent estimators of the model parameters, regardless

of the methods used to obtain them (San Martin and Quintana, 2002). We will also

discuss identifiability for MLMs since this discussion will motivate our discussion for

MLMMs.

In section 4.1 we give an alternative formulation of an MLMM to the hierarchical

one we described in chapter 2, which we will call the mixing distribution formulation.

The idea behind this formulation is that the mixture distribution function of the sample

{Y1, ...,YN} is generated from an underlying 1-component model distribution function

by the mixing distribution. Section (4.2) defines MLMMs and MLMs using the mixing

distribution formulation introduced in section 4.1, and introduces the definitions of

identifiability we shall need later in the chapter. Section 4.3 contains the main material

of this chapter, wherein we will use the mixing distribution introduced in section (4.1)

to parametrize families of distribution functions for MLMMs, and it is with respect to

this parametrization that we shall consider the problem of identifiability. The section

contains two theorems that give different sufficient conditions for identifiability of a

MLMM with an unspecified covariance structure, and a corollary to one of the theorems

for a MLMM with a simple within-unit error covariance structure.
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4.1 Mixing distribution

In this section we introduce the concept of a latent or mixing distribution that generates

the mixture density given in 2.8, and we follow the description given in Lindsay (1995,

section 1.2, pp6) to do this. There are two reasons for introducing this formulation.

Firstly this formulation makes clear that, by being the building block of the mixture

distribution function, that it is the 1-component model distribution function that should

be the focus of attention concerning identifiability issues. In this respect since the 1-

component model distribution function is a multivariate normal distribution which

is completely specified by its mean vector and covariance matrix, we should focus

our attention on how identifiability problems with the parametrization of these mean

vectors and covariance matrices might cause identifiability problems with the mixture.

Secondly for theoretical work focusing on identifiability the notation used with the

latent distribution formulation makes the proofs more compact and clearer to read.

here

As in chapter 2 we assume a sample of response vectors {Y1, ...,YN}, Yi ∈ Rni ,

i = 1, ..., N , from N units out of a population of units that consists of an unknown

number of subpopulations or components. We shall use s for the unknown numbers

of components, and to be consistent with the notation of chapter 2, s = G when the

number of components is considered known. It is assumed each unit belongs to only one

of the s components, and that the units are sampled randomly. We will write πg for the

proportion of the population in component g, for g ∈ {1, 2, ..., s}, so that
∑s

j=1 πj = 1.

As in chapter 2, and unless otherwise stated, we will always use the index g to denote a

particular component chosen from the s possible components, whilst we will use another

index, usually j, when we want to reference all the j = 1, ..., s components.

Let the random variable Ii denote the component membership of each Yi, so that

Ii = g and P [Ii = g] = πg for some g ∈ {1, 2, ..., s}. It is further assumed that,

conditional on Ii = g, Yi has density function fig(yi|Ii = g,θg), where θg ∈ T ⊆

Rnθ , and nθ is the total number of parameters in θ. These densities will be called

the component densities, and we note that for j = 1, ..., s, the component densities

fij(yi|Ii = j,θj) using the notation of this section are equal to the density functions

fij(yi|λ(j)
i ,θj) in chapter 2.
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For this section we will leave the fig unspecified, but in section 4.3 these will be

density functions of multivariate normal distributions induced by a LMM. The density

function for the joint random variable (Yi, Ii) is given by fig(yi|Ii = g,θg)πg, and the

marginal density function for Yi is fi(yi|θ) =
∑s

j=1 fij(yi|Ii = j,θj)πj , where θ ∈ Θ,

and

Θ =

(θ
ᵀ

1 , ...,θ
ᵀ

s , π1, ..., πs)
ᵀ

:
s∑
j=1

πj = 1, πj ≥ 0,θj ∈ T, j = 1, ..., s

 . (4.1)

This is called a G-component finite mixture model if it is known there are s = G

components.

We now introduce latent random variables {Φ1, ...,ΦN} which we define by Ii =

g ⇔ Φi = θg for all i = 1, ..., N , and g ∈ {1, ..., s}, so that for each unit the realized

value of Φi determines the component to which the unit belongs, and vice-versa. The

realized value of each Φi will be written φi, so φi ∈ T for all i = 1, ..., N . We note that

in this chapter we refer to the τ parametrization for the autocorrelation matrices of the

within-unit errors, thus the latent random variables φi, i ∈ IN we use here need not be

confused with the autoregressive parameters φg, g ∈ IG we refer to in other chapters.

Letting φ denote a general point in T , then for each φ ∈ T let f̃i(yi|Φi = φ) be

the density function for the random variable Yi conditional on the value of Φi, so that

f̃i(yi|Φi = φ) = fig(yi|Ii = g,θg) when Φi = φ = θg. Using this notation, for each

i = 1, ..., N , we have that f̃i is in the family of density functions Fi = {f̃i(yi|Φi = φ) :

φ ∈ T}, and that the s density functions fij(yi|Ii = j,θj), j = 1, ..., s, are all contained

Fi.

It is assumed the Φi are a iid sample from a distribution J which is a discrete

probability measure that assigns ”masses” π1, ..., πs at the points θ1, ...,θs. The mea-

surable space on which J is defined is (T,T ), where T is a σ-field of subsets of T . The

support set S(J) = {θ1, ...,θs} of J is a minimal support set in the sense S(J) does

not contain any points to which J assigns zero probability. Using these definitions we

have J(A) =
∑

k πk for any A ∈ T , where the sum extends over all the θ1, ...,θs in A.

The distribution J is called the latent or mixing distribution, and the assumptions

just introduced mean we have the relation

P [Φi = θg] = J({θg}) = πg. (4.2)
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Since probability measures are uniquely defined on the σ-field of the measurable space,

then we can equate the unknown parameters {θ1, ...,θs}, and {π1, ..., πs} uniquely with

the distribution J on the parameter space T . Thus estimating the parameters of the

mixture model fi(yi|θ) =
∑s

j=1 fij(yi|Ii = j,θj)πj is the same thing as estimating the

unknown mixing distribution J with minimal support set S(J) on T (Lindsay, 1995,

pp7). We will denote the set of mixing distributions with finite support on T as J(T ),

and for any J ∈ J(T ), s = |S(J)| will be the number of points in the support set of J .

It is worth noting that the label-switching problem associated with mixture models

simply does not occur with the mixing distribution formulation described here. This

is because J assigns masses to points in S(J) regardless of what we call or label the

points as. Of course we introduce the label switching problem as soon as we label the

points, as we must do for practical and convenience purposes. However for theoretical

purposes the only type of identifiability problems are of the non-trivial type when using

the mixing distribution formulation.

Lindsay (1995, section 1.2, pp7) states that, since the component density f̃i(yi|Φi =

φ) depends on the component only through the parameter φ, the mixture density

fi(yi|θ) can be written as an expectation of the component density f̃i(yi|Φi) with

respect to the mixing distribution J . To see this let φ denote a general point in T ,

and choose disjoint T -sets A1 = {θ1}, ..., As = {θs}, As+1 = T
⋂(⋃s

j=1Aj

)c
, so that

T =
⋃s+1
k=1Ak, and J(φ) = 0 for all φ ∈ As+1. For any set A ∈ T , let IA(φ) be

the indicator function that is one when φ ∈ A, and zero if not. For brevity we will

write f̃i(yi|Φi = φ) as f̃i(yi|φ). Then since f̃i is non-negative, from Billingsley (1995,

Theorem 16.9, pp212) we have

70



EJ [f̃i(yi|Φi)] =

∫
T
f̃i(yi|φ)dJ(φ)

=

s+1∑
j=1

∫
Aj

f̃i(yi|φ)dJ(φ)

=
s∑
j=1

∫
T
IAj (φ)f̃i(yi|φ)dJ(φ) +

∫
T
IAs+1(φ)f̃i(yi|φ)dJ(φ)

=
s∑
j=1

∫
T
I{θj}(φ)f̃i(yi|θj)dJ(φ) + 0

=

s∑
j=1

f̃i(yi|θj)J({θj})

=
s∑
j=1

fij(yi|Ii = j,θj)πj

= fi(yi|θ). (4.3)

In terms of distribution functions, let Fig(yi|Ii = g,θg) be the distribution function of Yi

conditional on unit i being in component g, and we note that this distribution function

is equivalent to Fig(yi|λ(g)
i ,θg) introduced in Chapter 2. Similar to the density function

f̃i, for any φ ∈ T let F̃i(yi|Φi = φ) be the distribution function of Yi conditional on

Φi = φ, so that F̃i(yi|Φi = φ) = Fig(yi|Ii = g,θg) when Φi = φ = θg. Using this

notation, for each i = 1, ..., N , we have that F̃i is in the family of distribution functions

Di = {F̃i(yi|Φi = φ) : φ ∈ T}, and that the s distribution functions Fij(yi|Ii = j,θj),

j = 1, ..., s, are all contained Di.

If we now let Fi(yi|θ) be the mixture distribution function for the ith unit, so that

Fi(yi|θ) =
∑s

j=1 Fij(yi|Ii = j,θj)πj , then similar to 4.3 we have

EJ [F̃i(yi|Φi)] =

∫
T
F̃i(yi|φ)dJ(φ)

=

s∑
j=1

Fij(yi|Ii = j,θj)πj

= Fi(yi|θ). (4.4)

If we denote
∫
T F̃i(yi|φ)dJ(φ) by Fi(yi|J), then (4.4) shows that Fi(yi|J) is the mixture

distribution function for Yi, where the mixture is generated by the mixing distribution
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J . Let Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ

denote the joint vector of the N unit response vectors in

our sample, and recall that F (y|θ) is the mixture distribution function of the sample

which was introduced in chapter 2. Analogously if we define F (y|J) =
∏N
i=1 Fi(yi|J)

to be the distribution function for Y parametrized by J , then from (4.4) we have the

following relationship between F (y|θ) and F (y|J)

F (y|θ) =

N∏
i=1

Fi(yi|θ)

=

N∏
i=1

∫
T
F̃i(yi|φ)dJ(φ)

=
N∏
i=1

Fi(yi|J)

= F (y|J). (4.5)

Now for any θ = (θ
ᵀ

1 , ...,θ
ᵀ

s , π1, ..., πs)
ᵀ ∈ Θ there exists a unique J ∈ J(T ) such that

J has support set S(J) = {θ1, ...,θs}, and masses {π1, ..., πs}. Conversely for any

J ∈ J(T ) with support set S(J) = {θ1, ...,θs}, and masses {π1, ..., πs}, there exists

a unique θ ∈ Θ that satisfies θ = (θ
ᵀ

1 , ...,θ
ᵀ

s , π1, ..., πs)
ᵀ
. Thus letting D denote the

family of distribution functions for the sample response vector Y we have

D := {F (y|θ) : θ ∈ Θ} = {F (y|J) : J ∈ J(T )} , (4.6)

which shows that D can be parametrized by either points in Θ or by the mixing distribu-

tions in J(T ). In the next section we shall use the mixing distribution parametrization

of D to investigate identifiability problems in MLMMs.

4.2 Definitions for identifiability

In the first part of this section we introduce model notation for the distribution functions

of two samples of random variables, one of which is assumed to follow a MLMM, the

other a MLM. Both models induce multivariate normal distributions in these samples.

The second part of this section introduces the definitions of identifiability we shall use

in section 4.3, which concern the parametrization of families of distribution functions

induced by the mixture models.
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We will consider two samples of random variables (Yi)i∈I , Yi ∈ Rni , indexed by a

general index set I, and we will use L ({Yi}i∈I) to denote the probability laws of these

samples. Starting with a MLMM, if each Yi follows the model in 2.1, in combination

with all the distributional assumptions that follow it, then the marginal distribution

function of the sample can be written

Model 1: MLMM marginal distribution function

F (Y |J) := L ({Yi}i∈I) =⊗
i∈I

Fi(yi|J) where

Fi(yi|J) =

∫
Ψ1

ΦXiβ,Vi(ζ)(yi)dJ(β, ζ), Ψ1 := Rp ×Ψζ ,

β ∈ Rp, ζ = (v(D)
ᵀ
, σ2, τ

ᵀ
)
ᵀ ∈ Σζ , Σζ := Σv(D) × R+ × Στ ,

Στ := ([−1, 1]
ᵀ
)r = [−1, 1]

ᵀ × · · · × [−1, 1]
ᵀ ⊆ Rr × · · · × Rr,

Σv(D) ⊆ Rq(q+1)/2, Vi(ζ) = ZiDZ
ᵀ

i + σ2Ci(τ ),

J ∈ Ω1 := J(Ψ1).

where Yi ∈ Rni for all i ∈ I, Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ
, Xi and Zi are ni × p and ni × q

fixed matrices respectively. The parameter space for the covariance parameters, Σv(D),

is the subset of Rq(q+1)/2 that gives rise to a positive definite symmetric q × q matrix

D obtained by ”unvectorising” the vector defined by vec(D) = Dqv(D), where Dq is

the q2 × (q(q + 1)/2) duplication matrix. Similarly Στ is such that Ci(τ ) is a positive-

definite AR correlation matrix for all τ ∈ Στ . The symbol ”⊗” means an independent

product of distributions, and Φµi,Σi(·) denotes the cumulative distribution function of

the ni-dimensional Normal density function with mean vector µi, and positive definite

covariance matrix Σi.

Model 1 assumes the ni observations for each unit to be equally spaced with no

missing values, however when τ is restricted to be the zero vector we will permit missing

values to occur. This avoids defining a second model on account of this difference which

is not important in what follows. Note that Vi(ζ) = ZiDZ
ᵀ

i + σ2Ci(τ ) is positive

definite since D, and Ci(τ ) are positive definite.
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Remembering that s = |S(J)|, then for each i ∈ I, J generates the following mixture

distribution

F (y|θ) =
∏
i∈I

s∑
j=1

Fij(yi|λ(j)
i ,θj)πj , (4.7)

where θj = (β
ᵀ

j , ζ
ᵀ

j )
ᵀ ∈ Ψ1, θ = (θ

ᵀ

1 , ...,θ
ᵀ

G, π1, ..., πG)
ᵀ ∈ Θ1, and

Θ1 =

(θ
ᵀ

1 , ...,θ
ᵀ

G, π1, ..., πG)
ᵀ

:
G∑
j=1

πj = 1, πj ≥ 0,θj ∈ Ψ1, j = 1, ..., G

 . (4.8)

Now if we have a sample (Yi)i∈I where each Yi follows a 1-component version of

Model 1, or a LMM, then the marginal distribution function (after integrating out the

random effects) of the sample is given by

LMM marginal distribution function

F 1(Y |θ) := L ({Yi}i∈I) =⊗
i∈I

F 1
i (yi|θ) where

F 1
i (yi|θ) = ΦXiβ,Vi(ζ)(yi), θ := (β

ᵀ
, ζ

ᵀ
)
ᵀ ∈ Ψ1,

β ∈ Rp, ζ := (v(D)
ᵀ
, σ2, τ

ᵀ
)
ᵀ ∈ Σζ , Ψζ := Σv(D) × R+ × Στ ,

Στ := ([−1, 1]
ᵀ
)r = [−1, 1]

ᵀ × · · · × [−1, 1]
ᵀ ⊆ Rr × · · · × Rr,

Σv(D) ⊆ R(q(q+1)/2), Ψ1 := Rp ×Ψζ ,

Vi(ζ) = ZiDZ
ᵀ

i + σ2Ci(τ ),

where Yi ∈ Rni for all i ∈ I, and Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ
, Xi and Zi are ni × p and

ni × q fixed matrices respectively. The superscripts 1 denote 1-component as opposed

to mixture distribution functions. Note that we are not using the mixing distribution

in the above definition.

We will also need an analogous definition of (4.2) for MLMs as follows
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Model 2: MLM distribution function

F (Y |J) := L ({yi}i∈I) =⊗
i∈I

Fi(yi|J) where

Fi(yi|J) =

∫
Ψ2

ΦXiβ,σ2Ini
(yi)dJ(β, σ2), Ψ2 := Rp × R+,

β ∈ Rp, σ2 ∈ R+, J ∈ Ω2 := J(Ψ2),

where Yi ∈ Rni for all i ∈ I, and Y = (Y
ᵀ

1 , ...,Y
ᵀ

N )
ᵀ
. For clusterwise regression models

(ni = 1 for all i ∈ I) Model 2 can be written

Model 2: Clusterwise regression distribution function

F (Y |J) := L ({yi}i∈I) =⊗
i∈I

Fi(yi|J) where

Fi(yi|J) =

∫
Ψ2

Φx
ᵀ
i β,σ

2(yi)dJ(β, σ2), Ψ2 := Rp × R+,

β ∈ Rp, σ2 ∈ R+, J ∈ Ω2 := J(Ψ2),

where yi ∈ R for all i ∈ I, Y = (y, ..., yN )
ᵀ
, and xi ∈ Rp. The mixture distribution

function for Model 2 parameterized without the mixing distribution J will be the same

as is given in (4.7) but where the covariance matrices of the Fij(yi|λ(j)
i ,θj) will be

equal to σ2Ini for MLMs or σ2 for clusterwise regression.

We now introduce some definitions of identifiability of the models we have intro-

duced above. Define a family of mixture distribution functions for a mixture model

as

Dl :=

{
F (·|J) : F (·|J) =⊗

i∈I
Fi(·|J), J ∈ Ωl

}
, (4.9)

where l = 1, 2, denotes the members of Dl are distribution functions for Model l. Then

we have the following definition of identifiability for Dl

Definition 4.2.1 Dl is identifiable with respect to Ωl if

∀J, Ĵ ∈ Ωl : F (·|J) = F (·|Ĵ)⇔ J = Ĵ , (4.10)
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or in terms of the distribution functions

Definition 4.2.2 Dl is identifiable with respect to Ωl if

∀J, Ĵ ∈ Ωl : Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I ⇔ J = Ĵ . (4.11)

An equivalent definition of identifiability to 4.2.2, based on the one given by Yakowitz

and Spragins (1968), is that the mapping Fi(·|J) =
∫
T ΦXiβ,Vi(ζ)(·)dJ(β, ζ) from Ωl

to Dl is one-one for all i ∈ I.

We see from these definitions that identifiability relates to the whole sample: if

J = Ĵ , identifiability can fail to hold even if the distribution functions of just a single

i ∈ I are not equal under both mixing distributions. Similarly if identifiability holds,

and J 6= Ĵ , then Fi(·|J) 6= Fi(·|Ĵ) for at least one i ∈ I, but maybe only one i - in this

case a single unit alone identifies the parameters. This raises an interesting question

regarding the identifiability of Dl as N tends to infinity, if no further units are added

to the sample that do identify the parameters. Theoretically Dl will still be identifiable

no matter how large N becomes, however the information in the units that do not

identify the parameters may “swamp” the information in units that does identify the

parameters. Perhaps in this case Dl may become close to non-identifiable in some sense,

rather like a matrix can be near to being collinear.

The potential problem described above does not occur when the sample is iid, and

may be relevant for any consistency proof of parameter estimators in the MLMM. This

issue has been discussed by Hennig (2000) for clusterwise regression, wherein the term

“observational model” is used to describe the situation above where, as N →∞, units

with different covariate data, and hence different distribution functions, are introduced.

Hennig also describes an alternative interpretation of the index set I, called a “re-

peatable design”, which for MLMMs means that the M ≤ N distinct distribution

functions are repeated. This implies the fixed covariate data Xi and Zi are repeated,

which could happen in a designed experiment, where we imagine the whole experiment

is repeated. If the covariate data arise from observation rather than design, then the

repeatable design interpretation is probably unrealistic. The logic behind the repeat-

able design interpretation is that conditions are imposed to ensure the first N units

identify Dl, and then the data (Yi,Xi,Zi)i∈I are repeated iid. This approach would
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not only overcome the “swamping” of information problem, but would also perhaps

enable easier consistency proofs by being able to use iid theory.

In section (4.3) we will need to discuss the identifiability of the LMM, and so we now

define identifiability for this model too. First define the family of LMM distribution

functions D1 as

D1 :=

{
F 1(·|θ) : F 1(·|θ) =⊗

i∈I
F 1
i (·|θ),θ ∈ Ψ1

}
. (4.12)

Since D1 is a special case of D , the identifiability definitions (4.2.1) and (4.2.2) apply.

However a more specific definition can be obtained for the LMM since the distribution

functions F 1
i (·|θ) are normal distributions. This definition is given in proposition 10 of

Demidenko (2004, pp 118) and concerns the distribution function of the whole sample

F 1(·|θ). Restating this definition in terms of the I units we get

Definition 4.2.3 D1 is identifiable with respect to Ψ1 if

∀θ, θ̂ ∈ Ψ1 : Xiβ = Xiβ̂ and Vi(ζ) = Vi(ζ̂) ∀i ∈ I ⇔ θ = θ̂. (4.13)

Partly based upon this result, for LMMs with a simple within-unit error covariance

structure Demidenko (2004) gives the following sufficient conditions for identifiability

Theorem 4.2.4 (Theorem 11, Demidenko, 2004, p 118) For the MLMM with Vi(ζ) =

ZiDZ
ᵀ

i +σ2Ini for all i = 1, ..., N , then D1 is identifiable with respect to Ψ1 if at least

one Zi is full rank, X̃ is full rank, and
∑N

i=1(ni − q) > 0.

Hennig (2000) gives sufficient conditions for the identifiability of clusterwise re-

gression models in terms of the number of hyperplanes the fixed effects covariate data

concentrate on. In the next section we will discuss this result, and how it relates to mix-

tures of multivariate normal distributions with regression components. For this reason

we need the following definition of an (m− 1)-dimensional hyperplane Hm−1(α, c)

Hm−1(α, c) = {x ∈ Rm : α
ᵀ
x = c,α ∈ Rm,α 6= 0, c ∈ R}. (4.14)

We will also need the theorem below, and a corollary of it, which relate the rank of

a matrix to the above hyperplane definition - a proof of the Theorem can be found

in Appendix A.2. The theorem and corollary use the following notation: for a n × p
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matrix X, X− means the n × (p − 1) matrix obtained by removing the first column

from X; (X)j·, j = 1, ..., n, denotes the jth row of X (similarly for X−); and SX =

span{(X)1·, ..., (X)n·}, and SX− = span{(X−)1·, ..., (X
−)n·} are the row spaces of X

and X−.

Theorem 4.2.5 For any n× p matrix X

rank(X) = p− 1⇐⇒ dim(SX) = p− 1

⇐⇒ SX = Hp−1(α, 0)

⇐⇒ (X)j· ∈ Hp−1(α, 0) for all j = 1, ..., n,

(4.15)

for some α ∈ Rp.

Corollary 4.2.6 For any n× p matrix X where the first column of X is a column of

1’s we have

rank(X) = p− 1 =⇒ dim(SX) = p− 1

=⇒ SX− = Hp−2(α, 0)

=⇒ (X−)j· ∈ Hp−2(α, 0) for all j = 1, ..., n,

(4.16)

for some α ∈ Rp−1.

4.3 Identifiability of MLMMs

This section presents two Theorems, Theorem 4.3.2 and Theorem 4.3.4, giving two

different sufficient conditions for identifiability of Model 1, and a Corollary (Corollary

4.3.3) applying the result of Theorem 4.3.4 to MLMMs with a simple within-unit error

covariance structure. To motivate the choice of the sufficient conditions, preceding

the proofs we give some specific counter examples to identifiability in MLMMs, and

discuss the considerations that led to them. As a starting point we find it instructive

to consider the identifiability problem presented by Model 2 which has been addressed

by Hennig (2000), not least because the logic used there will be used instrumentally in

the proof of Theorem 4.3.4, but also because the logic gives valuable insight which is

employed to good use in Theorem 4.3.2.
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Compared to Model 2, for Model 1 we have the additional problem of simultaneously

identifying the covariance matrices parametrized by ζ. However Model 1 is a mixture

of LMM model distribution functions F 1
i (·|θ) which are ni-dimensional normal distri-

butions with mean vectors Xiβ, and covariance matrices Vi(ζ) which depend on Zi

and not on Xi. Consequently although the additional challenge of identifying ζ should

lead to stronger sufficient conditions for identifiability of Model 1 than for Model 2, it

should not make the identification of the fixed effects any more complicated. For this

reason we might expect the problem of identification of the mean vectors parametrized

by β, and how this relates to the identifiability of the mixture, to be fundamentally the

same as the corresponding identifiability problem for Model 2. With this in mind we

relate the theory developed by (Hennig, 2000) to the MLMM defined in Model 1, and

use this insight to derive counter examples for Model 1 where the regression parameter

β is not identified. The result of (Hennig, 2000) states (in the notation we are using in

this thesis)

Theorem 4.3.1 (Hennig 2000) For Model 2 with an intercept, let h be the minimum

number of (p − 2)-dimensional hyperplanes that cover the x−i , i ∈ I, then Model 2 is

identifiable with respect to D2 if |S(J)| < h.

In particular, for p = 2 then each x−i is a scalar which lies on the 0-dimensional

hyperplane defined by itself, and so we can cover the N scalars with a minimum number

of (p − 2)-dimensional hyperplanes h ≤ N (some xi may be the same). Thus if we

consider Model 2 with |S(J)| = N then h ≤ |S(J)|, and so the resulting MLM will not

be identifiable. This type of counter example was used by Hennig for Model 2, and we

now obtain similar counter examples for MLMMs.

In order to relate Theorem 4.3.1 to Model 1, we introduce some notation. For

the purposes of the following discussion we will alternate between the general form

of Model 1 which does not necessarily contain an intercept in the Xi matrices, and

assuming Model 1 has an intercept, in which case we will assume the first column of

every Xi contains the required column of ones. We will use the notation X−i to denote

Xi with the first column removed, and (Xi)j·, j = 1, ..., ni, to denote the jth row of

Xi (similarly for X−i ). We will also need Corollary (4.2.6), which relates hyperplanes

with the rank of a matrix.
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Assuming Model 1 has an intercept, and for all i ∈ I that rank(Xi) = p − 1, then

from Corollary (4.2.6) we know that all the rows of each X−i will lie on their own

common (p− 2)-dimensional hyperplane. That is for all i ∈ I we have

rank(Xi) = p− 1 =⇒ (X−i )j· ∈ Hp−2(αi, 0) for all j = 1, ..., ni, (4.17)

for some αi ∈ Rp−1. Setting N = |S(J)|, and using (4.17) together with Theorem

4.3.1 implies that all the rows of X̃ := (X
ᵀ

1 , ...,X
ᵀ

N )
ᵀ

lie on no more than N common

(p − 2)-dimensional hyperplanes. Thus h ≤ N = |S(J)|, and so β ∈ Rp will not be

identified by the rows of X̃. It is likely Theorem 4.3.1 can be used in the same way

for the general version of Model 1, except we need the analogue result of (4.17) using

Theorem (4.2.5)

rank(Xi) = p− 1⇐⇒ (Xi)j· ∈ Hp−1(αi, 0) for all j = 1, ..., ni. (4.18)

We now present three counter examples motivated by the theory just described where

lack of identifiability will be caused by a non-uniqueness of the parametrization of the

mean vectors and covariance matrices. That is the problems will be caused by being

able to find, for each i ∈ I, fixed effects β 6= β̂ such that Xiβ = Xiβ̂, or covariance

parameters ζ 6= ζ̂ such that Vi(ζ) = Vi(ζ̂) resulting in, for each i ∈ I, the equality

of the distribution functions Fi(·|J) and Fi(·|Ĵ) for J 6= Ĵ . We do not present the

opposite type of counter examples where the mean vectors and covariance matrices are

identified, but where these distribution function equalities still hold due the sums of

the component distribution functions not being uniquely defined.

Counter example 1

For Model 1 with N = G = 2, ni = 6 for i = 1, 2, and p = 3, consider the following

choices of covariate data and regression parameters;
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X1 =



1 2 4

1 4 8

1 3 6

1 2.3 4.6

1 3.4 6.8

1 8 16



, X2 =



1 −6 −33

1 3 16.5

1 −6.4 −35.2

1 9 49.5

1 5 27.5

1 12 66



,

β1 =


5

12

−6

 , β2 =


5

−13

3

 , β̂1 =


5

1

−4

 , β̂2 =


5

−2

1

 .

We have rank(X1) = rank(X2) = 2 = p − 1, and apart from small rounding errors

these covariate data and regression parameters produce the following mean vectors
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X1β1 = X1β̂2 =



5

5

5

5

5

5



, X1β2 = X1β̂1 =



−9

−23

−16

−11.1

−18.8

−51



,

X2β1 = X2β̂1 =



131

−58

139.4

−184

−100

−247



, X2β2 = X2β̂2 =



−16

15.5

−17.4

36.5

22.5

47



,

for β1 6= β2 6= β̂1 6= β̂2. For j = 1, 2, let ζ1, ζ2, ζ̂1, ζ̂2, ζ ∈ Ψζ such that ζj = ζ̂j = ζ

for all j, so that Vi(ζj) = Vi(ζ̂j) for all i and all j. Let S(J) = {(β1, ζ1), (β2, ζ2)},
S(Ĵ) = {(β̂1, ζ̂1), (β̂2, ζ̂2)}, and for all j set J{(βj , ζj)} = Ĵ{(β̂j , ζ̂j)} = 1/2. Then for

each i we have

Fi(·|J) =

(
1

2

)
ΦXiβ1,Vi(ζ1)(·) +

(
1

2

)
ΦXiβ2,Vi(ζ2)(·)

=Fi(·|Ĵ) =

(
1

2

)
ΦXiβ̂1,Vi(ζ̂1)(·) +

(
1

2

)
ΦXiβ̂2,Vi(ζ̂2)(·), (4.19)

and so F (·|Ĵ) = F (·|Ĵ) for J 6= Ĵ . Thus D1 is not identifiable with respect to Ω1.

Note however that ignoring either component 1 or component 2 of this model gives two

examples of 1-component models that are not counter examples to identifiability. So

we see that as for MLMs, 1-component model identifiability is not a sufficient condition
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for the identifiability of the mixture.

Counter example 2

For this counter example we will not include an intercept in the Xi matrices. Again

assume the same set up as for counter example 1, but consider the following choices of

covariate data and regression parameters;

X1 =



−9.1 2.3 4.6

4.9 1.7 3.4

5.4 −3.7 −7.4

6.1 −23.4 −46.8

−7.1 −16.8 −33.6

6.1 10.4 20.8



, X2 =



6.7 9.1 50.05

−4.8 2.9 15.95

−3.9 −0.47 −2.585

7.8 0.63 3.465

−18.9 −1.36 −7.48

56.1 21.9 120.45



,

β1 =


9.1

29.9

−19.9

 , β2 =


9.1

−68.3

6.1

 , β̂1 =


9.1

−42.7

−6.7

 , β̂2 =


9.1

4.3

−7.1

 .

We have rank(X1) = rank(X2) = 2 = p − 1, and apart from small rounding errors

these data produce the following mean vectors
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X1β1 = X1β̂2 =



−105.58

27.76

85.77

287.17

101.71

−47.45



, X1β2 = X1β̂1 =



−211.84

−50.78

256.71

1368.2

877.87

−527.93



,

X2β1 = X2β̂1 =



−662.935

−274.375

1.8985

20.8635

−63.8020

−1231.6



, X2β2 = X2β̂2 =



−255.255

−144.455

−19.1575

49.0875

−124.73

−250.5150



,

for β1 6= β2 6= β̂1 6= β̂2. Again (4.19) holds, and so D1 is not identifiable with respect

to Ω1. Once again ignoring either component 1 or component 2 of this model gives two

examples of 1-component models that are not counter examples to identifiability.

The two counter examples presented above relied on both the Xi matrices having

rank equal to p − 1 in order to use Theorems 4.3.1, 4.2.5 and Corollary (4.2.6) as a

guide to how to avoid models that we know are identifiable. It is perhaps not surprising

that the rank of the design matrices plays such a key role since the rank of matrices

is fundamental to the identification of vectors in systems of homogeneous equations.

Specifically we have that if A is an m× n matrix, and x ∈ Rn, then Ax = 0 has non-

trivial solutions if and only if rank(A) < n. Consequently the existence of an i ∈ I such

that rank(Xi) = p implies Xi(β− β̂) = 0 if and only if β = β̂ for all β, β̂ ∈ Rp, which

means β is identified. Now for any i ∈ I, rank(Xi) = min(ni, p), and so rank(Xi) = p
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implies Xi is full rank, and so for Model 1, and regardless of whether the Xi matrices

have an intercept or not, at least one Xi being of full rank will be sufficient to prevent

the counter examples above from working. It should also be clear that ni < p for all

i ∈ I implies ni = rank(Xi) < p, which means Xi(β− β̂) = 0 has non-trivial solutions

for all units. Thus β is never identified if for all units there are less rows in Xi than

columns.

In light of the above discussion it is likely that a sufficient condition for identifiability

for Model 1 can be formulated that demands the existence of a single unit i ∈ I that,

by having a full rank design matrix Xi, can alone identify the fixed effects β through

the parametrization of the mean vector Xiβ. This rank condition is a fairly restrictive,

for example the design matrix of the identifying unit cannot contain any column that

is constant for all rows when an intercept is included in the model. We will discuss this

in more detail later.

We now use the ideas we have just discussed, in particular the concept of the rank

of a matrix, to search for rank conditions we can impose on one of the matrices Zi such

that a single unit identifies ζ through the parametrization of the covariance matrix

ZiDZ
ᵀ

i + σ2Ci(φ). For a MLMM with a simple error covariance structure we can

deduce the conditions we need in order to ensure the existence of this identifying unit

for ζ, and we do this by considering one unit from our sample, Y1 say. Denote the family

of distribution functions for this sample of one to be D1(1). From Theorem 4.2.4 we

have that ifX1 andZ1 are both full rank, and if n1 > q (this implies rank(Zi) = q), then

D1(1) is identifiable with respect to Ψ1. Since the parameters β and ζ are independent

of each other in the normal distribution, this result gives the conditions we seek: let Z

be any n× q matrix, and define V (ζ) = ZDZ
ᵀ

+ σ2In, then

∀ζ, ζ̂ ∈ Ψζ : V (ζ) = V (ζ̂)⇔ ζ = ζ̂ if and only if rank(Z) = q and n > q. (4.20)

We will use the above result in conjunction with Theorem 4.3.2 later on in this section.

We now present a counter example to identifiability where the conditions of (4.20) are

not satisfied.

Counter example 3

We use Model 1 with a simple within unit error covariance structure. Choose N = G =
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2, ni = 3 for i = 1, 2, q = 2, leave p to be arbitrary, and consider the following choices

of covariate data and covariance parameters

D1 =

 5.0455 −1.8503

−1.8503 4.1440

 , D2 =

 4 −1.5678

−1.5678 6.3021

 , σ2
1 = σ2

2 = 9,

D̂1 =

 4.2049 −1.6232

−1.6232 5.8791

 , D̂2 =

5.5997 −2

−2 3

 , σ̂2
1 = σ̂2

2 = 9,

Z1 =


0.33215 −0.27871

−0.26247 0.22023

−2.74121 2.30015

 , Z2 =


2.39840 1.38472

−1.16904 −0.67494

2.62832 1.51746

 ,

where all the random effects covariance matrices are positive definite as required, but

where rank(Z1) = rank(Z2) = 1 < q, which means both matrices are rank deficient.

For j = 1, 2, let ζj = (v(Dj)
ᵀ
, σ2

j )
ᵀ
, ζ̂j = (v(D̂j)

ᵀ
, σ̂2

j )
ᵀ
, then the above data give the

following positive definite covariance matrices for the response vectors

V1(ζ1) = V1(ζ̂2) = V1(ζ2) = V1(ζ̂1) =


10.8777 6.4044 −7.8885

6.4044 30.8442 −26.9061

−7.8885 −26.9061 42.1410

 ,

V2(ζ1) = V2(ζ̂1) = V2(ζ2) = V2(ζ̂2) =


11.3919 0.8843 −3.6278

0.8843 9.3270 −1.3413

−3.6278 −1.3413 14.5025

 .

Let S(J) = {(β1, ζ1), (β2, ζ2)}, S(Ĵ) = {(β̂1, ζ̂1), (β̂2, ζ̂2)}. For all j let J{(βj , ζj)} =

Ĵ{(β̂j , ζ̂j)} = 1/2, and βj = β̂j = β for any β ∈ Rp, so that Xiβj = Xiβ̂j for all i.
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Then we again get the equality in (4.19), and so the MLMM is not identifiable.

By using (4.20) it is clear we can prevent counter example 3 from working if we

demand rank(Zi) = q, and ni > q, for at least one i ∈ I, and so it is likely these two

conditions can be used to form part of a sufficient condition for identifiability for Model

1 with a simple error covariance structure. For Model 1 in general (i.e. with an au-

toregressive within unit error covariance structure) it remains to determine under what

conditions this ”identifying” unit can be guaranteed to exist. Unlike counter examples

1 and 2, for counter example 3 we note that ignoring either of the two components give

counter examples to identifiability for a 1-component model, which is not surprising

since we see that the Zi matrices do not meet the assumptions of theorem (4.2.4).

In counter example 3 by choosing the fixed effects to be equal, the MLMM used

there was a particular example (2 units, 2 within-unit observations, 2 random effects)

of a MLMM where there are no fixed effects parameters for the component distribu-

tions but rather mean vectors µig := Xiβg, for all i ∈ I, and g ∈ IG, which are always

identified. Specifically for each i = 1, 2 we set µig = µ̂ig = ci for all g = 1, 2. For

this particular MLMM a detailed analysis shows that any counter example necessarily

involves both Z1, and Z2 being rank deficient, and hence any counter example to iden-

tifiability will also yield counter examples to identifiability for the 1-component model,

or equivalently an identifiable 1-component model implies an identifiable MLMM. Since

non-identifiability of any 1-component model implies non-identifiability of the MLMM,

or equivalently that identifiability of any MLMM implies the identifiability of the 1-

component model, then for this particular MLMM with no regression components we

have that the 1-component model is identifiable if and only if the MLMM is identifiable.

From the above discussion we see for that particular MLMM with only the covari-

ance matrices parametrized that no further identifiability problems are introduced by

the mixture than are already encountered in the 1-component model. The reason this

is not the case for the examples of MLMMs with regression parameters we have consid-

ered in counter examples 1 and 2 is that we can have both design matrices being rank

deficient, yet the matrix X̃ formed by stacking both one on top of the other is still of

full rank, thus ensuring the identifiability of the 1-component model.

No analogy of this combining of information from the individual units to avoid

identifiability problems can be employed with the covariance matrices. For example

let Ṽ (ζ) := diag{V1(ζ),V2(ζ)} where rank(V1(ζ)) < (n1 + n2) and rank(V2(ζ)) <
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(n1 + n2). Then from Theorem 2.12 (Schott, 2005) we have that the rank of the

2(n1+n2)×2(n1+n2) matrix Ṽ (ζ) is the sum of the ranks of the two diagonal matrices,

which must be less than 2(n1 + n2). Thus a single unit having a rank deficient matrix

prevents the whole matrix from having full rank. It should be clear that retaining units

1 and 2, but adding more covariance matrices will not overcome this problem. Now

suppose Ṽ (ζ̂) := diag{V1(ζ̂),V2(ζ̂)} for ζ 6= ζ̂. It is clear the covariance parameter is

identified even if a single unit identifies the parameter (we show later this occurs if the

Zi matrix is full rank). This stands in contrast to the fixed effects where the whole

sample can identify the parameter whilst every unit might not.

In summary, for simple 2-component MLMMs we have discussed counter examples

to identifiability of a certain type - those that involve lack of identification of β and ζ

through the parametrization of the mean vector and the covariance matrix respectively.

We have seen that the counter examples presented cannot occur if we demand that at

least one unit identifies β, and at least one unit identifies ζ. For MLMMs with a simple

error covariance structure we have also discussed conditions that can be imposed on the

fixed sample data Xi, Zi, and ni, for i ∈ I, to ensure the existence of such units. With

these things in mind we present Theorem 4.3.2 which gives sufficient conditions for the

identifiability for Model 1, and Corollary (4.3.3) relating the theorem to a MLMM with

a simple error covariance structure.

The key result we will use repeatedly in the proof of Theorem 4.3.2 is that of

Yakowitz and Spragins (1968) which states that mixtures of multivariate normal dis-

tributions (i.e. normal mixtures without regression and covariance parameters) are

identifiable. To see how we use this result, consider unit i, and the mixing distribu-

tions J and Ĵ with support sets S(J) and S(Ĵ) respectively. For say (β′, ζ)′ ∈ Ψ1, let

Ai(β
′, ζ′) be the set of all parameters in Ψ1 that give rise to the mean vector Xiβ

′ and

covariance matrix Vi(ζ
′), i.e.

Ai(β
′, ζ′) = {(β, ζ) : Xiβ = Xiβ

′,Vi(ζ) = Vi(ζ
′), (β, ζ) ∈ Ψ1}. (4.21)

Since the result of Yakowitz and Spragins (1968) means that mean vectors and co-

variance matrices are identified, then J = Ĵ implies J(Ai(β
′, ζ′)) = Ĵ(Ai(β

′, ζ′)). In

the proof of Theorem 4.3.2 we will simply say J(Ai(β
′, ζ′)) = Ĵ(Ai(β

′, ζ′)) follows by

identifiability of multivariate normal mixtures for unit i.
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Finally in the proof of Theorem 4.3.2 we shall refer to the following equivalence

relation on Ψ1

(β, ζ)
ζ∼ (β′, ζ′) : ζ = ζ′ ∀(β, ζ), (β′, ζ′) ∈ Ψ1, (4.22)

where we will denote by [(β′, ζ′)]ζ the equivalence class of (β′, ζ′) in Ψ1 under
ζ∼. The

collection of all equivalence classes within a set A ⊆ Ψ1 under
ζ∼ will be denoted by

A/
ζ∼. This is known as the quotient set of A under

ζ∼, and forms a partition of A.

Finally |A/ ζ∼ | shall mean the number of equivalence classes under
ζ∼ that partition

the set A. We are now in a position to present Theorem 4.3.2.

Theorem 4.3.2 D1 is identifiable with respect to Ω1 according to definition (4.2.1) if

for all β, β̂ ∈ Rp we have (Xiβ = Xiβ̂ if and only if β = β̂) for at least one i ∈ I, and

for all ζ, ζ̂ ∈ Ψζ we have (Vi(ζ) = Vi(ζ̂) if and only if ζ = ζ̂) for at least one i ∈ I.

Proof . Let unit j ∈ I be the unit that satisfies Xjβ = Xjβ̂ if and only if β = β̂, and

unit k ∈ I be the unit that satisfies Vk(ζ) = Vk(ζ̂) if and only if ζ = ζ̂. Let J, Ĵ ∈ Ω1,

and assume J = Ĵ . Since the normal distribution is completely determined by its mean

vector and covariance matrix, this implies Fi(·|J) = Fi(·|Ĵ) for all i ∈ I. Thus J = Ĵ ⇒
F (·|J) = F (·|Ĵ). Identifiability will follow if we can show F (·|J) = F (·|Ĵ)⇒ J = Ĵ , or

equivalently Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I ⇒ J = Ĵ .

Assume first that j = k, Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I. Without loss of generality take

(β1, ζ1) ∈ S(J), and assume |S(J)| ≤ |S(Ĵ)|. By the identifiability of multivariate

normal mixtures for unit j we have

J{(β, ζ) : Xjβ = Xjβ1,Vj(ζ) = Vj(ζ1), (β, ζ) ∈ Ψ1}

=Ĵ{(β̂, ζ̂) : Xjβ̂ = Xjβ1,Vj(ζ̂) = Vj(ζ1), (β̂, ζ̂) ∈ Ψ1)}

⇐⇒J{(β1, ζ1)} = Ĵ{(β1, ζ1)}. (4.23)

Now Ĵ{(β1, ζ1)} > 0 since J{(β1, ζ1)} > 0, which implies (β1, ζ1) ∈ S(Ĵ). This result,

and the last equality in (4.23), must apply to all (β, ζ) ∈ S(J) since (β1, ζ1) was picked

arbitrarily from S(J). Thus we have (β, ζ) ∈ S(Ĵ), and J{(β, ζ)} = Ĵ{(β, ζ)} for

all (β, ζ) ∈ S(J). Our assumption |S(J)| ≤ |S(Ĵ)| then implies S(J) ⊆ S(Ĵ). Now
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repeat all of the above arguments starting from the paragraph above (4.23) but reverse

the roles of J and Ĵ . We then get S(Ĵ) ⊆ S(J), where J{(β̂, ζ̂)} = Ĵ{(β̂, ζ̂)} for all

(β̂, ζ̂) ∈ S(Ĵ). This then implies S(J) = S(Ĵ), where J{(β, ζ)} = Ĵ{(β, ζ)} for all

(β, ζ) ∈ S(J), and so J = Ĵ .

For j 6= k, assume Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I, and without loss of generality take

(β1, ζ1) ∈ S(J). By the identifiability of multivariate normal mixtures for unit k we

have

J{(β, ζ) : Xkβ = Xkβ1,Vk(ζ) = Vk(ζ1), (β, ζ) ∈ Ψ1}

=Ĵ{(β̂, ζ̂) : Xkβ̂ = Xkβ1,Vk(ζ̂) = Vk(ζ1), (β̂, ζ̂) ∈ Ψ1}

⇐⇒J{[(β1, ζ1)]ζ} = Ĵ{[(β1, ζ1)]ζ}. (4.24)

Now because (β1, ζ1) ∈ [(β1, ζ1)]ζ we must have J{[(β1, ζ1)]ζ} > 0, which implies

Ĵ{[(β1, ζ1)]ζ} > 0, and so [(β1, ζ1)]ζ ∩ S(Ĵ) 6= ∅. Furthermore this must hold for all

(β, ζ) ∈ S(J) since (β1, ζ1) was picked arbitrarily from S(J). Thus we have

∀(β, ζ) ∈ S(J), ∃(β̂, ζ̂) ∈ S(Ĵ) such that (β̂, ζ̂)
ζ∼ (β, ζ). (4.25)

The possibility remains that the converse of (4.25) does not hold, that is to say there

may be some points in S(Ĵ) not equivalent under
ζ∼ to any points in S(J). We now show

however that this cannot be true. Without loss of generality, assume for (β̂1, ζ̂1) ∈ S(Ĵ)

that there does not exist a (β, ζ) ∈ S(J) such that (β, ζ)
ζ∼ (β̂1, ζ̂1). Once again by

the identifiability of multivariate normal mixtures for unit k we have

J{(β, ζ) : Xkβ = Xkβ̂1,Vk(ζ) = Vk(ζ̂1), (β, ζ) ∈ Ψ1}

=Ĵ{(β̂, ζ̂) : Xkβ̂ = Xkβ̂1,Vk(ζ̂) = Vk(ζ̂1), (β̂, ζ̂) ∈ Ψ1}

⇐⇒J{[(β̂1, ζ̂1)]ζ} = Ĵ{[(β̂1, ζ̂1)]ζ}. (4.26)

Now because (β̂1, ζ̂1) ∈ [(β̂1, ζ̂1)]ζ we must have Ĵ{[(β̂1, ζ̂1)]ζ} > 0, which implies

J{[(β̂1, ζ̂1)]ζ} > 0, and so [(β̂1, ζ̂1)]ζ ∩S(J) 6= ∅. This contradicts our assumption that

no point in S(J) is equivalent to (β̂1, ζ̂1) under
ζ∼, and so the converse of (4.25) holds
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∀(β̂, ζ̂) ∈ S(Ĵ), ∃(β, ζ) ∈ S(J) such that (β, ζ)
ζ∼ (β̂, ζ̂), (4.27)

and so (4.25) and (4.27) together imply S(J) and S(Ĵ) are partitioned into the same

number of equivalence classes under
ζ∼, i.e. we have s(ζ) := |S(J)/

ζ∼ | = |S(Ĵ)/
ζ∼ |.

The equations (4.25), and (4.27) establish a relationship between S(J), and S(Ĵ) in

terms of equivalence classes with respect to
ζ∼. We now turn our attention to unit j that

identifies β. Let {A1, ..., As(ζ)} and {Â1, ..., Âs(ζ)} denote the s(ζ) equivalence classes

that partition S(J), and S(Ĵ) respectively, and let l = 1, ..., s(ζ). We note that the

definition of the support sets S(J) and S(Ĵ) does not explicitly forbid the presence of

duplicate vectors, however standard set theory does, and hence Al and Âl for all l cannot

contain duplicate vectors. Without loss of generality assume |S(J)| ≤ |S(Ĵ)|, and pick

a (β′, ζ′) ∈ A1, which implies all (β, ζ) ∈ A1 satisfy ζ = ζ′. By the identifiability of

multivariate normal mixtures for unit j we have

J{(β, ζ) : Xjβ = Xjβ
′,Vj(ζ) = Vj(ζ

′), (β, ζ) ∈ S(J) ∩A1}

=Ĵ{(β̂, ζ̂) : Xjβ̂ = Xjβ
′,Vj(ζ̂) = Vj(ζ

′), (β̂, ζ̂) ∈ S(Ĵ) ∩A1}

⇐⇒J{(β′, ζ′)} = Ĵ{(β′, ζ′)}. (4.28)

Now Ĵ{(β′, ζ′)} > 0 since J{(β′, ζ′)} > 0, which implies (β′, ζ′) ∈ S(Ĵ). This result,

and (4.28), must hold for all (β, ζ) ∈ A1 since (β′, ζ′) was picked arbitrarily from

there. Thus A1 ⊆ S(Ĵ), and J{(β, ζ)} = Ĵ{(β, ζ)} for all (β, ζ) ∈ A1. Repeating

this argument for all Al we get Al ⊆ S(Ĵ), and J{(β, ζ)} = Ĵ{(β, ζ)} for all (β, ζ) ∈
Al. From our assumption |S(J)| ≤ |S(Ĵ)| we then get S(J) = ∪s(ζ)

l=1Al ⊆ S(Ĵ), and

J{(β, ζ)} = Ĵ{(β, ζ)} for all (β, ζ) ∈ S(J).

Now assume |S(J)| ≥ |S(Ĵ)|, and pick a (β′, ζ′) ∈ Â1. Repeating the above argu-

ments starting from (4.28) gives S(Ĵ) = ∪s(ζ)
l=1 Âl ⊆ S(J), and J{(β̂, ζ̂)} = Ĵ{(β̂, ζ̂)}

for all (β̂, ζ̂) ∈ S(Ĵ). Thus we must have S(J) = S(Ĵ), and J{(β, ζ)} = Ĵ{(β, ζ)} for

all (β, ζ) ∈ S(J) which implies J = Ĵ . �

We note that the sufficient condition for identifiability in the above theorem requires

the 1-component model to be identifiable by just a single unit, which is a much stronger

condition than just requiring the 1-component model to be identifiable. Furthermore
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counter examples 1 and 2 are not counter examples to the above theorem, since in those

examples the 1-component models were only identified for those particular choices of

the fixed effects. The fact that the design matrices were rank deficient mean that this

does not hold for the entire parameter space - i.e. we will be able to find choices of the

fixed effects yielding counter examples to the 1-component model.

We also note that the analogy of Theorem 4.3.2 holds also for Model 2 when we

make the obvious changes in notation. Thus D2 is identifiable with respect to Ω2 if and

only if x
ᵀ

iβ = x
ᵀ

i β̂ for at least one i ∈ I, that is if and only if the 1-component model is

identifiable from the data from at least a single unit (but perhaps only a single unit).

Viewing x
ᵀ

i as a 1 × p matrix, a sufficient condition for this to hold is x
ᵀ

i being full

rank, which implies p = 1. Thus we get the trivial result that a clusterwise regression

model is identifiable if it contains only one variable, and if at least one xi ∈ R is

non-zero which shows that the usefulness of Theorem 4.3.2 is largely dependent on the

specific conditions which guarantee the existence of the identifying units. For Model

1 we have already discussed these conditions: for all versions of Model 1 we need

rank(Xi) = p for at least one unit i (which implies p ≤ ni). Unlike for clusterwise

regression this condition however does not in general impose a very restricted model,

although as we will discuss shortly it does restrict the model much more than we would

like. Furthermore, and again as we will discuss shortly, the rank condition in 4.3.2

on the covariance matrices also does not imply a very restricted model, which shows

that the within-unit sample sizes for MLMMs being greater than 1 lead to a sufficient

condition for identifiability which is more than just a trivial result. This illustrates

the beneficial effect of having greater within-unit information, and in statistics more

information is always better - identifiability problems are no exception.

The above point also illustrates, slightly counter-intuitively, that identifiability

problems in MLMMs can be easier to characterise, and also to understand, than for

the simpler clusterwise regression - i.e. if we include a unit in our dataset that has

particularly ”informative” data about the model parameters, then this unit alone can

identify both the 1-component and the mixture model, and that the rest of our sam-

ple may not play a large part, or indeed any part, in determining whether or not the

mixture model is identifiable.

In contrast for clusterwise regression a much more abstract sufficient condition for

identifiability as given by (Hennig, 2000) seems to be the only sufficient condition
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for identifiability currently known, and this does not explicitly guarantee that the 1-

component model is also identifiable. In terms of this abstract sufficient condition,

later in this chapter we will present an alternate theorem giving sufficient conditions

for identifiability that involve the same concepts as given in (Hennig, 2000). We will

also show with a few examples that these two theorems are not equivalent, although

they will nonetheless overlap to a great extent in terms of the situations for which they

guarantee the identifiability of the MLMM.

For Model 1 with a simple within unit error covariance structure, and for the afore-

mentioned rank condition on the random effects covariance matrices to hold, we need

rank(Zi) = q, and ni > q for at least one unit i. Using this fact in combination with

the discussion following Theorem 4.3.2, we thus obtain a Corollary of Theorem 4.3.2.

Corollary 4.3.3 For Model 1 with a simple within unit error covariance structure, D1

is identifiable with respect to Ω1 according to definition (4.2.1) if rank(Xi) = p for at

least one unit i, and rank(Zi) = q, and ni > q for at least one unit i.

The rank condition on the Zi matrix should be satisfied in most samples since for

LMMs the Zi matrices are supposed to contain ”observational” level data that should

vary by row within a unit for each column. So whilst the model definitions for both the

LMM and MLMM do not preclude say having two columns of some of the Zi matrices

being constants (and thus linearly related), in general we should not. Again although it

is not precluded by definition, most Zi matrices will not contain non-constant columns

that are linearly related to the other non-constant columns, and so rank deficiency of

all the Zi matrices should not occur often for this reason.

Unfortunately the rank condition on the Xi matrix is more restrictive. Similar to

the Zi matrices, although it is not precluded by definition, most of the Xi matrices will

not contain non-constant columns that are linearly related to the other non-constant

columns, and so rank deficiency of all the Xi matrices should not occur often for

this reason. The problem occurs because for LMMs the Xi matrices contain both

“observational” and “global” level data. The global variables tend to vary within the

sample, but frequently not within any unit. For example in medical studies age and

hospital of treatment will often be in the Xi matrices, but these variables will often

be fixed for a unit due to the duration of the study being a number of weeks or days

only. If we assume for example that we have an intercept and age in the model, then
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all the Xi will be rank deficient, since for all i age will be linearly dependent with the

intercept.

We see from the above discussion that the conditions of Theorem 4.3.2 preclude

MLMMs that have all the Xi matrices having at least one constant column and an

intercept. However Theorem 4.3.2 is a positive one, and so it does not tell us whether

models not satisfying its hypotheses are not identifiable. This applies in particular

to these MLMMs with constant columns. Since the utility of the MLMM is greatly

reduced by restricting the Xi to contain only non-constant columns in the presence of

an intercept, it is of interest to find sufficient conditions that do permit such models.

In this respect for MLMMs we can think of the NT total scalar responses in the N

response vectors as NT scalar responses from NT subjects. Thus by ignoring the units

we can view a MLMM as a clusterwise regression model, and so the sufficient conditions

for identifiability of clusterwise regression models given in Theorem 4.3.1 should also be

sufficient to identify the fixed effects in MLMMs, and this theorem specifically includes

an intercept in the model.

In light of the above discussion we now present a second theorem giving sufficient

conditions for identifiability of MLMMs, but where the sufficient conditions for identifi-

cation of the fixed effects is now given in terms of the minimum number of hyperplanes

on which the rows of X̃ lie. The first half of the proof is exactly the same as Theorem

4.3.4, whilst the second half is based on the method demonstrated in Theorem 4.3.1.

We note that we still work with the original definition of Model 1, which does not

assume an intercept is in the model. In the proof the index sets Ini , i ∈ I, index the

ni observations in Yi.

Theorem 4.3.4 Let h denote the minimum number of (p − 1)-dimensional hyper-

planes on which the rows of X̃ lie. Then D1 is identifiable with respect to Ω1 ac-

cording to definition (4.2.1) if h > |S(J)|, and if for all ζ, ζ̂ ∈ Ψζ we have Vi(ζ) =

Vi(ζ̂) if and only if ζ = ζ̂ for at least one i ∈ I.

Proof . Let J, Ĵ ∈ Ω1, and assume J = Ĵ . Since the normal distribution is completely

determined by its mean vector and covariance matrix, this implies Fi(·|J) = Fi(·|Ĵ) for

all i ∈ I. Thus J = Ĵ ⇒ F (·|J) = F (·|Ĵ). Identifiability will follow if we can show

F (·|J) = F (·|Ĵ) ⇒ J = Ĵ , or equivalently Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I ⇒ J = Ĵ . To
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this end let Fi(·|J) = Fi(·|Ĵ) ∀i ∈ I, and suppose J 6= Ĵ : we now seek a contradiction

which will lead us to conclude J = J .

Without loss of generality assume for (β1, ζ1) ∈ S(J) that J{(β1, ζ1)} 6= Ĵ{(β1, ζ1)},
and |S(J)| ≥ |S(Ĵ)|. Letting unit k ∈ I be the unit that satisfies Vk(ζ) = Vk(ζ̂) if and

only if ζ = ζ̂, by the identifiability of multivariate normal mixtures for unit k we have

J{(β, ζ) : Xkβ = Xkβ1,Vk(ζ) = Vk(ζ1), (β, ζ) ∈ Ψ1}

=Ĵ{(β̂, ζ̂) : Xkβ̂ = Xkβ1,Vk(ζ̂) = Vk(ζ1), (β̂, ζ̂) ∈ Ψ1}

⇐⇒J{[(β1, ζ1)]ζ} = Ĵ{[(β1, ζ1)]ζ}. (4.29)

Now because (β1, ζ1) ∈ [(β1, ζ1)]ζ we must have J{[(β1, ζ1)]ζ} > 0, which implies

Ĵ{[(β1, ζ1)]ζ} > 0, and so [(β1, ζ1)]ζ ∩ S(Ĵ) 6= ∅. Furthermore this must hold for all

(β, ζ) ∈ S(J) since (β1, ζ1) was picked arbitrarily from S(J). Thus we have

∀(β, ζ) ∈ S(J), ∃(β̂, ζ̂) ∈ S(Ĵ) such that (β̂, ζ̂)
ζ∼ (β, ζ). (4.30)

The possibility remains that the converse of (4.30) does not hold, that is to say there

may be some points in S(Ĵ) not equivalent under
ζ∼ to any points in S(J). We now

show however that this cannot be true. Assume for (β̂1, ζ̂1) ∈ S(Ĵ) that there does not

exist a (β, ζ) ∈ S(J) such that (β, ζ)
ζ∼ (β̂1, ζ̂1). Once again by the identifiability of

multivariate normal mixtures for unit k we have

J{(β, ζ) : Xkβ = Xkβ̂1,Vk(ζ) = Vk(ζ̂1), (β, ζ) ∈ Ψ1}

=Ĵ{(β̂, ζ̂) : Xkβ̂ = Xkβ̂1,Vk(ζ̂) = Vk(ζ̂1), (β̂, ζ̂) ∈ Ψ1}

⇐⇒J{[(β̂1, ζ̂1)]ζ} = Ĵ{[(β̂1, ζ̂1)]ζ}. (4.31)

Now because (β̂1, ζ̂1) ∈ [(β̂1, ζ̂1)]ζ we must have Ĵ{[(β̂1, ζ̂1)]ζ} > 0, which implies

J{[(β̂1, ζ̂1)]ζ} > 0, and so [(β̂1, ζ̂1)]ζ ∩S(J) 6= ∅. This contradicts our assumption that

no point in S(J) is equivalent to (β̂1, ζ̂1) under
ζ∼, and so the converse of (4.30) holds:

∀(β̂, ζ̂) ∈ S(Ĵ), ∃(β, ζ) ∈ S(J) such that (β, ζ)
ζ∼ (β̂, ζ̂). (4.32)
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Together the equations (4.30) and (4.32) imply S(J) and S(Ĵ) are partitioned into

the same number of equivalence classes under
ζ∼, i.e. we have s(ζ) := |S(J)/

ζ∼ | =

|S(Ĵ)/
ζ∼ |. We will let {A1, ..., As(ζ)} and {Â1, ..., Âs(ζ)} denote these s(ζ) equivalence

classes that partition S(J) and S(Ĵ) respectively, and we will use l := 1, ..., s(ζ) to

index these classes.

We now turn our attention to applying the hyperplane condition of the theorem

within these equivalence classes. Firstly assume the following statement holds

∃(β, ζ) ∈ S(J),∀i ∈ I, ∀j ∈ Ini ,∃(β̂(i, j), ζ̂(i, j)) ∈ S(Ĵ) :

(β, ζ)
β

6∼ (β̂(i, j), ζ̂(i, j))⇒ (Xi)j·β = (Xi)j·β̂(i, j). (4.33)

If say (β1, ζ1) is the point in S(J) guaranteed by (4.33) to exist, then for all i ∈ I, and

j ∈ Ini we have ((Xi)j·)
ᵀ ∈ {x ∈ Rp : x

ᵀ
(β1 − β̂(i, j)) = 0} = Hp−1(β1 − ˆβ(i, j),0) for

some (β̂(i, j), ζ̂(i, j)) ∈ S(Ĵ) where β̂(i, j) 6= β. This means h, the minimum number of

(p−1)-dimensional hyperplanes that cover the rows of X̃ satisfies h ≤ |S(Ĵ)| ≤ |S(J)|,

which contradicts our hypothesis that h > |S(J)|. Thus the negation of (4.33) must be

true:

∀(β, ζ) ∈ S(J), ∃i ∈ I, ∃j ∈ Ini , ∀(β̂, ζ̂) ∈ S(Ĵ) :

(Xi)j·β = (Xi)j·β̂ ⇒ (β, ζ)
β∼ (β̂, ζ̂). (4.34)

Now suppose (β1, ζ1) ∈ A1, and that row m of unit j satisfies (4.34) for this point.

Since all (β, ζ) ∈ A1 satisfy ζ = ζ1, and noting that the support set S(Ĵ) does not

contain duplicate vectors, we have

∀(β̂, ζ̂) ∈ S(Ĵ) ∩A1 : (Xj)m·β1 = (Xj)m·β̂ ⇒ (β1, ζ1) = (β̂, ζ̂), (4.35)

and so by the identifiability of univariate normal mixtures
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J{(β, ζ) : (Xj)m·β = (Xj)m·β1, (Vj(ζ))mm = (Vj(ζ1))mm, (β, ζ) ∈ S(J) ∩A1}

=Ĵ{(β̂, ζ̂) : (Xj)m·β̂ = (Xj)m·β1, (Vj(ζ̂))mm = (Vj(ζ1))mm, (β̂, ζ̂) ∈ S(Ĵ) ∩A1}

⇐⇒J{(β, ζ) : (Xj)m·β = (Xj)m·β1, (Vj(ζ))mm = (Vj(ζ1))mm, (β, ζ) ∈ S(J) ∩A1}

=Ĵ{(β1, ζ1)}. (4.36)

Since (β1, ζ1) ∈ S(J) ∩ A1 and J{(β1, ζ1)} > 0, we must have Ĵ{(β1, ζ1)} > 0, which

implies (β1, ζ1) ∈ S(Ĵ)∩A1. Now (4.36), and our assumption J{(β1, ζ1)} 6= Ĵ{(β1, ζ1)}
imply

∃(β2, ζ2) ∈ S(J) ∩A1, (β2, ζ2) 6= (β1, ζ1) :

(Xj)m·β2 = (Xj)m·β1 and (Vj(ζ2))mm = (Vj(ζ1))mm. (4.37)

Suppose row m′ of unit j′ satisfies (4.34) for this point (β2, ζ2) in S(J) ∩ A1. Then

repeating the arguments starting from the paragraph above (4.35) but with (β2, ζ2)

instead of (β1, ζ1) leads us to conclude (β2, ζ2) ∈ S(Ĵ)∩A1. But from (4.35) (β2, ζ2) 6=
(β1, ζ1) implies (Xj)m·β2 6= (Xj)m·β1, which contradicts 4.37. �

The question naturally arises as to whether either of Theorems 4.3.2 and 4.3.4 strictly

imply the other. Using two examples we now show that they do not, and so we conclude

that both theorems can provide sufficient conditions for identifiability in situations

where the other cannot.

Consider a MLMM with N = 3 and ni = n for all i = 1, 2, 3, and assume one of the

units identifies the covariance parameters. Suppose each Xi contains an intercept and

constant column 1nai, so that ((Xi)j·)
ᵀ

= (1, ai)
ᵀ ∈ R2 for all i, and for all j = 1, ..., n.

Now for α ∈ R2 the 1-dimensional hyperplane H1(α, c) = {x ∈ R2 : α
ᵀ
x = c} is a line

in R2, and for each i we can draw a line in R2 through the point (1, ai) which intersects

the vertical axis. If we assume a1 6= a2 6= a3 (all non-zero) then these lines must all be

different, and so the rows of X̃ lie on three distinct 1-dimensional hyperplanes. If the

MLMM has two components then by Theorem 4.3.4 this MLMM is identifiable since

we have h = 3 > |S(J)|. However even though X̃ is full rank, each Xi has less than
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full column rank, which means each Xi cannot identify the fixed effects. Thus the

hypothesis of Theorem 4.3.2 is not satisfied, and so we cannot use Theorem 4.3.2 to

tell us if this MLMM is identifiable. So in this example, confirming the identifiability

of the model depends on the number of components in the model.

For the reverse of the above example, assume N = 2, ni = n for all i = 1, 2, and as

before assume that one of the units identifies the covariance parameters. This time let

the Xi contain an intercept and one other column that is not necessarily constant. Let

the n rows of X1 consist of at least one row (1, a) and one row (1, b), where a 6= b, and

let X2 consist of an intercept and a constant column 1nc, where a 6= b 6= c. Using this

setup we have that X2 is rank deficient but that X1 has full column rank, and hence

identifies the fixed effects, which means that the model is identifiable by Theorem 4.3.2.

Unlike the previous example however we can confirm that identifiability holds regardless

of how many components the model has. For example if h is the minimum number of

hyperplanes that cover the rows of the covariate data, then choosing |S(J)| = h would

not allow us to use 4.3.4 to confirm the identifiability of this model.

98



5

Simulations

This chapter is concerned with evaluating through simulations the ”naive” methods of

statistical inference we proposed in section 3.4. In this respect the models we use in

these simulations are intended to be realistically complex both in terms of the num-

bers of parameters and units used, and in terms of how similar the components these

parameters define are, so that the dual challenge of parameter estimation and classifi-

cation of units to components is of an order of difficulty approximately equal to that

encountered in many real world scenarios. In this respect there are two major factors

that determine this level of difficulty - sample sizes and component separation, which

are of course linked to some extent. The reason for restricting sample sizes is that it is

very easy to specify a model such that on a decent but nonetheless ordinary personal

computer the resulting model would take a prohibitively long period of time to con-

verge. For example for the types of models we are concerned with in this thesis even

N = 5000 with ni = 5 for all i ∈ IN , or N = 100 with ni = 250 for all i ∈ IN would

take at least a week to converge. Thankfully for many real world scenarios, particularly

in many medical studies, N ≤ 1000, and ni ≤ 10 for all i ∈ IN are the typical sample

size ranges encountered.

