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We study the Capacitated Lot Sizing Problem with Setup Times (CLST). Based on two strong 

reformulations of the problem, we present a transformed reformulation and valid inequalities that 

speed up column generation and Lagrange relaxation. We demonstrate computationally how both 

ideas enhance the performance of our algorithm and show theoretically how they are related to dual 

space reduction techniques. We compare several solution methods, and propose a new efficient 

hybrid scheme that combines column generation and Lagrange relaxation in a novel way. 

Computational experiments show that the proposed solution method for finding lower bounds is 

competitive with textbook approaches and state-of-the-art approaches found in the literature. Finally, 

a branch-and-price based heuristic is designed and computational results are reported. The heuristic 

scheme compares favorably or outperforms other approaches. 
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1.  Introduction 

Lot sizing problems have been studied extensively by the operations research community in the past 

five decades. Despite the vast progress of mixed integer programming theory and software, many lot 

sizing problems remain computationally challenging to solve in practice. In this paper we study a 

classical lot sizing problem, namely the Multi-Item Capacitated Lot Sizing Problem with Setup 



Times (CLST). Given a discrete time horizon, the objective of CLST is to find a minimum cost 

production plan that satisfies the demand for all items and respects the per period capacity 

constraints. A setup operation is necessary whenever a positive amount is produced in a period. Such 

a setup entails a cost and consumes capacity. Morever, production is done on a single-machine that 

can produce many items in any given period, and no dependencies among items exist other than the 

single-machine capacity restriction. CLST is classified as a multi item, single machine, single level, 

big bucket capacitated lot sizing problem. In spite of the simple problem statement and its simple 

formulation, CLST instances can be computationally challenging even for modern mixed integer 

programming software. In particular, obtaining tight lower bounds and good feasible solutions 

requires considerable effort, if at all possible, even for instances with a few hundred integer 

variables. 

 The aim of this paper is to design a fast heuristic procedure for CLST that provides good 

solutions and a strong lower bound used to assess the solution quality. Period Danzig-Wolfe 

decompositions of two network reformulations of CLST are proposed. The main advantage of the 

proposed decompositions is that they provide a lower bound which is stronger than these of the 

standard and network formulations. The potential downside is their computational tractability: when 

computed with column generation, the already large number of variables of the network formulations 

and their inherent degeneracy could lead to long solution times for the restricted master (RM) 

programs, and only minor bound improvements per iteration. Although there exists limited 

computational experience with decompositions of extended formulations on this problem, evidence 

suggests that simplex-based solvers do not exhibit good convergence behavior (Jans and Degraeve 

2004). We propose a novel, considerably faster subgradient-based hybrid scheme that combines 

Lagrange relaxation and column generation. This scheme gives valid lower bounds of excellent 

quality and outperforms pure simplex-based column generation, Lagrange relaxation and 

subgradient-based column generation (in which the RM programs are solved with subgradient 

optimization). Further, we enhance the performance of our algorithm by utilizing two new dual space 

reduction techniques. First, we show how a primal space reformulation can lead to improved 

performance of dual based algorithms during column generation. Second, we employ a class of valid 

inequalities introduced by Wolsey (1989) in the context of single-item problems with start-up costs 

and show how this corresponds to adding dual optimal inequalities in the dual space of the RM 

program (Ben Amor et al. 2007). The new subproblems remain tractable and the performance of the 

hybrid column generation scheme is improved further. 

 The new hybrid scheme is embedded in a heuristic branch-and-price framework, designed 

specifically to obtain good feasible solutions fast. To achieve this, we recover a primal solution of 



the RM using the volume algorithm of Barahona and Anbil (2000) and branch on the resulting 

fractional setup variables. Moreover, we integrate in a customized fashion recent MIP-based 

heuristic approaches, such as relaxation induced neighborhoods and selective dives (Danna et al. 

2005), with established ones such as the forward/backward smoothing heuristic of Trigeiro et al. 

(1989). Extensive computational experiments show that the branch-and-price heuristic performs very 

well against other competitive approaches. 

The remainer of this paper is organised as follows. Section 2 provides a brief literature 

review. Section 3 describes CLST formulations, and Section 4 their Dantzig-Wolfe decompositions. 

Section 5 describes customized procedures for solving the subproblems. Section 6 describes the 

hybrid scheme and Section 7 the branch-and-price heuristic. Finally, Section 8 presents 

computational results and Section 9 concludes with comments and directions for future research. 

2.  Literature Review 

The literature on capacitated lot sizing problems is vast. A broad categorization would distinguish 

research related to exact and heuristic methods. We review both streams of literature, as our 

approach utilizes exact methods but also constructs heuristic solutions. 

  With respect to the more recent research on exact approaches, Van Vyve and Wolsey (2006) 

suggest an approximate extended formulation based on the network reformulation of Eppen and 

Martin (1987) that uses a single parameter to control the trade off between the number of variables 

and the lower bound strength. They show that selecting small values of that parameter is sufficient to 

solve hard problems, especially when a redundant row that facilitates the solver to generate cuts is 

added in the formulation.  Degraeve and Jans (2007) discuss the structural deficiency of the 

decomposition proposed by Manne (1958) which only allows the computation of a lower bound for 

the problem. Furthermore they show the correct implementation of the Dantzig-Wolfe decomposition 

principle for CLST and develop a branch-and-price algorithm. Pimentel et al. (2010) propose three 

Dantzig-Wolfe decompositions of the standard formulation of CLST, and compare the performance 

of the corresponding branch-and-price algorithms. Specifically, they describe and compare the item, 

period and simultaneous item and period decompositions. Belvaux and Wolsey (2000) developed 

BC-PROD, a specialized branch-and-cut system for generic lot sizing problems. Some of the 

cornerstone work that is less recent are the variable redefinition approach of Eppen and Martin 

(1987), the use of valid inequalities (Barany et al. 1984) and the simple plant location reformulation 

of Krarup and Bilde (1977). Recently, many authors (Alfieri et al. 2002, Pochet and Van Vyve 2004, 

Denizel et al. 2008 and Süral et al. 2009) have used such alternative formulations with stronger linear 



relaxations for the CLSP. Finally, Miller et al. (2000b, 2003) also derive strong valid inequalities 

from  simplified models, which are single-period relaxations with preceding inventory. The single 

period models contain the capacity constraint and the demand constraints for multiple items taking 

into account only the preceding inventory level. 

Heuristic approaches have also received considerable attention. The seminal paper of Trigeiro 

et al. (1989) proposed a item Lagrange relaxation and presented a smoothing heuristic (TTM) that 

was able to find good feasible solutions quickly. Heuristics that use several iterations of solving a 

reduced problem such as relax-and-fix and relax-and-optimize, have been successfully used by a 

number of researchers (Pochet and Wolsey 2005, Stadtler 2006, Helber and Sahling 2010). Süral et 

al. (2009) designed a Lagrange relaxation  based heuristic that outperforms TTM for problems 

without setup costs. Other recent heuristic approaches include among others, the cross entropy-

Lagrange hybrid algorithm of Caserta and Rico (2009), the adaptive large neighbourhood search 

algorithm of Müller et al. (2012), the LP-based heuristic and curtailed branch-and-bound of Denizel 

and Süral (2006) and the iterative production estimate (IPE) heuristic of Pochet and Van Vyve 

(2004). A notable recent approach is that of Tempelmeier (2011), who uses a set partitioning 

approximation and a column generation-based heuristic to solve a multi-item capacitated model with 

random demands and a fill rate constraint. A very comprehensive review of heuristic approaches can 

be found in Buschkühl et al. (2010).  

 Relevant to the current work is also the decomposition approach proposed in Jans and 

Degraeve (2004). The authors propose a period decomposition of a strong reformulation proposed in 

Eppen and Martin (1987). They obtain improved lower bounds, but their computational experiments 

show that standard computation schemes may be very time consuming for hard problems. Finally, 

Fiorotto and de Araujo (2014) build upon and extend the Lagrangian relaxation presented in Jans and 

Degraeve (2004) by developing a heuristic for the capacitated lot sizing problem with parallel 

machines. 

The main contributions of the present work are (a) the development and comparison of two 

period Dantzig-Wolfe network reformulations for CLST; (b)  the development of a methodology that 

circumvents the computational difficulties of extended formulations through the design of a 

stabilization algorithm, and the use of problem-specific inequalities in the customized algorithm that 

solves the subproblems; (c)  the development of a state-of-the-art branch-and-price heuristic that 

integrates and customizes several recent advances such as the volume algorithm (Barahona and 

Anbil 2000), relaxation induced neighbourhoods and selected dives (Danna et al. 2005) and finally, 

(d) the presentation of computational results that suggest the competitiveness of the proposed scheme 

against other approaches.  



