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Abstract

Motivation: A sizeable fraction of eukaryotic proteins contain intrinsically disordered regions

(IDRs), which act in unfolded states or by undergoing transitions between structured and unstruc-

tured conformations. Over time, sequence-based classifiers of IDRs have become fairly accurate

and currently a major challenge is linking IDRs to their biological roles from the molecular to the

systems level.

Results: We describe DISOPRED3, which extends its predecessor with new modules to predict

IDRs and protein-binding sites within them. Based on recent CASP evaluation results, DISOPRED3

can be regarded as state of the art in the identification of IDRs, and our self-assessment shows that

it significantly improves over DISOPRED2 because its predictions are more specific across the

whole board and more sensitive to IDRs longer than 20 amino acids. Predicted IDRs are annotated

as protein binding through a novel SVM based classifier, which uses profile data and additional se-

quence-derived features. Based on benchmarking experiments with full cross-validation, we show

that this predictor generates precise assignments of disordered protein binding regions and that it

compares well with other publicly available tools.

Availability and implementation: http://bioinf.cs.ucl.ac.uk/disopred

Contact: d.t.jones@ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Proteins experience more or less pronounced structural changes

while performing their functions. In particular, completely unfolded

states or transitions between structured and unstructured conform-

ations are distinguishing features, which enable the physiological

activities of intrinsically disordered proteins (IDPs) and intrinsically

disordered regions (IDRs). Our understanding of the biological im-

portance and of the widespread occurrence of this phenomenon is

gradually expanding, thanks to the fine-tuning of experimental tech-

niques and to computational genome-wide surveys. The DisProt

database (Sickmeier et al., 2007) stores manually curated data for

IDRs, but annotations are accumulating at a very slow rate: DisProt

v. 6.02 reports 1539 IDRs and �40% of them still have unknown

function. Therefore, bioinformatics plays a major role in researching

the occurrence, the biological function, and the involvement of in-

trinsic disorder in phenotype and disease.

Many computational methods can predict IDRs within protein

sequences (Deng et al., 2012; Orosz and Ovadi, 2011). Propensity-

based approaches were inspired by the observed enrichment of polar

and charged amino acids and by the under-representation of hydro-

phobic and aromatic residues in IDRs (Dosztanyi et al., 2005;

Linding et al., 2003; Prilusky et al., 2005). Further comparative
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analyses also highlighted differences in the patterns of length, loca-

tion and sequence conservation among IDRs, and machine-learning

techniques have been trained to detect them (Eickholt and Cheng

2013; Hirose et al., 2007; Ishida and Kinoshita 2007; Liu and Rost

2003; Shimizu et al., 2007a,b; Ward et al., 2004). Finally, meta-pre-

dictors integrate the output of independent tools through an array of

algorithms (Ishida and Kinoshita 2008; Kozlowski and Bujnicki

2012; Schlessinger et al., 2009).

Objective benchmarking of protein disorder prediction methods

is essential before these can be used for further inferences. CASP

(Critical Assessment of techniques for protein Structure Prediction)

has been testing these predictors since 2002 (Melamud and Moult,

2003) and has tracked moderate progress since. Current prediction

accuracy for IDRs spanning up to 30 residues is estimated at roughly

70% (Monastyrskyy et al., 2014) and this has already allowed us to

investigate the role that protein disorder plays in living organisms at

different levels of complexity (Cozzetto and Jones, 2013)—including

the organization and the re-wiring of protein–protein interaction

networks, cellular differentiation and development and human dis-

ease (Buljan et al., 2013; Perkins et al., 2010).

