
Period Decompositions for the Capacitated Lot

Sizing Problem with Setup Times

Silvio Alexandre de Araujo
Departamento de Matemática Aplicada, Universidade Estadual Paulista, São José do Rio Preto SP, 15054-000, Brazil

saraujo@ibilce.unesp.br

Bert De Reyck
Department of Management Science and Innovation, University College London, WC1E 6BT, UK

b.dereyck@ucl.ac.uk

Zeger Degraeve
Melbourne Business School, University of Melbourne, Carlton VIC 3053, z.degraeve@mbs.edu

Department of Mamagement Science and Operations, London Business School, Regents Park, London NW1 4SA, UK

zdegraeve@london.edu

Ioannis Fragkos
Department of Management Science and Innovation, University College London, WC1E 6BT, UK

 i.fragkos@ucl.ac.uk

Raf Jans
HEC Montréal, H3T 2A7 QC, Canada

raf.jans@hec.ca

We study the Capacitated Lot Sizing Problem with Setup Times (CLST). Based on two strong

reformulations of the problem, we present a transformed reformulation and valid inequalities that

speed up column generation and Lagrange relaxation. We demonstrate computationally how both

ideas enhance the performance of our algorithm and show theoretically how they are related to dual

space reduction techniques. We compare several solution methods, and propose a new efficient

hybrid scheme that combines column generation and Lagrange relaxation in a novel way.

Computational experiments show that the proposed solution method for finding lower bounds is

competitive with textbook approaches and state-of-the-art approaches found in the literature. Finally,

a branch-and-price based heuristic is designed and computational results are reported. The heuristic

scheme compares favorably or outperforms other approaches.

Key words: Lot Sizing; Column Generation; Lagrange Relaxation; Branch-and-Price; Heuristics.

History: Submitted, August 2013.

1. Introduction

Lot sizing problems have been studied extensively by the operations research community in the past

five decades. Despite the vast progress of mixed integer programming theory and software, many lot

sizing problems remain computationally challenging to solve in practice. In this paper we study a

classical lot sizing problem, namely the Multi-Item Capacitated Lot Sizing Problem with Setup

Times (CLST). Given a discrete time horizon, the objective of CLST is to find a minimum cost

production plan that satisfies the demand for all items and respects the per period capacity

constraints. A setup operation is necessary whenever a positive amount is produced in a period. Such

a setup entails a cost and consumes capacity. Morever, production is done on a single-machine that

can produce many items in any given period, and no dependencies among items exist other than the

single-machine capacity restriction. CLST is classified as a multi item, single machine, single level,

big bucket capacitated lot sizing problem. In spite of the simple problem statement and its simple

formulation, CLST instances can be computationally challenging even for modern mixed integer

programming software. In particular, obtaining tight lower bounds and good feasible solutions

requires considerable effort, if at all possible, even for instances with a few hundred integer

variables.

 The aim of this paper is to design a fast heuristic procedure for CLST that provides good

solutions and a strong lower bound used to assess the solution quality. Period Danzig-Wolfe

decompositions of two network reformulations of CLST are proposed. The main advantage of the

proposed decompositions is that they provide a lower bound which is stronger than these of the

standard and network formulations. The potential downside is their computational tractability: when

computed with column generation, the already large number of variables of the network formulations

and their inherent degeneracy could lead to long solution times for the restricted master (RM)

programs, and only minor bound improvements per iteration. Although there exists limited

computational experience with decompositions of extended formulations on this problem, evidence

suggests that simplex-based solvers do not exhibit good convergence behavior (Jans and Degraeve

2004). We propose a novel, considerably faster subgradient-based hybrid scheme that combines

Lagrange relaxation and column generation. This scheme gives valid lower bounds of excellent

quality and outperforms pure simplex-based column generation, Lagrange relaxation and

subgradient-based column generation (in which the RM programs are solved with subgradient

optimization). Further, we enhance the performance of our algorithm by utilizing two new dual space

reduction techniques. First, we show how a primal space reformulation can lead to improved

performance of dual based algorithms during column generation. Second, we employ a class of valid

inequalities introduced by Wolsey (1989) in the context of single-item problems with start-up costs

and show how this corresponds to adding dual optimal inequalities in the dual space of the RM

program (Ben Amor et al. 2007). The new subproblems remain tractable and the performance of the

hybrid column generation scheme is improved further.

 The new hybrid scheme is embedded in a heuristic branch-and-price framework, designed

specifically to obtain good feasible solutions fast. To achieve this, we recover a primal solution of

the RM using the volume algorithm of Barahona and Anbil (2000) and branch on the resulting

fractional setup variables. Moreover, we integrate in a customized fashion recent MIP-based

heuristic approaches, such as relaxation induced neighborhoods and selective dives (Danna et al.

2005), with established ones such as the forward/backward smoothing heuristic of Trigeiro et al.

(1989). Extensive computational experiments show that the branch-and-price heuristic performs very

well against other competitive approaches.

The remainer of this paper is organised as follows. Section 2 provides a brief literature

review. Section 3 describes CLST formulations, and Section 4 their Dantzig-Wolfe decompositions.

Section 5 describes customized procedures for solving the subproblems. Section 6 describes the

hybrid scheme and Section 7 the branch-and-price heuristic. Finally, Section 8 presents

computational results and Section 9 concludes with comments and directions for future research.

2. Literature Review

The literature on capacitated lot sizing problems is vast. A broad categorization would distinguish

research related to exact and heuristic methods. We review both streams of literature, as our

approach utilizes exact methods but also constructs heuristic solutions.

 With respect to the more recent research on exact approaches, Van Vyve and Wolsey (2006)

suggest an approximate extended formulation based on the network reformulation of Eppen and

Martin (1987) that uses a single parameter to control the trade off between the number of variables

and the lower bound strength. They show that selecting small values of that parameter is sufficient to

solve hard problems, especially when a redundant row that facilitates the solver to generate cuts is

added in the formulation. Degraeve and Jans (2007) discuss the structural deficiency of the

decomposition proposed by Manne (1958) which only allows the computation of a lower bound for

the problem. Furthermore they show the correct implementation of the Dantzig-Wolfe decomposition

principle for CLST and develop a branch-and-price algorithm. Pimentel et al. (2010) propose three

Dantzig-Wolfe decompositions of the standard formulation of CLST, and compare the performance

of the corresponding branch-and-price algorithms. Specifically, they describe and compare the item,

period and simultaneous item and period decompositions. Belvaux and Wolsey (2000) developed

BC-PROD, a specialized branch-and-cut system for generic lot sizing problems. Some of the

cornerstone work that is less recent are the variable redefinition approach of Eppen and Martin

(1987), the use of valid inequalities (Barany et al. 1984) and the simple plant location reformulation

of Krarup and Bilde (1977). Recently, many authors (Alfieri et al. 2002, Pochet and Van Vyve 2004,

Denizel et al. 2008 and Süral et al. 2009) have used such alternative formulations with stronger linear

relaxations for the CLSP. Finally, Miller et al. (2000b, 2003) also derive strong valid inequalities

from simplified models, which are single-period relaxations with preceding inventory. The single

period models contain the capacity constraint and the demand constraints for multiple items taking

into account only the preceding inventory level.

Heuristic approaches have also received considerable attention. The seminal paper of Trigeiro

et al. (1989) proposed a item Lagrange relaxation and presented a smoothing heuristic (TTM) that

was able to find good feasible solutions quickly. Heuristics that use several iterations of solving a

reduced problem such as relax-and-fix and relax-and-optimize, have been successfully used by a

number of researchers (Pochet and Wolsey 2005, Stadtler 2006, Helber and Sahling 2010). Süral et

al. (2009) designed a Lagrange relaxation based heuristic that outperforms TTM for problems

without setup costs. Other recent heuristic approaches include among others, the cross entropy-

Lagrange hybrid algorithm of Caserta and Rico (2009), the adaptive large neighbourhood search

algorithm of Müller et al. (2012), the LP-based heuristic and curtailed branch-and-bound of Denizel

and Süral (2006) and the iterative production estimate (IPE) heuristic of Pochet and Van Vyve

(2004). A notable recent approach is that of Tempelmeier (2011), who uses a set partitioning

approximation and a column generation-based heuristic to solve a multi-item capacitated model with

random demands and a fill rate constraint. A very comprehensive review of heuristic approaches can

be found in Buschkühl et al. (2010).

 Relevant to the current work is also the decomposition approach proposed in Jans and

Degraeve (2004). The authors propose a period decomposition of a strong reformulation proposed in

Eppen and Martin (1987). They obtain improved lower bounds, but their computational experiments

show that standard computation schemes may be very time consuming for hard problems. Finally,

Fiorotto and de Araujo (2014) build upon and extend the Lagrangian relaxation presented in Jans and

Degraeve (2004) by developing a heuristic for the capacitated lot sizing problem with parallel

machines.

The main contributions of the present work are (a) the development and comparison of two

period Dantzig-Wolfe network reformulations for CLST; (b) the development of a methodology that

circumvents the computational difficulties of extended formulations through the design of a

stabilization algorithm, and the use of problem-specific inequalities in the customized algorithm that

solves the subproblems; (c) the development of a state-of-the-art branch-and-price heuristic that

integrates and customizes several recent advances such as the volume algorithm (Barahona and

Anbil 2000), relaxation induced neighbourhoods and selected dives (Danna et al. 2005) and finally,

(d) the presentation of computational results that suggest the competitiveness of the proposed scheme

against other approaches.

The next section gives an overview of several formulations that are used throughout the paper.

3. Formulations for the Capacitated Lot Sizing Problem

In this section we present different formulations for the capacitated lot sizing problem: the regular

formulation (CL); the shortest path formulation (SP) proposed in Eppen and Martin (1987); a

transformed shortest path formulation (SPt); the facility location formulation (FL) studied in Krarup

and Bilde (1977); and the facility location formulation with precedence constraints (FLp).