The reason for restricting the level of component separation (i.e. avoiding compo-

nents too close together) is that there is an element of triviality about this, that is

to say we can always specify a mixture model that is impossible to estimate well by

setting the parameters of all components to be the same - in such a scenario there can

be no method of inference on the model parameters that would perform well.
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Since our primary aim is to take a ”first look” at the inference methods proposed in

section 3.4 we were careful to ensure these methods had every chance of success and so

we avoided these trivially difficult models and instead limited the maximum difficulty

of the models to be moderately difficult where the closeness of the components was

less extreme. This is not to say however that we present a biased view of how well the

proposed inference methods work but rather that we knew from our testing periods the

limitations of these inference methods. In this respect it is evident from the results that

these inference methods perform very poorly even for some of these moderately difficult

mixture models and so to include models with extremely close components would be

to labor the point since the reader could easily guess the outcome.

Section 5.1 is concerned with describing the quantities we will use to quantify the

performance of a particular model from a simulation, and also to give details of the sim-

ulation procedures so they can if needed be replicated. In section 5.2 we describe some

simulations investigating the performance of the first and second variants of the EM

algorithm in terms of parameter inference. In section 5.3 we describe simulations inves-

tigating which factors associated with a model (number of units, within-unit samples

sizes, magnitude of the covariance parameters etc.) influence parameter inference.

5.1 Simulation methods

Firstly by a model we mean a data generating process. For example a MLMM with G

components, p fixed effects, q random effects, an unstructured random effects covariance

structure, and a simple within-units error covariance structure would be a model, but

one with G+ 1 components would be a different model. By a model version we mean

a particular choice of number of parameters, and fixed covariate data for the model.

For example one version of a model might be to choose all of the fixed effects as

being continuous variables, whilst another version might be to have some factor and

continuous variables. One version of a model might be to have a certain choice of fixed

data in the random effects design matrix, whilst another would be to change that data.

One version of a model might be to choose one set of parameters, whilst another version

would be to choose another set of parameters whereby at least one of the parameters

is different in value from the other set. One version of a model might be to choose

a certain number of units whilst another would be to choose a different number of
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units. Furthermore combinations of these choices combine in the obvious way to define

further model versions. In this way a model is general and can have an infinite number

of versions associated with it, whilst a model version is unique apart from the random

data - i.e. the within-unit errors and the component memberships.

5.1.1 Data generation

For any model, and any given model version, we can generate the random data and

then run the EM algorithm to estimate the model parameters for that version. We

will call this a replication of the model version, or just a replication for short. Each

simulation we will describe will be associated with one model and a certain number

of versions of that model. We will perform a given number of individual replications

in the simulation, which we will denote by Nsim, whereby we will collect information

from the results of the individual replications - parameter estimates primarily.

Let s ∈ INsim := {1, 2, ..., Nsim} index the simulation number. We assume nc+nf = p

fixed variables in each of the N fixed effects design matrices Xi, where nc and nf are

the number of continuous and factor variables respectively. Although it is not an as-

sumption of MLMMs, for these simulations we choose q ≤ p, and we choose the q

variables in the N random effects design matrices Zi to be a subset of the p variables

in the fixed effects design matrices Xi. These choices however do reflect good practice

in that to include a variable in the Zi matrices that is not in the Xi matrices is to

imply we are assuming that the effect with which the variable is associated with works

only at a unit level, and not at a “global” level. Such an individual but not global

effect will often be difficult to justify.

For any given model the following steps are performed once in order to generate the

fixed data in a MLMM;

Within-unit sample sizes: Let max-ni denote the maximum number of observations

we will allow the N units to have, and let t = tk for k = 1, 2, ...,max-ni, denote the

time variable that the data we will generate will correspond to. This means when time

is entered into a model as a continuous variable that the complete set of time points

are equally spaced. This is convenient because when the within unit errors follow an

autoregressive process we must have equally spaced time points. Of course we could
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have used unequally spaced time points for models without an autoregressive process

for the within unit errors.

Now for the ith unit, i ∈ IN , and for k = 1, ...,max-ni, we draw a value xk from

the Bernoulli distribution with probability p. If xk = 1 then in subsequent steps (see

below) we will generate data for this unit at time point t = k, but if xk = 0 then this

unit will not have data at time point t = k. In this way if Xk, k = 1, ...,max-ni, are the

Bernoulli random variables, then we are assuming X :=
∑max-ni

k=1 Xk ∼ Bin(max-ni, p).

Since E[X] = (max-ni)p, then for all units npc := (E[X]/max-ni) ∗ 100 = p ∗ 100 is

the average number observations, expressed as a percentage of max-ni, that we might

expect a unit to have. For the models used in sections 5.2 and 5.3 we will choose p to

give a desired amount of unbalancedness in the within-unit sample sizes by calculating

p = npc/100, that is by choosing p in this way, for all units 100 − npc is the average

number of missing values we might expect, expressed as a percentage of max-ni. Set-

ting p = 1 gives balanced within-unit sample sizes where ni = max-ni for all i ∈ IN .

Time variable: The time variable t = tk for k = 1, 2, ...,max-ni, that we introduced

above can be entered into a model as either a continuous or a factor variable. When we

wish to think of t as continuous then we choose to use a centered variable tck = tk − t̄,
for all k, where t̄ is the mean of the max-ni time points. Although we do not include t2

as a variable in any of the models we consider, this centering can have beneficial effects

on the estimation of the parameter associated with the polynomial time effect (Cnaan

and Slasor (1997)).

Factor variables: For each i ∈ IN , k = 1, 2, ..., nf , let xfi,k ∈ Rni denote the kth

factor variable that has lk levels. If we allow this factor variable to vary within units

then we randomly draw ni values mj ∈ {1, .., lk}, j = 1, 2, ..., ni, from a lk-dimensional

Multinomial distribution with parameters 1 and pk, where pk is a lk × 1 vector with

entries l−1
k . That is we assume that mj is the realized value of a Multinomial random

variable Mj with equal group probabilities, and is distributed as Mj ∼ mult
lk

(1, pk).

If we do not allow this factor variable to vary within units, then we draw just a single

value from this distribution, and then copy it ni times into xfi,k. The fixed variable

xfi,k is then split into lk separate ni × 1 dummy variables that take on the values 0 or

1 that indicate to which level of this factor variable the jth response for the ith unit
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belongs, and it is these lk dummy variables that are included in the fixed-effects design

matrices Xi, and the random effects design matrices Zi. Since for the ith unit we may

have ni < max-ni, then the ni observations in each of these factor variables will not

necessarily correspond to sequential observations taken at t = 1, 2, ...,max-ni.

Continuous variables: For each i ∈ IN , s = 1, 2, ..., nc, let Xc
i be a ni × nc matrix

whose sth column contains the sth continuous variable. If the continuous variables are

allowed to vary within units, then we make ni random draws of a nc-dimensional vector

xj , j = 1, 2, ..., ni, from a normal distribution with mean µs := (µ1, ..., µnc)
ᵀ ∈ Rnc ,

and nc × nc covariance matrix Σs := diag{σ2
1, ..., σ

2
nc}. We then set the ni rows of Xc

i

to be equal to these vectors, that is x
ᵀ

j is the jth row of Xc
i , where we assume xj is

the realized value of a random vector Xj that is distributed as Xj ∼ Nnc(µs,Σs). If

one or more of the nc variables are not permitted to vary within units, then we copy

the relevant entries of the first row of Xc
i into the relevant entries of all the subsequent

rows. Since for the ith unit we may have ni < max-ni, then the ni observations in each

of these continuous variables will not necessarily correspond to sequential observations

taken at t = 1, 2, ...,max-ni.

For each s ∈ INsim we generate the random data of a model in the following way;

Component memberships: Using the notation from Chapter 2, for each unit i ∈ IN ,

we draw the G × 1 random vectors Λ
(s)
i (which denote component membership) from

a G-dimensional Multinomial distribution with parameters 1 and π. That is Λ
(s)
i ∼

multG(1,π) for all i.

Responses: Using the notation from Chapter 2 we let λ
(s,g)
i denote Λ

(s)
i = λ

(g)
i for

g ∈ IG. Thus λ
(s,g)
i is a variable that indicates for the sth simulation that the ith unit

belongs to the gth component. For all i ∈ IN we then draw the random effects vector

u
(s)
i from the distribution of Ui|λ(s,g)

i which is given by Ui|λ(s,g)
i ∼ Nq(0,Dg) and

the within unit error vector ε
(s)
i from the distribution of e

(s)
i |λ

(s,g)
i which is given by

e
(s)
i |λ

(s,g)
i ∼ Nni

(
0, σ2

gCi(φg)
)
. Conditional on λ

(s,g)
i and u

(s)
i we then generate the ith

response vector y
(s)
i as y

(s)
i = Xiβg +Ziu

(s)
i + ε

(s)
i .
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5.1.2 Parameter Estimation

All parameters were estimated using either the first or second variant of the EM al-

gorithm which were described in section 2.2. For parameter estimation the following

procedure was followed for each of the G components: for component g ∈ IG randomly

choose i′ = 1, ..., N ′ units where N ′ is quite small (typically 30-50 units). Compute

an initial estimate of the fixed effects β̂g
(0)

using the ordinary least squares (OLS)

estimator

β̂g
(0)

=

(
N ′∑
i′=1

X
ᵀ

i′Xi′

)−1
N ′∑
i′=1

X
ᵀ

i′yi′ . (5.1)

For the within-unit covariance parameters we ignore any autoregressive parameters

and only compute estimates of the within-unit variances - this is equivalent to assuming

φ̂
(0)
g = 0. The initial within-unit variances were estimated as the average of the residual

sum of squares from the above OLS regression, that is

σ̂g
2(0) =

∑N ′

i′=1

(
yi′ −X

ᵀ

i′β̂g
(0)
)ᵀ (

yi′ −X
ᵀ

i′β̂g
(0)
)

N ′
. (5.2)

For the random effects covariance parameters we simply set D̂
(0)
g = Iq which implies

we are assuming the random effects are uncorrelated and have unit variances. For the

mixing proportions we set the initial estimates to be 1/G for all the G components,

that is π̂g
(0) = G−11G.

Following this parameter estimate initialisation we estimated the mixture model

starting with these initial estimates, but where we only ran the EM algorithm for a very

small number of iterations (typically five), and recorded the log-likelihood after the final

EM iteration. We repeated this parameter initialisation and mixture model estimation

procedure five times and determined the repetition with the highest log-likelihood.

We then took the final mixture model parameter estimates from this repetition and

used these as the starting values for the parameter estimates in a full run of the EM

algorithm. In this full run we ran the EM algorithm until either convergence, or until

a maximum number of iterations had been achieved without convergence - this was

set at 5000 and 50 for the first and second variants of the EM algorithm respectively.

The large disparity in these maximum values is because the first variant of the EM

algorithm is very slow to converge, whereas the second variant is comparatively very
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fast to converge - see section 5.2 for a discussion of this difference. We defined the EM

algorithm to have converged (for both variants) when LLs−LLs−1

|LLs|+0.1 < 1e−8, where LLs

and LLs−1 are the log-likelihood values on the sth and (s − 1)th iterations of the EM

algorithm respectively.

5.1.3 Summary measures within replications

In this subsection we will continue to use the index s ∈ INsim that we introduced at the

end of subsection 5.1.1, and which indexes the Nsim replications of a particular model

version. Recalling that nθ, and nΘ = (G ∗nθ) +G denote the number of parameters in

the 1-component model and MLMM respectively, then (θ)t for t ∈ InΘ := {1, ..., nΘ}, is

a scalar parameter. In addition to the parameter estimates θ̂
(s)

we shall also calculate

the following quantities for each replication of a simulation.

Asymptotic standard errors: For the parameter estimate θ̂
(s)

from the sth repli-

cation, let ÎM

(
θ̂

(s)
)

, M ∈ {1, 2, 3, 4} denote one of four methods we will use to

approximate the sample information matrix IN

(
θ̂(s)

)
that we described in (3.4.2)

and (3.4.3). In this respect we let Î1

(
θ̂

(s)
)

= SN

(
θ̂

(s)
)

, Î2

(
θ̂

(s)
)

= JN

(
θ̂

(s)
)

,

Î3

(
θ̂g

(s)
)

= CWN

(
θ̂g

(s)
)

, g ∈ IG, and Î4

(
θ̂

(s)
)

= SWN

(
θ̂

(s)
)

. Then from the as-

sumed asymptotic normal distribution of the estimator θ̂
(s)

of θ given in (3.48), we see

for M = 1, 2, 4 that

SEM

((
θ̂g

(s)
)
t

)
=

√((
ÎM

(
θ̂

(s)
))−1

)
t,t

, (5.3)

will give asymptotic standard errors for
(
θ̂

(s)
)
t
, and for g ∈ IG

SE3

((
θ̂g

(s)
)
t

)
=

√((
Î3

(
θ̂g

(s)
))−1

)
t,t

, (5.4)

will give asymptotic standard errors for
(
θ̂g

(s)
)
t
.

Asymptotic confidence intervals:
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From the assumed asymptotic normal distribution of the estimator θ̂
(s)

of θ given in

(3.48), for M = 1, 2, 4, and for t ∈ InΘ , we will calculate CI
(s)
M ((θ)t), the (1−α)∗100%

approximate normal confidence interval for (θ)t, as

CI
(s)
M ((θ)t) =

[(
θ̂

(s)
)
t
− Z1−α/2SEM

((
θ̂g

(s)
)
t

)
,(

θ̂
(s)
)
t
+ Z1−α/2SEM

((
θ̂g

(s)
)
t

) ]
, (5.5)

and similarly for M = 3, and for any g ∈ IG, we will calculate CI
(s)
M ((θg)t) =

CI
(s)
3 ((θg)t) as

CI
(s)
3 ((θg)t) =

[(
θ̂g

(s)
)
t
− Z1−α/2SE3

((
θ̂g

(s)
)
t

)
,(

θ̂g
(s)
)
t
+ Z1−α/2SE3

((
θ̂g

(s)
)
t

) ]
. (5.6)

We shall also calculate the standardised confidence intervals by multiplying the confi-

dence intervals in (5.5) and (5.6) by the reciprocal of the modulus of the true parameter

value, that is we calculate

StCI
(s)
M ((θ)t) =

(
1

(|θ|)t

)
CIstM ((θ)t), (5.7)

for M = 1, 2, 4, and

StCI
(s)
M ((θg)t) =

(
1

(|θg|)t

)
CIstM ((θg)t), (5.8)

for M = 3, and g ∈ IG.

Confidence interval lengths:

We will calculate the lengths of the symmetric confidence intervals given in (5.5),

(5.7), (5.6) and (5.8), which we will denote respectively by CIL
(s)
M ((θ)t) and stCIL

(s)
M ((θ)t)

for M = 1, 2, 4, and CIL
(s)
3 ((θg)t) and stCIL

(s)
3 ((θg)t) for M = 3 and g ∈ IG. The

lengths of the standardised confidence intervals should behave in a way such that a

confidence interval for a parameter that is large in value should not necessarily be long,

nor should a confidence interval for a parameter that is small in value necessarily be
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short.

Classification errors:

For each i ∈ IN , let g
(s)
i ∈ IG denote the component to which unit i is assigned using

the following rule: p̂
(s)
ig = max{p̂(s)

i1 , ..., p̂
(s)
iG}, g ∈ IG → g

(s)
i = g. Letting N

(s)
g denote the

number of theNg units whose g
(s)
i values do not equal g, then CE

(s)
g := (N

(s)
g /Ng)∗100 is

the percentage of units that belong to component g that have been incorrectly classified

to one of the other G−1 components. Using this definition then CE
(s)
T := (N

(s)
T /N)∗100

for N
(s)
T :=

∑G
j=1N

(s)
j is the percentage of the total N units that have been incorrectly

classified.

5.1.4 Summary measures over all replications

We shall calculate averages and standard deviations over the Nsim replications for

all the quantities we described in subsection 5.1.3. In addition we also calculate the

mean square error (MSE) of the sequence of parameter estimates and their standard

errors. For a general sequence of scalar quantities {xs}Nsims=1 , where each xs is supposed

to estimate µ, letting x̄ and Sx be the sample mean and variance respectively of this

sequence, then using

BIAS(x̄) = x̄− µ, (5.9)

and

SE(x̄) =

√√√√ 1

Nsim

Nsim∑
j=1

(xj − µ)2, (5.10)

then the MSE of x̄ is given by

MSE(x̄) = SE(x̄)2 +BIAS(x̄)2. (5.11)

In addition to the mean and standard deviation of the confidence interval lengths

we will also use coverage probabilities to quantify the performance of the confidence in-

tervals over the Nsim replications. For any given model, any given confidence interval

method M , and any t ∈ InΘ , let c
(t)
M and c

(g,t)
3 be the number of times the Nsim confi-

dence intervals respectively contain the true parameter (θ)t (for M=1,2,4) or (θg)t for
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M=3. Then we will calculate the estimated coverage probabilities as CP tM = c
(t)
M /Nsim

or CP
(g,t)
3 = c

(g,t)
3 /Nsim. Since CP

(t)
M and CP

(g,t)
3 are proportions then we shall also

construct approximate 95% Binomial confidence intervals about these proportions using

the following formulae

BCI
(t)
M ± z0.975

√√√√ CP
(t)
M

(1− CP (t)
M )Nsim

, (5.12)

and

BCI
(g,t)
3 ± z0.975

√√√√ CP
(g,t)
3

(1− CP (g,t)
3 )Nsim

, (5.13)

where z0.975 is the value of a standard normal random variable Z such that P [|Z| >
z0.975] ≤ 0.05. We will use the term ”range of coverage” to mean the values between

and including the end-points of these Binomial confidence intervals. Unless otherwise

stated we will consider two coverage probabilities to be similar if the ranges of those

coverage probabilities intersect, and different if they do not. Similarly unless otherwise

stated if the nominal level α is contained in the range of coverage of a confidence interval

then we will consider that confidence interval to have attained the nominal level.

Despite the merits of presenting both coverage probabilities and means of confidence

interval lengths, for simulations that investigate many different models, and where the

models have many parameters, it is tedious to look at two sets of information in order

to asses the quality of the confidence intervals. In this respect we now propose the

construction of an index that combines both pieces of information.

For any t ∈ InΘ , and g ∈ IG, let StCIL
(t)
M for M = 1, 2, 4, and StCIL

(g,t)
3 for M = 3

denote the means of the lengths of the standardised confidence intervals StCI
(s)
M ((θ)t)

and StCI
(s)
3 ((θg)t) respectively taken over all the Nsim replications. Furthermore

denote the lower and upper endpoints of the Binomial confidence intervals BCI
(t)
M and

BCI
(g,t)
M by a and b respectively. Then we define the ”coverage probability and length”

index, which we will denote by CPLI
(t)
M , and CPLI

(g,t)
3 as follows

CPLI
(t)
M =

CP
(t)
M

StCIL
(t)
M +

[
((StCIL

(t)
M )d

(t)
M ) + 1

]2 , (5.14)
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and

CPLI
(g,t)
3 =

CP
(g,t)
3

StCIL
(g,t)
3 +

[
((StCIL

(g,t)
M )d

(g,t)
3 ) + 1

]2 , (5.15)

where

d
(t)
M =


max{d(a, α), d(b, α)}, if α /∈ BCI(t)

M ,

0, otherwise,

(5.16)

and

d
(g,t)
3 =


max{d(a, α), d(b, α)}, if α /∈ BCI(g,t)

M ,

0, otherwise,

(5.17)

and where d(x, y) = |x− y| for any two real numbers x and y. We note that since the

nominal level α is typically set to be high, for example 0.95, then d
(t)
M and d

(g,t)
3 will

almost all of the time be the distance of the lower end point a from α. The exception

is when the Binomial confidence intervals are particularly short and centered over α.

We see for fixed CP
(t)
M , and d

(t)
M that CPLI

(t)
M → 0 as StCIL

(t)
M →∞, and for fixed

StCIL
(t)
M , and d

(t)
M that CPLI

(t)
M → 0 as CP

(t)
M → 0. The purpose of the squared term in

the denominator of 5.14 is to penalise coverage probabilities either because they have a

Binomial confidence interval one of whose endpoints is far away from the nominal level,

or because that coverage probability is associated with confidence intervals that tend

on average to be long. The purpose of the ”+1” term is simply to prevent CPLI
(t)
M from

tending to infinity as StCIL
(t)
M → 0 (for fixed d

(t)
M ). Indeed in this situation, which can

be interpreted as the Nsim confidence intervals all becoming infinitely precise, then we

simply take CPLI
(t)
M to be CP

(t)
M . In contrast the effect of large StCIL

(t)
M and/or d

(t)
M is

to down weight CPLI
(t)
M . Finally by setting d

(t)
M to be zero when BCI

(t)
M contains α we

are implying that CPLI
(t)
M should, all other things being equal, be higher than CPL

(t)
M

when the Binomial confidence interval does not contain α. This is the ”reward” for

attaining the nominal level. The behavior we have just described for CPLI
(t)
M obviously

applies to CPLI
(g,t)
M as well.
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In addition to the above summary measures we shall also use various plots to sum-

marise the simulation results. For the coverage probabilities we will use errorbar plots

where the errorbars are the binomial confidence intervals. For the parameter estimates

and the confidence interval lengths we will use box plots, and for the coverage prob-

ability and length indices we will use simple bar charts. For some of the quantities

plotted, namely the parameter estimates and confidence interval lengths, some very

large outliers were observed. Some of these outliers were so large that they dominated

the boxplots at the expense of showing other relevant information such as the median

value, and the inter-quartile ranges of the quantities of interest. Furthermore by dis-

playing these outliers, it is impossible to meaningfully compare the results of different

model versions (for section 5.2) or for different factorial variable settings (for section

5.3).

For this reason we chose to use the ”compress” value of the ”extrememode” pa-

rameter in the Matlab routines we used to produce the boxplots. Using this parameter

setting Matlab truncates any data point outside a user supplied range, and displays

these truncated values in a ”compression region”’ whilst maintaining the relative po-

sition of the points. This has the effect of showing the reader the number of outlying

values, and the threshold lower and upper values the outliers exceed, but does not show

the exact value of the outliers in order to not stretch the y-axis of the plots. We usually

specified the threshold values in terms of percentiles of the data, so that data points

outside say the 5th and 95th percentiles were plotted in the compression regions.

For the factorial simulations we conduct in 5.3, for each of the three models we

investigate we will use many different model versions (between 64 and 128). Accordingly

the simulations will produce a lot of information, and whilst the plots will be valuable

tools to get an overview of the results, they may not by themselves provide an easy

method of determining the relationship between our quantities of interest (parameter

estimate MSEs, parameter CPs, CILs, and CPLIs) and the simulation variables. In

order to determine these relationships we will fit robust linear models to each of these

quantities, with the simulation variables as the covariates. Specifically we will obtain

M-estimates of the effects of the simulation variables using the ”robustreg” procedure

in the SAS statistical software system (Cary, NC: SAS Institute). We shall use the

default settings of this procedure which uses the bisquare function and median as

the weight functions ρ and ρscale associated with estimating the location and scale
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parameters respectively of the unknown data distribution. The cut-off value used by

SAS for ρ is 4.68, meaning that any model residuals whose values are close to 0 are

almost unweighted, residuals whose values equal or exceed ±4.68 have values of zero,

and the residuals in the range −4.68 to 4.68 are down weighted by weights that follow

a symmetrical bell-shaped curve that on each side goes from 1 to 0. The denominator

used by SAS in ρscale is 0.675 meaning that the scale estimator is consistent for the

true scale parameter when the data distribution is Normal.

5.2 EM first and second variants

We described in subsection 3.4.3 how the second variant of the EM algorithm can

motivate the use of componentwise inference, where we used some ideas presented

in Grün (2008). However the primary focus of Grün (2008) was not componentwise

inference at all, but rather it was to draw attention to the second variant of the EM

algorithm as both a conceptually and practically easier method to implement than the

first variant we described in subsection 2.2.1. The second variant is easier to implement

from a practical viewpoint since if existing software or code libraries can maximise the

weighted log-likelihood required in step 2, then no new code need be written to perform

this step other than calling the required functions or methods with the correct weights.

Even if a given software package or code library cannot perform this weighted estimation

then a transformed model can be estimated instead (Grün, 2008) which gives the same

parameter estimates as using weighted estimation.

In terms of the differences between the two EM algorithm variants, an obvious ques-

tion is whether both variants of the EM algorithm give the same parameter estimates.

It is appealing if they do, for if they do not then the parameter estimates obtained will

depend on which data are thought of as missing, and this decision can sometimes be

arbitrary when there really is no “missing” data. If the two variants are equivalent then

this should be proven, however it is not obvious how to do this since the two variants

are very different.

Other than this fundamental question there are of course questions regarding perfor-

mance of the two variants. For this reason Grün (2008) poses some questions regarding

this choice of EM method and postulates that the first variant, since it has more missing

data, should need more iterations but that each iteration will be faster than an iteration
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of the second variant algorithm because the M step will be in closed form. However

the maximisations in step 2 of the second variant involve fitting a LMM which utilise

a Newton-Raphson or Fisher Scoring algorithm which are typically fast to converge,

thus it is not necessarily clear which variant will be the quickest.

In light of these questions, and in addition to the main simulations in section (5.3),

we will include here a comparison of the EM first and second variants. Specifically

we want to see if the same parameter estimates are obtained from both variants, and

to compare computational performance. Since the quality of the parameter estimates

in terms of bias and variability will also affect the quality of the confidence intervals

in terms of coverage probabilities and confidence interval lengths, then we will also

compare the confidence intervals obtained using both variants of the EM algorithm.

From our experience developing the code to estimate MLMMs, our general impres-

sion is that there are often no large differences between the two EM algorithm variants

in terms of the quality of the parameter estimates or confidence intervals, and that

the first variant is vastly slower to converge than the second. Furthermore we also

noticed when the within-unit sample sizes are low that the first variant struggles to

estimate models where some of fixed effect variables in the Xi matrices are constant

within a unit. This is an important issue to investigate because in medical statistics in

particular many variables that are often included in LMMs are constant within a unit -

i.e. age and sex of subjects. For this reason the simulation study we now describe will

also investigate this effect of variables being constant within a unit or not, since we will

focus on other issues in the main factorial experiments in section (5.3). Thus for this

section, and for any given model (we shall introduce two shortly), we will compare the

quality of parameter estimates in terms of their levels of bias and variability, and the

performance of the parameter confidence intervals as measured by coverage probabili-

ties, and confidence interval lengths. For brevity we will refer to the first and second

variants of the EM algorithm as EM1 and EM2 respectively.

The two models we will use for these simulations we will call Model 1 and Model

2, and both have N = 1000 units, and G = 3 components. Model 1 will use a simple

random effects covariance structure, and an AR(3) process for the within-unit errors

covariance structure. Model 2 will use an unstructured covariance structure for the

random effects, and a simple within-unit errors covariance structure. Both models will

contain the following variables and fixed effects for j = 1, ..., G: an intercept (β0
j ); a
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factor variable f1 with two levels and parameters βf11
j and βf12

j ; a factor variable f2

with three levels and parameters βf21
j , βf22

j and βf23
j ; two continuous variables c1 and

c2 with parameters βc1j and βc2j respectively; and time as a continuous variable with

parameter βtcj . We will let the variables c2, f1 and f2 be either constant or not constant

within units, whereas c1 will always vary within a unit.

In terms of the covariance parameters, for Model 2 we have a 2× 2 random effects

covariance matrix Dj with diagonal elements d11
j and d22

j corresponding to the vari-

ances for the random intercept and random effect of time respectively, and off-diagonal

element d21
j corresponding to the covariance between these two random effects. Model

2 also has one within-unit variance parameter σ2
j . For Model 1 there is only q = 1

one random intercept with parameter d11
j . Model 1 also has one within-unit variance

parameter σ2
j , and three autoregressive parameters φvj , v = 1, ..., 3.

For Model 1 we will use only two model versions: CON and NCON, both using

max-ni = 20, which means ni = 20 for all i, since there are autoregressive parameters

in the model and so we do not permit missing observations. For Model 2 we will

use three model versions which we shall call CON6, NCON6, and CON15 where the

numbers denote respectively that max-ni = 6 and max-ni = 15. We will also make

Model 2 slightly unbalanced so that for each level of max-ni there are approximately

5% missing values within each unit. The “CON” and “NCON” means that the variables

c2, f1 and f2 were either generated to be either constant or non-constant respectively

within units.

5.2.1 Model 1

In this subsection we describe the simulation results of Model 1. We described in Section

A.1 that during parameter estimation if we can ensure the estimates of φg always give

rise to a stationary AR process then the estimates of Ci(φg) will always be positive-

definite. This is true theoretically, however in practice during estimation the elements

of τ had to be kept less equal to a number, m say, such that |m| < 1 and 1− |m| < ε

for ε > 0 being small. When running Model 1 we chose |m| = 0.999 which turned out

to be too close to 1 which resulted in many replications of the simulations producing a

Ci(φg) which was not positive definite numerically. This resulted in many replications

being aborted since we automatically tested for this condition. This problem only

affected the EM1 method since τ was obtained using a general optimisation algorithm.
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Consequently for EM1 although we aimed for Nsim = 1500 we achieved only Nsim =

1016 replications for the CON model version and Nsim = 438 replications for the

NCON model version. To save computation time for EM2 we used Nsim = 300

replications for both the CON and NCON model versions. Using a value of |m| = 0.99

avoided these issues.

The supplementary materials contain all of the plots of these simulation results,

which comprise boxplots of the individual Nsim parameter estimates and confidence

interval lengths, and errorbar plots of the coverage proportions computed from the

Nsim runs (the errorbars are Binomial confidence intervals). Figures 5.1 through to 5.3

show examples of these plots for φ3
2 which is the third order autoregressive parameter for

the second component. Tables A.1 through to (A.4) show the parameter estimate and

confidence interval length results averaged over the Nsim runs, and also the coverage

probability results.
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Figure 5.1: Boxplots of simulated parameter estimates for φ32 from model 1 using the EM1 (top two charts) and EM2 (bottom two charts) algorithms. The x
axis displays two different versions of model 1: constant (CON) and non-constant (NON) fixed variables, for all estimates (left-hand charts) and excluding estimates
outside the 10th and 90th percentiles of both model versions combined (right-hand charts). For EM1 Nsim = 1016 for CON, and Nsim = 438 for NON. For EM2
Nsim = 300 for CON and NON.
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Figure 5.2: Coverage probabilities of simulated parameter estimate confidence intervals for φ32 from model 1 with 95% approximate confidence intervals on the
proportions. Each chart displays a different method of confidence interval construction on which the coverage probabilities are based. The x axis displays two different
versions of model 1: constant (CON) and non-constant (NON) fixed variables. For EM1 Nsim = 1016 for CON, and Nsim = 438 for NON. For EM2 Nsim = 300
for CON and NON.
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Figure 5.3: Boxplots of confidence interval lengths for φ32 from model 1 using the EM1 (top four charts) and EM2 (bottom four charts) algorithms. The x axis
displays two different versions of model 1: constant (CON) and non-constant (NON) fixed variables. Due to large variation in the data, for both EM1 and EM2,
data outside the 5th and 95th percentiles (calculated using the data from both model versions combined) have been excluded. For EM1 Nsim = 1016 for CON, and
Nsim = 438 for NON. For EM2 Nsim = 300 for CON and NON.
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We firstly discuss the estimation results. For both model versions and for most

model parameters, the parameter estimates were reasonably unbiased, as manifested

by low MSEs, for both EM1 and EM2. The exception to this was the estimates of the

within-unit variances which were clearly much more biased than the other parameters,

particularly for EM2. For each component the ACF for the autoregressive process the

three AR parameters collectively define is characterised by an exponential reduction so

that by lag 10 the ACF is approximately zero. However despite this rapid reduction in

the ACF, certainly the first 3 lags have reasonably high levels of autocorrelation which,

if ignored might be attributed by the model instead to the within-unit variance, causing

it to become inflated. This might explain why these within-unit variances have not been

estimated as well as the other parameters, nor as well as the estimates for the within-

unit variances for Model 2 where there were no AR parameters. It may well be that

more than N = 100 units are required in order to estimate the within-unit variances well

in the presence of high or even moderately high levels of autocorrelation. Furthermore

if high levels of autocorrelation were being attributed to the within-unit variances then

this did not adversely affect the estimation of the autoregressive parameters themselves,

which in general were well estimated.

For both EM1 and EM2, and for most of the model parameters, the estimates for

the CON model version had higher levels of variation, but similar levels of bias (looking

at the mean rather than the median of the estimates) compared to the NCON version.

These differences in variation of the estimates for CON compared to NCON are more

pronounced for EM2 compared to EM1, primarily because of many outlying values for
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CON for EM2. Thus just as for Model 2 it appears that having most of the fixed effects

covariates being constant within a unit has a detrimental effect on the quality of the

parameter estimation in terms of increasing variability of the estimates. However this

effect was not as strong as for Model 2, nor were the estimates more biased for CON

compared to NCON as they were for Model 2 (CON6 and NCON6 model versions).

This may be because max-ni = 20 for all i are sufficiently high numbers of within-unit

observations to offset to some extent the loss in information that occurs when most

of the fixed effects covariates are constant within a unit. Furthermore for Model 2 it

was EM1 rather than EM2 that performed the worst when most of the fixed effects

covariates were constant within a unit.

For most of the model parameters the coverage probabilities for EM2 appear to be

slightly lower compared to EM1, however the ranges of coverage substantially overlap,

and so in this sense there are no real differences between EM1 and EM2 in terms of

coverage. For both EM1 and EM2 it is also clear that CI1 produces the highest ranges

of coverage which tends to be around or sometimes higher than the nominal level.

There appears to be no real difference between the ranges of coverage for the other

three methods which are often reasonably close to the nominal level (80%-95%), and

this result is similar to the one obtained for Model 2. In general the ranges of coverage

for NCON were slightly higher than for CON, and this was a much weaker effect than

was observed for Model 2 (CON6 versus NCON6).

For the fixed effects there appeared to be no large differences in the confidence inter-

val lengths between the confidence interval methods. This holds too for the covariance
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parameters with the exception that the confidence interval lengths for CI4 were much

more variable than the other three methods. For all model parameters there appeared

to be no large differences between EM1 and EM2. These results are in contrast to those

of Model 2 (CON6 and NCON6 model versions) where large differences in the variabil-

ity of the confidence intervals between the confidence interval methods, and between

EM1 and EM2 were observed. For all confidence interval methods, and for both EM1

and EM2, for the fixed effects the variability in the confidence interval lengths was much

larger, and the median lengths reasonably higher for CON compared to NCON - there

were no such large differences between CON and NCON for the covariance parameters.

These differences between CON and NCON are a weaker version of the results observed

for Model 2 (CON6 and NCON6 model versions).

In conclusion parameter estimates were reasonably unbiased for most model pa-

rameters for both EM1 and EM2. The exception to this was the within-unit variances

which were estimated in some cases rather poorly, which may be because of the influence

of high levels of autocorrelation in the within-unit errors. EM2 produced the highest

levels of bias in these parameter estimates for the CON model version. Excluding the

within-unit variances, parameter estimates displayed more variation but similar levels

of bias for CON compared to NCON. No large differences could be observed between

EM1 and EM2 for either the coverage or confidence interval length results. Just as for

Model 2, CI1 produced the best coverage results, often attaining the nominal level.

The other three methods were not far behind in producing only slightly lower ranges

of coverage. Again as with Model 2 it is notable in this respect that CI3 performs just
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as well as CI2 and CI3, and not too worse than CI1.

5.2.2 Model 2

In this subsection we describe the simulation results of Model 2. For EM1 we aimed

for NSim = 1000 replications for all three model versions, but obtained Nsim =

999 for the CON6 and CON15 model versions, and Nsim = 964 for the NCON6

model version. The reason for these lost replications is due to the covariance matrix

of the responses Vi(ζg) occasionally not being positive definite since we tested for

this condition during estimation and discarded these replications. For EM2 we aimed

for and achieved Nsim = 1000 replications for all model versions. The supplementary

materials contain all of the plots of these simulation results, which comprise boxplots of

the individual Nsim parameter estimates and confidence interval lengths, and errorbar

plots of the coverage proportions computed from the Nsim runs (the errorbars are

Binomial confidence intervals). Figures (5.4) through to (5.6) show examples of these

plots for β0
2 which is the model intercept for the second component. Tables (A.5)

through to (A.10) show the parameter estimate and confidence interval length results

averaged over the Nsim runs, and also the coverage probability results.
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Figure 5.4: Boxplots of simulated parameter estimates (Nsim=1000) for β0
2 from model 2 using the EM1 (top two charts) and EM2 (bottom two charts) algorithms.

The x axis displays three different versions of model 2: constant fixed variables/max-ni=6 (CON6), constant fixed variables/max-ni=15 (CON15), and non-constant
fixed variables/max-ni=6 (NCON6), for all estimates (left-hand charts) and excluding estimates outside the 10th and 90th percentiles of all model versions combined
(right-hand charts).
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Figure 5.5: Coverage probabilities of simulated parameter estimate confidence intervals (Nsim=1000) for β0
2 from model 2 with 95% approximate confidence

intervals on the proportions. Each chart displays a different method of confidence interval construction on which the coverage probabilities are based. The x axis
displays three different versions of model 2: constant fixed variables/max-ni=6 (CON6), constant fixed variables/max-ni=15 (CON15), and non-constant fixed
variables/max-ni = 6 (NCON6). For EM1, and due to low coverage, the constant fixed variables/max-ni = 6 data point has been omitted.
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Figure 5.6: Boxplots of confidence interval lengths (Nsim=1000) for β0
2 from model 2 using the EM1 (top four charts) and EM2 (bottom four charts) algorithms.

The x axis displays three different versions of model 2: constant fixed variables/max-ni=6 (CON6), constant fixed variables/max-ni=15 (CON15), and non-constant
fixed variables/max-ni=6 (NCON6). Due to large variation in the EM1 data, for both EM1 and EM2, data outside the 5th and 95th percentiles (calculated using
the data from all model versions combined) have been excluded.
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We will firstly discuss the parameter estimation results, and in this respect we will

start with the comparison of the two model versions CON6 and CON15. It is clear

that the most striking feature of these results is that for EM1 and all the parameters

that the variation in the parameter estimates for CON6 was much larger than for

CON15. In addition many of the estimates for CON6 were reasonably biased, whereas

for CON15 they were reasonably unbiased. Similar differences between these two model

versions can be observed too for EM2, however the size of these differences is much

smaller than for EM1. For EM1 but not EM2 it is clear that the increases in bias with

which the parameter estimates for CON6 displayed compared to those for CON15 were

particularly high for the parameters associated with the factor variables. Thus it seems

for EM1 that it is much harder to estimate factor variables than continuous ones at low

values of max-ni when the variables are constant within a unit. Furthermore it is clear

that for both EM1 and EM2 that increasing max-ni improves how well the parameters

for all the model parameters can be estimated.

The results we have just described for the CON6 versus the CON15 model version

were also observed for the CON6 versus the NCON6 model version comparison. This

shows for EM1 that the poor estimation of the parameters at low values of max-ni when

the variables with which they are associated are constant within a unit, disappear when

the variables are permitted to vary within a unit. This effect is particularly strong for

the factor variable fixed effects parameters. Of course this observed effect makes sense

because allowing the variable with which a parameter is associated to vary within units

gives more information on the variable-response relationship compared to restricting

125



it to be constant within a unit. It is not clear however why this effect for the fixed

effect parameters associated with the continuous variables was less pronounced than

for the factor variable fixed effect parameters. Furthermore we are not aware of these

problems with the LMM (which is not estimated with the EM algorithm), and so we

suspect this problem is specific to the first variant of the EM algorithm rather than a

characteristic of mixture models in general.

These differences between EM1 and EM2 in terms of how poorly EM1 estimates

parameters that are associated with variables that do not vary within a unit, might be

explained by looking at the “poor” runs that occurred out of the Nsim simulations

within the CON6 model version. We define “poor” runs here as those runs producing

classification errors greater than 10% for any component. Firstly we see that for EM2

only approximately 6% of the runs were poor compared to 82% of the runs for EM1.

For EM2 all of these poor runs converged, whilst for EM1 only a few failed to converge.

Thus in both cases poor runs were generally characterised by the EM algorithm simply

converging to poor final estimates, usually following poor initial values in the sense of

being far from the true parameters, however for EM1 the frequency of this occuring

was much greater.

A check of some of the poor runs for the EM1 simulations shows that often one

of the mixing proportions for the three components has been estimated to be approx-

imately zero. The majority of the units that belong to this “zero” component have

been incorrectly assigned to only one of the remaining two components, whilst a few

of the units from the other two components have been incorrectly assigned to the zero

126



component. Let g0 ∈ IG denote the zero component, and g′ ∈ IG, g′ 6= g0 denote the

component to which most or all of the units from component g0 have been assigned.

Then another observation of these poor runs is that one or more of the elements of Dg′

have been initialised and estimated to be very large, and where the final estimates are

reasonably similar to the initial ones. Presumably due to the inclusion of many of the

units from component g0, a number of the elements of βg′ have also been estimated

poorly.

A possible explanation of how the majority of the units from component g0 might

be assigned incorrectly to component g′ is that the first variant of the EM algorithm

is in fact an ECM rather than a standard EM algorithm. As we described in section

2.2, for any given parameter, and at each ECM iteration of a EM iteration, the ECM

algorithm updates a sub-vector of θ conditional on estimates of the other sub-vectors

of θ from the previous ECM iterations. Thus on the (s + 1)th iteration of the EM

algorithm, both variants update the parameter estimates conditional upon θ(s), but

the second variant does this indirectly through the posterior probabilities, whilst the

first variant does this more directly by conditioning on the sub-vectors of θ(s). We now

describe why this might explain these results.

If s denotes the sth iteration of the EM algorithm, suppose that ψ̂
(s)
g is such that

D(ψ̂
(s)
g ) has large estimated variances and covariances, and further suppose that Yi −

Xiβ̂
(s)
g is large. Regardless of whether D(ψ̂

(s)
g ) is close to the true random effects

covariance matrix D(ψ
(s)
g ) or not, if we believe D(ψ̂

(s)
g ) is the true covariance matrix,

and if we believe unit i belongs to component g, we would expect Ui to vary greatly
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about its mean value, often taking large values. Under these assumptions we would

put the probability to be high that Yi −Xiβ̂
(s)
g will be large even if β̂

(s)
g is close to

the true parameter βg. Thus conditional on knowing ψ̂
(s)
g , and without knowing the

value of Ui = ui, it may be difficult to decide if Yi −Xiβ̂
(s)
g being large is due to the

high variation in the random effects, or because unit i has been incorrectly assigned to

component g.

Using this reasoning, because on each ECM step we have that the parameters are

updated conditional on those parameters that have already been updated, it might be

that D(ψ̂
(s)
g ) having large estimated variances and covariances causes the EM algo-

rithm to have no reason to assign unit i to another component, and so “tolerates” this

unit being assigned to it. This situation may manifest itself mathematically by small

gradients of Q(θ|θ̂(s)) with respect to all of the parameters on the ECM steps, and so

this could result in little parameter updating. If the classification of units to compo-

nents is poor then the EM algorithm may then nonetheless still converge to incorrect

estimates.

We now turn our attention to the coverage results. Because of the poor estimation

results for EM1 for the CON model version, for all of the model parameters the coverage

probabilities for all of the confidence interval methods are low (approximately 70%). For

this reason this model version for EM1 has been omitted from the plots. Accordingly

when we discuss the CON6 model version in terms of coverage results, we refer only to

EM2. These coverage results show that there is no difference in the ranges of coverage

produced when using EM1 or EM2. For all the model versions the CI1 method produces
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the superior confidence intervals in terms of producing ranges of coverage that often

intersect the nominal level, and there are no significant differences between the other

three methods which produce slightly lower ranges of coverage. The fact however that

CI3 is just as good as CI2, and CI4, and not too much worse than CI1, is an important

result. This is because the confidence intervals used by CI3 are based upon the LMM

information matrix, whereas the intervals produced by the other three methods are

based upon approximations to the MLMM information matrix.

For most of the model parameters and all the confidence interval methods, and for

EM2 only, the coverage ranges for CON6 are clearly lower than for NCON6. Similarly

for most of the model parameters and all the confidence interval methods, and for

both EM1 and EM2, the coverage ranges for CON15 are often lower than for NCON6.

These results show that having variables in the Xi matrices that are constant within

units leads to a reasonable degradation in the performance of the confidence intervals

produced by all the confidence interval methods. For EM2 only it is also clear that

for most parameters and all the confidence interval methods, the ranges of coverage

for CON15 were reasonably higher than for CON6. This shows that more within-unit

information can to some extent offset the loss in information associated with having

some fixed effects covariates being constant within units.

The confidence interval length results show that the variation in lengths for EM1

is much higher than for EM2, and that this variation is extremely high for the lengths

produced by CI1 in the CON6 model version. This extreme variation occurs as a

result of a few very large parameter estimate standard errors when the estimates have
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converged to poor values. In contrast, for EM1 and for CON6, a reasonable number of

the confidence intervals for CI2 were complex valued as a result of negative standard

errors. This can happen because CI2 is based on the Hessian matrix, which is only

guaranteed to be a covariance matrix in the limit as N tends to infinity. So for finite

sample sizes we might have a non-positive definite Hessian which could give rise to

negative diagonal entries of the inverse Hessian. Thus it seems as though the confi-

dence intervals for CI1 and CI2 behave quite differently when the model estimates

have converged to poor values. The confidence intervals for CI3 and CI4 did not suf-

fer from either of these major drawbacks. Despite the larger variation in confidence

interval lengths for CI1 in the CON6 model version, there were no differences in the

median confidence interval lengths between either the three model versions, or the four

confidence interval methods. However the main result here is that the propensity of

some of the confidence intervals of CI1 and CI2 to be either very long or complex

valued respectively when parameter estimates are poor, means we can argue that CI3

and CI4 produce better confidence intervals in the sense of being more invariant to

estimation quality.

In conclusion it is clear when estimation was difficult (as in the CON6 model

version) that EM1 produced much more biased parameter estimates, and that the

estimates displayed considerably more variation than the other two model versions.

This was also observed for EM2 but to a much lesser extent. Thus the influence of

having all fixed effects covariates varying within units, and increasing the within-unit

sample sizes was to improve the quality of the estimates. When parameter estimation
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was easier (CON15 and NCON6) EM1 and EM2 produced reasonably similar estimates.

The reasons why EM1 produces poor quality estimates when estimation is difficult may

be due to the fact that the first variant of the EM algorithm is an ECM algorithm that

conditions on the sub-vectors of θ(s) in order to derive updated parameter estimates

on the (s + 1)th iteration. The best coverage was obtained by CI1, where the ranges

of coverage often attained the nominal level, whilst the other three methods produced

reasonably similar ranges of coverage that were slightly lower than the nominal level.

The effect of having fixed effects covariates that are constant within a unit was to

reduce the levels of the ranges of coverage. There were no differences in the median

confidence interval lengths between the four confidence interval methods or between

EM1 and EM2, however the variation in the confidence interval lengths produced by

EM1 was much larger than for EM2. The confidence intervals produced by CI1 and

CI2 have the propensity to become either very long or complex valued respectively

when estimation is difficult.

Finally it is also important to point out that not only did EM1 not cope very well

for CON6 when variables in the Xi matrices are constant within units, but it was also

very slow to converge compared to EM2. In this respect all the simulations were run on

a fairly decent workstation: a Microsoft Windows machine running a 64-bit operating

system with a reasonably modern (2012) quad core processor running at 2.4GHz, and

with 16 GB of RAM. For CON6 on average (over all the 1000 runs) it took EM1 144

seconds to fit an individual run, whilst for EM2 it took only 7.2 seconds. Similarly for

CON15 on average it again took EM1 144 seconds to fit an individual run, whilst for
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EM2 it took 5.3 seconds. Thus there is a huge increase in computation time for EM1

compared to EM2.

5.3 Factorial simulations

In these simulations, which we call “factorial simulations”, we will use three models

which we will denote by Model 1-Model 3. We call these simulations “factorial” sim-

ulations because for each model we will use k = 6 variables (simulation variables),

most of which have two levels, where we will perform Nsim replications at different

combination of the simulation variables, where for any given model each combination

of the factorial variables (to be introduced shortly) will be called a model version.

Since we will use all the combinations of these simulation variables then our simula-

tions represent a completely crossed designed experiment, and so represents a factorial

experiment. In total Model 1 and Model 2 will have 128 different combinations of the

simulation variables - i.e. 128 different model versions, whilst Model 3 will have 64

model versions.

Model 1 will have G = 3 components, an unstructured random effects covariance

matrix with q = 2 random effects, and a simple within-unit covariance structure. Model

2 will have G = 2 components, an unstructured random effects covariance matrix with

q = 2 random effects, and an AR(2) within-unit covariance structure. Model 3 will

have G = 4 components, and a simple covariance structure for both the random effects

and the within-unit variances.

Model 1 will have the following fixed effects and associated variables for j = 1, ..., G:
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an intercept β0
j ; a factor variable f1 with two levels and parameters (including redun-

dant parameters) βf11
j and βf12

j ; a factor variable f2 with three levels and parameters

(including redundant parameters) βf21
j , βf22

j and βf23
j ; two continuous variables c1 and

c2 with parameters βc1j and βc2j respectively; and time tc as a continuous variable with

parameter βtcj . The random effects for Model 1 will be the intercept and the time

variable tc. Thus a 2 × 2 random effects covariance matrix Dj is obtained with di-

agonal elements d11
j , and d22

j corresponding to the variances for the random intercept

and random effect of time respectively, and off-diagonal element d21
j corresponding to

the covariance between these two random effects. Model 1 also has one within-unit

variance parameter σ2
j .

We will use the same fixed effects and variables for Model 2 as we did for Model

1 (although the actual covariate data will be generated to be different). Similarly the

same random effects will be used for Model 2 as they were for Model 1. Model 2

also has one within-unit variance parameter σ2
j , and two autoregressive parameters φvj ,

v = 1, ..., 2. For Model 3 we again use the same fixed effects and variables as for Model

1, but we also include an interaction variable between f1 and f2 which has parameters

βf11∗f21
j and βf11∗f22

j . Model 3 has only one random effect covariance parameter d11
j ,

and one within-unit variance parameter σ2
j .

In terms of the simulation variables, for the many that take on only two values

these values were chosen to represent low and high values, where for most of these

variables the “low” and “high” settings are self-explanatory and are denoted by L and

H respectively. In contrast for some variables the meaning of “low” and “high” is less
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clear, and this terminology is retained only for consistency with the other variables. For

all the simulation variables we will write the values the variable can take in an order

such that the first listed value represents intuitively the setting that should make model

estimation easiest. We will call this first setting the reference setting, or the reference

value. Accordingly setting all the simulation variables to their reference settings should

yield a model version that is the easiest to estimate out of all the other combinations.

This model version we will call the reference model version.

The variables common to all models are: unit sample sizes (N ∈ {H,L}); the

maximum within-unit sample size across all the N units (max-ni ∈ {H,L}); the

within-unit variances (σ2 ∈ {L,H})); the unbalancedness of the mixing proportions

(π-unbalance ∈ {L,H}), where L := BAL means balanced (i.e a low level of unbal-

ancedness) and H := UNBAL means unbalanced (i.e a higher level of unbalancedness

than BAL). For Model 1 and Model 2 we will have a simulation variable that repre-

sents the random effects covariance matrix, or more specifically a combination of the

diagonal elements being either low or high, and the off-diagonal element being either

positive or negative. Denoting this variable by D, the four values this variable can

take are D ∈ {LPOS,LNEG,HPOS,HNEG} where LPOS and LNEG mean low

and positive, and low and negative respectively, and where HPOS and HNEG mean

high and positive, and high and negative respectively. For Model 3 there is no off-

diagonal element of D, and so this variable will be set at just a low or high setting -

i.e. D ∈ {L,H}.

For Model 2 we will have a simulation variable that represents the amount of au-
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tocorrelation present in the within-unit errors, which we will control with the ACF of

the autoregressive parameters, which in turn will be controlled with the autoregressive

parameters. We will denote this variable by ACF ∈ {L,H}. The high setting H will

correspond to slowly declining ACF whereby the ACF reaches near zero approximately

at lag 10. The low setting L will correspond to a comparatively rapidly declining ACF,

usually such that the ACF function is near zero by approximately lag 4. We note that

although the ACF = L should make estimation easier regardless of the max-ni set-

ting, 4 lags will represent a smaller proportion of the max-ni lags when max-ni = H,

compared to when max-ni = L, and so the greatest benefit of ACF = L may well be

observed for the larger within-unit sample sizes. For similar reasons the anticipated

detrimental effect of ACF = H may well be most strongly observed when max-ni = L.

The specific values chosen for the simulation variables can be found in table 5.1, and

the specific values chosen for the fixed effects parameters can be found in table 5.2.

In subsection 3.4.1 we constructed an index of separation to quantify how well sepa-

rated two corresponding parameters in different components are in terms of how easily

an estimation procedure should be able to tell them apart. In general for two compo-

nents indexed by g, g′ ∈ IG, making the fixed effects parameters of the two components

to be further and further apart from each other will increase the separation indices

between this pair of fixed effects, which in turn will increase SI(g, g′). Furthermore

this increase in separation will occur no matter how large the fixed effects become in

magnitude. In contrast making covariance parameters large in order to make them dif-

ferent from corresponding parameters in other components increases the noise present
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in the data within those components, which in turn reduces the separation between

these two components.

For these reasons we see that our manipulation of the covariance parameters as part

of the factorial simulations will also result in the separation indices of the components

being affected. This is preferable to specifying a priori a given level of separation for

each of the components, and to then choose values for the model parameters to achieve

these pre-specified levels of separation. This is because it would not only be very tedious

to do this, but there will in general be a uniqueness problem in that many different

choices of parameters will lead to the same separation indices. Furthermore during code

development casual observation of the separation indices for different models revealed

that often quite different amounts of component separation were required to obtain the

same level of difficulty of parameter estimation. Thus the base level of component sep-

aration and therefore estimation difficulty appears to be very model-specific, although

it was also clear that for all models increasing component separation made parameter

estimation easier.

Even though our approach to manipulating the separation indices was indirect,

we nonetheless attempted to obtain a specific range of separation indices across the

different model versions - from not well-separated to very well separated. Firstly we

chose the reference values for the simulation variables and the values of the fixed ef-

fects parameters in order to obtained high enough levels of separation between the G

components such that the resulting models were easy to estimate, as reflected by low

mean square errors of parameter estimates, and zero classification errors. Although
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no attempts were made to ensure these default model versions achieved the easiest

estimation problem possible, it suits our purposes here to consider these as the “gold

standard” models that should achieve the best performing parameter estimators and

classification of units to components.

Given this process of choosing the default model versions, setting the non-reference

levels of the simulation variables to any other values that are “worse” for estimation

than the reference levels then served to reduce the separation indices, and in turn in-

crease the difficulty of estimation compared to the “gold standard”. In this respect we

will make clear in the results that one of the main findings, and perhaps not surpris-

ingly, is that it is very easy to pick values of the simulation variables so as to produce

components that are extremely close together, in terms of having small or even nega-

tive separation indices. For reasons we described at the start of this chapter, we chose

instead to set the non-reference levels of the simulation variables in such a way as to

produce moderately difficult rather than very difficult models to estimate. In this way

we have “calibrated” the models in such a way as to permit us to examine the effects

of the simulation variables on statistical inference, or equivalently the effects of com-

ponent separation on statistical inference, without specifying models that would give

very poor results.
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Table 5.1: Simulation parameter settings for all models (L =low, H =high, BAL =balanced, UNBA =unbalanced, LPOS =low and positive, LNEG =low and
negative, HPOS =high and positive, HNEG =high and negative).

Model 1

Simulation parameter L H
N 100 1000
max-ni 5 10

σ2 : (σ2
1 , ..., σ

2
G) (1.9,1.8,1.75) (9.5,9,8.75)

ni-unbalance : E(X) = % of max-ni 95 65
ACF : (φ1), (φ2) - -

BAL UNBA
π-unbalance : (π1, ..., πG) (0.333,0.333,0.333) (0.2,0.4,0.4)

LPOS LNEG HPOS HNEG
D : (v(D1)), ..., (v(DG)) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5)

Model 2

Simulation parameter L H
N 100 500
max-ni 10 15

σ2 : (σ2
1 , ..., σ

2
G) (1.3,1.2) (8.3,8.2)

ni-unbalance : E(X) = % of max-ni - -
ACF : (φ1), (φ2) (0.4,-0.1),(0.38,-0.12) (0.4,0.1),(0.38,0.12)

BAL UNBA
π-unbalance : (π1, ..., πG) (0.5,0.5) (0.1,0.9)

LPOS LNEG HPOS HNEG
D : (v(D1)), ..., (v(DG)) (1,0.5,2.1),(2,0.9,1.5) (1,-0.5,2.1),(2,-0.9,1.5) (5,4.5,10.5),(10,5.5,7.5) (5,-4.5,10.5),(10,-5.5,7.5)

Model 3

Simulation parameter L H
N 100 1000
max-ni 6 10

σ2 : (σ2
1 , ..., σ

2
G) (1,1.2,1.1,0.9) (6,6.2,6.1,6.9)

ni-unbalance : E(X) = % of max-ni 95 65
ACF : (φ1), (φ2) - -

BAL UNBA
π-unbalance : (π1, ..., πG) (0.25,0.25,0.25,0.25) (0.15,0.2833,0.2833,0.2833)

L H
D : (D1), ..., (DG) (0.8,0.3,0.5,0.7) (5.8,5.3,5.5,5.7)
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Table 5.2: Simulation settings for the fixed effects for all models.

Model 1 Model 2 Model 3

fixed effect comp 1 comp 2 comp 3 comp 1 comp 2 comp 1 comp 2 comp 3 comp 4
β0 5 15 30 8 -1 -20 18 25 -10
βc1 -2 -3 -0.5 1.2 1.5 -2 -3 -0.5 -2.5
βc2 3 1.2 5.5 2 1.8 3 1.5 3.8 4.8
βf11 1 3 6 -1 -1.5 0.5 -0.5 3 2
βf12 -1 -3 -6 1 1.5 -0.5 0.5 -3 -4
βf21 4 1 9 4.5 7 1 -1 1 -0.5
βf22 7 4 -6 4 7 1.5 -0.9 1.2 2.5
βf23 3.4 6 1.4 3.4 6 2 -4 1.4 4
βf11∗f21 - - - - - 2 -2 -2 -2.7
βf11∗f22 - - - - - 4 -4 -3 -4.3
βf11∗f23 - - - - - 6 -6 -4 5.4
βf12∗f21 - - - - - 1.5 -1.5 -3 -1.2
βf12∗f22 - - - - - 2.5 -0.5 -1 5.5
βf12∗f23 - - - - - 1.5 -1.5 3 -2
βtc 4.5 -2.5 0.5 0.5 1.5 - - - -

1
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5.3.1 Model 1

We first describe the simulation results for the MSE of the mixture model parameter

estimators. Looking at the estimate plots in the supplementary materials, as expected

it is clear that for most mixture model parameters estimation was better (estimates had

less bias and variability) for σ2 = L compared to σ2 = H, and that this relationship

was stronger for N = H compared to N = L. Furthermore whilst all of the parameters

seemed to be estimated worst when N = H, and σ2 = H together, the random effects

covariance parameters appear to be estimated particularly poorly at these simulation

variable settings. It also appears that the balancedness of the mixing proportions does

not influence these relationships. In general the estimation quality for the mixture

model parameters was good, particularly when N = H and σ2 = L.

We now look at the robust model M-estimates shown in table 5.4 when MSE is

the response variable. Since the scale of the MSE will to some extent be determined

by which parameter in the mixture model we are looking at, it is not surprising to

see the param main effect featuring amongst this strongest set of parameters. In this

respect the param effects for π, βc1 , βc2 , and βtc show that the MSE for the estimators

of these mixture model parameters are significantly reduced compared to the MSE

for the estimator of the mixture model intercept. It is interesting to note that these

particularly well estimated mixture model parameters do not include any of the factor

variable fixed effects or the covariance parameters.

The comp∗π-balance effect for comp = 1 and π-balance = UNBAL was associated

with a significant increase in the MSE of the estimators of all the parameters in the
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mixture model compared to those of component 3 when the mixing proportions are

balanced. This is not surprising since we chose component 1 to be the component with

the smallest proportion of 0.2. Perhaps for the same reason the comp ∗ N effect for

N = L and comp = 1 shows that the MSEs for all of the mixture model parameter

estimators was significantly higher than when N = H and comp = 3. Thus the effect of

unit sample size on MSE was stronger when the mixing proportions were unbalanced.

In terms of the covariance parameters, the param ∗ N effects when param = d11

and N = L, and when param = d21 and N = L both show that the estimators of these

random effects covariance parameters were associated with significantly higher MSEs

when the number of units were low compared to the intercept when N = H. This is

quite logical since the number of units can be expected to influence the estimation of

the random effects parameters more than the other parameters. The effect of D at the

D = HPOS and D = HNEG levels show that the MSEs for the estimators of all the

mixture model parameters were significantly higher when the random effects covariance

matrices were large compared to when they were small and positive. Furthermore

whether the random effects are positively or negatively correlated seemed to not make

much of a difference. Similarly the effect σ2 shows that the MSE of all the model

parameters increased when σ2 = H compared to σ2 = L.

In terms of sample sizes, the N effect shows that the MSEs for the estimators of all

the mixture model parameters were significantly increased when N = L compared to

when N = H. The effect N ∗ σ2 when N = L and σ2 = H shows that the estimators

of all the model parameters were associated with higher MSEs when the number of
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units were low compared to when they were high. The effect N ∗max-ni when N and

max-ni were both low, and the effect max-ni ∗ σ2 when max-ni = L and σ2 = H both

show that these less optimal settings of the simulation variables significantly increased

the MSEs of the estimators of the mixture model parameters compared to the optimal

settings.

Thus the main result for the MSEs is that the MSEs increased when either the

unit sample size, and/or the within-unit sample sizes reduced, and that this effect was

particularly strong for the random effects covariance parameters. Furthermore large

variances and covariances of and between the random effects also increased the MSEs,

as did high within-unit error covariances.

We will now discuss the results from the charts in the supplementary materials.

Firstly, and for the CPLIs (coverage probability length indices), CPs (coverage prob-

abilities), and the CILs (confidence interval lengths), there was no major interaction

between the simulation variables. Thus we will generally concentrate only on the dif-

ferences between the confidence interval methods. Starting with the CPLI we see that

CI1 produced slightly higher CPLIs than the other methods, and that CI3 was very

slightly higher than CI2 which in turn was very slightly higher than CI4. For the CPs

we have that CI1 consistently produced slightly higher ranges of coverage probabilities

which often intersected the nominal level compared to the other three methods. Indeed

on average it appears as if the coverage probabilities for CI1 were about 95%, whilst

those for the other three methods were about 90%. It also appears as though CI2 and

CI4 were very similar, and that both produced very slightly higher coverage proba-
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bilities than CI3. This difference was quite small however. It is noteworthy that the

confidence intervals produced by CI3 performed as well as those of CI2 and CI4, and

that they were not too much worse than those produced by CI1. For the CILs CI4

and CI1 produced similar confidence intervals which were slightly longer than those

produced by CI2 and CI3. The methods CI2 and CI3 produced confidence intervals

of a similar length. Thus the very good coverage attained by CI1 was not achieved

trivially in the sense of producing confidence intervals that were very long.

We now discuss the robust model M-estimates in table 5.5 for the CPLI as the

response. We firstly describe effects that relate to all confidence interval methods, and

all the mixture model parameters (i.e. effects that do not contain CI or param). The

following effects N ∗max-ni, N ∗ σ2, N ∗ ni-unbalance, and max-ni ∗ σ2 all show that

as expected the CPLI reduced when the two simulation variables involved were set to

the non-optimal settings compared to the optimal ones. For example the N ∗max-ni

effect shows that the CPLI reduced when N = L and max-ni = L compared to when

N = H and max-ni = H. The N ∗ D effect shows that CPLI reduced when N = L

and D = HNEG compared to when N = H and D = LPOS. A similar but weaker

effect slightly lower down the table was observed when N = L and D = HPOS. This

suggests the variances and covariances of the random effects being high and negative

respectively resulted in a larger and more significant reduction in the CPLI (compared

to when the variances and covariances were low and positive respectively) than when

the variances of the random effects were high and positively correlated.

The differences between the confidence interval methods is demonstrated by a few
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strong interaction effects involving the factor CI. It is important to note that we do

not want to over interpret effects such as these involving CI since they are all relative

to CI1 and the other reference categories. This is because we have no good reason

to make CI1 the reference category. For example we have no reason to believe CI1

is the best method for generating confidence intervals, nor is it an established ”gold

standard” method. Thus we do not want to put too much emphasis on the effect size

itself because if we were to change the reference category for CI we would get a different

effect size. For this reason all we wish to conclude is that the effect on the CPLI of

the mixing proportions being unbalanced was strongly dependent on the confidence

interval method. Similarly the two CI ∗ N effects involving CI2 and CI3 show that

the effect of N on the CPLI was also strongly dependent on the confidence interval

method. Apart from these two interactions there are no other effects containing CI in

the top twenty effects in the table. This suggests that there were not many differences

between the four confidence interval methods in terms of the factors that very strongly

influence the CPLI. In contrast there are many effects that contain CI lower down the

table, suggesting that there were many differences between the four confidence interval

methods in terms of factors that moderately influence the CPLI.

In terms of individual mixture model parameters, the three param ∗ N effects in-

volving all of the random effects parameters show that the CPLI for these mixture

model parameters were reduced the most compared to the CPLI for the mixture model

intercept when N = L compared to when N = H. This is to be expected since the

number of units is really the effective sample size for the random effects covariance pa-
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rameters. The param ∗ comp effects involving π1, βc12 , βtc1 , ,βtc2 , and d21 for component

2, show that these parameters had higher CPLIs than the mixture model intercept for

component 3. The reason for the superior CPLIs for some of these parameters may well

be the lower MSEs associated with their estimators that we alluded to earlier. However

these lower MSEs were not associated with the estimators of d21, and so it is likely that

the CPLI is not completely determined by estimator quality. Again these effects are

difficult to interpret, but what is noteworthy is that the effects do not concern either

the factor variable fixed effects, nor many of the covariance parameters. Thus perhaps

confidence interval quality is superior in the continuous fixed effects, and for the mixing

proportions.

