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ABSTRACT 

 

Isocitrate dehydrogenase (IDH) genes 1 and 2 are frequently mutated in acute 

myeloid leukemia (AML), lower-grade glioma (LGG), and cholangiocarcinoma (CC). 

In these three malignancies, mutant IDH status is associated with increased 2-

hydroxyglutarate (2-HG) production and a DNA hypermethylation phenotype, 

implicating altered epigenome dynamics in the aetiology of these cancers. Here I 

show that the IDH variants in chondrosarcoma (CS) are also associated with a 

hypermethylation phenotype, supporting the role of mutant IDH-produced 2-HG as 

an inhibitor of TET-mediated DNA demethylation. The associated gene expression 

profile is also investigated, highlighting the need for a better understanding of DNA 

methylation-mediated transcriptional regulation. The generated methylation data 

is additionally harnessed to reveal novel copy number variants in CS.  

Meta-analysis of the AML, LGG, CC and CS methylation data identifies cancer-

specific effectors within the retinoic acid receptor activation pathway among the 

hypermethylated targets. By analysing sequence motifs surrounding 

hypermethylated sites across the four cancer types, and using chromatin 

immunoprecipitation and western blotting, I identify the transcription factor EBF1 

as an interaction partner for TET2, in the first description of a targeted 

demethylation pathway. 

In an effort to assess whether patient-derived tumour xenografts (PDXs) are 

suitable models for epigenetic research in rare and common cancers, such as 

osteosarcoma (OS) and colon cancer, respectively, I compare PDXs to their 

matched patient tumour and reveal that an average of only 2.7% of the assayed 

methylome undergoes major methylation changes with xenografting. In addition, 

no further changes are identified in subsequent PDX generations, making these 

models highly suitable for expansion of rare tumours and preclinical drug 

screening. Finally I propose a model to inform future study design and statistically 

dilute those methylation shifts identified in PDXs. 
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1.1 Epigenetics 

Epigenetics can be defined as “the study of heritable changes in gene expression 

that are not due to changes in DNA sequence”2. These changes in expression are 

governed by various processes including histone modifications (e.g. acetylation), 

non-coding RNAs (e.g. miRNAs), and DNA methylation. The work presented here 

focuses on the latter and its role in bone sarcomas. 

1.1.1 Structure of the methylome 

DNA methylation is characterised by the addition of a methyl group to the 5-

position on the cytosine ring to form 5-methylcytosine (5mC) and is most 

commonly studied in the context of cytosine-guanine dinucleotides (CpG), 

although non-CpG methylation is receiving increasing attention, especially with 

regards to stem cell differentiation3. There are ~28 million CpGs, mostly 

methylated, in the haploid human genome. 

Interspersed throughout the genome are regions termed CpG islands (CGIs). These 

are bioinformatically defined as sequences over 200 bp in length with an elevated 

GC content (>50%) and high CpG density (>0.6), and tend to be unmethylated4,5. 

The haploid human genome contains over 25,000 CGIs, half of which are 

associated with gene promoters while the rest are evenly distributed between 

intragenic and intergenic regions6. The regions 2 kb upstream and downstream of 

a CGI are called CpG shores and are the regions with the highest methylation 

variability in cancer7, while those extending from the shores are termed CpG 

shelves8. These are the definitions used for the analysis described in this thesis, but 

it should be noted that regions with GC content and CpG density that are high but 

do not reach the thresholds described above could well have similar functional 

roles to those described in the next section. Finally, recent studies have shown for 
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the first time with artificial CpG islands that both GC content and CpG density are 

necessary functional components of these regions9: an island with high CpG 

density and GC content led to nearby histones carrying both activating and 

repressing marks, characteristic of a poised chromatin state. When the GC content 

was maintained but the CpG sites removed, no histone marks were found. 

Interestingly, when the CpG frequency was left unchanged but the GC content was 

reduced, no histone marks were found either; however, this GC-poor island was 

largely methylated, indicating that the GC content was necessary to protect the 

island from methylation and thus allow the recruitment of factors involved in 

histone modification. Thus, although these investigations are still at an early stage, 

it appears that the particular composition of CpG islands is precisely linked with 

their function, and further research might soon lead to the enumeration of more 

specific parameters to define these epigenomic domains. 

1.1.2 Function of the methylome 

In addition to those CGIs in promoter regions that are evidently in close proximity 

to transcription start sites, many in inter- or intragenic locations are also 

associated with transcription initiation. This is exemplified by the Air transcript, 

initiated within a CGI in the second intron of Igf2r, and necessary to the silencing of 

the paternal allele6.  

This role of CGIs as transcription initiation regions has been explored from various 

angles. Firstly, little sequence conservation has been observed among CGIs aside 

from the constraints in nucleotide content mentioned above and a recurring lack in 

promoter elements such as the TATA box, but this is possibly compensated for by 

the GC-richness of mammalian transcription factor binding sites10. Secondly, CGIs 

are nucleosome-deficient and genes with CGIs in their promoters seem not to 
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require chromatin remodelling complexes such as SWI/SNF11, potentially making 

them more amenable to transcriptional regulation. Thirdly, CGI chromatin is 

enriched for histone marks associated with active transcription (e.g. H3K4me3)12. 

While most of the human genome is methylated, CGIs tend to be unmethylated, and 

how a change in that methylation state affects the ability of the associated 

promoter to initiate transcription has been the focus of numerous studies, reaching 

as far back as the early 1980s. The widely accepted theory is that methylation of a 

promoter island is associated with the stable downregulation of transcription6. 

The mechanism for this process is thought to be either through methylated loci 

preventing the binding of transcription factors or the recruitment of methyl-

binding proteins that lead to a change in chromatin state. In either case, 

methylation of the promoter CGI is often regarded as necessary but insufficient to 

ensure silencing: necessary in X inactivation, for example, as when DNA 

methylation is inhibited, genes are reactivated in a fraction of the cells13; but also 

insufficient as it sometimes only occurs as a locking mechanism after silencing 

histone marks, such as H3K27me3, are in place.  

Methylation of inter- and intragenic CGIs is much more common with up to 35% of 

intragenic islands being prone to methylation4. Although their function in this 

situation is less clear, it is thought that gene body methylation could serve to 

silence the transcription of non-coding RNAs from these intragenic transcription 

start sites (TSS) that would have silenced the expression of the associated gene; 

this is supported by gene body methylation often being associated with active 

transcription.  
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1.1.3 DNA demethylation 

DNA methylation is established and maintained by DNA methyltransferases 

(DNMTs): DNMT3A and DNMT3B, modulated by DNMT3L, catalyse de novo 

methylation; DNMT1 maintains methylation levels when it is directed by a 

specialised protein, ubiquitin-like plant homeodomain and RING finger domain 1 

(UHRF1), to hemimethylated sites in newly synthesised DNA strands during 

replication14.  

This mode of methylation maintenance forms the basis for the process of passive 

demethylation: successive replication cycles without the action of DNMT1 prevent 

the symmetrical conservation of methylation and eventually lead to loss of 

methylation. However, the observation of global and rapid demethylation events, 

such as in developing primordial germ cells (PGCs), could not be explained by a 

passive loss of 5mC15, triggering a search for active demethylation mechanisms. 

One such mechanism, supported by multiple studies, is based on the oxidation of 

5mC by a family of dioxygenases, the ten-eleven translocation (TET) proteins. 

The TET enzymes are responsible for the iterative conversion of 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-

carboxylcytosine (5caC) in an α-ketoglutarate-dependent manner16. These have 

been shown to be intermediates in the cytosine demethylation pathway17(Figure 

1.1). There are 3 proteins in the human TET family (TET1, 2 and 3) that are 

expressed in a tissue- and developmental stage-dependent manner. For example, 

TET1 and TET2 are found to be crucial in the maintenance of pluripotency in 

embryonic stem cells18.  The crystal structure of TET2 has recently been solved19, 

and is described in further detail in Chapter 4. 

Multiple pathways have been suggested for the second stage in the active 

demethylation pathway, to restore an unmethylated cytosine in the position 
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occupied by one of the oxidised derivatives of 5mC, including direct conversion 

through dehydroxymethylation of 5hmC or decarboxylation of 5caC20. However, 

the mechanism with most experimental supporting evidence to date involves 

excision of 5fC or 5caC by thymine-DNA glycosylase (TDG) followed by DNA 

polymerase-mediated replacement of the nucleotide with dCTP and ligation of the 

nicked DNA21.  

 

Figure 1.1: Active demethylation pathway 

Cytosine is methylated by DNMT and demethylated through oxidation by TET followed by 
excision and repair by TDG and the BER pathway, respectively. This figure was adapted 
from Xu et al.22 

1.1.4 IDH mutations and DNA hypermethylation in cancer 

The cancer-state epigenetic phenotype is often characterised by the silencing of 

tumour suppressor genes through hypermethylation of their promoters, and/or 

overexpression of oncogenes due to hypomethylation23. Over the past few years, a 
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particular hypermethylation phenotype has been detected in certain cancer types, 

associated with mutations in the isocitrate dehydrogenase family of enzymes. 

Cytosolic isocitrate dehydrogenase 1 (IDH1) and its mitochondrial counterparts 

IDH2 and IDH3, are involved in a major pathway of cellular metabolism: the Krebs 

cycle (or TCA cycle). Their normal enzymatic activity consists in the irreversible 

conversion of their substrate isocitrate into α-ketoglutarate (α-KG), producing CO2 

and NADH or NADPH as side products. These enzymes have been found mutated at 

a high frequency in certain cancers, such as acute myeloid leukaemia (AML)24 and 

glioma25, with mutations in IDH1 Arg132 and IDH2 Arg140 and Arg172 accounting 

for >90% of reported cases26. Biochemical studies showed that these mutations 

reduce the enzyme’s ability to bind isocitrate and they were thus initially 

considered to act through a dominant-negative loss-of-function mechanism. This 

theory was supported by the majority of affected tumours being heterozygous for 

these aberrations.   

However, subsequent experiments27 showed that mutant IDH enzymes had gained 

a different function and were in fact converting α-KG into R-2-hydroxyglutarate (2-

HG)(Figure 1.2). Further studies demonstrated that 2-HG competitively inhibits α-

KG-dependent dioxygenases, including histone demethylases and the TET 

dioxygenases28: 2-HG binds to the proteins where α-KG would normally reside. In 

glioma, for example, IDH mutations are associated with an increase in histone 

methylation and a decrease in genome-wide 5hmC levels28. Moreover, introduction 

of a mutant IDH1 in primary human astrocytes was sufficient to reproduce this 

epigenetic phenotype29. 

To date, gain-of-function mutations in the IDH proteins and an associated DNA 

hypermethylation phenotype have been observed in low-grade glioma30 (LGG), 



 Introduction 

   22 

AML30, cholangiocarcinoma31 (CC), spindle cell hemangiomas32, at low frequency in 

other malignancies and in chondrosarcoma (CS), as described in further detail in 

Chapter 3. 

 

 

Figure 1.2: Function of wild-type and mutant IDH enzymes 

Wild-type IDH proteins function as part of the TCA cycle to catalyse the interconversion of 
isocitrate and α-KG. When mutated at specific residues, the enzymes convert α-KG to 2-HG 
in a NADPH-dependent manner. Original figure from Reitman et al.33 

1.2 Epigenetics toolkit 

The technological advancements of recent years have noticeably improved our 

ability to study the epigenome while taking into account the aims as well as the 

limitations of each individual project, such as cost, sample number and sample 

quality. While pyrosequencing has been widely used for the validation of 

methylation at base-level resolution for over a decade, new technologies involving 
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both microarrays and next-generation sequencing have made high-throughput 

methylome profiling a near-routine operation. Four of these methods were at the 

core of the results presented here, including the Illumina Infinium 

HumanMethylation450 BeadChips (450K), pyrosequencing, methylated DNA 

Immunoprecipitation followed by next-generation sequencing (MeDIP-seq), and 

the novel RainDrop-BSseq. 

1.2.1 450K array 

1.2.1.1 Probe design 

The 450K array8 is an expansion of the earlier Illumina 27K, which uses so-called 

Type I chemistry: each locus is targeted by two probes, one for the methylated and 

one for the unmethylated version of the CpG site. These differ at their 3’ end, where 

the methylated version of the probe hybridises to the cytosine (C) (protected from 

bisulfite conversion by its methyl group), while the unmethylated probe matches 

the thymine (T) produced as a result of the conversion of the unmethylated C. For 

the 450K array, an additional probe type was introduced, with Type II chemistry. 

This assay uses a single probe per locus, and its 3’ ends complements the base 

directly upstream of the target C; a single-base extension then adds the 

complementary guanine (G) or adenine (A), depending on the methylation state of 

the original C (Figure 1.3). 

1.2.1.2 450K content 

The array targets 485,577 loci, including 65 SNPs and over 3,000 non-CpG sites. 

These cover a range of genomic and epigenomic regions. For instance, 99% of 

RefSeq genes, each covered by an average of 17.2 probes, are targeted across the 

entire gene region: transcription start sites (TSS), gene body, 5’ and 3’ untranslated 

regions (UTR), and 1st Exon (Figure 1.4). In addition, 86-96% of CpG islands, 
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shelves and shores, over 80,000 predicted enhancers and a number of other 

intergenic regions are also probed. 

1.2.1.3 Analysis 

A number of analysis pipelines have been developed to extract biological 

information from the raw data produced by the 450K array; they vary in their 

handling of the different probe types, batch effects, normalisation procedures and 

the various statistical tests and thresholds used34.  

The 450K array was used in this study to profile methylation variation associated 

with IDH mutations in chondrosarcoma and xenografting of osteosarcoma 

tumours. The analyses of 450K array data used here are covered in detail in the 

relevant chapters (Chapter 2, Chapter 3 and Chapter 5). 
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Figure 1.3: Probe types on the 450K array 

The 450K array contains both Type I (A) and Type II (B) probes. Type I chemistry uses two 
probes per locus, one for unmethylated and one for methylated, while the Type II requires 
only one probe per target CpG, with a single-base extension to determine the methylation 
state. Original figure from Bibikova et al.8 
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Figure 1.4: Genomic and epigenomic regions on the 450K array 

A range of (epi)genomic regions are probed on the array, including TSSs, UTRs, gene 
bodies, and CpG islands, shelves and shores. Original figure from Bibikova et al.8 
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1.2.2 Pyrosequencing 

Pyrosequencing is a sequencing-by-synthesis method that allows real-time 

determination of a template sequence. It has been used in a wide range of genetic 

applications from routine genotyping35, to massively parallel sequencing on the 

454 Life Sciences platform36. Pyrosequencing has also become an integral part of 

the epigenetic toolkit in order to validate either new methods1,37 or novel 

differentially methylated loci associated with a particular phenotype38, and it is 

even used for diagnostic purposes to detect abnormal methylation characteristic of 

specific diseases39. 

When used for methylation analysis, pyrosequencing is performed with prior 

bisulfite conversion of the DNA. The method relies on an enzymatic cascade that 

results in an emission of light correlated with the proportion of template DNA with 

a particular base at each position (Figure 1.5). Nucleotides are added sequentially 

to the reaction vessel, and, if they are incorporated into the extending strand, a 

pyrophosphate (PPi) is released and used by an ATP sulfurylase to generate ATP, 

which is in turn used as substrate by the luciferase enzyme to emit light40. 