At the molecular level, it is important to grasp whether IDRs act

as flexible linkers or have binding activity and, if so, what molecules

they recognize. ANCHOR was the first program to tackle the identi-

fication of disordered protein-binding regions (Meszaros et al.,

2009) using a linear regression model of the estimated stabilizing en-

ergy that IDRs would gain by folding upon binding. The statistical

model was learnt from a small set of chains with evidence for being

unstructured in isolation, but structured in complex with their part-

ners. A few machine learning approaches have been parameterized

on larger sets of solved protein-peptide complexes, where the pep-

tides are likely to be disordered in the unbound state. MoRFpred

(Disfani et al., 2012) combines annotation transfers by similarity to

the output of a support vector machine (SVM) that examines se-

quence conservation data, amino-acid physicochemical properties

and predictions of intrinsic disorder, relative solvent accessibility

and residue flexibility. MFSPSSMpred (Fang et al., 2013) considers

only sequence profiles, which are pre-processed to enhance the sig-

nal of local conservation within the fast evolving landscape of IDR

sequences. Finally, PepBindPred (Khan et al., 2013) first attempts to

estimate the binding affinity of tripeptides from the input sequence

to a library of known protein-binding domains, and then feeds these

data to a bidirectional recurrent neural network along with add-

itional features.

Here we describe the latest incarnation of DISOPRED, which

was originally trained on evolutionarily conserved sequence features

of IDRs from missing residues in high-resolution X-ray structures.

DISOPRED3 extends the previous architecture with two independ-

ent predictors of intrinsic disorder, one module that combines the

intermediate results and one component that annotates protein-

binding IDRs. During the CASP9 and CASP10 experiments aimed at

monitoring the state of the art in IDR prediction from sequence, the

assessors ranked the updated server at the top or near the top across

a range of evaluation measures and test cases (Monastyrskyy et al.,

2011, 2014). Using the same data, we demonstrate that

DISOPRED3 is more specific than its predecessor and that it pro-

duces more accurate predictions across different IDR lengths and

positions along the test sequences.

Residues in the predicted IDRs are annotated as folding upon

protein binding through a new SVM trained to distinguish short

peptides bound to globular domains from unbound protein

domain linkers using sequence-derived features. Through stringent

cross-validation experiments, we show that this predictor can

generate precise annotations and that it compares well with

ANCHOR, MoRFpred and MFSPSSMpred based on a carefully

assembled test set derived from database annotations and scientific

reports.

2 Methods

2.1 Datasets for protein disorder prediction
The new components aimed at IDR detection were trained with a

concatenation of two datasets. The first was all entries (228 in total)

from the Disprot v5.0 database (Sickmeier et al., 2007) flagged as

being derived from either NMR or biophysical methods. The other

dataset was a redundancy-reduced (percentage sequence identity

<90%) subset of high resolution (�2.2 Å) X-ray structure chains

from PDB (Berman et al., 2000) derived from PISCES (Wang and

Dunbrack, 2005) compiled in February 2010. Chains shorter than

25 amino acids were discarded. Missing residues, including those

with occupancy equal to zero, were treated as disordered.

Position-specific scoring matrix (PSSM) scores were calculated

for each residue using three iterations of PSI-BLAST (Altschul et al.,

1997) running on the UniRef90 data bank (Suzek et al., 2007) with

an inclusion E-value threshold of h¼0.001.

DISOPRED3 was registered as a server at CASP9 and CASP10—

group ids 015 and 170, respectively—and made predictions for all

assessed targets. The corresponding predictions are therefore avail-

able at the Prediction Center website; DISOPRED2 predictions for

the same protein sets were generated as a prerequisite and stored

locally.

The reference classification of the residues as ordered or dis-

ordered was taken from the Prediction Center website and was

based on the structural data available before the final meetings. The

amino acids were regarded as disordered if and only if either they

were not assigned spatial coordinates, or the positions of their Ca
atoms were more than 3.5 Å away across different chains or NMR

models in the LGA (Zemla, 2003) structural alignment.