To conclude from the M-estimates, the simulation variablesN , max-ni, ni-unbalance,

σ2, and D all influenced the CPLI in the expected way when they were set at their

non-optimal settings. For the simulation variable D it also appears that the detrimen-

tal impact on confidence interval quality when D was high was larger when the random

effects were negatively as opposed to positively correlated. In terms of differences be-

tween mixture model parameters it appears that the factor variable fixed effects, and

the covariance parameters had worse quality confidence intervals than the continuous

variable fixed effects, and the mixing proportions. Finally it was only the influence of

π-balance and N on the CPLI that differed strongly between the confidence interval

methods.
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Table 5.3: Simulation variable settings for the 128 runs of Model 1.

simnumber N max-ni π-unbalance : (π1, π2, π3) D : (v(D1)), (v(D2)), (v(D3)) σ2 : (σ2
1, σ

2
2, σ

2
3) ni-unbalance : E(X) = np of n

1 100 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
2 100 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
3 100 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 4.75 of 5
4 100 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 3.25 of 5
5 100 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
6 100 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
7 100 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 4.75 of 5
8 100 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 3.25 of 5
9 100 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 4.75 of 5
10 100 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 3.25 of 5
11 100 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 4.75 of 5
12 100 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 3.25 of 5
13 100 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 4.75 of 5
14 100 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 3.25 of 5
15 100 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 4.75 of 5
16 100 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 3.25 of 5
17 100 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
18 100 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
19 100 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 4.75 of 5
20 100 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 3.25 of 5
21 100 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
22 100 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
23 100 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 4.75 of 5
24 100 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 3.25 of 5
25 100 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 4.75 of 5
26 100 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 3.25 of 5
27 100 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 4.75 of 5
28 100 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 3.25 of 5
29 100 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 4.75 of 5
30 100 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 3.25 of 5
31 100 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 4.75 of 5
32 100 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 3.25 of 5
33 100 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
34 100 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
35 100 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 9.5 of 10
36 100 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 6.5 of 10
37 100 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
38 100 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
39 100 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 9.5 of 10
40 100 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 6.5 of 10

146



Table 5.3 continued

simnumber N max-ni π-unbalance : (π1, π2, π3) D : (v(D1)), (v(D2)), (v(D3)) σ2 : (σ2
1, σ

2
2, σ

2
3) ni-unbalance : E(X) = np of n

41 100 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 9.5 of 10
42 100 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 6.5 of 10
43 100 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 9.5 of 10
44 100 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 6.5 of 10
45 100 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 9.5 of 10
46 100 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 6.5 of 10
47 100 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 9.5 of 10
48 100 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 6.5 of 10
49 100 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
50 100 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
51 100 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 9.5 of 10
52 100 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 6.5 of 10
53 100 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
54 100 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
55 100 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 9.5 of 10
56 100 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 6.5 of 10
57 100 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 9.5 of 10
58 100 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 6.5 of 10
59 100 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 9.5 of 10
60 100 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 6.5 of 10
61 100 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 9.5 of 10
62 100 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 6.5 of 10
63 100 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 9.5 of 10
64 100 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 6.5 of 10
65 1000 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
66 1000 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
67 1000 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 4.75 of 5
68 1000 5 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 3.25 of 5
69 1000 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
70 1000 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
71 1000 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 4.75 of 5
72 1000 5 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 3.25 of 5
73 1000 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 4.75 of 5
74 1000 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 3.25 of 5
75 1000 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 4.75 of 5
76 1000 5 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 3.25 of 5
77 1000 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 4.75 of 5
78 1000 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 3.25 of 5
79 1000 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 4.75 of 5
80 1000 5 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 3.25 of 5
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Table 5.3 continued

simnumber N max-ni π-unbalance : (π1, π2, π3) D : (v(D1)), (v(D2)), (v(D3)) σ2 : (σ2
1, σ

2
2, σ

2
3) ni-unbalance : E(X) = np of n

81 1000 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
82 1000 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
83 1000 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 4.75 of 5
84 1000 5 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 3.25 of 5
85 1000 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 4.75 of 5
86 1000 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 3.25 of 5
87 1000 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 4.75 of 5
88 1000 5 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 3.25 of 5
89 1000 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 4.75 of 5
90 1000 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 3.25 of 5
91 1000 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 4.75 of 5
92 1000 5 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 3.25 of 5
93 1000 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 4.75 of 5
94 1000 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 3.25 of 5
95 1000 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 4.75 of 5
96 1000 5 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 3.25 of 5
97 1000 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
98 1000 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
99 1000 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 9.5 of 10
100 1000 10 (0.333,0.333,0.333) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 6.5 of 10
101 1000 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
102 1000 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
103 1000 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 9.5 of 10
104 1000 10 (0.333,0.333,0.333) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 6.5 of 10
105 1000 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 9.5 of 10
106 1000 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 6.5 of 10
107 1000 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 9.5 of 10
108 1000 10 (0.333,0.333,0.333) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 6.5 of 10
109 1000 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 9.5 of 10
110 1000 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 6.5 of 10
111 1000 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 9.5 of 10
112 1000 10 (0.333,0.333,0.333) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 6.5 of 10
113 1000 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
114 1000 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
115 1000 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 9.5 of 10
116 1000 10 (0.2,0.4,0.4) (1,-0.5,2.1),(2,-0.9,1.5),(1.5,-0.3,1.3) (9.5,9,8.75) 6.5 of 10
117 1000 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 9.5 of 10
118 1000 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (1.9,1.8,1.75) 6.5 of 10
119 1000 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 9.5 of 10
120 1000 10 (0.2,0.4,0.4) (1,0.5,2.1),(2,0.9,1.5),(1.5,0.3,1.3) (9.5,9,8.75) 6.5 of 10
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Table 5.3 continued

simnumber N max-ni π-unbalance : (π1, π2, π3) D : (v(D1)), (v(D2)), (v(D3)) σ2 : (σ2
1, σ

2
2, σ

2
3) ni-unbalance : E(X) = np of n

121 1000 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 9.5 of 10
122 1000 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (1.9,1.8,1.75) 6.5 of 10
123 1000 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 9.5 of 10
124 1000 10 (0.2,0.4,0.4) (5,-4.5,10.5),(10,-5.5,7.5),(7.5,-5,6.5) (9.5,9,8.75) 6.5 of 10
125 1000 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 9.5 of 10
126 1000 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (1.9,1.8,1.75) 6.5 of 10
127 1000 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 9.5 of 10
128 1000 10 (0.2,0.4,0.4) (5,4.5,10.5),(10,5.5,7.5),(7.5,5,6.5) (9.5,9,8.75) 6.5 of 10

1
49



Figure 5.7: Boxplots of parameter estimates for βc2
2 with estimates outside the 10th and 90th percentiles displayed in a compression region - for an explanation

see Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether the simulation variables max-ni and ni-unbalanced are high or low respectively,
thus ”H/L” denotes max-ni = H and ni-unbalanced = L respectively. In total all of the plots show results for 32 combinations of the simulation variables, all at the
HNEG setting for the simulation variable D.
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Figure 5.8: Coverage probabilities for βc2
2 with 95% approximate Binomial confidence intervals for each type of confidence interval construction method. Each of the

four x-axis labels on each subplot denote whether the simulation variables max-ni and ni-unbalanced are high or low respectively, thus ”H/L” denotes max-ni = H
and ni-unbalanced = L respectively. In total all of the plots show results for 32 combinations of the simulation variables, all at the HNEG setting for the simulation
variable D.
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Figure 5.9: Boxplots of confidence interval lengths for βc2
2 for each type of confidence interval construction method. Confidence interval lengths outside the 10th

and 90th percentiles are displayed in a compression region - for an explanation see Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether
the simulation variables max-ni and ni-unbalanced are high or low respectively, thus ”H/L” denotes max-ni = H and ni-unbalanced = L respectively. In total all
of the plots show results for 32 combinations of the simulation variables, all at the HNEG setting for the simulation variable D.
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Figure 5.10: CPL indices for βc2
2 for each type of confidence interval construction method. Each of the four x-axis labels on each subplot denote whether the

simulation variables max-ni and ni-unbalanced are high or low respectively, thus ”H/L” denotes max-ni = H and ni-unbalanced = L respectively. In total all of the
plots show results for 32 combinations of the simulation variables, all at the HNEG setting for the simulation variable D.
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Table 5.4: Simulation parameter M-estimates with p-values less than 0.001 for MSE as the response.

Parameter Level1 Level2 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

param π -5.5994 0.1210 -5.8366 -5.3622 2140.54 0.00000
param βc1 -4.3253 0.1210 -4.5625 -4.0881 1277.23 0.00000

Intercept -3.2046 0.1077 -3.4157 -2.9935 885.62 0.00000
param βc2 -2.9433 0.1210 -3.1805 -2.7061 591.43 0.00000

N L 1.9345 0.0924 1.7533 2.1157 437.99 0.00000
D HPOS 1.4968 0.0755 1.3489 1.6447 393.31 0.00000
D HNEG 1.3712 0.0755 1.2233 1.5191 330.07 0.00000

param βtc -2.1343 0.1210 -2.3715 -1.8971 310.99 0.00000
comp ∗ π-balance 1 UNBA 0.7775 0.0494 0.6807 0.8744 247.65 0.00000

comp ∗N 1 L 0.7742 0.0494 0.6774 0.8710 245.53 0.00000
N ∗ σ2 L H 0.5675 0.0403 0.4884 0.6466 197.88 0.00000

N ∗max-ni L L 0.5398 0.0403 0.4607 0.6189 179.04 0.00000
param ∗N d11 L 1.1230 0.0988 0.9294 1.3167 129.16 0.00000
param ∗N d21 L 1.0905 0.0988 0.8968 1.2841 121.78 0.00000
max-ni ∗ σ2 L H 0.4355 0.0403 0.3564 0.5145 116.52 0.00000

param d21 -1.1631 0.1210 -1.4003 -0.9259 92.36 0.00000
param ∗N σ2 L -0.9231 0.0988 -1.1167 -0.7294 87.25 0.00000
comp ∗N 2 L 0.4291 0.0494 0.3322 0.5259 75.42 0.00000

param ∗ comp d22 1 0.9471 0.1210 0.7099 1.1843 61.24 0.00000
param ∗ comp d21 1 0.9086 0.1210 0.6714 1.1458 56.36 0.00000

σ2 H 0.4591 0.0638 0.3340 0.5841 51.79 0.00000
param βf11 -0.8559 0.1210 -1.0931 -0.6187 50.01 0.00000

param ∗ comp d21 2 0.8349 0.1210 0.5977 1.0721 47.59 0.00000
D ∗ σ2 HNEG H -0.3822 0.0571 -0.4941 -0.2704 44.89 0.00000

comp ∗ σ2 1 H 0.2995 0.0494 0.2027 0.3964 36.75 0.00000
param ∗N π L -0.5679 0.0988 -0.7616 -0.3742 33.03 0.00000

param ∗ comp d11 2 0.6842 0.1210 0.4470 0.9214 31.96 0.00000
param ∗ comp π 1 -0.6829 0.1210 -0.9201 -0.4457 31.84 0.00000

N ∗ ni-unbalance L H 0.2239 0.0403 0.1449 0.3030 30.81 0.00000
comp 1 -0.5978 0.1105 -0.8143 -0.3812 29.27 0.00000

σ2 ∗ ni-unbalance H H 0.2091 0.0403 0.1300 0.2882 26.86 0.00000
param ∗max-ni d11 L 0.5031 0.0988 0.3095 0.6968 25.92 0.00000

param ∗N βc1 L -0.4533 0.0988 -0.6470 -0.2596 21.04 0.00000
param βf21 -0.5540 0.1210 -0.7912 -0.3168 20.96 0.00000
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Table 5.4 continued.

Parameter Level1 Level2 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

D ∗ σ2 HPOS H -0.2599 0.0571 -0.3717 -0.1481 20.75 0.00001
param σ2 -0.5494 0.1210 -0.7866 -0.3122 20.60 0.00001

param ∗max-ni βc1 L 0.4232 0.0988 0.2295 0.6168 18.34 0.00002
param ∗max-ni π L -0.4126 0.0988 -0.6063 -0.2190 17.44 0.00003
param ∗ comp βtc 1 0.4926 0.1210 0.2554 0.7298 16.57 0.00005
param ∗ comp d22 2 0.4653 0.1210 0.2281 0.7025 14.78 0.00012

comp ∗ σ2 2 H 0.1882 0.0494 0.0913 0.2850 14.51 0.00014
param βf22 -0.4598 0.1210 -0.6970 -0.2225 14.43 0.00015

comp ∗max-ni 1 L 0.1868 0.0494 0.0899 0.2836 14.29 0.00016
param d22 -0.4415 0.1210 -0.6788 -0.2043 13.31 0.00026

π-balance ∗ σ2 UNBA H -0.1388 0.0403 -0.2179 -0.0598 11.84 0.00058
param ∗max-ni d21 L 0.3255 0.0988 0.1318 0.5192 10.85 0.00099
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Table 5.5: Simulation parameter M-estimates with p-values less than 0.001 for median-based CPL as the response.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

Intercept -0.3144 0.0004 -0.3153 -0.3135 490090.0130 0.00000
param ∗ comp βf21 1 -0.0083 0.0003 -0.0089 -0.0077 771.1530 0.00000
N ∗max-ni L L -0.0028 0.0001 -0.0030 -0.0026 763.0287 0.00000

param ∗ comp βtc 2 0.0082 0.0003 0.0076 0.0088 757.7667 0.00000
N ∗ σ2 L H -0.0023 0.0001 -0.0025 -0.0021 527.0298 0.00000

CI ∗ comp ∗ π-balance CI4 1 UNBA -0.0078 0.0003 -0.0085 -0.0072 518.5061 0.00000
param ∗ comp βtc 1 0.0056 0.0003 0.0050 0.0061 347.7905 0.00000

param ∗N d21 L -0.0085 0.0005 -0.0095 -0.0076 307.7763 0.00000
param ∗N d11 L -0.0084 0.0005 -0.0093 -0.0074 297.3850 0.00000

CI ∗ comp ∗ π-balance CI2 1 UNBA -0.0053 0.0003 -0.0060 -0.0046 235.5190 0.00000
N ∗ ni-unbalance L H -0.0015 0.0001 -0.0017 -0.0013 215.7445 0.00000

N ∗D L HNEG -0.0020 0.0001 -0.0023 -0.0018 206.8946 0.00000
comp ∗N 1 L -0.0032 0.0002 -0.0036 -0.0027 170.0627 0.00000

param ∗ comp βc1 2 0.0037 0.0003 0.0031 0.0043 154.1157 0.00000
CI*N CI3 L -0.0065 0.0005 -0.0075 -0.0054 151.0138 0.00000

param ∗ comp d21 2 0.0036 0.0003 0.0030 0.0042 147.8138 0.00000
CI ∗ comp ∗N CI4 1 L 0.0039 0.0003 0.0032 0.0046 127.3020 0.00000

param βtc -0.0057 0.0005 -0.0068 -0.0047 124.0435 0.00000
CI*N CI2 L -0.0058 0.0005 -0.0069 -0.0048 123.3287 0.00000

param ∗N d22 L -0.0050 0.0005 -0.0059 -0.0040 104.3460 0.00000
param ∗ comp π 1 0.0032 0.0003 0.0026 0.0039 100.4884 0.00000
max-ni ∗ σ2 L H -0.0010 0.0001 -0.0012 -0.0008 94.8897 0.00000

N ∗D L HPOS -0.0013 0.0001 -0.0016 -0.0010 86.4703 0.00000
param ∗N βf22 L -0.0045 0.0005 -0.0054 -0.0035 84.6471 0.00000

param ∗ comp βf22 2 -0.0027 0.0003 -0.0033 -0.0021 83.4511 0.00000
param ∗ comp d21 1 0.0027 0.0003 0.0021 0.0032 79.2233 0.00000

CI ∗ param ∗N CI3 d21 L 0.0060 0.0007 0.0046 0.0073 76.0287 0.00000
param d21 -0.0043 0.0005 -0.0054 -0.0033 70.9371 0.00000

CI ∗ param ∗N CI2 d21 L 0.0053 0.0007 0.0040 0.0066 59.3997 0.00000
CI ∗ param ∗N CI3 σ2 L 0.0050 0.0007 0.0036 0.0063 52.6641 0.00000

N L 0.0028 0.0004 0.0021 0.0036 51.7932 0.00000
comp ∗ π-balance 1 UNBA -0.0017 0.0002 -0.0022 -0.0012 49.7426 0.00000
CI ∗ param ∗N CI3 βc1 L 0.0047 0.0007 0.0034 0.0061 47.5419 0.00000
param ∗ comp βc1 1 0.0021 0.0003 0.0015 0.0026 47.4881 0.00000
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Table 5.5 continued.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

CI ∗ param ∗N CI2 π L 0.0047 0.0007 0.0034 0.0061 47.2080 0.00000
N ∗ π-balance L UNBA 0.0007 0.0001 0.0005 0.0009 46.0562 0.00000

CI ∗ param ∗N CI2 d22 L 0.0046 0.0007 0.0032 0.0059 44.1595 0.00000
CI ∗ param ∗N CI2 σ2 L 0.0045 0.0007 0.0031 0.0058 42.2096 0.00000
CI ∗ param ∗N CI3 βtc L 0.0044 0.0007 0.0030 0.0057 40.6500 0.00000

param ∗N βtc L -0.0030 0.0005 -0.0040 -0.0021 39.2002 0.00000
CI ∗ param ∗N CI2 βc1 L 0.0043 0.0007 0.0029 0.0056 38.9142 0.00000
param ∗ comp βf11 1 -0.0019 0.0003 -0.0024 -0.0013 38.8380 0.00000

CI*N CI4 L -0.0033 0.0005 -0.0043 -0.0022 38.8183 0.00000
param ∗N βf21 L -0.0030 0.0005 -0.0040 -0.0021 38.6600 0.00000

D HNEG 0.0017 0.0003 0.0012 0.0023 38.0340 0.00000
CI ∗ param ∗N CI2 βtc L 0.0042 0.0007 0.0029 0.0056 37.8163 0.00000

CI ∗ param CI4 d11 -0.0040 0.0007 -0.0054 -0.0027 34.4033 0.00000
CI ∗ param ∗N CI4 d11 L 0.0040 0.0007 0.0027 0.0054 34.2506 0.00000
CI ∗ comp ∗N CI2 1 L 0.0020 0.0003 0.0013 0.0027 33.6613 0.00000
param ∗ comp d11 1 0.0017 0.0003 0.0011 0.0023 33.6433 0.00000
param ∗ comp d22 1 -0.0017 0.0003 -0.0023 -0.0011 33.2687 0.00000

CI ∗ comp CI4 1 -0.0029 0.0005 -0.0039 -0.0019 31.6745 0.00000
CI ∗ param ∗N CI3 d22 L 0.0038 0.0007 0.0025 0.0052 31.1341 0.00000

σ2 H 0.0012 0.0002 0.0008 0.0016 30.9030 0.00000
CI ∗ comp ∗ π-balance CI4 2 UNBA 0.0019 0.0003 0.0012 0.0026 30.8096 0.00000

CI ∗ param ∗N CI4 d21 L 0.0037 0.0007 0.0024 0.0050 28.9500 0.00000
param ∗ comp σ2 2 0.0016 0.0003 0.0010 0.0022 28.8070 0.00000

max-ni ∗ π-balance L UNBA 0.0005 0.0001 0.0003 0.0007 27.7022 0.00000
CI ∗ comp CI4 2 -0.0027 0.0005 -0.0037 -0.0017 27.6370 0.00000

CI ∗ comp ∗D CI4 2 HNEG -0.0025 0.0005 -0.0035 -0.0016 27.2247 0.00000
CI ∗ σ2 CI3 H -0.0013 0.0002 -0.0018 -0.0008 26.3076 0.00000

max-ni ∗D L HNEG -0.0007 0.0001 -0.0010 -0.0004 25.3016 0.00000
D ∗ σ2 HPOS H -0.0007 0.0001 -0.0010 -0.0004 24.7976 0.00000

CI ∗ param ∗N CI2 d11 L 0.0034 0.0007 0.0021 0.0048 24.6474 0.00000
σ2 ∗ ni-unbalance H H -0.0005 0.0001 -0.0007 -0.0003 24.5895 0.00000

max-ni ∗ ni-unbalance L H -0.0005 0.0001 -0.0007 -0.0003 24.3961 0.00000
param ∗ comp π 2 0.0016 0.0003 0.0009 0.0022 23.6101 0.00000

comp ∗N 2 L -0.0012 0.0002 -0.0016 -0.0007 22.3683 0.00000
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Table 5.5 continued.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

CI ∗ param CI4 π 0.0032 0.0007 0.0018 0.0045 21.3535 0.00000
comp ∗D 2 HNEG -0.0016 0.0003 -0.0023 -0.0009 21.1128 0.00000

CI ∗ param ∗N CI3 d11 L 0.0032 0.0007 0.0018 0.0045 21.0592 0.00000
CI*D CI3 HNEG -0.0015 0.0004 -0.0022 -0.0008 17.9521 0.00002

CI ∗ param ∗N CI3 βf21 L 0.0029 0.0007 0.0016 0.0043 17.8436 0.00002
D ∗ σ2 HNEG H -0.0006 0.0001 -0.0009 -0.0003 17.8405 0.00002

CI ∗ param CI3 d11 -0.0029 0.0007 -0.0042 -0.0015 17.3275 0.00003
param ∗N βf11 L -0.0020 0.0005 -0.0030 -0.0011 17.3092 0.00003

param βc1 -0.0021 0.0005 -0.0031 -0.0011 15.9776 0.00006
CI ∗ param CI2 d22 -0.0027 0.0007 -0.0041 -0.0014 15.9434 0.00007

D HPOS 0.0011 0.0003 0.0006 0.0017 15.6855 0.00007
CI ∗ param ∗N CI2 βf21 L 0.0027 0.0007 0.0014 0.0041 15.4697 0.00008

param π -0.0020 0.0005 -0.0031 -0.0010 15.1831 0.00010
CI ∗ param CI4 d22 -0.0026 0.0007 -0.0040 -0.0013 14.7316 0.00012

CI ∗ param ∗N CI2 βf22 L 0.0026 0.0007 0.0013 0.0040 14.5140 0.00014
CI ∗ comp ∗D CI4 2 HPOS -0.0018 0.0005 -0.0028 -0.0009 14.0085 0.00018
param ∗ comp d22 2 0.0011 0.0003 0.0005 0.0016 12.7199 0.00036

CI ∗ comp CI2 1 -0.0018 0.0005 -0.0028 -0.0008 12.2022 0.00048
CI ∗ comp ∗ σ2 CI4 2 H 0.0012 0.0003 0.0005 0.0019 11.7800 0.00060
CI ∗ param ∗N CI3 βf22 L 0.0023 0.0007 0.0010 0.0037 11.3742 0.00074

max-ni ∗D L HPOS -0.0005 0.0001 -0.0007 -0.0002 10.9798 0.00092
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5.3.2 Model 2

Looking at the estimate plots in the supplementary materials, and just as for Model

1, it is clear that for most mixture model parameters estimation was better (estimates

were less biased and had less variability) for σ2 = L compared to σ2 = H, and that

this relationship was stronger for N = H compared to N = L. However in contrast to

Model 1 this interaction between N and σ2 was modified by whether or not the mixing

proportions were balanced or not. In particular it seems the increased levels of bias

and variation observed in the mixture model parameter estimators as σ2 changes from

low to high was more marked when the mixing proportions were unbalanced. This was

observed for both N = L and N = H. These observations suggest a three way inter-

action between N , σ2, and the balancedness of the mixing proportions. Furthermore

this three way interaction seemed slightly weaker for the estimators of the within-unit

variances and the autoregressive parameters. In general the estimation quality for the

mixture model parameters was good, particularly when N = H, σ2 = L, and the

mixing proportions were balanced.

We now look at the robust model M-estimates shown in table 5.7 when MSE is the

response variable. As expected we see that the strongest effect is comp ∗ π-balance,

which shows that the MSE increased when the mixing proportions were unbalanced

(again for comp = 1 since component 1 was arbitrarily selected to have the small-

est mixing proportion) compared to when the mixing proportions were balanced. The

obvious reason why this effect is so strong compared to Model 1 is that the unbalanced-

ness of π = (0.1, 0.9) is greater than π = (0.2, 0.4, 0.4) of Model 1. Another striking
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difference compared to Model 1 is the number of param effects at the top of the table.

This shows there was much greater variation in the MSEs of the parameter estimators

for this model. In particular we see compared to the mixture model intercept that the

fixed effect parameters of the continuous and the factor variables, the autoregressive

parameters, and the mixing proportions were all estimated with lower MSEs, whilst

the random effects covariance parameters were all estimated with higher MSEs.

Just as for Model 1 the effects N , N ∗σ2, and σ2 show that the MSE of the mixture

model parameters are increased when the levels of the variables involved are set at the

non-optimal levels compared to the optimal ones. Similarly the effect D = HNEG

shows that the MSEs increase when the random effects have both high variances and

are negatively correlated. In contrast to Model 1 we see that the D = HPOS effect

is not a strong one. In terms of the ACF simulation variable, the param ∗ACF effect

when param = σ2 and ACF = H shows that the MSEs for the within-unit variances

was increased when the ACF was high. When looking at the individual runs it is clear

that this effect was most severe when the other simulation variables were all not set

to their default values. In contrast when these variables were set at their defaults

the estimation of the within-unit variances was very good regardless of whether the

ACF variable was high or low. However these three way interactions between ACF ,

param = σ2 and the other simulation variables were not the very strong ones for this

model and so they do not appear in Table 5.7.

In summary the MSEs were influenced in a similar way as in Model 1 by the unit

sample sizes, and by the covariance parameters. One exception is that only negatively
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correlated random effects with high variances seemed to adversely influence parameter

estimation. Because of the more extreme unbalancedness of the mixing proportions

compared to Model 1, the comp ∗ π-balance was the strongest effect. High levels of

serial dependence in the within-unit responses adversely affected estimation of the

within-unit variances, although this effect was most severe when the other simulation

variables were not set at their default levels.

We now look at the CPLIs of the mixture model parameter estimates, focusing first

on the charts in the supplementary materials. The same strong three way interaction

between N , σ2, and the balancedness of the mixing proportions is observable, where

the CPLIs reduced when these simulation variables were set at their non-optimal levels.

Similar to Model 1 there was not a great difference between the three confidence interval

methods, however CI1 consistently produced slightly higher CPLIs than the other three

methods. Furthermore CI3 produced CPLIs which were as high as those produced

by CI2 and CI4, and only slightly lower than those produced by CI1. Thus CI1

appears to produce superior confidence intervals on the estimators of the mixture model

parameters compared to the other three methods which are very similar.

The plots of the CPs reveal a strong interaction between σ2, the balancedness of the

mixing proportions, and the confidence interval method. They show that CI1 was the

superior method, regardless of whether σ2 was high or low, and regardless of whether

π was balanced or not. These results also suggest that CI4, which is based on the

robust estimator of the mixture model information matrix, performs better than CI2

and CI3 when the within-unit variation is high. This might be because the properties
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of the robust estimator that make it robust to model misspecification may be beneficial

in other circumstances where the model appears to have been misspecified - i.e. low

N and/or high levels of noise in the data. It is difficult to explain however why CI4

performed worse than CI3 when σ2 = L when the mixing proportions were unbalanced.

In contrast to Model 1, all of the confidence interval methods produced different

levels of coverage: CI1 produced the highest, CI4 the next highest, and then CI3 and

CI2. In contrast to Model 1, on average the coverage for CI1 is approximately 5% off

the nominal level, however this is probably on account of the unbalancedness of the

mixing proportions being more extreme. The coverage of CI4 is reasonable, however

the coverage of CI3 and CI2 are slightly low. Furthermore the fact that CI3 produces

similar coverage probabilities to CI2 is notable.

Looking now at the plots for the CILs we see again the strong interaction between N ,

σ2, and the balancedness of the mixing proportions. For balanced mixing proportions,

in general we see that the CILs were longer when σ2 = H compared to when σ2 = L, and

that this difference was greater when N = L. Furthermore when σ2 = H it appears CI4

produced the longest confidence intervals, and so this may explain the better coverage

probabilities observed for CI4 we alluded to previously. This relationship between

σ2 and N was less clear when the mixing proportions were unbalanced. Instead we

observed for component 1 that the CI1 CILs were the longest, but for component 2 the

CILs for CI4 were the longest. This result is in contrast to Model 1 where both CI1

and CI4 produced the longest lengths. On average CI1 produced longer CILs than the

other three methods, CI2 produced longer CILs than CI3, and the CILs produced by
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CI4 were no different from CI2 and CI3.

In summary from the plots we conclude that CI1 was the best method overall. The

fact that on average that CI1 produced both the highest CPLIs and CILs suggests the

superior coverage produced by CI1 was not of the trivial kind - i.e. due to length alone.

A similar result was obtained for Model 1. However caution must be exercised when

drawing conclusions on averages because a strong three way interaction between N , σ2,

and the balancedness of the mixing proportions was present. In this respect good cover-

age probabilities (approximately > 80%) were obtained by all methods when the mixing

proportions were balanced, and generally by only CI1 (approximately 90%) when they

were unbalanced. These coverage probabilities were slightly lower than for Model 1.

Finally, and again similar to Model 1, the CI3 method performed well compared to

CI2 and CI3, and even to CI1 when the mixing proportions were balanced.

We now look at the M-estimates in Table 5.8. Considering the above discussion

from the results of the plots, it is not surprising to see that one of the strongest effects

by far is comp ∗ π-balance which shows the CPLIs reduce when comp = 1 and the

mixing proportions were unbalanced. Even considering this very strong interaction,

the negative main effect for π-balance is still reasonably strong. These results confirm

that the unbalancedness of the mixing proportions in this two component model had a

greater influence than the unbalancedness did in the three component Model 1.

The next very strong effect is CI ∗σ2 which shows that the CPLIs for all parameters

reduced when CI = 3 and σ2 = H compared to when CI = 1 and σ2 = L. Similarly

the next strongest effect involves CI2, but this is much weaker than for CI3. Again,
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and as we described in subsection 5.3.1, it is important to note that we do not want to

over interpret effects such as these involving CI since they are all relative to CI1, and

in this case to σ2 = L. Thus all we wish to conclude is that strong differences exist

between the confidence interval methods with respect to the simulation variable σ2.

The strong N ∗π-balance effect is unfortunately counter-intuitive to what we expect

in that it shows the CPLIs increase when N = L, and when the mixing proportions

were unbalanced. However this might be an example of where the expected effects of

the constituent variables have been captured by other effects. In this respect the large

negative effect of the mixing proportions being unbalanced has certainly been captured

by the comp ∗ π-balance effect, and the negative effect of N = L has been captured in

component 1 at least by the comp∗N effect. Similarly the strong positive π-balance∗σ2

effect is also counter-intuitive. However again the comp ∗π-balance effect has captured

a lot of the negative effect of the mixing proportions being unbalanced, and the σ2

effect has captured a lot of the negative effect when σ2 = H compared to when σ2 = L.

In terms of the ACF simulation variable, and in contrast to the MSEs, there is a weak

param ∗ACF effect (low down table 5.8) for param = σ2 and ACF = H which shows

that the CPLIs for the within-unit variances were slightly reduced when the ACF was

high. Thus poorer estimation of the within-unit variances when the ACF variable was

high was not associated with a strong reduction in the performance of the confidence

intervals for these estimates.

Finally, and in contrast to Model 1, there are a reasonable number of interaction

effects at the top of the table involving CI and the simulation variables param, comp,
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σ2, and π-balance. Again because we do not wish to over-interpret these effects we

will merely conclude that the effect of these simulation variables is strongly influenced

by the confidence interval method. However similar to Model 1 there are also some

param ∗ comp, and param ∗ N effects at the top of the table which show there were

strong differences between the CPLIs of the mixture model parameters, and that these

differences varied by component and the level of N .

To summarise, from the M-estimates we see that many more differences between

the confidence interval methods exist compared to Model 1, and similarly the effect

of the mixing proportions being unbalanced was much stronger compared to Model 1.

Another difference compared to Model 1 is that the random effects covariance matrix

D does not feature amongst the strongest effects on the CPLIs. In terms of similarities

to Model 1 the effects of N and σ2 on the CPLIs were strong.
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Table 5.6: Simulation variable settings for the 128 runs of Model 2.

simnumber N max-ni π-unbalance : (π1, π2) D : (v(D1)), (v(D2)) σ2 : (σ2
1, σ

2
2) ACF : (φ1), (φ2)

1 100 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
2 100 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
3 100 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
4 100 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
5 100 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
6 100 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
7 100 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
8 100 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
9 100 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
10 100 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
11 100 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
12 100 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
13 100 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
14 100 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
15 100 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
16 100 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
17 100 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
18 100 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
19 100 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
20 100 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
21 100 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
22 100 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
23 100 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
24 100 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
25 100 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
26 100 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
27 100 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
28 100 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
29 100 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
30 100 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
31 100 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
32 100 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
33 100 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
34 100 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
35 100 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
36 100 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
37 100 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
38 100 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
39 100 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
40 100 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
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Table 5.6 continued

simnumber N max-ni π-unbalance : (π1, π2) D : (v(D1)), (v(D2)) σ2 : (σ2
1, σ

2
2) ACF : (φ1), (φ2)

41 100 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
42 100 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
43 100 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
44 100 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
45 100 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
46 100 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
47 100 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
48 100 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
49 100 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
50 100 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
51 100 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
52 100 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
53 100 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
54 100 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
55 100 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
56 100 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
57 100 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
58 100 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
59 100 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
60 100 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
61 100 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
62 100 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
63 100 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
64 100 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
65 500 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
66 500 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
67 500 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
68 500 10 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
69 500 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
70 500 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
71 500 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
72 500 10 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
73 500 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
74 500 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
75 500 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
76 500 10 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
77 500 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
78 500 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
79 500 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
80 500 10 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
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Table 5.6 continued

simnumber N max-ni π-unbalance : (π1, π2) D : (v(D1)), (v(D2)) σ2 : (σ2
1, σ

2
2) ACF : (φ1), (φ2)

81 500 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
82 500 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
83 500 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
84 500 10 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
85 500 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
86 500 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
87 500 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
88 500 10 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
89 500 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
90 500 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
91 500 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
92 500 10 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
93 500 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
94 500 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
95 500 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
96 500 10 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
97 500 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
98 500 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
99 500 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
100 500 15 (0.5,0.5) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
101 500 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
102 500 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
103 500 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
104 500 15 (0.5,0.5) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
105 500 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
106 500 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
107 500 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
108 500 15 (0.5,0.5) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
109 500 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
110 500 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
111 500 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
112 500 15 (0.5,0.5) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
113 500 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
114 500 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
115 500 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
116 500 15 (0.1,0.9) (1,-0.5,2.1),(2,-0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
117 500 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
118 500 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
119 500 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
120 500 15 (0.1,0.9) (1,0.5,2.1),(2,0.9,1.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
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Table 5.6 continued

simnumber N max-ni π-unbalance : (π1, π2) D : (v(D1)), (v(D2)) σ2 : (σ2
1, σ

2
2) ACF : (φ1), (φ2)

121 500 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
122 500 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
123 500 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
124 500 15 (0.1,0.9) (5,-4.5,10.5),(10,-5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
125 500 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,0.1),(0.38,0.12)
126 500 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (1.3,1.2) (0.4,-0.1),(0.38,-0.12)
127 500 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,0.1),(0.38,0.12)
128 500 15 (0.1,0.9) (5,4.5,10.5),(10,5.5,7.5) (8.3,8.2) (0.4,-0.1),(0.38,-0.12)
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Figure 5.11: Boxplots of parameter estimates for φ21 with estimates outside the 10th and 90th percentiles displayed in a compression region - for an explanation see
Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether the simulation variables max-ni and ACF are high or low respectively, thus ”H/L”
denotes max-ni = H and ACF = L respectively. Note that as the simulation variable ACF changes then so too do the true values for φ21, and so there are two
broken lines on the plots indicating these true values. In total all of the plots show results for 32 combinations of the simulation variables, all at the LNEG setting
for the simulation variable D.
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Figure 5.12: Coverage probabilities for φ21 with 95% approximate Binomial confidence intervals for each type of confidence interval construction method. Each of
the four x-axis labels on each subplot denote whether the simulation variables max-ni and ACF are high or low respectively, thus ”H/L” denotes max-ni = H and
ACF = L respectively. In total all of the plots show results for 32 combinations of the simulation variables, all at the LNEG setting for the simulation variable D.
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Figure 5.13: Boxplots of confidence interval lengths for φ21 for each type of confidence interval construction method. Confidence interval lengths outside the 10th

and 90th percentiles are displayed in a compression region - for an explanation see Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether
the simulation variables max-ni and ACF are high or low respectively, thus ”H/L” denotes max-ni = H and ACF = L respectively. In total all of the plots show
results for 32 combinations of the simulation variables, all at the LNEG setting for the simulation variable D.
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Figure 5.14: CPL indices for φ21 for each type of confidence interval construction method. Each of the four x-axis labels on each subplot denote whether the
simulation variables max-ni and ACF are high or low respectively, thus ”H/L” denotes max-ni = H and ACF = L respectively. In total all of the plots show results
for 32 combinations of the simulation variables, all at the LNEG setting for the simulation variable D.
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Table 5.7: Simulation parameter M-estimates with p-values less than 0.001 for MSE as the response.

Parameter Level1 Level2 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

comp ∗ π-balance 1 UNBA 2.0015 0.0670 1.8701 2.1328 892.44 0.00000
Intercept -4.7421 0.1708 -5.0769 -4.4074 770.77 0.00000
param βc2 -5.3212 0.1982 -5.7096 -4.9328 720.93 0.00000
param βc1 -5.1468 0.1982 -5.5352 -4.7583 674.44 0.00000

σ2 H 2.4505 0.1005 2.2535 2.6475 594.58 0.00000
param φ2 -4.2044 0.1982 -4.5928 -3.8159 450.07 0.00000
param φ1 -4.1063 0.1982 -4.4947 -3.7178 429.31 0.00000
param π -2.7293 0.1982 -3.1178 -2.3409 189.67 0.00000

N L 2.0183 0.1571 1.7103 2.3262 165.00 0.00000
D HNEG 1.2549 0.1005 1.0579 1.4519 155.93 0.00000

param βf11 -2.3304 0.1982 -2.7188 -1.9420 138.27 0.00000
param βf21 -2.1686 0.1982 -2.5570 -1.7802 119.74 0.00000
param βf22 -2.0930 0.1982 -2.4814 -1.7045 111.53 0.00000
param d11 1.8568 0.1982 1.4683 2.2452 87.78 0.00000

param ∗ACF σ2 H 1.6063 0.1773 1.2589 1.9537 82.12 0.00000
N ∗ σ2 L H -0.4830 0.0670 -0.6143 -0.3517 51.97 0.00000
param σ2 -1.4281 0.1982 -1.8165 -1.0396 51.92 0.00000
param d22 1.2465 0.1982 0.8581 1.6349 39.56 0.00000

param ∗max-ni σ2 L 1.0796 0.1773 0.7321 1.4270 37.09 0.00000
comp ∗ σ2 1 H -0.3824 0.0670 -0.5137 -0.2510 32.57 0.00000

param d21 1.0216 0.1982 0.6331 1.4100 26.57 0.00000
N ∗ π-balance L UNBA -0.3080 0.0670 -0.4393 -0.1767 21.14 0.00000

param βtc -0.7096 0.1982 -1.0981 -0.3212 12.82 0.00034
param ∗ comp βc1 1 0.6311 0.1773 0.2836 0.9785 12.67 0.00037
param ∗ comp d22 1 0.6308 0.1773 0.2834 0.9782 12.66 0.00037
param ∗ comp βtc 1 0.6153 0.1773 0.2678 0.9627 12.05 0.00052

param ∗N σ2 L 0.6133 0.1773 0.2659 0.9608 11.97 0.00054
param ∗ comp d11 1 -0.6012 0.1773 -0.9486 -0.2537 11.50 0.00070
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Table 5.8: Simulation parameter M-estimates with p-values less than 0.001 for median-based CPL as the response.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

Intercept -0.4497 0.0024 -0.4545 -0.4449 33709.8778 0.00000
comp ∗ π-balance 1 UNBA -0.0384 0.0011 -0.0405 -0.0362 1199.2398 0.00000

CI ∗ σ2 CI3 H -0.0384 0.0011 -0.0406 -0.0361 1145.9379 0.00000
CI ∗ σ2 CI2 H -0.0228 0.0011 -0.0250 -0.0206 420.3780 0.00000

N ∗ π-balance L UNBA 0.0107 0.0006 0.0096 0.0118 365.3803 0.00000
σ2 H -0.0179 0.0011 -0.0200 -0.0158 274.5516 0.00000

CI ∗ param CI4 π -0.0645 0.0041 -0.0726 -0.0564 243.6831 0.00000
param ∗ comp βtc 1 -0.0223 0.0015 -0.0252 -0.0195 233.3143 0.00000

comp ∗N 1 L -0.0153 0.0011 -0.0175 -0.0131 190.4535 0.00000
CI ∗ comp ∗ σ2 CI2 1 H 0.0207 0.0016 0.0176 0.0238 174.8206 0.00000
CI ∗ param ∗N CI4 π L 0.0535 0.0041 0.0454 0.0616 167.5364 0.00000
param ∗ comp π 1 0.0201 0.0016 0.0170 0.0232 160.2531 0.00000

π-balance UNBA -0.0123 0.0010 -0.0143 -0.0102 138.5212 0.00000
π-balance ∗ σ2 UNBA H 0.0065 0.0006 0.0054 0.0076 133.4656 0.00000

CI ∗ comp ∗ π-balance CI4 1 UNBA -0.0170 0.0016 -0.0200 -0.0139 117.1459 0.00000
CI ∗ comp ∗N CI4 1 L 0.0167 0.0016 0.0136 0.0198 112.9919 0.00000
CI ∗ comp ∗N CI2 1 L 0.0157 0.0016 0.0126 0.0188 99.9572 0.00000

param ∗N φ2 L -0.0279 0.0029 -0.0336 -0.0222 91.2789 0.00000
param ∗N π L -0.0279 0.0029 -0.0336 -0.0222 91.1711 0.00000

CI ∗ comp ∗ σ2 CI3 1 H 0.0145 0.0016 0.0114 0.0177 82.7882 0.00000
CI ∗ comp CI2 1 -0.0194 0.0023 -0.0240 -0.0148 68.2752 0.00000
CI ∗ comp CI4 1 -0.0177 0.0023 -0.0223 -0.0131 56.9802 0.00000
param ∗N d21 L -0.0218 0.0029 -0.0275 -0.0160 55.4689 0.00000

CI ∗ comp ∗ σ2 CI4 1 H 0.0114 0.0016 0.0083 0.0145 52.9364 0.00000
CI ∗ comp ∗ π-balance CI3 1 UNBA 0.0115 0.0016 0.0083 0.0146 51.5084 0.00000
CI ∗ comp ∗ π-balance CI2 1 UNBA -0.0111 0.0016 -0.0142 -0.0081 50.4329 0.00000

CI ∗ param CI2 π -0.0287 0.0041 -0.0368 -0.0206 48.2830 0.00000
param ∗N d11 L -0.0200 0.0029 -0.0258 -0.0143 47.0201 0.00000

CI ∗ param ∗N CI2 π L 0.0277 0.0041 0.0196 0.0358 45.0293 0.00000
param ∗ comp βf22 1 -0.0090 0.0015 -0.0118 -0.0061 37.5882 0.00000
param ∗ comp βf11 1 -0.0086 0.0015 -0.0115 -0.0057 34.6398 0.00000

param ∗N βtc L -0.0164 0.0029 -0.0221 -0.0106 31.3617 0.00000
param ∗ comp φ1 1 0.0084 0.0015 0.0054 0.0113 30.4536 0.00000

CI ∗N CI2 L -0.0156 0.0030 -0.0216 -0.0097 26.6623 0.00000
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Table 5.8 continued.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

CI ∗N CI4 L -0.0156 0.0030 -0.0215 -0.0096 26.4630 0.00000
param ∗ comp βc2 1 -0.0064 0.0015 -0.0093 -0.0035 19.1410 0.00001

N ∗D L HNEG -0.0030 0.0007 -0.0043 -0.0016 19.0725 0.00001
param σ2 0.0131 0.0030 0.0072 0.0190 19.0183 0.00001

N ∗max-ni L L -0.0024 0.0006 -0.0035 -0.0013 18.4809 0.00002
CI ∗ π-balance CI3 UNBA -0.0049 0.0011 -0.0071 -0.0026 18.4308 0.00002
param ∗ comp βc1 1 -0.0061 0.0015 -0.0089 -0.0032 17.3435 0.00003

param ∗N βf21 L -0.0119 0.0029 -0.0176 -0.0061 16.4748 0.00005
param ∗max-ni π L -0.0117 0.0029 -0.0175 -0.0060 16.1214 0.00006
CI ∗ param ∗N CI3 φ2 L 0.0163 0.0041 0.0082 0.0244 15.5807 0.00008
CI ∗ param ∗N CI4 βc1 L 0.0162 0.0041 0.0081 0.0243 15.4518 0.00008
param ∗max-ni φ2 L -0.0114 0.0029 -0.0171 -0.0057 15.1842 0.00010

param ∗N d22 L -0.0113 0.0029 -0.0170 -0.0055 14.8362 0.00012
π-balance ∗D UNBA HNEG 0.0026 0.0007 0.0013 0.0039 14.4063 0.00015

CI ∗ param ∗N CI3 d21 L 0.0155 0.0041 0.0074 0.0236 14.0926 0.00017
param ∗N βf22 L -0.0109 0.0029 -0.0167 -0.0052 14.0158 0.00018

CI ∗ param ∗N CI3 d11 L 0.0155 0.0041 0.0074 0.0236 14.0143 0.00018
param ∗ACF σ2 H -0.0105 0.0029 -0.0162 -0.0047 12.8552 0.00034
param ∗ comp σ2 1 0.0052 0.0015 0.0023 0.0081 12.6273 0.00038
CI ∗ comp ∗N CI3 1 L 0.0055 0.0016 0.0023 0.0086 11.6786 0.00063

param ∗N σ2 L -0.0100 0.0029 -0.0157 -0.0043 11.6705 0.00063
param ∗ comp βf21 1 0.0050 0.0015 0.0021 0.0078 11.4905 0.00070

comp ∗ σ2 1 H -0.0037 0.0011 -0.0059 -0.0016 11.3896 0.00074
param ∗N βf11 L -0.0097 0.0029 -0.0154 -0.0040 11.0547 0.00088
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5.3.3 Model 3

We first discuss the plots of the mixture model parameter estimates in the supple-

mentary materials. The main result is that there was a clear relationship between

estimation quality and both N and σ2 when the mixing proportions were balanced.

That is to say the estimates were more biased and had greater variability for σ2 = H

compared to σ2 = L, and that this relationship was stronger for N = L compared

to N = H. This relationship was still observable when the mixing proportions were

unbalanced but it was less clear, and in this sense these results are more similar to

Model 2 than to Model 1. In general the estimation quality for the mixture model

parameters was good, particularly when N = H, σ2 = L, and the mixing proportions

were unbalanced.

Looking now at the M-estimates in Table 5.11 we see that by far the strongest

four effects involve individual mixture model parameters. Compared to the mixture

model intercept we see that the mixing proportions, βc1, and βc2 are estimated with

lower MSEs. In contrast d21 is estimated with a higher MSE than the mixture model

intercept when N = L. The main effect for param = d21 however shows that d21 is

estimated well when interactions with other variables are accounted for. These results

involving the mixture model parameters are broadly similar to those of Model 2 except

that the factor variable fixed effects (which show these parameters were well estimated)

are a little weaker than those of Model 1, and so appear lower down the table. The

next two strongest effects are N and σ2 which show the MSEs of all the mixture model

parameters increased when N = L and σ2 = H. These effects were also observed in
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both Models1 and 2. However the three comp ∗ σ2 effects (one for components 1-3)

show that there was a lot of between component variation in the effect of σ2 on the

MSEs.

Compared to the mixture model intercept the negative param = σ2 effect suggests

that σ2 is estimated well, however since this is a main effect, and since σ2 is involved

in interactions, then this must be interpreted carefully. In this respect the two positive

param ∗ comp effects for σ2 for components 2 and 3 show there were strong differences

between the components in terms of how well σ2 was estimated. The comp ∗π-balance

effect shows the MSE of all the mixture model parameter estimates increased when the

mixing proportions were unbalanced (again in component 1 by design). The strength

of this effect compared to the other effects is moderate, and so in this respect Model

3 is comparable to Model 1, but not to Model 2 where this was by far the strongest

effect. Finally the max-ni effect shows the MSEs of all the mixture model parameter

estimates increased when the within-sample sizes were low, which is a similar to the

result obtained for Model 1.

To summarise from the M-estimates for the MSEs, there was considerable variation

between the mixture model parameters in terms of estimation quality, where the fixed

effects parameters of the continuous variables were estimated the best. The effects of

N , max-ni, and the mixing proportions were to increase the MSEs at the non-optimal

settings. Finally the quality of the parameter estimates was in general good, especially

at the optimal settings of the simulation variables. One difference compared to Model

1 and Model 2 is that the levels of the random effects covariance parameters did not

179



strongly influence the MSEs, nor were the estimates of the parameters themselves

affected strongly by the other simulation variables.

We look now at the plots of the CPLIs in the supplementary materials. In contrast

to Model 1 and 2 there does not appear to be an interaction between σ2, N and

π-balance. In general CI4 appears to produce the lowest CPLIs, whilst there appears

to be no difference between the other three methods. The highest CPLIs were produced

by CI1, whilst slightly lower CPLIs were produced by CI3 and then by CI2, although

these latter two methods did not differ by much. This superiority of CI1 was observed

in both Model 1 and Model 2, whilst CI4 being the worst method was also observed

in Model 1, although the method was not as poor compared to the other methods as

it is here. Furthermore the CPLIs for CI3 for both this model and Model 1 were the

second highest, and in Model 2 they were similar to all the methods apart from CI1.

Thus the important result here is that CI3 which is based on the LMM information

matrix consistently produces CPLIs that compare favorably with the other methods

that are based on approximations to the MLMM information matrix.

Looking at the plots of the CPs, we see for balanced mixing proportions that CI1

produced the highest coverage probabilities, and that there was not much difference

between the other three methods. When the mixing proportions were unbalanced we

see that CI1 produced coverage probabilities that were more similar to CI2 and CI3.

Furthermore CI4 produced the lowest coverage probabilities. For all methods, and

particularly when the mixing proportions were balanced, the ranges of coverage often

intersected the nominal level or were close to it. In contrast to Model 2 there is no
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strong effect of σ2. Again we have the important result here that CI3, which is based

on the LMM information matrix, consistently produces CPs that compare favorably

with the other methods that are based on approximations to the MLMM information

matrix.

Looking at the CIL plots we see a N ∗σ2∗π-balance interaction. That is for balanced

mixing proportions we see higher median lengths and greater variability for σ2 = H

compared to σ2 = L, and that this effect was larger for N = L compared to N = H.

When σ2 = H it is clear that CI1 produced slightly higher median lengths than the

other three methods which themselves produce similar lengths. For unbalanced mixing

proportions this relationship between N and σ2 is slightly more pronounced. Overall

CI1 produces the longest confidence interval lengths, whilst the lengths produced by

the other three methods are similar. This result is similar to Model 1.

To summarise from the plots, we see that CI1 produces the best confidence intervals

in terms of both the CPLI index and the coverage probabilities, and that CI3 is the

next best method. Because the CPLI index accounts for confidence interval lengths

then we can conclude the superiority of CI1 and CI2 was not a result of excessively

long confidence intervals. The good performance here of CI3 is stronger than for

Model 1 and Model 2. Finally the effects of σ2, N , and the balancedness of the mixing

proportions on the CPs and CILs were reasonably strong, however their effects on the

CPLIs were weak.

We now look at the M-estimates for CPLI as the response variable in Table 5.12.

Many of the strongest effects are comprised of interactions that involve CI4, many of
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which are negative. We have mentioned before that since we have no reason to pick CI1

as the reference category that we should not over-interpret these effects involving CI.

Thus we should conclude only that the relationship between the CPLIs and comp, σ2,

and π-balance were very different for CI4 and CI1. Similarly there are a few weaker

effects involving interactions between CI2, CI3 and comp, σ2, π-balance, and N . Thus

just as for Model 2 there was considerable variation between the confidence interval

methods and a number of the simulation variables. There are also some param ∗ comp,

and param ∗N effects at the top of the table which show there were strong differences

between the CPLIs of the mixture model parameters, and that these differences also

varied by component and the level of N . These results are similar to the results for

Model 1 and Model 2.

The effects N ∗ σ2, and N ∗ max-ni show that the CPLIs increase for all of the

mixture model parameters when these simulation variables were set to the non-optimal

levels compared to the optimal ones. These results are similar to Model 2 but not

Model 1. The effect of the mixing proportions being unbalanced only comes through

strongly in the three way interaction effects CI ∗ comp ∗ π-balance involving CI4 and

CI2 (and again in component 1), and this result is similar to Model 1 but not for Model

2 where the two way interaction comp ∗ π-balance was much stronger than these three

way interactions.

In summary for the CPLIs, there was considerable variation between the confidence

interval methods with respect to the effect on the CPLIs of the simulation variables

comp, σ2, and π-balance. This variation with confidence interval method is similar to
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the results of Model 2 but not Model 1. There was considerable variation between the

mixture model parameters with respect to the effects on the CPLIs of the simulation

variables comp and N , and this is similar to the results obtained for both Model 1 and

Model 2. The effects on the CPLIs of the mixing proportions being unbalanced, and

of the simulation variables N and σ2 were also strong, and these results are similar to

both Model 1 and Model 2. The effect of max-ni on the CPLIs was strong and this

is a similar result to Model 1 but not Model 2. Finally, and similar to Model 2, there

were no strong effects involving the random effects covariance matrix D (which for this

model is a scalar parameter).

183



Table 5.9: Simulation variable settings for the 64 runs of Model 3.

simnumber N max-ni π-unbalance : (π1, π2, π3, π4) D : (D1, D2, D3, D4) σ2 : (σ2
1, σ

2
2, σ

2
3, σ

2
4) ni-unbalance : E(X) = np of n

1 100 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 5.7 of 6
2 100 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 3.9 of 6
3 100 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 5.7 of 6
4 100 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 3.9 of 6
5 100 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 5.7 of 6
6 100 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 3.9 of 6
7 100 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 5.7 of 6
8 100 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 3.9 of 6
9 100 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 5.7 of 6

10 100 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 3.9 of 6
11 100 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 5.7 of 6
12 100 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 3.9 of 6
13 100 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 5.7 of 6
14 100 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 3.9 of 6
15 100 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 5.7 of 6
16 100 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 3.9 of 6
17 100 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 9.5 of 10
18 100 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 6.5 of 10
19 100 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 9.5 of 10
20 100 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 6.5 of 10
21 100 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 9.5 of 10
22 100 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 6.5 of 10
23 100 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 9.5 of 10
24 100 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 6.5 of 10
25 100 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 9.5 of 10
26 100 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 6.5 of 10
27 100 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 9.5 of 10
28 100 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 6.5 of 10
29 100 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 9.5 of 10
30 100 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 6.5 of 10
31 100 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 9.5 of 10
32 100 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 6.5 of 10
33 1000 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 5.7 of 6
34 1000 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 3.9 of 6
35 1000 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 5.7 of 6
36 1000 6 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 3.9 of 6
37 1000 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 5.7 of 6
38 1000 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 3.9 of 6
39 1000 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 5.7 of 6
40 1000 6 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 3.9 of 6
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Table 5.10: Simulation variable settings for the 64 runs of Model 3.

simnumber N max-ni π-unbalance : (π1, π2, π3, π4) D : (D1, D2, D3, D4) σ2 : (σ2
1, σ

2
2, σ

2
3, σ

2
4) ni-unbalance : E(X) = np of n

41 1000 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 5.7 of 6
42 1000 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 3.9 of 6
43 1000 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 5.7 of 6
44 1000 6 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 3.9 of 6
45 1000 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 5.7 of 6
46 1000 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 3.9 of 6
47 1000 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 5.7 of 6
48 1000 6 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 3.9 of 6
49 1000 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 9.5 of 10
50 1000 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 6.5 of 10
51 1000 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 9.5 of 10
52 1000 10 (0.25,0.25,0.25,0.25) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 6.5 of 10
53 1000 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 9.5 of 10
54 1000 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 6.5 of 10
55 1000 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 9.5 of 10
56 1000 10 (0.25,0.25,0.25,0.25) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 6.5 of 10
57 1000 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 9.5 of 10
58 1000 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (1,1.2,1.1,1.9) 6.5 of 10
59 1000 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 9.5 of 10
60 1000 10 (0.15,0.2833,0.2833,0.2833) (0.8,0.3,0.5,0.7) (6,6.2,6.1,6.9) 6.5 of 10
61 1000 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 9.5 of 10
62 1000 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (1,1.2,1.1,1.9) 6.5 of 10
63 1000 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 9.5 of 10
64 1000 10 (0.15,0.2833,0.2833,0.2833) (5.8,5.3,5.5,5.7) (6,6.2,6.1,6.9) 6.5 of 10
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Figure 5.15: Boxplots of parameter estimates for σ2
4 with estimates outside the 10th and 90th percentiles displayed in a compression region - for an explanation see

Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether the simulation variables max-ni and ni-unbalance are high or low respectively, thus
”H/L” denotes max-ni = H and ni-unbalance = L respectively. In total all of the plots show results for 32 combinations of the simulation variables, all at the L
setting for the simulation variable D.
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Figure 5.16: Coverage probabilities for σ2
4 with 95% approximate Binomial confidence intervals for each type of confidence interval construction method. Each of

the four x-axis labels on each subplot denote whether the simulation variables max-ni and ni-unbalance are high or low respectively, thus ”H/L” denotes max-ni = H
and ni-unbalance = L respectively. In total all of the plots show results for 32 combinations of the simulation variables, all at the L setting for the simulation variable
D.
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Figure 5.17: Boxplots of confidence interval lengths for σ2
4 for each type of confidence interval construction method. Confidence interval lengths outside the 10th

and 90th percentiles are displayed in a compression region - for an explanation see Subsection 5.1.4. Each of the four x-axis labels on each subplot denote whether
the simulation variables max-ni and ni-unbalance are high or low respectively, thus ”H/L” denotes max-ni = H and ni-unbalance = L respectively. In total all of
the plots show results for 32 combinations of the simulation variables, all at the L setting for the simulation variable D.
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Figure 5.18: CPL indices for σ2
4 for each type of confidence interval construction method. Each of the four x-axis labels on each subplot denote whether the

simulation variables max-ni and ni-unbalance are high or low respectively, thus ”H/L” denotes max-ni = H and ni-unbalance = L respectively. In total all of the
plots show results for 32 combinations of the simulation variables, all at the L setting for the simulation variable D.
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Table 5.11: Simulation parameter M-estimates with p-values less than 0.001 for MSE as the response.

Parameter Level1 Level2 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

Intercept -4.1671 0.0414 -4.2483 -4.0859 10114.64 0.00000
param π -4.3633 0.0488 -4.4590 -4.2677 7993.33 0.00000

param ∗N d21 L 2.9133 0.0369 2.8410 2.9856 6235.83 0.00000
param βc2 -3.5694 0.0488 -3.6650 -3.4737 5348.92 0.00000
param βc1 -3.5465 0.0488 -3.6422 -3.4509 5280.67 0.00000

N L 2.2324 0.0343 2.1652 2.2996 4239.56 0.00000
σ2 H 1.2679 0.0236 1.2216 1.3141 2887.04 0.00000

param σ2 -1.5276 0.0488 -1.6232 -1.4319 979.69 0.00000
comp ∗ π-balance 1 UNBA 0.6831 0.0222 0.6395 0.7267 942.88 0.00000

param ∗ comp σ2 2 1.2929 0.0522 1.1906 1.3951 614.07 0.00000
param ∗ comp σ2 3 1.2842 0.0522 1.1819 1.3864 605.82 0.00000

comp ∗ σ2 1 H 0.5358 0.0222 0.4922 0.5794 580.08 0.00000
param d21 -0.9890 0.0488 -1.0846 -0.8933 410.62 0.00000
max-ni L 0.5861 0.0343 0.5189 0.6533 292.27 0.00000

param ∗max-ni π L -0.5835 0.0369 -0.6558 -0.5112 250.17 0.00000
comp 1 -0.6522 0.0459 -0.7421 -0.5623 202.24 0.00000

param ∗ comp σ2 1 -0.7096 0.0522 -0.8118 -0.6073 184.97 0.00000
comp ∗ σ2 3 H 0.2752 0.0222 0.2316 0.3189 153.08 0.00000

param ∗ comp d21 2 -0.6044 0.0522 -0.7066 -0.5021 134.19 0.00000
param ∗ comp π 1 -0.5770 0.0522 -0.6793 -0.4748 122.31 0.00000

comp ∗ σ2 2 H 0.2351 0.0222 0.1915 0.2787 111.69 0.00000
param ∗ comp π 3 0.5466 0.0522 0.4444 0.6489 109.77 0.00000
param ∗ comp π 2 0.5395 0.0522 0.4372 0.6417 106.91 0.00000

comp 2 -0.4741 0.0459 -0.5640 -0.3842 106.86 0.00000
ni-unbalance H 0.3123 0.0324 0.2488 0.3759 92.75 0.00000

comp 3 -0.4187 0.0459 -0.5086 -0.3288 83.35 0.00000
param βf22 -0.4064 0.0488 -0.5020 -0.3107 69.33 0.00000
param βf21 -0.4036 0.0488 -0.4992 -0.3079 68.37 0.00000

param ∗ ni-unbalance π H -0.2874 0.0369 -0.3597 -0.2151 60.70 0.00000
param βf11 -0.3734 0.0488 -0.4690 -0.2777 58.53 0.00000

N ∗max-ni L L 0.1185 0.0157 0.0877 0.1494 56.79 0.00000
comp ∗max-ni 3 L -0.1504 0.0222 -0.1940 -0.1068 45.68 0.00000

param βf11∗f22 0.3148 0.0488 0.2191 0.4104 41.60 0.00000
N ∗ ni-unbalance L H 0.0993 0.0157 0.0685 0.1301 39.83 0.00000
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Table 5.11 continued.

Parameter Level1 Level2 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

param ∗ comp d21 3 -0.3243 0.0522 -0.4265 -0.2220 38.63 0.00000
comp ∗max-ni 2 L -0.1365 0.0222 -0.1802 -0.0929 37.67 0.00000

param βf11∗f21 0.2724 0.0488 0.1768 0.3681 31.16 0.00000
π-balance UNBA -0.1161 0.0222 -0.1597 -0.0725 27.24 0.00000

max-ni ∗ σ2 L H 0.0792 0.0157 0.0484 0.1101 25.37 0.00000
D H 0.0840 0.0222 0.0404 0.1276 14.26 0.00016

param ∗ ni-unbalance σ2 H 0.1373 0.0369 0.0650 0.2096 13.85 0.00020
N ∗ σ2 L H 0.0539 0.0157 0.0231 0.0848 11.76 0.00061
N ∗D L H 0.0523 0.0157 0.0215 0.0831 11.05 0.00089
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Table 5.12: Simulation parameter M-estimates with p-values less than 0.001 for median-based CPL as the response.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

Intercept -0.3245 0.0005 -0.3255 -0.3235 411899.5641 0.00000
CI ∗ σ2 CI4 H 0.0101 0.0003 0.0095 0.0107 984.8718 0.00000

CI ∗ comp ∗ π-balance CI4 1 UNBA -0.0138 0.0005 -0.0147 -0.0129 920.9299 0.00000
CI ∗ comp ∗ σ2 CI4 1 H -0.0115 0.0005 -0.0124 -0.0106 640.7803 0.00000
param ∗ comp βf22 1 -0.0094 0.0004 -0.0101 -0.0087 618.2331 0.00000
CI ∗ comp ∗ σ2 CI4 3 H -0.0104 0.0005 -0.0112 -0.0095 516.7816 0.00000
param ∗ comp βf11∗f22 2 -0.0085 0.0004 -0.0093 -0.0078 510.7403 0.00000

CI ∗ comp CI4 3 0.0135 0.0006 0.0124 0.0147 505.1034 0.00000
CI ∗ comp CI4 2 0.0130 0.0006 0.0119 0.0142 467.9571 0.00000
CI ∗ comp CI4 1 0.0128 0.0006 0.0117 0.0140 454.5160 0.00000

CI ∗ comp ∗ σ2 CI4 2 H -0.0095 0.0005 -0.0104 -0.0087 439.5729 0.00000
CI CI4 -0.0132 0.0007 -0.0145 -0.0119 397.1133 0.00000

N ∗ σ2 L H -0.0021 0.0001 -0.0023 -0.0019 337.6337 0.00000
N ∗max-ni L L -0.0020 0.0001 -0.0023 -0.0018 312.8770 0.00000
param ∗N d21 L -0.0094 0.0005 -0.0105 -0.0084 311.4418 0.00000

CI ∗ comp ∗ π-balance CI2 1 UNBA -0.0077 0.0005 -0.0086 -0.0068 282.9383 0.00000
param ∗ comp βf11 3 -0.0053 0.0004 -0.0061 -0.0046 200.3536 0.00000

comp ∗N 1 L -0.0043 0.0003 -0.0050 -0.0037 181.9072 0.00000
CI ∗ param ∗N CI3 σ2 L -0.0095 0.0008 -0.0110 -0.0080 158.3917 0.00000
param ∗ comp σ2 3 0.0047 0.0004 0.0039 0.0054 153.4811 0.00000
CI ∗ comp ∗ σ2 CI2 1 H -0.0056 0.0005 -0.0065 -0.0047 153.4179 0.00000
param ∗ comp σ2 1 0.0047 0.0004 0.0039 0.0054 152.6736 0.00000
param ∗ comp βf21 1 -0.0043 0.0004 -0.0051 -0.0036 132.3080 0.00000
param ∗ comp σ2 2 0.0043 0.0004 0.0036 0.0051 132.0061 0.00000

param ∗N βf11∗f22 L -0.0061 0.0005 -0.0072 -0.0051 131.8725 0.00000
N ∗ ni-unbalance L H -0.0012 0.0001 -0.0014 -0.0009 100.6428 0.00000
CI ∗ comp ∗N CI4 1 L 0.0045 0.0005 0.0036 0.0053 95.6291 0.00000
CI ∗ comp ∗N CI2 1 L 0.0044 0.0005 0.0035 0.0052 91.4812 0.00000
CI ∗ comp ∗N CI2 2 L 0.0042 0.0005 0.0033 0.0051 86.7428 0.00000
max-ni ∗ σ2 L H -0.0011 0.0001 -0.0013 -0.0008 83.2277 0.00000

CI ∗ π-balance CI4 UNBA 0.0029 0.0003 0.0022 0.0035 79.8971 0.00000
max-ni ∗ ni-unbalance L H -0.0010 0.0001 -0.0012 -0.0008 75.1577 0.00000

param ∗N βf21 L -0.0045 0.0005 -0.0056 -0.0035 71.7741 0.00000
CI ∗ comp ∗N CI2 3 L 0.0037 0.0005 0.0028 0.0046 66.1908 0.00000
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Table 5.12 continued.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

CI ∗ comp ∗max-ni CI2 3 L 0.0035 0.0005 0.0026 0.0044 58.3387 0.00000
CI ∗ comp ∗max-ni CI2 2 L 0.0035 0.0005 0.0026 0.0044 57.6209 0.00000

CI ∗ σ2 CI2 H 0.0024 0.0003 0.0018 0.0030 56.0438 0.00000
σ2 ∗ ni-unbalance H H -0.0009 0.0001 -0.0011 -0.0006 55.7746 0.00000
CI ∗ π-balance CI2 UNBA 0.0024 0.0003 0.0017 0.0030 54.0271 0.00000

CI ∗N CI2 L -0.0044 0.0006 -0.0056 -0.0032 52.6275 0.00000
param ∗N βf22 L -0.0039 0.0005 -0.0049 -0.0028 52.4136 0.00000

N L 0.0031 0.0004 0.0022 0.0040 48.9769 0.00000
CI ∗ comp CI2 1 0.0041 0.0006 0.0030 0.0053 47.3245 0.00000
comp ∗ σ2 1 H -0.0022 0.0003 -0.0028 -0.0015 45.4237 0.00000

CI ∗ comp ∗ π-balance CI4 3 UNBA -0.0030 0.0005 -0.0039 -0.0021 42.9438 0.00000
CI ∗max-ni CI2 L -0.0038 0.0006 -0.0050 -0.0027 40.4347 0.00000

param σ2 -0.0034 0.0006 -0.0045 -0.0023 34.1581 0.00000
param ∗N βf11∗f21 L -0.0031 0.0005 -0.0041 -0.0021 33.7166 0.00000

CI ∗ comp ∗ σ2 CI2 3 H -0.0026 0.0005 -0.0035 -0.0017 31.5268 0.00000
CI ∗ comp ∗ π-balance CI2 3 UNBA -0.0026 0.0005 -0.0034 -0.0017 31.4936 0.00000
CI ∗ comp ∗ π-balance CI4 2 UNBA -0.0026 0.0005 -0.0034 -0.0017 31.4466 0.00000

param ∗N βf11 L -0.0029 0.0005 -0.0040 -0.0019 30.3786 0.00000
comp ∗ π-balance 1 UNBA -0.0017 0.0003 -0.0024 -0.0011 29.3203 0.00000

σ2 H 0.0014 0.0003 0.0009 0.0019 28.6525 0.00000
comp ∗N 2 L -0.0017 0.0003 -0.0023 -0.0011 27.8753 0.00000

comp 1 0.0026 0.0005 0.0016 0.0036 27.4127 0.00000
param βf11∗f22 0.0030 0.0006 0.0018 0.0041 26.3972 0.00000

param ∗ comp βc1 3 -0.0019 0.0004 -0.0027 -0.0012 26.1862 0.00000
param ∗ comp d21 2 -0.0019 0.0004 -0.0026 -0.0012 25.5182 0.00000

CI ∗ comp ∗ π-balance CI2 2 UNBA -0.0023 0.0005 -0.0032 -0.0014 24.8066 0.00000
max-ni L 0.0021 0.0004 0.0013 0.0030 23.2620 0.00000

CI ∗ comp ∗max-ni CI2 1 L 0.0022 0.0005 0.0013 0.0031 22.9386 0.00000
CI ∗ param ∗N CI4 σ2 L -0.0036 0.0008 -0.0051 -0.0021 22.9129 0.00000

CI ∗ param CI4 d21 -0.0036 0.0008 -0.0050 -0.0021 22.3321 0.00000
param ∗ comp π 3 -0.0019 0.0004 -0.0027 -0.0011 21.9448 0.00000

CI ∗ ni-unbalance CI2 H -0.0028 0.0006 -0.0039 -0.0016 20.9490 0.00000
CI ∗ comp ∗ σ2 CI2 2 H -0.0021 0.0005 -0.0030 -0.0012 20.8180 0.00001
CI ∗ param ∗N CI2 σ2 L -0.0033 0.0008 -0.0048 -0.0018 18.8586 0.00001
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Table 5.12 continued.