In the present study, pyrosequencing was used to validate regions of differential 

methylation between IDH mutant and wild-type samples, and the specific loci that 

were targeted, as well as the primer design and reagents used, are detailed in 

Chapter 3. 
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Figure 1.5: Pyrosequencing reaction 

a) 2'- Deoxyadenosine- 5'- O- (1- thiotriphosphate) (αS-dATP) is used instead of dATP as 
the latter would be directly used a substrate for the luciferase reaction. Incorporation of 
the nucleotide releases PPi, which is in turn used to make ATP; a luciferase-luciferin-AMP 
complex is formed by using the ATP, which, in the presence of oxygen,  leads to the release 
of light proportionally to the amount of available PPi in the reaction vessel. 
b) A nucleotide that cannot be incorporated into the extending strand is degraded by an 
apyrase 
c,d) The ‘R’ in the template strand represents a methylation variable position: its 
complementary base on the extending strand is part of a CpG. The next nucleotide to be 
incorporated could then be either a C (if the locus was originally methylated) or a T (if the 
locus was originally unmethylated). Both C and T are incorporated in approximately equal 
amounts, each generating a light signal that is half of that measured for the first A, present 
in every extending strand in the reaction vessel. 
e) Two consecutive G bases are incorporated, generating a light signal twice that of the 
first A. 
Original figure from Tost et al.40 
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1.2.3 MeDIP-seq 

MeDIP-seq combines immunoprecipitation of methylated DNA with next-

generation sequencing. MeDIP uses an antibody against 5mC to capture the 

methylated fraction of the genome (Figure 1.6), with a resolution ranging from 

100-300 bp, depending on the chosen insert size. It can be achieved reliably with 

as little as 50 ng of starting material41,  and can be automated with minimal hands-

on time42. These advantages set MeDIP-seq apart from the other enrichment-based 

technologies, MBD-seq and methylCap-seq, for which no protocol exists with such 

low amounts of input DNA. MeDIP-seq is also achievable at considerably lower cost 

than whole-genome bisulfite sequencing (WGBS)43, and permits a much more 

extensive coverage of the genome than the more affordable reduced 

representation bisulfite sequencing (RRBS)43.  

With its genome-wide coverage and, thus, its ability to capture regions of the 

genome not historically targeted by arrays, MeDIP-seq has been widely used in 

methylation profiling: from the first whole-genome methylation profile of a 

mammalian genome44, to the analysis of a variety of tissues, including peripheral 

blood cells45 and nerve sheath tumours46. 

However, this assay also displays noteworthy limitations. First among those is the 

resolution afforded by a MeDIP-seq experiment: it is limited to 100-300 bp and 

thus is far from the base–level resolution achievable with other sequencing and 

array technologies; although this is suitable to explore methylation of regions such 

as islands and shores, it is less applicable to deciphering the epigenetic regulation 

of small enhancer loci, or subtle differences in the methylation levels of adjacent 

regions. Another drawback of MeDIP-seq is its bias towards sequences of high 

methylation density; regions with densities lower than 1.5% can be missed 
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entirely and erroneously considered as unmethylated41. In addition, as the 

procedure only enriches for the methylated portion of the genome, unmethylated 

regions can only be deduced through an elimination process, making the reliability 

of the method intrinsically dependent on sequencing depth. Although this last 

issue can be circumvented by combining MeDIP-seq with methylation-sensitive 

restriction enzyme sequencing (MRE-seq), albeit at a higher cost. 

MeDIP-seq was used in this study to validate results obtained with the 450K array 

in the comparison of patient tumours with their corresponding xenografts. The 

specific protocol and analysis methods used are detailed in the relevant chapters 

(Chapter 2 and Chapter 5). The next-generation sequencing aspect of this 

experiment was conducted at the Illumina facilities in Cambridge, UK, as the 

industrial placement involved in the MRC-CASE studentship that supported this 

work. This not only ensured that the experiment was performed quite literally 

according to the manufacturer’s instructions, but also provided unparalleled 

access and guidance with regards to operating the company’s systems, including 

the HiSeq 2000 and MiSeq platforms.  

1.2.4 RainDrop-BSseq 

High-throughput targeted resequencing through the combination of microdroplet 

polymerase chain reaction (PCR) and next-generation sequencing was developed 

by RainDance Technologies and first adapted to methylation analysis by Komori et 

al.47 and Herrmann et al.48 This method, termed Raindrop-BSseq, was further 

refined for the purposes of this project1 and in a subsequent study to reduce the 

required amount of input DNA by Paul et al49. 

Other technologies available for methylation profiling can be categorised as 

follows: 1) WGBS that provides single base resolution and whole-genome  
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coverage, but is still prohibitively expensive for large sample cohorts and small 

research groups; 2) pyrosequencing, which also achieves single-base resolution 

but does not scale up well to cover extended portions of the genome and is time-

consuming to optimise; 3) enrichment-based methods such as MeDIP-seq that can 

provide genome-wide information for small sample cohorts but at relatively low 

resolution; and 4) array-based methods like the 450K array, which is applicable to 

large groups of samples, resolves individual CpG sites, and provides genome-wide, 

but not whole-genome, coverage and is intrinsically biased towards particular 

regions. Thus, RainDrop-BSseq bridges the gap between existing methods to allow 

targeted, base-resolution, and high-throughput methylation profiling of large 

sample cohorts. 

The detailed protocol and analysis performed here are presented in the relevant 

chapters (Chapter 2 and Chapter 3). Briefly, DNA samples are bisulfite-converted 

and a primer library is designed to amplify selected regions; using RainDance 

Technologies instruments, each primer pair is coupled to a template fragment 

within a single droplet on a microfluidic chip, effectively transforming each droplet 

into a micro-PCR tube and allowing up to 4,000 amplification reactions to take 

place in parallel. The amplified products are then pooled into a single library for 

each sample and a second round of amplification allows the incorporation of 

indices for next-generation sequencing on the Illumina MiSeq (Figure 1.7). 
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Figure 1.6: Experimental workflow for MeDIP-seq 

Genomic DNA is first sonicated into fragments of ~100 bp; methylated regions are then 
immunoprecipitated using an antibody raised against methylated cytosines, and the 
enriched portion is subsequently purified and analysed on a next-generation sequencing 
platform. Figure adapted from Denk et al.50 
 
 
 
 
 
 

 

Figure 1.7: Workflow for methylation analysis by RainDrop-BSseq 

The sample DNA is bisulfite converted and this template is then merged with individual 
primer pairs in microdroplets. After the subsequent PCR amplification of the amplicons, 
the droplets are destabilised to release the products, which are then purified with 
magnetic beads or columns. An additional round of PCR incorporates the sequencing 
barcodes for each sample. Figure courtesy of Dirk S. Paul. 
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1.3 Bone sarcomas 

1.3.1 Overview 

Malignant bone cancers are sarcomas of bone, cartilage and associated tissues, of 

which the three major types are osteosarcoma (OS), chondrosarcoma (CS), and 

Ewing’s sarcoma (ES): together they represent over 90% of all bone cancers 

diagnosed in patients 15 to 29 years old 51.  In the UK, incidence rates of bone 

sarcoma have remained relatively stable since the 1970s (Cancer Research UK), as 

shown in Figure 1.8. 

 

 

 

Figure 1.8: UK age-standardised incidence rates of bone sarcoma per 
100,000 

The incidence of bone sarcoma has remained stable overall since 1975 in the UK, but 
shows a slight dip followed by an increase. This increase is most likely due to improved 
diagnostic techniques rather than an actual rise in incidence. Original figure from Cancer 
Research UK. 
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1.3.2 Osteosarcoma 

Osteosarcoma is the most common type of primary bone cancer and the 3rd most 

common childhood cancer with an age-standardised incidence in the UK of 8 and 6 

per million in males and females, respectively52. It follows a bimodal age 

distribution, with the early and major peak in adolescents and young adults (5-20 

years old) where it correlates with an important growth spurt. The second peak of 

incidence is in adults over 65 years of age, at which point it most often occurs as a 

second malignancy due to adverse effects of treatment, such as radiotherapy. The 

5-year survival rate (Figure 1.9) improved from ~20% in 1970 to ~65% in 1975 

with the introduction of preoperative chemotherapy; little progress has been made 

since then, however, and the current 5-year survival rate stands at 68%, 

highlighting the need for new therapeutic strategies.  

Three cancer predisposition syndromes are known to increase the incidence of OS: 

3% of OS patients are affected by Li-Fraumeni syndrome53, characterised by a 

mutation in TP53, while hereditary retinoblastoma (RB1) and Rothmund-Thomson 

syndrome (RECQL) are also found in a significant number of OS cases. In addition 

to these hereditary syndromes, various environmental factors can contribute to an 

enhanced risk of osteosarcoma development: ionizing radiation, for example, has 

been implicated as a causative factor in ~3% of osteosarcomas. 

Although the genetic traits of OS have been well documented54-57, with 

chromosomal gains (1p, 1q, 6p, 8q, and 17p) and losses (3q, 6q, 9, 10, 13, 17p) as 

well as mutations in crucial tumour suppressor genes (RB1, MDM2, CDKN2A…) and 

oncogenes, the epigenetic aspects of OS have received less attention. 

In 2009, Sadikovic et al.58 described the integration of genomic and epigenomic 

profiles of two osteosarcoma cell lines with gene expression, using normal 

osteoblasts to provide baseline levels. The authors described a large number of 
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under- or overexpressed genes in both cell lines that were also hyper- or 

hypomethylated, respectively. From gene network analysis, the authors concluded 

that the aberrantly expressed genes affected four major biological pathways and 

that the epigenetics and genomic imbalance seemed to have a cumulative role in 

the deregulation of gene networks in the cell lines. Although the data presented 

provided an interesting initial look at the epigenetic state of osteosarcoma, it 

remains an in vitro study and as such requires validation from work on primary 

tumours.  

A crucial issue with bone sarcomas, however, is the scarcity of tissue samples 

available for analysis. In order to avoid the bias induced by using cell lines, a 

possible alternative is tumour xenografting. Validating the use of patient-derived 

tumour xenografts (PDXs) for epigenetic studies of rare cancers, such as OS, and in 

pre-clinical drug trials, in collaboration with the OncoTrack Consortium, is 

discussed in Chapter 5. 

 

 

 

Figure 1.9: Osteosarcoma and chondrosarcoma survival rates 

Survival rates of osteosarcoma (left) and chondrosarcoma (right) in the US from 1975 to 
2000. Original figure from Bleyer et al.51 
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1.3.3 Chondrosarcoma 

Chondrosarcomas are also infrequently found malignancies of the bone with an 

incidence of 80 cases per year in the UK. They are a heterogeneous group of 

tumours with highly diverse features and range from slow-growing lesions to 

highly aggressive metastasising sarcomas. CS is a cancer of the cartilage that 

generally arises around the pelvic bones, shoulder bones and the upper parts of 

the arms and legs. It can occur at any age, although its incidence is higher in later 

life (>50); various sub-classifications of CS exist such as central, peripheral, clear 

cell, mesenchymal, and dedifferentiated. Currently, the preferred treatment for 

chondrosarcoma is wide surgical excision; successful use of adjuvant 

chemotherapy has been reported in a few cases, but its use in mainstream 

treatment of CS remains ill defined59.  The 5-year survival rate (Figure 1.9) varies 

depending on the stage and grade of the tumour: for conventional chondrosarcoma 

patients, it ranges from 48% to 60%; in the case of highly aggressive, 

dedifferentiated CS, however, it can be as low as 10% after one year60. 

Various factors can increase the risk of CS incidence, although a precise mechanism 

for initial development has yet to be determined. Patients with benign bone 

tumours such as chondromas or osteochondromas present a slightly increased risk 

of developing CS, for example53. Other syndromes, such as Ollier’s disease or 

Maffucci’s syndrome can also lead to CS.  

The genetics of CS have also been extensively studied, and recent reports61,62 have 

described mutations or rearrangements in cartilage collagen gene COL2A1 (37%), 

the RB1 pathway (33%), TP53 (20%), and Hedgehog signalling (18%). The 

presence of IDH1 or IDH2 gain-of-function mutations in over 50% of central 

chondrosarcomas63 suggested that these tumours might be under a level of 

epigenetic regulation, as observed in other malignancies with frequent IDH 



 Introduction 

   37 

mutations, such as AML. The identification and analysis of a potential 

hypermethylation phenotype, as well as its consequences on gene expression, 

associated with IDH mutations in CS forms the basis of the experiments discussed 

in Chapter 3. In addition to this epigenetic work, the potential of the 450K array to 

be used as a SNP array and provide copy number information, was utilised to 

uncover novel copy number variants (CNVs) in chondrosarcoma, and these are 

also discussed in Chapter 3. 

1.4 Aims of the project 

1.4.1 Genomic and epigenomic analysis of chondrosarcoma 

IDH gain-of-function mutations are found in 50% of central CS, but the methylome 

of IDH mutant (MUT) relative to wild-type (WT) tumours had not yet been 

characterised. My first objective was, using a combination of microarrays and 

sequencing-based techniques, to determine whether IDH mutation in CS is 

associated with a similar DNA hypermethylation profile as previously found in 

other malignancies, and what its functional consequences are in terms of 

transcriptional regulation. In addition, I aimed to uncover novel and recurrent 

genomic alterations in CS by harnessing data generated for methylation profiling 

(Chapter 3). 

1.4.2 Meta-analysis of IDH-mutant cancers 

By combining the methylation data generated for CS with those from AML, glioma, 

and cholangiocarcinoma already in the public domain, I aimed to investigate 

whether the hypermethylation phenotype affects the same loci in all four cancers, 

and use the location of hypermethylated sites as a means to better understand the 

process of targeted demethylation (Chapter 4). 
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1.4.3 PDXs as a tool for epigenomic studies 

Through the use of xenografts generated in OS and colon cancer, the final aim of 

this thesis was to quantify the suitability of PDXs to serve as proxies for patient 

tumours for both fundamental epigenetic research and pre-clinical drug screening 

(Chapter 5). 
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2 MATERIALS AND METHODS 
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2.1 Chondrosarcoma 

2.1.1 Samples 

The material was obtained from the Stanmore Musculoskeletal Biobank, the 

approval for which was provided by the Cambridgeshire 1 Research Ethics 

Committee (Reference Number: 09/H0304/78). 

IDH mutations were tested and validated in the Flanagan laboratory by at least two 

of the following techniques including Sequenom MassARRAY, capillary sequencing, 

exome sequencing, and a custom-made Taqman array63,64. 

A total of 71 patient samples and 4 technical blood controls were used for various 

analyses (Table 2.1). 

2.1.2 450K array 

2.1.2.1 DNA extraction 

DNA was extracted from tumour samples using a QIAamp DNA Mini Kit (QIAGEN) 

according to the manufacturer’s instructions.  

2.1.2.2 Bisulfite conversion 

Bisulfite conversion of DNA for methylation profiling was performed using the EZ 

DNA Methylation kit (Zymo Research) according to the manufacturer’s 

instructions, on 500 ng from tumour samples. Conversion efficiency was assessed 

by quantitative PCR (qPCR), on the Applied Biosystems 7300 with default settings. 
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Table 2.1: Chondrosarcoma samples 

List of samples used for experiments on chondrosarcoma, including methylation, SNP, and 
gene expression arrays, RainDrop-BSseq, and pyrosequencing. Clinical information such as 
age, sex, tumour grade and IDH mutation status are also included. Dataset numbers refer 
to different sample batches. 
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The qPCR mix for each sample consisted of 1µl DNA, 4.375 µl water, and 6.25 µl 

MESA Blue qPCR Mastermix Plus for SYBR Assay (Eurogentec). Each sample was 

run in triplicate. Actin primers for both converted and unconverted DNA were 

used, with sequences shown below: 

Actin_Converted:  F (5'>3') TGGTGATGGAGGAGGTTTAGTAAGT 

    R (5'>3') AACCAATAAAACCTACTCCTCCCTTAA 

Actin_Unconverted:  F (5'>3') TGGTGATGGAGGAGGCTCAGCAAGT 

    R (5'>3') AGCCAATGGGACCTGCTCCTCCCTTGA 

 

Conversion efficiency was calculated according to the following formulae: 

%𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 =
100%

1+2∆𝐶𝑡 , with ΔCt = AvgCt(Unconverted) – AvgCt(Converted) 

%𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 = 100% − %𝑈𝑛𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 

2.1.2.3 Array Processing 

For each sample, a total of 500 ng of bisulfite converted DNA was used. The 

Infinium HumanMethylation450 BeadChips (Illumina)8 were processed as per 

manufacturer’s recommendations by the UCL Genomics facility. Raw data was then 

obtained in the form of Illumina IDAT files. 