2.2 Datasets for protein-binding site prediction
A set of 840 peptides, with lengths between 5 and 25 amino acids

and solved in complex with globular protein domains, was initially

obtained from a previous study (Disfani et al., 2012). We discarded

196 peptides that couldn’t be mapped onto UniProtKB (UniProt,

2014) sequences with SIFTS (Velankar et al., 2013)—because they

were synthetic constructs, or the PDB files had been superseded, or

the ATOM records mapped onto discontinuous fragments. We also

removed 247 chains sharing 30% or more sequence identity to other

regions, based on the BLASTP alignments generated with the recom-

mended settings for short peptides (-seg no -matrix PAM30 -

gapopen 10 -gapextend 1 -word_size 3). The positive training set

was therefore made up of 5501 amino acids from 397 regions occur-

ring in as many PDB chains (372 UniprotKB sequences). Just 104 of

these UniProtKB chains were also used as positive examples for the

new disordered residue prediction modules. This limited overlap

mostly reflects the different length requirements for inclusion into

the two training sets.

Negative training examples were obtained from unbound protein

domain linker regions in known protein structures. A total of 1164

linkers annotated in CATH v.3.5 (Sillitoe et al., 2013) and spanning

between 5 and 60 amino acids were screened for the lack of inter-

actions with other molecules in the same PDB file. Contacts with

other protein and nucleic acid chains were identified when any two

heavy atoms were closer than 6 Å; for ligands and metal ions the
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distance threshold was set to 3.9 Å. As for the positive instances, we

discarded the linkers that didn’t map completely to UniProtKB se-

quences with SIFTS or with at least 30% sequence identity to other

regions. The negative training set consisted of 4930 amino acids

from 373 protein domain linkers occurring in 322 PDB chains (297

UniprotKB sequences).

To build an independent benchmark set, we thoroughly mined

database annotations and scientific reports to collate 29 protein

chains, which have been investigated using biophysical techniques

and have been shown to be disordered in isolation and to fold upon

protein binding. These sequences include 4077 disordered residues

forming 36 regions, within which 37 protein-binding sites occur

spanning between 5 and 47 positions and comprising a total of 708

amino acids. Supplementary Table S1 reports detailed information

about such test proteins, the annotated IDRs and segments undergo-

ing disorder-to-order transitions as they bind other proteins.

2.3 DISOPRED3 neural networks
The design goal for the third version of DISOPRED was to counter

the tendency for DISOPRED2 to under-predict long disordered re-

gions. This was very clear from the independent assessment carried

out in CASP8 (Noivirt-Brik et al., 2009). Although the DISOPRED2

SVM offers adjustable specificity, and so allows some reduction of

under-prediction as a whole, we were unable to tune it to specifically

improve long-region prediction. We surmise this is due to the lack of

long disordered regions in the X-ray-derived training sets used to

train DISOPRED2. To try to tackle this issue, we opted to return to

the original neural network based DISOPRED method (Jones

and Ward, 2003), but trained on data rich in long disordered regions

(see Section 2.1). Although we explored SVM classifiers for long-re-

gion prediction, we found the neural network method performed

better on this particular problem. The neural network architecture,

feature set and training procedures were as previously described.

A small second-stage neural network was then trained to com-

bine the three component predictors into a single prediction output.

This small network comprises 15�4 inputs, 15 hidden units and

2 output units (ordered/disordered). The 15�4 inputs represents a

window of 15 positions centered around the residue being classified,

with 3 outputs from the first-level component methods (SVM, neu-

ral network and nearest neighbor classifier) plus a fourth input per

position to indicate missing data (i.e. where the window extends be-

yond the N or C-terminus). Prediction confidence is estimated by

considering the difference between the two outputs (disordered–

ordered), which effectively compensates for the effects of

unbalanced training, and thus requires no further calibration for the

output difference to be considered directly as a posterior

probability.

2.4 DISOPRED3 nearest neighbor classifier
In addition to the DISOPRED2 SVM and the long-region neural net-

work predictors, we decided to add a third predictor, namely a near-

est neighbor classifier. This was done for practical reasons, because

a nearest neighbor classifier needs no training, and so it is easy to in-

corporate very up-to-date data in the prediction process, whereas

the other classifiers require a great deal of time and effort to train on

new data. The addition of the nearest neighbor classifier thus makes

DISOPRED3 more easily updated and maintained.