The next section gives an overview of several formulations that are used throughout the paper. 

3.  Formulations for the Capacitated Lot Sizing Problem 

In this section we present different formulations for the capacitated lot sizing problem: the regular 

formulation (CL); the shortest path formulation (SP) proposed in Eppen and Martin (1987); a 

transformed shortest path formulation (SPt); the facility location formulation (FL) studied in Krarup 

and Bilde (1977); and the facility location formulation with precedence constraints (FLp). 

3.1.  The Regular Formulation (CL) 

The regular formulation for the Capacitated Lot Sizing Problem with Setup Times is described by 

the following sets, parameters and decisions variables (Trigeiro et al. 1987). 

Sets: 

 I : set of items, = {1,…, |I|},   

 T : set of time periods, = {1,…, |T|}.   

Parameters: 

 
itd  : demand of item i in period t, Ii ,  t  T 

 
itksd  : sum of demand of item i, from period t until k, Ii ,  t, k  T: k  t 

 
ithc  : unit holding cost for item i in period t, Ii ,  t  T 

 
itsc  : setup cost for item i in period t, Ii ,  t  T 

 
itvc  : variable production cost for item i in period t, Ii ,  t  T 

 
ifc  : unit cost for initial inventory for item  i, Ii  

 
itst  : setup time for item i in period t, Ii ,  t  T 

 
itvt  : variable production time for item i in period t, Ii ,  t  T 

 
tcap  : time capacity in period t.  t  T 

Decision variables: 

 
itx  : production quantity of item i in period t, Ii ,  t  T 

 
ity      = 1 if setup for item i in period t, = 0 otherwise, Ii ,  t  T 

 
its  : inventory for item i at the end of period t,  Ii ,  t  T 

 
0is  : amount of initial inventory for item i. Ii  

The mathematical formulation of CLST is then as follows: 
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The objective function (1) minimizes the setup cost, the variable production cost, the 

inventory holding cost and initial inventory cost. Constraints (2) are the demand constraints: 

inventory carried over from the previous period and production in the current period can be used to 

satisfy current demand and build up inventory. As in Vanderbeck (1998), we deal with possible 

infeasible problems by allowing for initial inventory (si0) which is available in the first period at a 

large cost, fci. There is no setup required for initial inventory. Next, there is a constraint on the 

available capacity in each period (3). Constraint (4) forces the setup variable to one if any production 

takes place in that period. Finally, we have the non-negativity and integrality constraints (5) and the 

ending inventory is set to zero. 

3.2.  The Shortest Path Formulation (SP) 

Next, model (1)-(5) is reformulated using the variable redefinition approach of Eppen and Martin 

(1987). Define the following parameters: 

 

itkcv  : total production and holding cost for producing item i in period t to satisfy 

demand for the periods t until k, 







k

1ts

1s

tu

isiuitkititk dhcsdvccv , 

 

itci  : total production and holding cost for initial inventory for item i to satisfy 

demand from period 1 up to period t, 







t

2s

1s

1u

isiut1iiit dhcsdfcci . 

We also have the following new variables: 

 
itkz  : fraction of the production plan for item i where production in period t 

satisfies demand from period t to period k, 



||T

tk

itkitkit zsdx , i  I, t  T, 

 
itp  : fraction of the initial inventory plan for item i where demand is satisfied for 



the first t periods, 



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1
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T

t

ittii psds ,  i  I. 

The network reformulation is then as follows: 
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The objective function (6) minimizes the total costs. Constraints (7) and (8) define the flow 

balance constraints of each node (i,t), which ensure that demand is satisfied. For each item, a unit 

flow is sent through the network, imposing that its demand has to be satisfied without backlogging. 

The capacity constraints (9) limit the sum of the total setup times and production times to the 

available capacity in each period. Constraint (10) defines the setup forcing for each item. Finally, 

setup decisions are binary (11).  

3.3.  Transformed Shortest Path Formulation (SPt) 

We reformulate constraints (7) and (8) of SP in a way that reduces the dual feasible region of its LP 

relaxation.  The aim is to achieve a better convergence for algorithms that operate in the dual space. 

The idea is to substitute, for each item, the demand balance constraint of period t with the sum of the 

demand balance constraints of the first t periods. Doing so, constraints (7) and (8) are replaced with:  


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
t

j

T

tk

ijk

T

tk

ik zp
1

||||

1   TtIi  ,              (13) 

We denote the resulting transformed formulation SPt. Eppen and Martin (1987) showed that 

their network reformulation corresponds to a shortest path problem defined on an acyclic graph. The 



demand constraints (7) and (8) express the flow balance in each node of this graph. Equation (13) 

imposes that the flow of the cut-set defined by the s-t cut |})|,...,{}1,...,0({ TttCt   is equal to 

one. Figure 1 illustrates a single-item four period example with no initial inventory. Equation (8) for 

period 3 reads 34332212 zzzz  , which corresponds to the flow balance of node 2. For the same 

period, (13) sets the total flow through the edges connecting the sets of nodes {0, 1, 2} and {3, 4} 

equal to one, i.e., 3433242314131 zzzzzz  . 

 

Figure 1: A single-item four period example with no initial inventory 

The idea behind this transformation is that of dual space reduction. Let D be the feasible dual 

space associated with constraints (7) and (8), and D' the one associated with constraints (13). If 1iv  

and itv are the dual values of (7) and (8) and itv  the dual values of (13), then  
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Theorem 1. DD ' . 

Proof. See Appendix.   

For the numerical example illustrated in Figure 1, we observe from the definitions of D and D’ for 

|T| = 4 and |I| = 1 that if we define 11cv , the point     ,,,,,, 114321  cvvvvv  is feasible for 

D  but infeasible for 'D . 

Transformed formulations like the SPt imply a denser form of the constraint matrix, which, in the 

context of the simplex method, might result in more pivots and therefore be less efficient. Since our 

algorithm works in the dual space, it is interesting to investigate computationally if the dual space 

reduction of subsystem (7) and (8) is beneficial. 

3.4.  Facility Location Formulation (FL) 



CL can be reformulated using variables originally employed in Facility Location problems. To the 

best of our knowledge, the first paper that used facility location variables to formulate lot sizing 

models was the work of Krarup and Bilde (1977). The resulting model (FL) is described below. 

 

Parameters: 
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We also define the following variables: 

 
itkw  : fraction of demand for item i in period k that is satisfied by production in 

period t, 



||T

tk

itkikit wdx , i  I, t  T, 

 
itsp  : fraction of demand for item i in period k that is satisfied by initial inventory, 





||

1

0

T

t

ititi dsps ,  i  I. 

The facility location reformulation is then as follows: 

   
    


Ii Tt Ii Tt

T

tk

itkitkitititit wcsspcuysc
||

min   FL
 (14) 

s.t.  



t

k

iktit wsp
1

1   i  I,  t  T (15) 

 
 


Ii

t

T

tk

itkikit

Ii

itit capwdvtyst
||

  t  T (16) 
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The objective function (14) minimizes the total cost, which consists of the setup cost, the 

aggregated production and holding costs, and the initial inventory and holding costs. Equations (15) 

correspond to the demand constraints (2) and state that period t demand must be covered by a 

combination of initial inventory and production in periods {1,...,t}. The capacity constraints (16) are 



in exact correspondence with (4). The setup constraints (17) do not allow any production in period t 

unless a setup is done and the non-negativity conditions (18) and (19) complete the FL formulation. 

3.5.  Facility Location Formulation with Precedence Constraints (FLp) 

Many extended formulations are often degenerate or have multiple optimal solutions. The decision 

variables of formulation (14)-(19) indicate not only the amount of production of each item in each 

period, as the original decision variables, but also allocate each production amount to forward 

demands. Multiple alternative solutions of (14)-(19) arise when the allocation of a given production 

amount to forward demands is not unique. The existence of multiple alternative solutions in the 

extended formulation may degrade the efficiency of column generation. Hence, the addition of valid 

inequalities in the subproblem that cut off some of the primal space containing alternative optimal 

solutions, may lead to improved convergence, as it prevents the subproblem from generating 

columns that describe alternative solutions. A class of such valid inequalities is described below.  

Observation 1. There exists an optimal solution of FL with itkkit ww 1, for all i, t, k T: t1k 

 and  itti spsp 1, for all i and tT \ 1. 