Parameter Level1 Level2 Level3 Estimate StdErr LowerCL UpperCL ChiSq ProbChiSq

param ∗ comp π 2 -0.0018 0.0004 -0.0026 -0.0010 18.6906 0.00002
CI ∗ comp ∗ ni-unbalance CI2 2 H 0.0019 0.0005 0.0011 0.0028 18.2801 0.00002

N ∗ π-balance L UNBA 0.0005 0.0001 0.0003 0.0007 18.2185 0.00002
param ∗ comp βf11∗f22 1 -0.0015 0.0004 -0.0023 -0.0008 16.3110 0.00005

CI ∗ comp ∗ ni-unbalance CI2 3 H 0.0018 0.0005 0.0009 0.0027 15.9208 0.00007
CI ∗N CI4 L -0.0023 0.0006 -0.0035 -0.0011 14.3926 0.00015

CI ∗ param ∗N CI2 βf11∗f22 L 0.0027 0.0008 0.0012 0.0042 12.5552 0.00040
param ∗ comp βf11∗f21 2 -0.0013 0.0004 -0.0021 -0.0006 12.4682 0.00041

CI ∗ param ∗N CI3 βf11∗f22 L 0.0026 0.0008 0.0011 0.0041 11.9864 0.00054
CI ∗max-ni CI4 L -0.0021 0.0006 -0.0033 -0.0009 11.8884 0.00056

CI ∗ comp ∗max-ni CI4 2 L 0.0015 0.0005 0.0007 0.0024 11.4965 0.00070
param ∗max-ni d21 L -0.0018 0.0005 -0.0028 -0.0007 10.9141 0.00095
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5.3.4 Separation index

In this subsection we briefly discuss the effect on the separatedness of the components

of the factorial simulation variables, and for simplicity we focus generally on each

simulation variable in isolation with the aid of some simple plots on the next few pages.

However in the first instance if we ignore the simulation variables then as expected

is clear that there is an inverse relationship between the separation index (SI) and

the classification error (CE). The plots show this relationship is non-linear in nature,

whereby there is a rapid decline in the CEs as a model changes from not well separated

to moderately well separated (SI from 0 to 5), but thereafter for increasing levels of

separation there is a far more gradual decline in the CEs. In this respect the plots

also show that our attempts at “calibrating” the models were not entirely successful.

For example for Model 2 it can be observed that the simulation variables did not elicit

highly separated models, whereas for Model 3 the opposite has occurred. In contrast

Model 1 has attained both high and low levels of separation across all of the simulation

variables. In combination however the data from all three models gives us a good

picture of the CE/SI relationship - with the exception of the negative part of the SI

index which has not been attained for any of the models. These observations show that

a more thorough calibration process must be carried out in order to be more confident

in the ranges of the SI that the simulations are likely to produce.

In terms of the simulation variables it is clear that the number of units is one of

the variables that most strongly influences the CE/SI relationship. Figure 5.22 shows

that larger numbers of units shifts the CE/SI curve to the right. This shows that if
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two model versions attain the same level of classification errors then the components

produced by the version with the larger numbers of units will be more separated than

the components produced by the version with the smaller numbers of units. This of

course makes sense because of the fundamental role that confidence intervals play in

the calculation of the separation index (see subsection 3.4.1), and in turn the strong

influence on confidence interval lengths that the numbers of units will have. More

importantly it appears as though the CE/SI relationship is the same for both low and

high numbers of units, although there is a hint for poorly separated models that the

reduction in the CEs with increasing levels of separation is less pronounced when the

numbers of units are large compared to when they are small.

In terms of the within-unit sample sizes figure 5.23 shows for both large and small

numbers of units that higher within-unit sample sizes leads to higher levels of compo-

nent separation and thus lower classification errors compared to the lower within-unit

sample sizes. This relationship is less clear for Model 2, however from figure 5.19 we

see this relationship is indeed clear for low values of the within-unit error covariance

parameters. In contrast to these clear relationships for the number of units and the

within-unit sample sizes, figure 5.21 shows the unbalancedness of the within-unit sample

sizes did not influence the CE/SI relationship.

Figure 5.19 shows for both large and small numbers of units that large values of the

within-unit covariance parameters lead to less well separated models and thus higher

classification errors than for smaller values of the within-unit covariance parameters.

This result is as expected, and this relationship is very strong for Model 2 which also
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had serially correlated within-unit errors. In this respect figure 5.24 shows that the

AR parameters did not themselves influence the CE/SI relationship which suggests

this strong effect of the within-unit variances for Model 2 is not to do with the serial

dependence in the within-unit errors. In contrast to the within-unit error covariance

parameters figure 5.25 shows that the random effects covariance parameters did not in-

fluence very much the CE/SI relationship. It is likely higher values of these parameters

are required in order to observe any effect.

Finally figure 5.20 shows that the balancedness of the mixing proportions only had

an effect in Model 2. Specifically for both large and small numbers of units, and for

both low and high values of the within-unit error covariance parameters, unbalanced

mixing proportions produced less well separated models and thus higher classification

errors. The lack of an effect in the other two models is probably because the unbalanced

setting of the factorial variable were not extreme enough.
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Figure 5.19: Plots of the average classification error by the average separation index as a function of the within-unit error covariance. In general the red data
points should theoretically correspond to lower separation index values and hence higher classification error values than the blue data points. For each plot, and for
each data point (each model version) the average classification error is the average taken over all the simulation replications and over all the components, whilst the
average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.20: Plots of the average classification error by the average separation index as a function of the balancedness of the mixing proportions. In general the red
data points should theoretically correspond to lower separation index values and hence higher classification error values than the blue data points. For each plot, and
for each data point (each model version) the average classification error is the average taken over all the simulation replications and over all the components, whilst
the average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.21: Plots of the average classification error by the average separation index as a function of the unbalancedness of the within-unit sample sizes. In general
the red data points should theoretically correspond to lower separation index values and hence higher classification error values than the blue data points. For each
plot, and for each data point (each model version) the average classification error is the average taken over all the simulation replications and over all the components,
whilst the average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.22: Plots of the average classification error by the average separation index as a function of the number of units. In general the red data points should
theoretically correspond to lower separation index values and hence higher classification error values than the blue data points. For each plot, and for each data
point (each model version) the average classification error is the average taken over all the simulation replications and over all the components, whilst the average
Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.23: Plots of the average classification error by the average separation index as a function of the maximum sample size of the units. In general the red data
points should theoretically correspond to lower separation index values and hence higher classification error values than the blue data points. For each plot, and for
each data point (each model version) the average classification error is the average taken over all the simulation replications and over all the components, whilst the
average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.24: Plots of the average classification error by the average separation index as a function of the autocorrelation function of the within-unit errors. In
general the red data points should theoretically correspond to lower separation index values and hence higher classification error values than the blue data points.
For each plot, and for each data point (each model version) the average classification error is the average taken over all the simulation replications and over all the
components, whilst the average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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Figure 5.25: Plots of the average classification error by the average separation index as a function of the random effects covariance matrix. In general the red and
orange data points should theoretically correspond to lower separation index values and hence higher classification error values than the blue and light blue data
points. For each plot, and for each data point (each model version) the average classification error is the average taken over all the simulation replications and over all
the components, whilst the average Separation Index is the average taken over all the simulation replications and over all the pairwise combinations of components.
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5.4 Summary

For the comparison of the first with the second variants of the EM algorithm one of

the main results from section (5.2) was that the first variant of the EM algorithm

often converged to poor final parameter estimates when both the within-unit sample

sizes were low (max-ni = 6), and most of the fixed effects covariates were constant

within units. This situation is a particularly difficult parameter estimation problem,

however it is a problem the second variant of the EM algorithm coped well with.

Accordingly for EM1 compared to EM2 the parameter estimates had more variability

and were more biased, the confidence interval lengths were occasionally far longer, and

the ranges of coverage much lower. Thus this is a major drawback of the first variant

compared to the second variant of the EM algorithm. In contrast when the parameter

estimation problem was easier there were no large differences between the two EM

algorithm variants in terms of the quality of the estimates, coverage probabilities or

the confidence interval lengths.

Another main result from section (5.2) was that the score based confidence intervals

of CI1 produced the best confidence intervals in the sense that ranges of coverage

probabilities often intersected the nominal level. In comparison the other three methods

produced confidence intervals with similar ranges of coverage that were slightly lower

than those of CI1, and so intersected the nominal level less often. The fact that the

componentwise confidence intervals of CI3 performed no worse than those of CI2 and

CI4, and were not much worse than those of CI1 is also an important result. The
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models in section (5.2) were well separated, and so this result represents some evidence

in favor of our speculation in subsection (3.4.3) that a well separated model should lead

to a comparable level of performance of the componentwise compared to the mixture

model confidence intervals.

Finally for the results from section (5.2) we also observed that some of the within-

unit variances were poorly estimated by both EM1 and EM2, but in general the estima-

tion was worst for EM2. This poor estimation may have been because the high levels of

autocorrelation that are induced by the AR parameters in the within-unit errors in the

early time periods might have been captured by the within-unit error variances. If this

was occurring then this did not adversely affect the estimation of the autoregressive

parameters themselves, which in general were well estimated. In this respect we have

already noted this effect was also observed for Model 2 from the factorial simulations.

However we also noted this was most severe when the other factorial simulation vari-

ables were not set at their default levels. Accordingly we might infer for Model 1 from

section (5.2) that the within-unit sample size of N = 100 was sufficiently low that high

levels of autocorrelation adversely affected estimation of the within-unit variances.

For the three factorial simulations one of the main results was that estimation of

all the mixture model parameters was generally good (low MSEs), particularly when

the simulation variables σ2, N , and π-balance were set at their optimal levels. Other

simulation variables that affected the MSEs were max-ni, and D, and again these

variables increased the MSEs when they were set to their non-default levels. Despite

this general result, and as we have just described, there was an adverse affect on the
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MSEs but not the CPLIs for the within-unit variances when there were high levels of

autocorrelation in the within-unit errors.

In terms of confidence interval performance CI1 produced both the highest CPLIs,

and ranges of coverage that were closest to the nominal level (often intersecting it),

which shows that the superior coverage of CI1 was achieved without excessive confi-

dence interval lengths. This confirms the results from section (5.2) that CI1 produced

the superior confidence intervals. In addition CI3 produced similar, and sometimes

better CPLIs and CPs compared to CI2 and CI4. In terms of coverage we also noted

this effect for Model 1 and Model 2 from the comparisons of the first and second vari-

ants of the EM algorithm. Furthermore CI3 produced comparable confidence intervals

to these mixture model confidence interval methods even when the simulation variables

were set at the non-default levels - i.e. simulation variable levels producing models

that were not very well separated. Thus it might be that the different combinations of

simulation variable settings all produced models that were sufficiently well separated to

prevent the CI3 confidence intervals from performing poorly. In this respect we noted

in subsection 5.3.4 that the three models were not ”calibrated” well enough to produce

negative separation indices. Thus it might be that models that produce these negative

values have components close enough together to reduce the performance of the CI3

confidence intervals.

A very important point to note is that whilst the coverage probabilities were gen-

erally good (approximately 80-95%) when the simulation variables were set at the

optimal levels, these coverage probabilities often became quite poor (sometimes as low
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as 40-50%) at the non-optimal levels. Whilst CI1 was definitely less prone to produc-

ing these low coverage values, we can nonetheless conclude that it is very easy indeed

to produce poor confidence intervals from all methods. Since in general the separat-

edness of the components reduced as the factors change from their optimal to their

non-optimal settings, as expected we infer that the quality of inference reduces as com-

ponent separation reduces. Thus it is very easy to produce poor confidence intervals

form all methods when the components are not well separated. The fact that the non-

default settings of the simulation variables produced low coverage probabilities explains

the many significant effects observed in the robust linear models with the CPLI as the

response, and the strongest of these effects were comp, σ2, π-balance, N , max-ni, and

D (although not all models were affected by all these variables). It is also worth noting

that the ACF variable for Model 2 did not feature as a strong effect for the CPLIs,

even though it did for the MSEs.

The main conclusion for the practitioner is that the score based confidence interval

method should be used, and that this provides good coverage (approximately 80−95%)

when the estimation problem is easy (simulation variables set at their optimal levels in

these simulations). However when the estimation problem is dfficult this method will

not give adequate coverage. In this instance a bootstrap procedure might give better

results.
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6

Data analysis: Quality of life in a

lung cancer clinical trial

In this chapter we analyse subject quality of life (QoL) data collected during a clinical

trial whose primary aim was to determine the effect on survival for patients with lung

cancer who took a particular treatment in conjunction with chemotherapy. The clinical

trial was organised and run by Cancer Research UK and University College London

Cancer Trials Centre, and the full description and results can be found in Siow et al.

(2009). In that paper the trial is referred to as “Study 14”, and so at times we will also

use this description.

The statistical analysis of the QoL data from Study 14 employed LMMs, and in this

section we will compare the results of LMMs (although not precisely the same models as

used in the published study) with two component MLMMs. The aim is to highlight the

potential for a MLMM to be a more valid method of analysis than a LMM , although

in this respect the use of this particular clinical trial data to achieve this aim is merely

speculative, that is to say we have no good reason to believe the LMMs employed in
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this trial are in any sense invalid. Indeed the use of LMMs for normally distributed

repeated measures data such as QoL is common place in medical studies, and so for

this type of data in general the validity of the method is beyond question. However

there may be specific datasets that appear particularly non-normally distributed and

so might be better suited to being analysed with mixture models.

As with any newer and comparatively less established method, the burden of proof

that must be carried and successfully discharged in order to prove the claim of superi-

ority (in some sense) must be high, and in this respect we have no such lofty ambitions

here. Rather our aim is to highlight some of the difficulties that can be faced when

using real datasets in assessing the evidence for and against mixture models when com-

paring them to the homogeneous model (the one component model). In this respect it

is sometimes the case with statistical models that the outcome of such a decision de-

pends on our personal confidence in models that are statistically well justified but that

lack the high levels of real world interpretability that we would like. In many situations

it is right that our confidence in such models is low, for often it is not enough to have

a statistically significant model without it making sense in all respects. By chance the

two examples we present in this section illustrate these considerations well rather than

showing clear evidence either for or against the use of two component models in favour

of LMMs.
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6.0.1 Description of the trial

Study 14 took place between June 2003 and September 2005 in 66 centers in the Na-

tional Cancer Research Institute network. Patients (henceforth subjects) had all been

diagnosed with non-small-cell lung cancer (NSCLC) which accounts for around 80% of

all the lung cancer deaths wordwide each year. Most patients with NSCLC present with

the disease in an advanced state so that surgery or radiotherapy are unsuitable forms of

treatment, and so for this reason treatment for these subjects consists of chemotherapy.

The proliferatoin of new blood vessels within a tumor, referred to as angiogenesis, is

neccessary for tumors to grow, and hence for the cancer to become more severe. In

order to combat this process, thalidomide is an oral antiangiogenic agent which has a

synergistic activity when combined with cytoxic agents that can be used in chemother-

apy, and it is this agent that constituted the treatment in Study 14. Specifically, all

subjects (who all had advanced stage NSCLC) were randomised to either a treatment

group which consisted of chemotherapy plus thalidomide, or to a placebo group which

consisted of chemotherapy plus placebo capsules.

Subjects were randomised to treatment within strata formed by the levels of the

factor variables disease stage (stage), Eastern Cooperative Oncology Group perfor-

mance status (ECOG), and center (center). Subjects underwent repeated cycles of

chemotherapy which lasted approximately three weeks each up to a maximum of four

cycles. Thus if no delays occurred between cycles, a subject could have up to a maxi-

mum of 12 weeks of chemotherapy. Various physical examinations were conducted on

the subjects and their QoL data collected via a questionnaire at multiple time points:
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before chemotherapy started (baseline measurements); at the start of each chemother-

apy cycle; every two months for two years following the end of chemotherapy; and then

every three months up to a maximum of 2 years. Thus the maximum time of follow up

for a subject who survives for the entire study duration was approximately 4 years.

Because of the severity of NSCLC, and the advanced stage of disease with which

subjects present themselves, the mortality rate for NSCLC is high. For Study 14 the

median survival time was 8.5 and 8.9 months for the treatment and placebo groups

respectively. For overall survival (using just the date of death), which is denoted by

(OS), the hazard ratio (HR) of the two treatment groups obtained from a proportional

hazards model that adjusts for the variables used in the randomisation was 1.14 with

a 95% confidence interval of 0.97 − 1.34. The HR for progression free survival (PFS),

which was calculated using the date of first recurrence of cancer or death, was 1.10

with a 95% confidence interval of 0.95 − 1.28. The HR of the two treatment groups

is the probability of an event for a subject in the treatment group at any time point

conditional on that subject having had no event up until that time divided by the

same conditional probability for a subject in the placebo group, where the event is

death for OS and death or disease recurrence for PFS. These results show that the

conditional probability of an event are higher for subjects in the treatment group than

in the placebo group, but that this difference is not significant.

The QoL data were obtained using the European Organisation for Research and

Treatment of Cancer Quality of Life Questionnaire. We will call the overall QoL score

for a subject the global QoL index, and this is comprised of multiple sub-indices that
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measure QoL with respect to function (i.e. physical, emotional, cognitive function),

symptoms (i.e. fatigue, pain, insomnia) of which some are lung cancer specific, for

example hoarseness, coughing and peripheral neuropathy. For the purposes of this

section we will analyse the global and the peripheral neuropathy QoL indices, both of

which range from 0 to 100. For the global index 0 and 100 indicate poor and good

health respectively, whilst for the peripheral neuropathy index 0 and 100 indicate no

symptoms and a high level of symptoms respectively.

In the published paper the QoL data were analysed with a LMM with treatment

(treat), baseline QoL score (base), time of QoL measurement (tQoL), and a time of QoL

measurement by treatment interaction (tQoL∗ treat) as the fixed effects variables. The

tQoL variable was treated as a factor variable, and in doing so no assumption of a linear

relationship with time was assumed. A simple random effects and within-unit errors

covariance structure was used. Using this model, but without the interaction term, the

difference in the mean global QoL scores (as predicted by the model) for treatment

minus placebo was −2.1 with a p-value of 0.11. We note that without the interaction

this difference in mean scores is just the parameter estimate for treatment, which shows

treatment reduced quality of life, although this estimate was not significant. Using this

model with the interaction, the differences in mean peripheral neuropathy QoL scores

at 12 and 24 weeks into the study were 3.7 and 6.9 respectively, both with p-values

less than 0.001. This shows treatment reduced the quality of life with respect to the

peripheral neuropathy QoL index (i.e. increased the symptoms) at 12 weeks, and that

this adverse affect on QoL almost doubled at 24 weeks. Furthermore these mean score
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differences were highly significant.

As part of the Study 14 analysis a post hoc analysis was conducted which compared

survival in the treatment and placebo groups for subjects with two different types of

tumor histology types - squamous and nonsquamous. The two sets of survival curves

suggested that treatment might be beneficial for subjects with squamous histology type

tumors after approximately 18 months following randomisation. Under the suspicion

that this modification of the effect of treatment on survival by tumor histology type

might be due to the inclusion of subjects who are unlikely to benefit from chemotherapy

(as characterised by subjects whose tumors continued to grow and/or disease continues

to progress even after two cycles of chemotherapy), a more thorough post hoc analysis

was conducted to investigate this, the results of which have been published in Siow and

Hackshaw (2013). We describe this analysis since we believed based on the strength of

the results obtained that subgroups may exist within the QoL response variables that

could be identified by mixture models.

In general (i.e. for any disease), and under the assumption that criteria exist that

can be used to prospectively identify subgroups in the population who stand to benefit

more from treatment than other subgroups, then any group of subjects belonging to

this subgroup represent an “enriched” patient population with respect to their potential

to respond to treatment since the group has not been ”diluted” by subjects whose

potential to respond to treatment is low. For this reason we will refer to the post

hoc analysis in Siow and Hackshaw (2013) as an ”enriched” version of Study 14, even

though it is not a prospective study. Such subgroup targeting as proposed in Siow and
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Hackshaw (2013) is becoming more common in very early phase exploratory studies,

but where the target subgroups are typically identified through biomarker data, for

example such as gene expression levels for genes that are involved in some way in the

physiological processes thought or known to be linked to the action of the proposed

treatment. This approach is sometimes called translational medicine, and refers to the

translation of findings from the laboratory “bench”, driven by biomarker data, through

to the “bedside” of subjects in clinical trials. The post hoc approach taken by Siow and

Hackshaw (2013) is suggested to be suitable for diseases where there are no biomarkers

known that predict treatment response.

Even though translational medicine is to some extent a marketing term, this “bench

to bedside” approach is important in that it has the potential to lead to the widespread

development of “personalised medicine”, whereby two different individuals with the

same disease may be prescribed different drugs based upon say some genetic difference

between the two individuals. Theoretically there is a potential and desirable symbiosis

between patients and drugs companies using this approach to drug development, that is

if we assume multiple drugs can better serve the needs of a potential patient group than

can a single drug, then translational medicine should be welcomed. The symbiosis of

course is business related: based on the promise of greater statistical power in enriched

study designs, drug companies stand to benefit by reducing their costs by virtue of

potentially reducing the failure rate of clinical trials, and/or by being able to run

smaller trials.

In the analysis described in Siow and Hackshaw (2013), a variable was defined called
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“tumor response” with levels “stable disease” (i.e. disease not worsening), “partial

response” (partial tumor response), “complete response” (complete tumor response),

“progressive disease” (disease worsening), and “not evaluable” (tumor not evaluable for

any reason). For each subject their tumor response was determined from data collected

after the end of cycle 2 of the chemotherapy. Subjects who had either stable disease,

or partial or complete tumor responses were collectively referred to as “nonprogres-

sors”, whilst those with progressive disease were called “progressors”. The histology

of the tumors were presumably determined by some sort of biopsy procedure prior

to chemotherapy. Whilst separate clinical trials for subjects with these two different

histology sub-types are now common (each group appears to benefit from a differ-

ent combination of cytoxic drugs), as are separate trials for responders (maintenance

dose studies), this post hoc analysis combined the two approaches to determine if a

statistically significant beneficial effect of treatment could be found for the subgroup

squamous/nonprogressors (Study 14 used the cytoxic drugs that appear to benefit

squamous subjects). In total the tumor response and histology variables define four

subgroups defined by the combinations of squamous/nonsquamous histology, and by

progressors/nonprogressors.

The results of this post hoc analysis did indeed show that survival was signif-

icantly improved for the squamous/nonprogressor group for PFS only (HR of 0.71

with a p-value of 0.04), but also that survival was significantly worse for the nonsqua-

mous/nonprogressors group for both OS and PFS, and for the nonsquamous group

ignoring tumor response for OS and PFS. The conclusion from this study was that
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patients with squamous type tumors, and whose tumors responded or who had a stable

disease after two cycles of chemotherapy may benefit from thalidomide being added to

their remaining two chemotherapy cycles, and/or for their maintenance chemotherapy.

On account of the strength of these post hoc findings the UCL Cancer Institute has de-

cided to investigate this hypothesis further through prospective randomised controlled

trials.

6.0.2 Analysis methods

For the purposes of these examples we chose to use a different LMM to analyse the global

QoL and peripheral neuropathy QoL indices than the LMMs used in the published

paper, although no attempt was made to compare which model was more suitable

since the aim in this section was to compare a one with a two component model of any

type. The LMM we used included the same fixed effects variables as the LMM used

in Study 14, that is base, treat, tQoL, tQoL ∗ treat, but we also included the age and

gender of the subjects (age) and (gender) respectively. Another difference compared to

the Study 14 LMM was that we chose to treat tQoL as a continuous variable expressed

in weeks since randomisation occurred. In terms of the covariance parameters we chose

an unstructured covariance matrix for the random effects, as well as a simple within-

unit error covariance structure. We chose to include two random effects in the LMM -

an intercept and tQoL, giving a 2× 2 random effects covariance matrix.

The treatment variable treat has two levels treat1 which is thalidomide and treat2

which is placebo. We chose treat2 as the reference level, and so only treat1 was es-
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timated. In all that follows by treatment we will mean the treat1 level of the treat

variable rather than the whole variable. We also included two of the factors used in

the randomisation process - stage and ECOG - we omitted the third factor center

since the inclusion of the many parameters caused convergence problems in the mix-

ture model. For global QoL only two centers had a significant estimate in the LMM,

and the center effect as a whole had a p-value of 0.28, and so this variable was not

an important predictor anyway. For the peripheral neuropathy QoL index only one

center had a significant estimate which did result in the center effect being significant.

However center was by far the weakest of the variables that were significant, and so

omitting this variable probably would not have made any important differences to the

results.

The ECOG variable was a variable derived from a variable we will call ECOGraw

which takes on the values 0, 1, or 2, and means the subject had full activity levels,

restricted activity levels, or could not carry out work activities respectively. The ECOG

variable had two levels, ecog1 which meant a subject had either ECOGraw scores of 0

or 1, and ecog2 which meant a subject had ECOGraw scores of 2. The stage variable

had two levels stage1 and stage2 which meant the subject had limited and extensive

disease respectively. For ECOG and stage we chose the reference levels to be ecog2

and stage2. We chose the reference level of the gender variable to be gender2 which

was females.

In order to determine statistically if the two component model is ”better” than

the one component model we used a likelihood ratio test (LRT). In this context a
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LRT tests the null hypothesis that the true parameter for the mixture model (that we

assumed generated our observed data) contains zeros for all the parameters in one of the

components, and that the mixing proportion for that component is also equal to zero

- i.e. the null hypothesis is that the true model is a one component model (sometimes

referred to as the homogeneous model). The alternate hypothesis is that the true model

is a two component model. The likelihood ratio (LR) statistic is the ratio of the log-

likelihood function evaluated at the parameter value that maximises the ”restricted”

parameter space associated with the null hypothesis (i.e. the parameter space giving

rise to one component models) divided by the log-likelihood function evaluated at the

parameter value that maximises the ”unrestricted” parameter space associated with the

alternate hypothesis (i.e. the parameter space giving rise to two component models).

Large values of the LR statistic are supposed to constitute evidence in favour of the

alternate hypothesis. However for mixture models since the log-likelihood function can

under some circumstances theoretically tend to infinity even for parameters far away

form the true ones, it cannot be ruled out that a high LR statistic in fact provides no

evidence in favour of the alternate hypothesis. However notwithstanding this limitation

we use the LRT since it is one of the few tests we have to help us decide whether a two

component model fits the data better than a one component model.

For mixture models the null distribution of the LR is unknown, and so a popular

method to calculate the p-value of an observed LR statistic is to use a parametric

bootstrap procedure. Accordingly we too adopted this method, and this procedure

consisted of generating response vectors according to the estimated one component
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model - i.e. by using the estimated parameters and fixed covariate data but randomly

generating within-unit errors and unit level random effects on top of the predicted

response. To each newly generated random vector we then estimated both a LMM and

a two component model again using the fixed covariate data, and recorded the LR each

time. We aimed to repeat this 1000 times, but due to numerical problems estimating

the mixture models we in fact only achieved around 800 replications of this procedure.

These numerical problems occurred because we were trying to estimate two components

when in fact there was only one component in the data. As a result one component

would often ”degrade” by having fewer and fewer units assigned to the component,

and accordingly the parameter estimates would tend to zero. This results in covariance

matrices that are approximately zero with matrix determinants that are too small to

be stored on a computer - and thus estimation fails.

In terms of the enriched study design described in Siow and Hackshaw (2013), even

though the results from this study concerned survival, based on the strength of the

results we thought perhaps that some of the four subgroups defined there might appear

as subpopulations in the QoL responses we analysed. Accordingly we inspected the

estimated components from the two component models to determine if assignment of

subjects to these components discriminated between either of these four sub-groups.

For example we looked to see if most of the subjects that were in the squamous group

were also assigned to a different component than those subjects that were in the non-

squamous group. Finally we also used score-based confidence intervals since the results

of Chapter 5 showed these were the best intervals of the four types presented in this
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thesis.

6.0.3 Anaysis results

We first discuss the results from the analysis of the global QoL index, which are pre-

sented in table 6.1. With t-statistics of 17.296, 5.192, 2.422 and 2.051, we see in order of

strength from highest to lowest that the estimates of base, tQoL, treat1, treat1 ∗ tQoL

were significant at the 95% confidence level. Remembering that higher values of this

index indicates better health, the negative tQoL effect shows that QoL decreased for

both treatment groups as time increased, but the positive treat1 ∗ tQoL effect shows

this rate of decline was less pronounced for the treatment compared to the placebo

group. However the negative treat1 effect shows the average QoL was lower for the

treatment compared to the placebo group. The positive base effect and its strength are

consistent with what we would expect, that is the higher a patients’ baseline QoL score

is, the higher their overall QoL score is over all the time points. The estimates of d11,

d22 and σ2, with t-statistics of 9.75, 2.57 and 31.05 respectively, were all significant,

highly so for the estimate of σ2.

These results show that the beneficial effects of treatment in terms of reducing

the rate at which QoL decreases with time when having chemotherapy treatment are

outweighed by the fact that treatment also reduces the overall level of QoL compared

to placebo. The results also show statistically significant levels of random heterogeneity

in QoL both between and within the units.

The two component model has a highly significant likelihood ratio statistic from
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the bootstrap procedure which is strong evidence in favour of the hypothesis that there

are two components in the data rather than just one. The estimates of the mixing pro-

portions show that approximately half of the subjects are in one component whilst the

other half are in the other component. With t-statistics given in the order (component

1,component 2), the t-statistics for the estimates of the base, ecog1, and tQoL parame-

ters were (19.67, 4.372), (2.494, 2.891), and (2.64, 3.379) respectively. All three of these

estimates were significant at the 95% confidence level, and furthermore the confidence

intervals for the base and ecog1 estimates between the components do not intersect.

Thus whilst the effect of time since randomisation is not really different between the

components (again negative and of a similar magnitude as in the 1-component model),

the effects of baseline QoL and ECOG are very different between the components. Fur-

thermore the treatment effect for the one component model is no longer significant in

the two component model.

The estimates of the base parameters show that increases in baseline QoL for sub-

jects in component 1 increased average levels of QoL more than they did for subjects

in component 2. Whilst these estimates make sense, the estimates of the ecog1 pa-

rameters do not: for component 1 the estimate of βecog1 , by being negative, suggests

subjects whose disease severely restricts their activity levels have a higher QoL than

those subjects whose disease restricts their activities much less severely. One possible

explanation for this that seems likely is that whilst this two component model has been

found to give a higher log-likelihood than the one component model, this does not

guarantee that any interpretation can be attached to the components.
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For example we might imagine the sample comes from a distribution with longer

tails than the normal, and thus that there is a violation of model assumptions. We

might then fit the distribution better with two normal distributions - one that has a

small variance and thus a sharp peak so that it fits the sample points well that are in

the range that contains the modal frequency of the data, and another distribution with

a large variance and thus long tails so that it fits the sample points well that are far

away from the range that contains the modal frequency. Since these two distributions

will overlap to a large extent then the assignment of sample points to one of the two

distributions around the range containing the modal frequency will be arbitrary, and

thus no clear interpretation of the components will be possible. In this way it is

eminently possible that the estimated components of a mixture model which give rise

to a statistically significant LR statistic may be mathematical rather than real world

entities to which a sensible interpretation can be attached.

For this analysis, evidence in favour of ”non-interpretable” components can be found

by inspecting figure 6.3. This shows considerable overlap between the two components

as manifested by half of the subjects having posterior probabilities for both components

that are in the range [0.2, 0.8]. The distribution for global QoL did not suggest a long

tailed distribution, however it was not a smooth normal distribution either on account

of the data being reasonably discrete.

Further evidence in favour of ”non-interpretable” components can be found by in-

specting table 6.3 which shows no large differences between the components with respect

to the covariates in the model, although subjects in component 1 on average have a
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higher global QoL than subjects in component 2. The biggest covariate difference is

with respect to the tQoL variable with subjects in component 2 having their quality of

life measurements taken on average three weeks later than those subjects in component

1. However this only means that subjects in component 2 had on average approxi-

mately half an extra observation than those subjects in component 1. Although large

differences between components with respect to covariates in the model is not an as-

sumption of mixture models, we might observe such differences if for example there is

a non-linear relationship between a covariate and the response - i.e. two linear param-

eters covering different parts of the covariate range will often be better than a single

linear parameter.

In terms of differences between the components with respect to variables not in the

model, the percentage of subjects in component 1 that survived or were censored was

twice as large as the same percentage of subjects in component 2. Furthermore the

time to event (alive/censored or death) was on average ten weeks shorter for subjects

in component 1 than those in component 2. Since deaths make up the majority of

these events in both components, we can say that on average time to death was ten

weeks shorter for subjects in component 1 than in component 2 even though more

subjects in component 1 survived than in component 2. Thus it might be that the

disease progressed faster or was more severe for those subjects in component 1 that

died compared to those subjects in component 2 that died. Furthermore there were

also no differences between the two components in terms of either tumor response, or

histology type of the tumor.
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Despite these small differences between the components in terms of survival, the

lack of component separation strongly suggests the components cannot be interpreted.

In this respect we also note that the estimate of the within-unit variance of component

1 is far lower than the estimate of the within-unit variance for component 2. The reason

for this difference is not immediately clear when looking at figure 6.1 since this plot is

rather busy. Notwithstanding this, for component 1 it can be determined in the time

range where most of the QoL measurements fall, that is 0− 25 weeks, that the bulk of

the QoL measurements fall in the range 35 − 85 whereas for component 2 the bulk of

the QoL measurements in the same time range fall in the range 25− 85. Furthermore

for time values greater than 25 weeks it is clear the range of the QoL measurements

for component 1 are less than that for component 2. Thus it may be that the two

estimated components are characterised by low (component 1) and high (component 2)

levels of within-unit variation but that no other interpretation can be applied to them

in terms of either the covariates in the model or known external variables not in the

model.

The obvious question that remains unanswered is whether to focus on the results

of the one component model, which makes sense (i.e. the ecog1 parameter estimate is

positive), or to focus on the results of the two component model that are mathematically

superior in terms of providing a statistically significant LR statistic, but where the

results lack a satisfactory interpretation. In this particular instance if we make this

choice then we also choose whether to regard the negative effect of treatment on QoL

as statistically significant or not.
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Turning our attention now to the results for the peripheral neuropathy QoL index,

from table 6.2 we see that estimates of the base and treat1 ∗ tQoL parameters, with

t-statistics of 10.479 and 3.457 respectively, are statistically significant. Recalling for

this index that 100 represents lots of symptoms and 0 no symptoms, then just as

for the global QoL index wee see that improvements (i.e. reductions) in the baseline

QoL are associated with improvements in the QoL index. Similarly the interaction

estimate and the estimate for tQoL together show that whilst QoL reduces over time

for both treatment and placebo groups, QoL reduces faster for the treatment than for

the placebo group. Again as for the global QoL index we have statistically significant

parameter estimates for all of the covariance parameters.

The LR statistic for the two component model is again highly significant, where it

is clear that none of the covariates have any affect on QoL for those subjects belonging

to component 2, indeed even the intercept has been estimated to be close to zero. The

only significant parameter estimate is for the within-unit variance which is very small

compared to the same estimate for component 1. A glance at figure 6.2 shows why this is

so: most subjects in component 2 have zero QoL scores for all time points. Thus almost

all of these subjects either had no symptoms of peripheral neuropathy throughout the

entire course of their treatment, or they were answering the questionnaires without due

care and attention - i.e. by putting zero down for all time points. The estimates of the

mixing proportions show that these subjects accounted for a substantial number of the

total number of units (approximately 38%).

In contrast the subjects in component 1 have a pattern of QoL measurements that
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we might expect. For this component, and with t-statistics of 9.891, 3.559, and 2.67,

wee see that the parameter estimates of base, ecog1, and treat1∗tQoL are all significant.

Again increases of baseline QoL are associated with increases in QoL, and QoL reduces

over time faster in the treatment than in the placebo group, and again all of the

covariance parameter estimates are significant. In contrast to the two component model

for the global QoL index, the ecog1 parameter estimate, by being negative, shows that

those subjects whose disease meant they were most severely restricted in their activities

had a worse QoL score than those subjects whose activity levels were less restricted.

Thus there is at least one plausible interpretation of these two estimated compo-

nents: subjects in component 2 did not suffer any symptoms of peripheral neuropathy

at all and thus yield no information on covariate-response relationships, or else they

provided consistent and invalid questionnaire responses, whilst subjects in component 1

were ”normal” in the reverse sense, that is experiencing symptoms and providing valid

questionnaire responses, and thus providing valid information on covariate-response

relationships. Table 6.4 confirms that the only real difference between the two com-

ponents with respect to known variables concerns the response itself. In particular we

again see that there were no differences between the two components in terms of either

tumor response, or histology type of the tumor.

In contrast to the global QoL model, the two components are fairly well separated

- this can be seen in figure 6.3. This suggests an arbitrary assignment of units to

components is not being made where two normal distributions have been fitted to

one non-normal distribution, as we described previously. Thus if we accept that the
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one component model has been incorrectly influenced by these ”no symptom” subjects,

then the two component model has revealed that ECOG does in fact significantly affect

QoL. The key question of course is the validity in treating the component 2 subjects

separately - i.e. by fitting a two component model or by removing them before fitting

a one component model. As with all of these types of decisions it is of paramount

importance to at least ensure the lack of symptoms is not to do with the treatment

itself, however table 6.4 shows this is probably not the case. Thus one could justifiably

suggest that these subjects simply add noise to the data since they stand no chance of

contributing valid information for determining either the efficacy of the treatment on

the response, or any covariate-response relationships.
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Table 6.1: Comparison of the homogeneous model with a two component mixture model for the global QoL index. The p-value for the likelihood ratio statistic
comes from 713 replications of a parametric bootstrap procedure using the parameter estimates from the homogeneous model. A ”∗” signifies that the parameter
estimate is significant at the 95% confidence level, whilst a ”∗∗” signifies not only that the parameter estimate is significant, but also that the confidence intervals from
both components for this parameter do not intersect. The confidence intervals for the mixture model use standard errors based on the score vector approximation to
the mixture model information matrix.

LMM MLMM

LL -11125.989 -10952.928
LR 1.016

P [LR > lr] < 0.01
Component 1 Component 1 Component 2

Parameter Estimate StdErr LowerCL UpperCL Estimate StdErr LowerCL UpperCL Estimate StdErr LowerCL UpperCL

β0 38.609 4.696 29.405 47.814 * 35.272 6.887 21.774 48.770 * 35.557 6.722 22.383 48.732 *
βbase 0.467 0.027 0.414 0.520 * 0.728 0.037 0.654 0.801 ** 0.188 0.043 0.104 0.273 **
βage -0.099 0.067 -0.230 0.032 -0.099 0.095 -0.284 0.086 0.041 0.103 -0.160 0.242

βgender1 0.696 1.211 -1.677 3.068 -0.782 1.879 -4.464 2.900 2.375 1.801 -1.155 5.905
βtreat1 -3.028 1.258 -5.493 -0.563 * -1.365 1.771 -4.836 2.106 -3.326 2.199 -7.637 0.985
βecog1 1.144 2.075 -2.922 5.211 -8.151 3.268 -14.555 -1.746 ** 7.997 2.766 2.575 13.419 **
βstage1 -1.543 1.159 -3.815 0.728 -2.494 1.672 -5.771 0.784 -0.138 1.837 -3.737 3.462
βtQoL -0.135 0.026 -0.185 -0.084 * -0.132 0.050 -0.230 -0.035 * -0.098 0.029 -0.156 -0.041 *

βtreat1∗tqol 0.080 0.039 0.002 0.157 * 0.060 0.067 -0.070 0.191 0.062 0.070 -0.075 0.199
d11 133.274 13.670 106.482 160.067 * 104.816 15.622 74.196 135.435 * 80.257 24.146 32.932 127.583 *
d21 -0.058 0.290 -0.627 0.511 -0.222 0.421 -1.047 0.603 -0.440 0.432 -1.286 0.407
d22 0.018 0.007 0.005 0.032 * 0.063 0.017 0.030 0.095 ** 0.002 0.008 -0.013 0.018
σ2 227.971 7.341 213.582 242.359 * 69.103 4.561 60.163 78.044 ** 380.643 16.670 347.971 413.315 **
π 0.492 0.033 0.427 0.557 * 0.508 0.033 0.444 0.573 *
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Table 6.2: Comparison of the homogeneous model with a two component mixture model for the peripheral neuropathy QoL index. The p-value for the likelihood
ratio statistic comes from 713 replications of a parametric bootstrap procedure using the parameter estimates from the homogeneous model. A ”∗” signifies that the
parameter estimate is significant at the 95% confidence level, whilst a ”∗∗” signifies not only that the parameter estimate is significant, but also that the confidence
intervals from both components for this parameter do not intersect. The confidence intervals for the mixture model use standard errors based on the score vector
approximation to the mixture model information matrix.

LMM MLMM

LL -10914.111 -9784.701
LR 1.115

P [LR > lr] < 0.01
Component 1 Component 1 Component 2

Parameter Estimate StdErr LowerCL UpperCL Estimate StdErr LowerCL UpperCL Estimate StdErr LowerCL UpperCL

β0 9.275 4.684 0.094 18.455 * 15.230 6.603 2.288 28.172 * -0.299 6.104 -12.262 11.664
βbase 0.503 0.048 0.409 0.598 * 0.455 0.046 0.366 0.545 ** 0.009 0.044 -0.077 0.094
βage 0.004 0.069 -0.131 0.139 0.085 0.101 -0.112 0.283 0.001 0.063 -0.122 0.125

βgender1 0.035 1.246 -2.408 2.478 0.397 1.802 -3.136 3.929 0.113 1.804 -3.424 3.649
βtreat1 2.268 1.334 -0.345 4.882 1.822 2.007 -2.112 5.756 0.102 2.531 -4.858 5.062
βecog1 -2.949 2.036 -6.939 1.041 -7.814 2.189 -12.104 -3.524 * 0.136 4.827 -9.326 9.597
βstage1 0.198 1.189 -2.133 2.529 -0.544 1.621 -3.721 2.633 -0.056 1.750 -3.485 3.373
βtqol 0.076 0.041 -0.004 0.156 0.105 0.070 -0.033 0.243 0.012 0.071 -0.128 0.152

βtreat1∗tqol 0.204 0.059 0.089 0.319 * 0.222 0.083 0.059 0.386 * -0.010 0.133 -0.271 0.251
d11 176.627 15.468 146.310 206.944 * 186.061 20.358 146.159 225.962 ** 0.190 3.909 -7.471 7.851
d21 -1.403 0.491 -2.365 -0.440 * -2.497 0.666 -3.803 -1.191 ** -0.015 0.054 -0.122 0.091
d22 0.142 0.020 0.101 0.182 * 0.153 0.029 0.096 0.211 ** 0.001 0.002 -0.004 0.006
σ2 161.316 5.376 150.779 171.853 * 238.101 7.321 223.752 252.450 ** 10.172 3.270 3.763 16.581 *
π 0.615 0.029 0.559 0.672 ** 0.385 0.029 0.328 0.441 **
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Table 6.3: Characteristics of the estimated components from the mixture model fitted to the Global QoL index. From 722 subjects, 92 subjects were removed due
to having only a baseline observation, and 13 subjects were removed due to all of their non-baseline observations containing one or more missing values for either the
Global QoL index or the covariates in the model, thus 105 subjects were removed in total.

Component 1 (N=335) Component 2 (N=282)

Variable Level Count Percentage Count Percentage

Gender Male 229 68.36 165 58.51
Female 106 31.64 117 41.49

ECOG Full or restricted activity levels 310 92.54 249 88.30
Cannot do work activities 25 7.46 33 11.70

Treatment arm Treatment 182 54.33 139 49.29
Placebo 153 45.67 143 50.71

ECOG raw Full activity levels 98 29.25 97 34.40
Restricted activity levels 212 63.28 152 53.90
Cannot do work activities 25 7.46 33 11.70

Stage IIIb (disease stage limited) 152 45.37 124 43.97
IV (disease stage extensive) 183 54.63 158 56.03

Tumor response stable disease 151 45.07 126 44.68
partial response 79 23.58 68 24.11
complete response 2 0.60 1 0.35
progressive disease 5 1.49 6 2.13
not evaluable 98 29.25 81 28.72

Histology Squamous 116 34.63 87 30.85
Non-Squamous 219 65.37 195 69.15

Survival Alive/censored 36 10.75 16 5.67
Dead 299 89.25 266 94.33

Mean Stdv Mean Stdv

Global QoL 65.35 19.85 55.74 21.84
Baseline global QoL 64.38 21.11 63.62 20.89
Age (years) 60.94 8.77 61.44 8.34
Number of QoL measurements 4.10 2.17 4.58 2.74
tQoL (weeks) 16.62 19.54 20.72 26.12
Time to event (weeks) 65.02 42.78 74.71 49.91
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Table 6.4: Characteristics of the estimated components from the mixture model fitted to the peripheral neuropathy QoL index. From 722 subjects, 92 subjects were
removed due to having only a baseline observation, and 5 subjects were removed due to all of their non-baseline observations containing one or more missing values
for either the peripheral neuropathy QoL index or the covariates in the model, thus 97 subjects were removed in total.

Component 1 (N=378) Component 2 (N=247)

Variable Level Count Percentage Count Percentage

Gender Male 242 64.02 160 64.78
Female 136 35.98 87 35.22

ECOG Full or restricted activity levels 343 90.74 221 89.47
Cannot do work activities 35 9.26 26 10.53

Treatment arm Treatment 207 54.76 117 47.37
Placebo 171 45.24 130 52.63

ECOG raw Full activity levels 124 32.80 74 29.96
Restricted activity levels 219 57.94 147 59.51
Cannot do work activities 35 9.26 26 10.53

Stage IIIb (disease stage limited) 174 46.03 110 44.53
IV (disease stage extensive) 204 53.97 137 55.47

Tumor response stable disease 180 47.62 97 39.27
partial response 93 24.60 56 22.67
complete response 1 0.26 2 0.81
progressive disease 8 2.12 3 1.21
not evaluable 96 25.40 89 36.03

Histology Squamous 126 33.33 81 32.79
Non-squamous 252 66.67 166 67.21

Survival Alive/censored 31 8.20 22 8.91
Dead 347 91.80 225 91.09

Mean Stdv Mean Stdv

Peripheral Neuropathy QoL 20.75 22.18 0.11 1.37
Baseline peripheral Neuropathy QoL 6.26 12.82 1.58 7.05
Age (years) 61.07 8.69 61.72 8.19
Number of QoL measurements 4.72 2.46 3.58 2.28
tQoL (weeks) 19.74 24.15 15.81 19.66
Time to event (weeks) 71.94 46.28 64.28 46.30
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Figure 6.1: Global QoL for component 1 (top plot) and component 2 (bottom plot) for each subject (each line is a subject) with the average QoL ±1 standard
deviation calculated for the time ranges [0, 5), [5, 10), [10, 15), [15, 20), [20, 30), [30, 40), [40, 50), [50, 75), [75, 100), and [100, 150) weeks, and plotted at the range
mid-points 2.5, 7.5, 12.5, 17.5, 25, 35, 45, 62.5, 87.5, 125, 175 and 225 weeks.
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Figure 6.2: Peripheral neuropathy QoL for component 1 (top plot) and component 2 (bottom plot) for each subject (each line is a subject) with the average QoL
±1 standard deviation calculated for the time ranges [0, 5), [5, 10), [10, 15), [15, 20), [20, 30), [30, 40), [40, 50), [50, 75), [75, 100), and [100, 150) weeks, and plotted at
the range mid-points 2.5, 7.5, 12.5, 17.5, 25, 35, 45, 62.5, 87.5, 125, 175 and 225 weeks.
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Figure 6.3: Plots of the posterior probabilities for components 1 and 2 ordered by the posterior probabilities for component 1 in ascending sequence. The top and
bottom figures show the posterior probabilities from the mixture models fitted to the global and peripheral neuropathy QoL indices respectively.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

units

po
st

er
io

r 
pr

ob
ab

ili
tie

s

 

 
Component 1
Component 2

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

units

po
st

er
io

r 
pr

ob
ab

ili
tie

s

 

 
Component 1
Component 2

.

2
35



236



7

Conclusions

We presented in Chapter 4 two theorems giving sufficient conditions for identifiability

of the MLMM. Theorem 4.3.2 requires there to exist at least one unit that identifies

the fixed effects, and at least one unit that identifies the covariance parameters (this

might be the same unit). Corollary 4.3.3 applies Theorem 4.3.2 to a MLMM with a

simple covariance structure, and shows the sufficient conditions of the theorem for that

model translate into rank conditions on both the fixed effects and random effects de-

sign matrices respectively. The rank condition on the random effects design matrices is

mild, but the rank condition on the fixed effects design matrix precludes the inclusion

of covariates in the model that are constant within a unit, for example like age and

sex. This is very restrictive and so alternative conditions guaranteeing identifiability

were sought. These are provided by Theorem 4.3.4 which uses a hyperplane condition

adapted from the one used by Hennig (2000) in clusterwise regression models. The con-

dition in this second theorem requires that the minimum number of (p−1)-dimensional

hyperplanes that cover all of the rows of covariate data are greater than the number of
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components in the mixture model.

As required Theorem 4.3.4 does permit covariates in the model that are constant

within units, and so in this sense Theorem 4.3.4 is much more useful than Theorem

4.3.2. However examples of MLMMs can be found where Theorem 4.3.2 can be used

to guarantee the identifiability of a model but where Theorem 4.3.4 cannot. Thus the

two theorems are not equivalent to one another, and so a preference of one over the

other may be determined by the particular covariate data obtained. For example it can

be very difficult to verify the hyperplane condition, however this has to be balanced

against the need to include covariates in the model that are constant within a unit.

In Section 5.2 we compared two different variants of the EM algorithm which we

denoted by EM1 (random effects considered missing) and EM2 (random effects con-

sidered known). We found when estimation was difficult (say when sample sizes were

low and covariance parameters were large) that EM1 often converged to very poor final

estimates whereas for EM2 this did not happen. When parameter estimation was eas-

ier there were no large differences between the two methods in terms of the quality of

estimates produced, coverage probabilities, or confidence interval lengths. Furthermore

EM1 was found to be significantly slower at converging than EM2.

In Section 5.3 we conducted simulations on three models to investigate the influence

of various factors on the quality of estimates produced, and on the performance of the

naive methods of inference proposed in Section 3.4 in terms of coverage probabilities

and confidence interval lengths. In terms of the methods of inference, we found that

CI1 (score based confidence intervals) tended to produce the highest quality intervals
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by producing coverage probabilities either attaining or being close to the nominal level,

and where this good coverage was attained without excessively long interval lengths. A

close second seemed to be CI3 (componentwise confidence intervals), beating the theo-

retically superior CI2 (Hessian based confidence intervals) and CI4 (sandwich estimator

based confidence intervals). This is a very noteworthy result since the intervals used in

componentwise inference ignore the uncertainty in estimating the mixing proportions.

However it is important to note that this good performance of componentwise infer-

ence may be because we did not specify components that were close enough together,

in terms of separation indices, to degrade the performance of these componentwise

intervals (which we theoretically expected).

In terms of the absolute level of coverage offered by these methods, coverages of

approximately 80%− 90% were generally obtained when the simulation variables were

set at their “optimal” levels to make estimation easy. However when estimation was

made difficult, this covarage for all methods became very low 40% − 50%. Thus a

major point to remember is that all of these methods can often produce very poor

coverage results. The factors strongly influencing coverage and confidence interval

lengths were the within-unit variances, balancedness of the mixing proportions, number

of units, balancedness of the within-unit sample sizes, and the random effects covariance

parameters. The effect of these factors was as expected - inference quality offered by

the intervals improved when the factors were set to their optimal levels. For the MSEs

of the parameter estimators the same factors were also influential, but with the added

factor of the ACF also being important.
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Since we have shown that the naive methods of inference proposed in Section 3.4 can

often produce good results, some researchers might wish to implement these methods

themselves, since they offer a computationally quick way of performing inference on the

model parameters compared to a bootstrap procedure. In this respect in chapter C we

have derived all the derivatives required in order to do this.

In chapter 6 we analysed quality of life questionnaire (QoL) data from a lung cancer

clinical trial. We showed that an MLMM can identify components within the data that

sometimes cannot be easily interpreted. This occurred for an overall QoL index, where

not surprisingly the classification of units to components was not very crisp - this

was characterised by many units having posterior probabilities for both components

around 0.5. In contrast for a more specific QoL index (peripheral neuropathy) the

two estimated components could be interpreted as those patients possibly experiencing

symptoms and giving ”normal” questionnaire responses (and thus yielding covariate-

response information), and those patients possibly not experiencing symptoms (and

thus not yielding any covariate-response information). This however is just one possible

interpretation that could be made of these estimated components. For this QoL index

the classification of units to components was fairly crisp.

Finally we have demonstrated, and as expected, that the quality of inference pro-

vided by all methods of confidence intervals reduces quite dramatically as the separation

of the components reduce. Thus in terms of future work, it would be useful to develop

a method of measuring component separation that does not rely on knowing the true

model parameter values. Such a measure could then be used in an applied setting to
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help predict if the naive methods of inference proposed here would give valid confidence

intervals. In terms of future work regarding inference, there is a need to provide a proof

showing the existence of a consistent estimator of the MLMM parameters. In this re-

spect we imagine a “repeatable” design might be the best approach here. This was

suggested by Hennig (2000) for clusterwsie regression models, and consists of ”repeat-

ing” the covariate data of a set of units that identify the mixture distribution function

such that as N tends to infinity the identifiability of the model is maintained. This

may have practical implications since by not repeating this covariate data, the inclusion

of more and more covariate data from units that do not identify the model may well

“swamp” the data from the identifying units, thus producing a model that is close to

being non-identifiable.
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Appendix A

Miscellaneous results

A.1 Autoregressive process for the within-unit errors

The following section contains a very brief summary of the theory for linear stationary

time-series models, of which a purely autoregressive process is a subset. We are inter-

ested in AR processes because the AR(r) correlation matrices C(φg), g ∈ IG, that we

will use for some MLMMs is equivalent to assuming the within-unit errors for the ith

unit follow an AR(r) process. The material on which this summary is based can be

found in Box and Reinsel (1994, Chapter 3).

A discrete time infinite AR(r) process {..., e−2, e−1, e0, e1, e2, ...} is defined as

et = φ1et−1 + ...+ φret−r + at, (A.1)

for t ∈ Z, where the random variables at follow a white noise process, that is they are

uncorrelated with zero mean and constant variance: E[at] = 0, and Var[at] = γ0 = σ2
a

for all t, so that for k ∈ Z this implies cov[at, at+k] = γk = σ2
a for k = 0, and 0

otherwise. We assume each within-unit error vector ei in the MLMM is comprised of
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ni consecutive observed values of such a AR(r) process.

A very important type or class of AR processes are stationary AR processes, which

are AR processes that are in a state of statistical equilibrium. Specifically for discrete

AR processes this means that for any t, the joint distribution of et, et+1, ...., et+n, is the

same as the joint distribution of et+k, et+k+1, ...., et+k+n. Thus the joint distribution of

n consecutive observations from a stationary AR process is unaltered by shifting those

observations forward or backwards by k time periods. If the process given in (A.1) is

stationary then the mean and variances of et are the same for all t, and the covariances

cov[et, et′ ] = γ|t−t′| depend only on the lag between t and t′.

For s ∈ N+, let ρs = γs/γ0 be the correlation between et and et+s, and let ρ0 = 1.

For a stationary AR process we have that ρs is given by

ρs(φ) = φ1ρs−1 + ...+ φrρs−r, s ∈ N+, (A.2)

which is called the autocorrelation function, or ACF, of the AR process. For stationary

AR processes we have ρ−s = ρs since γ−s = γs, and so as for the covariances only the

lag |t− t′| determines the correlation between et and et′ and not the actual time periods

t and t′.

For an AR(r) process it is necessary first to estimate the r autocorrelations ρ1, ..., ρr

before being able to use A.2 to sequentially calculate ρr+1, ρr+2, ρr+3, .... This is done by

using (A.2) to obtain a set of r linear equations for φ1, ..., φr in terms of ρ1(φ), ..., ρr(φ)

- these are called the Yule-Walker equations. Solving these equations for φ1, ..., φr gives
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the starting values we require in order to calculate all the autocorrelations given in

(A.2). For an AR(1) process this method gives

ρs = φs1 s ∈ N+, (A.3)

for an AR(2) process this method gives

ρ1 =
φ1

1− φ2
,

ρ2 = φ2 +
φ2

1

1− φ2
, (A.4)

whilst for an AR(3) process this method gives

ρ1 =
φ1 − φ1φ2 − φ3φ

2
2 + φ3φ2

1− 2φ2 − φ1φ3 − φ2
3 + φ2

2 + φ1φ2φ3 + φ2φ2
3

,

ρ2 =
φ2

1 − φ2
2 + φ2 + φ3φ1

1− φ2 − φ1φ3 − φ2
3

,

ρ3 =
φ3

1 − φ1φ
2
2 + φ1φ2 + φ2

1φ3

1− φ2 − φ1φ3 − φ2
3

+
φ1φ2 − φ1φ

2
2 − φ3φ

2
2 + φ2

2φ3

1− 2φ2 − φ1φ3 − φ2
3 + φ2

2 + φ1φ2φ3 + φ2φ2
3

+ φ3. (A.5)

In terms of applying this theory to the vectors of within-unit errors for a MLMM,

for any unit i ∈ IN , and conditional on unit i belonging to component g ∈ IG, then

assuming the within-unit errors ei,1, ..., ei,ni contained in ei are ni consecutive realized

values from a stationary AR(r) process is equivalent to assuming that the variance of

ei conditional on λ
(g)
i has the following form

Var[ei|λ(g)
i ] = σ2

gCi(φg) = σ2
g

{
m ρ|t−t′|(φg)

}ni ni

t=1, t′=1
, (A.6)
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where

σ2
g =

σ2
a

1− ρ1φ1 − ρ2φ2 − ...− ρrφr
, (A.7)

and

ρs(φg) = φg,1ρs−1 + ...+ φg,rρs−r, ρ0 = 1, s = 1, ..., ni − 1, (A.8)

and furthermore the matrix in A.6 is always positive-definite. If we further suppose

the at in the underlying infinite AR process are normally distributed then σ2
gCi(φg)

is the covariance matrix of the normal distribution of Yi conditional on Ui = ui (the

density function of which is given in (2.5)). Thus we have the important result that if

ei follows a stationary AR(r) process then the covariance matrix σ2
gCi(φg) is positive-

definite. Accordingly during parameter estimation, if we can ensure the estimates of

φg always give rise to a stationary AR process then the estimates of Ci(φg) will always

be positive-definite.

In order to understand the conditions we need to impose on the r individual AR

parameters in φ so that the AR process is stationary, we need to introduce the char-

acteristic equation φ(B) = 1− φ1B − φ2B
2 − ...− φrBr = 0. In this function B is the

backward shift operator, and is considered to be a variable that can take on complex

values. The backward shift operator B operates on the time index of a variable that it

is multiplied with: Bet = et−1, and for k ∈ Z, Bket = et−k. Thus the model in (A.1)

can be written in terms of the backward shift operator as φ(B)et = at. Now φ(B) is
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a function of φ, and so it turns out that the conditions on φ we need for stationarity

can be described in terms of the roots of φ(B): the characteristic equation can be

factored as φ(B) = (1−G1B)(1−G2B)...(1−GrB), where G−1
1 , ..., G−1

r , are the roots

of φ(B) = 0. For an AR(r) process to be stationary we must have
∣∣G−1

v

∣∣ > 1 for all

v ∈ {1, ..., r}, so that roots of the characteristic equation must all lie outside the unit

circle.

For low values of r, the conditions on φ that ensure the roots of φ(B) lie outside

of the unit circle are reasonably simple to calculate and succinct. For r = 1 we need

−1 < φ1 < 1, whilst for r = 2 we need the three equations: φ2 + φ1 < 1, φ2 − φ1 < 1,

and −1 < φ2 < 1. For higher orders of r the calculation of these conditions is more

difficult, and they comprise many equations. A much simpler method of specifying

conditions on φ that ensure a stationary AR process is to specify conditions instead

on the vector of partial autocorrelations, which we will denote by τ = (τ1, ..., τr)
ᵀ
, and

so τv, for v = 1, .., r, is the vth partial autocorrelation. This is the approach taken by

Wang and Fan (2009), who also state that estimating the partial autocorrelations is

a more stable procedure than estimating the AR parameters themselves. Importantly

there is a one to one mapping of φ to τ which can be easily calculated.

For these reasons we too adopt the approach of Wang and Fan (2009) and estimate

the partial autocorrelation vectors τj = ((τj)1, · · · , (τj)r)
ᵀ

instead of φj for j = 1, ..., G.

We now briefly describe how the partial autocorrelations of an AR process can be

calculated, and finish with the equation which gives the one to one mapping of φ to

τ . Let the process {ev
t } be an AR(v) process, for v ∈ N+, and let φ

(v)
s be the sth
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parameter, s = 1, ..., v. Then from (A.2) the ACF of the process {ev
t } is given by

ρs = φ
(v)
1 ρs−1 + ...+ φ

(v)
v−1ρs−v+1 + φ(v)

v ρs−v s = 1, ..., v. (A.9)

The set of v equations in (A.9) are called the Yule-Walker equations, and which for

v = 1, 2, ..., can be solved in turn for φv := (φ
(v)
1 , · · · , φ(v)

v )
ᵀ
. From these solutions it

is the quantity φ
(v)
v , when viewed as a function of the lag v, which is defined to be the

partial autocorrelation function. The partial autocorrelation function φ
(v)
v is defined for

any stationary AR(r) process {et}, and is so called because it can be shown to be equal

to the correlation between et and et−v, but where this partial autocorrelation is not

accounted for by the intermediate values et−1, ..., et−v−1. For details of how to calculate

φ
(v)
v to help illustrate this concept of partial autocorrelation see Box and Reinsel (1994,

Chapter 3, pp66-67). A useful property of the partial autocorrelations is that φ
(v)
v = 0

for all v > r, and so they are a useful tool to help identify the order of the AR process.

If we define τv = φ
(v)
v for v = 1, ..., r, then τ contains the individual values of the

partial autocorrelation function as v varies up to and including r. From Wang and Fan

(2009) we have the following relationship between the AR parameters and the r partial

autocorrelations

φ(r)
r = τr

φ(r)
v = φ(r−1)

v − τrφ(r−1)
r−v

= τv − τv+1φ
v
1 − τv+2φ

v+1
2 − ...− τrφr−1

r−v, (A.10)

where v ∈ {1, ..., r − 1}. The relationship (A.10) defines a one-to-one mapping from φ
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to τ , and furthermore the conditions on τ for the AR(r) process to be stationary are

that τv ∈ [−1, 1] for all v = 1, ..., r, or equivalently that τ ∈ [−1, 1]r. Compared to the

conditions described previously regarding the roots of φ(B), this condition has the big

advantage in that it is simple to interpret and implement for all values of r.

A.2 Rank of matrices and hyperplanes

Theorem A.2.1 For any n× p matrix X

rank(X) = p− 1⇐⇒ dim(SX) = p− 1

⇐⇒ SX = Hp−1(α, 0)

⇐⇒ (X)j· ∈ Hp−1(α, 0) for all j = 1, ..., n,

(A.11)

for some α ∈ Rp. If the first column of X is a column of 1’s we have

rank(X) = p− 1 =⇒ dim(SX) = p− 1

=⇒ SX− = Hp−2(α, 0)

=⇒ (X−)j· ∈ Hp−2(α, 0) for all j = 1, ..., n,

(A.12)

for some α ∈ Rp−1.

Proof . We will use the notation X− to mean the n × (p − 1) matrix obtained by

removing the first column from X. Let SX = span{(X)1·, ..., (X)n·}, and SX− =

span{(X−)1·, ..., (X
−)n·} be the row spaces of X and X− respectively.

We firstly relate dim(SX) with rank(X). Assuming dim(SX) = r, 1 ≤ r ≤ p − 1,

means that any basis set for SXi will contain r vectors. Now the rows ofX are obviously

a spanning set for SX , and this set can be reduced to a basis set by the removal of

appropriate rows that are linearly related. This implies r of the rows of X are linearly
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independent. Since by definition the rank of X must equal the number of linearly

independent rows of X, or the number of linearly independent columns of X (these

numbers are the same), then we must have rank(X) = r. Conversely the assumption

rank(X) = r means that X has r linearly independent rows, and so dim(SX) = r.

This gives the following result

rank(X) = r ⇐⇒ dim(SX) = r, (A.13)

where 1 ≤ r ≤ p− 1.

We now relate the dimension of SX with the hyperplane definition in 4.14. Assuming

dim(SX) = p − 1, means that X has p − 1 linearly independent rows that form a

basis set for SX . Let B = {e1, ..., ep−1} be one of these basis sets, where for each

l = 1, ..., p − 1, el = (X)m·, for some m = 1, ..., p. In terms of elements we shall write

el = (el1, ..., elp)
ᵀ ∈ Rp, for all l. Any x = (x1, ..., xp)

ᵀ ∈ Rp such that x ∈ SX , has

the parametric form x =
∑p−1

l=1 αlel, where αl for all l are independent scalars. We

can find a non-zero vector n = (n1, ..., np)
ᵀ ∈ Rp that is orthogonal to the p − 1 basis

vectors in B, and so n
ᵀ
x = 0. Thus x satisfies n1x1 + ...npxp = 0, which shows x

lies on a (p − 1)-dimensional hyperplane Hp−1(n, 0), which implies SX = Hp−1(n, 0).

In particular since all the rows of X are in SX we must have (X)j· ∈ Hp−1(n, 0), for

j = 1, ..., n. If the first column of X is a column of 1’s then any x ∈ SX satisfies

n1(1) + n2x2 + ...npxp = 0, or equivalently n2x2 + ...npxp = c, for c = −n1, which

implies x− ∈ Hp−2(n′, c), where n′ = (n2, ..., np)
ᵀ ∈ Rp−1, and so SX− = Hp−2(n′, c).

This implies (X−)j· ∈ Hp−2(n′, c), for j = 1, ..., n.
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Conversely assume all the rows of X lie on a (p − 1)-dimensional hyperplane

Hp−1(α, 0), where α = (α1, ..., αp) ∈ Rp. Since Hp−1(α, 0) goes through the origin

it is a is a vector space, and so linear combinations of vectors in Hp−1(α, 0) will also

be in Hp−1(α, 0). Thus SX = Hp−1(α, 0), and so any x = (x1, ..., xp)
ᵀ ∈ SX satisfies

α1x1+...αpxp = 0. Assume without loss of generality that α1 6= 0, then α
ᵀ
x = 0 can be

written x1 = −
∑p

l 6=1 α
−1
1 αlxl, so that x =

∑p
l 6=1 zlxl, where z1 = (α−1

1 α2, 1, 0, ..., 0)
ᵀ
,...,

zp−1 = (α−1
1 αp, 0, ..., 0, 1)

ᵀ
, and where {z1, ...,zp−1} are linearly independent. So for

all x ∈ SX , x ∈ span{z1, ...,zp−1}, which shows {z1, ...,zp−1} is a basis set for SX .