Nearest neighbor classification was carried out by comparing

every window of seven residues in the target protein with every

seven-residue window taken from the profiles in the reference set.

This comparison is made on the basis of total PSSM score, and the

order/disorder label for each residue is decided by transferring the

labels from the reference protein windows that have the highest

match scores. In most cases, the label arises from considering the

maximum of 7 scores, as aside from the residues near the termini,

most residues end up contributing to the match scores in seven dif-

ferent offset positions.

2.5 Training procedures for protein-binding site

prediction
To determine residues which might be part of protein-binding sites

within disordered regions, we employed an SVM classifier rather

than a neural network, as the data set was known to be extremely

biased towards negative cases. Using a sliding window of size 15, we

derived three independent SVM classifiers from the training data

that are based on (i) single sequences alone, where each amino acid

was encoded by the similarity values in the corresponding entry in

the Blosum62 matrix; (ii) the PSSM values obtained after three

search iterations of PSI-BLAST against UniRef90 with a profile-in-

clusion threshold of h¼0.001; (iii) the same PSSM scores, followed

by the length of input region, the start and the end positions of the

region relative to the whole protein chain, a flag for windows ex-

tending beyond the protein termini and the amino acid composition

of the window under consideration. The PSSM scores were linearly

scaled to [0.0, 1.0] based on the maximum and minimum values

observed for each amino acid in the whole training set, while for

protein sequence length the natural logarithmic scale was adopted.

To perform proper cross-validation, separate training runs were

carried out for each of the 29 test proteins. During training, we

excluded from the training data any sequence found to be similar to

the target chain. We used a sequence identity threshold of 25% in

the case of the SVM classifier based on sequence data alone and a

PSI-BLAST E-value cut-off of 0.001 for all profile-based predictors.

We ran LIBSVM (Chang and Lin, 2011) with a radial basis function

kernel to identify the trade-off and gamma parameters that give the

highest average Matthews correlation coefficient (MCC)—see below

for the definition—across 10-fold cross validation experiments. The

imbalance between the positive and negative classes was addressed

by setting the cost parameter of the positive class to the ratio of

negative to positive examples used for training at each iteration. The

resulting parameters were then passed to LIBSVM to learn a regres-

sion model from the whole training set.

2.6 Evaluation measures
Performance of binary classification was evaluated based on stand-

ard measures, including sensitivity (also known as recall), specificity,

precision, the MCC, and F1 score

Sensitivity ¼ TP

TPþ FN
(1)

Specificity ¼ TN

TNþ FP
(2)

Precision ¼ TP

TPþ FP
(3)

MCC ¼ TP � TNð Þ � FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þ

p (4)

F1 ¼ 2 � precision � recall

precisionþ recall
(5)
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where TP is the number of residues correctly labelled as positives

(true positives); TN is the number of residues correctly labelled as

negatives (true negatives); FP is the number of misclassified negative

cases (false positives); and FN is the number of misclassified positive

cases (false negatives).

For disordered residue predictions, ROC analysis was carried

out in the light of the output probability scores. For each value

v2[0.0, 1.0], we considered as putatively disordered those and only

those residues with a score higher than or equal to v, and as puta-

tively ordered the remaining ones. Such binary classifications helped

calculate TP, FP, FN, TN, sensitivity and specificity. Finally, ROC

curves were generated from the pairs (1-specificity, sensitivity) cor-

responding to decreasing values of v and the area under the curve

(AUC) was calculated with the trapezoid integration method in the

pROC package (Robin et al., 2011) for R (R Core Team, 2012).

In the statistical comparisons of method performance, we always

test the null hypothesis that DISOPRED3 is not more accurate than

DISOPRED2 against the alternative hypothesis that DISOPRED3

outperforms DISOPRED2. For binary classifications, we carried out

105 resampling experiments: each time we randomly sampled 80%

of the proteins, we estimated the scores for the two predictors, and

we finally recorded the values of the paired differences. P-values for

the null hypotheses were estimated by comparing such differences

with zero. For probability-based predictions, we assessed the statis-

tical significance of the differences in AUC values with the DeLong

non-parametric test (DeLong et al., 1988) as implemented in the

pROC package.