We will refer to the above valid inequalities as Precedence Constraints. Observation 1 is 

used in Wolsey (1989) in his study of the facility location formulation in the context of lot sizing 

problems with start-up costs and no capacity constraints. A short proof can be found in the online 

supplement. FL is not a minimal image of the conv(CL) in the sense that there exists a subset of 

conv(FL) that is the image of all extreme points of conv(CL) . A key insight is that not all feasible 

points of FL are necessary for an accurate representation of the original feasible space CL. This is 

important from a computational perspective, because columns whose convex combination represents 

redundant points need to be generated on the fly, resulting in more column generation iterations and 

in a possibly amplified tailing-off effect.   

The precedence constraints itkkit ww 1, can be used alongside the setup forcing ititt yw  in 

place of ititk yw  for all iI, t, kT: t 1k . The FL formulation with the primal valid inequalities 

is written as: 
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 (15) – (16), (18) – (19)     

The idea behind the inclusion of constraints (21) is that of primal space reduction. Although it 

is reasonable to assume that a decomposition scheme that uses (21) in the subproblem would deliver 

an improved lower bound compared to not including them, we show that this is not the case. This is 

because the objective function cost depends on the setup decisions and on the amount produced of 

each item, which remains the same after the inclusion of constraints (21). Rather, (21) accelerates the 

column generation convergence because the feasible space of eligible columns is reduced. 

4.  Period Dantzig-Wolfe Decompositions 

4.1.  Formulations 

We formulate period decompositions of the CLST starting from formulations SP, SPt, FL and FLp. 

We denote each decomposition formulation by appending /P to the original notation. For example, 

SP/P denotes the period decomposition of the shortest path formulation. The demand balance 

constraints of each formulation are the complicating constraints, and the capacity and setup forcing 

constraints of each period form the subproblems. We focus on period decompositions of network 

formulations because their linear programming (LP) relaxations provide improved lower bounds 

compared to the  (LP) relaxation of the corresponding extended formulations, since the subproblems 

do not have the integrality property (Geoffrion, 1974). Note that an item decomposition of any of the 

above extended formulations would lead to subproblems that have the integrality property. Therefore 

the decomposition lower bound would be the same as the one obtained by the LP relaxation of the 

original extended formulation (Jans and Degraeve, 2004). 

The formulation of the period decomposition of SP, SP/P, is described in detail in Jans and 

Degraeve (2004). The formulation of the period decomposition of SPt, SPt/P is very similar to SP/P 

and we skip it for brevity. Instead, we present the period decompositions of FL and FLp. To this 

end, let us define by tS  the index set of extreme point production plans of the subproblem for period 

t, i.e.,     )19()16(,:
,


 tkIiititkt ywconvextrqS . We associate a decision variable tq with the 

fraction of the extreme point q of subproblem t that is used in a feasible solution. If we denote by 

),( q

it

q

itk yw  the components of point q, its cost can be written as  
 


Ii

T

tk

q
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itittq wcsyscct )(
||

. Then 

the master program can be formulated as follows: 
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s.t. 1
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wsp    i  I  t  T  [ it ]     (23)                                     

 1
 tSq

tq   t  T  [ t ]                (24) 

 



tSq

tq

q

itit yy    i  I  t  T             (25) 

   0,1,0,0  itittq spy   i  I,  q  St, t  T  
           

(26) 

     

The objective function (22) minimizes the total cost of the initial inventory and the cost of the 

production plans chosen in each period. Constraints (23) model demand and correspond to 

constraints (15) in the standard formulation. The convexity constraints (24) and the nonnegativity 

constraints (26) enforce a convex combination. The setup variables definition is given in (25). The 

integrality must be imposed on the original setup variables (26). The constraint coefficient 

parameters ),( q

it

q

itk yw  are defined by the subproblem extreme points.  The subproblem objective 

function minimizes the reduced cost over the extreme points. Specifically, the period t subproblem 

reads: 
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  (28) 

 ititk yw    i  I,  k  T: k  t (29) 

  1,0yit  , 0itkw   i  I,  k  T: k  t (30) 

The period decomposition of the formulation FLp has the same master problem. However, 

the subproblem, denoted SUBp, is different because it includes the precedence constraints (20) and 

(21) in place of (29).  

4.2.  Lower Bounds 

It is interesting to investigate the lower bound quality of the proposed decompositions. To this end, 

let PFLv /  be the optimal objective value of the linear relaxation of the decomposed model FL/P (22)-

(26). Also, let PSPPFLp vv // ,  and PSPtv /  be the corresponding lower bounds obtained by the linear 

relaxation of FLp/P, SP/P, and SPt/P respectively. To obtain a first result, we will need the 

following definition and lemma. 

Definition 1 (Ben Amor et al. 2007). Let D be the dual space polyhedron of a linear program and *D  

be the set of its optimal solutions. Also, assume a new set of constraints eTE  that cuts off part of 



the dual space. If  e  TED :* , then eTE  is called a set of dual-optimal inequalities. If 

eTE  cuts off a nonempty set of dual-optimal solutions but is still satisfied by at least one dual-

optimal solution, it is called a set of deep dual-optimal inequalities. 

Lemma 1. Using subproblem SUBp is equivalent to using subproblem SUB and imposing 

constraints  

1:,,)()( 1,1,1,   TktTktPidcsdcs ikkikitkiikitk      (31) 

in the dual space of the LP master of FL/P. Moreover, these constraints are deep dual optimal 

inequalities. 

Proof. It suffices to show that SUB has the same optimal solution as SUBp whenever (31) holds. 

Note that itvt can be added to both sides of the inequality, but is omitted since they cancel each other 

out. Therefore, (31) states that the profit to weight ratio of itkw  should be greater than that of , 1it kw  . 

It follows that there exists an optimal solution of the LP relaxation of SUB when (31) holds which is 

also optimal for the LP relaxation of SUBp. Also, SUB has the same structure after branching, so if 

(31) holds, the precedence constraints hold at any node of the branch-and-bound tree, and therefore 

at an integer optimal solution. Hence, from construction, (31) imply the precedence constraints, that 

do not cut-off all optimal solutions. Their equivalence with the precedence constraints and definition 

1 imply that they are deep dual optimal inequalities.  

The next proposition states that all formulations deliver the same lower bound. 

Proposition 1. PFLPFLpPSPtPSP vvvv ////  . 

Proof. First, note that PSPtPSP vv //  because the corresponding subproblems have the same set of 

extreme points, and the linking constraints of SPt/P are linear combinations of those of SP/P. 

Second, consider the subproblem SUBp. The linear transformation 

tkwwzwz itkkititkttitt   ,; 1, maps every extreme point ),( itkit wy  of SUBp to a unique extreme 

point ),( itkit zy  of the SP/P subproblem. Using this transformation in FLp/P, the resulting model is 

exactly SPt/P. On the other hand, every feasible solution of the SPt/P subproblem can be mapped to 

FLp/P with the inverse transformation, i.e.,  


k

tl itlitkttitt zwzw ; . Hence, PFLpPSPt vv //  . Finally, 

we show that PFLPFLp vv //  . To this end, notice that PFLPFLp vv //  , since adding constraints to the 

subproblem can never lead to a worse bound. Denote by PFLv /
   the optimal value obtained when 

solving the dual of FL/P amended with the dual restrictions (31). Then PFLpPFL vv //   from lemma 1 



and PFLPFL vv //  , since adding cuts to the dual of a primal minimization problem can never increase 

its optimal value. The result follows.
 

 

Interestingly, the above lower bound is stronger than the one obtained by the simulaneous  

item and period decomposition of formulation CL studied by Pimentel et al. (2010). Let us denote 

the latter lower bound by IPCLv // .  

Proposition 3. PSPIPCL vv ///  . 

Proof. See Online Supplement.  

5. Solving the Subproblems 

This section describes two fast customized algorithms used to solve subproblems SUB and SUBp. 

Note that since the feasible solutions of FLp are in exact correspondance with those of SPt, and 

since the subproblem of SP and SPt is common, solving SUB and SUBp implies a solution for all 

four subproblems.  

5.1.  A customized algorithm for SUB 

For SUB, the following simple observation plays a key role in the subsequent solution approach. 

Observation 2. In an optimal solution of the LP relaxation of SUB there exist some tki  such that 

ititk yw
i
 , Ii . 