This implies dim(SX) = p− 1.

Now assume the first column of X is a column of 1’s. Then the assumption

all the rows of X− lie on a (p − 2)-dimensional hyperplane Hp−2(α, 0), where α =

(α1, ..., αp−1) ∈ Rp−1, leads to the conclusion dim(SX−) = p − 2, by repeating the ar-

guments in the above paragraph, but by making the obvious changes to the dimensions

of vectors. However we do not in general have dim(SX−) = p− 2⇒ dim(SX) = p− 1,

since one or more of the columns of X− may be linearly dependent with the intercept.

Thus we have the following results

dim(SX) = p− 1⇐⇒ SX = Hp−1(α, 0) ⇐⇒ (X)j· ∈ Hp−1(α, 0) for all j = 1, ..., n,

(A.14)

for some α ∈ Rp. If the first column of X is a column of 1’s we have

dim(SX) = p− 1 =⇒ SX− = Hp−2(α, 0) =⇒ (X−)j· ∈ Hp−2(α, 0) for all j = 1, ..., n,

(A.15)
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for some α ∈ Rp−1, and

dim(SX−) = p− 2⇐= SX− = Hp−2(α, 0) ⇐= (X−)j· ∈ Hp−2(α, 0) for all j = 1, ..., n,

(A.16)

for some α ∈ Rp−1. The results (A.14) and (A.15), in combination with (A.13) then

give the results (A.11) and (A.12).�

A.3 Derivation of ECM algorithm estimating equations

This section describes the derivation of the ECM estimating equations given in sub-

section 2.2.1. We will need a function Ii = g when unit i is in component g ∈ IG and

Ii = 0 when not. We firstly derive the log-likelihood function for the ith complete data

vector ci = (y
ᵀ

i ,u
ᵀ

i ,λ
(Ii)
i

ᵀ
)
ᵀ
. Letting wig be the density for (Yi,Ui)|Λi = λ

(g)
i , we now

write the complete data density f ci conditional on λ
(Ii)
i as a product involving all G

components, that is

f ci (ci|θIi) = wi,Ii(yi,ui|λ
(,Ii)
i ,θ,Ii)h(λ

(Ii)
i |πIi)

=
G∏
j=1

(
wij(yi,ui|Λi = λ(j),θj)

λ
(Ii)
ij

) G∏
j′=1

(
π
λ

(Ii)

ij′

j′

)
, (A.17)

where the last line holds since only the Ithi element of λ
(Ii)
i, is equal to 1 whilst the others

are zero. Letting C = (C
ᵀ

1 , ...,C
ᵀ

N )
ᵀ

and c = (c
ᵀ

1, ..., c
ᵀ

N )
ᵀ
, then from independence of

the random variables {C1, ...,CN}, the complete data log-likelihood  Lc(θ|c) is
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 Lc(θ|c) =

N∑
i=1

G∑
j=1

λ
(Ii)
ij log

(
wij(yi,ui|Λi = λ(j),θj)

)
+

N∑
i=1

G∑
j′=1

λ
(Ii)
ij′ log

(
πj′
)

=
N∑
i=1

(
λ

(Ii)
i

)ᵀ

Ti(θ|yi,ui) +
N∑
i=1

λ
(Ii)
i

ᵀ
U(π), (A.18)

where Ti(θ|yi,ui) =
{
c

log
{
wij(yi,ui|Λi = λ(j),θj)

}}G
j=1

, andU(π) =
{
c

log (πj)
}G
j=1

.

The EM algorithm maximises the ordinary log-likelihood L(θ|y) by working with

Q(θ|θ′), which is the expected value of Lc(θ|C) conditional on y and θ
′
. If we let s

denote the current iteration of the EM algorithm, and θ̂(s) the estimate obtained, then

the E-step consists of calculating Q(θ|θ̂(s)) which is given by

Q(θ|θ̂(s)) = E
[
Lc(θ|C)|yi, θ̂(s)

]
=

N∑
i=1

E
[
Λi,Ii log

(
fi,Ii(yi,Ui|Λi = λ(Ii),θIi)

)∣∣∣yi, θ̂(s)
]

+
N∑
i=1

E
[
Λi,Ii |yi, θ̂(s)

]
log(πIi). (A.19)

Using the notation defined in chapter 2 we note that Λij = λ
(k)
ik implies that Λik = 1

since λ
(k)
ik = 1, or equivalently that Λi = λ

(k)
i . For this reason we also have that

P [Λij = λ
(k)
ik |π̂

(s))] means the same thing as P [Λi = λ
(k)
i |π̂(s))]. Furthermore we also

note that theoretically Λi,Ii can take on values that are either 0 or 1, where additionally

Ii can take on any value in the set IG. Thus the range of values of Λi,Ii can take can

be enumerated by the values λ
(k)
ik′ for k′, k = 1, ...., G, and this enumeration is the

same regardless of the component membership of the ith unit. This is why the double

summation appears in (A.20) as a result of the expectation operator acting on Λi,Ii ,
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and why this is true for any i ∈ IN . With these things in mind we first calculate

E
[
Λi,Ii |yi, θ̂(s)

]
which is given by

E
[
Λi,Ii |yi, θ̂(s)

]
=

G∑
k′=1

G∑
k=1

λ
(k)
ik′P [Λij = λ

(k)
ik′ |yi, θ̂

(s)]

=
G∑
k=1

λ
(k)
ik P [Λij = λ

(k)
ik |yi, θ̂

(s)]

=

G∑
k=1

P [Yi = yi|Λij = λ
(k)
ik , θ̂

(s)]P [Λij = λ
(k)
ik |π̂

(s))]

P [Yi = yi|θ̂(s)]

=
G∑
k=1

fik(yi|λ
(k)
i , θ̂

(s)
k )h(λ

(k)
i |π̂(s))

fi(yi|θ̂(s))

=

G∑
k=1

fik(yi|λ
(k)
i , θ̂

(s)
k )π̂k

(s)

fi(yi|θ̂(s))

=
G∑
k=1

(
fik(yi|λ

(k)
i , θ̂

(s)
k )π̂k

(s)∑G
l=1 fil(yi|λ

(l)
i , θ̂

(s)
l )π̂l

(s)

)

=
G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s)), (A.20)

where

p̂i(λ
(g)
i |yi, θ̂

(s)) =
fig(yi|λ(g)

i , θ̂
(s)
g )π̂g

(s)∑G
l=1 fil(yi|λ

(l)
i , θ̂

(s)
l )π̂l

(s)
, (A.21)

is the posterior probability of the ith unit belonging to the gth component, conditional

on the observed response vector for that unit, and the current estimate of θ.

Before we calculateE
[
Λi,Ii log

(
wi,Ii(yi,Ui|Λi = λ(Ii),θIi)

)∣∣yi, θ̂(s)
]
, we first need

to define some more density functions: let wig be the density for (Yi,Ui)|Λi = λ
(g)
i , zi

the density for Ui,Λi|Yi, and tig the density for Ui|Yi,Λi = λ
(g)
i . We can now calculate

E
[
Λi,Ii log

(
wi,Ii(yi,Ui|Λi = λ(Ii),θIi)

)∣∣yi, θ̂(s)
]

which is given by
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E
[
Λi,Ii log

(
wi,Ii(yi,Ui|Λi = λ(Ii),θ,Ii)

)∣∣∣yi, θ̂(s)
]

=
G∑
k=1

G∑
k′=1

{
λ

(k)
ik′

∫
Rq

[
log
(
wik(yi,u|Λi = λ

(k)
i ,θk)

)
zi(u,λ

(k)
i

∣∣∣yi, θ̂(s)
)
]
du

}

=
G∑
k=1

{
λ

(k)
ik

∫
Rq

[
log
(
wik(yi,u|Λi = λ

(k)
i ,θk)

)
zi(u,λ

(k)
i

∣∣∣yi, θ̂(s)
)
]
du

}

=

G∑
k=1

{∫
Rq

[
log
(
wik(yi,u|λ

(k)
i ,θk)

)

×
tik(u|yi,λ

(k)
i , θ̂k

(s)
)h(λ

(k)
i |π̂k

(s))fik(yi|λ
(k)
i , θ̂k

(s)
)

fi(yi|θ̂(s))

]
du

}

=
G∑
k=1

h(λ
(k)
i |π̂k

(s))fik(yi|λ
(k)
i , θ̂k

(s)
)

fi(yi|θ̂(s))

×
∫
Rq

[
log
(
wik(yi,u|λ

(k)
i ,θk)

)
tik(u|yi,λ

(k)
i , θ̂k

(s)
)
]
du

=

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s))E
[

log
(
wik(yi,Ui|λ

(k)
i ,θ

(s)
k )
)∣∣∣yi, θ̂(s)

]
. (A.22)

The integration in (A.22) is with respect to q-dimensional Lebesgue measure, and u is

a vector in Rq. Using (A.53) we have for any g ∈ IG

E
[

log
(
wig(yi,Ui|λ(g)

i ,θ(s)
g )
)∣∣∣yi, θ̂(s)

]
= −

(ni
2

)
log(2π)−

(ni
2

)
log(σ2

g)−
1

2
log (|Dg|)

− 1

2
log (|Ci(φg)|)−

1

2σ2
g

E
[
e

ᵀ

iCi(φg)
−1ei

∣∣yi, θ̂(s)
]

− 1

2
E
[
U

ᵀ

i D
−1
g Ui

∣∣yi, θ̂(s)
]
. (A.23)

Let µ̂
(s)
ui = E

[
Ui|yi, θ̂(s)

]
and Σ̂

(s)
ui = Var

[
Ui|yi, θ̂(s)

]
, where from (A.55) and (A.56)

these are given by

µ̂
(s)
ui = D(ψ̂(s)

g )Z
ᵀ

i Vi(ζ̂
(s)
g )−1(yi −Xiβ̂

(s)
g ), (A.24)
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and

Σ̂
(s)
ui = D(ψ̂(s)

g )−D(ψ̂(s)
g )Z

ᵀ

i Vi(ζ̂
(s)
g )−1ZiD(ψ̂(s)

g ), (A.25)

where Vi(ζ̂
(s)
g ) = ZiD(ψ̂

(s)
g )Z

ᵀ

i + σ̂
2(s)
g Ci(φ̂

(s)
g ). Also let Ê

(s)
i = Σ̂

(s)
ei + µ̂

(s)
ei µ̂

(s)
ei

ᵀ
, where

µ̂
(s)
ei = E

[
ei|yi, θ̂(s)

]
and Σ̂

(s)
ei = Var

[
ei|yi, θ̂(s)

]
which are given by

µ̂
(s)
ei = E

[
yi −Xiβg −ZiUi|yi, θ̂(s)

]
= yi −Xiβg −Ziµ̂(s)

ui , (A.26)

and

Σ̂
(s)
ei = Cov

[
yi −Xiβg −ZiUi,yi −Xiβg −ZiUi|yi, θ̂

]
= ZiCov

[
ZiUi,ZiUi|yi, θ̂

]
Z

ᵀ

i

= ZiΣ̂
(s)
uiZ

ᵀ

i . (A.27)

Then we have

E
[
e

ᵀ

iCi(φg)
−1ei

∣∣yi, θ̂(s)
]

= tr
(
Ci(φg)

−1Σ̂
(s)
ui

)
+ µ̂

(s)
ei

ᵀ
Ci(φg)

−1µ̂
(s)
ei

= tr
(
Ci(φg)

−1Σ̂
(s)
ui

)
+Ci(φg)

−1µ̂
(s)
ei µ̂

(s)
ei

ᵀ

= tr
{
Ci(φg)

−1
(
Σ̂

(s)
ui + µ̂

(s)
ei µ̂

(s)
ei

ᵀ
)}

= tr
(
Ci(φg)

−1Ê
(s)
i

)
, (A.28)

and in exactly the same fashion

E
[
U

ᵀ

i D
−1
g Ui

∣∣yi, θ̂(s)
]

= tr
(
D−1
g Ĵ

(s)
i

)
, (A.29)
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where Ĵ
(s)
i = Σ̂

(s)
ui +µ̂

(s)
ui µ̂

(s)
ui

ᵀ
. So if for any g ∈ IG we letE

[
log
(
fig(yi,Ui|λ(g)

i ,θ
(s)
g )
)∣∣∣yi, θ̂(s)

]
=

Q1ig(θ|θ̂(s)) then

Q1ig(θ|θ̂(s)) = −
(ni

2

)
log(2π)−

(ni
2

)
log(σ2

g)−
1

2
log (|Dg|)

− 1

2
log (|Ci(φg)|)−

1

2σ2
g

tr
(
Ci(φg)

−1Ê
(s)
i

)
− 1

2
tr
(
D−1
g Ĵ

(s)
i

)
.

(A.30)

So from (A.22), (A.30) and (A.20), the conditional expectation of Lc(θ|C) in (A.19)

can be written

Q(θ|θ̂(s)) = Q1(θ|θ̂(s)) +Q2(θ|θ̂(s)), (A.31)

where

Q1(θ|θ̂(s)) =

N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s))Q1ik(θ|θ̂(s)), (A.32)

and

Q2(θ|θ̂(s)) =
N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s)) log(πk). (A.33)

For the component density parameters we now find the derivative vectors ofQ(θ|θ̂(s))

with respect to the components of θ in turn, set the resultant expressions to zero, and

solve for the parameter of interest. To avoid repetition we note that for any g ∈ IG,

if we compute the differential of Q(θ|θ̂(s)) with respect to θg we have d(Q1(θ|θ̂(s))) =∑N
i=1 p̂i(λ

(g)
i |yi, θ̂(s))d(Q1ig(θ|θ̂(s))). Thus we shall compute the differentials ofQ1ig(θ|θ̂(s))
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with respect to the components of θ and then bring in the summation and posterior

probabilities at the end of the derivations.

WhenDg(ψ) = Dg we need to calculateDvec(Dg) (Q(vec(Dg))) . NowQ(vec(Dg)) :

S −→ R , S ⊆ Rq2

, so that by the first identification table (Table B.1) we have that if

d (Q(vec(Dg))) = a
ᵀ
d (vec(Dg)) for a ∈ Rq2

then Dvec(Dg) (Q(vec(Dg))) = a
ᵀ
. Now

for Q1ig(vec(Dg)) we have

d (Q1ig(vec(Dg))) = −1

2
d (log |Dg|)−

1

2
tr
[
d
(
D−1
g

)
Ĵ

(s)
i

]
= −1

2
tr
[
d (Dg)D

−1
g

]
+

1

2
tr
[
d (Dg)

ᵀ
D−1
g Ĵ

(s)
i

ᵀ
D−1
g

]
= −1

2
[vec(Dg)]

ᵀ
vec(D−1

g ) +
1

2
[vec(Dg)]

ᵀ
(D−1

g ⊗D−1
g )vec(Ĵ

(s)
i )

= −1

2
vec(D−1

g )
ᵀ

[vec(Dg)] +
1

2

[
vec(Ĵ

(s)
i )
]ᵀ

(D−1
g ⊗D−1

g )vec(Dg)

=

{
−1

2
vec(D−1

g )
ᵀ

+
1

2

[
vec(Ĵ

(s)
i )
]ᵀ

(D−1
g ⊗D−1

g )

}
d (vec(Dg)) ,

(A.34)

so that

d (Q(vec(Dg))) =
1

2

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))

{[
vec(Ĵ

(s)
i )
]ᵀ

(D−1
g ⊗D−1

g )− vec(D−1
g )

ᵀ
}
d (vec(Dg)) ,

(A.35)

and thus we see that the 1× q2 vector of partial derivatives is

Dvec(Dg) (Q(vec(Dg))) =
1

2

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))

([
vec(Ĵ

(s)
i )
]ᵀ

(D−1
g ⊗D−1

g )− vec(D−1
g )

ᵀ
)
.

(A.36)

Setting Dvec(Dg) (Q(vec(Dg))) in (A.36) to zero, multiplying by 2, and transposing

both sides we get

258



N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))vec(D−1
g ) =

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))(D−1
g ⊗D−1

g )vec(Ĵ
(s)
i )

=
N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))vec(D−1
g Ĵ

(s)
i D−1

g ), (A.37)

and so by un-vectorising both sides we get

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))D−1
g =

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))D−1
g Ĵ

(s)
i D−1

g

⇐⇒
N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))Dg =

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))Ĵ
(s)
i

⇐⇒ D̂(s+1)
g =

1
N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))Ĵ
(s)
i . (A.38)

We now derive Dσ2
g

(
Q(σ2

g)
)

. We have that Q(σ2
g) : S −→ R , S ⊆ R , so that

by the first identification table (Table B.1), d
(
Q(σ2

g)
)

= αdσ2
g for α ∈ R implies

that Dσ2
g

(
Q(σ2

g)
)

= α. For Q1ig(σ
2
g) we have d

(
Q1ig(σ

2
g)
)

= −(ni/2)d
(
log(σ2

g)
)
−

(1/2)d
(
σ−2
g

)
tr(Ci(φg)

−1Ê
(s)
i ) = {−(ni/2σ

2
g) + (1/2σ4)tr(Ci(φg)

−1Ê
(s)
i )}dσ2

g . So we

have d
(
Q(σ2

g)
)

=
∑N

i=1 p̂i(λ
(g)
i |yi, θ̂(s)){−(ni/2σ

2
g) + (1/2σ4

g)tr(Ci(φg)
−1Ê

(s)
i )}dσ2

g .

Thus the scalar derivative Dσ2
g

(
Q(σ2

g)
)

is

Dσ2
g

(
Q(σ2

g)
)

=

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))

(
1

2σ4
g

tr(Ci(φg)
−1Ê

(s)
i )− ni

2σ2
g

)
. (A.39)

Then equating (A.39) to zero and solving for σ2
g we get

σ̂2(s+1)
g =

1
N∑
i=1

nip̂i(λ
(g)
i |yi, θ̂

(s))

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))tr
[
Ci(φ̂

(s)
g )−1Ê

(s)
i

]
. (A.40)

We will now derive Dβg (Q(βg)) . Now Q(βg) : S −→ R , S ⊆ Rp
, so that by the first
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identification table (Table B.1) we have that if d (Q(βg)) = a
ᵀ
dβg for a ∈ Rp

then

Dβg (Q(βg)) = a
ᵀ
. Now for Q1ig(βg) we have

d (Q1ig(βg)) = − 1

2σ2
g

tr
[
Ci(φg)

−1d
(
Ê

(s)
i

)]
= − 1

2σ2
g

tr
[
−Ci(φg)−1Xid(βg)µ̂

(s)
ei

ᵀ −Ci(φg)−1µ̂
(s)
ei d(βg)

ᵀ
X

ᵀ

i

]
=

1

2σ2
g

tr
[
µ̂

(s)
ei

ᵀ
Ci(φg)

−1Xid(βg)
]

=
1

2σ2
g

µ̂
(s)
ei

ᵀ
Ci(φg)

−1Xid(βg), (A.41)

so that

d (Q(βg)) =

{
1

2σ2
g

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))µ̂
(s)
ei

ᵀ
Ci(φg)

−1Xi

}
d(βg). (A.42)

Thus the 1× p vector of partial derivatives Dβg (Q(βg)) is

Dβg (Q(βg)) =
1

2σ2
g

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))µ̂
(s)
ei

ᵀ
Ci(φg)

−1Xi. (A.43)

So on setting (A.43) to zero, multiplying by 2σ2
g and transposing both sides we get

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))X
ᵀ

i Ci(φ̂
(s)
g )−1(yi −Xiβg) =

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))X
ᵀ

i Ci(φ̂
(s)
g )−1Ziµ̂

(s)
ui

⇐⇒β̂g
(s+1)

=

(
N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))X
ᵀ

i Ci(φ̂
(s)
g )−1Xi

)−1

×

[
N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s))X
ᵀ

i Ci(φ̂
(s)
g )−1

(
yi −Ziµ̂(s)

ui

)]
. (A.44)

We will maximise Q2(θ|θ̂(s)) in (A.33) with respect to πg, g ∈ IG, by finding the

stationary values of the Lagrange function l(π, κ) given by

l(π, κ) =

N∑
i=1

G∑
k=1

p̂i(λ
(k)
i |yi, θ̂

(s)) log(πk)− κ

(
G∑

k′=1

πk′ − 1

)
. (A.45)
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Differentiating l with respect to πg we get
∂l(πg)
∂πg

= π−1
g

∑N
i=1 p̂i(λ

(g)
i |yi, θ̂(s)) − κ.

Setting this equation equal to zero and summing both sides over j = 1, ..., G, implies

that κ =
∑G

j=1 πj = 1. Substituting this into the original equation and solving for πg

gives

π̂g
(s+1) =

1

N

N∑
i=1

p̂i(λ
(g)
i |yi, θ̂

(s)), (A.46)

A.3.1 Some distributional results

Here we show the derivation of the distribution of Yi conditional on λ
(g)
i given in (2.6).

We do this by deriving the joint distribution of
(
Y

ᵀ

i ,U
ᵀ

i

)ᵀ
conditional on λ

(g)
i . Letting

C =

 Ini Zi

0 Iq

 ,
s =

[
e

ᵀ

i ,U
ᵀ

i

]ᵀ
and t =

[
β

ᵀ

gX
ᵀ

i ,0
]ᵀ

then the joint vector can be written Yi

Ui

 =

 Ini Zi

0 Iq


 ei

Ui

+

 Xiβg

0


= Cs+ t, (A.47)

where C is the (ni + q) × (ni + q) matrix with elements Ini , Zi, 0 and Iq, s ∈ Rni+q

is the random vector (e
ᵀ

i ,U
ᵀ

i )
ᵀ
, and t ∈ Rni+q is the fixed vector ((Xiβg)

ᵀ
,0

ᵀ
)
ᵀ
. Now

for any a1 ∈ Rni and a2 ∈ Rq
, a

ᵀ

1ei and a
ᵀ

2Ui are, conditional on λ
(g)
i , distributed

as independent univariate normal random variables. If we let a =
[
a

ᵀ

1,a
ᵀ

2

]ᵀ
∈ Rni+q
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then a
ᵀ
s is the sum of two univariate independent normal random variables and so

is itself a univariate normal random variable. Then we have s|λ(g)
i ∼ Nni+q (µs,Σs),

where µs = E[s] = 0 and Σs = Var[s] is a block-diagonal matrix with diagonal

elements (Σs)1,1 = σ2
gCi(φg) and (Σs)2,2 = Dg, where rank(Σs) = rank(σ2

gCi(φg)) +

rank(Dg) = ni + q, by Schott (2005, Theorem 2.12, pp48). Then from Seber and Lee

(2003, Theorem 2.2, pp20) we have
(
Y

ᵀ

i ,U
ᵀ

i

)ᵀ
|λ(g)
i ∼ Nni+q

(
Cµs + t,CΣsC

ᵀ)
so

that

 Yi

Ui


∣∣∣∣∣∣∣∣
λ

(g)
i

∼ Nni+q


 Xiβg

0

 ,
 ZiDgZ

ᵀ

i + σ2
gCi(φg) ZiDg

DgZ
ᵀ

i Dg


 . (A.48)

Letting θg =
[
β

ᵀ

g , σ
2
g ,φ

ᵀ

g,ψ
ᵀ

g

]ᵀ
then we shall write the density for the joint distribu-

tion of
(
Y

ᵀ

i ,U
ᵀ

i

)ᵀ
conditional on λ

(g)
i given by A.48 as wig(yi,ui|λ(g)

i ,θg). Now let

ζg =
[
σ2
g ,φ

ᵀ

g,ψ
ᵀ

g

]ᵀ
, then using (A.48) and standard multivariate normal theory, we

immediately see that the distribution for Yi conditional on λ
(g)
i is as given in (2.6).

Now let ΣYi,Ui be the covariance matrix of
(
Y

ᵀ

i ,U
ᵀ

i

)ᵀ
in (A.48). We will now derive

explicit forms for Σ−1
Yi,Ui

and |ΣYi,Ui |, which we will use to write down the joint density

wig(yi,ui|λ(g)
i ,θg). This density will be needed for the complete data density used by

the EM algorithm. Let

ΣYi,Ui =

 ZiDgZ
ᵀ

i + σ2
gCi(φg) ZiDg

DgZ
ᵀ

i Dg

 =

 A11 A12

A21 A22

 , (A.49)

then using Schott (2005, Theorem 7.1, pp256)
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Σ−1
Yi,Ui

=

 B11 B12

B21 B22

 , (A.50)

where

B11 =
(
ZiDgZ

ᵀ

i + σ2
gCi(φg)−ZiDgD

−1
g DgZ

ᵀ

i

)−1

= σ−2
g Ci(φg)

−1,

B12 = −B11ZiDgD
−1
g

= −σ−2
g Ci(φg)

−1Zi,

B21 = −D−1
g DgZ

ᵀ

iB11

= −σ−2
g Z

ᵀ

i Ci(φg)
−1,

B22 = D−1
g +D−1

g DgZ
ᵀ

iB11ZiDgD
−1
g

= D−1
g + σ−2

g Z
ᵀ

i Ci(φg)
−1Zi.

Thus we have

Σ−1
Yi,Ui

=

 σ−2
g Ci(φg)

−1 −σ−2
g Ci(φg)

−1Zi

−σ−2
g Z

ᵀ

i Ci(φg)
−1 D−1

g + σ−2
g Z

ᵀ

i Ci(φg)
−1Zi

 . (A.51)

From Schott (2005, Theorem 7.4, pp259)

|ΣYi,Ui | = |Dg|
∣∣ZiDgZ

ᵀ

i + σ2
gCi(φg)−ZiDgD

−1
g DgZ

ᵀ

i

∣∣
= |Dg|

∣∣σ2
gCi(φg)

∣∣
=
(
σ2
g

)ni |Dg| |Ci(φg)| . (A.52)

Using (A.51) and (A.52) we get
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wig(yi,ui|λ(g)
i ,θg) = (2π)−

ni
2 |ΣYi,Ui |

− 1
2 exp

−
1

2

(
y

ᵀ

i − β
ᵀ

gX
ᵀ

i ,u
ᵀ

i

)
Σ−1
Yi,Ui

 yi −Xiβg

ui




= (2π)−
ni
2
(
σ2
g

)−ni
2 |Dg|−

1
2 |Ci(φg)|−

1
2 ×

exp

{
−
σ−2
g

2
(yi −Xiβg −Ziui)

ᵀ
Ci(φg)

−1 (yi −Xiβg −Ziui)

−1

2
u

ᵀ

iD
−1
g ui

}
= (2π)−

ni
2
(
σ2
g

)−ni
2 |Dg|−

1
2 |Ci(φg)|−

1
2 exp

{
− 1

2σ2
g

ei
ᵀ
Ci(φg)

−1ei

−1

2
u

ᵀ

iD
−1
g ui

}
, (A.53)

where ei = yi −Xiβg −Ziui.

We can use the above results and standard multivariate normal distribution theory

to calculate the mean and covariance matrix of tig, the density function of Ui|Yi,Λi.

That is from using (A.48) we see tig(ui|yi,λ(g)
i ,θg) is the density function of the

random variable where

Ui|yi,λ(g)
i ∼ Nq (µ(θg),Σ(ζg)) , (A.54)

where

µ(θg) = DgZ
ᵀ

i Vi(ζg)
−1(yi −Xiβg), (A.55)

and

Σ(ζg) = Dg −DgZ
ᵀ

i Vi(ζg)
−1ZiDg. (A.56)
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A.4 Simulation results

A.4.1 Model 1
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Table A.1: EM1st variant simulation results for CON

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 12.3761 0.8947 0.8011 0.8498 0.2837 0.9665 0.6412 0.1182 0.9242 0.6149 0.1196 0.9213 0.7617 0.3848 0.9203 0.9555 0.9776 0.9079 0.9405 0.9047 0.9378 0.9036 0.9369

βc1
1 -1.0002 0.0950 0.0090 0.0175 0.0039 0.9734 0.0132 0.0015 0.9419 0.0132 0.0015 0.9429 0.0139 0.0127 0.9242 0.9635 0.9833 0.9276 0.9563 0.9287 0.9572 0.9079 0.9405

βc2
1 -0.7489 0.1660 0.0276 0.1369 0.0440 0.9774 0.1025 0.0195 0.9291 0.0974 0.0196 0.9262 0.1245 0.0661 0.9252 0.9682 0.9865 0.9134 0.9449 0.9101 0.9423 0.9090 0.9414

β
f11
1 1.9997 0.5423 0.2941 0.6614 0.1808 0.9724 0.5065 0.0862 0.9350 0.4849 0.0879 0.9232 0.6158 0.2679 0.9282 0.9624 0.9825 0.9199 0.9502 0.9069 0.9396 0.9123 0.9440

β
f21
1 -2.3730 0.6636 0.4411 0.8099 0.2620 0.9705 0.6088 0.1066 0.9282 0.5852 0.1085 0.9232 0.7257 0.3335 0.9134 0.9601 0.9809 0.9123 0.9440 0.9069 0.9396 0.8961 0.9307

β
f22
1 -1.0842 0.6682 0.4467 0.8203 0.3092 0.9715 0.6135 0.1073 0.9272 0.5886 0.1089 0.9203 0.7382 0.3316 0.9173 0.9612 0.9817 0.9112 0.9431 0.9036 0.9369 0.9004 0.9343

βtc
1 0.4998 0.0433 0.0019 0.0172 0.0051 0.9803 0.0146 0.0022 0.9606 0.0132 0.0021 0.9459 0.0169 0.0061 0.9695 0.9718 0.9889 0.9487 0.9726 0.9320 0.9598 0.9589 0.9801

d111 1.4059 0.4616 0.2996 0.6802 0.9309 0.8917 0.4857 0.1505 0.8701 0.4598 0.7125 0.7845 0.8598 1.9820 0.8908 0.8726 0.9108 0.8494 0.8908 0.7592 0.8097 0.8716 0.9099

σ2
1 1.4224 1.7796 3.1819 0.2699 1.0047 0.9813 0.2372 0.1404 0.9724 0.1958 0.7502 0.9488 0.6979 2.2105 0.9557 0.9730 0.9896 0.9624 0.9825 0.9353 0.9624 0.9431 0.9684

φ1
1 0.6029 0.0421 0.0018 0.0573 0.0147 0.9852 0.0437 0.0096 0.9518 0.0418 0.0030 0.9528 0.0651 0.0970 0.9518 0.9778 0.9927 0.9386 0.9650 0.9397 0.9658 0.9386 0.9650

φ2
1 0.1013 0.0492 0.0024 0.0659 0.0200 0.9823 0.0528 0.0232 0.9341 0.0483 0.0036 0.9508 0.0840 0.2044 0.9390 0.9742 0.9904 0.9188 0.9493 0.9375 0.9641 0.9243 0.9537

φ3
1 -0.0493 0.0459 0.0021 0.0599 0.0132 0.9852 0.0488 0.0149 0.9409 0.0448 0.0032 0.9557 0.0782 0.1453 0.9537 0.9778 0.9927 0.9265 0.9554 0.9431 0.9684 0.9408 0.9667

β0
2 -5.9947 0.7664 0.5874 0.9447 0.3059 0.9636 0.6427 0.1293 0.8858 0.6800 0.1256 0.9154 0.7276 1.0169 0.8494 0.9521 0.9751 0.8663 0.9054 0.8982 0.9325 0.8274 0.8714

βc1
2 1.4996 0.0134 0.0002 0.0177 0.0041 0.9833 0.0133 0.0017 0.9488 0.0132 0.0011 0.9498 0.0138 0.0107 0.9232 0.9754 0.9912 0.9353 0.9624 0.9364 0.9632 0.9069 0.9396

βc2
2 3.0047 0.1236 0.0153 0.1553 0.0472 0.9784 0.1032 0.0225 0.8750 0.1082 0.0201 0.9065 0.1156 0.1205 0.8484 0.9694 0.9873 0.8547 0.8953 0.8886 0.9244 0.8264 0.8705

β
f11
2 4.0129 0.5919 0.3505 0.7472 0.2130 0.9793 0.5083 0.1030 0.8858 0.5330 0.0901 0.9144 0.5805 0.6008 0.8721 0.9706 0.9881 0.8663 0.9054 0.8972 0.9316 0.8515 0.8926

β
f21
2 -5.0357 0.6826 0.4672 0.9008 0.3010 0.9803 0.6073 0.1206 0.9114 0.6406 0.1110 0.9341 0.7143 1.7382 0.8898 0.9718 0.9889 0.8940 0.9289 0.9188 0.9493 0.8705 0.9090

β
f22
2 -2.0084 0.7210 0.5199 0.8989 0.2828 0.9724 0.6147 0.1239 0.8967 0.6457 0.1122 0.9232 0.7185 1.3175 0.8750 0.9624 0.9825 0.8779 0.9154 0.9069 0.9396 0.8547 0.8953

βtc
2 1.5013 0.0156 0.0002 0.0195 0.0044 0.9734 0.0148 0.0029 0.9291 0.0148 0.0018 0.9321 0.0160 0.0186 0.9114 0.9635 0.9833 0.9134 0.9449 0.9166 0.9476 0.8940 0.9289

d112 1.6065 0.5632 0.4721 0.7806 0.2835 0.8976 0.4862 0.1619 0.7805 0.5217 0.1395 0.7746 1.1487 8.7328 0.7569 0.8790 0.9163 0.7551 0.8060 0.7489 0.8003 0.7305 0.7833

σ2
2 1.5112 0.2236 0.0501 0.3296 0.1683 0.9705 0.2423 0.1540 0.8947 0.2300 0.0852 0.9400 1.1692 15.5466 0.9173 0.9601 0.9809 0.8758 0.9136 0.9254 0.9546 0.9004 0.9343

φ1
2 0.5792 0.0408 0.0017 0.0583 0.0139 0.9892 0.0443 0.0125 0.9537 0.0420 0.0031 0.9498 0.0651 0.1700 0.9547 0.9828 0.9955 0.9408 0.9667 0.9364 0.9632 0.9419 0.9675

φ2
2 0.2178 0.0499 0.0025 0.0654 0.0166 0.9734 0.0523 0.0205 0.9380 0.0477 0.0036 0.9409 0.0738 0.1658 0.9360 0.9635 0.9833 0.9232 0.9528 0.9265 0.9554 0.9210 0.9511

φ3
2 -0.0715 0.0439 0.0019 0.0615 0.0148 0.9862 0.0495 0.0234 0.9488 0.0451 0.0033 0.9498 0.0818 0.3134 0.9597 0.9791 0.9934 0.9353 0.9624 0.9364 0.9632 0.9476 0.9718

β0
3 3.3724 0.9561 0.9149 1.0610 5.1360 0.9685 0.6540 0.1267 0.9134 0.6414 0.1195 0.9272 0.7885 0.8323 0.8947 0.9578 0.9792 0.8961 0.9307 0.9112 0.9431 0.8758 0.9136

βc1
3 -2.9852 0.2480 0.0617 0.0194 0.0591 0.9734 0.0133 0.0012 0.9252 0.0132 0.0015 0.9301 0.0144 0.0215 0.9124 0.9635 0.9833 0.9090 0.9414 0.9144 0.9458 0.8950 0.9298

βc2
3 1.0021 0.1624 0.0264 0.1515 0.1058 0.9764 0.1034 0.0198 0.9104 0.1033 0.0196 0.9222 0.1232 0.1345 0.8898 0.9670 0.9857 0.8929 0.9280 0.9058 0.9387 0.8705 0.9090

β
f11
3 5.9779 0.5770 0.3334 0.8559 5.2065 0.9724 0.5080 0.0863 0.9163 0.5035 0.0867 0.9095 0.6070 0.4935 0.9114 0.9624 0.9825 0.8993 0.9334 0.8918 0.9271 0.8940 0.9289

β
f21
3 -0.3968 0.7106 0.5049 0.8669 0.7828 0.9813 0.6142 0.1102 0.9095 0.6028 0.1068 0.9095 0.7332 0.8237 0.9026 0.9730 0.9896 0.8918 0.9271 0.8918 0.9271 0.8843 0.9208

β
f22
3 -0.1712 0.6949 0.4838 0.8709 0.6630 0.9656 0.6189 0.1098 0.8967 0.6114 0.1119 0.9006 0.7197 0.3378 0.8957 0.9543 0.9768 0.8779 0.9154 0.8822 0.9190 0.8769 0.9145

βtc
3 -0.4937 0.1094 0.0120 0.0216 0.0119 0.9784 0.0146 0.0022 0.9075 0.0160 0.0022 0.9360 0.0146 0.0165 0.8622 0.9694 0.9873 0.8897 0.9253 0.9210 0.9511 0.8410 0.8834

d113 1.2378 0.5387 0.4213 0.7733 0.5150 0.9193 0.4873 0.1616 0.8199 0.5122 0.4188 0.8081 0.6252 1.3220 0.8140 0.9025 0.9360 0.7963 0.8435 0.7839 0.8323 0.7901 0.8379

σ2
3 1.7490 1.0197 1.0421 0.4664 0.5170 0.9547 0.2337 0.1563 0.8012 0.3255 0.4455 0.9055 0.3805 1.2120 0.8799 0.9419 0.9675 0.7766 0.8257 0.8875 0.9235 0.8599 0.8999

φ1
3 0.6191 0.0453 0.0021 0.0647 0.1752 0.9843 0.0438 0.0121 0.9360 0.0425 0.0038 0.9469 0.0694 0.2476 0.9577 0.9766 0.9919 0.9210 0.9511 0.9331 0.9606 0.9453 0.9701

φ2
3 0.1747 0.0503 0.0026 0.0708 0.0909 0.9784 0.0512 0.0139 0.9272 0.0491 0.0043 0.9341 0.0741 0.1895 0.9272 0.9694 0.9873 0.9112 0.9431 0.9188 0.9493 0.9112 0.9431

φ3
3 -0.0314 0.0490 0.0024 0.0648 0.0558 0.9793 0.0487 0.0286 0.9262 0.0455 0.0040 0.9272 0.0964 0.6302 0.9439 0.9706 0.9881 0.9101 0.9423 0.9112 0.9431 0.9298 0.9581

π1 0.3386 0.0490 0.0024 0.0472 0.0038 0.9626 0.0470 0.0018 0.9616 0.0481 0.0325 0.9626 0.9509 0.9743 0.9498 0.9734 0.9509 0.9743

π2 0.3313 0.0467 0.0022 0.0469 0.0028 0.9557 0.0468 0.0019 0.9537 0.0505 0.0696 0.9557 0.9431 0.9684 0.9408 0.9667 0.9431 0.9684

π3 0.3301 0.0481 0.0023 0.0470 0.0043 0.9626 0.0467 0.0022 0.9606 0.0494 0.0616 0.9626 0.9509 0.9743 0.9487 0.9726 0.9509 0.9743
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Table A.1 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 17.6951 0.9939 1016 17.6118 1.0140 1016 17.6052 1.0048 1016 17.6804 0.9675 1016

βc1
1 1.4195 0.0800 1016 1.4191 0.0800 1016 1.4191 0.0801 1016 1.4194 0.0831 1016

βc2
1 1.1417 0.1789 1016 1.1084 0.1785 1016 1.1052 0.1764 1016 1.1356 0.1996 1016

β
f11
1 3.4166 0.7246 1016 3.1843 0.6887 1016 3.1553 0.7039 1016 3.3750 0.8126 1016

β
f21
1 4.1090 0.9090 1016 3.7924 0.8339 1016 3.7628 0.8398 1016 4.0078 0.9902 1016

β
f22
1 2.8790 0.9274 1016 2.4121 0.6372 1016 2.3597 0.6548 1016 2.7098 0.9657 1016

βtc
1 0.7090 0.0554 1016 0.7081 0.0599 1016 0.7080 0.0585 1016 0.7087 0.0589 1016

d111 2.8059 2.5921 1016 2.4415 0.6395 1015 2.4175 2.0149 1016 3.3710 5.3733 1014

σ2
1 2.1786 3.7349 1016 2.1475 2.5216 1015 2.1016 3.2530 1016 3.1841 6.4467 1010

φ1
1 0.8682 0.0601 1016 0.8616 0.0591 1012 0.8605 0.0591 1016 0.8887 0.2134 1015

φ2
1 0.2407 0.0622 1016 0.2137 0.0731 1002 0.2030 0.0467 1016 0.2956 0.5595 1016

φ3
1 0.1906 0.0406 1016 0.1636 0.0486 1002 0.1537 0.0303 1016 0.2411 0.4001 1015

β0
2 8.9165 1.0586 1016 8.6735 1.0588 1016 8.6955 1.0537 1016 8.8423 2.6219 1016

βc1
2 2.1214 0.0189 1016 2.1211 0.0189 1016 2.1211 0.0189 1016 2.1213 0.0197 1015

βc2
2 4.2731 0.1739 1016 4.2594 0.1743 1016 4.2603 0.1743 1016 4.2712 0.2415 1016

β
f11
2 6.0735 0.8117 1016 5.8579 0.8122 1016 5.8738 0.8074 1016 5.9865 1.5598 1016

β
f21
2 7.5897 0.9880 1016 7.3285 0.9423 1016 7.3497 0.9373 1016 7.5569 4.6557 1016

β
f22
2 3.8799 0.9358 1016 3.3729 0.8667 1016 3.4221 0.8343 1016 3.6322 3.6353 1016

βtc
2 2.1239 0.0220 1016 2.1236 0.0220 1016 2.1236 0.0220 1016 2.1242 0.0261 1016

d112 3.1724 1.0156 1016 2.6909 0.7659 1013 2.7039 0.8519 1016 4.5264 24.1116 1014

σ2
2 2.3432 0.4785 1016 2.2667 0.4020 1012 2.2343 0.3708 1016 4.7093 43.0109 1014

φ1
2 0.8358 0.0573 1016 0.8286 0.0595 1011 0.8275 0.0570 1016 0.8593 0.4363 1013

φ2
2 0.3612 0.0659 1016 0.3443 0.0754 1009 0.3368 0.0633 1016 0.3937 0.4449 1014

φ3
2 0.2064 0.0473 1016 0.1794 0.0704 1010 0.1686 0.0369 1016 0.2649 0.8659 1014

β0
3 5.9432 14.1621 1016 5.1878 1.0348 1016 5.1752 1.0307 1016 5.4339 2.2684 1016

βc1
3 4.2383 0.1132 1016 4.2346 0.1235 1016 4.2346 0.1234 1016 4.2353 0.1145 1016

βc2
3 1.4866 0.3368 1016 1.4475 0.2259 1016 1.4475 0.2249 1016 1.4727 0.3843 1016

β
f11
3 9.1369 14.2319 1016 8.5749 0.8040 1016 8.5733 0.7994 1016 8.6811 1.2147 1016

β
f21
3 2.6428 2.1957 1016 2.0089 0.5294 1016 1.9782 0.5393 1016 2.3237 2.2951 1016

β
f22
3 2.6121 1.8454 1016 1.9682 0.4318 1016 1.9465 0.4512 1016 2.2381 0.9334 1016

βtc
3 0.7134 0.0835 1016 0.7117 0.0808 1016 0.7119 0.0803 1016 0.7123 0.0879 1016

d113 2.8407 1.4855 1016 2.2782 0.6987 1013 2.3098 1.2933 1016 2.6770 3.5933 1015

σ2
3 2.8288 1.9798 1016 2.5758 1.4695 1014 2.6467 1.8791 1016 2.8593 3.5230 1014

φ1
3 0.9070 0.4648 1016 0.8844 0.0647 1008 0.8836 0.0625 1016 0.9261 0.6488 1016

φ2
3 0.3243 0.2508 1016 0.2887 0.0647 1007 0.2850 0.0598 1016 0.3461 0.5140 1015

φ3
3 0.1971 0.1554 1016 0.1564 0.0820 1006 0.1480 0.0291 1016 0.2870 1.7455 1016

π1 0.4967 0.0684 999 0.4965 0.0681 1016 0.4992 0.1040 1016

π2 0.4865 0.0644 999 0.4863 0.0648 1016 0.4957 0.1868 1016

π3 0.4852 0.0651 999 0.4847 0.0670 1016 0.4919 0.1689 1016
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Table A.2: EM1st variant simulation results for NCON

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 12.2601 1.6168 2.6334 0.3862 0.8689 0.9680 0.2707 0.0468 0.9338 0.2545 0.0476 0.9292 0.3051 0.1310 0.9224 0.9516 0.9845 0.9105 0.9571 0.9052 0.9532 0.8973 0.9474

βc1
1 -0.9895 0.2199 0.0485 0.0247 0.1215 0.9612 0.0131 0.0035 0.9178 0.0129 0.0029 0.9155 0.0141 0.0131 0.9041 0.9431 0.9793 0.8921 0.9435 0.8895 0.9416 0.8765 0.9317

βc2
1 -0.7195 0.3172 0.1016 0.0216 0.0662 0.9726 0.0137 0.0034 0.9224 0.0134 0.0031 0.9338 0.0152 0.0159 0.9132 0.9573 0.9879 0.8973 0.9474 0.9105 0.9571 0.8869 0.9396

β
f11
1 2.0282 0.2419 0.0593 0.1130 0.4701 0.9772 0.0613 0.0156 0.9475 0.0602 0.0135 0.9543 0.0676 0.0620 0.9315 0.9632 0.9912 0.9266 0.9684 0.9348 0.9739 0.9079 0.9552

β
f21
1 -2.4128 0.2462 0.0608 0.1139 0.2646 0.9726 0.0732 0.0186 0.9361 0.0718 0.0166 0.9315 0.0792 0.0672 0.9155 0.9573 0.9879 0.9132 0.9590 0.9079 0.9552 0.8895 0.9416

β
f22
1 -1.1044 0.1254 0.0158 0.1316 0.6099 0.9680 0.0727 0.0180 0.9155 0.0716 0.0165 0.9087 0.0812 0.0896 0.9087 0.9516 0.9845 0.8895 0.9416 0.8817 0.9357 0.8817 0.9357

βtc
1 0.5034 0.0920 0.0085 0.0281 0.1890 0.9635 0.0151 0.0040 0.9475 0.0134 0.0033 0.9338 0.0184 0.0167 0.9498 0.9459 0.9810 0.9266 0.9684 0.9105 0.9571 0.9293 0.9702

d111 1.5664 0.4792 0.2475 1.3100 11.8065 0.9521 0.5634 0.3209 0.9361 0.4912 0.3446 0.8836 1.4684 8.4107 0.9155 0.9321 0.9721 0.9132 0.9590 0.8535 0.9136 0.8895 0.9416

σ2
1 1.5163 2.2858 5.2715 0.4852 4.1066 0.9795 0.2416 0.1903 0.9589 0.1899 0.3931 0.9589 0.8151 2.8785 0.9498 0.9662 0.9927 0.9403 0.9775 0.9403 0.9775 0.9293 0.9702

φ1
1 0.6032 0.0522 0.0027 0.0769 0.2812 0.9726 0.0444 0.0080 0.9338 0.0419 0.0047 0.9292 0.0679 0.0995 0.9406 0.9573 0.9879 0.9105 0.9571 0.9052 0.9532 0.9185 0.9628

φ2
1 0.0997 0.0522 0.0027 0.0786 0.2059 0.9726 0.0537 0.0188 0.9224 0.0484 0.0060 0.9361 0.0954 0.3083 0.9384 0.9573 0.9879 0.8973 0.9474 0.9132 0.9590 0.9158 0.9609

φ3
1 -0.0443 0.0520 0.0027 0.0913 0.4714 0.9817 0.0491 0.0127 0.9064 0.0448 0.0051 0.9338 0.0889 0.2889 0.9269 0.9692 0.9943 0.8791 0.9337 0.9105 0.9571 0.9026 0.9513

β0
2 -6.0723 0.2764 0.0816 0.3757 0.0907 0.9886 0.2732 0.1312 0.9132 0.2844 0.0409 0.9384 0.4061 2.8120 0.8813 0.9786 0.9985 0.8869 0.9396 0.9158 0.9609 0.8510 0.9116

βc1
2 1.5002 0.0135 0.0002 0.0174 0.0043 0.9817 0.0129 0.0044 0.9247 0.0127 0.0011 0.9361 0.0176 0.0906 0.9018 0.9692 0.9943 0.8999 0.9494 0.9132 0.9590 0.8740 0.9297

βc2
2 3.0013 0.0132 0.0002 0.0182 0.0050 0.9977 0.0133 0.0021 0.9452 0.0133 0.0012 0.9566 0.0148 0.0241 0.9224 0.9933 1.0022 0.9239 0.9665 0.9375 0.9757 0.8973 0.9474

β
f11
2 3.9972 0.0630 0.0040 0.0820 0.0215 0.9817 0.0609 0.0383 0.9247 0.0596 0.0049 0.9406 0.1026 0.8398 0.9087 0.9692 0.9943 0.8999 0.9494 0.9185 0.9628 0.8817 0.9357

β
f21
2 -5.0067 0.0732 0.0054 0.0960 0.0250 0.9795 0.0713 0.0186 0.9406 0.0709 0.0059 0.9498 0.0927 0.3788 0.9132 0.9662 0.9927 0.9185 0.9628 0.9293 0.9702 0.8869 0.9396

β
f22
2 -2.0041 0.0771 0.0060 0.0965 0.0232 0.9772 0.0713 0.0196 0.9110 0.0713 0.0060 0.9201 0.0926 0.4023 0.9018 0.9632 0.9912 0.8843 0.9376 0.8947 0.9455 0.8740 0.9297

βtc
2 1.4998 0.0152 0.0002 0.0200 0.0050 0.9886 0.0149 0.0034 0.9338 0.0149 0.0017 0.9315 0.0177 0.0566 0.9018 0.9786 0.9985 0.9105 0.9571 0.9079 0.9552 0.8740 0.9297

d112 1.9252 0.6235 0.3943 0.8773 0.3319 0.9521 0.5444 0.1671 0.8813 0.6043 0.1621 0.8950 0.7188 2.5984 0.8196 0.9321 0.9721 0.8510 0.9116 0.8663 0.9237 0.7836 0.8556

σ2
2 1.4926 0.2127 0.0453 0.3315 0.1382 0.9703 0.2394 0.1425 0.9361 0.2287 0.0803 0.9269 0.5379 2.9240 0.9452 0.9544 0.9862 0.9132 0.9590 0.9026 0.9513 0.9239 0.9665

φ1
2 0.5825 0.0401 0.0016 0.0601 0.0154 0.9909 0.0438 0.0062 0.9452 0.0426 0.0032 0.9589 0.0658 0.1828 0.9635 0.9820 0.9998 0.9239 0.9665 0.9403 0.9775 0.9459 0.9810

φ2
2 0.2152 0.0526 0.0028 0.0677 0.0151 0.9772 0.0524 0.0135 0.9315 0.0485 0.0038 0.9338 0.0851 0.3183 0.9269 0.9632 0.9912 0.9079 0.9552 0.9105 0.9571 0.9026 0.9513

φ3
2 -0.0727 0.0474 0.0023 0.0642 0.0159 0.9863 0.0490 0.0107 0.9269 0.0457 0.0034 0.9429 0.0790 0.2267 0.9292 0.9754 0.9972 0.9026 0.9513 0.9212 0.9647 0.9052 0.9532

β0
3 3.3892 0.8976 0.8059 12.8561 249.2545 0.9726 0.2720 0.0661 0.9155 0.2681 0.0420 0.9247 0.4472 2.6132 0.9064 0.9573 0.9879 0.8895 0.9416 0.8999 0.9494 0.8791 0.9337

βc1
3 -2.9642 0.3734 0.1407 0.5647 10.1734 0.9772 0.0131 0.0053 0.9155 0.0128 0.0033 0.9178 0.0364 0.3994 0.8995 0.9632 0.9912 0.8895 0.9416 0.8921 0.9435 0.8714 0.9277

βc2
3 1.0086 0.1806 0.0327 0.7116 13.8406 0.9772 0.0134 0.0026 0.9429 0.0135 0.0035 0.9429 0.0206 0.1375 0.9201 0.9632 0.9912 0.9212 0.9647 0.9212 0.9647 0.8947 0.9455

β
f11
3 5.9747 0.2444 0.0604 5.6631 114.0431 0.9703 0.0600 0.0139 0.9406 0.0600 0.0154 0.9384 0.1360 1.2131 0.9338 0.9544 0.9862 0.9185 0.9628 0.9158 0.9609 0.9105 0.9571

β
f21
3 -0.4300 0.3771 0.1431 3.0162 55.9722 0.9772 0.0725 0.0312 0.9201 0.0717 0.0182 0.9269 0.1535 1.1695 0.9247 0.9632 0.9912 0.8947 0.9455 0.9026 0.9513 0.8999 0.9494

β
f22
3 -0.2175 0.1983 0.0396 2.5208 42.7268 0.9886 0.0745 0.0721 0.9338 0.0717 0.0190 0.9406 0.1472 1.5203 0.9087 0.9786 0.9985 0.9105 0.9571 0.9185 0.9628 0.8817 0.9357

βtc
3 -0.4838 0.1702 0.0292 0.3843 6.9942 0.9772 0.0149 0.0055 0.8973 0.0162 0.0035 0.9269 0.0244 0.1427 0.8585 0.9632 0.9912 0.8688 0.9257 0.9026 0.9513 0.8258 0.8911

d113 1.5307 0.5601 0.3186 8.9892 169.9516 0.9680 0.5734 0.6095 0.9155 0.5852 0.3787 0.9361 4.7480 71.5084 0.8836 0.9516 0.9845 0.8895 0.9416 0.9132 0.9590 0.8535 0.9136

σ2
3 1.9026 2.3503 5.5649 5.4821 90.3545 0.9612 0.2565 0.6671 0.8516 0.3398 0.4408 0.9269 4.0031 76.5999 0.8950 0.9431 0.9793 0.8183 0.8849 0.9026 0.9513 0.8663 0.9237

φ1
3 0.6198 0.0506 0.0026 3.0714 58.4278 0.9795 0.0481 0.0817 0.9361 0.0425 0.0074 0.9384 0.5188 9.4269 0.9566 0.9662 0.9927 0.9132 0.9590 0.9158 0.9609 0.9375 0.9757

φ2
3 0.1752 0.0530 0.0028 5.4044 101.0815 0.9703 0.0543 0.0399 0.9018 0.0491 0.0083 0.9361 0.2964 4.3587 0.8950 0.9544 0.9862 0.8740 0.9297 0.9132 0.9590 0.8663 0.9237

φ3
3 -0.0307 0.0517 0.0027 4.1993 79.6273 0.9909 0.0602 0.2328 0.9269 0.0455 0.0080 0.9452 1.3766 26.5517 0.9498 0.9820 0.9998 0.9026 0.9513 0.9239 0.9665 0.9293 0.9702

π1 0.3413 0.0565 0.0033 0.0480 0.0103 0.9543 0.0471 0.0021 0.9521 0.0472 0.0021 0.9521 0.9348 0.9739 0.9321 0.9721 0.9321 0.9721

π2 0.3224 0.0464 0.0023 0.0474 0.0099 0.9498 0.0465 0.0018 0.9452 0.0483 0.0309 0.9498 0.9293 0.9702 0.9239 0.9665 0.9293 0.9702

π3 0.3364 0.0567 0.0032 0.0477 0.0087 0.9543 0.0469 0.0023 0.9498 0.0486 0.0305 0.9543 0.9348 0.9739 0.9293 0.9702 0.9348 0.9739

268



Table A.2 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 17.6135 1.5998 438 17.4826 0.8876 438 17.4809 0.8843 438 17.4912 0.8668 438

βc1
1 1.4430 0.3013 438 1.4285 0.1252 438 1.4284 0.1252 438 1.4288 0.1271 438

βc2
1 1.0819 0.3215 438 1.0777 0.2769 438 1.0778 0.2763 438 1.0788 0.2764 438

β
f11
1 2.9442 1.2132 438 2.8735 0.3442 438 2.8733 0.3436 438 2.8769 0.3641 438

β
f21
1 3.4509 0.7024 438 3.4186 0.3486 438 3.4184 0.3468 438 3.4220 0.3701 438

β
f22
1 1.6748 1.6298 438 1.5729 0.1698 437 1.5754 0.1736 438 1.5877 0.2499 438

βtc
1 0.7373 0.5105 438 0.7135 0.1284 438 0.7134 0.1277 438 0.7159 0.1262 438

d111 4.6921 32.6725 438 2.7670 0.9487 437 2.6445 1.0671 438 5.1699 23.2097 438

σ2
1 2.8902 11.7502 438 2.2799 3.2666 434 2.2110 3.4094 438 3.6370 8.4030 437

φ1
1 0.9182 0.7367 438 0.8622 0.0732 434 0.8610 0.0731 438 0.8926 0.2182 437

φ2
1 0.2752 0.5683 438 0.2147 0.0646 431 0.2025 0.0507 438 0.3252 0.8484 438

φ3
1 0.2767 1.3054 438 0.1644 0.0449 430 0.1535 0.0378 438 0.2713 0.7986 438

β0
2 8.6542 0.3884 438 8.6276 0.4215 437 8.6244 0.3890 438 8.9836 7.4303 438

βc1
2 2.1222 0.0191 438 2.1218 0.0190 437 2.1219 0.0191 438 2.1303 0.1696 438

βc2
2 4.2447 0.0186 438 4.2446 0.0186 437 4.2446 0.0186 438 4.2451 0.0216 438

β
f11
2 5.6578 0.0890 438 5.6565 0.0917 437 5.6553 0.0890 438 5.7565 2.0796 438

β
f21
2 7.0858 0.1032 438 7.0834 0.1032 438 7.0832 0.1035 438 7.1216 0.7716 438

β
f22
2 2.8476 0.1085 438 2.8417 0.1079 438 2.8412 0.1088 438 2.8915 0.9967 438

βtc
2 2.1218 0.0215 438 2.1214 0.0215 438 2.1214 0.0215 438 2.1256 0.0901 438

d112 3.6857 1.1683 438 3.1500 0.8744 437 3.2046 0.9637 438 3.6786 7.1074 437

σ2
2 2.3165 0.4134 438 2.2344 0.3901 437 2.2077 0.3516 438 2.9733 7.9759 438

φ1
2 0.8417 0.0556 438 0.8326 0.0560 435 0.8323 0.0561 438 0.8698 0.4639 438

φ2
2 0.3616 0.0660 438 0.3411 0.0677 434 0.3347 0.0656 438 0.4223 0.8683 438

φ3
2 0.2148 0.0504 438 0.1794 0.0452 433 0.1722 0.0397 438 0.2592 0.6249 438

β0
3 39.6409 690.6849 438 4.9651 0.7308 438 4.9628 0.7218 438 5.4030 7.0282 438

βc1
3 5.7267 27.9762 438 4.2200 0.2110 438 4.2200 0.2112 438 4.2707 0.9208 438

βc2
3 3.3279 38.2971 438 1.4269 0.2550 438 1.4271 0.2541 438 1.4430 0.4075 438

β
f11
3 23.8986 315.7046 438 8.4562 0.3291 437 8.4514 0.3432 438 8.6246 2.9290 438

β
f21
3 8.7257 155.1261 438 0.6429 0.5373 438 0.6425 0.5323 438 0.8531 3.2582 438

β
f22
3 7.1212 118.4232 438 0.3779 0.3362 438 0.3732 0.2760 438 0.5766 4.2148 437

βtc
3 1.7106 19.3538 438 0.7149 0.1304 438 0.7153 0.1285 438 0.7388 0.3759 438

d113 25.8489 471.0285 438 2.7758 1.7323 437 2.7648 1.1839 438 14.3788 198.1363 437

σ2
3 16.9264 250.3707 438 2.8630 3.7478 437 2.8588 3.5347 438 13.0977 212.2493 436

φ1
3 9.2411 161.9131 438 0.8953 0.2030 434 0.8848 0.0695 438 2.1703 26.0937 438

φ2
3 15.1091 280.1716 438 0.2955 0.1181 432 0.2861 0.0653 438 0.9589 12.0742 438

φ3
3 11.6568 220.7107 438 0.1880 0.6449 432 0.1482 0.0404 438 3.8345 73.5953 438

π1 0.5020 0.0770 999 0.5003 0.0784 438 0.5005 0.0772 438

π2 0.4753 0.0650 999 0.4740 0.0644 438 0.4779 0.0950 438

π3 0.4955 0.0721 999 0.4943 0.0761 437 0.4983 0.0988 438
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Table A.3: EM2nd variant simulation results for CON

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 11.736 3.388 11.917 205.107 3390.437 0.940 0.818 0.226 0.870 0.823 0.744 0.860 1.385 5.733 0.847 0.913 0.967 0.832 0.908 0.821 0.899 0.806 0.887

βc1
1 -0.915 0.449 0.209 1.866 27.343 0.933 0.015 0.012 0.897 0.014 0.010 0.900 0.044 0.348 0.900 0.905 0.962 0.862 0.931 0.866 0.934 0.866 0.934

βc2
1 -0.612 0.652 0.445 40.633 697.792 0.950 0.112 0.031 0.890 0.116 0.199 0.887 0.185 0.621 0.887 0.925 0.975 0.855 0.925 0.851 0.923 0.851 0.923

β
f11
1 2.115 0.813 0.674 244.460 4127.110 0.963 0.511 0.132 0.880 0.496 0.232 0.887 0.885 3.302 0.897 0.942 0.985 0.843 0.917 0.851 0.923 0.862 0.931

β
f21
1 -2.487 0.837 0.708 177.184 2910.036 0.983 0.642 0.185 0.897 0.672 1.017 0.903 1.390 8.252 0.897 0.969 0.998 0.862 0.931 0.870 0.937 0.862 0.931

β
f22
1 -1.173 0.820 0.677 173.631 2903.450 0.967 0.681 0.199 0.877 0.668 0.517 0.887 1.364 8.257 0.893 0.946 0.987 0.839 0.914 0.851 0.923 0.858 0.928

βtc
1 0.535 0.189 0.037 1.175 14.358 0.940 0.016 0.010 0.923 0.014 0.008 0.913 0.062 0.650 0.920 0.913 0.967 0.893 0.953 0.882 0.945 0.889 0.951

d111 1.330 0.537 0.425 20.706 303.175 0.870 0.582 0.890 0.797 0.827 3.441 0.730 5.714 68.623 0.857 0.832 0.908 0.751 0.842 0.680 0.780 0.817 0.896

σ2
1 2.347 7.536 57.887 15.423 246.842 0.940 0.246 0.336 0.920 0.592 3.563 0.903 1.379 6.084 0.943 0.913 0.967 0.889 0.951 0.870 0.937 0.917 0.970

φ1
1 0.585 0.075 0.006 2.793 38.067 0.950 0.045 0.010 0.893 0.043 0.013 0.907 0.097 0.323 0.930 0.925 0.975 0.858 0.928 0.874 0.940 0.901 0.959

φ2
1 0.103 0.066 0.004 2.230 33.590 0.963 0.053 0.023 0.893 0.049 0.013 0.923 0.131 0.608 0.910 0.942 0.985 0.858 0.928 0.893 0.953 0.878 0.942

φ3
1 -0.050 0.059 0.003 3.020 35.776 0.977 0.049 0.015 0.913 0.046 0.013 0.943 0.149 0.879 0.937 0.960 0.994 0.882 0.945 0.917 0.970 0.909 0.964

β0
2 -5.976 1.680 2.823 11516.677 197482.789 0.953 0.979 2.699 0.847 0.956 2.079 0.873 1.851 10.168 0.833 0.929 0.977 0.806 0.887 0.836 0.911 0.791 0.876

βc1
2 1.440 0.511 0.264 518.426 8949.265 0.990 0.016 0.030 0.920 0.015 0.027 0.913 0.046 0.256 0.893 0.979 1.001 0.889 0.951 0.882 0.945 0.858 0.928

βc2
2 2.990 0.269 0.072 5787.776 99889.785 0.960 0.145 0.563 0.880 0.139 0.404 0.897 0.236 1.210 0.853 0.938 0.982 0.843 0.917 0.862 0.931 0.813 0.893

β
f11
2 4.104 0.630 0.407 7749.796 133420.818 0.963 0.549 0.509 0.877 0.555 0.484 0.903 1.530 10.054 0.860 0.942 0.985 0.839 0.914 0.870 0.937 0.821 0.899

β
f21
2 -4.937 0.861 0.746 6870.866 118053.847 0.970 0.706 0.821 0.907 0.699 0.747 0.900 1.982 15.038 0.887 0.951 0.989 0.874 0.940 0.866 0.934 0.851 0.923

β
f22
2 -1.973 0.817 0.668 3816.613 65023.231 0.960 0.862 2.929 0.900 0.803 1.728 0.903 1.939 15.429 0.863 0.938 0.982 0.866 0.934 0.870 0.937 0.824 0.902

βtc
2 1.474 0.222 0.050 589.962 10145.301 0.970 0.017 0.024 0.880 0.016 0.023 0.897 0.038 0.241 0.870 0.951 0.989 0.843 0.917 0.862 0.931 0.832 0.908

d112 1.528 0.588 0.569 1078.910 18149.687 0.900 0.525 0.477 0.750 0.538 0.477 0.760 4.205 44.760 0.753 0.866 0.934 0.701 0.799 0.712 0.808 0.705 0.802

σ2
2 1.521 0.291 0.085 1557.156 26359.877 0.963 0.286 0.691 0.857 0.270 0.599 0.910 4.986 65.263 0.903 0.942 0.985 0.817 0.896 0.878 0.942 0.870 0.937

φ1
2 0.574 0.055 0.003 749.019 12915.754 0.983 0.047 0.031 0.903 0.046 0.045 0.917 0.240 2.469 0.943 0.969 0.998 0.870 0.937 0.885 0.948 0.917 0.970

φ2
2 0.216 0.047 0.002 3138.610 54076.546 0.987 0.056 0.052 0.950 0.052 0.046 0.980 0.155 1.094 0.953 0.974 1.000 0.925 0.975 0.964 0.996 0.929 0.977

φ3
2 -0.070 0.049 0.002 1009.292 17320.863 0.990 0.052 0.042 0.917 0.049 0.047 0.943 0.224 1.963 0.947 0.979 1.001 0.885 0.948 0.917 0.970 0.921 0.972

β0
3 3.466 1.409 1.991 1.274 1.107 0.977 0.851 0.793 0.883 0.812 0.216 0.887 2.365 17.778 0.880 0.960 0.994 0.847 0.920 0.851 0.923 0.843 0.917

βc1
3 -2.942 0.397 0.161 0.022 0.025 0.950 0.014 0.011 0.903 0.015 0.012 0.910 0.022 0.084 0.873 0.925 0.975 0.870 0.937 0.878 0.942 0.836 0.911

βc2
3 0.986 0.226 0.051 0.160 0.065 0.960 0.122 0.214 0.883 0.111 0.030 0.887 0.474 4.567 0.870 0.938 0.982 0.847 0.920 0.851 0.923 0.832 0.908

β
f11
3 5.936 0.632 0.403 0.725 0.273 0.973 0.517 0.228 0.883 0.513 0.124 0.920 1.029 6.418 0.880 0.955 0.992 0.847 0.920 0.889 0.951 0.843 0.917

β
f21
3 -0.457 0.786 0.620 1.004 1.085 0.963 0.694 1.108 0.907 0.642 0.166 0.900 2.446 23.156 0.873 0.942 0.985 0.874 0.940 0.866 0.934 0.836 0.911

β
f22
3 -0.222 0.769 0.591 1.093 1.103 0.980 0.700 0.534 0.923 0.682 0.177 0.923 1.344 8.900 0.910 0.964 0.996 0.893 0.953 0.893 0.953 0.878 0.942

βtc
3 -0.473 0.180 0.033 0.028 0.038 0.957 0.016 0.009 0.887 0.017 0.009 0.907 0.020 0.064 0.843 0.934 0.980 0.851 0.923 0.874 0.940 0.802 0.884

d113 1.249 0.595 0.477 1.329 3.209 0.950 0.610 1.201 0.790 0.640 0.789 0.810 7.245 106.577 0.823 0.925 0.975 0.744 0.836 0.766 0.854 0.780 0.866