3 Results and discussion

DISOPRED3 participated as a server at the CASP9 and CASP10 ex-

periments, and the official assessment reports acknowledged its

value by ranking it at the top or near the top across a number of tests

(Monastyrskyy et al., 2011, 2014). Although not exhaustive, the list

of predictors tested at CASP is nonetheless representative of the lat-

est developments in the field, which are also usually publicly avail-

able to the scientific community. Therefore, the results and

discussion below focus on the comparison of DISOPRED3 with its

predecessor using standard evaluation measures, and then on its use

for protein-binding region detection.

3.1 Improvements over DISOPRED2
The analysis of both the binary and the probability-based classifica-

tions against the CASP10 reference assignments is summarized in

Figure 1, Tables 1 and 2. The evaluation results based on CASP9

data are consistent with those presented here and are outlined in

Supplementary Tables S2 and S3. Overall, our self-assessment shows

that DISOPRED3 greatly reduces the number of false positives

with negligible loss of sensitivity. This leads to a statistically

significant increase in precision (P<1e-5), MCC (P<1e-5) and

AUC (P<2.2e-16), which are known to correlate with the under-

prediction of the minority class in the context of imbalanced data

classifications. On the other hand, the observed difference in terms

of balanced accuracy defined as the average of sensitivity and specif-

icity, is unlikely to be significant (P¼0.06), because this measure is

generally affected by the over prediction of the minority class.

The usefulness of the additional modules for intrinsic disorder

prediction becomes clear when the focus shifts to increasingly longer

IDRs. It’s fair to say that the CASP target selection procedure is

mainly aimed at releasing protein sequences, the structures of which

are unknown but expected to be solved by the end of the 3-month

prediction stage or soon after that. This inevitably selects against

disordered residues—and long IDRs in particular—which can hinder

structure determination efforts. In fact, �60% of the disordered

residues in the benchmark set occur in IDRs shorter than 20 amino

acids. With this caveat in mind, we looked at a few length ranges, by

masking both the reference and predicted state assignments for IDRs

Fig. 1. ROC curves of probability-based IDR predictions for DISOPRED3 and

DISOPRED2 on the CASP10 data

Table 1. Comparison of DISOPRED3 and DISOPRED2 performance

divided into IDR length ranges

Measure No IDR shorter than 4 aas No IDR shorter than 20 aas

DISOPRED2 DISOPRED3 DISOPRED2 DISOPRED3

Sensitivity 0.396 0.384 0.343 0.533

Specificity 0.941 0.991 0.941 0.991

Precision 0.323 0.755 0.134 0.616

MCC 0.307 0.517 0.181 0.563

AUC 0.787 0.880 0.731 0.904

No IDR shorter than 30 aas No IDR shorter than 40 aas

Sensitivity 0.419 0.581 0.340 0.319

Specificity 0.941 0.991 0.941 0.991

Precision 0.084 0.459 0.024 0.131

MCC 0.166 0.509 0.076 0.199

AUC 0.745 0.900 0.726 0.891

Table 2. Performance comparison between DISOPRED releases by

IDR position along sequences

Measure Terminal protein regions Internal protein regions

DISOPRED2 DISOPRED3 DISOPRED2 DISOPRED3

Sensitivity 0.665 0.584 0.275 0.293

Specificity 0.825 0.914 0.947 0.995

Precision 0.645 0.766 0.209 0.745

MCC 0.486 0.541 0.195 0.452

AUC 0.825 0.877 0.755 0.850
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shorter than the selected thresholds. Table 1 reports the values for

the recalculated evaluation measures after IDRs shorter than 20, 30

and 40 residues were discarded. As the number of negative cases

didn’t differ, the corresponding specificity values were unchanged.