This implies that the subset of tight inequalities (29) can be used to substitute out the ity  

variables in (28). As a result, the LP relaxation of SUB reduces to a linear knapsack problem which 

admits a greedy solution, similar to the one proposed in Holmberg and Yuan (2000). It follows that 

an optimal solution of SUB has fractional continuous variables for at most one item. The following 

algorithm identifies the subset of tight inequalities in phase I and solves a regular linear knapsack 

problem in phase II. 



 

ALGORITHM SUB (for period t) 

Phase I 

IitkTk
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cs
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ikitk
itk 


 ,|,


. iK  Ø,  ||,..., TtP  , FalseBesti  Ii,   

For each Ii :    

    While FalseBesti  : 

          itiitkKPkit rkrr
i

arg;min \       // min ratio calculation 

         iii kKK  ; Replace 
 













i
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Kk ikitit

Kk ikitkit

it
dvtst

cssc
r


 // Update set and ratio of  

        If  itkKPkit rr
i\min   or PKi   then    // periods merged so far 

           TrueBesti       // If ratio of merged periods is not min, exit 

 If  itkKPkit rr
i\min   then  iii kKK \   // Retain best set of merged periods 

 
 













i

i

Kk ikititit

Kk ikitkitit

dvtstvtm

csscvcm 
 // Define cost and weight of merged periods 

        End If         

    End While 

End For 

Phase II 

Solve a linear knapsack with weights  IiKkdvtvtm iikitit  ,;  and costs 

 IiKkcscsm iitkit  ,; .  

Let  IiKkwwm iitkit  ,;  denote the optimal solution. 

Set IiKkwmy iitit  ,, .  

Return   tkIiwy itkit  ,, . 

 

Phase I identifies which of the variable upper bound constraints (29) are satisfied as 

equalities. Then, the value of the setup variable is set equal to the value of the production variable 

with the most attractive cost-to-weight ratio. If the new ratio is still the most attractive after the 

substitution, Phase I terminates for that item. If it is not, another constraint (29) is tight for the same 

item, and the corresponding substitution is made. Phase II solves a linear knapsack problem where 

all itkw  with iKk  are equated with ity and substituted out. Note that adjusting the algorithm to 

tackle items with zero setup time or cost is straightforward. Due to observation 2, algorithm SUB 

produces an optimal solution of the SUB linear relaxation. 

After solving the relaxation, a depth-first branch-and-bound algorithm is implemented. 

Branching is needed only when some itwm was the last variable to enter the knapsack at fractional 



level, and therefore 1ity . Thus, at most one setup variable is fractional. In addition, branching does 

not change the problem structure because it either fixes itkw to zero when 0ity  or reduces the 

problem capacity by itst and fixes itsc  in the objective, when 1ity . For this reason, algorithm SUB 

can be called at each node of the branch-and-bound tree, with different input data. Computational 

experiments confirm the superiority of this approach compared to simplex-based branch-and-bound. 

5.2.  A customized algorithm for SUBp 

The addition of the precedence constraints changes the structure of subproblem SUB and the 

previous algorithm cannot be employed. However, we can take advantage of the fact that each 

solution of SUBp corresponds to a solution of the SP/P subproblem (9)-(12), whose relaxation is a 

linear multiple choice knapsack problem (Jans and Degraeve 2004) that can be solved efficiently 

using the sorting algorithm of Sinha and Zoltners (1979). Therefore, we solve the subproblem (9)-

(12) and then map back the solution to SUBp. Sinha and Zoltners call a variable dominated if there 

exists another variable, or a convex combination of other variables, that has a smaller or equal weight 

and a smaller or equal cost. Dominated variables can be eliminated, and the remaining variables 

enter the knapsack under a greedy sorting criterion. It is important to observe that the non-dominated 

variables form the convex envelope of all variables when graphed in the (weight, cost) space. We use 

the procedure of Sinha and Zoltners to solve the linear relaxations of (9)-(12) and to develop a 

customized depth-first branch-and-bound algorithm. The multiple choice knapsack structure is 

preserved in every node of the branch-and-bound tree, but the cost coefficients of some variables 

change as the setup costs change with branching. This means that the convex envelopes do not need 

to be fully reconstructed in each node, since only a few variables change positions. We use a variant 

of the algorithm suggested by Graham (1972) to construct and update the convex hulls. Graham’s 

algorithm determines the convex envelope of a set of n points in O(nlogn) time. This implies that 

solving the linear relaxation of (9)-(12) in every node takes O(nlogn) time, and therefore this method 

has better complexity compared to using the simplex algorithm. 

6. Solving the RM Problem: a new Hybrid Algorithm 

Huisman et al. (2005) discuss how exploiting the relationship between Dantzig-Wolfe 

decomposition and Lagrange relaxation can lead to the development of improved algorithms that 

combine the strengths of both methods. They explore two different ways to combine column 

generation and Lagrange relaxation. First, Lagrange relaxation can be used to solve the RM, by 

dualizing the linking constraints, and the resulting near-optimal dual values can be used to price out 



the subproblems. Second, Lagrange relaxation on the original formulation can be employed within 

column generation, exploiting the fact that both methods solve the same subproblem. Specifically, 

the RM programs are solved with simplex, and next the RM dual prices are used as a starting point 

for a number of Lagrange relaxation iterations, during which several negative reduced cost columns 

can be found and added to the RM at once.  We propose a new method, which is a combination of 

the two previously discussed methods. Specifically, it uses Lagrange relaxation of the RM to solve 

this RM program, and it also uses Lagrange relaxation on the original formulation to generate new 

columns. Figure 2 gives a schematic representation of the algorithm. Implementation details can be 

found in the online supplement that accompanies this paper. 

 

Figure 2: The main building blocks of the new hybrid algorithm 

 We initialize the column generation process using the heuristic of Trigeiro et al. (1989). This 

is a fast heuristic that performs several rounds of smoothing and rounding operations. For the 

instances that Trigeiro et al. (1989) generated, their heuristic can find high quality feasible solutions, 

giving integrality gaps lower than 3% on most problems. This heuristic returns a feasible solution, a 

lower bound and a set of lagrangian dual prices of the capacity constraints. Using the dual of the 

relaxation of SP or FL, we can then calculate the starting dual prices it . Also, the feasible solution 

F

itit xy ),( is split into per period columns of the SPt or FLp RM programs. To perform this 

operation, it is necessary to transform the F

itit xy ),( solution to the space of the extended formulation 

variables. This can be done by fixing the setup variables to their given values and solving the 

corresponding formulation, which is a shortest path problem. Next, the Lagrange relaxation 

subroutine uses the modified subgradient method of Crowder (1976) to update the dual prices it . 

The modified subgradient method is a variant of the traditional subgradient method that incorporates 



past history in each iteration by searching in a direction that is the weighted average of the current 

vector of violations and the previous searched direction. Computational experiments in Barahona and 

Anbil (2000) show that the convergence of this variant is a lot faster compared to the regular 

subgradient method. For each updated set of dual prices it we check if the subproblem solutions 

price out, using the last obtained dual prices of the convexity constraints, t . The columns that price 

out are added to the RM. Existing columns with a high reduced cost are removed from the RM and 

kept into a separate column pool. Then, the RM problem is solved using subgradient optimization by 

relaxing the linking constraints (23) (Huisman et al. 2005). Specifically, the dualization of 

constraints (23) decomposes the RM into separate subproblems per period, each of which is of the 

form 

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are trivially solved by setting the tq variable that has the minimum cost coefficient to one, and all 

other variables to zero.  The scheme iterates until no column prices out. We then invoke the volume 

algorithm to obtain an approximate primal solution. In this way, we are able to make better informed 

branching decisions in the subsequent branch-and-price phase. An alternative implementation would 

be to use the intermediate dual prices of the subgradient optimization of the RM problem to price out 

new columns. Our experiments with this strategy revealed that the generated columns are not of good 

quality, because the intermediate dual prices of the RM problem price out many columns that do not 

price out with its terminal dual prices. Instead, using the near optimal dual prices to warm-start the 

lagrange relaxation produced better results and resulted in fewer iterations of the hybrid scheme.  

 Contrary to existing hybrid algorithms (Barahona and Jensen, 1998, Degraeve and Peeters 

2003, Degraeve and Jans 2007), this scheme relies exclusively on Lagrange relaxation. It has the 

benefits that it (a) avoids the degeneracy issues of the simplex method and therefore exibits faster 

convergence and (b) returns good quality dual prices that help the column generation convergence. 