3.1. The Regular Formulation (CL)

The regular formulation for the Capacitated Lot Sizing Problem with Setup Times is described by

the following sets, parameters and decisions variables (Trigeiro et al. 1987).

Sets:

 I : set of items, = {1,…, |I|},

 T : set of time periods, = {1,…, |T|}.

Parameters:

itd : demand of item i in period t, Ii ,  t  T

itksd : sum of demand of item i, from period t until k, Ii ,  t, k  T: k  t

ithc : unit holding cost for item i in period t, Ii ,  t  T

itsc : setup cost for item i in period t, Ii ,  t  T

itvc : variable production cost for item i in period t, Ii ,  t  T

ifc : unit cost for initial inventory for item i, Ii

itst : setup time for item i in period t, Ii ,  t  T

itvt : variable production time for item i in period t, Ii ,  t  T

tcap : time capacity in period t.  t  T

Decision variables:

itx : production quantity of item i in period t, Ii ,  t  T

ity = 1 if setup for item i in period t, = 0 otherwise, Ii ,  t  T

its : inventory for item i at the end of period t, Ii ,  t  T

0is : amount of initial inventory for item i. Ii

The mathematical formulation of CLST is then as follows:

  
 


Ii Tt

itititititit

Ii

ii shcxvcyscsfc 0min CL
(1)

s.t. itititti sdxs 1,  i  I,  t  T (2)

   t

Ii

itititit capxvtyst 


  t  T (3)

 itTit

it

itt
it ysd

vt

stcap
x 







 
 ||,min Ii ,  t  T (4)

 }1,0{ity , 0itx , 0its , 00 is , 0|| Tis Ii ,  t  T (5)

The objective function (1) minimizes the setup cost, the variable production cost, the

inventory holding cost and initial inventory cost. Constraints (2) are the demand constraints:

inventory carried over from the previous period and production in the current period can be used to

satisfy current demand and build up inventory. As in Vanderbeck (1998), we deal with possible

infeasible problems by allowing for initial inventory (si0) which is available in the first period at a

large cost, fci. There is no setup required for initial inventory. Next, there is a constraint on the

available capacity in each period (3). Constraint (4) forces the setup variable to one if any production

takes place in that period. Finally, we have the non-negativity and integrality constraints (5) and the

ending inventory is set to zero.

3.2. The Shortest Path Formulation (SP)

Next, model (1)-(5) is reformulated using the variable redefinition approach of Eppen and Martin

(1987). Define the following parameters:

itkcv : total production and holding cost for producing item i in period t to satisfy

demand for the periods t until k, 







k

1ts

1s

tu

isiuitkititk dhcsdvccv ,

itci : total production and holding cost for initial inventory for item i to satisfy

demand from period 1 up to period t, 







t

2s

1s

1u

isiut1iiit dhcsdfcci .

We also have the following new variables:

itkz : fraction of the production plan for item i where production in period t

satisfies demand from period t to period k, 



||T

tk

itkitkit zsdx , i  I, t  T,

itp : fraction of the initial inventory plan for item i where demand is satisfied for

the first t periods, 



||

1

10

T

t

ittii psds ,  i  I.

The network reformulation is then as follows:

   
   


Ii Ii Tt

T

tk

itkitk

Tt

itititit zcvpciysc
||

min SP
 (6)

s.t.  



||

1

1 1
T

k

ikki pz  i  I (7)

  


 

 
1

1

||

11

t

j

T

tk

itkitijt zpz  i  I,  t  T\{1} (8)

 t

Ii

T

tk

itkitkit

Ii

itit capzsdvtyst 
 

||

  t  T (9)

 it

T

tk

itk yz 


||

  i  I,  t  T (10)

  1,0ity , 0pit   i  I,  t  T (11)

 0zitk   i  I,  t  T,  k  T, k  t (12)

The objective function (6) minimizes the total costs. Constraints (7) and (8) define the flow

balance constraints of each node (i,t), which ensure that demand is satisfied. For each item, a unit

flow is sent through the network, imposing that its demand has to be satisfied without backlogging.

The capacity constraints (9) limit the sum of the total setup times and production times to the

available capacity in each period. Constraint (10) defines the setup forcing for each item. Finally,

setup decisions are binary (11).

3.3. Transformed Shortest Path Formulation (SPt)

We reformulate constraints (7) and (8) of SP in a way that reduces the dual feasible region of its LP

relaxation. The aim is to achieve a better convergence for algorithms that operate in the dual space.

The idea is to substitute, for each item, the demand balance constraint of period t with the sum of the

demand balance constraints of the first t periods. Doing so, constraints (7) and (8) are replaced with:


 


t

j

T

tk

ijk

T

tk

ik zp
1

||||

1 TtIi  , (13)

We denote the resulting transformed formulation SPt. Eppen and Martin (1987) showed that

their network reformulation corresponds to a shortest path problem defined on an acyclic graph. The

demand constraints (7) and (8) express the flow balance in each node of this graph. Equation (13)

imposes that the flow of the cut-set defined by the s-t cut |})|,...,{}1,...,0({ TttCt  is equal to

one. Figure 1 illustrates a single-item four period example with no initial inventory. Equation (8) for

period 3 reads 34332212 zzzz  , which corresponds to the flow balance of node 2. For the same

period, (13) sets the total flow through the edges connecting the sets of nodes {0, 1, 2} and {3, 4}

equal to one, i.e., 3433242314131 zzzzzz  .

Figure 1: A single-item four period example with no initial inventory

The idea behind this transformation is that of dual space reduction. Let D be the feasible dual

space associated with constraints (7) and (8), and D' the one associated with constraints (13). If 1iv

and itv are the dual values of (7) and (8) and itv the dual values of (13), then














































































tkTktIicvv

TtIicvciv

vD

Iiciv

TtIicvv

TTtIicivv

TktTktIicvvv

vD

itk

k

tl

il

tiit

t

l

il

it

Tii

Titit

ititi

itkkiit

it

:,,

,},min{

';

,

,,

|}{|\,

||:,,
1

1

||1

||

11

1,

Theorem 1. DD ' .

Proof. See Appendix.

For the numerical example illustrated in Figure 1, we observe from the definitions of D and D’ for

|T| = 4 and |I| = 1 that if we define 11cv , the point     ,,,,,, 114321  cvvvvv is feasible for

D but infeasible for 'D .

Transformed formulations like the SPt imply a denser form of the constraint matrix, which, in the

context of the simplex method, might result in more pivots and therefore be less efficient. Since our

algorithm works in the dual space, it is interesting to investigate computationally if the dual space

reduction of subsystem (7) and (8) is beneficial.

3.4. Facility Location Formulation (FL)

CL can be reformulated using variables originally employed in Facility Location problems. To the

best of our knowledge, the first paper that used facility location variables to formulate lot sizing

models was the work of Krarup and Bilde (1977). The resulting model (FL) is described below.

Parameters:

itkcs : total production and holding cost for producing item i in period t to satisfy

demand of period k, ik

k

tu

iuititk dhcvccs 







 





1

,

itcu : initial inventory and holding cost for item i, to satisfy demand in period t,

it

t

u

iuiit dhcfccu 







 





1

1

.

We also define the following variables:

itkw : fraction of demand for item i in period k that is satisfied by production in

period t, 



||T

tk

itkikit wdx , i  I, t  T,

itsp : fraction of demand for item i in period k that is satisfied by initial inventory,





||

1

0

T

t

ititi dsps ,  i  I.

The facility location reformulation is then as follows:

   
    


Ii Tt Ii Tt

T

tk

itkitkitititit wcsspcuysc
||

min FL
 (14)

s.t. 



t

k

iktit wsp
1

1  i  I,  t  T (15)

 
 


Ii

t

T

tk

itkikit

Ii

itit capwdvtyst
||

  t  T (16)

 ititk yw   i  I,  t  T,  k  T, k  t (17)

  1,0yit  , 0itsp  i  I,  t  T (18)

 0itkw  i  I,  t  T,  k  T, k  t (19)

The objective function (14) minimizes the total cost, which consists of the setup cost, the

aggregated production and holding costs, and the initial inventory and holding costs. Equations (15)

correspond to the demand constraints (2) and state that period t demand must be covered by a

combination of initial inventory and production in periods {1,...,t}. The capacity constraints (16) are

in exact correspondence with (4). The setup constraints (17) do not allow any production in period t

unless a setup is done and the non-negativity conditions (18) and (19) complete the FL formulation.

3.5. Facility Location Formulation with Precedence Constraints (FLp)

Many extended formulations are often degenerate or have multiple optimal solutions. The decision

variables of formulation (14)-(19) indicate not only the amount of production of each item in each

period, as the original decision variables, but also allocate each production amount to forward

demands. Multiple alternative solutions of (14)-(19) arise when the allocation of a given production

amount to forward demands is not unique. The existence of multiple alternative solutions in the

extended formulation may degrade the efficiency of column generation. Hence, the addition of valid

inequalities in the subproblem that cut off some of the primal space containing alternative optimal

solutions, may lead to improved convergence, as it prevents the subproblem from generating

columns that describe alternative solutions. A class of such valid inequalities is described below.

Observation 1. There exists an optimal solution of FL with itkkit ww 1, for all i, t, k T: t1k

 and itti spsp 1, for all i and tT \ 1.