2.1.2.4 Analysis 

The raw output from the 450K BeadChips was processed using GenomeStudio 

software (Illumina) and uploaded to GEO (accession number GSE40853). The non-

normalised and non-background corrected data and array annotation were 

exported as text files from GenomeStudio and all subsequent analysis was 

performed using the R statistical software v2.15.0 (http://www.R-project.org) with R 

http://www.r-project.org/


Materials and Methods 

   43 

packages65-68 and custom scripts (Appendices). Quality control of the data resulted 

in removal of any probes that did not pass a detection p-value threshold of 0.01 

across all samples; a final dataset of 27 samples (12 WT and 15 MUT) and 472,655 

probes were available for analysis in the test set. 

A principal component analysis69 of the data was performed to identify the 

principal components of variation. Unsupervised consensus clustering was 

conducted on the top probes selected using a median absolute deviation (MAD) 

estimator, which provides a more robust measure of variance than standard 

deviation. I selected the top 150 most variable positions corresponding to a lower-

end threshold of MAD = 0.5. Thus, these selected probes show substantial variance 

with methylation differences across many samples on the order of 50% 

methylation changes. I also performed consensus clustering on more methylation 

variable positions (MVPs) by lowering the MAD threshold to include 300 and 500 

probes, with identical results, demonstrating robustness to the choice of threshold.  

A Wilcoxon rank sum test was used for supervised analysis; p-values obtained 

from the latter were adjusted for multiple testing (Benjamini-Hochberg70) and only 

probes with p-value ≤ 0.001 were used in the clustering. A further filter of absolute 

(Δ (medianβ)) ≥ 0.35 was used to compensate for the Wilcoxon rank sum test not 

taking into account absolute difference in methylation between the groups, and to 

narrow down our search to differences with higher potential for functional effect. 

The MVPs used to separate the validation sample sets (n = 24, 10 WT and 14 MUT) 

were selected based on the same method used for the filtering of MVPs in the 

initial dataset, specifically ordering them by: 1) increasing adjusted p-value and 

then 2) decreasing absolute median difference between the MUT and WT groups. 
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The statistical significance of the observed percentage enrichments for genomic 

and epigenomic features among the 3,057 MVPs was calculated on the basis of 

1,000 repetitions of a random selection of 3,057 probes from the overall probe set 

(472,655 probes) used in the analysis. The aforementioned features correspond to 

the official annotation of the 450K BeadChips, and were extracted using 

GenomeStudio. 

Copy number variation was assessed using the ChAMP71,72 package, filtering the 

data for detection p-value (0.01), and setting the bead cut-off at 0.05. GISTIC73 

analysis was performed using hg19 as the reference genome, the output of the 

ChAMP CNV module  as the segmentation file, the full array probe coordinates as 

the markers file, and with the following settings: amp/del threshold = 0.3, removeX 

= yes, join segment file = 4, qv threshold = 0.05, confidence level = 0.95. The full 

analysis script can be found in the Appendices. 

2.1.3 RainDrop-BSseq 

2.1.3.1 Overview 

For the validation and replication using targeted microdroplet PCR bisulfite 

sequencing (RainDrop-BSseq), sample preparation and bisulfite conversion were 

carried out as described above. The parallel amplification of target loci was 

performed by RainDance Technologies (Lexington, MA, USA) and the subsequent 

sequencing by Illumina. The RainDance technology allows massively parallel 

amplification of specific DNA fragments by conducting PCR reactions in pico litre 

droplets on integrated microfluidic chips. The produced library (one for each 

sample) was then separately subjected to a second round of PCR to incorporate the 

sequencing indices. The libraries for all samples were pooled and sequenced on the 

Illumina MiSeq.  
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2.1.3.2 Protocol for 2nd PCR 

 The samples were quantified by running 1 µl on an Agilent Bioanalyzer 

 The samples were diluted to 2.5 ng/µl 

 The following PCR master mix was prepared in a PCR tube: 

o Platinum HiFi Buffer (10x)  3.25 µl 

o MgSO4 (50 mM)    0.88 µl 

o dNTPs (10 mM)    0.88 µl 

o Betaine (4 M)    2.50 µl 

o DMSO      1.25 µl 

o Primer pairs (5 µM)   2.50 µl 

o 1st PCR template (2.5 ng/ µl)  4.00 µl 

o Platinum HiFi Taq (5 units/ µl) 0.50 µl 

o Water      9.24 µl 

 The samples are PCR thermal cycled with the following program: 

o 94°C – 2 minutes 

o 94°C – 30 seconds 

o 56°C – 30 seconds 

o 68°C – 60 seconds 

o Repeat steps 2-4 9 times 

o 68°C – 10 minutes 

o 4°C – Forever 

 Purify over a Qiagen MinElute column 

 Quantify the reaction by running 1 µl on an Agilent Bioanalyzer 

2.1.3.3 Analysis 

Raw sequencing reads from the microdroplet PCR were trimmed to 60bp as 

recommended by Krueger et al.74 and fastq_quality_trimmer from the fastx toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/index.html) was used to trim lower quality 

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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bases from the ends of sequence reads (threshold set at 30); reads were trimmed 

down to a minimum length of 20 bp, and removed if shorter.The alignment was 

conducted using Bismark75, specifically designed for mapping bisulfite converted 

sequence reads. Finally, methylation states were determined using the Bismark 

methylation_extractor and custom Perl scripts. CpG sites covered by 10 sequencing 

reads or more and with methylation scores between 0-20% (unmethylated) or 80-

100% (methylated) were selected. The alignment and filtering of reads were 

conducted by Dr. Gareth Wilson. The sequencing data is available from GEO 

(accession number GSE40853). 

2.1.4 Pyrosequencing 

Pyrosequencing validation was conducted using PyroMark Gold Q96 (QIAGEN) 

reagents and the PyroMark Q96 MD pyrosequencer as per manufacturer’s 

instructions.  

2.1.4.1 Bisulfite conversion 

DNA bisulfite conversion was performed with the EZ DNA Methylation kit (Zymo 

Research). Eluted DNA was normalised to 10 ng/µl, and the conversion efficiency 

was assessed by qPCR as described above. 

2.1.4.2 Target loci and Primer Design 

Pyrosequencing targets were selected to overlap with probed sites on the 450K 

array and with targets of RainDrop-BSseq, as shown in Table 2.2. The primers 

were designed using PyroMark Assay Design software (QIAGEN) and ordered from 

Sigma-Aldrich. 
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Table 2.2: Pyrosequencing targets 

The selected targets for pyrosequencing with their (epi)genomic feature descriptions and 
the corresponding primer sequences for amplification and sequencing. 

2.1.4.3 PCR 

A standard PCR programme with touchdown annealing temperatures was used to 

increase specificity and reduce the risk of primer dimers. The PCR mix consisted of 

the following components for each DNA sample, using the GoTaq HotStart 

(Promega) and 10 µl of the PCR product was then used for each pyrosequencing 

reaction.  

 5x GoTaq Buffer   10 µl 

 MgCl2 (25 mM)    5 µl 

 dNTPs  (10 mM)   2 µl 

 Taq (5 u/ul)     0.25 µl 

 H2O      28.75 µl 

 Primers (10 µM)    2 µl 

 DNA      2 µl  

2.1.4.4 Checking for methylation bias in the amplification 

A standard curve for each primer set is created by mixing fully methylated and 

fully unmethylated DNA standards in varying proportions to achieve 0%, 25%, 

50%, 75% and 100% methylated DNA. These are then subjected to 

pyrosequencing to ensure that the read-out of the methylation score as 

determined by the sequencer is proportional to the methylation level of the 

sample. The standard curves created for sites 1 and 2 are shown in Figure 2.1. The 

fully methylated and unmethylated standards were produced respectively using in 

450K Probe ID Genomic Feature Epigenomic Feature Hg18 Coordinate

cg08924430 TSS1500 N_Shore 4:106286501

cg10884288 5'UTR N_Shore 7:4888722

450K Probe ID Forward Primer Reverse Primer Sequencing Primer

cg08924430 AGGGGGTTATTAGTGAGAAATTTAT ACATACCCTTAATACTTTAAAAACCTATAT GGTTAAAGTAAATAGAAGGT

cg10884288 AAGGAAGGGTTTAGTTTTTGATG TTTCCCTCCTACTAAAAATAATAATAAATT GAGTATAGGGAGTGAG
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vitro methylation with M.SssI and whole-genome amplification using the REPLI-g 

kit (Qiagen). The plots show that although the amplification seems unaffected by 

the methylation level of the sample (linear standard curve with R2 > 0.9), the 

pyrosequencing slightly underestimates that methylation level, possibly due to 

incomplete methylation of the standard used. 

 

Figure 2.1: Pyrosequencing standard curve 

Methylation bias in each primer pair for amplification was assessed by amplifying DNA 
standards of varying methylation levels through the pyrosequencing reaction. As shown 
by the high R2 (> 0.9) in each plot, the primers amplify these regions in a manner unbiased 
by the methylation level of the sample DNA, but the methylation score observed through 
pyrosequencing slightly underestimates that of the sample. 

2.1.5 SNP array 

2.1.5.1 Processing 

From each of 10 CS samples, 300 ng DNA was extracted as described for the 450K 

array above. The samples were run on the HumanCytoSNP-12 BeadChips 

(Illumina) by UCL Genomics, according to the manufacturer’s instructions. The raw 

data was extracted using GenomeStudio (Illumina). 
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2.1.5.2 Analysis 

The R values extracted from GenomeStudio were analysed using the DNAcopy76 R 

package and custom scripts (Appendices). The output from DNAcopy was then 

processed through GISTIC as described above for the 450K array data. 

2.1.6 Gene expression array 

2.1.6.1 RNA extraction 

RNA was extracted from 46 frozen tumour samples with the following protocol: 

 Frozen sections were thawed in Qiazol (Qiagen) on ice 

 Sections were homogenised  

 Samples were incubated for  30 min at RT 

 Chloroform (200 µl/ml Qiazol) was added, tubes shook vigorously for 20s 

and incubated for 5 min. 

 All samples were centrifuged at 14,000 g for 15 min at 4°C. 

 Aqueous phase was taken (or repeated phenol/chloroform steps if 

supernatant was not clear)and an equal volume of 70% ethanol was added;  

 Samples were mixed and loaded onto an RNeasy column (Qiagen).  

 RNA was purified according to the manufacturer’s instructions. 

 

2.1.6.2 Array preparation and processing 

Gene expression was measured using the HumanHT-12 v4 Expression BeadChips 

(Illumina). Sample total RNA conversion to biotin-labelled cRNA was performed 

using the TargetAmp Nano Labeling Kit for Illumina Expression BeadChips 

(Epicentre), as per manufacturer’s instructions. Following amplification and 

labelling the cRNA was purified using the ZR-96 Clean & Concentrator kit (Zymo 

Research), to allow parallel purification of up to 96 samples, as well as 

concentration of the RNA to meet the requirements of downstream hybridisation 
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to the HT-12 BeadChips. Integrity of the RNA was assessed both before and after 

labelling using the RNA Nano 6000 assay on the Bioanalyser (Agilent), and 

concentration was measured using the Nanodrop ND-1000 after labelling, as the 

biotin tag interferes with RNA migration thus affecting Bioanalyser readings. 

Hybridisation of the samples to the arrays, followed by staining and scanning, was 

performed at UCL Genomics. 

2.1.6.3 Analysis 

The data was exported from GenomeStudio without background correction or 

normalisation and analysed using the limma77 R package, following the analysis 

protocol outlined by Ritchie et al.78 The analysis results are described in detail in 

Chapter 3 and the full analysis script is available in the Appendices. Briefly, the 

probe signals were background corrected using negative control probes and 

quantile normalised using negative and positive control probes with the limma 

neqc function. Probes were then filtered according to their annotation quality, with 

removal of those labelled as “No match” or “Bad”. Unsupervised clustering was 

performed on the 500 most variable probes as determined by the interquartile 

range.  Supervised clustering was conducted on the top 500 probes as determined 

by either p-value or log fold change (logFC) calculated with the topTable limma 

function. 

2.2 EBF1-TET2 interaction 

2.2.1 Meta-analysis of publically available datasets 

2.2.1.1 Data 

For the meta-analysis, I used the published list of differentially methylated genes 

for AML (n = 398, 347 WT and 51 MUT), significantly differentially methylated 

genes (Wilcoxon p-value ≤ 0.001, |Δβ| ≥ 0.35) for LGG (n = 81, 32 WT and 49 MUT) 
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and CC (n = 50, 31 WT and 19 MUT) and the data I generated for CS, with a further 

restriction to sites found in gene promoters and CpG islands/shores.  

2.2.1.2 Gene, pathway, and motif analysis 

The Ingenuity Pathway Analysis (IPA) Functional Analysis identified the biological 

functions that were most significant to the dataset. A right‐tailed Fisher’s exact test 

was used to calculate a p‐value determining the probability that each biological 

function assigned to that dataset is due to chance alone. This p-value was further 

adjusted (Benjamini-Hochberg70) for multiple testing. Canonical pathways analysis 

identified the pathways from the IPA library of canonical pathways that were most 

significant to the dataset. Molecules from the dataset that were associated with a 

canonical pathway in the Ingenuity Knowledge Base were considered for the 

analysis. Fisher’s exact test was used to calculate a p‐value determining the 

probability that the association between the genes in the dataset and the canonical 

pathway is explained by chance alone.  This p-value was further adjusted 

(Benjamini-Hochberg70) for multiple testing. The motif analysis was conducted 

using the online multiple expectation maximisation for motif elicitation (MEME) 

suite of tools79: FASTA sequences were downloaded from the UCSC Genome 

Browser, and used for input in the MEME-Chip tool of the MEME suite; parameters 

were set to default except for the number of repetitions (set to ‘Any number of 

repetitions’), motif width (min=4, max=15), and maximum number of motifs to 

find (20). 

2.2.2 Chromatin immunoprecipitation (ChIP) 

2.2.2.1 Cell culture 

The ChIP experiments were performed on the CS cell line SW1353 (ATCC HTB-94, 

IDH2 R172S), cultured until passage 11, in RPMI-1640 medium (Lonza), with L-
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glutamine and sodium bicarbonate, and supplemented with 10% foetal bovine 

serum (FBS).  Cell culture flasks (25, 75, or 175 cm3) were used for this adherent 

cell lines and incubated at 37°C, 5% CO2, and 100% humidity. 

2.2.2.2 Chromatin extraction 

Each chromatin extraction was performed on a single SW1353 frozen pellet of 

~107 cells. The process involved the following steps: 

2.2.2.2.1 Preparations 

 Prepared 1% (or 2%) Formaldehyde (FM) in media (from 37% stock – 135 

µl FM+ 4.865 ml media).   

 The volume of each buffer was aliquoted and protease inhibitors (PI; frozen 

at 10x) were added. Lysis buffer was left to dissolve/clear up at room 

temperature (RT) before aliquoting. All buffers placed on ice. 

o Lysis buffer (for 500 ml): 

 1% SDS     25 ml 20% SDS solution 

 10 mM EDTA, pH 8.0   10 ml 0.5M 

 50 mM Tris-HCl, pH 8.0  25 ml 1M 

 ddH2O     460 ml 

o Hypotonic buffer:  

 10 mM Tris/HCl pH 7.2 

 2 mM MgCl2 

 0.5% Triton X100 

 The Bioruptor UCD-200 sonicator (Diagenode) was filled with ice and a 

large beaker with ice-water. Sonicator-adaptors  were placed on ice. 

 The centrifuge was pre-cooled. 

2.2.2.2.2 Cell collection and cross-linking 

 Cells were resuspended in 1ml 1%FM media in an eppendorf tube. 
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 Cell suspension was transferred to 15 ml falcon tubes and another 4 ml 

1%FM was added. Fixation was conducted for 20 min at RT. 

 Fixation was stopped by adding 550 µl 1.25 M glycine (Sigma-Aldrich; final 

concentration 0.125 M) and cell suspension was nutated on platform for 5 

min at RT. 

 Cells were spun at 447 g for 4 min and media removed. 

 Cells were resuspended in 1 ml cold phosphate buffered saline (PBS) and 

transferred to an eppendorf tube. Tubes were spun at 447 g 4 min at 4°C, 

supernatant was removed and this wash step was repeated one more time. 

Cells were kept on ice. 

 The cell pellet was resuspended in 300 µl hypotonic buffer with PI by 

pipetting up and down, and incubated on ice for 10 min. 