Note that the intermediate value of the RM programs, Mv , is not necessarily a valid upper bound of 

the column generation lower bound, as it is calculated using lagrange relaxation. It is a valid lower 

bound (Huisman et al. 2005) when no column prices out, and therefore the scheme returns the best 

bound that is obtained by the RM and by Lagrange relaxation. 

7. A Branch-and-Price Heuristic 

We have combined the hybrid column generation algorithm with heuristic techniques, and integrated 

them in an enumeration scheme, using formulation FLp. The goal is to find good feasible solutions 



fast by exploiting the structure of the network formulation and its subproblem. The next section 

describes the heuristics employed in each node of the tree. 

7.1  Node Heuristics 

We employ a successive rounding heuristic that uses a smoothing subroutine, which in turn employs 

some operations of the heuristic of Trigeiro et al. (1989). The successive rounding heuristic gets as 

input the setup variables produced by the volume algorithm, determines a threshold level and fixes 

the setup variables below and above that threshold to 0 and 1, respectively. The process iterates for 

increasing threshold values. Typically, the objective function values of the feasible solutions 

obtained in this way follow a U-shaped fashion (Degraeve and Jans 2007). Therefore, when the 

solution quality starts to degrade the heuristic terminates. Starting from this solution, the smoothing 

heuristic that searches for an improved feasible solution is applied. The smoothing part starts from 

the last period and tries to push production backwards, such that the Lagrange costs are minimized. 

This is done iteratively until the first period, and if any capacity constraints are violated it performs a 

similar forward operation to recover feasibility. Thus, the rounding/smoothing heuristic scheme 

searches the feasible space by modifying incrementally the proposed setup schedules and production 

plans and can be classified as an exploitation heuristic.  

7.2  Node Lower Bounds 

At each node we solve the RM problem using subgradient optimization, without generating any 

columns. If its objective value is lower than the incumbent value, we recover an approximate primal 

solution using the volume algorithm and use that solution to branch. Else, if the RM objective value 

is higher than the incumbent value, the hybrid algorithm is invoked to generate columns. During the 

hybrid algorithm iterations, a non-decreasing node lower bound is recorded. If that lower bound 

comes to exceed the incumbent value, the node is pruned. When the hybrid algorithm terminates and 

the lower bound is below the incumbent value, the volume algorithm is invoked to recover an 

approximate primal solution of the RM, which is then used for branching. When the volume 

algorithm returns all-integer setup variables, we fix these variables and solve the resulting LP 

problem using formulation CL, which is a generalized network flow problem for fixed setups 

(Degraeve and Jans 2007). More details about this procedure can be found in the online supplement 

of this paper. 

7.3  Tree Exploration Strategies 

Algorithm HBP summarizes the main building blocks of the heuristic Branch and Price algorithm.  



Algorithm HBP 

Input:  LowerBound, UpperBound, CGSolution ),( r

it

r

it xy , Incumbent ),( h

it

h

it xy  

Output: LowerBound, UpperBound, Incumbent ),( h

it

h

it xy  

Pass   0; NodeLimit   100 

B )}2.00()8.01(|),{(  r

it

h

it

r

it

h

it yyyyti  // RINS initialization of explored space 

 

Do While Time < TimeLimit and LowerBound < UpperBound 

    R= Ø; Pass   Pass+1; NodeLimit   NodeLimit + (Pass – 1)*50 

    ForEach iI, tT 

        if ),( ti B then h

itit yy   

            Call Branch_and_Price ),( NodeLimityit  

   Update UpperBound, h

itit yy ,  // ity describes the state of the last explored node 

   ForEach iI, tT 

       if }1,0{ity  then   // Integral setup is due to 

  if Bti )},{( then  //… fixing or RINS: unfix it for the next pass 

      )},{(\ tiBB   

  else     //…branching or by chance: fix it for the next pass 
      )},{( tiBB   

Loop 

Return LowerBound, UpperBoud, ),( h

it

h

it xy  

The exploration of the search space is done in two ways. First, we employ the concept of relaxation 

induced neighborhoods search (RINS) (Danna et al. 2005). Although other MIP-based techniques 

could be employed, such as local branching (Fischetti and Lodi 2003), most of them destroy the 

subproblem structure. After solving the root node, a variable fixing phase follows. We fix to 1 (0) the 

setup variables that are 1 (0) in the incumbent and more (less) than 0.8 (0.2) in the approximate 

primal solution of the RM program, given by the volume algorithm. Then branching is applied. We 

branch on the earliest period and on the most fractional item, because branching decisions in earlier 

periods are likely to influence the subsequent production flow and therefore have a biger impact on 

the objective. During the first pass, we branch to 0 if both the incumbent has the branching variable 

at 0 and its fractional value at the root note is less than 0.2, else we branch to 1. 

 Notice that if a better feasible solution exists, it is likely to be found at the early levels of the 

subtree from the rounding/smoothing heuristic. For this reason, we explore the subtree induced by 

the RINS heuristic only partially, by imposing a node limit. A potential downside of exhaustively 

exploring this subtree, is that if some of the fixing decisions are not part of the optimal solution, the 

algorithm could stall or terminate without a significant improvement. Hence, it is neccesary to 

modify the search space. To do this, we note that at each node the fixed variables are either fixed by 



the RINS fixing decisions, or by branching. To explore a different but promising part of the setup 

variable space, we free the variables fixed by RINS and fix the variables that were fixed by 

branching to the values of the incumbent solution. The variables that were free at the last explored 

node of the previous pass also remain free in the new pass. In a sense, this scheme tries to replace 

dive decisions with branching decisions, while remaining close to the neighborhood of the 

incumbent. The same idea is applied iteratively: a number of nodes in each subtree is explored, the 

variables fixed early up in the free become free and the variables fixed from Branch and Price are 

fixed again to the value of the incumbent.  

8. Computational Results 

Computational experiments were performed on a 2.0 GHz / 2 GB machine. The CPU times listed in 

all tables for our heuristic refer to the time that the incumbent was found. To better undestand the 

contribution of the developed methodology to the current literature, we have compared our algorithm 

with other approaches found in the literature. The datasets that appear in the lot sizing literature and 

are used in this paper have time-invariant setup, holding and production costs, and therefore are 

special cases of our formulations, that also capture time-varying costs. We find that our approach 

computes strong lower bounds fast and delivers high quality feasible solutions, when compared with 

other approaches. However, since other approaches have different implementations and run under 

different machines, the results have to be taken with a grain of salt. It is inevitable some authors use 

more or less powerful machines, and different versions of commercial software, such as CPLEX, 

which could introduce some bias in the result. We note however, that the quality of the lower bound 

we obtain is implementation independent and that our algorithm uses a commercial package to solve 

linear programs only. To the best of our knowledge, all lower bounds obtained by the methods 

considered in this section are also independent of the solver used. An example of a solver-dependent 

lower bound is the one of Van Vyve and Wolsey (2006). The authors let the XPRESS-MP solver 

generate additional cuts by adding redundant inequalities in their formulation, and therefore the 

lower bound quality depends on the underlying technology being used. We believe that the obtained 

results offer some insight on how strong the obtained lower bound is, and how efficiently it can be 

utilized in the search of feasible solutions. Detailed results of all experiments can be found in the 

online supplement of this paper. 

8.1  Solving the root node 

8.1.1  Benchmarking of formulations and solution methods 



To demonstrate the strength of the lower bound of the proposed hybrid scheme, we employ a subset 

of instances from Trigeiro et al. (1989) which has been extensively tested in the literature (Belvaux 

and Wolsey 2000, Van Vyve and Wolsey 2006, Degraeve and Jans 2007, Jans and Degraeve 2004 

and Pochet and Van Vyve 2004).  We use 4 different formulations and 3 solution methods. Table 1 

shows the nomenclature of different combinations of formulations (period decomposition of the 

Facility Location formulation – FL/P, period decomposition of the Facility Location formulation 

with Precedence constraints – FLp/P, period decomposition of the Shortest Path formulation – SP/P 

and period decomposition of the Transformed Shortest Path formulation – SPt/P) and solution 

methods (Lagrange Relaxation – LR, Approximate Column Generation – ACG and the Hybrid 

Algorithm– HB). In ACG, the RM is solved with subgradient optimization. Each subproblem returns 

one column per iteration, as in standard column generation. Lagrange relaxation and column 

generation are textbook approaches and we employ them to illustrate how the hybrid algorithm 

performs against them. ACG is listed to demonstrate how the hybrid scheme performs against a 

Lagrange-based implementation of column generation. 

Table 1: Nomenclature of combinations of formulations and solution methods. 