We will refer to the above valid inequalities as Precedence Constraints. Observation 1 is

used in Wolsey (1989) in his study of the facility location formulation in the context of lot sizing

problems with start-up costs and no capacity constraints. A short proof can be found in the online

supplement. FL is not a minimal image of the conv(CL) in the sense that there exists a subset of

conv(FL) that is the image of all extreme points of conv(CL) . A key insight is that not all feasible

points of FL are necessary for an accurate representation of the original feasible space CL. This is

important from a computational perspective, because columns whose convex combination represents

redundant points need to be generated on the fly, resulting in more column generation iterations and

in a possibly amplified tailing-off effect.

The precedence constraints itkkit ww 1, can be used alongside the setup forcing ititt yw  in

place of ititk yw  for all iI, t, kT: t 1k . The FL formulation with the primal valid inequalities

is written as:

   
    


Ii Tt Ii Tt

T

tk

itkitkitititit wcsspcuysc
||

min FLp

s.t. ititt yw   i  I,  t  T (20)

 itkkit ww 1,  i  I,  t  T,  k  T, k > t (21)

 (15) – (16), (18) – (19)

The idea behind the inclusion of constraints (21) is that of primal space reduction. Although it

is reasonable to assume that a decomposition scheme that uses (21) in the subproblem would deliver

an improved lower bound compared to not including them, we show that this is not the case. This is

because the objective function cost depends on the setup decisions and on the amount produced of

each item, which remains the same after the inclusion of constraints (21). Rather, (21) accelerates the

column generation convergence because the feasible space of eligible columns is reduced.

4. Period Dantzig-Wolfe Decompositions

4.1. Formulations

We formulate period decompositions of the CLST starting from formulations SP, SPt, FL and FLp.

We denote each decomposition formulation by appending /P to the original notation. For example,

SP/P denotes the period decomposition of the shortest path formulation. The demand balance

constraints of each formulation are the complicating constraints, and the capacity and setup forcing

constraints of each period form the subproblems. We focus on period decompositions of network

formulations because their linear programming (LP) relaxations provide improved lower bounds

compared to the (LP) relaxation of the corresponding extended formulations, since the subproblems

do not have the integrality property (Geoffrion, 1974). Note that an item decomposition of any of the

above extended formulations would lead to subproblems that have the integrality property. Therefore

the decomposition lower bound would be the same as the one obtained by the LP relaxation of the

original extended formulation (Jans and Degraeve, 2004).

The formulation of the period decomposition of SP, SP/P, is described in detail in Jans and

Degraeve (2004). The formulation of the period decomposition of SPt, SPt/P is very similar to SP/P

and we skip it for brevity. Instead, we present the period decompositions of FL and FLp. To this

end, let us define by tS the index set of extreme point production plans of the subproblem for period

t, i.e.,     )19()16(,:
,


 tkIiititkt ywconvextrqS . We associate a decision variable tq with the

fraction of the extreme point q of subproblem t that is used in a feasible solution. If we denote by

),(q

it

q

itk yw the components of point q, its cost can be written as  
 


Ii

T

tk

q

itkitk

q

itittq wcsyscct)(
||

. Then

the master program can be formulated as follows:

 
  


Ii Tt

itit

Tt Sq

tqtq spcuct
t

min FL/P (22)

s.t. 1
1


 

t

l Sq

lq

q

itkit

l

wsp   i  I  t  T [it] (23)

 1
 tSq

tq  t  T [t] (24)

 



tSq

tq

q

itit yy   i  I  t  T (25)

   0,1,0,0  itittq spy  i  I,  q  St, t  T

(26)

The objective function (22) minimizes the total cost of the initial inventory and the cost of the

production plans chosen in each period. Constraints (23) model demand and correspond to

constraints (15) in the standard formulation. The convexity constraints (24) and the nonnegativity

constraints (26) enforce a convex combination. The setup variables definition is given in (25). The

integrality must be imposed on the original setup variables (26). The constraint coefficient

parameters),(q

it

q

itk yw are defined by the subproblem extreme points. The subproblem objective

function minimizes the reduced cost over the extreme points. Specifically, the period t subproblem

reads:

  
  


Ii Ii

T

tk

itkikitkitit wcsysc
||

)(min  SUB (27)

s.t.  
  


Ii Ii

T

tk

titkikititit capwdvtyst
||

 (28)

 ititk yw   i  I,  k  T: k  t (29)

  1,0yit  , 0itkw  i  I,  k  T: k  t (30)

The period decomposition of the formulation FLp has the same master problem. However,

the subproblem, denoted SUBp, is different because it includes the precedence constraints (20) and

(21) in place of (29).

4.2. Lower Bounds

It is interesting to investigate the lower bound quality of the proposed decompositions. To this end,

let PFLv / be the optimal objective value of the linear relaxation of the decomposed model FL/P (22)-

(26). Also, let PSPPFLp vv // , and PSPtv / be the corresponding lower bounds obtained by the linear

relaxation of FLp/P, SP/P, and SPt/P respectively. To obtain a first result, we will need the

following definition and lemma.

Definition 1 (Ben Amor et al. 2007). Let D be the dual space polyhedron of a linear program and *D

be the set of its optimal solutions. Also, assume a new set of constraints eTE that cuts off part of

the dual space. If  e  TED :* , then eTE is called a set of dual-optimal inequalities. If

eTE cuts off a nonempty set of dual-optimal solutions but is still satisfied by at least one dual-

optimal solution, it is called a set of deep dual-optimal inequalities.

Lemma 1. Using subproblem SUBp is equivalent to using subproblem SUB and imposing

constraints

1:,,)()(1,1,1,   TktTktPidcsdcs ikkikitkiikitk  (31)

in the dual space of the LP master of FL/P. Moreover, these constraints are deep dual optimal

inequalities.

Proof. It suffices to show that SUB has the same optimal solution as SUBp whenever (31) holds.

Note that itvt can be added to both sides of the inequality, but is omitted since they cancel each other

out. Therefore, (31) states that the profit to weight ratio of itkw should be greater than that of , 1it kw  .

It follows that there exists an optimal solution of the LP relaxation of SUB when (31) holds which is

also optimal for the LP relaxation of SUBp. Also, SUB has the same structure after branching, so if

(31) holds, the precedence constraints hold at any node of the branch-and-bound tree, and therefore

at an integer optimal solution. Hence, from construction, (31) imply the precedence constraints, that

do not cut-off all optimal solutions. Their equivalence with the precedence constraints and definition

1 imply that they are deep dual optimal inequalities.

The next proposition states that all formulations deliver the same lower bound.

Proposition 1. PFLPFLpPSPtPSP vvvv ////  .

Proof. First, note that PSPtPSP vv //  because the corresponding subproblems have the same set of

extreme points, and the linking constraints of SPt/P are linear combinations of those of SP/P.

Second, consider the subproblem SUBp. The linear transformation

tkwwzwz itkkititkttitt   ,; 1, maps every extreme point),(itkit wy of SUBp to a unique extreme

point),(itkit zy of the SP/P subproblem. Using this transformation in FLp/P, the resulting model is

exactly SPt/P. On the other hand, every feasible solution of the SPt/P subproblem can be mapped to

FLp/P with the inverse transformation, i.e.,  


k

tl itlitkttitt zwzw ; . Hence, PFLpPSPt vv //  . Finally,

we show that PFLPFLp vv //  . To this end, notice that PFLPFLp vv //  , since adding constraints to the

subproblem can never lead to a worse bound. Denote by PFLv /
 the optimal value obtained when

solving the dual of FL/P amended with the dual restrictions (31). Then PFLpPFL vv //  from lemma 1

and PFLPFL vv //  , since adding cuts to the dual of a primal minimization problem can never increase

its optimal value. The result follows.

Interestingly, the above lower bound is stronger than the one obtained by the simulaneous

item and period decomposition of formulation CL studied by Pimentel et al. (2010). Let us denote

the latter lower bound by IPCLv // .

Proposition 3. PSPIPCL vv ///  .

Proof. See Online Supplement.

5. Solving the Subproblems

This section describes two fast customized algorithms used to solve subproblems SUB and SUBp.

Note that since the feasible solutions of FLp are in exact correspondance with those of SPt, and

since the subproblem of SP and SPt is common, solving SUB and SUBp implies a solution for all

four subproblems.

5.1. A customized algorithm for SUB

For SUB, the following simple observation plays a key role in the subsequent solution approach.

Observation 2. In an optimal solution of the LP relaxation of SUB there exist some tki  such that

ititk yw
i
 , Ii .

This implies that the subset of tight inequalities (29) can be used to substitute out the ity

variables in (28). As a result, the LP relaxation of SUB reduces to a linear knapsack problem which

admits a greedy solution, similar to the one proposed in Holmberg and Yuan (2000). It follows that

an optimal solution of SUB has fractional continuous variables for at most one item. The following

algorithm identifies the subset of tight inequalities in phase I and solves a regular linear knapsack

problem in phase II.

ALGORITHM SUB (for period t)

Phase I

IitkTk
dvt

cs
r

ikit

ikitk
itk 


 ,|,


. iK Ø,  ||,..., TtP  , FalseBesti  Ii,

For each Ii :

 While FalseBesti  :

   itiitkKPkit rkrr
i

arg;min \   // min ratio calculation

  iii kKK  ; Replace
 













i

i

Kk ikitit

Kk ikitkit

it
dvtst

cssc
r


 // Update set and ratio of

 If  itkKPkit rr
i\min  or PKi  then // periods merged so far

 TrueBesti  // If ratio of merged periods is not min, exit

 If  itkKPkit rr
i\min  then  iii kKK \ // Retain best set of merged periods

 













i

i

Kk ikititit

Kk ikitkitit

dvtstvtm

csscvcm 
 // Define cost and weight of merged periods

 End If

 End While

End For

Phase II

Solve a linear knapsack with weights  IiKkdvtvtm iikitit  ,; and costs

 IiKkcscsm iitkit  ,; .

Let  IiKkwwm iitkit  ,; denote the optimal solution.

Set IiKkwmy iitit  ,, .