We observe a clear improvement over DISOPRED2 across the

whole board. In particular, the higher levels of sensitivity for seg-

ments with at least 20 or 30 amino acids clearly confirm the added

value of the neural network and of the nearest neighbor classifier of

long IDRs. Certainly, a more balanced test set would allow for more

detailed investigations, but the occurrence of 307 and 197 dis-

ordered residues respectively in such subsets is enough for such a

conclusion. For regions of 40 or more residues, DISOPRED3 still

outperforms the previous release, but the rather limited number of

positive test cases—just 94 residues in two distinct stretches—makes

it hard to draw general and sound conclusions.

We finally compared the prediction accuracy of the two

DISOPRED versions on the subsets of terminal and internal IDRs.

Here, terminal amino acids are those within 10 positions of each pro-

tein sequence termini, while all the remaining ones are regarded as in-

ternal. The higher abundance of IDRs at protein’s N- and C-termini is

a well-known bias, and represents one of the helpful features exploited

by machine learning methods. Correct identification of IDRs far from

termini is therefore expected to be more challenging.

Generally, the outcome of this test—shown in Table 2—mirrors

the findings based on the whole dataset, with DISOPRED3 giving

more consistent results. For amino acids further than 10 positions

from the protein’s N- or C-terminus, we also observe that

DISOPRED3 makes a slight improvement in sensitivity over

DISOPRED2, which is likely correlated to the higher occurrence of

long IDRs at internal positions.

3.2 Effectiveness of disordered protein-binding region

predictions
Over the past few years, tentative steps have been taken towards

annotating the molecular activities of predicted IDRs, including the

identification of relatively short regions that fold upon interacting

transiently with other proteins. We initially set out to train an SVM-

based classifier for this task using a 15 amino acid long sliding win-

dow, which considers sequence profile data, the length and location

of the input IDR relative to the whole protein sequence, and the

amino acid composition of the window. The length and position of

IDRs, indeed, correlate with general protein functional categories

and so can be useful for the annotation of proteins with distant or

no homologues with known function at all (Lobley et al., 2007;

Minneci et al., 2013). In particular, regions closer to the chain’s ter-

mini are very likely to perform binding activities while those further

away could also act as flexible linkers.

Despite the availability of many protein disorder predictors

based on evolutionary information, there is still no unanimous con-

sensus in the field about the extent of usefulness offered by sequence

profile data. This prompted us to investigate the possibility of learn-

ing the classification of disordered protein-binding regions from se-

quence data alone, from PSSM values, and from the list of features

mentioned above. For this purpose, we tested and compared with

full cross-validation these SVM-based predictors against a set of 37

protein regions shown to be disordered in isolation and folded in

complex with other globular protein domains using biophysical

techniques—mostly NMR spectroscopy. Here, we measure predic-

tion accuracy conservatively: all disordered residues not annotated

as protein binding were considered as not being able to do so, even

under different physiological conditions—e.g. in the presence of

other proteins. We certainly appreciate that these assumptions are

highly conservative and arguably somewhat unrealistic, given the

occurrence of IDRs in protein–protein interaction network hubs.

However, at this point in time this is the only viable strategy that we

can envisage to penalize and avoid over predictions, and indeed it

appears to be the approach used in the similar areas, such as the as-

sessment of methods for Gene Ontology terms or post-translational

modification predictions.

The summary evaluation results in Table 3 show that the use of

single sequence information provides less sensitivity but more speci-

ficity than the use of PSSM scoring. Overall, PSSM data would ap-

pear to provide slightly better predictions, as gathered from the

precision, F1 and MCC scores. Adding information about IDR

length, location and amino acid composition greatly boosts specifi-

city and MCC, at the expense of sensitivity. Given the correct resi-

due level assignments to the disordered regions, these methods strike

rather different balances between sensitivity and specificity, but

overall they appear to be useful, as they outperform naı̈ve

approaches that randomly label each disordered residue as protein

binding or not.