 Method Used to Calculate the Lower Bound 

Formulation LR               ACG HB 

FL/P LR ACG HB 

FLp/P LRp ACGp HBp 

SP/P SPP-LR SPP-ACG SPP-HB 

SPt/P SPtP-LR SPtP-ACG SPtP-HB 

Table 2 compares the CPU time in seconds of combinations of formulations and solution 

methods. Since the difference in lower bound values that each method returned are small, we 

compare the time needed to calculate that lower bound only, listing the time each method takes 

relative to the best implementation, which is the hybrid method applied to the FLp/P formulation, 

called HBp. In addition to CPU times, we also list the maximum absolute violation of the linking 

constraints obtained by the volume algorithm in Column 2. In Column 3, we report the time in 

seconds that  HBp needs to calculate the lower bound. Columns 4-8 and 11 show the time ratio 

between each algorithm and HBp. Columns 9 and 10 refer to the Shortest Path formulation and are 

therefore compared with the best implementation of the shortest path formulation, SPtP-HB. Both 

SPtP-HB and HBp use the hybrid scheme and solve the same subproblem. Finally, the last column, 

JD, refers to the CPU times obtained by Jans and Degraeve (2004), who utilized decomposition SP/P 

and implemented a standard simplex-based column generation algorithm. The results we report for 

JD are based on their implemetation run on our machine, and therefore the differences in time 



performance can be attributed to the relative efficacy of our new hybrid methodology. Note that for 

G57 and G72, we compare to their Lagrange relaxation times (2000 iterations), as they were not able 

to solve these instances with simplex-based column generation. For the sake of brevity, we do not 

present full results for formulations SP/P and SPt/P, since their behavior is very similary to that of 

FL/P and FLp/P respectively. However, we do show that the hybrid solution method HB is superior 

to Lagrange Relaxation LR and that LR applied to the transformed formulation SPt/P is much faster 

than when applied to the standard formulation SP/P.  

Table 2: Computational performance of different algorithms for obtaining the lower bound 

Dataset 
HBp Max 

Violation 

Time 

HBp (s) 

 

 

HB /  

HBp 

LR / 

HBp 

LRp / 

HBp 

ACG / 

HBp 

ACGp/ 

HBp 

SPP-LR/ 

SPtP-HB 

SPtP-LR/ 

SPtP-HB 

JD (SP/P)/ 

HBp 

G30 (6-15) 0.032 0.18  2.0 8.9 3.1 9.6 9.3 4.89 1.52 2.4 

G30b (6-15) 0.049 0.2  1.3 11.9 3.8 7.1 6.7 11.67 3.08 2.8 

G53 (12-15) 0.016 1.6  0.9 4.6 1.2 3.5 3.5 6.45 2.90 3.1 

G57 (24-15) 0.023 7.60  2.2 5.8 2.3 3.8 3.9 4.70 1.39 14.9* 

G62 (6-30) 0.029 0.55  1.1 7.2 2.6 15.3 12.6 4.76 1.53 2.9 

G69 (12-30) 0.025 2.43  2.2 9.6 2.4 12.4 14.5 7.04 1.77 22.2 

G72 (24-30) 0.031 15.77  2.3 6.9 1.6 12.0 11.1 2.73 1.40 4.0* 

Average 0.029 4.0  1.7 7.8 2.4 9.1 8.8 6.0 1.9 7.5 

* Column generation did not terminate due to numerical issues, comparison with Lagrange  relaxation 

 

The comparison of the different approaches suggests some interesting conclusions. First, the 

small violations in column 2 suggest that the approximate primal solution recovered by the volume 

algorithm is very close to the exact primal solution. Second, The addition of the precedence 

constraints to the facility location formulation (column 4), and the transformation of the shortest path 

formulation (column 9 versus column 10) enhance the computational performance of LR and HB. 

We see that on average HB needs 1.7 times the time of HBp to converge (column 4).  Further, in 

columns 5-8 it is evident  that the effect of the precedence constraints is much stronger when using 

LR instead of ACG. When comparing columns 5 and 6, we see that LRp is approximately 3 times 

faster than LR, whereas columns 7 and 8 reveal that the performance of ACG and ACGp is 

approximately the same. The precedence constraints influence the structure of the solutions returned 

by the subproblems. These solutions are used by LR to update the dual prices in every iteration, and 

therefore have a direct effect on the performance of the LR algorithm. ACG however, uses the 

subproblem solutions as additional columns, and therefore they have an influence only if they are 

active in an optimal solution of the restricted master problem. This might explain why the 

precedence constraints lead to a big, medium and minimum improvement when applied to LR, HB 

and ACG respectively. In addition, columns 9 and 10 reveal that the Lagrange relaxation of the 



shortest path formulation is approximately 3 times slower, on average, compared to its transformed 

version. Algorithms SPP-ACG, SPtP-ACG and SPP-HB showed similar behavior as ACG, ACGp 

and HB respectively and are not reported. The hybrid scheme outperforms all approaches. On 

average, HBp is five times faster than the other algorithms. Finally, it is interesting to note that for 

JD, an implementation of simplex-based column generation, the CPU times are disproportionally 

larger, indicating the poor performance of simplex-based column generation. 

8.1.2  Comparison of lower and upper bounds with other approaches 

On assessing the lower bound quality obtained by SP/P, Jans and Degraeve (2004) give evidence that 

for the 7 instances of Table 2, this lower bound is stronger than the one obtained by Trigeiro et al. 

(1989), Degraeve and Jans (2007), Belvaux and Wolsey (2000) and Miller et al. (2000a), while the 

bound from Van Vyve and Wolsey (2006) seems to be stronger for most instances. Note however 

that there is no theoretical ground to support arguments that one bound dominates another bound, 

with the exception of the bound given by Trigeiro et al. (1989), which is not better than the bound of 

Jans and Degraeve (2004). Therefore, the performance of each methodology is data dependent. 

Intuitively, the period decomposition should perform well when the capacity constraints are tight, 

because it takes advantage of the extreme points of the single-period polytopes, and when the 

number of items is small, which is likely to make the subproblems easier.  

 In another experiment, we compared the performance of our algorithm to the results obtained 

by Süral et al. (2009). They design a Lagrange-based heuristic for a reformulation of the capacitated 

problem with setup times but without setup costs. The demand constraint is relaxed. They modify the 

data from Trigeiro et al. (1989) as follows. First, they set all setup costs to zero. Second, they 

increase zero demands to 2 units. Third, they construct new instances by reducing the number of 

periods of some existing ones. Finally, they construct instances with unit inventory costs for all 

items, called homogeneous (denoted “hom”). Instances with the original inventory cost are called 

heterogeneous (denoted “het”). In total, 100 instances are generated. Since their approach usually 

terminates in a few seconds, we have chosen to compare it with our hybrid procedure only. 

Specifically, we use the hybrid process to obtain a lower bound, recover an approximate primal 

solution with the volume algorithm, fix the setup variables to 0 or 1 (as described in the diving 

heuristic) and call the successive rounding/smoothing heuristic once. In particular, no branching is 

performed, and the algorithm is actually the procedure that is performed at the root node of the 

branch-and-price tree. We call this procedure the restricted hybrid heuristic (RHB). Table 3 displays 

the average duality gaps and the average CPU time for the best heuristic approach of Süral et al. 

(SDW) and our restricted hybrid heuristic (RHB). SDW was run on an Intel Pentium 4 machine, and 



the subproblems were solved with CPLEX 7.0. Detailed results can be found in the online 

supplement that accompanies this paper. 

Table 3: Comparison of RHB with the Lagrange-based heuristic of Süral et al. (2009) 

Category Gap RHB (%)   Gap SDW (%)   CPU RHB (s) CPU SDW (s) 

12 x 10 het 18.43 31.73 0.34 3.06 

24 x 10 het 11.14 18.07 1.62 4.79 

12 x 15 het 19.25 25.95 1.40 6.07 

24 x 15 het 13.44 21.26 6.37 15.33 

12 x 30 het 21.92 28.68 3.27 24.01 

24 x 30 het 23.44 32.35 19.72 38.93 

12 x 10 hom 22.97 42.08 0.53 2.69 

24 x 10 hom 14.06 20.88 1.77 4.45 

12 x 15 hom 18.44 28.00 1.19 5.64 

24 x 15 hom 14.96 20.56 3.46 11.14 

12 x 30 hom 21.68 24.33 2.99 19.10 

24 x 30 hom 21.35 30.26 7.95 22.91 

Average het 17.94 26.34 5.45 15.37 

Average hom 18.91 27.69 2.98 10.99 

 

It is interesting to notice the large gaps that result from problems without setup cost. Clearly, 

RHB outperforms SDW, both in terms of gap quality and CPU time, for both homogeneous and 

heterogeneous problems.  