Return   tkIiwy itkit  ,, .

Phase I identifies which of the variable upper bound constraints (29) are satisfied as

equalities. Then, the value of the setup variable is set equal to the value of the production variable

with the most attractive cost-to-weight ratio. If the new ratio is still the most attractive after the

substitution, Phase I terminates for that item. If it is not, another constraint (29) is tight for the same

item, and the corresponding substitution is made. Phase II solves a linear knapsack problem where

all itkw with iKk are equated with ity and substituted out. Note that adjusting the algorithm to

tackle items with zero setup time or cost is straightforward. Due to observation 2, algorithm SUB

produces an optimal solution of the SUB linear relaxation.

After solving the relaxation, a depth-first branch-and-bound algorithm is implemented.

Branching is needed only when some itwm was the last variable to enter the knapsack at fractional

level, and therefore 1ity . Thus, at most one setup variable is fractional. In addition, branching does

not change the problem structure because it either fixes itkw to zero when 0ity or reduces the

problem capacity by itst and fixes itsc in the objective, when 1ity . For this reason, algorithm SUB

can be called at each node of the branch-and-bound tree, with different input data. Computational

experiments confirm the superiority of this approach compared to simplex-based branch-and-bound.

5.2. A customized algorithm for SUBp

The addition of the precedence constraints changes the structure of subproblem SUB and the

previous algorithm cannot be employed. However, we can take advantage of the fact that each

solution of SUBp corresponds to a solution of the SP/P subproblem (9)-(12), whose relaxation is a

linear multiple choice knapsack problem (Jans and Degraeve 2004) that can be solved efficiently

using the sorting algorithm of Sinha and Zoltners (1979). Therefore, we solve the subproblem (9)-

(12) and then map back the solution to SUBp. Sinha and Zoltners call a variable dominated if there

exists another variable, or a convex combination of other variables, that has a smaller or equal weight

and a smaller or equal cost. Dominated variables can be eliminated, and the remaining variables

enter the knapsack under a greedy sorting criterion. It is important to observe that the non-dominated

variables form the convex envelope of all variables when graphed in the (weight, cost) space. We use

the procedure of Sinha and Zoltners to solve the linear relaxations of (9)-(12) and to develop a

customized depth-first branch-and-bound algorithm. The multiple choice knapsack structure is

preserved in every node of the branch-and-bound tree, but the cost coefficients of some variables

change as the setup costs change with branching. This means that the convex envelopes do not need

to be fully reconstructed in each node, since only a few variables change positions. We use a variant

of the algorithm suggested by Graham (1972) to construct and update the convex hulls. Graham’s

algorithm determines the convex envelope of a set of n points in O(nlogn) time. This implies that

solving the linear relaxation of (9)-(12) in every node takes O(nlogn) time, and therefore this method

has better complexity compared to using the simplex algorithm.

6. Solving the RM Problem: a new Hybrid Algorithm

Huisman et al. (2005) discuss how exploiting the relationship between Dantzig-Wolfe

decomposition and Lagrange relaxation can lead to the development of improved algorithms that

combine the strengths of both methods. They explore two different ways to combine column

generation and Lagrange relaxation. First, Lagrange relaxation can be used to solve the RM, by

dualizing the linking constraints, and the resulting near-optimal dual values can be used to price out

the subproblems. Second, Lagrange relaxation on the original formulation can be employed within

column generation, exploiting the fact that both methods solve the same subproblem. Specifically,

the RM programs are solved with simplex, and next the RM dual prices are used as a starting point

for a number of Lagrange relaxation iterations, during which several negative reduced cost columns

can be found and added to the RM at once. We propose a new method, which is a combination of

the two previously discussed methods. Specifically, it uses Lagrange relaxation of the RM to solve

this RM program, and it also uses Lagrange relaxation on the original formulation to generate new

columns. Figure 2 gives a schematic representation of the algorithm. Implementation details can be

found in the online supplement that accompanies this paper.

Figure 2: The main building blocks of the new hybrid algorithm

 We initialize the column generation process using the heuristic of Trigeiro et al. (1989). This

is a fast heuristic that performs several rounds of smoothing and rounding operations. For the

instances that Trigeiro et al. (1989) generated, their heuristic can find high quality feasible solutions,

giving integrality gaps lower than 3% on most problems. This heuristic returns a feasible solution, a

lower bound and a set of lagrangian dual prices of the capacity constraints. Using the dual of the

relaxation of SP or FL, we can then calculate the starting dual prices it . Also, the feasible solution

F

itit xy),(is split into per period columns of the SPt or FLp RM programs. To perform this

operation, it is necessary to transform the F

itit xy),(solution to the space of the extended formulation

variables. This can be done by fixing the setup variables to their given values and solving the

corresponding formulation, which is a shortest path problem. Next, the Lagrange relaxation

subroutine uses the modified subgradient method of Crowder (1976) to update the dual prices it .

The modified subgradient method is a variant of the traditional subgradient method that incorporates

past history in each iteration by searching in a direction that is the weighted average of the current

vector of violations and the previous searched direction. Computational experiments in Barahona and

Anbil (2000) show that the convergence of this variant is a lot faster compared to the regular

subgradient method. For each updated set of dual prices it we check if the subproblem solutions

price out, using the last obtained dual prices of the convexity constraints, t . The columns that price

out are added to the RM. Existing columns with a high reduced cost are removed from the RM and

kept into a separate column pool. Then, the RM problem is solved using subgradient optimization by

relaxing the linking constraints (23) (Huisman et al. 2005). Specifically, the dualization of

constraints (23) decomposes the RM into separate subproblems per period, each of which is of the

form








 
  tt Sq

ittqtq

Ii

it

Ii

ititit

Ii Sq

tqittq spspcuct 0,0;1|)()(min  . These problems

are trivially solved by setting the tq variable that has the minimum cost coefficient to one, and all

other variables to zero. The scheme iterates until no column prices out. We then invoke the volume

algorithm to obtain an approximate primal solution. In this way, we are able to make better informed

branching decisions in the subsequent branch-and-price phase. An alternative implementation would

be to use the intermediate dual prices of the subgradient optimization of the RM problem to price out

new columns. Our experiments with this strategy revealed that the generated columns are not of good

quality, because the intermediate dual prices of the RM problem price out many columns that do not

price out with its terminal dual prices. Instead, using the near optimal dual prices to warm-start the

lagrange relaxation produced better results and resulted in fewer iterations of the hybrid scheme.

 Contrary to existing hybrid algorithms (Barahona and Jensen, 1998, Degraeve and Peeters

2003, Degraeve and Jans 2007), this scheme relies exclusively on Lagrange relaxation. It has the

benefits that it (a) avoids the degeneracy issues of the simplex method and therefore exibits faster

convergence and (b) returns good quality dual prices that help the column generation convergence.

Note that the intermediate value of the RM programs, Mv , is not necessarily a valid upper bound of

the column generation lower bound, as it is calculated using lagrange relaxation. It is a valid lower

bound (Huisman et al. 2005) when no column prices out, and therefore the scheme returns the best

bound that is obtained by the RM and by Lagrange relaxation.

7. A Branch-and-Price Heuristic

We have combined the hybrid column generation algorithm with heuristic techniques, and integrated

them in an enumeration scheme, using formulation FLp. The goal is to find good feasible solutions

fast by exploiting the structure of the network formulation and its subproblem. The next section

describes the heuristics employed in each node of the tree.

7.1 Node Heuristics

We employ a successive rounding heuristic that uses a smoothing subroutine, which in turn employs

some operations of the heuristic of Trigeiro et al. (1989). The successive rounding heuristic gets as

input the setup variables produced by the volume algorithm, determines a threshold level and fixes

the setup variables below and above that threshold to 0 and 1, respectively. The process iterates for

increasing threshold values. Typically, the objective function values of the feasible solutions

obtained in this way follow a U-shaped fashion (Degraeve and Jans 2007). Therefore, when the

solution quality starts to degrade the heuristic terminates. Starting from this solution, the smoothing

heuristic that searches for an improved feasible solution is applied. The smoothing part starts from

the last period and tries to push production backwards, such that the Lagrange costs are minimized.

This is done iteratively until the first period, and if any capacity constraints are violated it performs a

similar forward operation to recover feasibility. Thus, the rounding/smoothing heuristic scheme

searches the feasible space by modifying incrementally the proposed setup schedules and production

plans and can be classified as an exploitation heuristic.

7.2 Node Lower Bounds

At each node we solve the RM problem using subgradient optimization, without generating any

columns. If its objective value is lower than the incumbent value, we recover an approximate primal

solution using the volume algorithm and use that solution to branch. Else, if the RM objective value

is higher than the incumbent value, the hybrid algorithm is invoked to generate columns. During the

hybrid algorithm iterations, a non-decreasing node lower bound is recorded. If that lower bound

comes to exceed the incumbent value, the node is pruned. When the hybrid algorithm terminates and

the lower bound is below the incumbent value, the volume algorithm is invoked to recover an

approximate primal solution of the RM, which is then used for branching. When the volume

algorithm returns all-integer setup variables, we fix these variables and solve the resulting LP

problem using formulation CL, which is a generalized network flow problem for fixed setups

(Degraeve and Jans 2007). More details about this procedure can be found in the online supplement

of this paper.

7.3 Tree Exploration Strategies

Algorithm HBP summarizes the main building blocks of the heuristic Branch and Price algorithm.