 Tubes were spun at 699 g for 5 min at 4°C and the supernatant was 

discarded. 

 Nuclei were resuspended in 300 μl of lysis buffer with PI by pipetting up 

and down and the number of cells was normalised (5x106-1x107 cells/tube) 

and aliquoted into Diagenode sonication tubes. Each tube was topped up to 

300 µl with lysis buffer. Samples were incubated on ice for 30 min (10-30 

min). 

2.2.2.2.3 Sonication 

 Before sonicating, the lysate was transferred to the Diagenode sonication 

tubes if not already in these tubes.  

 Lysate was sonicated on ice to reduce DNA length to between 100 and 300 

bp for sequencing or up to 500 bp for qPCR analysis on the Bioruptor: 

o Max output, 30 sec on-off cycles for 10 min; 4 x 10 min cycles  

 The tube was spun 15 min at 13,400 g, 4°C to remove debris. The 

supernatant was transferred to a new 1.5 ml eppendorf tube.  

 The sonication efficiency of the lysate was checked on reverse cross-linked 

chromatin: 

o Added to a PCR strip: 
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o lysate equivalent to about 100,000 cells (6 µl if 5x106 cells) 

o 1 µl Proteinase K (20 mg/ml) 

o 50 µl Tris-EDTA 25 mM 

o Incubated:  

o 55C 15'  

o 100C 15'  

o 4C (to cool down) 

o Ran on a 1.5% agarose gel.  

2.2.2.3 ChIP 

Automated ChIP was performed using the Auto-ChIP Kit and IPure kit (Diagenode) 

and the SX-8G IP-Star (Diagenode) according to the manufacturer’s instructions.  

For each reaction, 3 µg and 7 µg of TET2 (sc-136926; Santa Cruz) and EBF1 (clone 

1G8, Abnova) antibodies, respectively, were used. The following steps were 

followed for each experiment: 

 To 50 µl of the sheared chromatin, were added: 

o 5 µl protease inhibitor mix (200x) 

o 450 µl ChIP Buffer H 

o (This 0.5 ml sheared chromatin mix could then be used for 4 IPs + 

input.) 

 Preparation Buffer H + Ab: 

o x µl antibody + 100-x µl ChIP Buffer H 

 Preparation IPure Elution Buffer (for each reaction): 

o Buffer A   96 µl  

o Buffer B   4 µl  

o Total Volume   100 µl  

 Reagents were dispensed as below on an ice block. One strip per IP: 
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o 1 IPure EB (IN)  90ul 

o 2 Empty 

o 3 Magnetic beads  10 µl 

o 4 ChIP Buffer H  50 µl 

o 5 ChIP Buffer H  50 µl 

o 6 ChIP Buffer H + Ab  100 µl 

o 7 Sheared Chrom Mix 100 µl 

o 8 Wash Buffer H1  100 µl 

o 9 Wash Buffer H2   100 µl 

o 10 Wash Buffer H3  100 µl 

o 11 Wash Buffer H4  100 µl 

o 12 IPure EB (IP)     100 µl 

 Tips were loaded onto the tip block of the IP Star and the strips were added. 

If only running 8 samples, the right block was used, with samples number 1-

8 placed from left to right. Protocol called “ChIP IPure8 100vol” in the ChIP 

Ab coating folder was run. 

 10 µl input was added to well 1 and the caps were placed on the PCR strip: 

reverse crosslinking was then performed at 65°C for 4 hours. 

 Ipure cleanup (in plate): Using a magnet, well 12 (IP) and well 1 (IN) were 

transferred to new tubes and placed on row 12 of the tube block. 

o Well 1: 100 µl Buffer C  

o Well 2: 100 µl Isopropanol, 15 µl beads, 2 µl carrier (+ 100µl 

MeDIP/input) 

o Well 3: 100 µl Wash Buffer 1 

o Well 4: 100 µl Wash Buffer 2 

o Well 5: Empty (pending elution) 

o Well 6: Empty (pending elution) 
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 Cleaned up DNA was collected in well 6. The eluted volume was adjusted to 

50 µl with buffer C. 

2.2.2.4 ChIP-qPCR 

For each qPCR, 2 µl of the eluted DNA from the ChIP is used. The target regions and 

negative control region are referred to here by the nearest gene; qPCR primers for 

these sites were designed using NCBI Primer Blast and manufactured by Sigma-

Aldrich:  

CCND2 F: 5’-GTTTCTGCTCGAGGATCACA-3’,  

 R:  5’GGGAGAGGTGGGTATTAGGA-3’ 

FABP3 F: 5’-CCTGGGGCTTCCTATTTCG-3’  

 R:  5’-TGCCGCTTTAAATAGCCCTC-3’ 

FBRSL1 F: 5’-TACGCGCTGCATGAATCAAT-3’  

 R:  5’-CTGGTGGGGTTTTCTGAGC-3’ 

OOEP F:  5’-TATGGTCGATGATGCTGGTG-3’  

 R:  5’-GGGTCTCTCAGTTCCTGCAC-3’ 

The OOEP primer set was used as negative control. qPCR was performed on the 

Applied Biosystems 7300. Enrichments were assessed by normalising qPCR results 

to the mock IgG IP. 

2.2.2.5 ChIP-seq 

For each sample, the sequencing library was prepared using the Microplex Library 

Preparation Kit (Diagenode) and sequenced on the MiSeq (Illumina) according to 

manufacturer’s instructions. 
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2.2.3 Co-immunoprecipitation 

Immunoprecipitation of TET2 and EBF1 was performed with 3 µg of anti-TET2 

antibody (sc-136926, Santa Cruz Biotechnology) and protein A sepharose in cell 

lysates of SW1353 cells with 5% of the lysate taken as input control before IP.  

2.2.3.1 Preparations 

 1.1 ml per sample of lysis buffer was prepared (30mM HEPES, 20mM β-

glycerophosphate, 20mM KCl, 1mM EGTA, 2mM NaF, 1mM Na3VO4, 1% 

TX100, 1mM benzamidine, 4µM leupeptin, 5mM PMSF, 1mM DTT at pH 

7.4).  

 Labelled 1.5ml Eppendorf tubes were prepared and pre-chilled on ice for at 

least 15 min. 

2.2.3.2 Collection and lysis of cells 

 Two flasks of suspension cells were pooled into 50ml falcons. 

 Cells were gently washed with ice-cold PBS containing Ca2+ and Mg2+ (from 

Invitrogen DPBS) – about 4ml. 

 Cell suspensions were pooled to end up with one falcon per condition. 

 Tubes were spun down and the supernatant taken off; 1 ml fresh PBS was 

added to the pellet and the suspension was transferred to a 1.5 ml 

eppendorff tube. 

 The tubes were spun down and PBS aspirated. 

 400 µl of lysis buffer were added to each tube.  

 Tubes were incubated for 1h (cell lysis step), on roller in cold cabinet. 

 In the meantime, the centrifuge was down to 4°C. 

 The samples were spun for 10 min at maximum speed at 4°C. 

 New tubes were pre-chilled on ice. 

 Supernatant was transferred into the new pre-chilled tubes. 

 A 50 µl aliquot of each sample was taken as input lysate control; 20 µl of 

Lammli buffer was added and sample was boiled for 5 min at 95°C; it was 
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then left to cool down and stored at -20°C until ready to run the samples by 

SDS-PAGE. 

 IPs were topped up to 1,000 µl. 

 5 µl were taken for the Bradford assay and mixed with 1 ml of a 1 in 5 

dilution of Bradford reagent (also made for the blank); 900 µl of the lowest 

concentration sample were used and a proportional volume of the others. 

2.2.3.3 Pre-clearing and immunoprecipitation 

 A second set of new tubes was pre-chilled on ice; 15 µl of Protein A/G-

sepharose were added to each tube. 

o Protein A was used for rabbit antibody. 

 A similar amount of each sample was transferred into the pre-chilled tubes 

containing Protein A/G-sepharose. 

 Tubes were placed in 50 ml Falcon tubes and placed on RM5 rocker in 

cooling cabinet for 1-2 hours. 

 In the meantime, a third round of new tubes was pre-chilled on ice. 

 Samples were spun down for 5 min at 4°C at 500 g. 

 The supernatant was transferred into pre-chilled tubes containing the 

antibody. 

 The tubes were placed in 50 ml Falcon tubes and placed on RM5 rocker in 

cooling cabinet overnight. 

 Beads were added (30 µl) and the samples incubated for 5 hours on rocker 

in cold cabinet. 

 Tubes were spun for 3 min at 500 g, 4°C; the supernatant was collected and 

constituted the non-bound fraction. 

 Each sample (bead pellet) was washed three times with 1 ml of wash buffer 

(20 mM Tris pH 8.0, 1M NaCl, 10% glycerol, 1% NP-40, 5mN EDTA pH 8.0, 

0.5 mM EGTA pH 8.0, 50mM NaF, 20 mM β-glycerophosphate, 1mM 

Na3VO4) ; Samples were spun 3 min, at 500 g at 4°C between each wash. 
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 After the final wash, the supernatant was taken off without touching the 

beads; 40 µl Lammli buffer were added; the samples were boiled for 5 min. 

2.2.3.4 Western blotting 

Detection of EBF1 and TET2 by western blotting (WB) was conducted with 1:500 

and 1:1,000 dilutions of EBF1 (Abnova, H00001879-M02) and TET2 (Abcam, 

ab94580) antibodies respectively, with 5% milk as blocking agent in TBST (TBS 

with 0.1% Tween 20). Secondary antibodies from GE Healthcare were used at 

1:5,000 dilutions. 

2.3 Osteosarcoma xenografts 

2.3.1 Samples and xenografting 

OS patient-derived tumour xenografts (PDXs) were generated from tumour 

samples received directly from surgery (Stanmore RNOH). Samples were washed 

in PBS and cut to the appropriate size (~2-3mm3). Under isoflurane anaesthesia 

delivered via a nasal attachment tube, tumour fragments were inserted 

subcutaneously in one or both flanks of the mice. In total, 14 female SCID mice (3-6 

weeks old) were kept at the UCL Animal Housing facility in individually-ventilated 

cages, and monitored at least twice a week for the duration of the experiment. 

Procedures were followed as described in the project license (delivered by the UK 

Home Office PPL 70/6666) and, when necessary, animals were sacrificed 

according to an approved schedule 1 protocol. Tumour growth was measured 

using digital measuring callipers. Tumours were snap-frozen in liquid nitrogen 

after excision. The two OS patient tumour samples were obtained from the 

Stanmore Musculoskeletal Biobank, satellite to the UCL Biobank for Health and 

Disease, with ethics approval EC17/14 (“Using tissue surplus to diagnostic 
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requirements to study the biology of benign and malignant tumours, and identify 

the cell of origin of these tumours”). 

2.3.2 450K array 

2.3.2.1 Overview 

The experimental aspects of the methylation array analysis of the OS PDXs were 

nearly identical to that described above for the CS samples. Briefly, genomic DNA 

was extracted from PDX samples using the QIAamp DNA Mini Kit (QIAGEN) 

according to manufacturer’s instructions. The bisulfite conversion of the DNA was 

performed using the EZ DNA Methylation kit (Zymo Research) on 500 ng. 

Conversion efficiency was assessed by quantitative PCR (qPCR), as described 

above. The Infinium HumanMethylation450 BeadChips were processed by UCL 

Genomics as per manufacturer’s instructions.  

2.3.2.2 Analysis 

The raw data obtained from the 450K arrays was processed from the IDAT files 

through to normalisation with BMIQ80 using the ChAMP71 pipeline, and all 

subsequent analysis was performed with the R statistical software v3.0.2 and 

custom scripts (Appendices). Quality control of the array data included removal of 

probes for which any sample did not pass a 0.01 detection p-value threshold, bead 

cut-off of 0.05, and removal of probes on the sex chromosomes. Probes passing the 

detection p-value threshold of 0.01 in the mouse-only sample were also removed 

from downstream analysis in all xenografts to avoid confounding signal from any 

mouse DNA. The genomic and epigenomic features used are those annotated on 

the array and enrichments were calculated on the basis of 1,000 repetitions of a 

random selection of probes from the overall probe set used in the analysis. The 

data was deposited into GEO under accession GSE59352. 



Materials and Methods 

   61 

2.3.3 MeDIP-seq 

Methylated DNA Immunoprecipitation (MeDIP) followed by next-generation 

sequencing was also carried out on 200 ng DNA extracted from the seven PDXs and 

two patient tumours. 

2.3.3.1 Sonication 

 DNA was resuspended in 85 µl EB buffer (Qiagen). 

 The sample was sonicated using the Bioruptor UCD-200 sonicator 

(Diagenode) for 1h (4 x 15 min cycles on high, 30s on/off cycles). 

 The undiluted sample was run on a High Sensitivity DNA  bioanalyzer chip 

(Agilent), aiming for a peak of 180-230 bp. 

 The sample was re-sonicated if necessary. 

2.3.3.2 Library preparation 

Library preparation for MeDIP-seq was conducted using the NEBNext kit (New 

England BioLabs), according to the  manufacturer’s instructions. The product was 

eluted in 41 µl EB. Fragment length was checked again by running 1 µl of undiluted 

sample on a High Sensitivity DNA chip. 

2.3.3.3 Immunoprecipitation 

The MeDIP portion of the procedure was carried out following the steps below, 

with the Auto MeDIP kit (Diagenode), SX-8G IP-Star (Diagenode) and IPure kit 

(Diagenode): 

 The ‘Antibody (Ab) Dilution’  was prepared as follows 

o Antibody   1 µl 

o Ultra pure Water  15 µl 

o Total Volume   16 µl 

 The ‘Antibody Mix’ was prepared as follows 

o Diluted Ab (from Step 1) 2.40 µl 

o MagBuffer A (5X)  0.60 µl 
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o MagBuffer C   2.00 µl 

 The‘Incubation Mix’ for one IP (and Input) was prepared as follows: 

o MagBuffer A (5X)  24 µl 

o MagBuffer B   6 µl 

o Lambda Spike cocktail  1 µl + 1 µl 

o Ultra pure Water   18 µl 

o Adapter Ligated DNA 40 µl 

o Total Volume/reaction 90 µl 

 The mix was incubated at 100°C for 10 min. 

 MagBuffer A (1X) was prepared: 

o MagBuffer A (5X)  25 µl 

o Ultra pure Water  100 µl 

 IPure Elution Buffer was prepared: 

o Buffer A   115.4 µl 

o Buffer B   4.6 µl 

 The IP-Star was loaded: 

o The IP Star was switched on approximately 10 min before loading to 

equilibrate Peltier heat/cool blocks to 4°C. 

o The protocol MeDIP for IPure.HLD was selected. 

o The following reagents were loaded into a 12-strip tube (1 strip tube 

per IP): 

o Well 1: Empty 

o Well 2: Empty 

o Well 3: Empty 

o Well 4: 50 µl IPure Elution Buffer  

o Well 5: 50 µl 1xMagBuffer A + 10 µl beads 

o Well 6: 50 µl 1xMagBuffer A 
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o Well 7: 75 µl Denatured Incubation mix + 20 µl 1xMagbuffer A + 5 µl 

antibody mix 

o Well 8: 100 µl MagWashBuffer1 

o Well 9: 100 µl MagWashBuffer1 

o Well 10: 100 µl MagWashBuffer1 

o Well 11: 100 µl MagWashBuffer2 

o Well 12: 50 µl IPure Elution Buffer 

 After MeDIP, the following reagents were loaded into a NUNC U96 plate: 

o Well 1: 100 µl Buffer C  

o Well 2: 100 µl Isopropanol, 15 µl beads, 2 µl carrier (+ 100µl 

MeDIP/input) 

o Well 3: 100 µl Wash Buffer 1 

o Well 4: 100 µl Wash Buffer 2 

 50 µl of purified DNA was eluted. 

2.3.3.4 Size selection 

 A 100 ml 2% Tris/Borate/EDTA (TBE) agarose gel was prepared for each 

DNA sample.  

 The PCR amplified DNA was mixed with 3 µl 6X loading dye and loaded on 

the gel, leaving space either side for 50 bp ladders. 

 Gel electrophoresis was carried out in freshly prepared TBE buffer at 100 

volts for 100 min. 