3.3 Comparison with other tools detecting disordered

protein-binding regions
The performance of the predictor based on profile data, IDR loca-

tion and length and window composition was also compared with

publicly available tools and with a naı̈ve approach that randomly

labels the target sequence amino acids as either disordered protein

binding or not with equal probability. The three other programs in

the benchmark are ANCHOR (Meszaros et al., 2009), MoRFpred

(Disfani et al., 2012) and MFSPSSMpred (Fang et al., 2013), which

are available for download or online use; PepBindPred (Khan et al.,

2013) was not tested, given the running times needed for molecular

dynamics simulations.

To reduce biases on the one hand and to keep a reasonable num-

ber of test cases on the other, we ended up limited to considering

only 9 of the 29 protein chains we originally collected, because the

remaining chains belong to the published training sets of ANCHOR,

MoRFpred or MFSPSSMPred. Because we could not ensure full

cross-validation of these tools, the accuracies reported below may

be overestimated. On the other hand, DISOPRED3 predictions were

generated using the appropriate fully cross-validated SVMs and the

disordered residue assignments predicted from sequence—see

Supplementary Table S4 for details about IDR prediction accuracy.

All reference annotations and predictions collected for this study are

available from our own website, so that readers can easily reproduce

our results or compare their own methods.

Table 3. Benchmark of SVM classifiers of disordered protein-

binding residues trained on different sets of sequence-derived

features

Measure Naı̈ve Sequence PSSM PSSM, IDR location,

length and AA composition

Sensitivity 0.500 0.640 0.781 0.270

Specificity 0.500 0.517 0.401 0.940

Precision 0.174 0.218 0.215 0.485

MCC 0.000 0.119 0.143 0.269

F1 0.258 0.325 0.337 0.347

Naı̈ve predictions correspond to random labelling of the known disordered

residues as folding upon protein binding or not with equal probability.

Precise disordered region predictions 861

 &ndash; 
 &ndash; 
 &ndash; 
 &ndash; 
position-specific scoring matrix (
)
 &ndash; 
 &ndash; 
-
-
 &ndash; 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu744/-/DC1


Again, prediction accuracy was measured conservatively, by con-

sidering each residue as disordered protein binding if and only if

there is clear experimental evidence from biophysical methods.

Prediction accuracy was gauged using precision and recall analysis

as well as MCC scores, though the former approach might be more

appropriate to keep the focus on the task of IDR functional annota-

tion rather than on the problem of their identification. The assess-

ment would otherwise be inevitably affected by the vast majority of

ordered residues in the negative set and by the difficulty of identify-

ing disordered residues never interacting with other proteins.

Table 4 shows that, overall, DISOPRED3 performs well when

compared with all the other approaches, by providing the most spe-

cific and precise predictions of residues that undergo disorder-to-

order transitions upon protein binding. The benefits of the SVM for

protein-binding region annotation is demonstrated by the massive

reduction in the number of false positive assignments that would be

made by tagging all predicted disordered residues as protein binding

(method ‘DISOPRED3 no DPB SVM’). This supports the usefulness

of unbound domain linker regions to represent IDRs that do not

bind proteins. The other two machine-learning based methods,

MoRFpred and MFSPSSMpred, achieve nearly identical F1 scores to

DISOPRED3 due to their ability to recall slightly more disordered

protein-binding residues. Finally, ANCHOR attains the highest level

of sensitivity, though at the heavy expense of lower specificity.

However, due to the limited number of IDRs that fold upon protein

binding in this test set, it is difficult to make statistically sound con-

clusions about differences in method performance. Certainly, we

hope that larger corpuses of confirmed protein annotations, along

with side-by-side blind testing experiments will help address this

point in the future

We further investigated whether the false positive assignments of

each program were sufficiently close to the validated regions, that

users with prior knowledge about the test proteins might still gain

some benefit from these predictions after manual inspection. To this

end, we focused on those amino acids predicted as disordered pro-

tein binding but observed in complex with no other protein domain.

For every such residue, we initially calculated the minimum se-

quence separation from the closest amino acid annotated as a posi-

tive instance. We then computed the proportion of false positive

predictions within 5, 10, 20 and 35 positions of the validated sites.