Algorithm HBP

Input: LowerBound, UpperBound, CGSolution),(r

it

r

it xy , Incumbent),(h

it

h

it xy

Output: LowerBound, UpperBound, Incumbent),(h

it

h

it xy

Pass  0; NodeLimit  100

B)}2.00()8.01(|),{( r

it

h

it

r

it

h

it yyyyti // RINS initialization of explored space

Do While Time < TimeLimit and LowerBound < UpperBound

 R= Ø; Pass  Pass+1; NodeLimit  NodeLimit + (Pass – 1)*50

 ForEach iI, tT

 if ),(ti B then h

itit yy 

 Call Branch_and_Price),(NodeLimityit

 Update UpperBound, h

itit yy , // ity describes the state of the last explored node

 ForEach iI, tT

 if }1,0{ity then // Integral setup is due to

 if Bti )},{(then //… fixing or RINS: unfix it for the next pass

)},{(\ tiBB 

 else //…branching or by chance: fix it for the next pass
)},{(tiBB 

Loop

Return LowerBound, UpperBoud,),(h

it

h

it xy

The exploration of the search space is done in two ways. First, we employ the concept of relaxation

induced neighborhoods search (RINS) (Danna et al. 2005). Although other MIP-based techniques

could be employed, such as local branching (Fischetti and Lodi 2003), most of them destroy the

subproblem structure. After solving the root node, a variable fixing phase follows. We fix to 1 (0) the

setup variables that are 1 (0) in the incumbent and more (less) than 0.8 (0.2) in the approximate

primal solution of the RM program, given by the volume algorithm. Then branching is applied. We

branch on the earliest period and on the most fractional item, because branching decisions in earlier

periods are likely to influence the subsequent production flow and therefore have a biger impact on

the objective. During the first pass, we branch to 0 if both the incumbent has the branching variable

at 0 and its fractional value at the root note is less than 0.2, else we branch to 1.

 Notice that if a better feasible solution exists, it is likely to be found at the early levels of the

subtree from the rounding/smoothing heuristic. For this reason, we explore the subtree induced by

the RINS heuristic only partially, by imposing a node limit. A potential downside of exhaustively

exploring this subtree, is that if some of the fixing decisions are not part of the optimal solution, the

algorithm could stall or terminate without a significant improvement. Hence, it is neccesary to

modify the search space. To do this, we note that at each node the fixed variables are either fixed by

the RINS fixing decisions, or by branching. To explore a different but promising part of the setup

variable space, we free the variables fixed by RINS and fix the variables that were fixed by

branching to the values of the incumbent solution. The variables that were free at the last explored

node of the previous pass also remain free in the new pass. In a sense, this scheme tries to replace

dive decisions with branching decisions, while remaining close to the neighborhood of the

incumbent. The same idea is applied iteratively: a number of nodes in each subtree is explored, the

variables fixed early up in the free become free and the variables fixed from Branch and Price are

fixed again to the value of the incumbent.

8. Computational Results

Computational experiments were performed on a 2.0 GHz / 2 GB machine. The CPU times listed in

all tables for our heuristic refer to the time that the incumbent was found. To better undestand the

contribution of the developed methodology to the current literature, we have compared our algorithm

with other approaches found in the literature. The datasets that appear in the lot sizing literature and

are used in this paper have time-invariant setup, holding and production costs, and therefore are

special cases of our formulations, that also capture time-varying costs. We find that our approach

computes strong lower bounds fast and delivers high quality feasible solutions, when compared with

other approaches. However, since other approaches have different implementations and run under

different machines, the results have to be taken with a grain of salt. It is inevitable some authors use

more or less powerful machines, and different versions of commercial software, such as CPLEX,

which could introduce some bias in the result. We note however, that the quality of the lower bound

we obtain is implementation independent and that our algorithm uses a commercial package to solve

linear programs only. To the best of our knowledge, all lower bounds obtained by the methods

considered in this section are also independent of the solver used. An example of a solver-dependent

lower bound is the one of Van Vyve and Wolsey (2006). The authors let the XPRESS-MP solver

generate additional cuts by adding redundant inequalities in their formulation, and therefore the

lower bound quality depends on the underlying technology being used. We believe that the obtained

results offer some insight on how strong the obtained lower bound is, and how efficiently it can be

utilized in the search of feasible solutions. Detailed results of all experiments can be found in the

online supplement of this paper.

8.1 Solving the root node

8.1.1 Benchmarking of formulations and solution methods

To demonstrate the strength of the lower bound of the proposed hybrid scheme, we employ a subset

of instances from Trigeiro et al. (1989) which has been extensively tested in the literature (Belvaux

and Wolsey 2000, Van Vyve and Wolsey 2006, Degraeve and Jans 2007, Jans and Degraeve 2004

and Pochet and Van Vyve 2004). We use 4 different formulations and 3 solution methods. Table 1

shows the nomenclature of different combinations of formulations (period decomposition of the

Facility Location formulation – FL/P, period decomposition of the Facility Location formulation

with Precedence constraints – FLp/P, period decomposition of the Shortest Path formulation – SP/P

and period decomposition of the Transformed Shortest Path formulation – SPt/P) and solution

methods (Lagrange Relaxation – LR, Approximate Column Generation – ACG and the Hybrid

Algorithm– HB). In ACG, the RM is solved with subgradient optimization. Each subproblem returns

one column per iteration, as in standard column generation. Lagrange relaxation and column

generation are textbook approaches and we employ them to illustrate how the hybrid algorithm

performs against them. ACG is listed to demonstrate how the hybrid scheme performs against a

Lagrange-based implementation of column generation.

Table 1: Nomenclature of combinations of formulations and solution methods.

 Method Used to Calculate the Lower Bound

Formulation LR ACG HB

FL/P LR ACG HB

FLp/P LRp ACGp HBp

SP/P SPP-LR SPP-ACG SPP-HB

SPt/P SPtP-LR SPtP-ACG SPtP-HB

Table 2 compares the CPU time in seconds of combinations of formulations and solution

methods. Since the difference in lower bound values that each method returned are small, we

compare the time needed to calculate that lower bound only, listing the time each method takes

relative to the best implementation, which is the hybrid method applied to the FLp/P formulation,

called HBp. In addition to CPU times, we also list the maximum absolute violation of the linking

constraints obtained by the volume algorithm in Column 2. In Column 3, we report the time in

seconds that HBp needs to calculate the lower bound. Columns 4-8 and 11 show the time ratio

between each algorithm and HBp. Columns 9 and 10 refer to the Shortest Path formulation and are

therefore compared with the best implementation of the shortest path formulation, SPtP-HB. Both

SPtP-HB and HBp use the hybrid scheme and solve the same subproblem. Finally, the last column,

JD, refers to the CPU times obtained by Jans and Degraeve (2004), who utilized decomposition SP/P

and implemented a standard simplex-based column generation algorithm. The results we report for

JD are based on their implemetation run on our machine, and therefore the differences in time

performance can be attributed to the relative efficacy of our new hybrid methodology. Note that for

G57 and G72, we compare to their Lagrange relaxation times (2000 iterations), as they were not able

to solve these instances with simplex-based column generation. For the sake of brevity, we do not

present full results for formulations SP/P and SPt/P, since their behavior is very similary to that of

FL/P and FLp/P respectively. However, we do show that the hybrid solution method HB is superior

to Lagrange Relaxation LR and that LR applied to the transformed formulation SPt/P is much faster

than when applied to the standard formulation SP/P.

Table 2: Computational performance of different algorithms for obtaining the lower bound

Dataset
HBp Max

Violation

Time

HBp (s)

HB /

HBp

LR /

HBp

LRp /

HBp

ACG /

HBp

ACGp/

HBp

SPP-LR/

SPtP-HB

SPtP-LR/

SPtP-HB

JD (SP/P)/

HBp

G30 (6-15) 0.032 0.18 2.0 8.9 3.1 9.6 9.3 4.89 1.52 2.4

G30b (6-15) 0.049 0.2 1.3 11.9 3.8 7.1 6.7 11.67 3.08 2.8

G53 (12-15) 0.016 1.6 0.9 4.6 1.2 3.5 3.5 6.45 2.90 3.1

G57 (24-15) 0.023 7.60 2.2 5.8 2.3 3.8 3.9 4.70 1.39 14.9*

G62 (6-30) 0.029 0.55 1.1 7.2 2.6 15.3 12.6 4.76 1.53 2.9

G69 (12-30) 0.025 2.43 2.2 9.6 2.4 12.4 14.5 7.04 1.77 22.2

G72 (24-30) 0.031 15.77 2.3 6.9 1.6 12.0 11.1 2.73 1.40 4.0*

Average 0.029 4.0 1.7 7.8 2.4 9.1 8.8 6.0 1.9 7.5

* Column generation did not terminate due to numerical issues, comparison with Lagrange relaxation

The comparison of the different approaches suggests some interesting conclusions. First, the

small violations in column 2 suggest that the approximate primal solution recovered by the volume

algorithm is very close to the exact primal solution. Second, The addition of the precedence

constraints to the facility location formulation (column 4), and the transformation of the shortest path

formulation (column 9 versus column 10) enhance the computational performance of LR and HB.

We see that on average HB needs 1.7 times the time of HBp to converge (column 4). Further, in

columns 5-8 it is evident that the effect of the precedence constraints is much stronger when using

LR instead of ACG. When comparing columns 5 and 6, we see that LRp is approximately 3 times

faster than LR, whereas columns 7 and 8 reveal that the performance of ACG and ACGp is

approximately the same. The precedence constraints influence the structure of the solutions returned

by the subproblems. These solutions are used by LR to update the dual prices in every iteration, and

therefore have a direct effect on the performance of the LR algorithm. ACG however, uses the

subproblem solutions as additional columns, and therefore they have an influence only if they are

active in an optimal solution of the restricted master problem. This might explain why the

precedence constraints lead to a big, medium and minimum improvement when applied to LR, HB

and ACG respectively. In addition, columns 9 and 10 reveal that the Lagrange relaxation of the

shortest path formulation is approximately 3 times slower, on average, compared to its transformed

version. Algorithms SPP-ACG, SPtP-ACG and SPP-HB showed similar behavior as ACG, ACGp

and HB respectively and are not reported. The hybrid scheme outperforms all approaches. On

average, HBp is five times faster than the other algorithms. Finally, it is interesting to note that for

JD, an implementation of simplex-based column generation, the CPU times are disproportionally

larger, indicating the poor performance of simplex-based column generation.