 We also run RHB using the F and G instances from Trigeiro. The average gaps were 2.43% 

and 2.51% and the average CPU times 0.25 and 2.14 seconds, respectively. Note that Degraeve and 

Jans (2007) cite an average gap of 2.87% for the F instances, after exploring 2000 nodes in their 

branch-and-price tree. 

 We also tested RHB against the best implementation of the iterative production estimate 

(IPE) heuristic of Pochet and Van Vyve (2004). They run their experiments on a 350 MHz machine 

and list results on the six instances from the G dataset of Trigeiro et al. (1989) described in Table 4 

(IPE was not tested on G30). The optimal value is listed to facilitate the comparisons. Table 4 

presents the results. 

Table 4: Comparison of RHB against the IPE heuristic 

Dataset Optimal 
Best Incumbent  CPU Time (s) 

IPE RHB IPE RHB 

G30b (6-15) 37,721 38,976 38,162 1.31 0.27 

G53 (12-15) 74,634 78,098 75,035 3.53 1.4 

G57 (24-15)  136,509 137,153 136,884 6.01 7.21 

G62 (6-30) 61,746 63,073 63,018 1.7 0.67 



G69 (12-30) 130,596 131,988 131,668 6.03 3.38 

G72 (24-30) 287,929 290,006 288,313 21.15 15.5 

 

Although a comparison of CPU Times is hard since different machines were used, it is clear 

that the quality of feasible solutions is much better for RHB. Note that the above IPE results are the 

best that Pochet and Van Vyve cite, based on the BC-PROD cut generator. Also, despite that RHB 

seems to find a better feasible solution than IPE, more space for improvement exists, as shown by the 

optimal solutions.  The branch-and-price heuristic performs RHB at the root node and tries to 

approach the optimal solution. Its computational peformance is described in section 8.2. 

8.2  Comparison of heuristic branch-and-price with other approaches 

8.2.1  Upper bounds for the Trigeiro et al. (1989) instances 

We compared our approach with the most recent and successful heuristic and exact approaches found 

in the literature and with our own implementation of relax-and-fix heuristic (Pochet and Wolsey, 

2006).  In order to perform the comparison, we employed the 7 instances taken from Trigeiro et al. 

(1989) described in part 8.1.1. A comparison based on 7 instances is limited. However, these 7 

instances are specifically tested in many other papers and therefore allow us to compare our results to 

various others reported in the literature. For the relax-and-fix heuristic, we impose integrality 

restrictions in periods )}3|,min(|,...,{ tTt , and after solving the relaxed problem we fix the 

variables of period t  to their best values and iterate for each |}|,...,1{ Tt . For the Trigeiro instances 

under consideration, imposing integrality restrictions in four consecutive periods produced good 

solutions. Table 5a presents results of the following studies: Müller et al. (2012) (MS), Degraeve and 

Jans (2007) (DJ), Belvaux and Wolsey (2000) (BW) and our approach (HB&P). Table 5b presents 

Trigeiro et al. (1989) and the relax-and-fix heuristic (RnF). For Trigeiro et al. (1989) we have 

obtained the original code from the authors and ran it on our machine, and report the corresponding 

CPU times.  The optimal solution of each instance is also listed, to facilitate the comparisons. MS is 

a randomized heuristic, so it does not provide any lower bounds and gaps. 

 

Table 5a: Comparison of Branch-and-Price with other approaches. A dash (-) denotes lack of data. 

   Best Incumbent  CPU Time (s) Gaps (%) 

Dataset Optimal MS DJ BW HB&P DJ BW HB&P DJ BW HB&P 

G30 (6-15) 37,809 - 37,809 - 37,809 33 - 5 1.90 - 1.00 

G30b (6-15) 37,721 37,776.4 38,162 37,721 37,721 29 - 2 2.51 1.35 0.90 

G53 (12-15) 74,634 74,720.8 75,035 74,752 74,634 66 189 9 1.61 1.33 0.93 

G57 (24-15)  136,509 136,675 136,860 136,509 136,509 44 55 101 0.36 0.10 0.07 



G62 (6-30) 61,746 61,792.2 62,644 61,746 61,746 359 55 140 2.79 1.24 0.88 

G69 (12-30) 130,596 130,675 131,234 130,599 130,599 215 102 131 0.81 0.32 0.20 

G72 (24-30) 287,929 287,966 288,383 287,950 288,016 306 298 46 0.22 0.07 0.07 

 

Table 5b: Comparison of Branch-and-Price with other heuristic approaches. Gaps are reported using 

the optimal solution as lower bound. 

  Best Incumbent CPU Time (s) Gaps (%) 

Dataset Optimal TTM RnF HB&P TTM RnF HB&P TTM RnF HB&P 

G30 (6-15) 37,809 39,197 37,997 37,809 0.1 32.66 5 3.67 0.50 0.00 

G30b (6-15) 37,721 38,162 37,767 37,721 0.09 36.54 2 1.17 0.12 0.00 

G53 (12-15) 74,634 75,035 74,752 74,634 0.2 851.05 9 0.54 0.16 0.00 

G57 (24-15)  136,509 136,885 136,509 136,509 0.37 658.83 101 0.28 0.00 0.00 

G62 (6-30) 61,746 63,018 62,011 61,746 0.47 560.3 140 2.06 0.43 0.00 

G69 (12-30) 130,596 131,668 130,666 130,599 0.93 2,835.94 131 0.82 0.05 0.00 

G72 (24-30) 287,929 288,313 287,950 288,016 1.9 7,584.47 46 0.13 0.00 0.00 

Before analyzing the relative performance of each approach, some implementational details 

are presented. Müller et al. (2012) use a hybrid adaptive large scale neighborhood search strategy. 

They run their experiments on a 2.66 GHz / 8GB RAM machine and use CPLEX 10.2 to create 

repair neighborhoods. Since their approach is randomized, the listed values are based on an average 

of 100 runs, where each run lasts for 60 seconds. Degraeve and Jans develop an exact branch-and-

price algorithm. They pose a limit of 2,000 nodes and run their experiments on a 750 MHz processor. 

Finally, Belvaux and Wolsey use a relax-and-fix heuristic which they incorporate within BC-PROD, 

a customized branch-and-cut system for production planning problems. They use a 200 MHz 

machine to perform their computations. 

In terms of quality of feasible solutions, it seems that the two most competitive approaches 

are BW and HB&P. It is interesting to notice that, although BW is the oldest approach and runs are 

made on a slow machine, it seems to provide much better feasible solutions compared to most other 

approaches. When compared to HB&P, it finds solutions of similar quality. CPU times are not 

directly comparable. HB&P produces a better gap however, as the lower bound is stronger and the 

solution quality similar. HB&P gives a stronger bound because most separation routines of BC-

PROD use flow-based inequalities that incorporate information mainly from the convex hulls of the 

single – item uncapacitated polytopes. HB&P however, gives a lower bound that describes the 

intersection of the capacity and single-item uncapacitated polytopes and therefore it tends to be 

stronger for tightly constrained problems. DJ is outperformed both in terms of time and solution 

quality. Finally, table 5b shows that TTM is very fast but finds solutions of inferior quality, while 

RnF is very slow but finds better solutions. Our approach outperforms RnF both in terms of solution 



quality and CPU time. Since we use TTM to warm-start our algorithm, it is expected that we obtain 

better solutions at a higher CPU time. 

To the best of our knowledge, the best exact approach found in the literature for the above 

instances from a lower bound perspective, is the approximate extended formulation of Van Vyve and 

Wolsey (2006). Unfortunately, the authors do not cite the CPU time at which they obtain the lower 

bound at the root node and a comparison with our approach is not possible. However it is expected 

that a heuristic implementation of their approach would work better for problems with short time 

horizon, whereas our approach is better for long horizon problems. For example, they solve G62 (6 

items, 30 periods) to optimality after 220400 nodes and 1078 seconds on a 1.6GHz machine whereas 

we need 4212 nodes and 140 seconds to find the optimal value (on a 2GHz machine).  