This largest distance was determined as half the length of the short-

est protein sequence in the test set.

The numerical results of this study are reported in

Supplementary Table S5 and show that �30% of the false positive

predictions are no more than 35 positions away from the binding

sites so far characterized. Because the structural, dynamic and

functional aspects of these proteins have not been sufficiently char-

acterized, it is difficult to tell whether these predictions are incorrect

or represent plausible hypotheses awaiting better experimental

verification.

Overall, the above results show substantial room for improve-

ment in different areas. Certainly, more sensitive IDR predictions

would allow for the detection of additional protein binding dis-

ordered sites. As far as DISOPRED3 is concerned, the current results

show that most false negative assignments correspond to residues

predicted as ordered in the first place. In the future, we are keen to

investigate more effective integrative approaches of the prediction

modules for IDR detection and protein-binding site annotation.

Further improvements will definitely stem from the availability of

large sets of residue-level annotations of IDRs and of their biological

roles that can be automatically parsed. Many DisProt entries contain

IDRs undoubtedly involved in protein–protein interactions, but

often the resolution of the available experimental data is not suffi-

cient to locate the protein-binding sites accurately. In other cases,

manual annotation efforts apparently do not follow standard guide-

lines—an issue exacerbated by the lack in the database schema of at-

tributes for ligand binding sites. Consequently, long protein-binding

IDRs are sometimes reported, but the specific binding residues docu-

mented in the cited primary literature are not—compare the entry

DP00608 and the referenced article (Wang et al., 2010), for

instance.

4 Conclusion

We have documented the DISOPRED3 program for protein disorder

prediction and for protein-binding site annotation within disordered

regions. The tool first identifies disordered residues through a con-

sensus of the output generated by DISOPRED2 and two additional

machine-learning based modules trained on large IDRs, and then an-

notates them as protein binding through an additional SVM classi-

fier. The intrinsic disorder predictor attains fairly high levels of

prediction accuracy across different test conditions, and can be re-

garded as state of the art—as independently reported by the CASP9

and CASP10 assessment teams—thus confirming the usefulness of

integrating multiple complementary approaches. Compared with its

predecessor, DISOPRED3 shows improved sensitivity for IDRs with

twenty or more amino acids, as well as increased overall specificity.

Such predictions form a useful basis for the identification of protein-

binding regions mediating key transient interactions through a novel

SVM, which compares well with existing tools for the same task.

On these grounds, DISOPRED3 is expected to represent a useful

addition to the toolbox for the functional annotation of proteins

and proteomes. Notwithstanding, further advances are needed to en-

hance the sensitivity of IDR detection and of the protein-binding

sites therein. Of course, the accumulation of additional experimental

information and its availability in a structured, easy-to-parse man-

ner will be beneficial—as already witnessed in other areas of compu-

tational biology. However, new ideas will be crucial to make major

progress, especially in the attempt to link the binary classifications

of ordered and disordered residues to biological functions at differ-

ent scales of complexity. In particular, initial system-level investiga-

tions of the role of protein disorder in cellular development and

differentiation have already begun thanks to the increasing availabil-

ity of genome-wide heterogeneous datasets. In this context, the de-

sign and implementation of reliable and more scalable tools will be

of special relevance.

Table 4. Benchmark results of DISOPRED3 against other

approaches for disordered protein-binding prediction

Method Sensitivity Specificity Precision F1 MCC

DISOPRED3 0.147 0.958 0.218 0.176 0.126

MoRFpred 0.190 0.922 0.162 0.175 0.104

MFSPSSMpred 0.206 0.900 0.152 0.175 0.093

Naı̈ve 0.500 0.500 0.074 0.129 0.000

DISOPRED3 no

DPB SVM

0.307 0.613 0.059 0.100 �0.043

ANCHOR 0.288 0.536 0.047 0.081 �0.092

DISOPRED3 no DPB SVM is a baseline method that considers all dis-

ordered residues identified by DISOPRED3 as involved in protein binding.
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