σ2
3 3.802 12.068 150.058 1.257 4.681 0.920 0.279 0.758 0.757 0.491 1.079 0.887 6.170 89.926 0.833 0.889 0.951 0.708 0.805 0.851 0.923 0.791 0.876

φ1
3 0.602 0.078 0.006 0.064 0.032 0.973 0.043 0.007 0.897 0.042 0.004 0.927 0.068 0.104 0.940 0.955 0.992 0.862 0.931 0.897 0.956 0.913 0.967

φ2
3 0.175 0.054 0.003 0.071 0.034 0.973 0.050 0.013 0.903 0.048 0.005 0.923 0.074 0.148 0.900 0.955 0.992 0.870 0.937 0.893 0.953 0.866 0.934

φ3
3 -0.020 0.057 0.003 0.069 0.044 0.977 0.048 0.011 0.907 0.045 0.004 0.913 0.080 0.163 0.937 0.960 0.994 0.874 0.940 0.882 0.945 0.909 0.964

π1 0.336 0.077 0.006 0.058 0.121 0.907 0.047 0.004 0.897 0.057 0.155 0.907 0.874 0.940 0.862 0.931 0.874 0.940

π2 0.323 0.062 0.004 0.050 0.019 0.930 0.047 0.004 0.907 0.063 0.173 0.927 0.901 0.959 0.874 0.940 0.897 0.956

π3 0.340 0.075 0.006 0.059 0.120 0.937 0.047 0.002 0.920 0.053 0.078 0.927 0.909 0.964 0.889 0.951 0.897 0.956
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Table A.3 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 582.743 9396.783 300 17.261 2.452 300 17.372 2.475 300 18.467 14.989 300

βc1
1 6.521 75.698 300 1.427 0.209 300 1.427 0.208 300 1.492 0.892 300

βc2
1 113.392 1934.102 300 1.193 0.529 300 1.214 0.731 300 1.334 1.745 300

β
f11
1 679.234 11439.457 300 3.322 1.035 299 3.337 1.195 300 4.217 9.069 300

β
f21
1 493.000 8065.945 300 3.976 1.061 299 4.114 2.876 300 5.928 22.729 300

β
f22
1 481.898 8047.767 300 2.683 0.879 299 2.679 1.550 300 4.527 22.840 300

βtc
1 3.941 39.744 300 0.753 0.256 299 0.758 0.267 300 0.862 1.782 300

d111 58.269 840.285 300 2.659 2.404 296 3.380 9.430 300 16.780 190.141 300

σ2
1 44.692 684.166 300 3.485 10.782 294 3.903 14.478 300 6.116 19.651 300

φ1
1 8.419 105.467 300 0.844 0.083 290 0.837 0.100 300 0.943 0.824 299

φ2
1 6.238 93.100 300 0.214 0.084 289 0.211 0.077 300 0.426 1.679 300

φ3
1 8.399 99.161 300 0.169 0.055 290 0.164 0.053 300 0.444 2.434 299

β0
2 31927.910 547383.963 300 9.405 7.206 300 9.307 5.539 300 11.657 27.600 300

βc1
2 1439.042 24805.522 300 2.143 0.217 298 2.149 0.243 300 2.201 0.586 300

βc2
2 16046.373 276875.050 300 4.332 1.361 300 4.307 0.936 300 4.533 3.024 300

β
f11
2 21485.026 369816.608 300 6.064 1.420 300 6.061 1.382 300 8.667 27.458 300

β
f21
2 19049.583 327222.272 300 7.398 2.120 300 7.368 1.994 300 10.752 41.257 300

β
f22
2 10580.183 180231.814 300 3.958 8.067 300 3.777 4.769 300 6.893 42.654 300

βtc
2 1637.302 28120.705 300 2.104 0.157 300 2.104 0.157 300 2.147 0.543 300

d112 2991.485 50307.385 300 2.716 1.389 295 2.679 1.469 300 12.876 123.968 300

σ2
2 4317.545 73064.424 300 2.387 1.824 295 2.336 1.631 300 15.272 180.792 299

φ1
2 2076.796 35799.948 300 0.826 0.083 293 0.827 0.106 300 1.325 6.796 300

φ2
2 8699.799 149889.774 300 0.351 0.141 292 0.344 0.130 300 0.612 3.016 300

φ3
2 2797.600 48010.098 300 0.188 0.118 294 0.180 0.134 300 0.660 5.438 300

β0
3 6.327 3.141 300 5.678 2.480 300 5.559 1.590 300 9.804 49.021 300

βc1
3 4.191 0.275 300 4.190 0.280 300 4.190 0.279 300 4.196 0.280 300

βc2
3 1.481 0.285 300 1.467 0.600 300 1.437 0.286 300 2.411 12.578 300

β
f11
3 8.675 0.799 300 8.541 0.886 300 8.527 0.838 300 9.796 17.318 300

β
f21
3 3.036 3.037 300 2.256 3.083 299 2.120 0.735 300 7.115 64.161 300

β
f22
3 3.221 3.072 300 2.221 1.518 300 2.155 0.670 300 4.006 24.651 300

βtc
3 0.716 0.128 300 0.701 0.152 300 0.703 0.146 300 0.712 0.201 300

d113 4.394 8.787 300 2.660 3.275 297 2.681 2.138 300 21.067 295.349 300

σ2
3 6.469 21.420 300 4.354 13.360 295 5.572 17.318 300 21.356 249.573 299

φ1
3 0.878 0.074 300 0.868 0.089 294 0.860 0.109 300 0.897 0.227 300

φ2
3 0.325 0.099 300 0.287 0.069 294 0.286 0.064 300 0.345 0.399 299

φ3
3 0.208 0.124 300 0.154 0.040 296 0.149 0.032 300 0.243 0.448 300

π1 0.524 0.320 300 0.493 0.107 300 999 999 0 0.521 0.418 300

π2 0.483 0.076 300 0.476 0.083 300 999 999 0 0.520 0.455 300

π3 0.524 0.326 300 0.499 0.105 300 999 999 0 0.514 0.217 300
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Table A.4: EM2nd variant simulation results for NCON

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 12.1191 1.6870 2.9249 135.3773 2334.3439 0.9533 0.2750 0.0881 0.8867 0.2701 0.0922 0.8867 0.3095 0.2513 0.8900 0.9295 0.9772 0.8508 0.9225 0.8508 0.9225 0.8546 0.9254

βc1
1 -1.0134 0.2626 0.0691 3.3359 57.3110 0.9533 0.0139 0.0073 0.9100 0.0152 0.0124 0.9167 0.0170 0.0396 0.8800 0.9295 0.9772 0.8776 0.9424 0.8854 0.9479 0.8432 0.9168

βc2
1 -0.6978 0.3406 0.1187 33.2953 575.3343 0.9500 0.0144 0.0071 0.8967 0.0158 0.0128 0.9067 0.0175 0.0467 0.8800 0.9253 0.9747 0.8622 0.9311 0.8738 0.9396 0.8432 0.9168

β
f11
1 2.0758 0.3922 0.1595 54.5098 940.7595 0.9600 0.0634 0.0308 0.9133 0.0697 0.0561 0.9233 0.0790 0.2169 0.9033 0.9378 0.9822 0.8815 0.9452 0.8932 0.9534 0.8699 0.9368

β
f21
1 -2.3915 0.2905 0.0845 91.6237 1582.1815 0.9900 0.0774 0.0417 0.9033 0.0842 0.0687 0.9200 0.1160 0.6517 0.8967 0.9787 1.0013 0.8699 0.9368 0.8893 0.9507 0.8622 0.9311

β
f22
1 -1.0868 0.1418 0.0203 140.2946 2423.8176 0.9867 0.0763 0.0391 0.9267 0.0836 0.0684 0.9500 0.0953 0.3055 0.8967 0.9737 0.9997 0.8972 0.9562 0.9253 0.9747 0.8622 0.9311

βtc
1 0.4920 0.1174 0.0139 47.3091 817.6708 0.9400 0.0157 0.0070 0.9333 0.0147 0.0086 0.9100 0.0231 0.0771 0.9400 0.9131 0.9669 0.9051 0.9616 0.8776 0.9424 0.9131 0.9669

d111 1.5314 0.5786 0.3632 91.1720 1558.1570 0.9433 0.5283 0.1480 0.8700 0.5717 0.6120 0.8833 1.0155 1.9561 0.8967 0.9172 0.9695 0.8319 0.9081 0.8470 0.9197 0.8622 0.9311

σ2
1 3.3973 11.5428 137.6347 96.4633 1655.5610 0.9433 0.2374 0.1311 0.9367 0.3133 0.9024 0.9100 0.9780 3.2067 0.9400 0.9172 0.9695 0.9091 0.9642 0.8776 0.9424 0.9131 0.9669

φ1
1 0.5909 0.0846 0.0072 123.5390 2135.1262 0.9533 0.0451 0.0167 0.9033 0.0421 0.0049 0.9000 0.1146 0.6735 0.9000 0.9295 0.9772 0.8699 0.9368 0.8661 0.9340 0.8661 0.9340

φ2
1 0.0975 0.0577 0.0033 288.0189 4979.0959 0.9900 0.0535 0.0203 0.8767 0.0485 0.0065 0.9067 0.1061 0.5043 0.9067 0.9787 1.0013 0.8395 0.9139 0.8738 0.9396 0.8738 0.9396

φ3
1 -0.0427 0.0641 0.0042 106.2170 1835.5316 0.9867 0.0503 0.0223 0.9100 0.0450 0.0053 0.9333 0.1296 0.7251 0.9233 0.9737 0.9997 0.8776 0.9424 0.9051 0.9616 0.8932 0.9534

β0
2 -6.0092 0.2880 0.0830 1.1988 14.2752 0.9633 0.2788 0.1115 0.9133 0.2808 0.0367 0.9200 0.5352 3.7396 0.8900 0.9421 0.9846 0.8815 0.9452 0.8893 0.9507 0.8546 0.9254

βc1
2 1.4991 0.0130 0.0002 0.0355 0.3086 0.9800 0.0146 0.0176 0.9433 0.0127 0.0010 0.9533 0.0553 0.6159 0.9433 0.9642 0.9958 0.9172 0.9695 0.9295 0.9772 0.9172 0.9695

βc2
2 2.9997 0.0141 0.0002 0.0867 1.1804 0.9800 0.0148 0.0115 0.9300 0.0133 0.0011 0.9300 0.0374 0.3027 0.9167 0.9642 0.9958 0.9011 0.9589 0.9011 0.9589 0.8854 0.9479

β
f11
2 3.9999 0.0627 0.0039 0.3039 3.8733 0.9733 0.0642 0.0389 0.9433 0.0585 0.0044 0.9400 0.1125 0.4887 0.9267 0.9551 0.9916 0.9172 0.9695 0.9131 0.9669 0.8972 0.9562

β
f21
2 -5.0006 0.0707 0.0050 0.3698 4.7402 0.9867 0.0787 0.0616 0.9433 0.0705 0.0057 0.9433 0.1996 1.6350 0.9200 0.9737 0.9997 0.9172 0.9695 0.9172 0.9695 0.8893 0.9507

β
f22
2 -2.0013 0.0701 0.0049 0.1970 1.7417 0.9900 0.0821 0.1209 0.9500 0.0701 0.0055 0.9667 0.3588 4.4231 0.9233 0.9787 1.0013 0.9253 0.9747 0.9464 0.9870 0.8932 0.9534

βtc
2 1.5017 0.0151 0.0002 0.0481 0.4841 0.9767 0.0156 0.0112 0.9233 0.0146 0.0018 0.9333 0.0394 0.3752 0.8967 0.9596 0.9938 0.8932 0.9534 0.9051 0.9616 0.8622 0.9311

d112 1.9382 0.5804 0.3406 1.8987 17.5174 0.9700 0.5920 0.4986 0.8967 0.5969 0.1452 0.9267 1.4293 8.4555 0.8500 0.9507 0.9893 0.8622 0.9311 0.8972 0.9562 0.8096 0.8904

σ2
2 1.4884 0.2285 0.0524 1.9060 27.1291 0.9667 0.2168 0.1007 0.8867 0.2243 0.0860 0.9100 1.5213 13.1168 0.8967 0.9464 0.9870 0.8508 0.9225 0.8776 0.9424 0.8622 0.9311

φ1
2 0.5799 0.0449 0.0020 0.7874 12.5734 0.9733 0.0444 0.0094 0.9233 0.0418 0.0031 0.9300 0.0685 0.1581 0.9467 0.9551 0.9916 0.8932 0.9534 0.9011 0.9589 0.9212 0.9721

φ2
2 0.2145 0.0485 0.0024 0.5203 7.8185 0.9900 0.0532 0.0176 0.9333 0.0476 0.0037 0.9567 0.0772 0.0888 0.9500 0.9787 1.0013 0.9051 0.9616 0.9336 0.9797 0.9253 0.9747

φ3
2 -0.0713 0.0459 0.0021 0.1755 1.9132 0.9867 0.0494 0.0145 0.9067 0.0450 0.0033 0.9367 0.0829 0.1980 0.9267 0.9737 0.9997 0.8738 0.9396 0.9091 0.9642 0.8972 0.9562

β0
3 3.1058 1.7028 2.9860 13473.9724 181485.2663 0.9533 0.2815 0.0923 0.8833 0.2818 0.1090 0.8900 0.3188 0.3463 0.8700 0.9295 0.9772 0.8470 0.9197 0.8546 0.9254 0.8319 0.9081

βc1
3 -2.8434 0.8020 0.6677 1422.8205 20153.9881 0.9467 0.0143 0.0104 0.8933 0.0142 0.0087 0.9033 0.0178 0.0390 0.8667 0.9212 0.9721 0.8584 0.9283 0.8699 0.9368 0.8282 0.9051

βc2
3 1.0612 0.3648 0.1368 4377.3866 69808.0190 0.9600 0.0150 0.0118 0.8700 0.0149 0.0096 0.8967 0.0207 0.0687 0.8633 0.9378 0.9822 0.8319 0.9081 0.8622 0.9311 0.8245 0.9022

β
f11
3 5.9239 0.3922 0.1597 4126.5684 44496.7229 0.9700 0.0661 0.0475 0.9200 0.0648 0.0383 0.9033 0.0815 0.1883 0.9200 0.9507 0.9893 0.8893 0.9507 0.8699 0.9368 0.8893 0.9507

β
f21
3 -0.5522 0.8359 0.7220 2789.5902 31439.7435 0.9700 0.0815 0.0687 0.8800 0.0795 0.0566 0.8867 0.0974 0.2432 0.8700 0.9507 0.9893 0.8432 0.9168 0.8508 0.9225 0.8319 0.9081

β
f22
3 -0.2546 0.3074 0.0975 1890.3038 24439.2865 0.9700 0.0804 0.0676 0.9000 0.0787 0.0560 0.9100 0.0908 0.1803 0.9033 0.9507 0.9893 0.8661 0.9340 0.8776 0.9424 0.8699 0.9368

βtc
3 -0.4275 0.3701 0.1422 4809.3874 80092.6282 0.9633 0.0156 0.0075 0.8800 0.0170 0.0077 0.9000 0.0152 0.0187 0.8533 0.9421 0.9846 0.8432 0.9168 0.8661 0.9340 0.8133 0.8934

d113 1.4680 0.5962 0.3729 14156.0218 207531.8606 0.9833 0.5672 0.3141 0.9100 0.5914 0.3849 0.9167 1.2716 5.3498 0.9133 0.9689 0.9978 0.8776 0.9424 0.8854 0.9479 0.8815 0.9452

σ2
3 2.1111 5.2175 27.3910 43237.5838 683846.0801 0.9600 0.2312 0.1341 0.7800 0.3499 0.4620 0.8933 0.4486 1.4205 0.8533 0.9378 0.9822 0.7331 0.8269 0.8584 0.9283 0.8133 0.8934

φ1
3 0.6184 0.0646 0.0042 9659.6218 145145.8277 0.9933 0.0447 0.0116 0.9367 0.0450 0.0179 0.9533 0.0591 0.0761 0.9500 0.9841 1.0025 0.9091 0.9642 0.9295 0.9772 0.9253 0.9747

φ2
3 0.1774 0.0656 0.0043 10376.8712 149325.8317 0.9867 0.0539 0.0234 0.8967 0.0522 0.0222 0.9333 0.0761 0.1518 0.9000 0.9737 0.9997 0.8622 0.9311 0.9051 0.9616 0.8661 0.9340

φ3
3 -0.0424 0.0775 0.0062 4236.8058 58279.9530 0.9800 0.0490 0.0147 0.8867 0.0482 0.0189 0.9100 0.0674 0.0886 0.9000 0.9642 0.9958 0.8508 0.9225 0.8776 0.9424 0.8661 0.9340

π1 0.3415 0.0804 0.0065 0.1941 2.3185 0.9333 0.0470 0.0058 0.9133 0.0639 0.2960 0.9133 0.9051 0.9616 0.8815 0.9452 0.8815 0.9452

π2 0.3335 0.0456 0.0021 0.1859 2.3627 0.9767 0.0473 0.0057 0.9700 0.0654 0.2964 0.9700 0.9596 0.9938 0.9507 0.9893 0.9507 0.9893

π3 0.3250 0.0754 0.0058 0.0633 0.1061 0.9500 0.0460 0.0053 0.9267 0.0474 0.0167 0.9300 0.9253 0.9747 0.8972 0.9562 0.9011 0.9589
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Table A.4 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 391.4766 6469.4134 300 17.2713 1.3344 300 17.2712 1.3300 300 17.2917 1.2867 300

βc1
1 10.6429 158.7745 300 1.4618 0.2395 299 1.4619 0.2402 300 1.4644 0.2479 300

βc2
1 93.2746 1594.6590 300 1.0542 0.3108 300 1.0570 0.3028 300 1.0569 0.3285 300

β
f11
1 153.7443 2607.4510 300 2.9419 0.5596 299 2.9433 0.5688 300 2.9662 0.7325 300

β
f21
1 257.0316 4385.3254 300 3.3919 0.4012 299 3.3992 0.3787 300 3.4792 1.6936 300

β
f22
1 390.1369 6718.2829 300 1.5571 0.1874 299 1.5688 0.1752 300 1.6026 0.7879 300

βtc
1 131.7746 2266.3891 300 0.6999 0.1556 300 0.7010 0.1505 300 0.7100 0.2397 300

d111 253.7556 4318.8508 300 2.6871 0.7240 296 2.8420 1.6342 300 3.9099 5.2337 300

σ2
1 270.6146 4588.7384 300 4.0273 13.5167 297 4.8875 16.5130 300 6.3173 18.3564 299

φ1
1 343.1101 5918.1196 300 0.8548 0.0921 294 0.8439 0.1187 300 1.0065 1.8125 299

φ2
1 798.3859 13801.0930 300 0.2113 0.0671 291 0.2028 0.0544 300 0.3537 1.3928 297

φ3
1 294.4396 5087.7391 300 0.1714 0.0689 293 0.1609 0.0419 300 0.3885 2.0072 299

β0
2 10.8240 39.1395 300 8.5386 0.4140 300 8.5345 0.4065 300 9.1721 9.8947 300

βc1
2 2.1638 0.7444 300 2.1210 0.0219 299 2.1204 0.0184 300 2.2168 1.5871 300

βc2
2 4.4182 3.0395 300 4.2425 0.0200 300 4.2423 0.0199 300 4.2807 0.6220 300

β
f11
2 6.2648 10.4275 300 5.6601 0.0876 299 5.6590 0.0887 300 5.7424 0.9810 300

β
f21
2 7.8150 12.7526 300 7.0773 0.1021 300 7.0746 0.0999 300 7.3471 4.1091 300

β
f22
2 3.1151 4.6820 300 2.8520 0.2246 300 2.8370 0.0988 300 3.5934 12.0998 300

βtc
2 2.1955 1.2284 300 2.1244 0.0214 300 2.1241 0.0213 300 2.1792 0.9247 300

d112 6.5337 48.4847 300 3.2928 1.3988 299 3.2093 0.8870 300 5.6519 23.2645 300

σ2
2 6.6754 75.1159 300 2.1995 0.3482 295 2.1990 0.3785 300 5.7160 36.2145 299

φ1
2 2.8524 34.8123 300 0.8288 0.0612 293 0.8283 0.0629 300 0.8661 0.3929 300

φ2
2 1.6148 21.6614 300 0.3403 0.0656 293 0.3324 0.0612 300 0.3950 0.2169 300

φ3
2 0.5213 5.3011 300 0.1792 0.0526 293 0.1688 0.0390 300 0.2679 0.5446 300

β0
3 37351.1081 503041.9635 300 4.9958 0.8987 300 4.9972 0.9061 300 5.0502 1.1355 300

βc1
3 3947.8452 55862.6917 300 4.1656 0.3888 299 4.1584 0.4073 300 4.1611 0.3948 300

βc2
3 12134.6252 193494.3162 300 1.4929 0.4942 299 1.5019 0.5150 300 1.5058 0.5390 300

β
f11
3 11446.0624 123335.6142 300 8.3813 0.5456 300 8.3806 0.5482 300 8.4014 0.4819 300

β
f21
3 7732.5920 87144.8875 300 0.8189 1.1934 300 0.8185 1.1877 300 0.8425 1.3510 300

β
f22
3 5239.6961 67740.9906 300 0.4358 0.4621 300 0.4336 0.4498 300 0.4581 0.6497 300

βtc
3 13331.3346 222001.3210 300 0.7528 0.2742 300 0.7533 0.2736 300 0.7532 0.2770 300

d113 39238.6426 575238.3391 300 2.6851 1.0076 294 2.7209 1.2010 300 4.6360 14.6916 300

σ2
3 119848.1251 1895489.6778 300 2.7864 5.2817 294 3.1809 7.4712 300 3.4429 8.2913 299

φ1
3 26775.3183 402316.2685 300 0.8834 0.0679 293 0.8847 0.0922 300 0.8988 0.1756 299

φ2
3 28762.8165 413902.4737 300 0.2975 0.0893 292 0.2971 0.0892 300 0.3521 0.4101 299

φ3
3 11743.6303 161540.8181 300 0.1614 0.0557 291 0.1654 0.0940 300 0.2155 0.2471 299

π1 0.8960 6.4055 300 0.5012 0.1106 300 0.5476 0.8067 300

π2 0.8708 6.5285 300 0.4900 0.0622 300 0.5386 0.8025 300

π3 0.5225 0.2585 300 0.4775 0.1051 300 0.4814 0.1018 300

2
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Table A.5: EM1st variant simulation results for constant(nmax=6)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 5.473 6.903 53.547 3774.960 76860.496 0.694 0.863 0.539 0.553 0.935 2.561 0.561 4.803 54.499 0.589 0.665 0.722 0.522 0.583 0.530 0.591 0.558 0.619

βc1
1 -1.835 0.382 0.173 167.038 4140.240 0.403 0.097 0.037 0.330 0.097 0.019 0.342 0.441 6.939 0.464 0.373 0.434 0.301 0.360 0.313 0.372 0.434 0.495

βc2
1 3.022 0.872 0.760 1895.975 52563.732 0.598 0.185 0.121 0.432 0.182 0.095 0.431 1.163 13.114 0.542 0.567 0.628 0.402 0.463 0.401 0.462 0.511 0.572

β
f11
1 -0.141 6.316 41.200 6516.681 171735.976 0.692 0.611 0.403 0.513 0.602 0.313 0.532 3.888 45.422 0.556 0.663 0.720 0.482 0.544 0.501 0.562 0.525 0.586

β
f21
1 1.078 9.547 91.375 5267.889 121422.065 0.569 0.751 0.521 0.425 0.818 2.563 0.429 4.208 38.297 0.442 0.538 0.599 0.395 0.456 0.399 0.460 0.412 0.473

β
f22
1 0.865 10.484 110.446 10026.294 151021.976 0.533 0.876 1.998 0.379 0.923 3.053 0.401 10.737 163.272 0.446 0.502 0.563 0.349 0.409 0.371 0.432 0.416 0.477

βtc
1 1.348 0.448 0.224 300.855 8300.024 0.796 0.224 0.087 0.651 0.222 0.062 0.647 1.363 27.175 0.732 0.771 0.821 0.621 0.680 0.617 0.676 0.704 0.759

d111 4.561 8.252 80.773 1643.542 50703.220 0.740 1.210 3.317 0.575 1.158 1.942 0.562 49.011 969.498 0.647 0.713 0.767 0.544 0.605 0.531 0.592 0.617 0.676

d211 0.949 1.109 1.431 898.779 27473.036 0.926 0.462 0.382 0.728 0.431 0.324 0.732 5.862 69.988 0.784 0.910 0.942 0.700 0.755 0.704 0.759 0.758 0.809

d221 1.286 0.458 0.217 458.879 13760.138 0.954 0.386 0.220 0.857 0.381 0.162 0.903 3.583 78.954 0.866 0.941 0.967 0.835 0.879 0.885 0.921 0.845 0.887

σ2
1 2.035 0.439 0.211 190.374 3683.937 0.936 0.275 0.093 0.771 0.289 0.070 0.819 1.087 13.807 0.750 0.921 0.951 0.745 0.797 0.795 0.843 0.723 0.777

β0
2 10.630 4.947 27.967 5878.932 90967.346 0.878 0.998 3.104 0.704 0.928 1.137 0.728 12.368 241.697 0.729 0.858 0.898 0.675 0.732 0.700 0.755 0.701 0.756

βc1
2 -2.831 0.332 0.139 169.896 3271.352 0.663 0.098 0.038 0.634 0.088 0.025 0.589 0.264 2.059 0.739 0.633 0.692 0.604 0.664 0.558 0.619 0.712 0.766

βc2
2 1.391 0.674 0.491 4277.171 78565.944 0.845 0.192 0.249 0.691 0.195 0.181 0.730 1.206 21.536 0.722 0.822 0.867 0.662 0.719 0.702 0.757 0.694 0.750

β
f11
2 -1.384 4.311 18.734 6479.699 95806.666 0.868 0.636 1.058 0.690 0.660 0.828 0.728 2.870 28.287 0.721 0.847 0.889 0.661 0.718 0.700 0.755 0.693 0.749

β
f21
2 2.784 5.561 30.974 7460.734 147542.486 0.869 0.865 2.826 0.701 0.808 0.906 0.733 10.006 216.671 0.731 0.848 0.890 0.672 0.729 0.705 0.760 0.703 0.758

β
f22
2 2.839 6.571 44.524 14617.551 200783.926 0.853 1.043 4.664 0.670 1.035 3.477 0.695 10.104 217.862 0.688 0.831 0.875 0.641 0.699 0.666 0.723 0.659 0.716

βtc
2 2.312 0.395 0.191 1602.507 45675.791 0.847 0.223 0.086 0.787 0.201 0.076 0.731 0.786 10.108 0.845 0.825 0.869 0.761 0.812 0.703 0.758 0.822 0.867

d112 6.341 8.069 94.712 3069.371 65661.086 0.603 1.306 5.547 0.536 1.444 2.001 0.464 98.233 2733.341 0.618 0.572 0.633 0.505 0.566 0.434 0.495 0.587 0.648

d212 1.243 1.045 1.387 3370.628 72765.168 0.922 0.481 0.970 0.696 0.461 0.356 0.713 19.059 525.300 0.774 0.905 0.939 0.667 0.724 0.685 0.741 0.748 0.800

d222 1.184 0.447 0.207 3384.020 59852.659 0.959 0.387 0.271 0.905 0.336 0.208 0.898 4.035 99.323 0.905 0.947 0.971 0.887 0.923 0.879 0.917 0.887 0.923

σ2
2 1.899 0.382 0.156 418.851 9046.747 0.919 0.274 0.067 0.849 0.253 0.067 0.822 0.619 4.866 0.847 0.902 0.936 0.827 0.871 0.798 0.846 0.825 0.869

β0
3 -4.842 5.592 35.921 61.341 1880.896 0.825 0.871 0.627 0.766 0.619 0.251 0.742 4.780 33.347 0.781 0.801 0.848 0.740 0.792 0.715 0.769 0.755 0.806

βc1
3 -1.098 0.182 0.043 0.123 0.044 0.759 0.098 0.030 0.695 0.093 0.014 0.713 0.297 1.485 0.756 0.732 0.785 0.666 0.723 0.685 0.741 0.729 0.782

βc2
3 3.918 0.304 0.099 0.201 0.104 0.865 0.180 0.133 0.768 0.132 0.054 0.729 1.120 9.954 0.797 0.844 0.886 0.742 0.794 0.701 0.756 0.772 0.822

β
f11
3 4.160 5.103 27.386 0.779 3.447 0.848 0.606 0.442 0.785 0.430 0.178 0.758 4.100 38.864 0.808 0.826 0.870 0.759 0.810 0.731 0.784 0.783 0.832

β
f21
3 -1.852 8.523 72.662 62.084 1880.932 0.737 0.763 0.734 0.671 0.521 0.228 0.644 5.230 39.932 0.692 0.709 0.764 0.642 0.700 0.614 0.673 0.663 0.720

β
f22
3 -1.553 10.332 108.838 336.498 8659.802 0.681 0.883 1.827 0.613 0.582 0.329 0.589 16.350 355.053 0.642 0.652 0.710 0.582 0.643 0.558 0.619 0.612 0.671

βtc
3 0.597 0.291 0.094 0.304 0.098 0.927 0.225 0.072 0.838 0.225 0.040 0.852 0.600 2.456 0.854 0.911 0.943 0.815 0.861 0.830 0.874 0.832 0.876

d113 1.528 3.341 11.272 0.821 1.455 0.892 1.058 1.834 0.773 0.494 0.810 0.760 39.317 604.590 0.822 0.873 0.911 0.747 0.799 0.733 0.786 0.798 0.846

d213 0.814 0.601 0.362 0.547 0.355 0.961 0.453 0.368 0.866 0.327 0.169 0.853 6.887 86.096 0.898 0.949 0.973 0.845 0.887 0.831 0.875 0.879 0.917

d223 1.384 0.439 0.193 0.613 0.271 0.954 0.394 0.206 0.868 0.400 0.124 0.893 1.872 13.079 0.875 0.941 0.967 0.847 0.889 0.874 0.912 0.854 0.895

σ2
3 1.862 0.346 0.132 0.371 0.132 0.955 0.276 0.084 0.865 0.265 0.055 0.884 0.651 4.974 0.842 0.942 0.968 0.844 0.886 0.864 0.904 0.819 0.864

π1 0.324 0.120 0.014 0.051 0.010 0.619 0.047 0.014 0.616 0.382 5.228 0.709 0.589 0.649 0.585 0.646 0.681 0.737

π2 0.369 0.129 0.018 0.051 0.009 0.583 0.048 0.008 0.576 0.173 1.207 0.665 0.552 0.613 0.545 0.606 0.635 0.694

π3 0.306 0.059 0.004 0.047 0.004 0.837 0.047 0.012 0.831 0.315 4.920 0.854 0.814 0.860 0.808 0.854 0.832 0.876
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Table A.5 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 10471.698 213042.106 999 12.026 4.391 989 12.180 7.998 999 22.077 150.546 999

βc1
1 465.230 11475.858 999 2.615 0.531 993 2.610 0.533 999 3.445 19.147 999

βc2
1 5258.871 145696.426 999 4.363 1.020 988 4.370 1.007 999 6.777 36.133 999

β
f11
1 18066.535 476018.958 999 5.912 6.996 990 5.952 6.925 999 14.512 125.842 999

β
f21
1 14608.174 336558.322 999 9.776 9.718 991 10.035 11.813 999 18.668 106.021 999

β
f22
1 27798.300 418603.381 999 11.283 11.453 990 11.396 13.024 999 37.810 452.201 999

βtc
1 835.180 23006.025 999 2.037 0.586 992 2.033 0.559 999 5.074 75.274 999

d111 4558.619 140539.475 999 7.939 13.442 945 7.276 12.812 999 140.403 2687.060 999

d211 2491.755 76149.955 999 2.067 1.572 972 1.912 1.685 999 16.947 193.946 999

d221 1272.768 38140.428 999 2.156 0.749 988 2.114 0.759 999 10.919 218.807 999

σ2
1 529.633 10211.065 999 2.989 0.618 995 2.992 0.625 999 5.184 38.150 999

β0
2 16307.887 252143.171 998 16.717 8.694 996 16.505 4.369 999 47.369 669.346 999

βc1
2 474.588 9067.368 998 4.016 0.448 997 4.015 0.444 999 4.324 5.538 999

βc2
2 11856.871 217769.609 998 2.115 1.018 994 2.112 0.927 999 4.797 59.635 999

β
f11
2 17961.820 265557.560 998 3.904 6.115 991 3.950 5.832 999 9.837 78.455 999

β
f21
2 20682.808 408959.236 998 6.851 9.820 994 6.718 6.599 999 31.691 600.438 999

β
f22
2 40520.982 556534.136 999 8.511 14.344 996 8.413 11.523 999 33.094 603.699 999

βtc
2 4444.458 126604.415 998 3.346 0.488 996 3.337 0.475 999 4.715 27.902 999

d112 8512.203 181999.692 998 10.324 18.340 943 9.899 12.626 999 278.694 7576.077 999

d212 9343.470 201691.016 998 2.397 2.897 981 2.244 1.688 999 53.742 1455.999 999

d222 9380.672 165900.012 999 2.030 0.869 993 1.928 0.826 999 12.035 275.274 999

σ2
2 1162.883 25075.754 998 2.796 0.523 998 2.780 0.548 999 3.645 13.383 999

β0
3 177.851 5213.231 999 10.598 2.449 993 10.374 2.289 999 20.291 91.744 999

βc1
3 1.595 0.250 999 1.580 0.255 990 1.574 0.256 999 2.038 3.994 999

βc2
3 5.576 0.431 999 5.575 0.449 994 5.555 0.426 999 7.709 27.245 999

β
f11
3 6.937 11.598 999 6.673 6.875 988 6.431 6.856 999 15.671 107.585 999

β
f21
3 178.043 5213.397 999 8.702 9.215 990 8.317 9.244 999 20.374 110.446 999

β
f22
3 940.619 24003.001 999 11.232 10.989 994 10.806 10.246 999 53.083 983.861 999

βtc
3 1.239 0.365 999 1.091 0.348 994 1.085 0.328 999 2.091 6.756 999

d113 3.181 6.191 999 4.157 6.707 958 2.571 5.225 999 109.967 1675.751 999

d213 1.955 1.224 999 1.813 1.172 978 1.497 0.920 999 19.555 238.609 999

d223 2.621 0.894 999 2.286 0.712 989 2.252 0.701 999 6.278 36.138 999

σ2
3 2.842 0.539 999 2.752 0.495 996 2.735 0.507 999 3.684 13.671 999

π1 0.484 0.157 999 0.481 0.165 992 1.384 14.471 999

π2 0.546 0.172 999 0.542 0.177 992 0.859 3.315 999

π3 0.453 0.081 999 0.453 0.085 997 1.179 13.620 999
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Table A.6: EM1st variant simulation results for constant(nmax=15)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 7.745 1.859 3.478 1.369 9.787 0.947 0.493 0.317 0.866 0.495 0.288 0.892 1.058 7.409 0.852 0.933 0.961 0.845 0.887 0.873 0.911 0.830 0.874

βc1
1 -1.992 0.099 0.010 0.076 0.331 0.957 0.048 0.008 0.900 0.049 0.006 0.919 0.054 0.064 0.889 0.944 0.970 0.881 0.918 0.902 0.936 0.869 0.908

βc2
1 3.014 0.215 0.047 0.275 3.048 0.958 0.114 0.072 0.852 0.115 0.052 0.887 0.193 0.688 0.827 0.945 0.970 0.830 0.874 0.867 0.906 0.803 0.850

β
f11
1 1.014 1.583 2.507 1.323 16.277 0.955 0.332 0.207 0.848 0.337 0.150 0.880 0.839 6.166 0.839 0.942 0.968 0.825 0.870 0.860 0.900 0.816 0.862

β
f21
1 0.362 2.546 6.538 1.200 8.858 0.946 0.403 0.275 0.863 0.412 0.264 0.887 0.936 5.502 0.853 0.932 0.960 0.841 0.884 0.867 0.906 0.831 0.875

β
f22
1 1.338 2.726 7.502 8.740 154.317 0.952 0.413 0.284 0.848 0.425 0.302 0.862 1.561 24.721 0.832 0.939 0.965 0.825 0.870 0.840 0.883 0.808 0.855

βtc
1 1.495 0.214 0.046 0.388 4.183 0.972 0.192 0.038 0.922 0.190 0.034 0.913 0.238 0.342 0.925 0.962 0.982 0.905 0.939 0.895 0.930 0.908 0.941

d111 1.254 3.723 13.926 2.393 44.195 0.882 0.406 1.810 0.831 0.346 0.899 0.777 21.026 467.933 0.827 0.862 0.902 0.807 0.854 0.751 0.802 0.803 0.850

d211 0.540 0.468 0.221 1.393 31.047 0.965 0.267 0.309 0.914 0.225 0.164 0.893 3.255 73.835 0.902 0.954 0.976 0.896 0.931 0.874 0.912 0.883 0.920

d221 1.171 0.313 0.099 1.181 23.541 0.954 0.303 0.101 0.908 0.295 0.091 0.904 0.778 10.835 0.883 0.941 0.967 0.890 0.926 0.886 0.922 0.863 0.903

σ2
1 1.897 0.151 0.023 0.254 2.003 0.965 0.133 0.020 0.908 0.138 0.018 0.917 0.164 0.776 0.876 0.954 0.976 0.890 0.926 0.900 0.934 0.855 0.896

β0
2 12.452 0.906 0.824 0.773 4.929 0.964 0.474 0.236 0.920 0.432 0.224 0.908 0.821 3.101 0.919 0.952 0.976 0.903 0.937 0.890 0.926 0.902 0.936

βc1
2 -2.991 0.094 0.009 0.061 0.015 0.949 0.048 0.005 0.918 0.047 0.004 0.923 0.056 0.131 0.914 0.935 0.963 0.901 0.935 0.906 0.939 0.896 0.931

βc2
2 1.228 0.188 0.036 0.140 0.078 0.962 0.110 0.056 0.898 0.098 0.052 0.883 0.195 0.692 0.901 0.950 0.974 0.879 0.917 0.863 0.903 0.882 0.919

β
f11
2 -0.971 0.455 0.208 0.395 0.241 0.963 0.322 0.156 0.916 0.286 0.154 0.887 0.553 1.726 0.920 0.951 0.975 0.899 0.933 0.867 0.906 0.903 0.937

β
f21
2 2.959 0.867 0.753 0.667 4.961 0.958 0.388 0.200 0.915 0.344 0.192 0.885 0.627 1.454 0.924 0.945 0.970 0.898 0.932 0.865 0.905 0.907 0.940

β
f22
2 3.839 1.255 1.600 9662.872 256052.361 0.960 0.394 0.230 0.912 0.377 0.691 0.892 0.637 1.506 0.924 0.948 0.972 0.894 0.929 0.873 0.911 0.907 0.940

βtc
2 2.480 0.202 0.041 0.228 0.052 0.967 0.190 0.031 0.936 0.180 0.027 0.920 0.226 0.109 0.943 0.956 0.978 0.921 0.951 0.903 0.937 0.928 0.957

d112 1.351 2.728 7.643 0.555 1.081 0.885 0.356 0.751 0.865 0.348 0.572 0.793 3.126 45.255 0.861 0.865 0.905 0.844 0.886 0.767 0.818 0.839 0.882

d212 0.747 0.432 0.189 0.351 0.229 0.968 0.250 0.123 0.912 0.233 0.122 0.883 0.529 2.833 0.912 0.957 0.979 0.894 0.929 0.863 0.903 0.894 0.929

d222 1.075 0.281 0.080 0.376 0.149 0.952 0.299 0.087 0.932 0.266 0.073 0.902 0.419 0.477 0.916 0.939 0.965 0.916 0.948 0.883 0.920 0.899 0.933

σ2
2 1.805 0.147 0.022 0.167 0.040 0.960 0.132 0.016 0.925 0.130 0.014 0.926 0.148 0.345 0.903 0.948 0.972 0.908 0.941 0.910 0.942 0.884 0.921

β0
3 -6.957 1.187 1.410 3.068 75.239 0.961 0.484 0.360 0.893 0.487 0.274 0.913 1.121 12.120 0.864 0.949 0.973 0.874 0.912 0.895 0.930 0.842 0.885

βc1
3 -1.002 0.052 0.003 0.060 0.013 0.959 0.048 0.006 0.934 0.047 0.004 0.924 0.061 0.295 0.929 0.947 0.971 0.918 0.949 0.907 0.940 0.913 0.945

βc2
3 3.987 0.198 0.039 0.161 0.100 0.961 0.110 0.056 0.875 0.113 0.067 0.894 0.160 0.709 0.854 0.949 0.973 0.854 0.895 0.875 0.913 0.832 0.876

β
f11
3 2.988 1.112 1.237 2.840 75.250 0.954 0.322 0.159 0.877 0.330 0.186 0.886 0.507 3.150 0.875 0.941 0.967 0.856 0.897 0.866 0.906 0.854 0.895

β
f21
3 -1.793 1.894 3.630 110.439 3465.311 0.952 0.397 0.349 0.873 0.397 0.238 0.888 0.902 10.351 0.871 0.939 0.965 0.852 0.893 0.868 0.907 0.850 0.892

β
f22
3 -2.913 1.399 1.966 0.627 1.372 0.957 0.432 0.755 0.881 0.401 0.232 0.899 2.482 43.784 0.874 0.944 0.970 0.861 0.901 0.880 0.918 0.853 0.894

βtc
3 0.512 0.227 0.052 0.256 0.057 0.965 0.191 0.033 0.901 0.203 0.032 0.923 0.236 1.003 0.881 0.954 0.976 0.882 0.919 0.906 0.939 0.861 0.901

d113 1.574 4.293 18.574 0.657 1.851 0.889 0.316 0.458 0.782 0.411 0.953 0.799 1.021 8.610 0.759 0.869 0.908 0.756 0.807 0.774 0.823 0.732 0.785

d213 0.812 0.418 0.175 0.409 0.244 0.955 0.249 0.115 0.845 0.277 0.145 0.890 0.401 1.803 0.820 0.942 0.968 0.822 0.867 0.870 0.909 0.796 0.843

d223 1.368 0.354 0.126 0.479 0.172 0.945 0.302 0.092 0.860 0.340 0.094 0.890 0.344 0.789 0.809 0.931 0.959 0.838 0.881 0.870 0.909 0.784 0.833

σ2
3 1.756 0.133 0.018 0.166 0.038 0.982 0.132 0.016 0.941 0.127 0.014 0.942 0.152 0.380 0.914 0.974 0.990 0.926 0.956 0.927 0.956 0.896 0.931

π1 0.330 0.057 0.003 0.047 0.003 0.913 0.047 0.011 0.915 0.170 3.193 0.929 0.895 0.930 0.898 0.932 0.913 0.945

π2 0.337 0.054 0.003 0.047 0.002 0.927 0.047 0.012 0.926 0.175 3.678 0.932 0.911 0.943 0.910 0.942 0.916 0.948

π3 0.334 0.050 0.002 0.047 0.003 0.948 0.047 0.002 0.946 0.078 0.548 0.950 0.934 0.962 0.932 0.960 0.936 0.963
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Table A.6 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 13.233 26.497 998 11.318 1.199 998 11.315 1.173 998 12.686 19.907 998

βc1
1 2.853 0.841 998 2.821 0.139 998 2.821 0.139 998 2.827 0.150 998

βc2
1 4.582 8.321 998 4.274 0.291 996 4.276 0.303 998 4.436 1.583 998

β
f11
1 4.497 45.120 998 1.947 2.056 997 1.965 2.062 998 3.278 17.142 998

β
f21
1 3.960 24.726 998 1.942 3.264 996 2.004 3.323 998 3.298 15.546 998

β
f22
1 25.693 427.674 998 3.083 3.187 996 3.114 3.292 998 6.170 68.515 998

βtc
1 2.626 11.542 998 2.184 0.292 998 2.183 0.290 998 2.264 0.877 998

d111 7.426 122.581 998 2.253 7.037 989 2.023 5.823 998 59.365 1296.982 998

d211 4.145 86.048 998 1.108 1.033 996 0.999 0.788 998 9.368 204.643 998

d221 4.141 65.224 998 1.872 0.461 998 1.848 0.504 998 3.157 29.994 998

σ2
1 2.931 5.476 998 2.708 0.214 998 2.710 0.216 998 2.799 2.061 998

β0
2 18.188 13.124 998 17.693 0.936 998 17.684 0.922 998 18.231 7.644 998

βc1
2 4.233 0.132 998 4.231 0.133 996 4.231 0.133 998 4.241 0.270 998

βc2
2 1.788 0.296 998 1.769 0.277 998 1.761 0.282 998 1.923 1.834 998

β
f11
2 1.861 0.691 998 1.721 0.564 998 1.677 0.546 998 2.263 4.734 998

β
f21
2 5.017 13.650 998 4.413 1.000 998 4.393 0.951 998 4.846 3.846 998

β
f22
2 26788.048 709727.726 998 5.752 1.069 998 5.786 1.980 998 6.157 3.906 998

βtc
2 3.568 0.277 998 3.549 0.282 998 3.544 0.281 998 3.576 0.292 998

d112 2.467 4.877 998 2.234 4.204 995 2.145 4.168 998 9.863 125.425 998

d212 1.451 0.856 998 1.291 0.647 998 1.243 0.691 998 2.013 7.828 998

d222 1.855 0.534 998 1.748 0.401 998 1.691 0.442 998 2.028 1.207 998

σ2
2 2.596 0.209 998 2.579 0.207 998 2.578 0.209 998 2.613 0.901 998

β0
3 16.786 208.284 997 10.058 1.106 997 10.053 0.967 998 11.655 33.197 998

βc1
3 1.427 0.073 997 1.424 0.074 998 1.423 0.074 998 1.451 0.779 998

βc2
3 5.668 0.218 997 5.649 0.268 998 5.651 0.264 998 5.725 1.772 998

β
f11
3 11.138 208.478 997 4.441 1.263 998 4.450 1.274 998 4.858 8.656 998

β
f21
3 308.002 9605.115 997 3.285 2.229 997 3.275 2.127 998 4.609 28.667 998

β
f22
3 4.841 3.859 997 4.606 2.341 998 4.523 1.441 998 10.192 121.214 998

βtc
3 1.040 0.250 997 0.921 0.263 998 0.941 0.260 998 1.044 2.775 998

d113 2.887 7.943 997 2.258 4.886 991 2.505 6.620 998 4.389 24.496 998

d213 1.639 0.842 997 1.376 0.594 997 1.398 0.685 998 1.808 4.960 998

d223 2.360 0.643 997 2.123 0.506 997 2.154 0.559 998 2.270 2.129 998

σ2
3 2.528 0.192 997 2.511 0.187 998 2.509 0.189 998 2.553 0.988 998

π1 0.485 0.077 999 0.485 0.080 995 0.822 8.836 998

π2 0.494 0.075 999 0.495 0.080 997 0.845 10.181 998

π3 0.490 0.068 999 0.490 0.069 996 0.570 1.501 998
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Table A.7: EM1st variant simulation results for non-constant(nmax=6)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 7.880 0.465 0.217 0.591 0.145 0.981 0.440 0.049 0.933 0.444 0.049 0.942 0.452 0.128 0.920 0.973 0.990 0.917 0.948 0.927 0.957 0.903 0.937

βc1
1 -1.992 0.087 0.008 0.114 0.028 0.984 0.082 0.009 0.938 0.084 0.009 0.939 0.082 0.024 0.906 0.977 0.992 0.923 0.953 0.924 0.954 0.887 0.924

βc2
1 3.000 0.096 0.009 0.122 0.030 0.983 0.088 0.010 0.925 0.090 0.010 0.941 0.088 0.025 0.891 0.975 0.991 0.909 0.942 0.926 0.956 0.871 0.911

β
f11
1 1.004 0.258 0.067 0.326 0.073 0.982 0.238 0.025 0.918 0.243 0.024 0.936 0.238 0.060 0.905 0.974 0.991 0.901 0.935 0.920 0.951 0.886 0.923

β
f21
1 0.585 0.319 0.102 0.406 0.092 0.976 0.300 0.032 0.924 0.305 0.031 0.934 0.300 0.081 0.902 0.967 0.986 0.908 0.941 0.918 0.949 0.884 0.921

β
f22
1 1.591 0.311 0.097 0.399 0.088 0.985 0.295 0.031 0.929 0.301 0.030 0.944 0.295 0.075 0.902 0.978 0.993 0.913 0.946 0.929 0.959 0.884 0.921

βtc
1 1.496 0.206 0.043 0.256 0.055 0.983 0.204 0.031 0.932 0.201 0.029 0.937 0.222 0.075 0.917 0.975 0.991 0.916 0.947 0.921 0.952 0.900 0.934

d111 0.943 0.345 0.122 0.500 0.182 0.954 0.358 0.106 0.923 0.340 0.091 0.888 0.431 0.328 0.892 0.941 0.968 0.906 0.940 0.868 0.908 0.873 0.912

d211 0.480 0.247 0.061 0.363 0.122 0.978 0.270 0.072 0.941 0.247 0.057 0.934 0.331 0.238 0.914 0.969 0.987 0.926 0.956 0.918 0.949 0.896 0.932

d221 1.157 0.333 0.113 0.471 0.163 0.954 0.342 0.096 0.924 0.328 0.086 0.896 0.403 0.284 0.890 0.941 0.968 0.908 0.941 0.877 0.916 0.870 0.910

σ2
1 1.809 0.254 0.073 0.344 0.088 0.954 0.243 0.040 0.901 0.252 0.039 0.902 0.235 0.086 0.863 0.941 0.968 0.883 0.920 0.884 0.921 0.841 0.885

β0
2 12.504 0.439 0.192 0.569 0.138 0.985 0.440 0.050 0.951 0.427 0.046 0.942 0.475 0.150 0.940 0.978 0.993 0.938 0.965 0.927 0.957 0.925 0.955

βc1
2 -3.001 0.081 0.007 0.109 0.026 0.982 0.082 0.010 0.947 0.080 0.009 0.941 0.087 0.029 0.938 0.974 0.991 0.933 0.961 0.926 0.956 0.923 0.953

βc2
2 1.200 0.086 0.007 0.115 0.027 0.978 0.088 0.010 0.948 0.086 0.009 0.948 0.094 0.029 0.932 0.969 0.987 0.934 0.962 0.934 0.962 0.916 0.947

β
f11
2 -1.010 0.237 0.056 0.311 0.067 0.985 0.238 0.026 0.944 0.232 0.024 0.943 0.251 0.072 0.919 0.978 0.993 0.929 0.959 0.928 0.958 0.902 0.936

β
f21
2 3.010 0.304 0.093 0.391 0.090 0.980 0.299 0.033 0.941 0.291 0.030 0.935 0.315 0.090 0.934 0.972 0.989 0.926 0.956 0.919 0.950 0.918 0.949

β
f22
2 4.008 0.298 0.089 0.384 0.089 0.984 0.294 0.032 0.944 0.288 0.030 0.944 0.308 0.085 0.925 0.977 0.992 0.929 0.959 0.929 0.959 0.909 0.942

βtc
2 2.506 0.198 0.039 0.244 0.054 0.967 0.202 0.031 0.935 0.192 0.029 0.932 0.228 0.078 0.936 0.956 0.978 0.919 0.950 0.916 0.947 0.920 0.951

d112 0.865 0.339 0.116 0.457 0.163 0.955 0.354 0.100 0.927 0.314 0.088 0.891 0.460 0.335 0.908 0.942 0.968 0.911 0.944 0.871 0.911 0.889 0.926

d212 0.687 0.259 0.067 0.353 0.129 0.961 0.266 0.070 0.926 0.245 0.064 0.911 0.334 0.213 0.907 0.948 0.973 0.910 0.943 0.893 0.929 0.888 0.925

d222 1.061 0.319 0.103 0.429 0.158 0.938 0.335 0.095 0.921 0.302 0.084 0.885 0.432 0.314 0.905 0.923 0.953 0.904 0.938 0.865 0.905 0.886 0.923

σ2
2 1.728 0.248 0.066 0.329 0.090 0.955 0.243 0.041 0.910 0.240 0.039 0.908 0.246 0.095 0.876 0.942 0.968 0.892 0.928 0.889 0.926 0.855 0.896

β0
3 -6.983 0.456 0.208 0.582 0.141 0.975 0.440 0.049 0.936 0.439 0.048 0.936 0.456 0.139 0.912 0.965 0.985 0.920 0.951 0.920 0.951 0.894 0.930

βc1
3 -0.999 0.086 0.007 0.110 0.027 0.980 0.082 0.010 0.938 0.081 0.009 0.943 0.086 0.026 0.914 0.972 0.989 0.923 0.953 0.928 0.958 0.896 0.932

βc2
3 4.004 0.089 0.008 0.118 0.029 0.983 0.089 0.010 0.941 0.087 0.010 0.938 0.093 0.028 0.922 0.975 0.991 0.926 0.956 0.923 0.953 0.905 0.939

β
f11
3 3.002 0.241 0.058 0.310 0.067 0.981 0.239 0.026 0.939 0.233 0.024 0.933 0.251 0.075 0.935 0.973 0.990 0.924 0.954 0.917 0.948 0.919 0.950

β
f21
3 -2.020 0.308 0.095 0.393 0.091 0.971 0.300 0.032 0.935 0.294 0.031 0.942 0.313 0.087 0.917 0.960 0.982 0.919 0.950 0.927 0.957 0.900 0.934

β
f22
3 -3.010 0.287 0.082 0.384 0.088 0.981 0.295 0.032 0.953 0.289 0.030 0.953 0.307 0.084 0.937 0.973 0.990 0.940 0.967 0.940 0.967 0.921 0.952

βtc
3 0.503 0.219 0.048 0.272 0.056 0.979 0.203 0.031 0.914 0.215 0.030 0.942 0.203 0.059 0.888 0.970 0.988 0.896 0.932 0.927 0.957 0.868 0.908

d113 1.173 0.405 0.165 0.569 0.209 0.951 0.350 0.098 0.871 0.389 0.105 0.898 0.351 0.206 0.822 0.938 0.965 0.850 0.893 0.879 0.917 0.797 0.846

d213 0.800 0.308 0.095 0.436 0.144 0.978 0.266 0.071 0.879 0.302 0.074 0.927 0.255 0.124 0.827 0.969 0.987 0.858 0.899 0.911 0.944 0.803 0.851

d223 1.372 0.387 0.151 0.543 0.184 0.954 0.339 0.096 0.880 0.378 0.098 0.908 0.327 0.185 0.817 0.941 0.968 0.859 0.900 0.889 0.926 0.793 0.842

σ2
3 1.682 0.256 0.070 0.321 0.086 0.947 0.245 0.041 0.904 0.233 0.039 0.881 0.258 0.100 0.899 0.933 0.961 0.885 0.922 0.860 0.901 0.880 0.918

π1 0.332 0.048 0.002 0.047 0.002 0.947 0.047 0.002 0.947 0.047 0.002 0.947 0.933 0.961 0.933 0.961 0.933 0.961

π2 0.334 0.047 0.002 0.047 0.002 0.960 0.047 0.002 0.960 0.047 0.002 0.960 0.947 0.972 0.947 0.972 0.947 0.972

π3 0.334 0.046 0.002 0.047 0.002 0.961 0.047 0.002 0.961 0.047 0.002 0.961 0.948 0.973 0.948 0.973 0.948 0.973
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Table A.7 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 11.271 0.655 964 11.211 0.654 964 11.212 0.653 964 11.219 0.655 964

βc1
1 2.836 0.122 964 2.827 0.123 964 2.827 0.122 964 2.827 0.123 964

βc2
1 4.258 0.136 964 4.250 0.136 964 4.251 0.136 964 4.251 0.136 964

β
f11
1 1.704 0.326 964 1.576 0.327 964 1.583 0.324 964 1.581 0.334 964

β
f21
1 1.452 0.330 964 1.223 0.302 964 1.233 0.300 964 1.231 0.340 964

β
f22
1 2.525 0.403 964 2.400 0.412 964 2.406 0.410 964 2.407 0.419 964

βtc
1 2.238 0.282 964 2.192 0.284 964 2.190 0.282 964 2.213 0.294 964

d111 1.941 0.655 964 1.693 0.473 964 1.638 0.536 964 1.902 0.805 964

d211 1.240 0.414 964 1.046 0.297 964 0.986 0.324 964 1.222 0.607 964

d221 2.106 0.609 964 1.912 0.462 964 1.874 0.524 964 2.081 0.659 964

σ2
1 2.738 0.387 964 2.648 0.358 964 2.652 0.372 964 2.652 0.351 964

β0
2 17.757 0.620 964 17.725 0.619 964 17.723 0.619 964 17.737 0.619 964

βc1
2 4.255 0.115 964 4.250 0.115 964 4.250 0.115 964 4.252 0.115 964

βc2
2 1.729 0.121 964 1.716 0.121 964 1.715 0.121 964 1.719 0.122 964

β
f11
2 1.685 0.301 964 1.581 0.302 964 1.573 0.304 964 1.605 0.316 964

β
f21
2 4.401 0.421 964 4.338 0.422 964 4.334 0.421 964 4.353 0.424 964

β
f22
2 5.773 0.414 964 5.728 0.417 964 5.725 0.416 964 5.738 0.419 964

βtc
2 3.611 0.275 964 3.589 0.276 964 3.584 0.277 964 3.606 0.277 964

d112 1.775 0.616 964 1.599 0.459 964 1.505 0.525 964 1.876 0.833 964

d212 1.395 0.462 964 1.241 0.342 964 1.190 0.388 964 1.410 0.543 964

d222 1.927 0.589 964 1.787 0.442 964 1.718 0.503 964 2.029 0.729 964

σ2
2 2.616 0.383 964 2.538 0.347 964 2.533 0.363 964 2.552 0.338 964

β0
3 10.014 0.640 964 9.951 0.640 964 9.951 0.640 964 9.963 0.643 964

βc1
3 1.448 0.119 964 1.432 0.120 964 1.431 0.120 964 1.435 0.120 964

βc2
3 5.672 0.126 964 5.668 0.126 964 5.668 0.126 964 5.669 0.126 964

β
f11
3 4.335 0.335 964 4.297 0.336 964 4.295 0.336 964 4.307 0.340 964

β
f21
3 3.070 0.420 964 2.979 0.419 964 2.974 0.420 964 2.996 0.424 964

β
f22
3 4.396 0.396 964 4.336 0.399 964 4.333 0.399 964 4.348 0.403 964

βtc
3 1.066 0.238 964 0.930 0.245 964 0.952 0.237 964 0.936 0.265 964

d113 2.306 0.764 964 1.946 0.556 964 1.981 0.633 964 1.998 0.603 964

d213 1.675 0.532 964 1.372 0.412 964 1.416 0.454 964 1.379 0.431 964

d223 2.470 0.700 964 2.172 0.546 964 2.206 0.607 964 2.199 0.560 964

σ2
3 2.547 0.393 964 2.477 0.358 964 2.466 0.375 964 2.502 0.348 964

π1 0.487 0.066 999 0.487 0.066 964 0.487 0.066 964

π2 0.491 0.065 999 0.491 0.065 964 0.491 0.065 964

π3 0.490 0.065 999 0.490 0.065 964 0.490 0.065 964
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Table A.8: EM2nd variant simulation results for constant(nmax=6)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 7.862 1.620 2.625 368.727 11627.008 0.965 0.556 0.199 0.870 0.552 0.180 0.872 0.712 1.152 0.849 0.954 0.976 0.849 0.891 0.851 0.893 0.827 0.871

βc1
1 -1.993 0.121 0.015 0.123 0.084 0.956 0.088 0.011 0.902 0.089 0.011 0.912 0.095 0.152 0.889 0.943 0.969 0.884 0.920 0.894 0.930 0.870 0.908

βc2
1 3.005 0.380 0.144 7150.563 226000.074 0.954 0.142 0.056 0.828 0.143 0.049 0.850 0.179 0.287 0.805 0.941 0.967 0.805 0.851 0.828 0.872 0.780 0.830

β
f11
1 1.013 1.405 1.974 297.964 9396.971 0.958 0.376 0.140 0.879 0.384 0.124 0.898 0.457 0.586 0.873 0.946 0.970 0.859 0.899 0.879 0.917 0.852 0.894

β
f21
1 0.432 2.019 4.103 0.800 3.078 0.943 0.454 0.163 0.850 0.459 0.135 0.876 0.598 1.122 0.860 0.929 0.957 0.828 0.872 0.856 0.896 0.838 0.882

β
f22
1 1.455 2.416 5.860 218.351 6877.149 0.934 0.457 0.164 0.856 0.468 0.142 0.864 0.596 1.058 0.835 0.919 0.949 0.834 0.878 0.843 0.885 0.812 0.858

βtc
1 1.502 0.219 0.048 0.260 0.088 0.966 0.203 0.034 0.931 0.200 0.035 0.922 0.232 0.122 0.937 0.955 0.977 0.915 0.947 0.905 0.939 0.922 0.952

d111 1.020 1.803 3.251 46.416 1444.899 0.888 0.389 0.566 0.809 0.372 0.683 0.755 0.989 6.090 0.805 0.868 0.908 0.785 0.833 0.728 0.782 0.780 0.830

d211 0.521 0.477 0.228 431.816 13634.796 0.966 0.281 0.143 0.901 0.250 0.170 0.886 0.484 1.674 0.900 0.955 0.977 0.882 0.920 0.866 0.906 0.881 0.919

d221 1.153 0.367 0.137 0.490 0.334 0.935 0.338 0.104 0.889 0.328 0.101 0.874 0.454 0.828 0.872 0.920 0.950 0.870 0.908 0.853 0.895 0.851 0.893

σ2
1 1.883 0.268 0.072 0.358 0.113 0.976 0.251 0.045 0.919 0.260 0.045 0.931 0.251 0.209 0.868 0.967 0.985 0.902 0.936 0.915 0.947 0.847 0.889

β0
2 12.440 0.664 0.444 368.597 11627.012 0.957 0.550 0.140 0.908 0.498 0.158 0.891 0.733 0.686 0.918 0.944 0.970 0.890 0.926 0.872 0.910 0.901 0.935

βc1
2 -2.995 0.100 0.010 0.113 0.027 0.969 0.088 0.012 0.926 0.084 0.009 0.916 0.097 0.053 0.917 0.958 0.980 0.910 0.942 0.899 0.933 0.900 0.934

βc2
2 1.211 0.199 0.040 7150.516 226000.076 0.945 0.142 0.042 0.897 0.127 0.045 0.866 0.196 0.198 0.891 0.931 0.959 0.878 0.916 0.845 0.887 0.872 0.910

β
f11
2 -0.948 0.455 0.210 297.786 9396.976 0.971 0.374 0.110 0.918 0.338 0.117 0.876 0.505 0.347 0.923 0.961 0.981 0.901 0.935 0.856 0.896 0.906 0.940

β
f21
2 2.938 1.030 1.064 0.601 0.341 0.962 0.450 0.124 0.920 0.407 0.139 0.903 0.604 0.444 0.919 0.950 0.974 0.903 0.937 0.885 0.921 0.902 0.936

β
f22
2 3.878 1.258 1.598 218.236 6877.152 0.958 0.450 0.139 0.908 0.413 0.166 0.884 0.596 0.404 0.914 0.946 0.970 0.890 0.926 0.864 0.904 0.897 0.931

βtc
2 2.496 0.208 0.043 0.244 0.053 0.966 0.202 0.034 0.942 0.191 0.029 0.919 0.239 0.120 0.936 0.955 0.977 0.928 0.956 0.902 0.936 0.921 0.951

d112 1.088 1.964 3.891 46.282 1444.899 0.881 0.361 0.270 0.833 0.358 0.420 0.760 0.554 1.181 0.840 0.861 0.901 0.810 0.856 0.734 0.786 0.817 0.863

d212 0.725 0.385 0.149 431.772 13634.797 0.954 0.276 0.100 0.885 0.251 0.104 0.861 0.401 0.419 0.899 0.941 0.967 0.865 0.905 0.840 0.882 0.880 0.918

d222 1.068 0.331 0.111 0.436 0.153 0.951 0.336 0.105 0.914 0.302 0.084 0.883 0.457 0.524 0.879 0.938 0.964 0.897 0.931 0.863 0.903 0.859 0.899

σ2
2 1.781 0.251 0.063 0.326 0.090 0.970 0.249 0.045 0.930 0.244 0.039 0.928 0.260 0.124 0.903 0.959 0.981 0.914 0.946 0.912 0.944 0.885 0.921

β0
3 -6.961 0.979 0.961 0.745 0.329 0.969 0.560 0.206 0.903 0.532 0.144 0.896 0.855 3.420 0.898 0.958 0.980 0.885 0.921 0.877 0.915 0.879 0.917

βc1
3 -1.000 0.092 0.008 0.114 0.027 0.969 0.088 0.011 0.941 0.085 0.009 0.934 0.098 0.082 0.926 0.958 0.980 0.926 0.956 0.919 0.949 0.910 0.942

βc2
3 3.995 0.166 0.028 0.198 0.083 0.956 0.144 0.058 0.883 0.136 0.042 0.876 0.202 0.384 0.865 0.943 0.969 0.863 0.903 0.856 0.896 0.844 0.886

β
f11
3 2.968 0.724 0.525 0.506 0.168 0.957 0.383 0.153 0.895 0.366 0.091 0.885 0.623 2.856 0.895 0.944 0.970 0.876 0.914 0.865 0.905 0.876 0.914

β
f21
3 -1.949 1.370 1.880 0.630 0.309 0.953 0.456 0.169 0.879 0.441 0.116 0.885 0.702 3.199 0.854 0.940 0.966 0.859 0.899 0.865 0.905 0.832 0.876

β
f22
3 -2.941 1.512 2.291 0.634 0.460 0.955 0.462 0.182 0.886 0.444 0.126 0.901 0.721 3.134 0.886 0.942 0.968 0.866 0.906 0.882 0.920 0.866 0.906

βtc
3 0.500 0.228 0.052 0.270 0.056 0.973 0.205 0.035 0.901 0.214 0.031 0.925 0.229 0.295 0.886 0.963 0.983 0.882 0.920 0.909 0.941 0.866 0.906

d113 1.069 1.262 1.610 0.556 0.555 0.904 0.409 0.558 0.820 0.363 0.329 0.807 1.677 13.759 0.796 0.886 0.922 0.796 0.844 0.783 0.831 0.771 0.821

d213 0.790 0.327 0.107 0.435 0.178 0.965 0.294 0.172 0.876 0.288 0.088 0.890 0.540 2.330 0.866 0.954 0.976 0.856 0.896 0.871 0.909 0.845 0.887

d223 1.360 0.381 0.147 0.527 0.181 0.946 0.345 0.106 0.889 0.375 0.099 0.899 0.446 1.751 0.837 0.932 0.960 0.870 0.908 0.880 0.918 0.814 0.860

σ2
3 1.736 0.245 0.060 0.319 0.091 0.973 0.250 0.044 0.950 0.239 0.039 0.931 0.267 0.148 0.911 0.963 0.983 0.936 0.964 0.915 0.947 0.893 0.929

π1 0.331 0.054 0.003 1310.866 41430.963 0.923 0.047 0.002 0.918 0.199 4.704 0.928 0.906 0.940 0.901 0.935 0.912 0.944

π2 0.336 0.052 0.003 1310.866 41430.963 0.942 0.047 0.002 0.934 0.198 4.704 0.940 0.928 0.956 0.919 0.949 0.925 0.955

π3 0.333 0.047 0.002 0.047 0.002 0.956 0.047 0.002 0.955 0.049 0.036 0.956 0.943 0.969 0.942 0.968 0.943 0.969
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Table A.8 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 1031.271 32227.539 1000 11.3645 1.53251 997 11.36 1.552 1000 11.59544 2.9174 1000

βc1
1 2.846 0.207 999 2.82935 0.16971 999 2.8296 0.1689 1000 2.8419 0.3798 1000

βc2
1 19823.683 626428.617 1000 4.28143 0.43917 997 4.2819 0.4381 1000 4.32955 0.694 1000