 Following gel electrophoresis, the gel was transferred onto a UV 

transilluminator. 

 A strip of aluminium foil was placed beneath the lane containing the DNA 

sample to prevent UV crosslinking of DNA. 

 With a clean scalpel, the desired 50 bp library size range was excised: 250-

300 bp, 300-350 bp, 350-400 bp; the agarose was dissolved in 2 ml lo-bind 

tubes. 
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 DNA libraries were extracted and purified using a MinElute Gel DNA 

extraction kit (QIAGEN), according to the manufacturer’s instructions, 

eluting in 12 µl EB. 

2.3.3.5 Sequencing 

Libraries were sequenced on a HiSeq 2000 (Illumina), according to the 

manufacturer’s instructions. 

2.3.3.6 Analysis 

The sequencing data was uploaded to GEO (GSE59352) and processed from fastq 

files using the MeDUSA81 pipeline. The reads were aligned separately to both the 

hg19 and mm10 genomes, with all redundant and unpaired reads removed. After 

assessment of the levels of likely contamination from mouse DNA, those reads 

aligning only to human or to both human and mouse were kept for downstream 

analysis with custom scripts (Appendices). 

 



Genomic and Epigenomic Analysis of Chondrosarcoma 

   65 

3 GENOMIC AND EPIGENOMIC 

ANALYSIS OF 

CHONDROSARCOMA 

Most of the results presented in this chapter, relating to the epigenetics of 

chondrosarcoma, an assessment of RainDrop-BSseq, and the derivation of copy 

number data from methylation arrays, have been published1,49,72 and the 

corresponding abstracts and title pages can be found in the Appendices.  

All clinical information and samples, including 2-HG measurements and IDH1/2 

mutation status were provided by Prof. Adrienne M. Flanagan et al. The RainDrop-

BSseq library design was conducted in collaboration with RainDance Technologies 

and the microdroplet PCR was carried out by the company in Boston, MA; I 

performed the subsequent sequencing at and with the assistance of Illumina 

(Cambridge, UK), as part of my industrial placement, which was a requirement of 

the MRC CASE studentship supporting this work. Sequencing reads were filtered 

and aligned by Dr. Gareth Wilson. 
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3.1 Introduction 

Over half of central CS harbour a somatic heterozygous gain-of-function mutation 

in IDH1 and/or IDH263. These mutant enzymes’ 2-HG production leads to the 

competitive inhibition of, among others, the TET demethylases and subsequent 

DNA hypermethylation. Although this CpG island hypermethylation phenotype has 

been previously observed in other malignancies30, this represents the first 

characterisation of its presence and effects in CS. I describe them here using 

methylation microarrays, with validation by two sequencing-based methods and 

replication in an independent set of samples. The transcriptional profiles of CS 

samples with or without IDH mutations were also investigated with microarrays 

and are discussed in detail in this chapter. In addition, the data obtained from 

methylation arrays was harnessed to investigate copy number alterations in the 

analysed samples72 and uncover novel genomic features of CS. 

3.2 DNA Methylation and IDH mutation in 
Chondrosarcoma 

An initial sample cohort of 12 IDH-wild-type (WT) and 15 IDH-mutant (MUT) CS 

were profiled using the 450K array.  After quality control of the raw data (Chapter 

2), including removal from the whole dataset of any probe not passing a 0.01 

detection p-value threshold, a final set of 472,655 β values was used in the 

downstream analysis.  

3.2.1 Unsupervised analysis 

The data was initially analysed in an unsupervised manner to determine the 

impact of IDH mutations on the observed methylome relative to other clinical 

factors as well as potential technical artefacts.  I performed a principal component 
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analysis using singular value decomposition (SVD)69 in order to determine which 

factors had the highest impact on the variation in the data (Figure 3.1).  

The first component, PC-1, is significantly correlated with both mutation status 

and 2-HG levels, with Kruskal-Wallis p-values of 2 x 10-6 and 6.8 x 10-4, 

respectively. In addition, tumour grade also appears to affect the first few 

components. This can be explained by the uneven distribution of grades within the 

two groups, as grade I and grade III tumours were only present in the WT and MUT 

groups, respectively: IDH mutation is linked to increased DNA methylation and, as 

certain tumour grades are only found in one of the MUT or WT groups, the SVD 

analysis is only highlighting here an indirect link between tumour grade and DNA 

methylation. Moreover, previous studies63,64 have found no correlation between 

tumour grade and IDH mutation and the present sample distribution seems to 

have occurred by chance. 

Other available clinical factors, such as age at disease presentation and patient sex, 

were not significantly associated with principal components. Technical effects 

were also minimal with only a weak contribution of Sentrix ID, the 450K chip 

identifier, to the fifth component. These results support an effect of IDH mutation 

on the methylome via abnormal production of 2-HG. 
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Additional supporting evidence of IDH mutation as the main effector of the 

observed methylation variability was provided by unsupervised consensus 

clustering (Figure 3.2). I used the median absolute deviation (MAD) estimator, a 

more robust measure of variance than standard deviation, to select the 150 most 

variable probes on the array, irrespective of sample mutation status, and 

performed the clustering based solely on the methylation values of these probes. 

These 150 probes correspond to a threshold of MAD ≥ 0.5, indicating that they 

Figure 3.1:  Principal component analysis 

PC-k refers to the kth principal component. Here the first two components associate most 
strongly with IDH mutation status and 2-HG levels. Original figure from Guilhamon et al.1 
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show methylation differences across samples in the order of 50% methylation 

changes. 

The resulting plot shows four clusters, with the first two as 92% WT (1 MUT and 

12 WT) and clusters three and four made up exclusively of MUT samples. I 

performed this analysis again by lowering the MAD threshold to include additional 

probes (300 and 500) and obtained identical results, demonstrating robustness of 

the clustering. 

 

 

Figure 3.2: Unsupervised consensus clustering 

Clustering performed on 150 most variable probes as determined by MAD (threshold 
MAD ≥ 0.5). Clusters one and two contain mainly WT samples, while clusters three and 
four are exclusively MUT. Original figure from Guilhamon et al.1 
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3.2.2 Supervised clustering 

After establishing that the main contributor to the variation in methylation among 

CS samples was IDH mutation status, I conducted a supervised analysis using a 

Wilcoxon rank-sum test to ascertain both the directionality of methylation change 

between WT and MUT sample groups and the loci showing the largest and most 

significant changes. In order to narrow down the number of identified MVPs to 

those with the highest potential for functional consequences and to compensate 

for the Wilcoxon test not incorporating the absolute differences in methylation 

between groups in its results, I applied an absolute Δβ filter of 0.35 (|Δβ| ≥ 0.35) in 

addition to a statistical significance filter of p-value ≤ 0.001. Based on these filters, 

a total of 3,057 MVPs were available for downstream analysis. 

Plotting the absolute median β difference between WT and MUT (Figure 3.3) 

shows that the vast majority of these 3,057 probes are hypermethylated in the IDH 

mutant group relative to the wild-type (99.5%, 3,042/3,057), providing further 

evidence that the hypermethylation phenotype observed in other cancers carrying 

these mutations can also be found in CS. 

Hierarchical clustering of the samples (Figure 3.4) defines three distinct groups, 

indicated on the plot by the coloured bands labelled ‘Cluster’: from left to right, an 

exclusively WT cluster displaying low methylation levels, (median β = 0.16) a MUT 

group with intermediate to high β values (median β = 0.55) and a second MUT 

cluster with high methylation scores (median β = 0.75).  The mutation status also 

correlates strongly with 2-HG levels, with a Spearman rank correlation coefficient 

ρ of 0.84 and p-value equal to 3.62 x 10-8. This suggests, that not only is the 

hypermethylation phenotype observed here comparable to that previously found 

in other malignancies24,29,31, but the mechanism linking it to IDH mutation is also 
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similar, and involves abnormally elevated levels of 2-HG production. Other clinical 

factors, such as age and sex, are not significantly correlated with IDH status or 

methylation profile. 

 

 

 

 

Figure 3.3:  Frequency distribution of median β value differences between 
MUT and WT groups in selected probes 

Of the top 3,057 probes, 3,042 (99.5%) are hypermethylated in MUT relative to WT 
samples. Original figure from Guilhamon et al.1 
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Figure 3.4: Hierarchical clustering of the top 3,057 MVPs between MUT and 
WT 

The 3,057 MVPS were selected based on a Wilcoxon rank-sum test (p ≤ 0.001) and an 
additional filter for large differences in methylation levels between the two sample groups 
(|∆ß| ≥ 0.35). The samples separate into three groups: low/unmethylated WT cluster (1), 
intermediate/high methylation MUT cluster (2), and high methylation MUT cluster (3). 
The measured 2-HG levels positively correlate with IDH mutation and hypermethylation, 
while other clinical factors such as age and sex show no correlation. Original figure from 
Guilhamon et al.1 
 



Genomic and Epigenomic Analysis of Chondrosarcoma 

   73 

3.2.3 Genomic and epigenomic distribution of IDH mutation-
associated MVPs 

The 450K methylation array is annotated in such a way that each probe can be 

classified by its position within a particular genomic and/or epigenomic feature. 

The annotation chosen by Illumina for this array defines CpG islands as DNA 

sequences with a GC content of 50% or higher and an observed/expected CpG ratio 

of 0.6 or more, while CpG shores are mapped to the 2 kb regions directly 

surrounding the islands, both upstream and downstream8. Aiming to find whether 

a pattern existed in the distribution of significant MVPs across the genome, I 

calculated the enrichment of the annotated features (Figure 3.5) through a 

random resampling strategy (p-value ≤ 0.001) (Chapter 2).  

 

 

Figure 3.5: Feature enrichment in 3,057 IDH mutation-associated MVPs 

a) Percentage enrichment of epigenomic features determined by random resampling (p-
value ≤ 0.001) indicates that CpG islands and shores are enriched for by 19.1% and 11.3%, 
respectively. 
b) Percentage enrichment of genomic features determined by random resampling (p-value 
≤ 0.001). TSS1500 = 1,500 bp upstream of transcription start site; TSS200 = 200 bp 
upstream of transcription start site; the TSS1500 region is enriched for by 9%, while 
probes located within the gene body are depleted by 6.4%. 
Original figure from Guilhamon et al.1 
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The identified MVPs are over-represented in CpG islands and shores by 19.1% and 

11.3%, respectively as well as in promoter-associated genomic features such as 

transcription start sites (9%). High levels of methylation in CpG-dense regions 

associated with gene promoters are known to affect transcriptional regulation82 

and these IDH mutation-associated changes in methylation are thus likely to play a 

functional role in tumour development. 

3.2.4 Validation 

The results obtained from the 450K array were validated using two additional 

methods: RainDrop-BSseq and pyrosequencing. 

3.2.4.1 RainDrop-BSseq 

A total of 27 target regions were analysed in each sample, amounting to 500 

individual amplicons, and covering 212 of the CpG sites present on the array. Each 

target region was centred on a particular CpG site and the targets were selected 

based on the following criteria: they were in genes central to the IDH mechanism, 

such as IDH1/2 and TET1/2/3, in genes previously known to play a role in CS 

development, as GLI2/3 in the Hedgehog signalling pathway, or among the most 

hypermethylated probes identified in the supervised analysis. The latter category 

was comprised of probes present in genes such as TP73, CUL1 and ACCN4. The 

selected sites were hypermethylated in MUT relative to WT, each was one of 

multiple loci found hypermethylated in the affected gene and they covered a range 

of genomic and epigenomic features. 

As RainDrop-BSseq used recently developed technology for a novel application, 

various issues arose in the process, only some of which could be remedied at the 

analysis stage. In the latter category was the occasional mismatch of amplicon 

length and sequencing read length: I used 150 bp paired-end reads for sequencing, 
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adequate for the longer amplicons, but these ranged from 70 to 200 bp in length, 

which translated into the sequences for shorter amplicons carrying a number of 

unidentified bases at each end and being classified as poor quality by automated 

alignment and read-filtering pipelines. This particular problem was partially 

solved by using more stringent trimming of the sequencing reads for alignment 

purposes. The other two issues I encountered could not, however, be corrected a 

posteriori. The first was a simple PCR clean-up issue: the products from the first 

round PCR conducted by RainDance Technologies had not been cleaned up in a 

way that excluded small primer dimers and these then amplified in the second 

round PCR, resulting in numerous short (20-30 bases) and uninformative 

sequences. The second issue was due to a technical flaw in the instrument used for 

the microdroplet PCR (Figure 3.6). The library was designed in a tiled manner, 

with overlapping amplicons in order to adequately cover the entire target region. 

This means that in some instances the reverse primer for a particular amplicon 

hybridised well downstream of the forward primer for the next amplicon, and 

when these were inaccurately placed together in a droplet, they amplified only the 

short region between them. Taking the following two regions as an example: 

chr2:121386496-121386610 and chr2:121386600-121386739; here the primer at 

chr2:121386610 was accidentally combined with the one at chr2:121386600 so 

that only the ten bases between them were amplified instead of the two full 

amplicons these primers were designed for.  
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Figure 3.6: Inaccurate coupling of PCR primers in RainDrop-BSseq 

Inadvertant mismatching of primers from overlapping tiled amplicons produced short, 
unexpected sequences. 
 

Despite these issues, using RainDrop-BSseq enabled me to validate the methylation 

score of a vastly superior number of  sites than would have been possible through 

pyrosequencing alone (Figure 3.7a). A total of 16 samples were used in the 

validation set, including 11 MUT and 5 WT  and 890 CpG sites across that entire 

cohort were covered at a sufficient depth (≥10 reads) to call their methylation 

score with confidence. Of those 890 loci, 98.8% (426/431) and 95.5% (429/449), 

in the WT and MUT groups, respectively, matched the methylation state 

determined with the 450K array . 

3.2.4.2 Pyrosequencing 

One of the most widely-used methods for validation of DNA methylation since the 

early 2000s has been pyrosequencing35,37,38. Briefly, the method involves designing 

primer pairs to amplify selected regions of bisulfite-converted DNA, and 

sequencing these fragments in a light-emitting reaction: tri-phosphate nucleotides 

are added sequentially to the reaction; if the nucleotide matches the template and 

hybridises, its incorporation releases a pyrophosphate which is then used in ATP 

generation, consequently providing the required substrate for the luciferase 

enzyme to emit light and indicate inclusion of the nucelotide.  
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Although well-established and characterised, pyrosequencing suffers from being 

notoriously challenging to optimise (~50% of designed primer pairs successfully 

amplify bisulfite-converted DNA in a methylation-unbiased manner) as well as 

low-throughput,  considering the comparatively large amount of data generated by 

current discovery tools (in this case, the 450K array). Nevertheless, it provided a 

useful benchmark to estimate the reliability of RainDrop-BSseq and the 450K 

array, both relatively recent technologies at the time. 

Two loci overlapping with those tested by both 450K and RainDrop-BSseq were 

tested in two WT and two MUT samples (Figure 3.7b). The results obtained with 

the different platforms agreed in every case, with a mean cross-platform difference 

of β = 0.09 (min = 0.01, max = 0.19). The validated methylation values ranged from 

low to high methylation, demonstrating the robustness of the chosen methods. 

3.2.5 Replication 

3.2.5.1 RainDrop-BSseq 

In addition to the validation set described above, I used RainDrop-BSseq to 

ascertain the methylation scores of selected sites in six previously untested MUT 

samples (Figure 3.7a), and compared those to the scores obtained with the same 

method and at the same loci, but in different samples: 94.3% (352/373) 

displayedmatching methylation levels.  
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Figure 3.7: Validation and replication with RainDrop BS-seq and 
pyrosequencing 

a) Cumulative bar chart of MVPs validated by RainDrop-BSseq. Of the selected MVPs, 855 
across 16 samples (11 IDH MUT + 5 IDH WT) validated, representing 98.8% and 95.5% in 
the WT and MUT groups, respectively. Bar chart of MVPs validated by RainDrop-BSseq in 
the replication set (n=6). Of the selected MVPs, 352 (94.3%) matched the values measured 
in the validation set. 
b) Cross-platform validation for MVPs at two different genomic sites. MVPs at the two sites 
represented a range of methylation levels (low, intermediate, high). All three methods 
produced similar results, with measurements at each site within 19% (max beta 
difference) of each other.  
Original figure from Guilhamon et al.1 

 

3.2.5.2 450K methylation array 

I additionally ran a further cohort of 24 independent samples on 450K arrays. 