8.1.2 Comparison of lower and upper bounds with other approaches

On assessing the lower bound quality obtained by SP/P, Jans and Degraeve (2004) give evidence that

for the 7 instances of Table 2, this lower bound is stronger than the one obtained by Trigeiro et al.

(1989), Degraeve and Jans (2007), Belvaux and Wolsey (2000) and Miller et al. (2000a), while the

bound from Van Vyve and Wolsey (2006) seems to be stronger for most instances. Note however

that there is no theoretical ground to support arguments that one bound dominates another bound,

with the exception of the bound given by Trigeiro et al. (1989), which is not better than the bound of

Jans and Degraeve (2004). Therefore, the performance of each methodology is data dependent.

Intuitively, the period decomposition should perform well when the capacity constraints are tight,

because it takes advantage of the extreme points of the single-period polytopes, and when the

number of items is small, which is likely to make the subproblems easier.

 In another experiment, we compared the performance of our algorithm to the results obtained

by Süral et al. (2009). They design a Lagrange-based heuristic for a reformulation of the capacitated

problem with setup times but without setup costs. The demand constraint is relaxed. They modify the

data from Trigeiro et al. (1989) as follows. First, they set all setup costs to zero. Second, they

increase zero demands to 2 units. Third, they construct new instances by reducing the number of

periods of some existing ones. Finally, they construct instances with unit inventory costs for all

items, called homogeneous (denoted “hom”). Instances with the original inventory cost are called

heterogeneous (denoted “het”). In total, 100 instances are generated. Since their approach usually

terminates in a few seconds, we have chosen to compare it with our hybrid procedure only.

Specifically, we use the hybrid process to obtain a lower bound, recover an approximate primal

solution with the volume algorithm, fix the setup variables to 0 or 1 (as described in the diving

heuristic) and call the successive rounding/smoothing heuristic once. In particular, no branching is

performed, and the algorithm is actually the procedure that is performed at the root node of the

branch-and-price tree. We call this procedure the restricted hybrid heuristic (RHB). Table 3 displays

the average duality gaps and the average CPU time for the best heuristic approach of Süral et al.

(SDW) and our restricted hybrid heuristic (RHB). SDW was run on an Intel Pentium 4 machine, and

the subproblems were solved with CPLEX 7.0. Detailed results can be found in the online

supplement that accompanies this paper.

Table 3: Comparison of RHB with the Lagrange-based heuristic of Süral et al. (2009)

Category Gap RHB (%) Gap SDW (%) CPU RHB (s) CPU SDW (s)

12 x 10 het 18.43 31.73 0.34 3.06

24 x 10 het 11.14 18.07 1.62 4.79

12 x 15 het 19.25 25.95 1.40 6.07

24 x 15 het 13.44 21.26 6.37 15.33

12 x 30 het 21.92 28.68 3.27 24.01

24 x 30 het 23.44 32.35 19.72 38.93

12 x 10 hom 22.97 42.08 0.53 2.69

24 x 10 hom 14.06 20.88 1.77 4.45

12 x 15 hom 18.44 28.00 1.19 5.64

24 x 15 hom 14.96 20.56 3.46 11.14

12 x 30 hom 21.68 24.33 2.99 19.10

24 x 30 hom 21.35 30.26 7.95 22.91

Average het 17.94 26.34 5.45 15.37

Average hom 18.91 27.69 2.98 10.99

It is interesting to notice the large gaps that result from problems without setup cost. Clearly,

RHB outperforms SDW, both in terms of gap quality and CPU time, for both homogeneous and

heterogeneous problems.

 We also run RHB using the F and G instances from Trigeiro. The average gaps were 2.43%

and 2.51% and the average CPU times 0.25 and 2.14 seconds, respectively. Note that Degraeve and

Jans (2007) cite an average gap of 2.87% for the F instances, after exploring 2000 nodes in their

branch-and-price tree.

 We also tested RHB against the best implementation of the iterative production estimate

(IPE) heuristic of Pochet and Van Vyve (2004). They run their experiments on a 350 MHz machine

and list results on the six instances from the G dataset of Trigeiro et al. (1989) described in Table 4

(IPE was not tested on G30). The optimal value is listed to facilitate the comparisons. Table 4

presents the results.

Table 4: Comparison of RHB against the IPE heuristic

Dataset Optimal
Best Incumbent CPU Time (s)

IPE RHB IPE RHB

G30b (6-15) 37,721 38,976 38,162 1.31 0.27

G53 (12-15) 74,634 78,098 75,035 3.53 1.4

G57 (24-15) 136,509 137,153 136,884 6.01 7.21

G62 (6-30) 61,746 63,073 63,018 1.7 0.67

G69 (12-30) 130,596 131,988 131,668 6.03 3.38

G72 (24-30) 287,929 290,006 288,313 21.15 15.5

Although a comparison of CPU Times is hard since different machines were used, it is clear

that the quality of feasible solutions is much better for RHB. Note that the above IPE results are the

best that Pochet and Van Vyve cite, based on the BC-PROD cut generator. Also, despite that RHB

seems to find a better feasible solution than IPE, more space for improvement exists, as shown by the

optimal solutions. The branch-and-price heuristic performs RHB at the root node and tries to

approach the optimal solution. Its computational peformance is described in section 8.2.

8.2 Comparison of heuristic branch-and-price with other approaches

8.2.1 Upper bounds for the Trigeiro et al. (1989) instances

We compared our approach with the most recent and successful heuristic and exact approaches found

in the literature and with our own implementation of relax-and-fix heuristic (Pochet and Wolsey,

2006). In order to perform the comparison, we employed the 7 instances taken from Trigeiro et al.

(1989) described in part 8.1.1. A comparison based on 7 instances is limited. However, these 7

instances are specifically tested in many other papers and therefore allow us to compare our results to

various others reported in the literature. For the relax-and-fix heuristic, we impose integrality

restrictions in periods)}3|,min(|,...,{ tTt , and after solving the relaxed problem we fix the

variables of period t to their best values and iterate for each |}|,...,1{ Tt . For the Trigeiro instances

under consideration, imposing integrality restrictions in four consecutive periods produced good

solutions. Table 5a presents results of the following studies: Müller et al. (2012) (MS), Degraeve and

Jans (2007) (DJ), Belvaux and Wolsey (2000) (BW) and our approach (HB&P). Table 5b presents

Trigeiro et al. (1989) and the relax-and-fix heuristic (RnF). For Trigeiro et al. (1989) we have

obtained the original code from the authors and ran it on our machine, and report the corresponding

CPU times. The optimal solution of each instance is also listed, to facilitate the comparisons. MS is

a randomized heuristic, so it does not provide any lower bounds and gaps.

Table 5a: Comparison of Branch-and-Price with other approaches. A dash (-) denotes lack of data.

 Best Incumbent CPU Time (s) Gaps (%)

Dataset Optimal MS DJ BW HB&P DJ BW HB&P DJ BW HB&P

G30 (6-15) 37,809 - 37,809 - 37,809 33 - 5 1.90 - 1.00

G30b (6-15) 37,721 37,776.4 38,162 37,721 37,721 29 - 2 2.51 1.35 0.90

G53 (12-15) 74,634 74,720.8 75,035 74,752 74,634 66 189 9 1.61 1.33 0.93

G57 (24-15) 136,509 136,675 136,860 136,509 136,509 44 55 101 0.36 0.10 0.07

G62 (6-30) 61,746 61,792.2 62,644 61,746 61,746 359 55 140 2.79 1.24 0.88

G69 (12-30) 130,596 130,675 131,234 130,599 130,599 215 102 131 0.81 0.32 0.20

G72 (24-30) 287,929 287,966 288,383 287,950 288,016 306 298 46 0.22 0.07 0.07

Table 5b: Comparison of Branch-and-Price with other heuristic approaches. Gaps are reported using

the optimal solution as lower bound.

 Best Incumbent CPU Time (s) Gaps (%)

Dataset Optimal TTM RnF HB&P TTM RnF HB&P TTM RnF HB&P

G30 (6-15) 37,809 39,197 37,997 37,809 0.1 32.66 5 3.67 0.50 0.00

G30b (6-15) 37,721 38,162 37,767 37,721 0.09 36.54 2 1.17 0.12 0.00

G53 (12-15) 74,634 75,035 74,752 74,634 0.2 851.05 9 0.54 0.16 0.00

G57 (24-15) 136,509 136,885 136,509 136,509 0.37 658.83 101 0.28 0.00 0.00

G62 (6-30) 61,746 63,018 62,011 61,746 0.47 560.3 140 2.06 0.43 0.00

G69 (12-30) 130,596 131,668 130,666 130,599 0.93 2,835.94 131 0.82 0.05 0.00

G72 (24-30) 287,929 288,313 287,950 288,016 1.9 7,584.47 46 0.13 0.00 0.00

Before analyzing the relative performance of each approach, some implementational details

are presented. Müller et al. (2012) use a hybrid adaptive large scale neighborhood search strategy.

They run their experiments on a 2.66 GHz / 8GB RAM machine and use CPLEX 10.2 to create

repair neighborhoods. Since their approach is randomized, the listed values are based on an average

of 100 runs, where each run lasts for 60 seconds. Degraeve and Jans develop an exact branch-and-

price algorithm. They pose a limit of 2,000 nodes and run their experiments on a 750 MHz processor.