β
f11
1 826.642 26046.573 1000 1.9549 1.84795 999 1.9725 1.8334 1000 2.13023 2.3893 1000

β
f21
1 2.808 8.850 999 1.96253 2.54854 996 1.9702 2.5296 1000 2.31438 3.9477 1000

β
f22
1 606.750 19062.085 1000 3.04032 2.80983 997 3.0767 2.8783 1000 3.36431 3.9896 1000

βtc
1 2.254 0.316 999 2.20119 0.29175 998 2.1988 0.2973 1000 2.23949 0.345 1000

d111 129.199 4004.966 1000 1.89475 2.93867 993 1.7847 3.1686 1000 3.52181 16.99 1000

d211 1197.163 37793.024 1000 1.12651 0.69877 995 1.0405 0.7866 1000 1.67507 4.6402 1000

d221 2.148 1.007 999 1.90387 0.51509 999 1.8684 0.5845 1000 2.21002 2.2109 1000

σ2
1 2.851 0.428 999 2.75481 0.37797 1000 2.7591 0.3938 1000 2.77913 0.5745 1000

β0
2 1037.380 32227.345 1000 17.6651 0.92829 997 17.654 0.9166 1000 17.78676 1.3339 1000

βc1
2 4.249 0.140 999 4.2439 0.13887 999 4.2424 0.1417 1000 4.2472 0.1395 1000

βc2
2 19821.128 626428.698 1000 1.761 0.28064 997 1.751 0.2873 1000 1.83694 0.4806 1000

β
f11
2 826.059 26046.589 1000 1.76788 0.50566 999 1.7121 0.5135 1000 2.05449 0.933 1000

β
f21
2 4.649 1.203 999 4.45811 1.08771 998 4.4318 1.08 1000 4.6822 1.3348 1000

β
f22
2 609.201 19062.008 1000 5.80842 1.10214 999 5.7923 1.1041 1000 5.97656 1.2313 1000

βtc
2 3.599 0.290 999 3.5769 0.28939 999 3.5712 0.2916 1000 3.60623 0.3096 1000

d112 128.930 4004.964 1000 1.89562 2.72047 992 1.8461 3.0022 1000 2.41045 4.1642 1000

d212 1197.219 37793.022 1000 1.30891 0.53975 995 1.2467 0.5991 1000 1.61182 1.1535 1000

d222 1.949 0.587 999 1.79669 0.47441 997 1.7271 0.5187 1000 2.09723 1.3465 1000

σ2
2 2.683 0.382 999 2.61523 0.35396 1000 2.6083 0.3673 1000 2.64002 0.3744 1000

β0
3 10.148 0.982 1000 10.0348 0.93495 1000 10.019 0.8885 1000 10.6009 9.0534 1000

βc1
3 1.451 0.128 1000 1.43589 0.12765 1000 1.4345 0.1279 1000 1.44915 0.206 1000

βc2
3 5.681 0.239 1000 5.6664 0.23411 1000 5.6637 0.2348 1000 5.73461 0.7343 1000

β
f11
3 4.498 0.793 1000 4.39873 0.79207 999 4.3783 0.7725 1000 4.92737 7.7496 1000

β
f21
3 3.527 1.640 1000 3.28044 1.55334 999 3.2513 1.5414 1000 3.88106 8.8708 1000

β
f22
3 4.790 1.909 1000 4.59747 1.62388 999 4.5705 1.619 1000 5.1874 8.6269 1000

βtc
3 1.062 0.244 1000 0.93594 0.24805 1000 0.9509 0.2413 1000 0.99803 0.8242 1000

d113 2.177 2.340 1000 1.97828 2.28995 997 1.8207 1.9993 1000 5.50228 38.096 1000

d213 1.667 0.617 1000 1.42085 0.57993 999 1.3837 0.4977 1000 2.09544 6.4062 1000

d223 2.429 0.686 1000 2.1658 0.54493 1000 2.1865 0.6002 1000 2.46702 4.7945 1000

σ2
3 2.617 0.384 1000 2.55446 0.34415 1000 2.5435 0.3605 1000 2.58882 0.4067 1000

π1 3633.821 114838.650 1000 0.48643 0.07424 999 0.9049 13.027 1000

π2 3633.828 114838.650 1000 0.49302 0.07277 999 0.90687 13.027 1000

π3 0.489 0.065 1000 0.48902 0.06521 1000 0.49317 0.1065 1000
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Table A.9: EM2nd variant simulation results for constant(nmax=15)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 7.921 0.527 0.278 0.643 0.200 0.966 0.453 0.110 0.895 0.463 0.084 0.910 0.565 2.109 0.875 0.955 0.977 0.876 0.914 0.892 0.928 0.855 0.896

βc1
1 -1.998 0.048 0.002 0.062 0.014 0.981 0.047 0.005 0.938 0.048 0.004 0.948 0.048 0.071 0.905 0.973 0.989 0.923 0.953 0.934 0.962 0.887 0.923

βc2
1 3.001 0.137 0.019 0.160 0.052 0.968 0.108 0.028 0.865 0.112 0.023 0.902 0.131 0.469 0.831 0.957 0.979 0.844 0.886 0.884 0.920 0.808 0.854

β
f11
1 0.979 0.369 0.137 0.431 0.113 0.960 0.301 0.072 0.876 0.316 0.051 0.896 0.369 1.457 0.853 0.948 0.972 0.856 0.896 0.877 0.915 0.831 0.875

β
f21
1 0.618 0.466 0.217 7.832 229.379 0.972 0.385 0.089 0.878 0.406 0.077 0.898 0.456 1.368 0.843 0.962 0.982 0.858 0.898 0.879 0.917 0.820 0.866

β
f22
1 1.589 0.423 0.179 0.504 0.153 0.967 0.351 0.074 0.883 0.369 0.061 0.908 0.403 0.913 0.862 0.956 0.978 0.863 0.903 0.890 0.926 0.841 0.883

βtc
1 1.503 0.182 0.033 0.237 0.054 0.980 0.190 0.030 0.944 0.187 0.028 0.943 0.212 0.098 0.936 0.971 0.989 0.930 0.958 0.929 0.957 0.921 0.951

d111 0.847 0.280 0.102 0.369 0.144 0.888 0.269 0.085 0.852 0.244 0.072 0.786 0.359 0.420 0.842 0.868 0.908 0.830 0.874 0.761 0.811 0.819 0.865

d211 0.485 0.237 0.057 0.311 0.120 0.956 0.237 0.070 0.919 0.205 0.053 0.891 0.338 0.753 0.896 0.943 0.969 0.902 0.936 0.872 0.910 0.877 0.915

d221 1.156 0.295 0.089 0.408 0.148 0.953 0.299 0.088 0.918 0.288 0.078 0.891 0.365 0.280 0.901 0.940 0.966 0.901 0.935 0.872 0.910 0.882 0.920

σ2
1 1.887 0.140 0.020 0.175 0.043 0.982 0.130 0.016 0.921 0.136 0.014 0.945 0.132 0.216 0.875 0.974 0.990 0.904 0.938 0.931 0.959 0.855 0.896

β0
2 12.508 0.452 0.205 0.541 0.155 0.959 0.454 0.097 0.937 0.392 0.064 0.907 0.655 1.270 0.935 0.947 0.971 0.922 0.952 0.889 0.925 0.920 0.950

βc1
2 -2.998 0.046 0.002 0.060 0.014 0.982 0.047 0.004 0.941 0.047 0.004 0.937 0.047 0.012 0.928 0.974 0.990 0.926 0.956 0.922 0.952 0.912 0.944

βc2
2 1.202 0.103 0.011 0.130 0.039 0.972 0.108 0.026 0.940 0.091 0.017 0.915 0.158 0.249 0.941 0.962 0.982 0.925 0.955 0.898 0.932 0.926 0.956

β
f11
2 -0.991 0.298 0.089 0.352 0.091 0.959 0.302 0.057 0.943 0.255 0.039 0.904 0.426 0.241 0.956 0.947 0.971 0.929 0.957 0.886 0.922 0.943 0.969

β
f21
2 2.983 0.366 0.134 0.464 0.183 0.971 0.386 0.080 0.934 0.325 0.057 0.909 0.553 0.510 0.944 0.961 0.981 0.919 0.949 0.891 0.927 0.930 0.958

β
f22
2 3.994 0.339 0.115 0.406 0.107 0.967 0.352 0.069 0.943 0.297 0.047 0.909 0.487 0.260 0.949 0.956 0.978 0.929 0.957 0.891 0.927 0.935 0.963

βtc
2 2.503 0.184 0.034 0.226 0.049 0.971 0.191 0.031 0.950 0.180 0.028 0.945 0.231 0.355 0.956 0.961 0.981 0.936 0.964 0.931 0.959 0.943 0.969

d112 0.809 0.257 0.074 0.351 0.125 0.918 0.272 0.134 0.900 0.234 0.067 0.826 0.466 3.177 0.885 0.901 0.935 0.881 0.919 0.803 0.850 0.865 0.905

d212 0.685 0.236 0.056 0.312 0.108 0.948 0.239 0.107 0.917 0.213 0.058 0.888 0.403 2.579 0.916 0.934 0.962 0.900 0.934 0.868 0.908 0.899 0.933

d222 1.067 0.287 0.084 0.377 0.137 0.948 0.300 0.106 0.917 0.267 0.075 0.889 0.453 1.999 0.908 0.934 0.962 0.900 0.934 0.870 0.908 0.890 0.926

σ2
2 1.794 0.129 0.017 0.169 0.037 0.987 0.130 0.015 0.945 0.129 0.013 0.948 0.130 0.046 0.925 0.980 0.994 0.931 0.959 0.934 0.962 0.909 0.941

β0
3 -7.000 0.537 0.289 0.637 0.187 0.971 0.447 0.087 0.889 0.464 0.082 0.907 0.488 0.218 0.865 0.961 0.981 0.870 0.908 0.889 0.925 0.844 0.886

βc1
3 -1.001 0.046 0.002 0.059 0.012 0.979 0.047 0.004 0.951 0.046 0.004 0.945 0.047 0.011 0.935 0.970 0.988 0.938 0.964 0.931 0.959 0.920 0.950

βc2
3 3.999 0.127 0.016 0.157 0.046 0.963 0.106 0.023 0.888 0.110 0.021 0.916 0.117 0.059 0.859 0.951 0.975 0.868 0.908 0.899 0.933 0.837 0.881

β
f11
3 2.984 0.347 0.121 0.423 0.110 0.970 0.298 0.054 0.888 0.308 0.050 0.902 0.330 0.138 0.872 0.959 0.981 0.868 0.908 0.884 0.920 0.851 0.893

β
f21
3 -1.995 0.452 0.204 0.561 0.207 0.971 0.381 0.080 0.885 0.394 0.068 0.913 0.423 0.240 0.849 0.961 0.981 0.865 0.905 0.896 0.930 0.827 0.871

β
f22
3 -2.995 0.421 0.177 0.491 0.135 0.972 0.346 0.065 0.875 0.359 0.061 0.905 0.380 0.167 0.851 0.962 0.982 0.855 0.896 0.887 0.923 0.829 0.873

βtc
3 0.496 0.206 0.042 0.254 0.054 0.978 0.189 0.030 0.926 0.202 0.030 0.938 0.190 0.059 0.893 0.969 0.987 0.910 0.942 0.923 0.953 0.874 0.912

d113 1.068 0.327 0.125 0.439 0.157 0.917 0.264 0.082 0.806 0.295 0.083 0.823 0.269 0.164 0.762 0.900 0.934 0.781 0.831 0.799 0.847 0.736 0.788

d213 0.787 0.287 0.083 0.382 0.137 0.962 0.233 0.067 0.867 0.260 0.069 0.902 0.241 0.131 0.816 0.950 0.974 0.846 0.888 0.884 0.920 0.792 0.840

d223 1.364 0.361 0.131 0.475 0.184 0.947 0.296 0.089 0.853 0.337 0.093 0.900 0.292 0.182 0.790 0.933 0.961 0.831 0.875 0.881 0.919 0.765 0.815

σ2
3 1.736 0.129 0.017 0.160 0.035 0.963 0.130 0.014 0.944 0.124 0.013 0.931 0.134 0.037 0.922 0.951 0.975 0.930 0.958 0.915 0.947 0.905 0.939

π1 0.333 0.049 0.002 0.047 0.002 0.950 0.047 0.002 0.950 0.047 0.009 0.950 0.936 0.964 0.936 0.964 0.936 0.964

π2 0.331 0.047 0.002 0.047 0.002 0.954 0.047 0.002 0.952 0.047 0.009 0.952 0.941 0.967 0.939 0.965 0.939 0.965

π3 0.336 0.048 0.002 0.047 0.002 0.957 0.047 0.002 0.957 0.047 0.002 0.957 0.944 0.970 0.944 0.970 0.944 0.970
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Table A.9 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 11.357 0.740 1000 11.276 0.744 1000 11.278 0.740 1000 11.480 5.555 1000

βc1
1 2.831 0.068 1000 2.828 0.068 1000 2.829 0.068 1000 2.832 0.146 1000

βc2
1 4.270 0.194 1000 4.256 0.194 1000 4.256 0.193 1000 4.297 1.188 1000

β
f11
1 1.874 0.448 1000 1.648 0.458 1000 1.671 0.432 1000 1.823 4.027 1000

β
f21
1 22.037 635.783 1000 1.485 0.439 1000 1.529 0.417 1000 1.685 3.787 1000

β
f22
1 2.683 0.584 1000 2.469 0.549 1000 2.487 0.546 1000 2.598 2.512 1000

βtc
1 2.230 0.252 1000 2.192 0.250 1000 2.190 0.250 1000 2.217 0.293 1000

d111 1.585 0.532 1000 1.431 0.393 1000 1.377 0.440 1000 1.665 1.079 1000

d211 1.124 0.416 1000 0.981 0.301 1000 0.905 0.332 1000 1.256 2.059 1000

d221 2.001 0.540 1000 1.848 0.422 1000 1.820 0.466 1000 2.014 0.646 1000

σ2
1 2.715 0.204 1000 2.694 0.198 1000 2.696 0.200 1000 2.710 0.561 1000

β0
2 17.758 0.639 1000 17.736 0.638 1000 17.724 0.638 1000 17.892 2.982 1000

βc1
2 4.244 0.065 1000 4.243 0.065 1000 4.242 0.065 1000 4.243 0.065 1000

βc2
2 1.741 0.145 1000 1.728 0.144 1000 1.720 0.144 1000 1.789 0.615 1000

β
f11
2 1.739 0.367 1000 1.655 0.363 1000 1.587 0.368 1000 1.900 0.611 1000

β
f21
2 4.433 0.564 1000 4.358 0.508 1000 4.318 0.507 1000 4.575 1.217 1000

β
f22
2 5.767 0.475 1000 5.736 0.476 1000 5.710 0.475 1000 5.848 0.528 1000

βtc
2 3.598 0.257 1000 3.580 0.258 1000 3.576 0.258 1000 3.625 0.911 1000

d112 1.511 0.474 1000 1.395 0.452 1000 1.316 0.405 1000 1.901 8.777 1000

d212 1.310 0.415 1000 1.194 0.386 1000 1.136 0.363 1000 1.610 7.127 1000

d222 1.847 0.520 1000 1.743 0.429 1000 1.681 0.454 1000 2.124 5.496 1000

σ2
2 2.582 0.186 1000 2.563 0.182 1000 2.562 0.184 1000 2.565 0.186 1000

β0
3 10.069 0.759 1000 9.980 0.752 1000 9.985 0.754 1000 10.010 0.759 1000

βc1
3 1.426 0.065 1000 1.422 0.065 1000 1.422 0.065 1000 1.422 0.065 1000

βc2
3 5.673 0.179 1000 5.663 0.179 1000 5.664 0.179 1000 5.667 0.180 1000

β
f11
3 4.391 0.480 1000 4.303 0.482 1000 4.308 0.481 1000 4.334 0.491 1000

β
f21
3 3.266 0.668 1000 3.028 0.602 1000 3.041 0.591 1000 3.107 0.729 1000

β
f22
3 4.467 0.572 1000 4.349 0.581 1000 4.357 0.575 1000 4.389 0.600 1000

βtc
3 1.022 0.225 1000 0.899 0.224 1000 0.922 0.221 1000 0.906 0.245 1000

d113 1.951 0.596 1000 1.694 0.461 1000 1.718 0.513 1000 1.737 0.485 1000

d213 1.553 0.511 1000 1.305 0.389 1000 1.331 0.436 1000 1.346 0.413 1000

d223 2.350 0.672 1000 2.109 0.514 1000 2.144 0.568 1000 2.146 0.534 1000

σ2
3 2.497 0.186 1000 2.482 0.182 1000 2.480 0.184 1000 2.486 0.179 1000

π1 0.489 0.068 1000 0.489 0.068 1000 0.490 0.070 1000

π2 0.486 0.065 1000 0.486 0.065 1000 0.486 0.067 1000

π3 0.493 0.067 1000 0.493 0.067 1000 0.493 0.067 1000
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Table A.10: EM2nd variant simulation results for non-constant(nmax=6)

parm est avg est std est mse SE1 avg SE1 std CI1 CP SE2 avg SE2 std CI2 CP SE3 avg SE3 std CI3 CP SE4 avg SE4 std CI4 CP CI1BLCL CI1BUCL CI2BLCL CI2BUCL CI3BLCL CI3BUCL CI4BLCL CI4BUCL

β0
1 7.925 0.471 0.223 0.607 0.145 0.980 0.444 0.050 0.933 0.450 0.048 0.944 0.452 0.125 0.911 0.971 0.989 0.918 0.949 0.930 0.958 0.893 0.929

βc1
1 -2.007 0.089 0.008 0.119 0.030 0.982 0.086 0.010 0.930 0.087 0.010 0.941 0.085 0.024 0.911 0.974 0.990 0.914 0.946 0.926 0.956 0.893 0.929

βc2
1 3.008 0.094 0.009 0.124 0.032 0.984 0.088 0.011 0.929 0.090 0.010 0.928 0.087 0.025 0.893 0.976 0.992 0.913 0.945 0.912 0.944 0.874 0.912

β
f11
1 1.004 0.269 0.072 0.342 0.077 0.974 0.249 0.027 0.925 0.254 0.026 0.933 0.249 0.065 0.895 0.964 0.984 0.909 0.941 0.918 0.949 0.876 0.914

β
f21
1 0.605 0.320 0.103 0.403 0.092 0.972 0.290 0.032 0.917 0.298 0.031 0.922 0.286 0.073 0.894 0.962 0.982 0.900 0.934 0.905 0.939 0.875 0.913

β
f22
1 1.586 0.318 0.102 0.405 0.094 0.977 0.298 0.033 0.931 0.305 0.032 0.942 0.297 0.077 0.909 0.968 0.986 0.915 0.947 0.928 0.956 0.891 0.927

βtc
1 1.493 0.212 0.045 0.255 0.055 0.972 0.204 0.030 0.933 0.201 0.030 0.929 0.221 0.076 0.920 0.962 0.982 0.918 0.949 0.913 0.945 0.903 0.937

d111 0.982 0.371 0.138 0.507 0.187 0.954 0.357 0.101 0.915 0.350 0.095 0.909 0.412 0.287 0.888 0.941 0.967 0.898 0.932 0.891 0.927 0.868 0.908

d211 0.494 0.265 0.070 0.367 0.124 0.972 0.269 0.068 0.925 0.252 0.059 0.926 0.324 0.243 0.901 0.962 0.982 0.909 0.941 0.910 0.942 0.882 0.920

d221 1.164 0.351 0.124 0.477 0.168 0.935 0.342 0.095 0.901 0.331 0.090 0.888 0.402 0.337 0.881 0.920 0.950 0.882 0.920 0.868 0.908 0.861 0.901

σ2
1 1.820 0.252 0.070 0.347 0.093 0.960 0.242 0.041 0.908 0.253 0.041 0.907 0.232 0.086 0.866 0.948 0.972 0.890 0.926 0.889 0.925 0.845 0.887

β0
2 12.490 0.474 0.224 0.573 0.151 0.972 0.444 0.047 0.936 0.429 0.046 0.929 0.478 0.134 0.922 0.962 0.982 0.921 0.951 0.913 0.945 0.905 0.939

βc1
2 -3.000 0.091 0.008 0.114 0.029 0.975 0.086 0.010 0.929 0.084 0.010 0.931 0.090 0.027 0.917 0.965 0.985 0.913 0.945 0.915 0.947 0.900 0.934

βc2
2 1.196 0.093 0.009 0.117 0.030 0.982 0.088 0.010 0.935 0.086 0.010 0.938 0.093 0.028 0.922 0.974 0.990 0.920 0.950 0.923 0.953 0.905 0.939

β
f11
2 -0.999 0.266 0.071 0.328 0.079 0.975 0.250 0.026 0.919 0.243 0.025 0.914 0.263 0.071 0.912 0.965 0.985 0.902 0.936 0.897 0.931 0.894 0.930

β
f21
2 3.010 0.302 0.091 0.382 0.093 0.967 0.292 0.032 0.938 0.284 0.030 0.924 0.308 0.086 0.926 0.956 0.978 0.923 0.953 0.908 0.940 0.910 0.942

β
f22
2 4.001 0.319 0.102 0.391 0.094 0.978 0.300 0.031 0.920 0.292 0.030 0.917 0.313 0.084 0.912 0.969 0.987 0.903 0.937 0.900 0.934 0.894 0.930

βtc
2 2.499 0.206 0.042 0.248 0.057 0.971 0.203 0.031 0.940 0.194 0.028 0.931 0.227 0.077 0.939 0.961 0.981 0.925 0.955 0.915 0.947 0.924 0.954

d112 0.876 0.334 0.112 0.466 0.183 0.967 0.350 0.098 0.939 0.319 0.088 0.906 0.433 0.304 0.912 0.956 0.978 0.924 0.954 0.888 0.924 0.894 0.930

d212 0.673 0.249 0.063 0.360 0.127 0.975 0.265 0.070 0.938 0.248 0.062 0.915 0.319 0.202 0.921 0.965 0.985 0.923 0.953 0.898 0.932 0.904 0.938

d222 1.073 0.320 0.103 0.440 0.157 0.950 0.338 0.095 0.927 0.307 0.082 0.890 0.421 0.288 0.905 0.936 0.964 0.911 0.943 0.871 0.909 0.887 0.923

σ2
2 1.704 0.242 0.068 0.330 0.090 0.957 0.245 0.040 0.920 0.238 0.038 0.896 0.254 0.101 0.887 0.944 0.970 0.903 0.937 0.877 0.915 0.867 0.907

β0
3 -7.002 0.486 0.236 0.584 0.145 0.979 0.441 0.047 0.926 0.440 0.045 0.923 0.461 0.125 0.912 0.970 0.988 0.910 0.942 0.906 0.940 0.894 0.930

βc1
3 -1.000 0.086 0.007 0.113 0.027 0.972 0.085 0.010 0.944 0.084 0.009 0.938 0.089 0.026 0.917 0.962 0.982 0.930 0.958 0.923 0.953 0.900 0.934

βc2
3 4.000 0.093 0.009 0.116 0.028 0.975 0.087 0.010 0.925 0.086 0.010 0.930 0.091 0.027 0.910 0.965 0.985 0.909 0.941 0.914 0.946 0.892 0.928

β
f11
3 3.007 0.264 0.070 0.328 0.075 0.978 0.249 0.027 0.929 0.244 0.025 0.931 0.259 0.072 0.909 0.969 0.987 0.913 0.945 0.915 0.947 0.891 0.927

β
f21
3 -1.989 0.310 0.096 0.382 0.090 0.977 0.291 0.032 0.923 0.285 0.030 0.913 0.303 0.084 0.898 0.968 0.986 0.906 0.940 0.896 0.930 0.879 0.917

β
f22
3 -3.005 0.314 0.099 0.391 0.097 0.972 0.298 0.033 0.925 0.292 0.031 0.923 0.311 0.089 0.911 0.962 0.982 0.909 0.941 0.906 0.940 0.893 0.929

βtc
3 0.497 0.221 0.049 0.272 0.058 0.967 0.204 0.031 0.923 0.214 0.031 0.940 0.206 0.062 0.894 0.956 0.978 0.906 0.940 0.925 0.955 0.875 0.913

d113 1.137 0.398 0.162 0.547 0.191 0.951 0.360 0.100 0.891 0.380 0.102 0.900 0.373 0.226 0.849 0.938 0.964 0.872 0.910 0.881 0.919 0.827 0.871

d213 0.766 0.306 0.095 0.425 0.147 0.960 0.271 0.070 0.881 0.297 0.074 0.914 0.270 0.137 0.833 0.948 0.972 0.861 0.901 0.897 0.931 0.810 0.856

d223 1.356 0.389 0.153 0.534 0.189 0.952 0.341 0.098 0.871 0.376 0.101 0.896 0.339 0.201 0.807 0.939 0.965 0.850 0.892 0.877 0.915 0.783 0.831

σ2
3 1.667 0.239 0.064 0.320 0.085 0.950 0.242 0.041 0.918 0.233 0.038 0.892 0.253 0.102 0.905 0.936 0.964 0.901 0.935 0.873 0.911 0.887 0.923

π1 0.334 0.047 0.002 0.047 0.002 0.952 0.047 0.002 0.952 0.047 0.002 0.952 0.939 0.965 0.939 0.965 0.939 0.965

π2 0.331 0.049 0.002 0.047 0.002 0.939 0.047 0.002 0.939 0.047 0.002 0.939 0.924 0.954 0.924 0.954 0.924 0.954

π3 0.335 0.045 0.002 0.047 0.002 0.962 0.047 0.002 0.962 0.047 0.002 0.962 0.950 0.974 0.950 0.974 0.950 0.974
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Table A.10 continued

parm CI1L avg CI1L std CI1L n CI2L avg CI2L std CI2L n CI3L avg CI3L std CI3L n CI4L avg CI4L std CI4L n

β0
1 11.340 0.662 1000 11.276 0.663 1000 11.278 0.663 1000 11.283 0.665 1000

βc1
1 2.858 0.126 1000 2.848 0.126 1000 2.849 0.126 1000 2.849 0.126 1000

βc2
1 4.269 0.132 1000 4.261 0.132 1000 4.262 0.132 1000 4.262 0.132 1000

β
f11
1 1.731 0.329 1000 1.591 0.336 1000 1.598 0.333 1000 1.596 0.348 1000

β
f21
1 1.463 0.336 1000 1.224 0.308 1000 1.238 0.306 1000 1.222 0.338 1000

β
f22
1 2.527 0.419 1000 2.397 0.419 1000 2.404 0.419 1000 2.403 0.425 1000

βtc
1 2.234 0.285 1000 2.189 0.290 1000 2.187 0.290 1000 2.209 0.297 1000

d111 1.992 0.690 1000 1.732 0.510 1000 1.698 0.572 1000 1.896 0.738 1000

d211 1.264 0.428 1000 1.059 0.314 1000 1.013 0.345 1000 1.220 0.634 1000

d221 2.126 0.635 1000 1.922 0.480 1000 1.885 0.550 1000 2.097 0.821 1000

σ2
1 2.755 0.392 1000 2.663 0.356 1000 2.668 0.371 1000 2.665 0.351 1000

β0
2 17.740 0.667 1000 17.707 0.668 1000 17.704 0.668 1000 17.717 0.668 1000

βc1
2 4.255 0.128 1000 4.249 0.128 1000 4.249 0.128 1000 4.251 0.128 1000

βc2
2 1.725 0.130 1000 1.710 0.130 1000 1.709 0.130 1000 1.713 0.130 1000

β
f11
2 1.701 0.339 1000 1.584 0.335 1000 1.575 0.336 1000 1.608 0.347 1000

β
f21
2 4.394 0.421 1000 4.335 0.419 1000 4.330 0.421 1000 4.348 0.420 1000

β
f22
2 5.767 0.447 1000 5.720 0.447 1000 5.717 0.447 1000 5.729 0.449 1000

βtc
2 3.604 0.285 1000 3.580 0.286 1000 3.576 0.287 1000 3.596 0.288 1000

d112 1.807 0.646 1000 1.600 0.461 1000 1.526 0.519 1000 1.819 0.774 1000

d212 1.396 0.449 1000 1.223 0.335 1000 1.180 0.371 1000 1.359 0.525 1000

d222 1.961 0.582 1000 1.804 0.446 1000 1.741 0.501 1000 2.014 0.670 1000

σ2
2 2.585 0.375 1000 2.507 0.340 1000 2.499 0.355 1000 2.527 0.333 1000

β0
3 10.042 0.681 1000 9.978 0.682 1000 9.978 0.682 1000 9.990 0.684 1000

βc1
3 1.451 0.120 1000 1.434 0.121 1000 1.434 0.120 1000 1.437 0.122 1000

βc2
3 5.666 0.132 1000 5.662 0.132 1000 5.662 0.132 1000 5.663 0.132 1000

β
f11
3 4.354 0.367 1000 4.309 0.369 1000 4.307 0.369 1000 4.318 0.371 1000

β
f21
3 3.019 0.417 1000 2.930 0.419 1000 2.925 0.420 1000 2.947 0.423 1000

β
f22
3 4.395 0.433 1000 4.331 0.436 1000 4.328 0.437 1000 4.344 0.440 1000

βtc
3 1.062 0.240 1000 0.928 0.238 1000 0.947 0.233 1000 0.937 0.261 1000

d113 2.229 0.715 1000 1.916 0.547 1000 1.926 0.617 1000 1.992 0.629 1000

d213 1.621 0.538 1000 1.340 0.406 1000 1.369 0.451 1000 1.369 0.438 1000

d223 2.438 0.708 1000 2.155 0.550 1000 2.184 0.612 1000 2.198 0.586 1000

σ2
3 2.526 0.369 1000 2.455 0.335 1000 2.445 0.351 1000 2.478 0.328 1000

π1 0.490 0.065 1000 0.490 0.065 1000 0.490 0.065 1000

π2 0.486 0.068 1000 0.486 0.068 1000 0.486 0.068 1000

π3 0.491 0.063 1000 0.491 0.063 1000 0.491 0.063 1000
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Appendix B

Vector and matrix differential

calculus

The purpose of this section is to introduce the ideas of Magnus and Neudecker (1999)

which are concerned with calculating the matrix and vector equivalents of derivatives of

scalar functions. The method is based upon the differential operator d(·), so d (f(x))

is the differential of f(x). The term dx is actually d (x), the differential of x, but

for functions of x, dx has special meaning in the sense that expressions involving this

term in a certain way can be used to identify the score vector and Hessian matrix of

f as a function of x. These identification methods can be summarised for different

functions, and appear in tables (B.1) and (B.2), which are taken from the first and

second identification tables on page 198 and 215 respectively of Magnus and Neudecker

(1999). The term dx is in fact a notational convenience to make the multivariate

differential theory appear, at least notationally, the same as its scalar counterpart. In

reality dx is an increment vector, usually with small components, and alongside Taylor

series expansions, is prominent in the definition of what it means for vector functions
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to be differentiable.

In order to use tables (B.1) and (B.2), we write A, a or α to denote a constant

matrix, vector or scalar respectively, andX, x or δ depending on whether the argument

to the function in question is a matrix, vector or scalar respectively. For dimensions we

will use f : S −→ Rm
, S ⊆ Rn

for a vector function of a vector argument, f : S −→ R ,

S ⊆ Rn
for a scalar function of a vector argument, f : S −→ Rm

, S ⊆ Rn×q
for a vector

function of a matrix argument, and F : S −→ Rm×p
, S ⊆ Rn

, for a matrix function

of a vector argument. These tables will be used extensively in chapter C to derive

score vectors and Hessian matrices of log-likelihood functions. Furthermore since θ

for LMMs and Θ for MLMMs are comprised of vector components, for simplicity we

apply the theory of Magnus and Neudecker componentwise: that is in turn we assume

the log-likelihood to be a function of only one component, with the other components

considered fixed. Differentials of any expressions involving just the fixed components

are zero, which leads to much shorter expressions. Thus the components of the score

vectors and Hessian matrices are identified with the tables. At the end of this section

we present some useful rules for computing differentials.

Table B.1: First identification table

Function Differential Derivative Order of D

f(δ) d(f(δ)) = αdδ Dδ(f(δ)) = α 1× 1

f(x) d(f(x)) = a
ᵀ
dx Dx (f(x)) = a

ᵀ
1× n

f(X) d(f(X)) = a
ᵀ
d(vec(X))

= {vec(a)}
ᵀ

vec(d(X)

= tr(a
ᵀ
d(X))

Dvec(X) (f(X)) = a
ᵀ

1× nq

f(δ) d(f(δ)) = adδ Dδ(f(δ)) = a m× 1
f(x) d(f(x)) = Adx Dx (f(x)) = A m× n
f(X) d(f(X)) = Ad(vec(X)) Dvec(X) (f(X)) = A m× nq
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Table B.2: Second identification table

Function Differential Derivative Order of H

f(δ) d2(f(δ)) = βd(δ)2 Hδ (f(δ)) = β 1× 1

f(x) d2(f(x)) = {d (x)}
ᵀ
B {d (x)} Hx (f(x)) = 1

2

(
B +B

ᵀ)
n× n

f(X) d2(f(X)) = Hvec(X) (f(X)) = 1
2

(
B +B

ᵀ)
nq × nq

{d (vec(X))}
ᵀ
B {d (vec(X))}

F (x) vec[d2 (F (x))] = (Imp ⊗ dx)
ᵀ
Bdx Hx (vec(F (x))) = 1

2

(
B + (B

ᵀ
)v
)

mnp× n

where (B
ᵀ
)v = (B1,1, ...,Bm,1, ...,B1,p, ...,Bm,p)

ᵀ
, and Bj,k is a n × n matrix for all

j = 1, ...,m and k = 1, ..., p.

Here we present without proof some important rules which permit easy manipu-

lation of differentials. We shall use these repeatedly without reference to them, and

unless otherwise stated they are taken from Magnus and Neudecker (1999, Ch. 8). For

differentiable functions f : S −→ R and g : S −→ R where S ⊆ Rn
, and for α ∈ R ,

then the following rules hold

d(α) = 0, (B.1)

d(αf(x)) = αd(f(x)), (B.2)

d((f(x) + g(x)) = d(f(x)) + d(g(x)), (B.3)

d((f(x)− g(x)) = d(f(x))− d(g(x)), (B.4)

d(f(x)g(x)) = d(f(x))g(x) + f(x)d(g(x)), (B.5)

d(f(x)α) = αf(x)α−1d(f(x)), (B.6)

d(log(f(x))) = f(x)−1d(f(x)), (B.7)

d
(
ef(x)

)
= ef(x)d(f(x)) (B.8)

The above rules also apply if x is a scalar and give the familiar results of single vari-
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able differential calculus. There are also many useful rules for differentials of matrix

functions of matrix arguments, a few of which are analogues of some of the rules above.

For differentiable functions F : S −→ Rm×p
and G : S −→ Rm×p

where S ⊆ Rn×q
, and

for a matrix A of real constants, then the following rules hold

d(A) = 0, (B.9)

d(AF (X)) = Ad(F (X)), (B.10)

d((F (X) +G(X)) = d(F (X)) + d(G(X)), (B.11)

d((F (X)−G(X)) = d(F (X))− d(G(X)), (B.12)

d(F (X)G(X)) = d(F (X))G(X) + F (X)d(G(X)), (B.13)

d(F (X)⊗G(X)) = d(F (X))⊗G(X) + F (X)⊗ d(G(X)), (B.14)

d
(
F (X)

ᵀ)
= (d(F (X)))

ᵀ
, (B.15)

d(vec(F (X))) = vec(d(F (X))), (B.16)

d(tr(F (X))) = tr(d(F (X))). (B.17)

The following three results are concerned with functions, φ say, of a matrix function

F . In all cases the subset S ⊆ Rn×q
is open, φ is differentiable, and the matrix function

F is k times either continuously differentiable or differentiable (k ≥ 1). Continuous

differentiability means that each partial derivative of F exists and is a continuous func-

tion, and in turn this implies differentiability. For details see page 103 and Theorem 7

(page 101) in (Magnus and Neudecker (1999, Ch. 5)).
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Let F : S −→ Rm×m
(m ≥ 2) be a matrix function and |F | : S −→ R be a scalar

function where |F | (X) = |F (X)|, then if F (X) is non-singular

d(|F (X)|) = |F (X)| tr
(
F (X)−1dF (X)

)
. (B.18)

Let F : S −→ T+ be a matrix function where T+ =
{
Y : Y ∈ Rm×m

, |Y | > 0
}

and

log(|F |) : S −→ R be a scalar function where (log(|F |)(X)) = log(|F (X)|) then

d(log(|F (X)|)) = tr
(
F (X)−1dF (X)

)
. (B.19)

Let F : S −→ T be a matrix function where T is the set of non-singular real m ×m

matrices and F−1 : S −→ T be a matrix function where F−1(X) = (F (X))−1 then

d
(
F (X)−1

)
= −F (X)−1(d(F (X)))F (X)−1. (B.20)
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Appendix C

Derivatives of log-likelihood

functions

In this chapter we will firstly derive the information matrix for the LMM in section C.1,

and then building on these results we will derive the score vector and Hessian matrix for

MLMMs in section C.2.2. Both of these sections necessarily involve taking derivatives

of the log-likelihood functions associated with a LMM and a MLMM respectively, where

these are scalar functions with vector arguments. The score vector of such a function

is then a vector function of a vector argument, and we shall need to derive the vector

derivative of this function to obtain the Hessian matrices. The approach we take to

deriving these derivatives is to work with the concept of the derivatives of vector valued

functions of vector arguments, and sometimes the derivatives of matrix valued functions

of vector arguments. This approach avoids the necessity of taking the ”ordinary”

derivatives of each element of the vector and matrix functions separately (these are

derivatives of scalar functions of scalar arguments) but instead provides methods to

identify the whole vector of derivatives simultaneously, and in doing so we believe
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this approach is more elegant than the ordinary approach since there are less steps to

take in the derivations. Notwithstanding this, even if the reader accepts this elegance

argument it is evident from this section that the derivations when given in full are still

very lengthy, and so it is clear this approach offers no economy of effort for either the

reader or writer.

The definition of derivatives of vector and matrix functions rely instrumentally on

the definition of ordinary derivatives, but with some extra features. Accordingly it

comes as no surprise that the familiar raft of mathematical conditions that can be sat-

isfied in order for the derivatives to exist also apply in some way to the existence or not

of these vector and matrix derivatives. We adopt our methods from the book length

exposition on this topic by Magnus and Neudecker (1999), but for brevity we omit dis-

cussions of these mathematical considerations and instead assume all derivatives exist

everywhere in the parameter space. In Appendix B we present a very brief summary

based on the more practical sections from Magnus and Neudecker (1999).

C.1 Information matrix for weighted LMMs

This section is concerned with deriving the information matrix IN (θ) for a LMM using

a weighted log-likelihood function given by

L(θ|yi) = −1

2

N∑
i=1

winilog(2π)− 1

2

N∑
i=1

wilog |Vi(ζ)| − 1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1ẽi, (C.1)

where ẽi = yi −Xiβ. We shall compute minus the Hessian matrix for this model by

finding the second order differentials of (C.1) by considering it to be a function in turn
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of only one component of θ. The negative of the Hessian in partitioned form is given

by

−Hθ (L(θ)) = −



Hβ (L(β)) D2
(σ2)(β) (L(β)) D2

(ψ)(β) (L(β)) D2
(φ)(β) (L(β))

Hσ2

(
L(σ2)

)
D2

(ψ)(σ2)

(
L(σ2)

)
D2

(φ)(σ2)

(
L(σ2)

)

Hψ (L(ψ)) D2
(φ)(ψ) (L(ψ))

symm Hφ (L(φ))



,

(C.2)

and we shall compute each line of this matrix in turn, taking expectations of each

component matrix in each line in order to obtain IN (θ). For LMMs with AR errors we

will need to take derivatives of the ACF in order to obtain the matrices in the right

hand column of C.2, and we derive these in the next subsection.

C.1.1 Derivatives of the autocorrelation function

This section is concerned with deriving closed form equations for the elements of

Dφ (vec(Ci(φ))) =
{
r
Dφ[(Ci(φ))jk]

}n n

j=1, k=1
which is the n2 × r derivative matrix

of the vector vec(Ci(φ)), and i ∈ IN . From (A.6) we see this involves calculating the

derivatives of (Ci(φ))jk = ρ|j−k|(φ), for j, k = 1, ..., n where

ρs(φ) =

r∑
v=1

φvρs−v, s = r + 1, ..., n, (C.3)
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and ρ0(φ) = 1, and ρ1(φ), ..., ρr(φ) are given in subsection (??) for r = 1, 2, 3. Thus

we need to calculate

Dφ (vec(Ci(φ))) =
{
c
Dφ[(Ci(φ))jk]

}n n

j=1, k=1

=
{
c
Dφ[ρ|j−k|(φ)]

}n n

j=1, k=1

=
{
c
Dφ

[∑r

v=1
φvρ|j−k|−v(φ)

]}n n

j=1, k=1
, (C.4)

where ρ|j−k|−v(φ) is given by (C.3) when |j− k| − v ≥ r+ 1, and again ρ1(φ), ..., ρr(φ)

are given in subsection (??) for r = 1, 2, 3. So for any j, k = 1, ..., n we have

Dφ[ρ|j−k|(φ)] =

(
∂

∂φ1

[
ρ|j−k|(φ)

]
, ...,

∂

∂φr

[
ρ|j−k|(φ)

])
=

(
∂

∂φ1

[∑r

v=1
φvρ|j−k|−v(φ)

]
, ...,

∂

∂φr

[∑r

v=1
φvρ|j−k|−v(φ)

])
.

(C.5)

We also want to derive closed form equations for the elements of the n2r × r Hessian

Hφ (Ci(φ)) =
{
c
Hφ((Ci)jk)

}n n

j=1, k=1
(C.6)

where for any j, k = 1, ..., n we have
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Hφ((Ci)jk) =

∂2

∂φ2
1
[ρ|j−k|(φ)] ∂2

∂φ2∂φ1
[ρ|j−k|(φ)] · · · ∂2

∂φr∂φ1
[ρ|j−k|(φ)]

...
...

...
. . .

...

∂2

∂φ1∂φr
[ρ|j−k|(φ)] ∂2

∂φ2∂φr
[ρ|j−k|(φ)] · · · ∂2

∂φ2
r
[ρ|j−k|(φ)]


=



∂2

∂φ2
1

[∑r
v=1 φvρ|j−k|−v(φ)

]
∂2

∂φ2∂φ1

[∑r
v=1 φvρ|j−k|−v(φ)

]
· · · ∂2

∂φr∂φ1

[∑r
v=1 φvρ|j−k|−v(φ)

]
...

...

...
. . .

...

∂2

∂φ1∂φr

[∑r
v=1 φvρ|j−k|−v(φ)

]
∂2

∂φr∂φ1

[∑r
v=1 φvρ|j−k|−v(φ)

]
· · · ∂2

∂φ2
r

[∑r
v=1 φvρ|j−k|−v(φ)

]


,

(C.7)

using (C.5). Now for l = 1, ..., r we have

∂

∂φl

[
ρ|j−k|(φ)

]
=

∂

∂φl

[∑r

v=1
φvρ|j−k|−v(φ)

]
= ρ|j−k|−l(φ) +

r∑
v=1

φv

(
∂

∂φl

[
ρ|j−k|−v(φ)

])
, (C.8)

and for l,m = 1, ..., r we have

∂2

∂φl∂φm

[
ρ|j−k|(φ)

]
=

∂

∂φm

[
ρ|j−k|−l(φ) +

r∑
v=1

φv

(
∂

∂φl

[
ρ|j−k|−v(φ)

])]

= ρ|j−k|−l(φ) +

r∑
v=1

φv

(
∂

∂φl

[
ρ|j−k|−m−v(φ)

])
+ ρ|j−k|−m(φ)

+

r∑
v=1

φv

(
∂

∂φm

[
ρ|j−k|−l−v(φ)

])
+

r∑
v=1

φv

(
∂2

∂φl∂φm

[
ρ|j−k|−v(φ)

])
,

(C.9)

where for x ∈ Z we replace ρx with ρ|x| in the equations (C.8) and (C.9) if x < 0.
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Thus equations (C.8) and (C.9) allow us to calculate the elements of (C.5) and (C.7)

respectively.

Since for all r we have ρ0(φ) = 1 then ∂
∂φ1

[ρ0(φ)] = 0, and ∂2

∂φl∂φm
[ρ0(φ)] = 0 for all

l = 1, ..., r and l,m = 1, ..., r. However for s = 1, ..., r, and as with the autocorrelation

function itself (C.3), for all l = 1, ..., r and l,m = 1, ..., r we need to first calculate

∂
∂φl

[ρs(φ)] and ∂2

∂φl∂φm
[ρs(φ)] for s = 1, ..., r before being able to use (C.8) and (C.9)

recursively to calculate the partial derivatives for s = r + 1, ..., n. We now give these

partial derivatives for r = 1, 2, 3. For an AR(1) process we have

∂ρ1(φ)

∂φ1
= 1, (C.10)

and so

∂2ρ1(φ)

∂φ2
1

= 0. (C.11)

For an AR(2) process we have

∂ρ1(φ)

∂φ1
=

1

1− φ2
,

∂ρ1(φ)

∂φ2
=

φ1

(1− φ2)2
,

∂ρ2(φ)

∂φ1
=

2φ1

1− φ2
,

∂ρ2(φ)

∂φ2
=

φ2
1

(1− φ2)2
+ 1, (C.12)

and so

298



∂2ρ1(φ)

∂φ2
1

= 0,

∂2ρ1(φ)

∂φ2∂φ1
=
∂2ρ1(φ)

∂φ1∂φ2
=

1

(1− φ2)2
,

∂2ρ1(φ)

∂φ2
2

=
2φ1

(1− φ2)3
, (C.13)

and

∂2ρ2(φ)

∂φ2
1

=
2

1− φ2
,

∂2ρ2(φ)

∂φ2∂φ1
=
∂2ρ2(φ)

∂φ1∂φ2
=

2φ1

(1− φ2)2
,

∂2ρ2(φ)

∂φ2
2

=
2φ2

1

(1− φ2)3
. (C.14)

For an AR(3) process let

h1 = φ2
2 + φ2φ

2
3 + φ1φ2φ3 − 2φ2 − φ2

3 − φ1φ3 + 1,

h2 = φ1 − φ1φ2 + φ2φ3 − φ2
2φ3,

h3 = φ2
3 + φ1φ3 + 2φ2 − 2,

h4 = φ1 + 2φ3 − φ1φ2 − 2φ2φ3,

h5 = φ2
3 + φ1φ3 + φ2 − 1,

h6 = φ2
1 + φ1φ3 − φ2

2 + φ2,

h7 = φ1φ2 − φ1φ
2
2 + φ2

2φ3 − φ3
2φ3,

h8 = φ3
1 + φ2

1φ3 − φ1φ
2
2 + φ1φ2, (C.15)

Then for ρ1(φ) we have
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∂ρ1(φ)

∂φ1
=

(φ3 − φ2φ3)(φ1 − φ1φ2 + φ2φ3 − φ2
2φ3)

h2
1

− φ2 − 1

h1
,

∂ρ1(φ)

∂φ2
= −(φ2

3 + φ1φ3 + 2φ2 − 2)(φ1 − φ1φ2 + φ2φ3 − φ2
2φ3)

h2
1

− φ1 − φ3 + 2φ2φ3

h1
,

∂ρ1(φ)

∂φ3
=

(φ1 + 2φ3 − φ1φ2 − 2φ2φ3)(φ1 − φ1φ2 + φ2φ3 − φ2
2φ3)

h2
1

+
(φ2 − φ2

2)

h1
,

(C.16)

and so

∂2ρ1(φ)

∂φ2
1

=
2(φ3 − φ2φ3)2(φ1 − φ1φ2 + φ2φ3 − φ2

2φ3)

h3
1

− 2(φ3 − φ2φ3)(φ2 − 1)

h2
1

,

∂2ρ1(φ)

∂φ2∂φ1
=
∂2ρ1(φ)

∂φ1∂φ2
=

(φ2 − 1)h3

h2
1

− (φ3 − φ2φ3)(φ1 − φ3 + 2φ2φ3)

h2
1

,

− 1

h1
− φ3h2

h2
1

− 2(φ3 − φ2φ3)h3h2

h3
1

,

∂2ρ1(φ)

∂φ3∂φ1
=
∂2ρ1(φ)

∂φ1∂φ3
=

(φ3 − φ2φ3)(φ2 − φ2
2)

h2
1

− (φ2 − 1)h4

h2
1

− (φ2 − 1)h2

h2
1

,

+
2(φ3 − φ2φ3)h4h2

h3
1

,

∂2ρ1(φ)

∂φ3∂φ2
=
∂2ρ1(φ)

∂φ2∂φ3
=

2φ2 − 1

h1
− (φ1 + 2φ3)h2

h2
1

− (φ1 − φ3 + 2φ2φ3)h4

h2
1

,

− (φ2 − φ2
2)h3

h2
1

− 2h4h3h2

h3
1

,

∂2ρ1(φ)

∂φ2
2

=
2h2

3h2

h3
1

− 2φ3

h1
− 2h2

h2
1

+
2(φ1 − φ3 + 2φ2φ3)h3

h2
1

,

∂2ρ1(φ)

∂φ2
3

=
2(φ2 − φ2

2)h4

h2
1

− (2φ2 − 2)h2

h2
1

+
2h2

4h2

h3
1

. (C.17)

For ρ2(φ) we have
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∂ρ2(φ)

∂φ1
=
φ3(φ2

1 + φ1φ3 − φ2
2 + φ2)

h2
5

− (2φ1 + φ3)

h5
,

∂ρ2(φ)

∂φ2
=
φ2

1 + φ1φ3 − φ2
2 + φ2

h2
5

+
2φ2 − 1

h5
,

∂ρ2(φ)

∂φ3
=

(φ1 + 2φ3)(φ2
1 + φ1φ3 − φ2

2 + φ2)

h2
5

− φ1

h5
, (C.18)

and so

∂2ρ2(φ)

∂φ2
1

=
2φ3(2φ1 + φ3)

h2
5

− 2φ2
3(φ2

1 + φ1φ3 − φ2
2 + φ2)

h3
5

− 2

h5
,

∂2ρ2(φ)

∂φ2∂φ1
=
∂2ρ2(φ)

∂φ1∂φ2
=

2φ1 + φ3

h2
5

− 2φ3h6

h3
5

− φ3(2φ2 − 1)

h2
5

∂2ρ2(φ)

∂φ3∂φ1
=
∂2ρ2(φ)

∂φ1∂φ3
=
h6

h2
5

− 1

h5
+
φ1φ3

h2
5

+
(φ1 + 2φ3)(2φ1 + φ3)

h2
5

− 2φ3(φ1 + 2φ3)(φ2
1 + φ1φ3 − φ2

2 + φ2)

h3
5

,

∂2ρ2(φ)

∂φ2∂φ3
=
∂2ρ2(φ)

∂φ3∂φ2
=
φ1

h2
5

− 2(φ1 + 2φ3)h6

h3
5

− (2φ2 − 1)(φ1 + 2φ3)

h2
5

∂2ρ2(φ)

∂φ2
2

=
2

h5
− 2(φ2

1 + φ1φ3 − φ2
2 + φ2)

h3
5

− 2(2φ2 − 1)

h2
5

,

∂2ρ2(φ)

∂φ2
3

=
2h6

h2
5

− 2(φ1 + 2φ3)2h6

h3
5

+
2φ1(φ1 + 2φ3)

h2
5

. (C.19)

For ρ3(φ) we have

301



∂ρ3(φ)

∂φ1
=
φ2 − φ2

2

h1
− (3φ2

1 + 2φ1φ3 − φ2
2 + φ2)

h5

+
(φ3 − φ2φ3)(φ1φ2 − φ1φ

2
2 + φ2

2φ3 − φ3
2φ3)

h2
1

+
φ3(φ3

1 + φ3φ
2
1 − φ1φ

2
2 + φ1φ2)

h2
5

∂ρ3(φ)

∂φ2
=
φ3

1 + φ2
1φ3 − φ1φ

2
2 + φ1φ2

h2
5

+
φ1 − 2φ1φ2 + 2φ2φ3 − 3φ2

2φ3

h1

− (φ1 − 2φ1φ2

h5)
− (φ2

3 + φ1φ3 + 2φ2 − 2)(φ1φ2 − φ1φ
2
2 + φ2

2φ3 − φ3
2φ3)

h2
1

∂ρ3(φ)

∂φ3
=
φ2

2 − φ3
2

h1
− φ2

1

h5
+

(φ1 + 2φ3 − φ1φ2 − 2φ2φ3)(φ1φ2 − φ1φ
2
2 + φ2

2φ3 − φ3
2φ3)

h2
1

+
(φ1 + 2φ3)(φ3

1 + φ2
1φ3 − φ1φ

2
2 + φ1φ2)

h2
5

+ 1, (C.20)

and so
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∂2ρ3(φ)

∂φ2
1

=
2(φ3 − φ2φ3)2(φ1φ2 − φ1φ

2
2 + φ2

2φ3 − φ3
2φ3)

h3
1

− 2φ2
3(φ3

1 + φ3φ
2
1 − φ1φ

2
2 + φ1φ2)

h3
5

− (6φ1 + 2φ3)

h5
+

2φ3(3φ2
1 + 2φ1φ3 − φ2

2 + φ2)

h2
5

+
2(φ3 − φ2φ3)(φ2 − φ2

2)

h2
1

,

∂2ρ3(φ)

∂φ2∂φ1
=
∂2ρ3(φ)

∂φ1∂φ2
=

3φ2
1 + 2φ1φ3 − φ2

2 + φ2

h2
5

+
φ3(φ1 − 2φ1φ2)

h2
5

− φ3h7

h2
1

+
(φ3 − φ2φ3)(φ1 − 2φ1φ2 + 2φ2φ3 − 3φ2

2φ3)

h2
1

− (φ2 − φ2
2)h3

h2
1

− 2φ3(φ3
1 + φ2

1φ3 − φ1φ
2
2 + φ1φ2)

h3
5

− 2(φ3 − φ2φ3)h3h7

h3
1

,

∂2ρ3(φ)

∂φ3∂φ1
=
∂2ρ3(φ)

∂φ1∂φ3
=
h8

h2
5

− 2φ1

h5
+

(φ2 − φ2
2)h4

h2
1

− (φ2 − 1)h7

h2
1

+
φ2

1φ3

h2
5

+
(φ1 + 2φ3)(3φ2

1 + 2φ1φ3 − φ2
2 + φ2)

h2
5

+
(φ3 − φ2φ3)(φ2

2 − φ3
2)

h2
1

+
2(φ3 − φ2φ3)h4h7

h3
1

− 2φ3(φ1 + 2φ3)h8

h3
6

,

∂2ρ3(φ)

∂φ3∂φ2
=
∂2ρ3(φ)

∂φ2∂φ3
=
φ2

1

h2
5

+
2φ2 − 3φ2

2

h1
− (φ2

2 − φ3
2)h3

h2
1

+
(φ1 − 2φ1φ2)(φ1 + 2φ3)

h2
5

+
h4(φ1 − 2φ1φ2 + 2φ2φ3 − 3φ2

2φ3)

h2
1

− (φ1 + 2φ3)h7

h2
1

− 2(φ1 + 2φ3)(φ3
1 + φ2

1φ3 − φ1φ
2
2 + φ1φ2)

h3
5

− 2h4h3h7

h3
1

,

∂2ρ3(φ)

∂φ2
2

=
2φ1

h5
− 2(φ3

1 + φ2
1φ3 − φ1φ

2
2 + φ1φ2)

h3
5

+
2(φ1 − 2φ1φ2)

h2
5

− (2φ1 − 2φ3 + 6φ2φ3)

h1

− 2h7

h2
1

+
2h2

3h7

h3
1

− 2h3(φ1 − 2φ1φ2 + 2φ2φ3 − 3φ2
2φ3)

h2
1

,

∂2ρ3(φ)

∂φ2
3

=
2h8

h2
5

+
2h2

1(1 + 2φ3)

h2
5

− (2φ2 − 2)h7

h2
1

− 2(φ1 + 2φ3)2h8

h3
5

+
2h2

4h7

h3
1

+
2(φ2

2 − φ3
2)h4

h2
1

. (C.21)

Thus to calculate Dφ (vec(Ci(φ))) given in equation C.4 we need the first-order partial
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derivatives Dφ[ρ|j−k|(φ)] for j, k = 1, ..., n given by equation C.5 whose r elements are

defined recursively by equation C.8. In order to start the recursive process off, for r ≤ 3

the initial derivatives are given in equations C.10,C.12,C.16. Similarly to calculate

Hφ (Ci(φ)) given in equation (C.6) we need the second-order derivatives Hφ((Ci)jk)

for j, k = 1, ..., n given in (C.7) whose elements are defined recursively by equation C.9.

For r ≤ 3 the initial derivatives are given in equations C.11,C.13C.14,C.17,C.19,C.21.

C.1.2 Line 1 of the information matrix

Hβ (L(β)):

We firstly derive Dβ (L(β)) which will in turn be used to derive all the elements of

the top row of C.2. Now L(β) : S −→ R , S ⊆ Rp
, so that by the first identification

table (Table B.1) we have that if d (L(β)) = a
ᵀ
d (β) for a ∈ Rp

then Dβ (L(β)) = a
ᵀ
.

Now from (C.1) we have d (L(β)) = −
∑N

i=1wiẽ
ᵀ

iVi(ζ)−1d (ẽi), so that

d (L(β)) = −
N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1 (−Xid (β))

=

{
N∑
i=1

wiy
ᵀ

i Vi(ζ)−1Xi − β
ᵀ
m∑
i=1

wiX
ᵀ

i Vi(ζ)−1Xi

}
d (β) . (C.22)

We see that the 1×p vectorDβ (L(β)) is given by the expression in curly parentheses in

(C.22). Now from the second identification table (Table B.2) we have that if d2 (L(β)) =

(dβ)
ᵀ
B (dβ), where B is a p×p matrix, then Hβ (l(β)) = (1/2)

(
B +B

ᵀ)
. Now from

(C.22) we have

304



d2 (L(β)) =

N∑
i=1

wiy
ᵀ

i Vi(ζ)−1Xid
2β −

N∑
i=1

wi(dβ)
ᵀ
X

ᵀ

i Vi(ζ)−1Xidβ

−
N∑
i=1

wiβ
ᵀ
X

ᵀ

i Vi(ζ)−1Xid
2β

= (dβ)
ᵀ

{
−

N∑
i=1

wiX
ᵀ

i Vi(ζ)−1Xi

}
dβ, (C.23)

since d2β = 0. The p× p matrix in curly brackets is B. This matrix is symmetrical so

that (1/2)
(
B +B

ᵀ)
= B. We then have

Hβ (L(β)) = −
N∑
i=1

wiX
ᵀ

i Vi(ζ)−1Xi, (C.24)

which is a p× p matrix as required. Thus we have

−E [Hβ (L(β))] =

N∑
i=1

wiX
ᵀ

i Vi(ζ)−1Xi. (C.25)

D2
(α)(β) (L(β)) for α ∈ {σ2,φ

ᵀ
,ψ

ᵀ
σ2}ᵀ :

To derive the cross partial derivatives we let α ∈ {σ2,φ
ᵀ
,ψ

ᵀ
σ2}ᵀ be a nα × 1 vector,

where ψ = v(D). We define the function g(α) = Dβ (L(β))
ᵀ

so that g(α) : S −→ Rp
,

S ⊆ Rnα
. From the first identification table (Table B.1) we have that if d (g(α)) =

Adα, where A is a p× nα matrix, then Dα (g(α)) = D2
(α)(β) (L(β)) = A. Now
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d (g(α)) =

N∑
i=1

wiX
ᵀ

i d
(
Vi(ζ)−1

)
yi −

N∑
i=1

wiX
ᵀ

i d
(
Vi(ζ)−1

)
Xiβ

= −
N∑
i=1

wiX
ᵀ

i Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1yi +
N∑
i=1

wiX
ᵀ

i Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1Xiβ

= −
N∑
i=1

wivec
[
X

ᵀ

i Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1yi
]

+

N∑
i=1

wivec
[
X

ᵀ

i Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1Xiβ
]

=
N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)

vec[d (Vi(ζ))]

−
N∑
i=1

wi
(
(y

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)

vec[d (Vi(ζ))]

=

{
N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
Dα(vec(Vi(ζ)))

−
N∑
i=1

wi
(
(y

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
Dα(vec(Vi(ζ)))

}
dα, (C.26)

so that the p× nα matrix D2
(α)(β) (l(β)) is given by

D2
(α)(β) (L(β)) =

N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
Dα(vec(Vi(ζ)))

−
N∑
i=1

wi
(
(y

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
Dα(vec(Vi(ζ)))

=
N∑
i=1

wi

[(
− (yi −Xiβ)

ᵀ
Vi(ζ)−1

)
⊗
(
X

ᵀ

i Vi(ζ)−1
)]
Dα(vec(Vi(ζ))),

(C.27)

and
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−E
[
D2

(α)(β) (l(β))
]

= −
N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
Dα(vec(Vi(ζ)))

+
N∑
i=1

wi

(
(E [yi]

ᵀ
Vi(ζ)−1)⊗ (X

ᵀ

i Vi(ζ)−1)
)
E [Dα(vec(Vi(ζ)))]

= −
N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
E [Dα(vec(Vi(ζ)))]

+

N∑
i=1

wi
(
(β

ᵀ
X

ᵀ

i Vi(ζ)−1)⊗ (X
ᵀ

i Vi(ζ)−1)
)
E [Dα(vec(Vi(ζ)))]

= 0. (C.28)

C.1.3 Line 2 of the information matrix

Hσ2

(
L(σ2)

)
:

We shall first derive Dσ2

(
L(σ2)

)
, which will also yield d

(
L(σ2)

)
that is required in

order to calculate d2
(
L(σ2)

)
. Now L(σ2) : S −→ R , S ⊆ R , so that from the first

identification table (Table B.1) we have that if d
(
L(σ2)

)
= αdσ2 for α ∈ R , then

Dσ2

(
L(σ2)

)
= α. We have

d
(
L(σ2)

)
= −1

2

N∑
i=1

wid (log |Vi(ζ)|)− 1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1

)
ẽi

= −1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)dσ2

]
+

1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)dσ2Vi(ζ)−1ẽi

=

{
−1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)

]
+

1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1ẽi

}
dσ2,

(C.29)

so we see that
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Dσ2

(
L(σ2)

)
= −1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)

]
+

1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1ẽi,

(C.30)

which is a scalar as required. Now L(σ2) : S −→ R , S ⊆ R , so that from the second

identification table (Table B.2), we have that if d2
(
L(σ2)

)
= β(d

(
σ2
)
)2 for β ∈ R ,

then Hσ2

(
L(σ2)

)
= β. We will also need the result

d
(
Vi(ζ)−1Ci(φ)dσ2Vi(ζ)−1

)
= d

(
Vi(ζ)−1

)
Ci(φ)Vi(ζ)−1dσ2 + Vi(ζ)−1Ci(φ)d

(
Vi(ζ)−1

)
dσ2.

(C.31)

So from the second line of (C.29), and using d2σ2 = 0 we have
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d2
(
L(σ2)

)
= −1

2

N∑
i=1

witr
[
d
(
Vi(ζ)−1

)
Ci(φ)

]
dσ2 +

1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1Ci(φ)dσ2Vi(ζ)−1

)
ẽi

= −1

2

N∑
i=1

witr
[
d
(
Vi(ζ)−1

)
Ci(φ)

]
dσ2 +

1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1

)
Ci(φ)Vi(ζ)−1ẽidσ

2

+
1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)d
(
Vi(ζ)−1

)
ẽidσ

2

=
1

2

N∑
i=1

witr
[
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1Ci(φ)

]
dσ2

− 1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽidσ
2

− 1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽidσ
2

=
1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)

] (
dσ2

)2
− 1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽi
(
dσ2

)2
− 1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽi
(
dσ2

)2
=

{
1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)

]
−

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽi

}(
dσ2

)2
, (C.32)

so we see that the scalar Hessian Hσ2

(
L(σ2)

)
is given by the expression within curly

brackets in (C.32). Taking expectations of this involves calculating

E[ẽ
ᵀ

iAẽi] = tr(AVar[ẽi]), whereA = Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)Vi(ζ)−1. SinceAVar[ẽi] =

AVar[Yi] = AVi(ζ) = Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ) we have
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−E
[
Hσ2

(
L(σ2)

)]
= −1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)

]
+

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)

]
=

1

2

N∑
i=1

witr
[
Vi(ζ)−1Ci(φ)Vi(ζ)−1Ci(φ)

]
. (C.33)

D2
(v(D))(σ2)

(
L(σ2)

)
:

Let g(v(D)) = Dσ2

(
L(σ2)

)
, so that Dv(D) (g(v(D))) = D2

(v(D))(σ2)

(
L(σ2)

)
. Now

g(v(D)) : S −→ R , S ⊆ Rq(q+1)/2
, so that from the first identification table (Table B.1)

we have that if d (g(v(D))) = a
ᵀ
d (v(D)) for a ∈ Rq(q+1)/2

, then D2
(v(D))(σ2)

(
L(σ2)

)
=

a
ᵀ
. We will need two preliminary results for what follows. Firstly when Vi(ζ) is viewed

as a function of D we have

d
(
Vi(ζ)−1Ci(φ)Vi(ζ)−1

)
= −Vi(ζ)−1Zid (D)Z

ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1

−Vi(ζ)−1Ci(φ)Vi(ζ)−1Zid (D)Z
ᵀ

i Vi(ζ)−1. (C.34)

Secondly consider (ẽ
ᵀ

iA ⊗ ẽ
ᵀ

iB), where A and B are ni × c1 and ni × c2 matrices

respectively. Then A
ᵀ
ẽi ∈ Rc1 , B

ᵀ
ẽi ∈ Rc2 , and so we have
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E
[
(ẽ

ᵀ

iA⊗ ẽ
ᵀ

iB)
]

= E
[{
A

ᵀ
ẽi ⊗B

ᵀ
ẽi
}ᵀ]

=
{
E
[
A

ᵀ
ẽi ⊗B

ᵀ
ẽi
]}ᵀ

=
{
E
[
vec
(
B

ᵀ
ẽiẽ

ᵀ

iA
)]}ᵀ

=
{

vec
(
B

ᵀ
E [ẽiẽi]

ᵀ
A
)}ᵀ

=
{

vec
(
B

ᵀ
Var[ẽi]A

)}ᵀ

=
{

vec
(
B

ᵀ
Var[Yi]A

)}ᵀ

=
{

vec
(
B

ᵀ
Vi(ζ)A

)}ᵀ

, (C.35)

which is a 1× c1c2 vector. Now from (C.30) we have
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d (g(v(D))) = −1

2

N∑
i=1

witr
[
d
(
Vi(ζ)−1

)
Ci(φ)

]
+

1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1Ci(φ)Vi(ζ)−1

)
ẽi

=
1

2

N∑
i=1

witr
[
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1Ci(φ)

]
− 1

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1Zid (D)Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽi
]

− 1

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zid (D)Z
ᵀ

i Vi(ζ)−1ẽi
]

=
1

2

N∑
i=1

witr
[
Vi(ζ)−1Zid (D)Z

ᵀ

i Vi(ζ)−1Ci(φ)
]

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Zi
)

vec [d (D)]

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi
)

vec [d (D)]

=
1

2

N∑
i=1

wi
[
vec
(
Vi(ζ)−1

)]ᵀ (
Ci(φ)Vi(ζ)−1Zi ⊗Zi

)
vec [d (D)]

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Zi
)
D̃qd (v(D))

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi
)
D̃qd (v(D))

=
1

2

N∑
i=1

wi
[
vec
(
Vi(ζ)−1

)]ᵀ (
Ci(φ)Vi(ζ)−1Zi ⊗Zi

)
D̃qd (v(D))

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Zi
)
D̃qd (v(D))

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi
)
D̃qd (v(D))

=

{
1

2

N∑
i=1

wi
[
vec
(
Vi(ζ)−1

)]ᵀ (
Ci(φ)Vi(ζ)−1Zi ⊗Zi

)
D̃q

− 1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Zi
)
D̃q

−1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Zi ⊗ ẽ
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi
)
D̃q

}
d (v(D)) .