These 14 MUT and 10 WT samples were used to validate the hypermethylation 

profile originally identified as opposed to individual CpG methylation levels. Using 

the top 500 MVPs from the discovery set, as ordered first by increasing p-value and 

second by decreasing absolute median difference between sample groups, this 

replication set was separated into clusters by IDH mutations status, with 92% 

(22/24) of samples being accurately classified (Figure 3.8). The MUT cluster in 

this cohort is clearly hypermethylated relative to the WT samples, thus replicating 

the previously identified profile. 
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Figure 3.8: Replication of IDH-related hypermethylation phenotype in an 
independent cohort 

Supervised hierarchical clustering of the 24 samples in the 450K replication set using the 
top 500 MVPs from the first cohort (top). The samples separate into two clusters, with 
92% (22/24) of samples grouped in the correct cluster. Box plots of β-values from these 
500 MVPs (bottom). The MUT sample group is clearly hypermethylated relative to the WT. 
Original figure from Guilhamon et al.1 

3.2.6 Integration with gene expression 

In addition to methylation profiling, 46 CS samples (30 IDH MUT and 16 IDH WT) 

were analysed for gene expression on the Illumina HumanHT-12 v4 Expression 

BeadChips. A total of 32 of these samples overlap with the 450K sample cohort. 

Sample preparation and analysis protocols are described in detail in Chapter 2 and 

the full analysis script can be found in the Appendices. 

3.2.6.1 Unsupervised analysis 

Quality control of the raw data showed no significant difference in the proportion 

of expressed probes between the MUT and WT cohorts (Welch Two Sample t-test 

p-value = 0.12). After background correction and normalisation, I performed 

multidimensional scaling (MDS) of the entire dataset (47,210 probes, 46 samples) 
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to check for similarity within groups (Figure 3.9), and the samples did not cluster 

by either IDH status or processing batch (samples were processed in two groups).  

 

Figure 3.9: MDS of normalised data 

Samples do not cluster by either IDH mutation status (top panel; MUT = red, WT = green), 
or processing batch (bottom panel; Batch 1 = blue, Batch 2 = orange). 



Genomic and Epigenomic Analysis of Chondrosarcoma 

   81 

Annotation quality information for the HumanHT-12 v4 array83 provides a score 

for each probe based on its sequence to quantify its reliability (‘Perfect’, ‘Good’, 

‘Bad’, ‘No match’). Probes with multiple genomic matches, for example, are 

annotated as ‘Bad’. Removing all probes labelled as ‘Bad’ or ‘No match’ yielded a 

dataset of 34,463 probes. Hierarchical clustering of the 500 most variable probes 

from this dataset (Figure 3.10), as determined by calculating the interquartile 

range, shows no clustering of CS samples by IDH mutation status. These results 

suggest a lack of differential expression between MUT and WT samples. 

 

Figure 3.10: Hierarchical clustering of the 500 most variable probes  

Clustering of the 46 CS samples according to the 500 most variable probes shows no 
clustering of IDH MUT (red) or WT (green). 
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3.2.6.2 Supervised analysis 

Following on from the unsupervised analysis, investigating differential expression 

between MUT and WT groups reveals no probe as significantly differentially 

expressed after p-value adjustment for multiple testing and only two probes with 

an absolute log fold change (logFC) greater than two. In addition, clustering of the 

cohort based on the 500 probes with either the lowest p-value or largest absolute 

logFC reveals no distinct grouping of samples by mutation status (Figure 3.11). 

This further indicates that the hypermethylation phenotype observed in CS does 

not seem to be correlated with significant changes in gene expression. Possible 

explanations for this observation will be discussed at the end of this chapter and in 

Chapter 6. 

3.2.6.3 Integration of methylation and gene expression profiles 

In an attempt to assess whether the observed methylation changes could be linked 

to differential expression, albeit non-significant, I performed further filtering of 

both datasets. 

The set of 3,057 differentially methylated probes was narrowed down to those 

annotated to promoter regions (TSS1500 and TSS200); the resulting gene list was 

further filtered to retain only promoters for which probes were either all 

hypermethylated or all hypomethylated. This left 525 genes in the methylation 

dataset, all of which had hypermethylated promoters in the IDH MUT cohort 

relative to WT. 

The gene expression set was restricted to contain only genes with either only one 

probe, or multiple probes that showed the same directionality in logFC: a positive 

logFC indicates higher expression in the MUT cohort, while a negative logFC shows 

the reverse. This filtering step yielded an expression dataset of 16,342 genes. 
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The 525 genes in the methylation dataset and the 16,342 from the gene expression 

data overlap by 387 unique genes. Of those, only 213 (55%) displayed 

downregulation of gene expression (logFC < 0) in the MUT samples, while all 387 

had hypermethylated promoters. Thus just over half of genes with 

hypermethylated promoters display any level of transcriptional downregulation, 

making the functional consequences of 2-HG-induced hypermethylation in CS 

tumours unclear. 
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Figure 3.11: Hierarchical clustering of CS samples by p-value and logFC  

The top 500 probes as determined by either p-value (top) or logFC (bottom) were used to 
cluster the 46 CS samples. The samples did not separate into distinct groups based on IDH 
mutation status (MUT = red, WT = green). 
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3.3 Copy number variation in chondrosarcoma 

3.3.1 Using methylation arrays for assessment of copy number 

In addition to providing genome-wide coverage of DNA methylation, the 450K 

array can be used for CNV analysis, as recently described by Feber et al72.  Some of 

the results described below were used in the validation of that method. Briefly, the 

450K arrays assess the methylation level at a particular locus as the ratio of the 

signal intensity from the methylated probe to the total intensity, i.e. the sum of 

methylated and unmethylated signal. It follows that one can use the total intensity 

measured, after within- and between-array normalisation, as representative of the 

copy number state. This method has been integrated within the existing ChAMP 

pipeline71 and is described in more detail in Chapter 2. 

3.3.2 Objectives and samples 

I proceeded to investigate genomic alterations in chondrosarcoma by combining 

the test and replication sets of samples from the methylation analysis above in 

order to potentially identify novel CNVs in CS. Although genomic variations have 

been reported for CS61, few of those were found at high-frequency (≥ 20%), and the 

use of 450K arrays for CNV analysis, with their probe distribution being markedly 

different from common SNP arrays, may additionally uncover novel sites of 

alteration. 

A total of 51 CS samples were used in this analysis, corresponding to 29 MUT and 

22 WT, as well as three pooled blood samples used as a reference. Finally, ten of 

the tumour samples, six MUT and four WT, were also processed on the Illumina 

CytoSNP-12 array for validation purposes. 
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3.3.3 Analysis workflow 

ChAMP was run as recommended with a detection p-value filter of 0.01 and a bead 

cut-off of 0.05. The output of the CNV module of the pipeline was then uploaded 

onto the GISTIC73 server to calculate group frequencies of alterations as well as 

attributing p-values to these alterations, based on background levels of CNVs and 

probe distribution. In GISTIC, the amplification/deletion threshold was set at 0.3, 

with a minimum probe number set to four, a confidence level of 0.95 and p-value 

threshold of 0.05. 

3.3.4 Method validation 

In order to validate the use of 450K arrays for CNV estimation, ten of the CS 

samples were also run on a standard SNP array. The raw intensity data was 

processed similarly to that from the methylation arrays and run through the CNV 

module of the ChAMP pipeline and the GISTIC algorithm. 

As shown in Figure 3.12, both methods identified similar alterations overall. 

However, a noteworthy distinction can be made in these similarities between large 

(≥ 10 Mb) and focal (≤ 1 Mb) alterations (Table 3.1), as detailed below. 

3.3.4.1 Large alterations 

In investigating large alterations, the vast majority of both gains (82.6%) and 

losses (75.2%) identified by the 450K array were also found when running the 

sample on an Illumina SNP array, demonstrating the robustness of this method to 

identify genomic alterations of 10 Mb or more. 

3.3.4.2 Focal alterations 

When comparing the list of small genomic changes identified by the two methods, 

however, the percentages of overlaps are noticeably lower with only 6.7% of gains 

and 11.1% of losses identified by the 450K and found in the SNP list. As shown in 
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Table 3.1, this is most likely due to the limited number of probes (< 300,000) and 

differing distribution on the SNP array. Around half of the focal alterations that 

were not identified by the SNP array could not have been due to an insufficient 

number of probes in the region, with the threshold for the minimum number of 

probes in GISTIC set to four. Figure 3.13 displays the genomic distribution of 

probes on the 450K and SNP arrays and illustrates noticeable variation in the 

probe frequency particularly in gene-poor regions, where the SNP array typically 

contains fewer probes. 

3.3.4.2.1 Comparison with exome sequencing 

These ten samples were also profiled for CNV by exome sequencing by Flanagan et 

al.61, and, although the gains and losses identified overlapped those found with the 

450K by only 13 and 4, respectively, the focal changes were better represented on 

the SNP chip with 32 of the 78 (41%) alterations also identified by the SNP array. 

However, the much smaller number of focal alterations identified with exome 

sequencing means no general conclusions about method agreement can be drawn 

from this comparison. 
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Figure 3.12: CNVs in CS as determined by methylation and SNP arrays 

Output from GISTIC for alterations determined by 450K array (top) and Illumina SNP 
array (bottom). Each column is a sample (1-6: MUT; 7-10: WT), ordered by genomic 
location. 
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Table 3.1: Comparison of identified CNVs as a function of alteration size 

Gains and losses of copy number in samples profiled with both array types (450K and 
SNP) were overlapped for either large (≥ 10 Mb) or focal (≤ 1 Mb) CNVs. 

 

 

 

Large CNVs 

(≥10 Mb)

#450K 

Gains
#SNP Gains #Overlap %Overlap

#450K 

Losses

#SNP 

Losses
#Overlap %Overlap

MUT 1 14 39 8 57.14 37 40 20 54.05

MUT 2 59 61 52 88.14 23 25 23 100.00

MUT 3 33 57 29 87.88 9 29 7 77.78

MUT 4 54 57 50 92.59 28 25 28 100.00

MUT 5 28 53 27 96.43 39 16 15 38.46

MUT 6 36 50 30 83.33 23 40 21 91.30

WT 1 36 47 33 91.67 26 41 20 76.92

WT 2 40 55 32 80.00 27 26 20 74.07

WT 3 16 45 9 56.25 22 38 13 59.09

WT 4 40 57 37 92.50 5 13 4 80.00

MEAN 35.6 52.1 30.7 82.59 23.9 29.3 17.1 75.17

Small CNVs 

(≤1 Mb)

#450K 

Gains
#SNP Gains #Overlap %Overlap

#450K 

Losses

#SNP 

Losses
#Overlap %Overlap

MUT 1 41 126 1 2.44 32 119 3 9.38

MUT 2 308 19 2 0.65 71 36 5 7.04

MUT 3 54 43 0 0.00 96 43 9 9.38

MUT 4 197 30 5 2.54 74 27 8 10.81

MUT 5 127 15 0 0.00 70 16 4 5.71

MUT 6 86 69 2 2.33 34 37 1 2.94

WT 1 120 50 15 12.50 85 64 12 14.12

WT 2 68 40 1 1.47 39 35 4 10.26

WT 3 7 47 2 28.57 27 83 5 18.52

WT 4 36 28 6 16.67 56 49 13 23.21

MEAN 104.4 46.7 3.4 6.72 58.4 50.9 6.4 11.14

SNP array 

markers in 

Small CNVs 

(≤1 Mb)

#450K 

Gains 

not in 

SNP 

Gains

#with < 4 

SNP 

markers

%with < 4 

SNP 

markers

#450K 

Losses 

not in 

SNP 

Losses

#with < 4 

SNP 

markers

%with < 4 

SNP 

markers

MUT 1 40 26 65.00 29 16 55.17

MUT 2 306 199 64.80 66 23 34.85

MUT 3 54 31 56.60 87 25 28.74

MUT 4 192 124 63.83 66 26 39.39

MUT 5 127 78 61.11 66 33 50.00

MUT 6 84 67 79.76 33 10 30.30

WT 1 105 64 60.58 73 28 38.36

WT 2 67 51 76.12 35 20 57.14

WT 3 5 2 40.00 22 11 50.00

WT 4 30 18 52.00 43 27 62.79

MEAN 101 66 61.98 52 21.9 44.67
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Figure 3.13: Genomic distribution of array probes 

Frequency distribution of probes on the CytoSNP (red) and 450K (blue) arrays. Orange 
boxes indicate example regions over which 450K probes are present at higher frequency 
and would allow better detection of smaller alterations than the CytoSNP. 
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3.3.5 Identification of novel alterations in CS 

Due to the scarcity of CS, little is known to date about copy number variation 

associated with the disease, with only ten studies resulting from a literature search 

on the topic61,62,84-91. I combined the genomic locations of CNVs derived in these 

studies from array-comparative genomic hybridisation (array-CGH), SNP arrays, 

and exome sequencing into a list of known CS CNVs. 

In parallel, after running GISTIC on the 51 CS samples in my cohort, I calculated the 

frequency of alteration of identified regions, counting only samples with an 

alteration amplitude ≥ 0.3. This list of regions was then compared to that obtained 

from the literature to find 23 copy number gains and five losses overlapped. The 

differences and overlaps between CNVs previously identified and those observed 

with the 450K are displayed in Figure 3.14. 

Of particular interest were those recurrent CNVs (frequency > 20%) identified 

here with the 450K array that had not been previously reported for central CS: a 

total of 16 gains and three losses. The copy number losses annotate mainly to 

genes that are commonly structurally variable, such as major histocompatibility 

complex genes (HLA-DQA1, HLA-DRB1, HLA-DRB5, HLA-DRB6) and beta defensins 

(DEFB125-129, DEFB132). However, one noteworthy exception is the osteoblast 

specific factor, periostin (POSTN). This gene has been reported as over-expressed 

in the stroma of bone metastases of breast cancer92 and is thought to aid the 

infiltration of tumour cells in this matrix-rich environment. Its loss in CS could 

serve the reverse purpose and facilitate the initial detachment of tumour cells for 

metastasis. Some of the novel gains are also annotated to genes involved in tumour 

progression and metastasis. For example, hyaluronan synthase 1 (HAS1) provides 

a matrix through which cells can migrate, while matrix metallopeptidase 11 
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(MMP11) is involved in the degradation of extracellular matrix, one of the first 

steps in metastasis of tumour cells. The tumour necrosis factor receptor 

TNFRSF10C, also linked to copy number gain, functions as an antagonistic receptor 

and prevents cytokine-induced apoptosis. Finally, the deubiquitinating enzyme 

USP17L2 prevents cell cycle arrest through the removal of ubiquitin marks from 

CDC25A, thus preventing its degradation in response to DNA damage. 
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Figure 3.14: Chondrosarcoma CNVs 

Display programme written by Roach et al.93 Copy number gains and losses previously 
identified are displayed on the left of each chromosome, in green and red, respectively. 
Those identified with the 450K are on the right. Bars across the entire width of the 
chromosome represent CNVs present in both sets. 
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3.4 Conclusions and future work 

Mutations in the IDH genes are frequent in central CS but the DNA methylation 

profile of these mutant tumours had not been previously characterised. Using 

genome-wide methylation arrays, I show here that the hypermethylation 

phenotype associated with IDH gain-of-function mutations in other cancer 

types24,29,31 is also present in CS and is enriched for functionally relevant regions 

such as CpG islands and gene promoters. 

This was validated using both the well-established pyrosequencing technique and 

the novel RainDrop-BSseq based on parallel amplification method followed by 

next-generation sequencing, and replicated in an independent cohort. 