8.2.2  Comparison of gaps obtained with branch-and-price and branch-and-cut 

Next, we compared our approach with the best branch-and-price algorithm of those suggested by 

Pimentel et al. (2010) (PAV). They used the Trigeiro et al. (1989) sets X11117 – X12429. Each X set 

comprises of 5 instances and there are 30 X sets, giving a total of 150 instances. They applied a 

period, item and simultaneous period and item decomposition, solved the subproblems with CPLEX 

8.1, and performed their computations on a Pentium 4 machine with 1 GB RAM. Table 6 presents 

results for the 10 hardest sets, i.e. those for which their algorithm gives the largest gaps. The bottom 

line lists average results for all 150 instances. Detailed results can be found in the online supplement. 

Table 6: Comparison with Pimentel et al. (2010) 

 
CPU Time PAV (s) CPU Time HB&P (s) Gap PAV (%) Gap B&P (%) 

x11419 3,600 96.06 10.367 7.069 

x11429 3,600 106.30 9.599 4.993 

x12429 3,600 110.15 7.999 3.650 

x12419 3,600 84.07 5.967 4.250 

x11428 3,600 68.42 4.777 0.951 

x12428 3,600 61.83 3.908 1.563 

x12229 3,600 29.93 3.236 1.924 

x11229 3,600 66.01 3.045 2.071 

x12219 3,600 62.96 2.745 2.507 

x11129 3,600 63.37 2.525 2.874 

Average (150 instances) 3,600 74.91 5.417 3.185 

 

Note that HB&P outperforms PAV in all of the above sets except one. Moreover, HB&P 

terminated within the time limit of 150 seconds in 149 out of 150 instances. Also, the average gap 

and CPU times are much better for HB&P. An interesting observation is that Pimentel et al. (2010) 

do not get their best gaps from their simultaneous item/period decomposition, which theoretically 



gives a stronger bound compared to both their item and period decompositions, but from the item 

decomposition. This is because the RM problems of the simultaneous item/period decomposition are 

very degenerate and time consuming. Therefore, they may not be able to obtain good feasible 

solutions and improve their gap within their time limit. 

In a final round of trials, we tested our algorithm on some new hard datasets against the 

CPLEX v12.2 solver (CPX), using the regular formulation CL. The purpose of this comparison is to 

give evidence on the relative strengths and weaknesses of a decomposition approach against a 

modern off-the-self branch-and-cut software. To this end, we constructed new harder instances by 

modifying the Trigeiro dataset. Specifically, we replicated the demand patterns to 60 periods, and 

reduced the capacity to 95% of its original value. We focused on instances with 6 and 12 items 

because the integrality gap of the extended formulations improves as the number of items increases, 

therefore problems with fewer items are more challenging to solve. Finally, we excluded instances 

that were infeasible without initial inventory because their gap was sensitive to the initial inventory 

cost. 

The process described above led to the creation of 30 new 60-period instances, 21 of which 

have 6 items and 9 with 12 items. Table 7 shows the computational results. Both algorithms used 100 

seconds of CPU time. This time limit is deemed appropriate for our approach, which can be used (i) 

in a practical production environment, for fast generation of good quality production plans, or (ii) as 

a warm-start method of an exact approach, such as branch-and-cut or branch-and-price. 

Table 7: Integrality gaps of Heuristic Branch-and-price and CPLEX v12.2 

 
CPX Gap (%) HB&P Gap (%) Gap Closed (%) 

6 - 60 Average 2.29 2.44 17.90 

6 - 60 Median 1.86 1.97 9.51 

12 - 60 Average 1.79 1.57 12.58 

12 - 60 Median 1.71 1.57 9.73 

Total Average 2.14 2.18 15.29 

Total Median 1.85 1.78 9.57 

The computational experiments show that both algorithms achieve good performance in 

terms of integrality gaps. However, no instance was solved to optimality after 100 seconds. The total 

median gaps show that heuristic branch-and-price performs better overall, but the average gaps are 

slightly higher than those of CPLEX. We observed that the lower bound obtained by the period 

decomposition was always better. To demonstrate the efficiency of the lower bound, we calculated 

all gaps using the best feasible solution and report the amount of gap that is closed with our branch-

and-price algorithm. The amount of gap closed is the difference between the CPX Gap and HB&P 

Gap, divided by the CPX Gap, where all gaps are calculated using the best feasible solution. The last 



column indicates the superiority of the lower bound obtained by theperiod decomposition, as the 

average gap improvement is about 15%. The lower bound obtained by CPLEX is weak, even after 

exploring a large part of the branch-and-bound tree. Specifically, CPLEX explores more than 28,000 

nodes on average, whereas we explore an average of 644 nodes with our approach. The fact that 

CPLEX explores such a large part of the tree allows it to find better feasible solutions in most 

instances, so its integrality gaps are competitive to branch-and-price. In conclusion, the two 

approaches give similar results in terms of gap quality, but our approach dominates CPLEX in lower 

bounds, since it takes advantage of the special structure of the single period polytopes. 

9.  Conclusions and future research 

We have presented period decompositions of the facility location and shortest path formulations of 

the capacitated lot sizing problem with setup times. The subproblems polytopes do not have the 

integrality property, and therefore an improved lower bound is obtained. Customized branch-and-

bound algorithms are developed to solve the single-period subproblems. In addition, a novel, 

subgradient-based algorithm is developed, that combines column generation with Lagrange 

relaxation, and uses the volume algorithm to recover an approximate primal solution of the RM 

problem. The performance of the hybrid scheme is enhanced further with the proposition of a 

transformed shortest path formulation and with the addition of a class of valid inequalities in the 

subproblem. The resulting subproblem is still tractable with a fast customized branch-and-bound 

algorithm. Finally, a branch-and-price based heuristic is designed, that integrates relaxation induced 

neighborhoods, selective diving and successive rounding/smoothing within a novel strategy of node 

exploration. Computational results show that the proposed approach outperforms or compares 

favorably with the most recent and successful approaches found in the literature. 

 The period decomposition formulations that we employ can be readily applied to lot sizing 

problems with richer structure, such as backlogging, overtime and startup times. The subproblem 

algorithms can also be adapted in a straightforward manner so that they incorporate these features. 

The application of period decompositions to multi-level problems is strainghforward, but solving 

problems with multiple resources, such as those introduced by Stadtler (2003) is computationally 

more challenging. Although the period by period decomposition structure is retained when the 

demand constraints are dualized, the resulting subproblems may not preserve the structures we 

studied in this paper and new algorithms that solve their LP relaxations need to be devised. In 

particular, whenever an item needs a setup or production time with respect to more than one resource 

per period, the per-period subproblem involves multiple capacity constraints, and its linear relaxation 



is no longer a linear multiple choice knapsack problem. Given the strong lower bounds that we 

obtained for the CLST, an application to the multi-level instances is a promising area for future 

research, especially because the best known lower bounds of these instances can be improved 

considerably. 

 With respect to the developed methodology, there are several directions that deserve further 

research. The implementation of standard stabilization techniques (eg. du Merle et al. 1999) to 

extended formulations may make them more tractable computationally. Also, it could lead to the 

development of an exact approach, for which an exact representation of the primal solution of the 

RM is needed. On a different line, the integration of approximate schemes such as the volume 

algorithm could lead to enhanced MIP-based heuristics that can tackle very large instances 

efficiently and give a good dual bound, used to assess their performance. Finally, the period 

decomposition could lead to the development of successful approximation algorithms. Recently, 

Levi et al. (2008) used the simple plant location formulation with added flow cover inequalities to 

derive the first 2-approximation algorithm for a variant of CLST without setup times. It would be 

interesting to explore whether a column generation-based relaxation would lead to similar 

approximation schemes for CLST. 



Appendix 

Proof of Theorem 1. 
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separable per item. Also, without loss of generality we can restrict our attention to the positive 

orthant of both dual spaces because (7) can be written as inequality ( ) and also (8) can be written as 

inequality ( ). We will first show that DD ' . For this, consider a point 'Dvit  . Note that (A5) 

and (A6) imply (A3) and (A4). Supposing that (A6) holds, we show that (A1) holds as well. We 

write (A6) as itkititk
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Therefore, (A6) implies (A1). Using the same argument, (A5) implies (A2). This means that 

DvDv itit  ' for an arbitrary point 'Dvit  , and thus DD ' .  

We show that the inclusion may be strict via an example. Consider the following single-item 2-

period uncapacitated system with no initial inventory and its transformed version: 
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The corresponding dual formulations are: 
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The point ),(),( 1121  cvv is feasible for )(D  and infeasible for )'(D  for a small 0 therefore 

DD ' , and the proof is complete. 
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