(C.36)
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Thus the expression in the curly brackets in the last line of (C.36) isD2
(v(D))(σ2)

(
L(σ2)

)
, which is a 1× (q(q+ 1)/2) vector as required. Now taking expectations of this deriva-

tive vector and using (C.35), we have

E[e
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi⊗e
ᵀ

iVi(ζ)−1Zi] andE[e
ᵀ

iVi(ζ)−1Zi⊗e
ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1Zi]

are both equal to [vec(Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1Zi)]
ᵀ
. Thus we have

−E
[
D2

(v(D))(σ2)

(
L(σ2)

)]
= −1

2

N∑
i=1

wi
[
vec
(
Vi(ζ)−1

)]ᵀ (
Ci(φ)Vi(ζ)−1Zi ⊗Zi

)
D̃q

+
N∑
i=1

wi[vec(Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1Zi)]
ᵀ
D̃q

= −1

2

N∑
i=1

wi[vec(Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1Zi)]
ᵀ
D̃q

+

N∑
i=1

wi[vec(Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1Zi)]
ᵀ
D̃q

=
1

2

N∑
i=1

wi[vec(Z
ᵀ

i Vi(ζ)−1Ci(φ)Vi(ζ)−1Zi)]
ᵀ
D̃q. (C.37)

Let g(φ) = Dσ2

(
L(σ2)

)
, so that Dφ (g(φ)) = D2

(φ)(σ2)

(
L(σ2)

)
. Now g(φ) : S −→

R , S ⊆ Rr
, so that from the first identification table (Table B.1) we have that if

d (g(φ)) = a
ᵀ
dφ for a ∈ Rr

, then Dφ (g(φ)) = a
ᵀ
. In order to identify this vector

of partial derivatives we shall need the following result. When Vi(ζ) is viewed as a

function of only φ then

d
(
Vi(ζ)−1Ci(φ)Vi(ζ)−1

)
= −σ2Vi(ζ)−1d (Ci(φ))Vi(ζ)−1Ci(φ)Vi(ζ)−1

−σ2Vi(ζ)−1Ci(φ)Vi(ζ)−1d (Ci(φ))Vi(ζ)−1 + Vi(ζ)−1d (Ci(φ))Vi(ζ)−1. (C.38)

So from (C.30) we have
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d (g(φ)) = −1

2

N∑
i=1

witr
[
d
(
Vi(ζ)−1

)
Ci(φ) + Vi(ζ)−1d (Ci(φ))

]
+

1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1Ci(φ)Vi(ζ)−1

)
ẽi

=
1

2

N∑
i=1

witr
[
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1Ci(φ)− Vi(ζ)−1d (Ci(φ))

]
+

1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1Ci(φ)Vi(ζ)−1

)
ẽi

=
σ2

2

N∑
i=1

witr
[
Vi(ζ)−1d (Ci(φ))Vi(ζ)−1Ci(φ)

]
− 1

2

N∑
i=1

tr
[
Vi(ζ)−1d (Ci(φ))

]
− σ2

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1d (Ci(φ))Vi(ζ)−1Ci(φ)Vi(ζ)−1ẽi
]

+
1

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1d (Ci(φ))Vi(ζ)−1ẽi
]

− σ2

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1d (Ci(φ))Vi(ζ)−1ẽi
]

=
σ2

2

N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
vec [d (Ci(φ))]

− 1

2

N∑
i=1

[
vec(Vi(ζ)−1)

]ᵀ
vec [d (Ci(φ))]

− σ2

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)

vec [d (Ci(φ))]

+
1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)

vec [d (Ci(φ))]

− σ2

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1
)

vec [d (Ci(φ))]

=

{
σ2

2

N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

− 1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
Dφ (vec(Ci(φ)))

− σ2

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)
Dφ (vec(Ci(φ)))

+
1

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)
Dφ (vec(Ci(φ)))

−σ
2

2

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1
)
Dφ (vec(Ci(φ)))

}
dφ,

(C.39)
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where the last expression in curly brackets is an 1 × r vector and so is equal to

D2
(φ)(σ2)

(
L(σ2)

)
. Now using (C.35) we get thatE[

(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)
] = vec[Vi(ζ)−1]

ᵀ
,

E[
(
ẽ

ᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
)
] = vec[Vi(ζ)−1Ci(φ)Vi(ζ)−1]

ᵀ
, and

E[
(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1Ci(φ)Vi(ζ)−1
)
] = vec[Vi(ζ)−1Ci(φ)Vi(ζ)−1]

ᵀ
. Thus from

(C.39) we have that

−E
[
D2

(φ)(σ2)

(
L(σ2)

)]
= −σ

2

2

N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

+
1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
Dφ (vec(Ci(φ)))

− 1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
Dφ (vec(Ci(φ)))

+ σ2
N∑
i=1

wi
[
vec(Vi(ζ)−1Ci(φ)Vi(ζ)−1)

]ᵀ
Dφ (vec(Ci(φ)))

= −σ
2

2

N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

+ σ2
N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

=
σ2

2

N∑
i=1

wi [vec(Ci(φ))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ))) ,

(C.40)

where Dφ (vec(Ci(φ))) is given in equation C.4, and where a summary of all the

necessary equations required to calculate this can be found at the end of subsection

C.1.1.

C.1.4 Line 3 of the information matrix

Hψ (L(ψ)) where ψ = v(D):
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To account for the symmetry of D we take derivatives of L(θ) with respect to v(D)

rather than vec(D), and so we want to derive Hv(D) (L(v(D))) . Now L(v(D)) : S −→

R , S ⊆ R(q(q+1)/2)
, so that from the second identification table (Table B.2) we have that

if d2 (L(v(D))) = [d (v(D))]
ᵀ
B[d (v(D))] for a (q(q + 1)/2) × (q(q + 1)/2) matrix B

then Hv(D) (L(v(D))) = (1/2)
(
B +B

ᵀ)
. Computing the differential of (C.1) we get

d (L(v(D))) = −1

2

N∑
i=1

witr[Vi(ζ)−1d (Vi(ζ))]+
1

2

N∑
i=1

wi(ẽ
ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi).

(C.41)

Now computing the differential of this expression can be greatly simplified by noting

that vec(d2 (D)) = d2 (vec(D)) = D̃qd
2 (v(D)) = 0. This implies that d2 (D) = 0. Ac-

cordingly when Vi(ζ) is viewed as a function of v(D), since d2 (Vi(ζ)) = Zid
2 (D)Z

ᵀ

i ,

we have that d2 (Vi(ζ)) = 0. Using this result, and again when Vi(ζ) is viewed as a

function of v(D), we also get the result that

d
(
ẽ

ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi
)

= −2ẽiVi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi.

(C.42)

Using both of these results we have
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d2 (L(v(D))) =
1

2

N∑
i=1

witr
{
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))

}
−

N∑
i=1

wi
(
ẽ

ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi
)

=
1

2

N∑
i=1

witr
{(
Vi(ζ)−1Zid (D)Z

ᵀ

i Vi(ζ)−1Zi
) (
d (D)Z

ᵀ

i

)}
−

N∑
i=1

witr
{(
ẽ

ᵀ

iVi(ζ)−1Zid (D)Z
ᵀ

i Vi(ζ)−1Zi
) (
d (D)Z

ᵀ

i Vi(ζ)−1ẽi
)}

=
1

2

N∑
i=1

witr
{
d (D)

(
Z

ᵀ

i Vi(ζ)−1Zi
)
d (D)

(
Z

ᵀ

i Vi(ζ)−1Zi
)}

−
N∑
i=1

witr
{
d (D)

(
Z

ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1Zi
)
d (D)

(
Z

ᵀ

i Vi(ζ)−1Zi
)}

=
1

2
[vec(d (D))]

ᵀ
N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)

[vec(d (D))]

− [vec(d (D))]
ᵀ
N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1Zi)
)

[vec(d (D))]

= [d (v(D))]
ᵀ

{
1

2
D

ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
Dq

−Dᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1Zi)
)
Dq

}
[d (v(D))] ,

(C.43)

so that the (q(q+ 1)/2)× (q(q+ 1)/2) matrix B is given by the expression within curly

brackets in (C.43). This matrix is symmetrical so that (1/2)
(
B +B

ᵀ)
= B. Thus

Hv(D) (L(v(D))) is
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Hv(D) (L(v(D))) =
1

2
D̃

ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
D̃q

− D̃ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1Zi)
)
D̃q

(C.44)

and so

−E
[
Hv(D) (L(v(D)))

]
= −1

2
D̃

ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
D̃q

+ D̃
ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Var[Yi]Vi(ζ)−1Zi)
)
D̃q

= −1

2
D̃

ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
D̃q

+ D̃
ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
D̃q

=
1

2
D̃

ᵀ

q

N∑
i=1

wi
(
(Z

ᵀ

i Vi(ζ)−1Zi)⊗ (Z
ᵀ

i Vi(ζ)−1Zi)
)
D̃q. (C.45)

D2
(φ)(ψ) (L(ψ)) = D2

(φ)(v(D)) (L(v(D))) for ψ = v(D):

First we derive Dv(D) (L(v(D))). Now L(v(D)) : S −→ R , S ⊆ Rq(q+1)/2
, so that

from the first identification table (Table B.1) we have that if d (L(v(D))) = a
ᵀ
d (v(D))

for a ∈ Rq(q+1)/2
, then Dv(D) (L(v(D))) = a

ᵀ
. We have
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d (L(v(D))) = −1

2

N∑
i=1

wid (log (|Vi(ζ)|))− 1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1

)
ẽi

= −1

2

N∑
i=1

witr
[
Vi(ζ)−1d (Vi(ζ))

]
+

1

2

N∑
i=1

wivec
[
ẽ

ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi
]

= −1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
(Zi ⊗Zi)d (vec(D))

+
1

2

N∑
i=1

wi((ẽ
ᵀ

iVi(ζ)−1Zi)⊗ (ẽ
ᵀ

iVi(ζ)−1Zi))d (vec(D))

=

{
−1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
(Zi ⊗Zi)D̃q

+
1

2

N∑
i=1

wi((ẽ
ᵀ

iVi(ζ)−1Zi)⊗ (ẽ
ᵀ

iVi(ζ)−1Zi))D̃q

}
d (v(D)) . (C.46)

So we see that

Dv(D) (L(v(D))) = −1

2

N∑
i=1

wi
[
vec(Vi(ζ)−1)

]ᵀ
(Zi ⊗Zi)D̃q

+
1

2

N∑
i=1

wi((ẽ
ᵀ

iVi(ζ)−1Zi)⊗ (ẽ
ᵀ

iVi(ζ)−1Zi))D̃q, (C.47)

which is a 1× q(q+1)/2 vector as required. Letting g(φ) = Dv(D) (L(v(D)))
ᵀ

we have

g(φ) : S −→ Rq(q+1)/2
, S ⊆ Rr

. From the first identification table (Table B.1) we have

that if d (g(φ)) = Adφ for a q(q+ 1)/2× r matrix A, then D2
(φ)(v(D)) (L(v(D))) = A.

We have
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d (g(φ)) = −1

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i ⊗Z
ᵀ

i )vec
(
(d
(
Vi(ζ)−1

))
+

1

2

N∑
i=1

wiD̃
ᵀ

q

{(
Z

ᵀ

i d
(
Vi(ζ)−1

)
ẽi
)
⊗
(
Z

ᵀ

i Vi(ζ)−1ẽi
)

+
(
Z

ᵀ

i Vi(ζ)−1ẽi
)
⊗
(
Z

ᵀ

i d
(
Vi(ζ)−1

)
ẽi
)}

=
σ2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i ⊗Z
ᵀ

i )vec
[
Vi(ζ)−1(d (Ci(φ))Vi(ζ)−1

]
− σ2

2

N∑
i=1

wiD̃
ᵀ

q

{(
Z

ᵀ

i Vi(ζ)−1d (Ci(φ))Vi(ζ)−1ẽi
)
⊗
(
Z

ᵀ

i Vi(ζ)−1ẽi
)

+
(
Z

ᵀ

i Vi(ζ)−1ẽi
)
⊗
(
Z

ᵀ

i Vi(ζ)−1d (Ci(φ))Vi(ζ)−1ẽi
)}

=
σ2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i ⊗Z
ᵀ

i )(Vi(ζ)−1 ⊗ Vi(ζ)−1)vec [d (Ci(φ))]

− σ2

2

N∑
i=1

wiD̃
ᵀ

q

{
vec
[
Z

ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1d (Ci(φ))Vi(ζ)−1Zi
]

+vec
[
Z

ᵀ

i Vi(ζ)−1d (Ci(φ))Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1Zi
]}

=
σ2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1 ⊗Zᵀ

i Vi(ζ)−1)vec [d (Ci(φ))]

− σ2

2

N∑
i=1

wiD̃
ᵀ

q

{
(Z

ᵀ

i Vi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1)vec [d (Ci(φ))]

+(Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1)vec [d (Ci(φ))]
}

=

{
σ2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1 ⊗Zᵀ

i Vi(ζ)−1)Dφ (vec(Ci(φ)))

−σ
2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1)Dφ (vec(Ci(φ)))

−σ
2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1ẽiẽ
ᵀ

iVi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1)Dφ (vec(Ci(φ)))

}
dφ.

(C.48)
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So we see that the q(q+1)/2×r matrix D2
(φ)(v(D)) (L(v(D))) is given by the expression

within parentheses in (C.48). Now −E[D2
(φ)(v(D)) (L(v(D)))] involves calculating only

E[ẽiẽ
ᵀ

i ] = Var[Yi] = Vi(ζ), so that Z
ᵀ

i Vi(ζ)−1E[ẽiẽ
ᵀ

i ]Vi(ζ)−1 = Z
ᵀ

i Vi(ζ)−1. Thus

−E[D2
(φ)(v(D)) (L(v(D)))] = −σ

2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1 ⊗Zᵀ

i Vi(ζ)−1)Dφ (vec(Ci(φ)))

+ σ2
N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1)Dφ (vec(Ci(φ)))

=
σ2

2

N∑
i=1

wiD̃
ᵀ

q (Z
ᵀ

i Vi(ζ)−1)⊗ (Z
ᵀ

i Vi(ζ)−1)Dφ (vec(Ci(φ))) .

(C.49)

C.1.5 Line 4 of the information matrix

Hφ (L(φ)) :

We will need a few preliminary results. Firstly for a matrix function F (x) where F :

S −→ Rm×p
, S ⊆ Rn

, and where F is twice differentiable, we have that vec[d2 (F (x))] =

(Imp ⊗ dx)
ᵀ
Hx (F (x))dx, where Hx (F (x)) = {cHx (Fjk(x))}m p

j=1, k=1 is a mnp × n

matrix where the (j, k)th element is the n×n Hessian matrix Hx (Fjk(x)). This comes

directly from B.2. With a bit of simple algebra the mp × 1 second differential vector

vec[d2 (F (x))] can be written

vec[d2 (F (x))] = (Imp ⊗ dx)
ᵀ
Hx (F (x))dx

=
{
c

(dx)
ᵀ
Hx (Fjk(x))dx

}m p

j=1, k=1
. (C.50)

Now let A = {majk}
m p
j=1, k=1 be a m× p matrix and let a ∈ Rmp

be a vector such that

321



a = {rajk}
m p
j=1, k=1. Then from (C.50) we have

a
ᵀ

(Imp ⊗ dx)
ᵀ
Hx (F (x))dx = (dx)

ᵀ


m∑
j=1

p∑
k=1

ajkHx (Fjk(x))

dx, (C.51)

In particular from (C.51) we have

[
vec
(
Vi(ζ)−1

)]ᵀ (
In2

i
⊗ dφ

)ᵀ

Hφ (Ci(φ))dφ =

(dφ)
ᵀ


ni∑
j=1

ni∑
k=1

(Vi(ζ)−1)jk(Hφ (Ci(φ)))jk

dφ,
(C.52)

and

(
ẽ

ᵀ

iVi(ζ)−1 ⊗ ẽᵀ

iVi(ζ)−1
) (
In2

i
⊗ dφ

)ᵀ

Hφ (Ci(φ))dφ =

(dφ)
ᵀ


ni∑
j=1

ni∑
k=1

ni∑
t=1

ni∑
s=1

ẽitVitj(ζ)−1ẽisVisk(ζ)−1(Hφ (Ci(φ)))jk

dφ.
(C.53)

The last result we need is that when Vi(ζ) is viewed as a function of φ that

d
(
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1

)
= −2Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1+

Vi(ζ)−1d2 (Vi(ζ))Vi(ζ)−1.

(C.54)

Now L(φ) : S −→ R , S ⊆ Rr
, so that from the second identification table (Table B.2)

we have that if d2 (L(φ)) = {d (φ)}ᵀB{d (φ)} for a r× r matrix B then Hφ (L(φ)) =

(1/2)
(
B +B

ᵀ)
. We have

322



d (L(φ)) = −1

2

N∑
i=1

wid (log |Vi(ζ)|)− 1

2

N∑
i=1

wiẽ
ᵀ

id
(
Vi(ζ)−1

)
ẽi

= −1

2

N∑
i=1

witr[Vi(ζ)−1d (Vi(ζ))] +
1

2

N∑
i=1

wiẽ
ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi,

(C.55)

so that

d2 (L(φ)) = −1

2

N∑
i=1

witr
[
d
(
Vi(ζ)−1

)
d (Vi(ζ)) + Vi(ζ)−1d2 (Vi(ζ))

]
+

1

2

N∑
i=1

witr
[
ẽ

ᵀ

id
(
Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1

)
ẽi
]

= −1

2

N∑
i=1

witr
[
−Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ)) + Vi(ζ)−1d2 (Vi(ζ))

]
−

N∑
i=1

witr
[
ẽ

ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1ẽi
]

+
1

2

N∑
i=1

witr
[
ẽ

ᵀ

iVi(ζ)−1d2 (Vi(ζ))Vi(ζ)−1ẽi
]
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=
1

2

N∑
i=1

witr
[
d (Vi(ζ))Vi(ζ)−1d (Vi(ζ))Vi(ζ)−1

]
− 1

2

N∑
i=1

tr
[
Vi(ζ)−1d2 (Vi(ζ))

]
−

N∑
i=1

witr
[
d (Vi(ζ))Vi(ζ)−1ẽiẽ

ᵀ

iVi(ζ)−1d (Vi(ζ))Vi(ζ)−1
]

+
1

2

N∑
i=1

witr
[
ẽ

ᵀ

iVi(ζ)−1d2 (Vi(ζ))Vi(ζ)−1ẽi
]

=
1

2

N∑
i=1

wi [vec (d (Vi(ζ)))]
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
[vec (d (Vi(ζ)))]

−
N∑
i=1

wi [vec (d (Vi(ζ)))]
ᵀ (
Vi(ζ)−1 ⊗

(
Vi(ζ)−1ẽiẽ

ᵀ

iVi(ζ)−1
))

[vec (d (Vi(ζ)))]

− 1

2
wi

N∑
i=1

[
vec
(
Vi(ζ)−1

)]ᵀ
vec
(
d2 (Vi(ζ))

)
+

1

2

N∑
i=1

wi
((
ẽ

ᵀ

iVi(ζ)−1
)
⊗
(
ẽ

ᵀ

iVi(ζ)−1
))

vec
(
d2 (Vi(ζ))

)
. (C.56)

Now when Vi(ζ) is viewed as a function of φ, we have vec(d2 (Vi(ζ))) = σ2vec(d2 (Ci(φ))) =

σ2(In2
i
⊗ dφ)

ᵀ
Hφ (Ci(φ))dφ. If we let f(φ) be the function defined by the last two

terms in the right-hand side of C.56, then we have
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f(φ) = −1

2

N∑
i=1

wi

{[
vec
(
Vi(ζ)−1

)]ᵀ
vec
(
d2 (Vi(ζ))

)
−wi

((
ẽ

ᵀ

iVi(ζ)−1
)
⊗
(
ẽ

ᵀ

iVi(ζ)−1
))

vec
(
d2 (Vi(ζ))

)}
= −σ

2

2

N∑
i=1

wi

{[
vec
(
Vi(ζ)−1

)]ᵀ
(In2

i
⊗ dφ)

ᵀ
Hφ (Ci(φ))dφ

−wi
((
ẽ

ᵀ

iVi(ζ)−1
)
⊗
(
ẽ

ᵀ

iVi(ζ)−1
))

(In2
i
⊗ dφ)

ᵀ
Hφ (Ci(φ))dφ

}
= (dφ)

ᵀ

σ2

2

N∑
i=1

−wi ni∑
j=1

ni∑
k=1

(
Vi(ζ)−1

)
jk
Hφ((Ci(φ))jk)

+wi

ni∑
j=1

ni∑
k=1

ni∑
t=1

ni∑
s=1

(ẽi)t
(
Vi(ζ)−1

)
tj

(ẽi)s
(
Vi(ζ)−1

)
sk
Hφ((Ci(φ))jk)

dφ,
(C.57)

where the last line follows from (C.52) and (C.53). If we let the function inside the

curly brackets in (C.60) be g(φ), so that f(φ) = (dφ)
ᵀ
g(φ)dφ, then (C.56) becomes

d2 (L(φ)) = (dφ)
ᵀ

{
σ4

2

N∑
i=1

[
wi (Dφ (vec(Ci(φ))))

ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

−2wi (Dφ (vec(Ci(φ))))
ᵀ (
Vi(ζ)−1 ⊗

(
Vi(ζ)−1ẽiẽ

ᵀ

iVi(ζ)−1
))
Dφ (vec(Ci(φ)))

]
+ g(φ)

}
dφ.

(C.58)

Now g(φ) is a symmetric r × r matrix where the symmetry follows from the fact that

it is the sum of the ni × ni symmetric Hessian matrices Hφ (Ci(φ)). Each of the

other two terms in (C.58) define r× r matrices which are symmetric, and so the whole

expression in curly brackets in (C.58) is a symmetric r×r matrix. Thus this expression

is Hφ (L(φ)) , so that
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Hφ (L(φ)) =
σ4

2

N∑
i=1

[
wi (Dφ (vec(Ci(φ))))

ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

−2wi (Dφ (vec(Ci(φ))))
ᵀ (
Vi(ζ)−1 ⊗

(
Vi(ζ)−1ẽiẽ

ᵀ

iVi(ζ)−1
))
Dφ (vec(Ci(φ)))

]
+ g(φ),

(C.59)

where

g(φ) =
σ2

2

N∑
i=1

−wi ni∑
j=1

ni∑
k=1

(
Vi(ζ)−1

)
jk
Hφ((Ci(φ))jk)

+wi

ni∑
j=1

ni∑
k=1

ni∑
t=1

ni∑
s=1

(ẽi)t
(
Vi(ζ)−1

)
tj

(ẽi)s
(
Vi(ζ)−1

)
sk
Hφ((Ci(φ))jk)

 .
(C.60)

Now taking expectations of (C.59) involves taking expectations of g(φ) which in turn

only involves calculating E[ẽitẽis] = (Vi(ζ))ts. Thus we have

E[g(φ)] =
σ2

2

N∑
i=1

−wi ni∑
j=1

ni∑
k=1

Vijk(ζ)−1Hφ((Ci(φ))jk)

+wi

ni∑
j=1

ni∑
k=1

ni∑
t=1

(
Vi(ζ)−1

)
tj

ni∑
s=1

[
(Vi(ζ))ts

(
Vi(ζ)−1

)
sk

]
Hφ((Ci(φ))jk)


=
σ2

2

N∑
i=1

−wi ni∑
j=1

ni∑
k=1

(
Vi(ζ)−1

)
jk
Hφ((Ci(φ))jk)

+wi

ni∑
j=1

ni∑
k=1

ni∑
t=1

(
Vi(ζ)−1

)
tj

(Vi(ζ))t.
(
Vi(ζ)−1

)
.k
Hφ((Ci(φ))jk)


=
σ2

2

N∑
i=1

−wi ni∑
j=1

ni∑
k=1

(
Vi(ζ)−1

)
jk
Hφ((Ci(φ))jk)

+wi

ni∑
j=1

ni∑
k=1

(
Vi(ζ)−1

)
jk
Hφ((Ci(φ))jk)


= 0 (C.61)
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Thus from (C.59) we have

−E [Hφ (L(φ))] = −σ
4

2

N∑
i=1

[
wi (Dφ (vec(Ci(φ))))

ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

−2wi (Dφ (vec(Ci(φ))))
ᵀ (
Vi(ζ)−1 ⊗

(
Vi(ζ)−1Var[Yi]Vi(ζ)−1

))
×

Dφ (vec(Ci(φ)))]

= −σ
4

2

N∑
i=1

[
wi (Dφ (vec(Ci(φ))))

ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

−2wi (Dφ (vec(Ci(φ))))
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ)))

]
=
σ4

2

N∑
i=1

wi (Dφ (vec(Ci(φ))))
ᵀ (
Vi(ζ)−1 ⊗ Vi(ζ)−1

)
Dφ (vec(Ci(φ))) .

(C.62)

C.2 Score vector and Hessian matrix for MLMMs

We want to obtain the score vector Dθ (L(θ))
ᵀ
, and Hessian Hθ (L(θ)) of the ordi-

nary or incomplete log-likelihood given in (2.10) where for brevity we will write Li(θ)

for L(yi|θ). Then we have d (L(y|θ)) =
∑N

i=1 d (L(yi|θ)) which implies Dθ (L(θ)) =∑N
i=1Dθ (Li(θ)), and Hθ (L(θ)) =

∑N
i=1Hθ (Li(θ)). All the MLMMs we are consid-

ering are the same for each unit, and so each Score vector and Hessian will have the

same form. Thus to obtain the Score vector and Hessian for the sample we need only

compute the differential of L(yi|θ) for an arbitrary i in order to identify Dθ (Li(θ))
ᵀ
,

and Hθ (Li(θ)).

Since the component probabilities are constrained to sum to one, we will consider

each Li(θ) to be a function of π̃ = (π1, ...πG−1)
ᵀ
, and obtain πG as πG = 1−

∑G−1
l=1 πl.
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We will also partition θ with respect to the component density parameters and mixing

proportions as θ = [θ
ᵀ

1 , ...,θ
ᵀ

g , π̃
ᵀ
]
ᵀ
. Let Li(θg) and Li(π̃) denote the log-likelihood

function for unit i considered to be a function of only θg and π̃ respectively, with all

other parameters considered fixed. Using this partition of θ we can write the Score

vector and Hessian in partitioned form as

Dθ (Li(θ))
ᵀ

=
[
Dθ1 (Li(θ1)) , ...,DθG (Li(θG)) ,Dπ̃ (Li(π̃))

]ᵀ
, (C.63)

and

Hθ (Li(θ)) =



Hθ1 (Li(θ1)) D2
(θ2 )(θ1 ) (Li(θ1)) · · · D2

(θG )(θ1 ) (Li(θ1)) D2
(π̃)(θ1 ) (Li(θ1))

Hθ2 (Li(θ2)) · · · D2
(θG )(θ2 ) (Li(θ2)) D2

(π̃)(θ2 ) (Li(θ2))

. . .
...

...

symm HθG (Li(θG)) D2
(π̃)(θG ) (Li(θG))

Hπ̃ (Li(π̃))



.

(C.64)

For each unit, the way in which L(yi|θ) depends on θg and π̃ is the same. Specifically,

since there are no parameters that are shared across components, L(yi|θ) depends on

θg only through the component density fig(y|θg). Thus the form of Dθj (Li(θj)) and

Hθj (Li(θj)) will be the same for all i = 1, ..., N , and j = 1, ..., G, and the form of
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D2
(θj )(θk ) (Li(θk)) will also be the same for all i = 1, .., N , and for all j, k = 1, ..., G.

The form of Dπ̃ (Li(π̃)) and Hπ̃ (Li(π̃)) will also be the same for all i. Thus we need

only derive two score vectors, two Hessians and two cross-product matrices in order to

find the score vector and Hessian of our sample given in (C.63) and (C.64), and in this

section we will derive, in general form, all the necessary equations we need to compute

these. In sections (C.2.1), and (C.2.2) we will use the general equations derived here to

give in explicit form these equations for the classes of MLMMs we are concerned with.

To derive in general form the two score vectors, two Hessians and two cross-product

matrices we require, we will consider θg to be a partitioned vector with four components

θg = [β
ᵀ

g , σ
2
g ,ψ

ᵀ

g ,φ
ᵀ

g]
ᵀ
, where ψg = v(Dg), and we will write θsg for s = 1, 2, 3, 4, to

index these components in this order. We will also write Ts ⊆ Rns for the domain sets

of θsg where ns is the number of parameters in θsg. Thus the derivative vector of Li with

respect to θg is

Dθg (Li(θg)) =
[
Dβg (Li(βg)) ,Dσ2

g

(
Li(σ

2
g)
)
,Dψg (Li(ψg)) ,Dφg (Li(φg))

]
, (C.65)

where the dimensions of the components are (1×p),(1×1),(1× q(q+ 1)/2), and (1× r)

respectively. The Hessian of Li with respect to θg is
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Hθg (Li(θg)) =

Hβg (Li(βg)) D2
(σ2
g )(βg )

(Li(βg)) D2
(ψg )(βg ) (Li(βg)) D2

(φg )(βg ) (Li(βg))

Hσ2
g

(
Li(σ

2
g)
)

D2
(ψg )(σ2

g )

(
Li(σ

2
g)
)
D2

(φg )(σ2
g )

(
Li(σ

2
g)
)

Hψg (Li(ψg)) D2
(φg )(ψg ) (Li(ψg))

symm Hφg (Li(φg))



.

(C.66)

Using the approach taken by Boldea and Magnus (2009), we introduce the following

notation

υig = πgfg(yi|λg,θg), (C.67)

and

αig =
υig∑G
k=1 υik

, (C.68)

for g = 1, ..., G, and i = 1, ..., N . We will also use fig = fg(yi|λg,θg) for brevity. Using

this notation we have
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d[L(θ|yi)] =
d[f(yi|θ)]

f(yi|θ)

=

∑G
j=1 d[πjfij ]∑G
k=1 πkfik

=

G∑
j=1

(
πjfij∑G
k=1 πkfik

d[πjfij ]

πjfij

)

=
G∑
j=1

(
πjfij∑G
k=1 πkfik

d[log(πjfij)]

)

=
G∑
j=1

υij∑G
k=1 υik

d[logυij ]

=
G∑
j=1

αijd[logυij ], (C.69)

and

d2 (L(θ|yi)) = d

(
d (f(yi|θ))

f(yi|θ)

)
=
d2 (f(yi|θ))

f(yi|θ)
−
(
d (f(yi|θ))

f(yi|θ)

)2

. (C.70)

Now

d2 (f(yi|θ))

f(yi|θ)
=
d
(∑G

j=1 d (πjfij)
)

f(yi|θ)

=

∑G
j=1 d

2 (πjfij)∑G
k=1 πkfik

=
G∑
j=1

(
πjfij∑G
k=1 πkfik

d2 (πjfij)

πjfij

)

=

G∑
j=1

αij
d2υij
υij

(C.71)

So using (C.69) and (C.71) we have that (C.70) becomes

d2 (L(θ|yi)) =

G∑
j=1

αij
d2υij
υij

−

 G∑
j=1

αij
dυij
υij

2

. (C.72)
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Now for any g we have

d2 (log(πgfig)) + [d (log(πgfig))]
2 = d

[
d (πgfig)

πgfig

]
+

(
d (πgfig)

πgfig

)2

=
d2 (πgfig)

πgfig
+

(
d (πgfig)− d (πgfig)

πgfig

)2

=
d2 (πgfig)

πgfig

=
d2υig
υig

, (C.73)

and so using this in (C.72) we have

d2 (L(θ|yi)) =

G∑
j=1

αij

[
d2 (log υij) + (d (log υij))

2
]
−

 G∑
j=1

αijd (log υij)

2

. (C.74)

Equations (C.69) and (C.74) are the same as those given in Boldea and Magnus (2009)

in equations (A.1) and (A.2) respectively. From this point onwards the results of our

derivations are different since Boldea and Magnus use a mixture of normal densities with

covariance matrices that do not depend on any data, and are thus specified directly

(as opposed to our approach which is to use random effects to induce a covariance

structure). Furthermore they specify means that do not include a regression component

which also do not depend on the data. For reasons previously described, we will consider

Li(θ) to be a function of the sth component of θ for an arbitrary g ∈ {1, ..., G}. We now

show that determining the Score vector and Hessian of Li(θ
s
g) reduces to determining

the Score vector and Hessian of log fig (considered as a function of only θsg).

Now since d[Li(θ
s
g)] = Dθsg

(
Li(θ

s
g)
)
dθsg, and d2[Li(θ

s
g)] = (dθsg)

ᵀ
Hθsg

(
Li(θ

s
g)
)
dθsg,

and under the assumption that Li(θ) is a function of only θsg, from (C.69) we see that
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d[Li(θ
s
g)] = Dθsg

(
Li(θ

s
g)
)
dθsg

= αigd[log υig]

= αigd[log(πgfig)]

= αigd[logπg] + αigd[logfig]

= αigd[logfig]

= αigDθsg(log fig)dθ
s
g

= αigDθsg(L
1
i (θ

s
g))dθ

s
g, (C.75)

where L1
i (θ

s
g) = logfig(y|λg,θsg) denotes we are considering log fig = logfig(y|λg,θg) to

be a function of only the sth component of θg. The superscript ”1” simply denotes that

log fig is just the log likelihood for the ith unit of a 1-component MLMM (conditional

on that unit belonging to component g). Thus (C.75) implies

Dθsg

(
Li(θ

s
g)
)

= αigDθsg(L
1
i (θ

s
g)). (C.76)

We note that (C.76) has the same form as (qgi )
ᵀ

given in Theorem 1 of Boldea and

Magnus (swapping the indexes t and i of Boldea and Magnus to i and g respectively to

match the notation we use here), although their score vector is computed with respect

to the whole of θg. Computing the second differential, and using (C.75) and (C.74),

we have
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d2[Li(θ
s
g)] = (dθsg)

ᵀ
Hθsg

(
Li(θ

s
g)
)
dθsg

= αig
[
d2 log υig + (d log υig)

2
]
− [αigd log υig]

2

= αigd
2 log fig + αig(1− αig)(d log fig)

2

= αig(dθ
s
g)

ᵀ
Hθsg(log fig)dθ

s
g + αig(1− αig)

(
Dθsg(log fig)dθ

s
g

)2

= αig(dθ
s
g)

ᵀ
Hθsg(L

1
i (θ

s
g))dθ

s
g + αig(1− αig)

(
Dθsg(L

1
i (θ

s
g)dθ

s
g

)2
.

(C.77)

Using the fact that for any two vectors x and y of the same dimension we have (x
ᵀ
y)2 =

(x
ᵀ
y)(x

ᵀ
y) = (y

ᵀ
x)(x

ᵀ
y), then (C.77) becomes

d2[Li(θ
s
g)] = (dθsg)

ᵀ
Hθsg

(
Li(θ

s
g)
)
dθsg

= αig(dθ
s
g)

ᵀ
Hθsg(L

1
i (θ

s
g))dθ

s
g + αig(1− αig)(dθsg)

ᵀ
Dθsg(L

1
i (θ

s
g))

ᵀ
Dθsg(L

1
i (θ

s
g))dθ

s
g

= (dθsg)
ᵀ
{
αigHθsg(L

1
i (θ

s
g)) + αig(1− αig)Dθsg(L

1
i (θ

s
g))

ᵀ
Dθsg(L

1
i (θ

s
g))
}
dθsg.

(C.78)

Thus

Hθsg

(
Li(θ

s
g)
)

= αigHθsg(L
1
i (θ

s
g)) + αig(1− αig)Dθsg(L

1
i (θ

s
g))

ᵀ
Dθsg(L

1
i (θ

s
g)), (C.79)

which is a symmetric ns × ns matrix as required. This is the same form as Qgg
i

given in Theorem 1 of Boldea and Magnus (this can be seen by noting that −Cgi =

Hθg (Li(θg))) although their Hessian and score vector are computed with respect to

the whole of θg. Again we swap the indexes t and i of Boldea and Magnus to i and g
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respectively to match the notation we use here.

We now derive the cross products D2
(θsg)(θtg)

(
Li(θ

t
g)
)

in (C.66), for s, t ∈ {1, 2, 3, 4},

s 6= t. Let g(θsg) = Dθtg

(
Li(θ

t
g)
)ᵀ

, and recalling that θsg ∈ T s ⊆ Rns for s ∈ {1, 2, 3, 4},

we have g : T s → Rnt . Then by (B.1) we have that if d
(
g(θsg)

)
= Adθsg for a

nt × ns matrix A, then Dθsg

(
g(θsg)

)
= D2

(θsg)(θtg)

(
Li(θ

t
g)
)

= A. Now from (C.76)

we have g(θsg) = αigg
1(θsg), where g1(θsg) = Dθtg

(
L1
i (θ

t
g)
)ᵀ

. Noting that d
(
g1(θsg)

)
=

D2
(θsg)(θtg)

(
L1
i (θ

t
g)
)
dθsg we have

d
(
g(θsg)

)
= d (αig) g

1(θsg) + αigD
2
(θsg)(θtg)

(
L1
i (θ

t
g)
)
dθsg. (C.80)

Now remembering that we are considering g(θsg), and hence αig, to be a function of

only θsg, we have

d (αig) =
d (υig)∑G
j=1 υij

− υigd (υig)(∑G
j=1 υij

)2

=
υigd (υig)

υig
∑G

j=1 υij
−

υ2
igd (υig)

υig

(∑G
j=1 υij

)2

= αig
d (υig)

υig
− α2

ig

d (υig)

υig

= αig(1− αig)(d (log υig))

= αig(1− αig)(d
(
L1
i (θ

s
g)
)
)

= αig(1− αig)Dθsg

(
L1
i (θ

s
g)
)
dθsg. (C.81)

Thus (C.80) becomes
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d
(
g(θsg)

)
= αig(1− αig)

[
Dθsg

(
L1
i (θ

s
g)
)
dθsg

]
Dθtg

(
L1
i (θ

t
g)
)ᵀ

+ αigD
2
(θsg)(θtg)

(
L1
i (θ

t
g)
)
dθsg

= αig(1− αig)Dθtg

(
L1
i (θ

t
g)
)ᵀ [

Dθsg

(
L1
i (θ

s
g)
)
dθsg

]
+ αigD

2
(θsg)(θtg)

(
L1
i (θ

t
g)
)
dθsg

=
{
αig(1− αig)Dθtg

(
L1
i (θ

t
g)
)ᵀ
Dθsg

(
L1
i (θ

s
g)
)

+ αigD
2
(θsg)(θtg)

(
L1
i (θ

t
g)
)}
dθsg,

(C.82)

and so

D2
(θsg)(θtg)

(
Li(θ

t
g)
)

= αig(1− αig)Dθtg

(
L1
i (θ

t
g)
)ᵀ
Dθsg

(
L1
i (θ

s
g)
)

+ αigD
2
(θsg)(θtg)

(
L1
i (θ

t
g)
)
,

(C.83)

which is a nt × ns matrix as required. Equations (C.83) and (C.79) will allow us to

calculate all the elements of (C.2) in general form.

We now derive the cross products D2
(θj )(θk ) (Li(θk)) in (C.64), for j, k ∈ {1, ..., G},

j 6= k. Let g(θj) = Dθk (Li(θk))
ᵀ

so that we have g : T → Rnθ . Then by (B.1) we have

that if d (g(θj)) = Adθj for a nθ×nθ matrixA, thenDθj (g(θj)) = D2
(θj )(θk ) (Li(θk)) =

A. Now in the same way we derived (C.76), we have Dθk (Li(θk)) = αikDθk(L1
i (θk)),

and so g(θj) = αikg
1(θj), where g1(θj) = Dθk

(
L1
i (θk)

)ᵀ
. Now g1(θj) is in fact not a

function of θj at all, and so d
(
g1(θj)

)
= 0 when we consider g1(θj) to be a function of

only θj . Thus

d (g(θj)) = d (αik) g
1(θj). (C.84)

Now remembering that we are considering g(θj), and hence αik, to be a function of

only θj , we have
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d (αik) = − υikd (υij)(∑G
l=1 υil

)2

= − υijυikd (υij)

υij

(∑G
l=1 υil

)2

= −αikαij
d (υij)

υij

= −αikαijd (log υij)

= −αikαijd
(
L1
i (θj)

)
= −αikαijDθj

(
L1
i (θj)

)
dθj . (C.85)

Thus from (C.84) we have

d (g(θj)) =
[
−αikαijDθj

(
L1
i (θj)

)
dθj

]
Dθk

(
L1
i (θk)

)ᵀ
= −αikαijDθk

(
L1
i (θk)

)ᵀ
Dθj

(
L1
i (θj)

)
dθj , (C.86)

and so

D2
(θj )(θk ) (Li(θk)) = −αikαijDθk

(
L1
i (θk)

)ᵀ
Dθj

(
L1
i (θj)

)
= −Dθk (Li(θk))

ᵀ
Dθj (Li(θj)) . (C.87)

The last line of (C.87) follows since

αigDθg

(
L1
i (θg)

)
=
[
αigDβg

(
L1
i (βg)

)
, αigDσ2

g

(
L1
i (σ

2
g)
)
, αigDψg

(
L1
i (ψg)

)
, αigDφg

(
L1
i (φg)

)]
=
[
Dβg (Li(βg)) ,Dσ2

g

(
Li(σ

2
g)
)
,Dψg (Li(ψg)) ,Dφg (Li(φg))

]
= Dθg (Li(θg)) (C.88)

from (C.65) and (C.76). We note that (C.87) is a nθ × nθ matrix as required. This is
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the same form as Qkj
i given in Theorem 1 of Boldea and Magnus, since to match with

our notation we have Qkj
i = D2

(θj )(θk ) (Li(θk)).

It is convenient to derive Dπ̃ (Li(π̃)) here rather than in section (C.2.1), and we

shall do this componentwise, that is we will take the derivative of L(yi|θ) with respect

to πg for g = 1, ..., G−1. Then we will obtain the 1×(G−1) derivative vector of L(yi|θ)

with respect to π̃ as Dπ̃ (Li(π̃)) = (Dπ1 (Li(π1)) , ...,DπG−1 (Li(πG−1))). Accordingly

let L(πg) be L(yi|θ) considered to be a function of only πg for any g = 1, ..., G − 1.

Since log υij is a function of πg when j = g or j = G (i.e. πG = 1 −
∑G−1

l=1 πl), from

(C.69) we have

d[L(πg)] = αigd (log υig) + αiGd (log υiG) . (C.89)

Now d[log υij ] = Dπg (log υij(πg)) dπg is equal to (1/πg)dπg when j = g, and−(1/πG)dπg

when j = G. Thus (C.89) becomes

d[L(πg)] =

{
αig

(
1

πg

)
− αiG

(
1

πG

)}
dπg. (C.90)

So the scalar derivative Dπg (Li(πg)) is given by the expression in curly parentheses

in (C.90), and so Dπ̃ (Li(π̃)) =
(
αi1(π−1

1 )− αiG(π−1
G ), ..., αi(G−1)(π

−1
G−1)− αiG(π−1

G )
)
.

Now introducing the following notation of Boldea and Magnus

aj =


(1/πj)ej j = 1, ..., G− 1,

−(1/πG)1G−1 j = G,

(C.91)
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where ej is the jth column of the identity matrix IG−1, and 1G−1 is a G−1 dimensional

vector of ones, we see that Dπ̃ (Li(π̃)) can be written

Dπ̃ (Li(π̃)) =

G∑
j=1

αija
ᵀ

j . (C.92)

We note that C.92 is the same as (qπi )
ᵀ

given in Theorem 1 of Boldea and Magnus.

We now deriveD2
(π̃)(θg ) (Li(θg)) in (C.64). For convenience we will deriveD2

(θg )(π̃) (Li(π̃))

and transpose it to get D2
(π̃)(θg ) (Li(θg)). Let g(θg) = Dπ̃ (Li(π̃))

ᵀ
=
∑G

j=1 αijaj , so

that g : T → RG−1. Then from (B.1), if d (g(θg)) = Adθg for a (G − 1) × nθ matrix

then Dθg (gi(θg)) = D2
(θg )(π̃) (Li(π̃)) = A. From (C.91) we get

d (g(θg)) =
∑G−1

j=1
d (αij)π

−1
j ej − d (αiG)π−1

G 1G−1. (C.93)

Noting that the derivations in (C.81) apply with θg instead of θsg, then from (C.81)

and (C.85) we have for j 6= g that d (αij) = −αijαigDθg

(
L1
i (θg)

)
dθg, whilst for j = g

we have d (αij) = αig(1− αig)Dθg

(
L1
i (θg)

)
dθg. Thus for g = G we have

d (g(θG)) = −
G−1∑
j=1

αijαiG
[
DθG

(
L1
i (θG)

)
dθG

]
π−1
j ej

− αiG(1− αiG)
[
DθG

(
L1
i (θG)

)
dθG

]
π−1
G 1G−1

= −
G−1∑
j=1

αijαiGπ
−1
j ej

[
DθG

(
L1
i (θG)

)
dθG

]
− αiG(1− αiG)π−1

G 1G−1

[
DθG

(
L1
i (θG)

)
dθG

]
=

αiG
−π−1

G 1G−1 −

G−1∑
j=1

αijπ
−1
j ej − αiGπ

−1
G 1G−1

DθG

(
L1
i (θG)

)dθG
=

αiG
aG − G∑

j=1

αijaj

DθG

(
L1
i (θG)

)dθG, (C.94)
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and for g 6= G we have

d (g(θg)) = −
G−1∑

j=1,j 6=g
αijαig

[
Dθg

(
L1
i (θg)

)
dθg

]
π−1
j ej

+ αig(1− αig)
[
Dθg

(
L1
i (θg)

)
dθg

]
π−1
g eg

+ αiGαig
[
Dθg

(
L1
i (θg)

)
dθg

]
π−1
G 1G−1

=

αig
π−1

g eg −

G−1∑
j=1

αijπ
−1
j ej − αiGπ

−1
G 1G−1

Dθg

(
L1
i (θg)

)dθg
=

αig
ag − G∑

j=1

αijaj

Dθg

(
L1
i (θg)

)dθg. (C.95)

So for all g ∈ {1, ..., G} we have

D2
(θg )(π̃) (Li(π̃)) = αig

ag − G∑
j=1

αijaj

Dθg

(
L1
i (θg)

)
, (C.96)

which is a (G− 1)× nθ matrix as required. Thus

D2
(π̃)(θg ) (Li(θg)) = αigDθg

(
L1
i (θg)

)ᵀag − G∑
j=1

αijaj

ᵀ

, (C.97)

which is a nθ × (G− 1) matrix. We note for all i ∈ IN that if the estimated posterior

probabilities α̂ij for all j = 1, ..., G are all precisely zero for all but one g ∈ IG (and so

α̂ig = 1), and regardless of whether this precise classification of units to components

is correct, we have that D2
(π̃)(θ̂j )

(
Li(θ̂j)

)
= 0 for all j = 1, ..., G. This shows when

we use Hθ

(
Li(θ̂)

)
in equation (C.64) to calculate IN (θ̂) that when we have precise

classification of units to components (but not necessarily correct), we would conclude

that there is no covariances between the estimators of the mixing proportions contained

in π̂, and those of the component density parameters θ̂j , j = 1, ..., G. Now to compare
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to Boldea and Magnus we need to account for the different ordering of θ they use,

which is to put π̃ before the vectors θg. Thus Qgπi = D2
(π̃)(θg ) (Li(θg)) in our notation.

We then see that the transpose of Qπgi = D2
(θg )(π̃) (Li(π̃)) given in their Theorem 1 is

the same form as (C.97).

C.2.1 Score vector for MLMMs

We derive Dθ (Li(θ)) in (C.63) by firstly deriving Dθg (Li(θg)) in (C.65). We use the

notation ẽig = yi−Xiβg. Now from (C.76) we see that the derivative vector of Li(θ
s
g)

is a simple function of the derivative vector of L1
i (θ

s
g). This means if we set the weights

to be one, the results in section (C.1) can be used (using only the ith summand for unit

i). So we get

Dβg (Li(βg)) = αigẽ
ᵀ

igVi(ζg)
−1Xi (C.98)

from (C.22),

Dσ2
g

(
Li(σ

2
g)
)

= −1

2
αigtr

[
Vi(ζg)

−1Ci(φg)
]

+
1

2
αigẽ

ᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1ẽig

(C.99)

from (C.30),

Dv(Dg) (Li(v(Dg))) = −1

2
αig
[
vec(Vi(ζg)

−1)
]ᵀ

(Zi ⊗Zi)D̃q

+
1

2
αig
[
(ẽ

ᵀ

igVi(ζg)
−1Zi)⊗ (ẽ

ᵀ

igVi(ζg)
−1Zi)

]
D̃q (C.100)

from (C.47) for when ψg = v(Dg). We need to derive the 1 × r derivative vector

Dφg (Li(φg)) since it was not done so in section (C.1). From (C.55) we have
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d
(
L1
i (φg)

)
= −1

2
tr[Vi(ζg)

−1d (Vi(ζg))] +
1

2
ẽ

ᵀ

igVi(ζg)
−1d (Vi(ζg))Vi(ζg)

−1ẽig

= −
σ2
g

2
tr[Vi(ζg)

−1d (Ci(φg))] +
σ2
g

2
vec
[
ẽ

ᵀ

igVi(ζg)
−1d (Ci(φg))Vi(ζg)

−1ẽig
]

= −
σ2
g

2
vec
[
Vi(ζg)

−1
]ᵀ
d (vec[Ci(φg)]) +

σ2
g

2

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗ ẽᵀ

igVi(ζg)
−1
)
d (vec[Ci(φg)])

=

{
−
σ2
g

2
vec
[
Vi(ζg)

−1
]ᵀ
Dφg (vec(Ci(φg)))

+
σ2
g

2

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗ ẽᵀ

igVi(ζg)
−1
)
Dφg (vec(Ci(φg)))

}
d (φ) , (C.101)

where for v = 1, ..., r by changing every occurrence of φv to (φg)v, Dφg (vec(Ci(φg)))

is given in equation C.4, and where a summary of all the necessary equations required

to calculate this can be found at the end of subsection C.1.1. So the 1 × r derivative

vector Dφg

(
L1
i (φg)

)
is given by the expression in curly brackets in (C.101). Thus

Dφg (Li(φg)) = −
σ2
g

2
αigvec

[
Vi(ζg)

−1
]ᵀ
Dφg (vec(Ci(φg)))

+
σ2
g

2
αig
(
ẽ

ᵀ

igVi(ζg)
−1 ⊗ ẽᵀ

igVi(ζg)
−1
)
Dφg (vec(Ci(φg))) . (C.102)

C.2.2 Hessian for MLMMs

In order to derive Hθ (Li(θ)) in (C.64) we firstly derive Hθg (Li(θg)) in (C.66), and we

will derive the diagonal entries Hθsg

(
Li(θ

s
g)
)

first. We see from (C.79) that the Hessian

of Li(θ
s
g) is a simple function of the Hessian and derivative vectors of L1

i (θ
s
g). So as in

section (C.2.1), by setting the weights equal to one, the results in section (C.1) can be

used (using only the ith summand for unit i). Thus from (C.24) and (C.22) we get

Hβg (Li(βg)) = −αigX
ᵀ

i Vi(ζg)
−1Xi + αig(1− αig)X

ᵀ

i Vi(ζg)
−1ẽigẽ

ᵀ

igVi(ζg)
−1Xi.

(C.103)
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For the other components of θg, the expressions given by (C.79) do not simplify ap-

preciably, and so we omit them for brevity. Instead we give the equation numbers

for the derivative vectors and Hessians needed to compute it. So using (C.30), and

the expression within curly brackets in (C.32), for Hσ2
g

(
Li(σ

2
g)
)

we need the following

equations

Dσ2
g
(L1

i (σ
2
g)) = −1

2
tr
[
Vi(ζg)

−1Ci(φg)
]

+
1

2
ẽ

ᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1ẽig, (C.104)

and

Hσ2
g

(
L1
i (σ

2
g)
)

=
1

2
tr
[
Vi(ζg)

−1Ci(φg)Vi(ζg)
−1Ci(φg)

]
− ẽᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1Ci(φg)Vi(ζg)
−1ẽig. (C.105)

Using (C.47), and (C.44), for Hv(Dg) (Li(v(Dg))) we need

Dv(Dg)(L
1
i (v(Dg))) = −1

2

[
vec(Vi(ζg)

−1)
]ᵀ

(Zi ⊗Zi)Dq

+
1

2
((ẽ

ᵀ

igVi(ζg)
−1Zi)⊗ (ẽ

ᵀ

igVi(ζg)
−1Zi))Dq, (C.106)

and

Hv(Dg)(L
1
i (v(Dg))) =

1

2
D̃

ᵀ

q

(
(Z

ᵀ

i Vi(ζg)
−1Zi)⊗ (Z

ᵀ

i Vi(ζg)
−1Zi)

)
D̃q

− D̃ᵀ

q

(
(Z

ᵀ

i Vi(ζg)
−1Zi)⊗ (Z

ᵀ

i Vi(ζg)
−1ẽigẽ

ᵀ

igVi(ζg)
−1Zi)

)
D̃q.

(C.107)

The final Hessian we require is Hφg (Li(φg)), for which we need Dφg

(
L1
i (φg)

)
from

within curly brackets in (C.101), and
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Hφg

(
L1
i (φg)

)
=
σ4
g

2

(
Dφg (vec(Ci(φg)))

)ᵀ (
Vi(ζg)

−1 ⊗ Vi(ζg)−1
)
Dφg (vec(Ci(φg)))

−σ4
g

(
Dφg (vec(Ci(φg)))

)ᵀ (
Vi(ζg)

−1 ⊗
(
Vi(ζg)

−1ẽigẽ
ᵀ

igVi(ζg)
−1
))
Dφg (vec(Ci(φg))) + g(φg),

(C.108)

from (C.59), where

g(φg) =−
σ2
g

2

ni∑
j=1

ni∑
k=1

(
Vi(ζg)

−1
)
jk
Hφg((Ci(φg))jk)

+
σ2
g

2

ni∑
j=1

ni∑
k=1

ni∑
t=1

ni∑
s=1

(ẽig)t
(
Vi(ζg)

−1
)
tj

(ẽig)s
(
Vi(ζg)

−1
)
sk
Hφg((Ci(φg))jk),

(C.109)

from (C.60), and where for v = 1, ..., r by replacing every occurrence of φv with (φg)v

Hφg((Ci(φg))jk) is given in equation C.7, and where a summary of all the necessary

equations required to calculate this can be found at the end of subsection C.1.1.

We now derive the cross-products in (C.66), which are given by (C.83). For brevity

we do not write (C.83) out in full for each s, t ∈ {1, 2, 3, 4}, s 6= t, but rather give the

equation numbers, or the equations, for the constituent parts. For D2
(σ2
g )(βg )

(Li(βg))

we need

Dβg

(
L1
i (βg)

)
= ẽ

ᵀ

igVi(ζg)
−1Xi (C.110)

from (C.22), andDσ2
g

(
L1
i (σ

2
g)
)

from (C.104). The cross productD2
(σ2
g )(βg )

(
L1
i (βg)

)
has

not been derived in section (C.1), although much of the work has been done. Noting that

when we view Vi(ζg) as a function of only σ2
g we have Dσ2

g
(vec(Vi(ζg))) = vec(Ci(φg)).

Then using (C.27) we have
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D2
(σ2
g )(βg )

(
L1
i (βg)

)
= −

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗Xᵀ

i Vi(ζg)
−1
)

vec(Ci(φg)). (C.111)

ForD2
(v(Dg))(βg ) (Li(βg)) we need (C.110) and (C.106). To deriveD2

(v(Dg))(βg )

(
L1
i (βg)

)
we again use (C.27), which requires us to calculate Dv(Dg) (vec(Vi(ζg))). When Vi(ζg)

is viewed as a function of only v(Dg) we have Dv(Dg) (vec(Vi(ζg))) = (Zi ⊗ Zi)D̃q,

and so

D2
(v(Dg))(βg )

(
L1
i (βg)

)
= −

(
ẽ

ᵀ

igVi(ζg)
−1Zi ⊗X

ᵀ

i Vi(ζg)
−1Zi

)
D̃q. (C.112)

For D2
(φg )(βg ) (Li(βg)) we need (C.110), and Dφg

(
L1
i (φg)

)
which is given by the ex-

pression within curly brackets in (C.101). Now when Vi(ζg) is viewed as a function

of only φg we have Dφg (vec(Vi(ζg))) = σ2
gDφg (vec(Ci(φg))). Thus using (C.27) we

have

D2
(φg )(βg )

(
L1
i (βg)

)
= −σ2

g

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗Xᵀ

i Vi(ζg)
−1
)
Dφg (vec(Ci(φg))) . (C.113)

For D2
(v(Dg))(σ2

g )

(
Li(σ

2
g)
)

we need (C.104), (C.100), and from (C.36)

D2
(v(Dg))(σ2

g )

(
L1
i (σ

2
g)
)

=
1

2

[
vec
(
Vi(ζg)

−1
)]ᵀ (

Ci(φg)Vi(ζg)
−1Zi ⊗Zi

)
D̃q

− 1

2

(
ẽ

ᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1Zi ⊗ ẽ
ᵀ

igVi(ζg)
−1Zi

)
D̃q

− 1

2

(
ẽ

ᵀ

igVi(ζg)
−1Zi ⊗ ẽ

ᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1Zi
)
D̃q.

(C.114)

ForD2
(φg )(σ2

g )

(
Li(σ

2
g)
)

we need (C.104), Dφg

(
L1
i (φg)

)
which is given by the expression

in curly parentheses in (C.101), and from (C.39)
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D2
(φg )(σ2

g )

(
L1
i (σ

2
g)
)

=
σ2
g

2
[vec(Ci(φg))]

ᵀ (
Vi(ζg)

−1 ⊗ Vi(ζg)−1
)
Dφg (vec(Ci(φg)))

− 1

2

[
vec(Vi(ζg)

−1)
]ᵀ
Dφg (vec(Ci(φg)))

−
σ2
g

2

(
ẽ

ᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1 ⊗ ẽᵀ

igVi(ζg)
−1
)
Dφg (vec(Ci(φg)))

+
1

2

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗ ẽᵀ

igVi(ζg)
−1
)
Dφg (vec(Ci(φg)))

−
σ2
g

2

(
ẽ

ᵀ

igVi(ζg)
−1 ⊗ ẽᵀ

igVi(ζg)
−1Ci(φg)Vi(ζg)

−1
)
Dφg (vec(Ci(φg))) .

(C.115)

For D2
(φg )(v(Dg)) (Li(v(Dg))) we need Dφg

(
L1
i (φg)

)
which is given by the expres-

sion within curly brackets in (C.101), and (C.106). From the expression within curly

brackets in (C.48), we also need

D2
(φg )(v(Dg))

(
L1
i (v(Dg))

)
=
σ2
g

2
D̃

ᵀ

q (Z
ᵀ

i Vi(ζg)
−1 ⊗Zᵀ

i Vi(ζg)
−1)Dφg (vec(Ci(φg)))

−
σ2
g

2
D̃

ᵀ

q (Z
ᵀ

i Vi(ζg)
−1)⊗ (Z

ᵀ

i Vi(ζg)
−1ẽigẽ

ᵀ

igVi(ζg)
−1)Dφg (vec(Ci(φg)))

−
σ2
g

2
D̃

ᵀ

q (Z
ᵀ

i Vi(ζg)
−1ẽigẽ

ᵀ

igVi(ζg)
−1)⊗ (Z

ᵀ

i Vi(ζg)
−1)Dφg (vec(Ci(φg))) .

(C.116)

The cross products D2
(θj )(θk ) (Li(θk)) in (C.64), for j, k ∈ {1, ..., G} are given by

(C.87). This can be calculated from (C.65), which in turn is given by the equations in

section (C.2.1). For brevity we do not write these expressions out explicitly.

The final quantity of (C.64) we need to derive is Hπ̃ (Li(π̃)) which is given by

Hπ̃ (Li(π̃)) =

{
m

∂

πk

[
∂Li(π̃)

∂πj

]}G−1 G−1

j=1, k=1

=

{
m

∂

πk

[
αij
πj
− αiG
πG

]}G−1 G−1

j=1, k=1

(C.117)
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using (C.92), where

∂

πk

[
αij
πj
− αiG
πG

]
=
∂αij
∂πk

π−1
j − αijπ

−2
j

∂πj
∂πk

− ∂αiG
∂πk

π−1
G − αiGπ

−2
G . (C.118)

Remembering that πG = 1 −
∑G−1

j=1 πj , we see that ∂/∂πk[
∑G

l=1 πlfil] = fik − fiG for

k = 1, ..., G− 1, and so for j, k = 1, ..., G− 1, we have

∂αij
πk

=


fik∑G

l=1 πlfil
− πkf

2
ik

(
∑G
l=1 πlfil)

2 + πkfikfiG

(
∑G
l=1 πlfil)

2 if k = j

− πjfijfik

(
∑G
l=1 πlfil)

2 +
πjfijfiG

(
∑G
l=1 πlfil)

2 if k 6= j.

(C.119)

Thus using (C.118) and (C.119) we have

∂

πk

[
αij
πj
− αiG
πG

]
=


−α2

ik

π2
k

+ 2αikαiG
πkπG

− α2
iG

π2
G

if k = j

−αijαik
πjπk

+
αijαiG
πjπG

+ αikαiG
πkπG

− α2
iG

π2
G

if k 6= j.

(C.120)

So (C.118) becomes

Hπ̃ (Li(π̃)) =

{
−αijαik
πjπk

+
αijαiG
πjπG

+
αikαiG
πkπG

−
α2
iG

π2
G

}G−1 G−1

j=1, k=1

= −Dπ̃ (Li(π̃))
ᵀ
Dπ̃ (Li(π̃)) , (C.121)

which agrees with Qπ̃π̃i in Boldea and Magnus (2009, Theorem 1).

C.3 An alternative justification for componentwise infer-

ence

In Sub-subsection 3.4.3.1 we argued using intuition that our assumption of a well be-

haved MLMM implies (I(θ0))−1 ≈ diag{A1, ...,AG,AG+1}, and this “result” then

formed the core assumption underpinning the use of componentwise inference. Given
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the importance of this result it is useful to derive it more mathematically, which is what

we do now in this sub-subsection. In this respect, and again using the assumption of

a well behaved MLMM, we firstly show that the Hessian of the MLMM log-likelihood

function Hθ(Li(θ)) for the ith unit is given by

Hθ(Li(θ)) ≈ diag{0, ...,Hθg(L1
i (θg)), ...,0, Hπ̃(Li(θ))} if p̂ig ≈ 1 for g ∈ IG.

Consider the contribution of the ith unit to JN (θ̂) which is given by the negative

of the matrix in (C.64). We might want to use this matrix because as we described in

Section 3.4 there are difficulties calculating IN (θ̂), however both are consistent estima-

tors of I(θ0) given certain assumptions. We will show in subsection C.2 for the ith unit,

that that the off-diagonal sub-matrices of JN (θ̂), which we denote byD2
(θj )(θk ) (Li(θk)),

j, k ∈ IG, j = 1, ..., G, j 6= k, andD2
(π̃)(θj ) (Li(θj)), j = 1, ..., G, are given by (C.87) and

(C.97) respectively. We will also show that the first G diagonal sub-matrices of JN (θ̂)

contain the component specific Hessians Hθj (Li(θj)), j = 1, ..., G, which are given

by (C.66), whose diagonal elements are given by (C.79), and off-diagonal elements by

(C.83). The terms αij , j = 1, ..., G that feature in the aforementioned equations are

equal to the p̂ij , j = 1, ..., G, when we replace the MLMM parameters in the terms αij

with their estimates. Now if the classification problem for an MLMM is easy, then for

all i ∈ IN we would expect the estimates of the posterior probabilities p̂ij , j = 1, ..., G

to be close to either one or zero. Consequently from the equations (C.87), (C.97) for

all j, k = 1, ..., G, j 6= k we see that D2
(θj )(θk ) (Li(θk)) ≈ 0, and for all j = 1, ..., G that

D2
(π̃)(θj ) (Li(θj)) ≈ 0.

Furthermore for any g ∈ IG when we look at the s sub-vectors in each θg, s ∈

348



{1, 2, 3, 4} (these correspond to the fixed effects, random effects and within-unit error co-

variance parameters, and the autoregressive parameter), from (C.79), and (C.83) we see

for all s, t = 1, ..., 4 that we have Hθsg(Li(θ
s
g)) ≈ Hθsg(L

1
i (θ

s
g)), and D2

(θsg)(θtg)(Li(θg)) ≈

D2
(θsg)(θtg)(L

1
i (θg)) if unit i is in component g, andHθg(Li(θg)) ≈ 0 andD2

(θsg)(θtg)(Li(θg)) ≈

0 if not. From (C.66) we see this implies that Hθg(Li(θg)) ≈ Hθg(L
1
i (θg)) if unit i is

in component g, whilst Hθg(Li(θg)) ≈ 0 if not.

Accordingly if unit i is in component g we see that Hθ(Li(θ)) which is given by

(C.64) will have all zero sub-matrices apart from the gth diagonal one which will be ap-

proximately equal to the Hessian matrix of a LMM with just unit i in the sample. Thus

the information contributed by the ith unit to IN (θ̂) about the MLMM parameter esti-

mator θ̂, and approximated by JN (θ̂), will be approximately equal to the information

that unit i contributes to I1
N (θ̂g).

Thus given a well behaved MLMM we have shown that the Hessian of the MLMM

log-likelihood function Hθ(Li(θ)) for the ith unit is given by

Hθ(Li(θ)) ≈ diag{0, ...,Hθg(L1
i (θg)), ...,0, Hπ̃(Li(θ))} if p̂ig ≈ 1, where Hπ̃(L(θ)) =∑N

i=1Hπ̃(Li(θ)). Thus summing over the N units we get∑N
i=1Hθ(Li(Yi|θ)) ≈ diag{

∑N1
k=1Hθ1(L1

k(Y
(1)
k |θ1)), ...,

∑NG
k=1HθG(L1

k(Y
(G)
k |θG)), Hπ̃(L(θ))}.

Letting J1
Ng

(θg) = −
∑Ng

k=1Hθg(L
1
k(Y

(g)
k |θg)) for g ∈ IG be the observed information

matrix for the gth 1-component model - i.e. using the 1-component log-likelihood func-

tion, we then get
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JN (θ) = −Hθ(L(Y |θ))

= −
N∑
i=1

Hθ(Li(Yi|θ))

≈ diag
{
J1
N1

(θ1), ..., J1
NG

(θG), Hπ̃
}
. (C.122)

Noting that N−1J1
Ng

(θg) =
(

Ng
(N)(Ng)

)
J1
Ng

(θg) = πgN
−1
g J1

Ng
(θg), and because for any

g ∈ IG we are assuming that N−1
g JNg(θ̂

1
g(Y

(g))) is a consistent estimator of I1(θ0
g) (see

Section 3.3), then from (C.122) and (C.121) we have

lim
N→∞

N−1JN (θ̂(Y )) ≈ diag
{
π1I

1(θ0
1), ...,πGI

1(θ0
G),diag{−π−1

j }
G−1
j=1

}
, (C.123)

where again we use the fact that Ng/N = πg for all N as N → ∞. Since from Sub-

section 3.4.2 we are assuming naively that N−1JN (θ̂(Y )) is a consistent estimator of

I(θ0) then C.123 shows that

N−1JN (θ̂(Y ))
P−→ I(θ0)

≈ diag
{
π1I

1(θ0
1), ...,πGI

1(θ0
G), diag{−π−1

j }
G−1
j=1

}
. (C.124)

As required equation C.124 agrees with the result (I(θ0))−1 ≈ diag{A1, ...,AG,AG+1}

we derived in Sub-subsection 3.4.3.1 - i.e. A−1
g = πgI

1(θ0
g) for g ∈ IG, and AG+1 =

diag{−π−1
j }

G−1
j=1 .
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