Although the identified methylation signature replicated well across technological 

platforms and sample cohorts, additional sources of potential variation should be 

taken into account in future studies. Firstly, while all IDH1 and IDH2 mutant 

samples were grouped together under the umbrella of ‘IDH mutant’ in this analysis 

(albeit with a vast majority of IDH1 mutants), more subtlety in the observed 

methylation phenotype might have been obtained if these had been analysed as 

separate groups, with further subdivision by mutation site: mutations at R140 and 

R172 in IDH2 have indeed been shown to be associated with markedly different 

outcomes in AML patients94. Secondly, the supervised analysis shown in Figure 

3.4 reveals a gradient in the degree to which IDH mutant samples were 

hypermethylated, with two distinct clusters of mutant samples, one with 

intermediate to high methylation and the other with high methylation. This could 

be indicative of patient heterogeneity, with each patient sample showing differing 

mutational loads with regards to IDH. In addition to this difference in mutational 

load across tumours, tumour heterogeneity within each tumour should also  be 
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considered as the fraction of tumour analysed could itself contain a larger number 

of cells affected by an IDH mutation, thus biasing the measured methylation. 

Gene expression analysis of the full CS cohort provided intriguing results. Despite 

the observed widespread DNA hypermethylation, no significantly differentially 

expressed genes were identified. Moreover, only half of the genes with 

hypermethylated promoters showed any sign of downregulated expression, 

suggesting no correlation between those two events, contrary to the established 

paradigm of transcriptional regulation by DNA methylation. Although some of the 

other studies investigating IDH-linked hypermethylation had reported gene 

expression changes, these occurred at noticeably fewer genes than expected; in 

glioma, for example, of the 2,611 genes with significant differential methylation in 

the promoter region only 429 were both hypermethylated at the promoter and 

downregulated, while 176 were hypomethylated and upregulated29.  A possible 

explanation for these inconsistencies could be that DNA methylation acts as a 

locking mechanism for prior changes in chromatin95, and that gene expression 

changes do not follow but precede the establishment of hypermethylation; with 

the desired expression pattern in place, the tumour cell would conserve energy by 

preventing demethylation and thus any dynamic modulation of the epigenetic 

profile in subsequent cell cycles. It is noteworthy, though, that no difference in 

survival has been observed between patients with IDH mutant CS and those with 

tumours wild-type for IDH63, suggesting any growth advantage provided by an IDH 

mutation does not translate into more virulent tumour development, at least in 

chondrosarcoma. However, these mutations occur early in tumourigenesis63, so 

alternative mechanisms conferring equivalent growth advantages could have been 

developed by their IDH wild-type counterparts. 
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Finally, using a recently developed method, I additionally extracted, and validated, 

CNV information from the methylation arrays and identified a number of novel and 

recurrent CS alterations in genes involved in tumour progression and metastasis, 

providing intriguing avenues for future research. 
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4 META-ANALYSIS OF IDH-
MUTANT CANCERS 

Most of the results presented in this chapter were published1 and the 

corresponding abstract and title pages can be found in the Appendices. The 

modelling analysis of the interaction described in this chapter (4.5.3) is based on 

advice from Ha Phuong Nguyen and Dr. Tracey Barrett. 
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4.1 Introduction 

The IDH mutations discussed in the last chapter have previously been studied in 

the context of other cancer types and are present in ~70% of  low-grade gliomas30 

(LGGs), ~10% of acute myeloid leukaemias30 (AMLs) and cholangiocarcinomas31 

(CCs), as well as at much lower frequencies in other malignancies. In these also, the 

early64 mutations in IDH genes have been shown to induce a DNA 

hypermethylation24,29 phenotype focused particularly on CpG islands. This 

suggests a common mechanism linking the IDH enzyme’s gain of function with a 

reduction in demethylation, potentially through inhibition of the TET 

dioxygeneases96. Although this inhibition is most likely to be the link between 

mutations in IDH and DNA hypermethylation in these four malignancies, it should 

be noted that the same accumulation of 2-HG also affects other dioxygenases, such 

as histone demethylases and proxyl hydroxylases, which could be contributing to 

the observed phenotype. With the aim of assessing whether the DNA 

hypermethylation affects shared pathways and/or tissue-specific processes in each 

tumour type, I performed a meta-analysis of the CS data described in the previous 

chapter with publically available datasets from LGG, AML and CC (Chapter 2). 

4.2 DNA methylation data processing 

The AML sample set (n = 398) used in this study was analysed with the HpaII tiny 

fragment enrichment by ligation-mediated PCR97 (HELP) assay. It is a restriction 

enzyme-based method, and, in this particular case, was designed to target CpG 

sites in gene promoters. The samples from LGG (n = 81), CC (n = 50), as well as the 

CS data were all processed on the 450K array, which covers not only the gene 

promoter regions but also gene bodies, untranslated regions and some intergenic 

loci. This enabled me to analyse both LGG and CC datasets using the same 
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statistical tests and filters as those employed in the CS supervised analysis, as 

previously detailed (Wilcoxon p-value ≤ 0.001, │Δβ│≥ 0.35). At the time, no more 

suitable alternatives for the AML dataset were available, so in order to facilitate the 

inclusion of this cancer type in the meta-analysis, I restricted the 450K data to 

information from probes annotated to CpG islands or shores within promoter 

regions, thus matching the coverage provided by the HELP assay in terms of 

functional genomic regions.  The comparative analysis was then carried out at the 

gene level using the pathway analysis software IPA (Ingenuity Systems, Chapter 2) 

and custom R scripts on genes found differentially methylated in at least one of CS, 

LGG, CC and AML (640, 1,028, 169, and 48 genes, respectively). 

4.3 Pathway analysis 

A preliminary analysis of overlapping genes in the four sets revealed that CS and 

LGG had 188 genes in common (random resampling p-value ≤ 10-5), CS, LGG, and 

CC overlapped by 16 (p-value ≤ 10-6), but no gene appeared in all four cancer types 

(Figure 4.1). 

Although no genes were found to be commonly affected in all cancers, the same 

cellular processes could be targeted through differential methylation of different 

genes within the same pathway. Using IPA, I thus analysed the four gene sets for 

shared pathways: molecules from the dataset that were linked to a pathway as 

annotated in the IPA database were considered for the analysis and given a p-value 

corresponding to the probability that the association between the genes in this list 

and each pathway is due to chance alone, based on Fisher’s exact test with a 

further adjustment for multiple testing (Benjamini-Hochberg70). Although none of 

the annotated pathways reached statistical significance, I identified one process 
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that was heavily targeted in all four cancer types: retinoic acid receptor (RAR) 

activation (Figure 4.2).  

 

Figure 4.1: Overlap of significantly differentially methylated genes from four 
cancer types 

Individual pairs of cancer types have small overlaps in the affected genes but no single 
gene was differentially methylated between MUT and WT in all four tumour types. 

 

The RAR activation pathway has been studied in the context of many malignancies: 

retinoids perform a variety of crucial functions involved for instance in vision, cell 

proliferation and differentiation, neural and immune functions and their signalling 

is often compromised early in carcinogenesis98; moreover, retinoids are known as 
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potent growth inhibitors in various cancers, including skin, bladder, kidney, 

prostate, and breast99. As shown in the pathway diagram, five genes from CC, two 

from AML, 17 from LGG and 14 genes from CS were differentially methylated in the 

RAR activation pathway. For example, retinol-binding protein 1 (RBP1), the carrier 

protein responsible for the transport of retinol, is present in the gene sets from CS, 

LGG and CC. This gene has been shown recently to become hypermethylated 

following the knock-in of a mutant IDH1 gene into a cancer cell line100. In the CS 

cohort, it displays significant hypermethylation in the promoter region and its 

gene expression is downregulated, as displayed in Figure 4.3. 
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Figure 4.2: The RAR activation pathway in IDH-mutant cancers 

Schematic diagram of the RAR activation pathway produced with IPA. Molecules are 
represented as nodes, and the biological relationship between two nodes is represented as 
an edge (line). All edges are supported by at least one reference from the literature, from a 
textbook, or from canonical information stored in the Ingenuity Knowledge Base. Nodes 
are displayed using various shapes that represent the functional class of the gene product. 
Edges are displayed with various labels that describe the nature of the relationship 
between the nodes (for example, P for phosphorylation, T for transcription).Original figure 
from Guilhamon et al.1 
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Figure 4.3: RBP1 methylation and gene expression in CS 

The RBP1 promoter is significantly hypermethylated (p-value = 6.9 x 10-6) in CS 
harbouring an IDH mutation compared to wild-type samples (left panel). RBP1 gene 
expression is also significantly downregulated (p-value = 0.018) in mutant samples. 
Original figure from Guilhamon et al.1 
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Aside from this general cancer pathway, however, the other pathways identified by 

IPA as associated with the input gene sets were more directly related to each 

individual tissue of origin than to general tumour development: in CS, for example, 

affected processes included function of osteoblasts, osteoclasts and chondrocytes; 

in LGG, axonal guidance; Myc signalling in AML, and in CC, circadian rhythm. These 

initial results suggested that the observed hypermethylation phenotype might be 

following a tissue-specific pattern. 

In order to further test this hypothesis, I then exclusively analysed genes found 

differentially methylated in only one cancer type for affected functions and 

correlations to disease. Using the CS-only genes, the most significant functional 

category was tissue development (right-tailed Fisher Exact Test p-value = 5.44 x 

10-5 - 4.76 x 10-2; number of genes n = 46) and it included development of 

connective tissue in its top functions. In LGG, neurological disease and 

psychological disorders were the diseases most significantly associated with the 

gene set (p-value = 2.04 x 10-5 - 4.38 x 10-2), while nervous system development 

and function appeared as the most significant category (p-value = 9.43 x 10-4 - 4.38 

x 10-2, n = 12), with proliferation of neuronal cells and extension of neurites and 

axons as its top functions. Similarly in the epithelial disease CC, hair and skin 

development, including proliferation of epithelial cells, was the most significant 

functional category (p-value = 2.85 x 10-3 - 2.63 x 10-2), as was haematological 

disease in AML (p-value = 2.34 x 10-3 - 4.67 x 10-3). 
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4.4 Motifs for a TET DNA-binding partner 

In the four cancer types I analysed, IDH-mutant tumours display widespread DNA 

hypermethylation, increases in 2-HG, accompanied by disruption of TET function, 

at least in LGG and AML. The loci affected by the hypermethylation, however, 

appear to be tissue-specific, as shown by the gene and pathway analysis above. 

These seemingly contrary observations of a common mechanism but different 

target sites point to a mechanism of demethylation in which the function of the 

TET proteins is regulated in a tissue-specific manner. This hypothesis is in fact 

aligned with the concept of DNA methylation as a tissue-specific signature: if the 

methylation pattern in healthy cells varies from tissue to tissue, it is not aberrant 

that the enzymes responsible for its regulation might themselves be controlled in a 

tissue-specific fashion. I therefore hypothesised that this regulation could be 

achieved through interaction with a DNA-binding partner that could itself be under 

transcriptional or post-transcriptional regulation. 

To investigate this possibility, I analysed the 100 bp sequences surrounding IDH-

related MVPs in CS, LGG and CC for common binding motifs using the multiple 

expectation maximisation for motif elicitation (MEME)79 suite of tools. The motif 

5’-CDGGRA-3’ was significantly enriched in the input sequences (MEME p-value = 

10-3, discriminative regular expression motif elicitation (DREME) p-value = 7x10-

70).  I then proceeded to scan 1 kb windows around the MVPs for the presence of 

this motif, as DNA methylation is generally considered to be tightly correlated over 

such a distance101,102, and with no prior knowledge of the mechanics of the 

interaction between TET proteins and the sought DNA-binding partner, any likely 

distance of interaction needed to be assessed. The identified motif was present in 

93% of sequences tested (8,008/8,582). 
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With the aid of another tool from the MEME suite, TOMTOM, I compared the motif 

to those used by known DNA-binding factors for similarity, and identified the early 

B-cell factor 1 (EBF1) binding motif (Figure 4.4) as a significant match (p-value = 

0.0025). 

 

Figure 4.4: EBF1 binding site motif is enriched around MVPs 

Motif logo matching between CDGGRA (bottom) and the consensus EBF1 motif (top) as 
determined by TOMTOM. The offset of the sequence relative to the known motif was used 
in conjunction with the nucleotide frequencies in each motif to determine the significance 
of the match. Original figure from Guilhamon et al.1 

4.5 EBF1: a likely candidate? 

Using motif discovery tools facilitated the selection of a possible candidate for the 

role of DNA-binding partner of the TET enzymes, EBF1. This role is supported by 

previous findings indicating a function for EBF1 in transcriptional regulation: it 

has been linked to the induction of CD79a promoter demethylation during B-cell 

differentiation103, and binding of EBF1 has also been correlated with histone 

modifications associated with poised chromatin and transcriptional activation104. 

However, before proceeding to experimentally test the interaction of these 

proteins, I wanted to use available data to ascertain whether EBF1 fulfilled 

essential requirements to perform that function: 1) is it expressed in the CS 
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samples under study, irrespective of IDH mutation status? 2) Is it enriched for 

(epi)genomic locations where it would be needed to perform its proposed 

function? 3) Is EBF1 structurally capable of interacting with the TET enzymes in a 

functional way?  

4.5.1 EBF1 gene expression in CS 

The expression of EBF1 in CS was assessed on 19 MUT and 13 WT samples (Figure 

4.5) using gene expression microarrays and found to be similar in the two groups, 

with no significant difference observed (Wilcoxon p-value=0.34) . 

 

Figure 4.5: EBF1 gene expression in IDH-mutant and wild-type CS 

Gene expression microarray signal in the mutant and wild-type groups showing no 
statistically significant difference (p=value = 0.34) in EBF1 expression. Original figure from 
Guilhamon et al.1 

4.5.2 EBF1 binding sites in the genome 

The data used here corresponds to chromatin immunoprecipitation experiments 

followed by next-generation sequencing (ChIP-seq), and was produced by two 

working groups of the ENCODE consortium and downloaded from UCSC genome 

browser in the form of ChIP-seq peak coordinates105; the data was generated in 

GM12878 cells, a lymphoblastoid cell. 
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Each of the ENCODE working groups produced an independent dataset from which 

peaks were called. Although both identified a similar number of binding 

sites/peaks (36,140 and 33,410 genome-wide), the overlap between them was 

poor (56%).  In order to only analyse regions with a high likelihood of being true 

positives, I created a consensus peak list, keeping only those peaks in each dataset 

that overlapped with a peak from the other. This process yielded a final dataset of 

21,113 peaks. 

In order to assess enrichment of those peaks for specific genomic and epigenomic 

features, coordinates for these features were taken from the Ensembl database106; 

shores were defined as 2,000 bp upstream and downstream of each CpG Island, 

and shelves as the next 2,000 bp from the shore, so that each CpG Island has two 

shores and two shelves. This replicates the feature definition used on the 450K 

array8. The effective (i.e. mappable) hg19 genome was used as background 

(2,451,960,000bp). 

Enrichment percentages were calculated using the following formula: 

(x/y) – (T/N), where: 

x = Total bp in peaks in FeatureX 

y= Total bp in EBF1 peaks 

T= Total bp in background in FeatureX 

N= Total bp in background 

The enrichments and depletions shown in the waterfall plots below (Figure 4.6) 

were all calculated as being extremely significant by a hypergeometric test (p-

value ≤ 10-8). A noteworthy caveat to this analysis is that the ideal background to 

calculate significance would have been the ‘Input’ data for the corresponding 
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experiment. However, firstly the input tracks were not available for these 

experiments; secondly, it would have been impossible to determine an accurate 

input consensus sequence for the two datasets; thirdly, the effective genome can 

be considered an acceptable background in this case, considering ChIP-seq is a 

genome-wide method. 

This analysis clearly shows that EBF1 binding sites are significantly enriched in 

regions of high CpG density (CpG islands and shores by 6.1% and 6.6%, 

respectively) and in promoter regions (12.9%), supporting EBF1 as a potential 

regulator of demethylation. 
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Figure 4.6: Enrichment of EBF1 binding sites in genomic (bottom) and 
epigenomic (top) features. 

EBF1 binding sites are significantly overrepresented in CpG shores and islands and gene 
promoter regions, and depleted in intergenic regions. 
 



Meta-analysis of IDH-mutant cancers 

   111 

4.5.3 EBF1 and TET2:  structure and interaction modelling 

The crystal structures of both EBF1 and TET2 with DNA have been solved19,107,108, 

enabling modelling analysis of their interaction.  