Finally, Belvaux and Wolsey use a relax-and-fix heuristic which they incorporate within BC-PROD,

a customized branch-and-cut system for production planning problems. They use a 200 MHz

machine to perform their computations.

In terms of quality of feasible solutions, it seems that the two most competitive approaches

are BW and HB&P. It is interesting to notice that, although BW is the oldest approach and runs are

made on a slow machine, it seems to provide much better feasible solutions compared to most other

approaches. When compared to HB&P, it finds solutions of similar quality. CPU times are not

directly comparable. HB&P produces a better gap however, as the lower bound is stronger and the

solution quality similar. HB&P gives a stronger bound because most separation routines of BC-

PROD use flow-based inequalities that incorporate information mainly from the convex hulls of the

single – item uncapacitated polytopes. HB&P however, gives a lower bound that describes the

intersection of the capacity and single-item uncapacitated polytopes and therefore it tends to be

stronger for tightly constrained problems. DJ is outperformed both in terms of time and solution

quality. Finally, table 5b shows that TTM is very fast but finds solutions of inferior quality, while

RnF is very slow but finds better solutions. Our approach outperforms RnF both in terms of solution

quality and CPU time. Since we use TTM to warm-start our algorithm, it is expected that we obtain

better solutions at a higher CPU time.

To the best of our knowledge, the best exact approach found in the literature for the above

instances from a lower bound perspective, is the approximate extended formulation of Van Vyve and

Wolsey (2006). Unfortunately, the authors do not cite the CPU time at which they obtain the lower

bound at the root node and a comparison with our approach is not possible. However it is expected

that a heuristic implementation of their approach would work better for problems with short time

horizon, whereas our approach is better for long horizon problems. For example, they solve G62 (6

items, 30 periods) to optimality after 220400 nodes and 1078 seconds on a 1.6GHz machine whereas

we need 4212 nodes and 140 seconds to find the optimal value (on a 2GHz machine).

8.2.2 Comparison of gaps obtained with branch-and-price and branch-and-cut

Next, we compared our approach with the best branch-and-price algorithm of those suggested by

Pimentel et al. (2010) (PAV). They used the Trigeiro et al. (1989) sets X11117 – X12429. Each X set

comprises of 5 instances and there are 30 X sets, giving a total of 150 instances. They applied a

period, item and simultaneous period and item decomposition, solved the subproblems with CPLEX

8.1, and performed their computations on a Pentium 4 machine with 1 GB RAM. Table 6 presents

results for the 10 hardest sets, i.e. those for which their algorithm gives the largest gaps. The bottom

line lists average results for all 150 instances. Detailed results can be found in the online supplement.

Table 6: Comparison with Pimentel et al. (2010)

CPU Time PAV (s) CPU Time HB&P (s) Gap PAV (%) Gap B&P (%)

x11419 3,600 96.06 10.367 7.069

x11429 3,600 106.30 9.599 4.993

x12429 3,600 110.15 7.999 3.650

x12419 3,600 84.07 5.967 4.250

x11428 3,600 68.42 4.777 0.951

x12428 3,600 61.83 3.908 1.563

x12229 3,600 29.93 3.236 1.924

x11229 3,600 66.01 3.045 2.071

x12219 3,600 62.96 2.745 2.507

x11129 3,600 63.37 2.525 2.874

Average (150 instances) 3,600 74.91 5.417 3.185

Note that HB&P outperforms PAV in all of the above sets except one. Moreover, HB&P

terminated within the time limit of 150 seconds in 149 out of 150 instances. Also, the average gap

and CPU times are much better for HB&P. An interesting observation is that Pimentel et al. (2010)

do not get their best gaps from their simultaneous item/period decomposition, which theoretically

gives a stronger bound compared to both their item and period decompositions, but from the item

decomposition. This is because the RM problems of the simultaneous item/period decomposition are

very degenerate and time consuming. Therefore, they may not be able to obtain good feasible

solutions and improve their gap within their time limit.

In a final round of trials, we tested our algorithm on some new hard datasets against the

CPLEX v12.2 solver (CPX), using the regular formulation CL. The purpose of this comparison is to

give evidence on the relative strengths and weaknesses of a decomposition approach against a

modern off-the-self branch-and-cut software. To this end, we constructed new harder instances by

modifying the Trigeiro dataset. Specifically, we replicated the demand patterns to 60 periods, and

reduced the capacity to 95% of its original value. We focused on instances with 6 and 12 items

because the integrality gap of the extended formulations improves as the number of items increases,

therefore problems with fewer items are more challenging to solve. Finally, we excluded instances

that were infeasible without initial inventory because their gap was sensitive to the initial inventory

cost.

The process described above led to the creation of 30 new 60-period instances, 21 of which

have 6 items and 9 with 12 items. Table 7 shows the computational results. Both algorithms used 100

seconds of CPU time. This time limit is deemed appropriate for our approach, which can be used (i)

in a practical production environment, for fast generation of good quality production plans, or (ii) as

a warm-start method of an exact approach, such as branch-and-cut or branch-and-price.

Table 7: Integrality gaps of Heuristic Branch-and-price and CPLEX v12.2

CPX Gap (%) HB&P Gap (%) Gap Closed (%)

6 - 60 Average 2.29 2.44 17.90

6 - 60 Median 1.86 1.97 9.51

12 - 60 Average 1.79 1.57 12.58

12 - 60 Median 1.71 1.57 9.73

Total Average 2.14 2.18 15.29

Total Median 1.85 1.78 9.57

The computational experiments show that both algorithms achieve good performance in

terms of integrality gaps. However, no instance was solved to optimality after 100 seconds. The total

median gaps show that heuristic branch-and-price performs better overall, but the average gaps are

slightly higher than those of CPLEX. We observed that the lower bound obtained by the period

decomposition was always better. To demonstrate the efficiency of the lower bound, we calculated

all gaps using the best feasible solution and report the amount of gap that is closed with our branch-

and-price algorithm. The amount of gap closed is the difference between the CPX Gap and HB&P

Gap, divided by the CPX Gap, where all gaps are calculated using the best feasible solution. The last

column indicates the superiority of the lower bound obtained by theperiod decomposition, as the

average gap improvement is about 15%. The lower bound obtained by CPLEX is weak, even after

exploring a large part of the branch-and-bound tree. Specifically, CPLEX explores more than 28,000

nodes on average, whereas we explore an average of 644 nodes with our approach. The fact that

CPLEX explores such a large part of the tree allows it to find better feasible solutions in most

instances, so its integrality gaps are competitive to branch-and-price. In conclusion, the two

approaches give similar results in terms of gap quality, but our approach dominates CPLEX in lower

bounds, since it takes advantage of the special structure of the single period polytopes.

9. Conclusions and future research

We have presented period decompositions of the facility location and shortest path formulations of

the capacitated lot sizing problem with setup times. The subproblems polytopes do not have the

integrality property, and therefore an improved lower bound is obtained. Customized branch-and-

bound algorithms are developed to solve the single-period subproblems. In addition, a novel,

subgradient-based algorithm is developed, that combines column generation with Lagrange

relaxation, and uses the volume algorithm to recover an approximate primal solution of the RM

problem. The performance of the hybrid scheme is enhanced further with the proposition of a

transformed shortest path formulation and with the addition of a class of valid inequalities in the

subproblem. The resulting subproblem is still tractable with a fast customized branch-and-bound

algorithm. Finally, a branch-and-price based heuristic is designed, that integrates relaxation induced

neighborhoods, selective diving and successive rounding/smoothing within a novel strategy of node

exploration. Computational results show that the proposed approach outperforms or compares

favorably with the most recent and successful approaches found in the literature.

 The period decomposition formulations that we employ can be readily applied to lot sizing

problems with richer structure, such as backlogging, overtime and startup times. The subproblem

algorithms can also be adapted in a straightforward manner so that they incorporate these features.

The application of period decompositions to multi-level problems is strainghforward, but solving

problems with multiple resources, such as those introduced by Stadtler (2003) is computationally

more challenging. Although the period by period decomposition structure is retained when the

demand constraints are dualized, the resulting subproblems may not preserve the structures we

studied in this paper and new algorithms that solve their LP relaxations need to be devised. In

particular, whenever an item needs a setup or production time with respect to more than one resource

per period, the per-period subproblem involves multiple capacity constraints, and its linear relaxation

is no longer a linear multiple choice knapsack problem. Given the strong lower bounds that we

obtained for the CLST, an application to the multi-level instances is a promising area for future

research, especially because the best known lower bounds of these instances can be improved

considerably.

 With respect to the developed methodology, there are several directions that deserve further

research. The implementation of standard stabilization techniques (eg. du Merle et al. 1999) to

extended formulations may make them more tractable computationally. Also, it could lead to the

development of an exact approach, for which an exact representation of the primal solution of the

RM is needed. On a different line, the integration of approximate schemes such as the volume

algorithm could lead to enhanced MIP-based heuristics that can tackle very large instances

efficiently and give a good dual bound, used to assess their performance. Finally, the period

decomposition could lead to the development of successful approximation algorithms. Recently,

Levi et al. (2008) used the simple plant location formulation with added flow cover inequalities to

derive the first 2-approximation algorithm for a variant of CLST without setup times. It would be

interesting to explore whether a column generation-based relaxation would lead to similar

approximation schemes for CLST.

Appendix

Proof of Theorem 1.

Theorem 1 states that DD ' where
















































































)6(:,,

)5(,},min{

';

)4(,,

)3(,

)2(|}{|\,

)1(||:,,
1

1

1

11

1,

AtkTktIicvv

ATtIicvciv

vD

ATtIicvv

AIiciv

ATTtIicivv

ATktTktIicvvv

vD

itk

k

tl

il

tiit

t

l

il

it

itmit

imi

ititi

itkkiit

it

Note that 
n

i

iDD
1

 and 
n

i

iDD
1

''


 and Ø
1

'

1





n

i

i

n

i

i DD , and therefore each polyhedron is

separable per item. Also, without loss of generality we can restrict our attention to the positive

orthant of both dual spaces because (7) can be written as inequality () and also (8) can be written as

inequality (). We will first show that DD ' . For this, consider a point 'Dvit  . Note that (A5)

and (A6) imply (A3) and (A4). Supposing that (A6) holds, we show that (A1) holds as well. We

write (A6) as itkititk

U

k

tl

ilit cvUvcvvv  
  1

. Observe that if itkkiit cvvv  1, , then

011,   ikititkkiit vUUvcvvv , which cannot hold because itv in both spaces.

Therefore, (A6) implies (A1). Using the same argument, (A5) implies (A2). This means that

DvDv itit  ' for an arbitrary point 'Dvit  , and thus DD ' .

We show that the inclusion may be strict via an example. Consider the following single-item 2-

period uncapacitated system with no initial inventory and its transformed version:

0,,,

][0

][1..)(

min

221211

22211

11211

222212121111









zzz

vzz

vzztsP

zczczc

0,,,

][1

][1..)'(

min

221211

22212

11211

222212121111









zzz

vzz

vzztsP

zczczc

The corresponding dual formulations are:

0,

..)(

max

21

222

121

1121

1









vv

cv

cv

cvvtsD

v

0,

..)'(

max

21

222

1221

111

21











vv

cv

cvv

cvtsD

vv

The point),(),(1121  cvv is feasible for)(D and infeasible for)'(D for a small 0 therefore

DD ' , and the proof is complete.

References

Alfieri, A., P. Brandimarte, S. D’Orazio 2002. LP-based heuristics for the capacitated lot-sizing

problem: the interaction of model formulation and solution algorithm. International Journal of

Production Research 40 441-458.

Barahona, F., D. Jensen. 1998. Plant location with minimum inventory. Mathematical

Programming 83 101-111.

Barahona, F., R. Anbil. 2000. The volume algorithm: producing primal solutions with a subgradient

method. Mathematical Programming 87 385-399.

Barany, I., T. Van Roy, L. Wolsey. 1984. Strong formulations for multi-item capacitated lot-sizing.

Management Science 30 1255-1261.

Ben Amor, H., J. Desrosiers, J.M. Valèrio de Carvalho. 2007. Dual-optimal inequalities for

stabilized column generation. Operations Research 54 454-463.

Belvaux, G., L. Wolsey. 2000. Bc-prod: A specialized branch-and-cut system for lot-sizing

problems. Management Science 46 724-738.

Buschkühl, L. F. Sahling, S. Helber, H. Tempelmeier. 2010. Dynamic capacitated lot-sizing

problems: a classification and review of solution approaches. OR Spectrum 32 231-261.

Caserta, M., E.Q. Rico. 2009. A cross-entropy lagrangian hybrid algorithm for the multi-item

capacitated lot-sizing problem with setup times. Computers and Operations Research 36 530-

548.

Crowder, H. 1976. Computational improvements for subgradient optimization. Symposium

Mathematica XIX 357 – 372

Danna, E., E. Rothberg, C. Le Pape. 2005. Exploring relaxation induced neighborhoods to improve

MIP solutions. Mathematical Programming Series A 102 71-90.

Degraeve, Z., M. Peeters. 2003. Optimal integer solutions to industrial cutting-stock problems: Part

2, Benchmark results. INFORMS Journal on Computing 15 58-81.

Degraeve, Z., R. Jans. 2007. A new Danzig-Wolfe reformulation and branch-and-price algorithm

for the capacitated lot-sizing problem with setup times. Operations Research 55 909-920.

Denizel, M., F. T. Altekin, H. Süral, H. Stadtler 2008. Equivalence of the LP relaxation of two

strong formulations for the capacitated lot-sizing problem with setup times. OR spectrum 30

773-785.

Denizel, M., H. Süral 2006. On alternative mixed integer programming formulation and LB-based

heuristics for lot-sizing with setup times. Journal of the Operational Research Society 57

389-399.

Du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen. 1999. Stabilized column generation.

Discrete Mathematics 194 229-237.

Eppen, G.D., R.K. Martin. 1987. Solving multi-item capacitated lot-sizing problems using variable

redefinition. Operations Research 35 832-848.

Fiorotto, D. J. , S. A. de Araujo. 2014. Reformulation and a Lagrangian heuristic for lot sizing

problem on parallel machines. Published online at Annal of Operations Research.

Fischetti, M., A. Lodi. 2003. Local branching. Mathematical Programming Ser. B 98 23-47.

Geoffrion, A. M. 1974. Lagrangean relaxation for integer programming. Mathematical Programming

Study 2 82-114.

Graham, R. L. 1972. An efficient algorithm for determining the convex hull of a finite planar set.

Information Processing Letters 1 132-133.

Helber, S., F. Sahling. 2010. A fix-and-optimize approach for the multi-level capacitated lot sizing

problem. International Journal of Production Economics 123 247-256.

Holmberg, K. , D. Yuan. 2000. A Lagrangean heuristic based branch-and-bound approach for the

capacitated network design problem. Operations Research 48 461-481.

Huisman, D., R. Jans, M. Peeters, A.P.M. Wagelmans. 2005. Combining column generation and

lagrangian relaxation. G. Desaulniers, J. Desrosiers, M. Solomon, eds. Column Generation.

Springer, New York, 247-270.

Jans, R., Z. Degraeve. 2004. Improved lower bounds for the capacitated lot-sizing problem with

setup times. Operations Research Letters 32 185-195.

Jans, R., Z. Degraeve. 2007. Meta-heuristics for dynamic lot-sizing: a review and comparison of

solution approaches. European Journal of Operational Research 177 1855-1875.

Krarup, J., I. Bilde. 1977. Plant location, set covering and economic lot size: an O(mn) algorithm for

structural problems. Numerische methoden bei optimierungsaufgaben, Band 3: optimierung bei

graphentheoretischen und ganzzahligen problemen, Vol. 36, Birkhauser Verlag, Basel and

Stuttgart, 1977.

Levi, R. A. Lodi, M. Sviridenko. 2008. Approximation algorithms for the capacitated multi-item lot-

sizing problems via flow-cover inequalities. Mathematics of Operations Research 33 461-474.

Lübbecke, M., J. Desrosiers. 2005. Selected topics in column generation. Operations Research 53

1007-1023.

Manne, A. S. 1958. Programming of economic lot sizes. Management Science 4(2) 115-135.

Miller, A.J., G.L. Nemhauser, M.W. Savelsberg. 2000a. Solving multi-item capacitated lot-sizing

problems with setup times by branch-and-cut. CORE Discussion paper 2000/39, UCL, Louvain-

la-Neuve, Belgium.

Miller, A.J., G.L. Nemhauser, M.W.P. Savelsbergh. 2000b. On the capacitated lot-sizing and

continuous 0—1 knapsack polyhedra. European Journal of Operational Research 125 (2) 298-

315.

Miller, A.J., G.L. Nemhauser, M.W.P. Savelsbergh. 2003. On the polyhedral structure of a multi-

item producting planning model with setup times. Mathematical Programming 94 (2-3) 375-405.

Müller, L.F., S. Spoorendonk, Pisinger, D. 2012. A hybrid adaptive large neighborhood search

heuristic for lot-sizing with setup times. European Journal of Operational Research 218 614-

623.

Pimentel, C.M.O., F.P. Alvelos, J.M. Valèrio de Carvalho. 2010. Comparing danzig-wolfe

decompositions and branch-and-price algorithms for the multi-item capacitated lot sizing

problem. Optimization Methods and Software. 25 299-319.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack problem. European

Journal of Operational Research 83 394-410.

Pochet, Y., L. A. Wolsey. 2006. Production Planning by Mixed Integer Programming. Springer-

Verlag New York, Inc..

Pochet, Y., M. Van Vyve. 2004. A generic heuristic for production planning problems. INFORMS

Journal on Computing 16 316-327.

Sinha, P., A. Zoltners. 1979. The multiple-choice knapsack problem. Operations Research 27 (3)

503-515.

Stadtler, H. 2003. Multilevel lot sizing with setup times and multiple constrained resources:

Internally rolling schedules with lot-sizing windows. Operations Research 51 487-502.

Stadtler, H. 2007. Collaborative Planning – Concepts, Framework and Challenges. Operations

Research Proceedings, Springer Berlin Heidelberg.

Subramanian, S., H. Sherali. 2008. An effective deflective subgradient optimization scheme for

implementing column generation for large scale airline crew scheduling problems. INFORMS

Journal on Computing 20 565-578.

Süral, H., M. Denizel, L.N. Van Wassenhove. 2009. Lagrangean relaxation based heuristics for lot

sizing with setup times. European Journal of Operational Research 194 51-63.

Tempelmeier, H. 2011. A column generation heuristic for dynamic capacitated lot sizing with

random demand under a fill rate constraint. Omega 39 627-633.

Trigeiro, W., L.J. Thomas, J.O. McClain. 1989. Capacitated lot sizing with set-up times.

Management Science 35 353-366.

Van Vyve, M., L. Wolsey. 2006. Approximate extended formulations. Mathematical Programming

Series B 105 501-522.

Vanderbeck, F. 1998. Lot-sizing with start-up times. Management Science 44 1409-1425.

Vanderbeck, F., M. W. P. Savelsbergh. 2006. A generic view of Danzig-Wolfe decomposition in

mixed integer programming. Operations Research Letters 48 111-128.

Wolsey, L. 1989. Uncapacitated lot-sizing problems with start-up costs. Operations Research 37

 741-747.