TET2 contains a C-terminal catalytic domain with a double stranded beta helix 

core (DSBH), which itself carries a cysteine-rich domain at its N-terminus. EBF1 

functions as a dimer, and each of the monomers is composed of the following 

regions: a DNA binding domain (DBD) at the N-terminus forming a symmetric 

clamp over the binding site; an Immunoglobulin Plexins Transcription factors-

like/Transcription factor Immunoglobulin (IPT/TIG) domain thought to be 

involved in protein-protein interaction; a Helix Loop Helix (HLH) domain 

responsible for dimerization. 

In silico methods can be applied to predict ways in which EBF1 and TET2 might 

interact. The ZDOCK109 server, for instance, was designed for protein docking 

modelling and using as input the Protein Data Bank (PDB) representations of the 

solved structures for two proteins outputs likely interaction models using an 

energy-based scoring function. This scoring function is based on 1) knowledge-

based potential, or the likelihood of the assessed model being real based on known 

protein structures and interactions in the PDB, 2) shape complementarity, and 3) 

electrostatics. 

Only one representation of TET2 exists in the PDB at the time of writing, that of 

human TET2 bound to DNA (PDB ID: 4NM6), but the structure of EBF1 has been 

solved in both human and mouse; in the case of the former, domains were resolved 

individually, whereas the mouse Ebf1 structure includes all domains of interest: 

DBD, IPT/TIG, and HLH. The human and mouse proteins share 100% sequence 

homology, so I used the available mouse structure (PDB ID: 3MLP) to test the 
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interaction with TET2, as it provided the most complete representation of 

functional EBF1 domains. 

The ZDOCK server returned the interaction model pictured below (Figure 4.7). It 

displays the Ebf1 DBD bound to the DNA and connected to the IPT/TIG and HLH 

domains, which are predicted and shown as interacting with the TET2 DSBH 

domain. Collaborators in the Barrett laboratory are pursuing this line of inquiry 

but current models certainly support a possible interaction between TET2 and 

EBF1. 

 

Figure 4.7: Interaction prediction for Ebf1 and TET2 

Proteins Ebf1 (left) and TET2 (right) interacting via contact of the TET2 DSBH domain and 
Ebf1 IPT/TIG and HLH domains. Model created using the ZDOCK server and first described 
by Dr. Tracey Barrett et al. 

4.6 EBF1, a novel interaction partner for TET2 

In order to validate the predicted co-localisation and interaction between EBF1 

and TET2, I performed two sets of experiments in the SW1353 CS cell line: ChIP-

qPCR and co-immunoprecipiation (co-IP) followed by western blotting. 
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4.6.1 EBF1 and TET2 ChIP 

ChIP-qPCR was performed on three loci, using antibodies against TET2 and EBF1. 

The target sites, located in the vicinity of CCND2, FABP3, and FBRSL1, were selected 

based on the following criteria (Table 4.1): they were hypermethylated in the 

MUT samples of the CS cohort relative to WT; they showed elevated methylation 

levels in the SW1353 cell line (β > 0.9); there was at least one predicted binding 

site for EBF1 within 50 bp, either upstream or downstream.  

 

Table 4.1: Characteristics of selected ChIP targets 

 

In addition, I selected a negative control locus in an intergenic region to normalise 

the measure enrichments, based on its high methylation levels in CS samples, 

irrespective of the mutation status and the absence of any predicted EBF1 binding 

sites in the surrounding sequence.  

The enrichments were calculated by the ΔΔCt method, normalising to both the 

mock IgG IP control and the negative control region where no binding of either 

protein was expected. As shown in the bar chart below (Figure 4.8), all three 

target sites were enriched for both TET2 and EBF1 binding, with fold enrichments 

ranging from 4 to 104. Moreover, the TET2:EBF1 ratio of these fold enrichments 

were similar for the three loci at 9.8, 6.2 and 11.6, further supporting the genomic 

co-localisation of the two proteins. 

A ChIP experiment, however, is performed on a population of cells; thus, although 

these results support co-localisation of EBF1 and TET2, they do not necessarily 

Targets MUT CS β-value WT CS  β-value p-value (BH) SW1353  β-value

CCND2 0.6238 0.0185 1.92 x 10-4 0.9764

FABP3 0.6331 0.0227 3.23 x 10-4 0.9882

FBRSL1 0.6555 0.0276 1.49 x 10-4 0.984
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suggest temporal co-localisation: in the cell population, cells at different stages in 

their cycle could have either TET2 or EBF1 bound at these sites without them 

being present there at the same time. Moreover, this type of experiment functions 

through immunoprecipitation of a DNA fragment of several hundred base pairs, 

making it possible for both proteins to be bound within the tested region but not 

interacting in a manner that would be functionally relevant. 

 

Figure 4.8: ChIP-qPCR for TET2 and EBF1 at three target loci 

ChIP-qPCR analysis indicates proportional presence of both TET2 and EBF1 at three loci. 
Fold enrichments were calculated by normalising to the mock IgG IP control. OOEP 
corresponds to the negative control region. Error bars are based on standard errors of the 
mean. 

4.6.2 Co-IP and western blot of TET2 and EBF1 

To alleviate these concerns and demonstrate interaction of TET2 and EBF1, I 

carried out a co-IP experiment using an antibody targeting TET2 (Figure 4.9). 

After precipitation of TET2 and its interacting proteins, I performed a western blot 

on the isolated fraction with an antibody against EBF1, and detected a strong EBF1 

band, demonstrating the endogenous interaction of TET2 and EBF1 in SW1353 

cells.  
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Figure 4.9: Co-IP followed by western blotting supports EBF1 as a TET2 
interactor 

Interaction of endogenous EBF1 and TET2 in SW1353 cells. The asterisk (*) indicates a 
longer exposure for the input lysates (5% of total). 

4.7 Conclusions and future work 

Observing a shared hypermethylation phenotype in CS, AML, LGG and CC tumours 

with IDH mutations suggested that common biological processes might be affected 

in these malignancies, and the meta-analysis presented here did indeed identify 

the RAR activation pathway as independently targeted in all four cancer types, 

with one of its main components, RBP1, being hypermethylated and 

downregulated in mutant CS. Further gene-level analysis, however, revealed that 

most of the differentially methylated sites in each neoplasm were tissue-specific, 

and those only affected in one cancer type are involved in pathways particular to 

their tissue of origin.  

Based on their structure, it is likely that the TET family of dioxygenases, although 

able to distinguish methylated from unmethylated CpGs with the CXXC domain in 

the case of TET1 and TET3, would require a binding partner to select loci for 

demethylation in a tissue-specific manner. Searching for common binding motifs 
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around sites hypermethylated in IDH mutant tumours unveiled EBF1 as a likely 

candidate for this role: its previously identified links to promoter demethylation, 

constant expression levels in CS tumours irrespective of IDH status, and ability to 

functionally interact with the TET proteins support this conclusion. The ChIP-qPCR 

and co-IP experiments demonstrate co-localisation and interaction of EBF1 with 

TET2. It should be noted that I also investigated TET1 and TET3 for potential 

interaction with EBF1 but TET1 was not expressed in the assayed samples and 

although TET3 was expressed, no enrichment for the protein was found at any of 

the hypermethylated sites I investigated. As TET1 and TET3 both contain a CXXC 

domain known to preferentially bind to unmethylated CpGs while TET2 has 

undergone an evolutionary loss of that domain, it is conceivable that TET1 and 

TET3 use a different targeting mechanism (Chapter 6). 

Although demethylation can be simply and passively achieved though lack of 

methylation maintenance during replication, for example in the maternal genome 

after fertilization110, certain patterns of demethylation have been observed that 

can only be explained through an active process as in human monocytes, 

postmitotic cells, differentiating into dendritic cells111. The biochemical role of the 

TET family in active demethylation has been extensively discussed over the past 

few years, but to date no mechanism has been presented to explain targeted DNA 

demethylation. The interaction of the TET2 demethylase with the transcription 

factor EBF1 to affect tissue-specific CpGs presented here constitutes the first 

supporting evidence for a targeted demethylation pathway. 

Future experiments should focus on elucidating the composition of the TET2-EBF1 

complex: the experiments described here are unable to discern whether the 

interaction is direct or mediated by one or more other proteins. Furthermore, 
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additional factors might be involved in the complex, contributing to its function but 

not involved in the interaction of these two proteins. Mass spectrometry analysis 

of the TET2 interactome should provide answers to these questions but is at 

present hindered by the quality of antibodies available. 

Collaborators Ha Phuong Nguyen and Dr. Tracey Barrett are additionally 

developing an assay to test the specific interaction between the truncated catalytic 

domain of TET2 and the IPT/TIG domain of EBF1, which should provide novel 

insights into the mechanisms of this demethylation pathway. 
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5 PDXS AS A DISCOVERY TOOL 

FOR SARCOMA EPIGENOMICS 

Most of the results presented in this chapter have been submitted for publication. 

The corresponding abstract and title pages can be found in the Appendices. DNA 

from the colon cancer xenografts was provided by the OncoTrack Consortium, and 

the 450K arrays for these samples were processed by Dr. Lee M. Butcher. 

Methylation data for the corresponding patient tumours was directly provided by 

the OncoTrack Consortium.  The methylation data from head and neck cancer 

samples mentioned in the analysis was provided by Dr. Matthias Lechner. The full 

analysis script can be found in the Appendices. 
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5.1 Introduction 

Xenografting of human tumours into mice or rats has been performed since the 

late 1960s112, but it was not until the advent of immunodeficient mouse strains 

(e.g. severe combined immunodeficiency, SCID) in the mid-1980s that the practice 

became widespread in basic research and preclinical studies113. These new models 

of disease brought with them new hopes of therapeutic advances but have also 

displayed a number of noteworthy limitations113. Firstly, both the surrounding 

stroma and the blood vessels recruited to the growing tumour during angiogenesis 

effectively incorporate murine cells into the transplanted tumour. Secondly, 

placing the xenograft orthotopically is technically challenging, hence most are 

grown subcutaneously, effectively eliminating the possibility of replicating 

metastatic disease. Despite these limitations, patient-derived tumour xenografts 

(PDXs) have proven extremely accurate at predicting drug response in various 

cancer types114, and have been used in numerous preclinical studies115. 

Osteosarcoma (OS) is the most common form of primary bone cancer, yet remains 

incredibly rare with an age-standardised incidence in the UK of 8 and 6 per million 

in males and females, respectively52. Thus, one of the major issues with the study 

of rare cancers such as OS is the scarcity of primary samples to analyse. This 

highlights the need for an accurate model of the disease and patient-derived 

tumour xenografts have been shown in multiple cancer types to better represent 

the genetic and gene-expression characteristics of tumours than in vitro cell 

lines116. Moreover, because OS presents most often in adolescents and young 

adults, who are less likely to enrol into clinical trials117, patient recruitment can 

often take several years, thus enhancing the inherent jeopardy in drug selection for 
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these trials. With this in mind, in vivo tumour models that most accurately replicate 

the patient’s condition are a crucial factor in experimental pharmacology. 

PDXs constitute one such model that is widely used in preclinical research118, and 

OncoTrack, the largest European public-private biomarker consortium which aims 

to develop novel biomarkers for targeted therapy119, generated PDXs that were 

included here as an additional tumour type and an example of a common cancer 

(colon cancer). Despite the popularity of PDXs, only a few systematic studies have 

compared their fidelity to the original tumours from which they were derived. 

Nonetheless, the findings have been encouraging: in pancreatic cancer for instance, 

gene expression patterns were faithfully retained in PDXs and the majority of the 

observed changes were associated with pathways reflecting the microenvironment 

120. To my knowledge however, only one study has assessed genome-wide DNA 

methylation changes in head and neck squamous cell carcinomas using the less 

powerful Infinium 27K Beadchip, which found no statistically significant 

changes121. 

To address this gap in our current knowledge, I have carried out a comprehensive 

assessment of the suitability of PDXs for cancer epigenomics. The assessment 

included methylome analysis using array- and sequencing-based technologies of 

primary and secondary PDXs derived from rare (OS) and common (colon cancer) 

cancers as well as computational simulations.    

5.2 Comparison of osteosarcoma PDXs and patient 
tumours 

To investigate the methylation changes linked to deriving xenografts from patient 

tumours, I subcutaneously inserted osteosarcoma fragments from two patients in 

the flanks of SCID mice, and grew them over two generations according to the 
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scheme described in Figure 5.1.  The two patient tumours came from patients of a 

similar age (13 and 14), both diagnosed with high-grade osteosarcoma in the left 

distal femur and both taken post-chemotherapy. The tumour labelled as T2P was 

less cellular than T1P however, perhaps explaining the lower initial yield of 

successful xenografts. The six mice described in this figure correspond to six of a 

total of 14 animals used: an initial set of six were given subcutaneous injections of 

cell suspensions but these led to no tumour growth. In addition, two mice died in 

the course of the experiment with solid tumour fragments: one in the first 

generation, after engraftment of fragments from patient tumour T2P, and the other 

in the second generation after engraftment of fragments from T1X1. 

A final sample set consisting of two patient tumours (T1P and T2P), four first 

generation PDXs, and three second generation PDXs were available for 

methylation analysis on the Illumina Infinium 450K Beadchips8. 

 

Figure 5.1: Osteosarcoma PDX derivation scheme 

A single fragment from each patient tumour, approximately 1 mm in diameter, was 
inserted subcutaneously into each flank of a SCID mouse. Patient tumour 1 (T1P) gave rise 
to three first generation PDXs and two second generation PDXs, while Patient tumour 2 
(T2P) was used to produce one PDX at each generation. 
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A major concern with analyses of human tumours grown in mice is the potential 

for signal contamination by host DNA from tumour vascularisation during its 

development or from the surrounding stroma when extracting the tumour. In 

order to eliminate these confounders in this methylation analysis, an additional 

mouse-only sample was processed on the 450K array and the 45,934 probes 

passing quality control were removed from downstream analysis. The raw data for 

all samples was subsequently processed through the ChAMP analysis pipeline71 

(Chapter 2) to produce a final dataset of 9 samples and 463,558 probes. 

The distributions of methylation at the genome-wide and feature-specific levels for 

each sample are shown in Figure 5.2. Although methylation levels appear 

remarkably consistent within each tumour set, and in line with expected feature-

specific values (e.g. low methylation at CpG islands), there is a slight increase in 

methylation levels across all features between the two patient tumours and their 

derivatives. 

Specifically assessing methylation differences at each probe between a PDX and its 

original patient tumour further supports the maintenance of most of the 

methylome in tumour xenografts: Figure 5.3a shows that only a small fraction of 

the assessed CpG sites display large changes in methylation. From previous work49, 

we know that 95% of fully unmethylated probes display  β-values ≤ 0.31, while 

fully methylated probes have β-values ≥ 0.82; thus a Δβ threshold of 0.51 can be 

used as the minimum change expected for a CpG to be observed as going from fully 

unmethylated to methylated or vice-versa (“reversed methylation”). Using this 

threshold in the comparisons of PDXs and patient tumours, as shown in Figure 

5.3b, an average of only 0.85% of probes in the T1 set (n=5) and 6.35% in the T2 
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set (n=2) are measured as reversing their methylation status, leading to inaccurate 

results if using the PDX as a proxy for the patient tumour. 

In order to verify that the reversed methylation observed here was not a technical 

artefact, I performed the same analysis on technical replicates of pooled whole 

blood samples: three of the replicates were compared to one of the blood samples 

and only two, two, and zero probes with reversed methylation were observed in 

each of the respective comparisons. This demonstrates that, although small, the 

changes observed in the patient tumour - PDX comparisons are true biological 

shifts rather than technical artefacts.  

 

Figure 5.2: DNA methylation distribution by feature 

For each feature, in each sample, the β-values are binned into 1% methylation increments 
(described by the colour scale), and the percentage of probes at each methylation level is 
shown in the individual plots. The top and bottom eight plots correspond to the T1 and T2 
sets, respectively. TSS= Transcription Start Site, IGR= Intergenic Region, Whole Genome= 
all probes. 
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Figure 5.3: Assessment of methylation changes in OS PDXs 

a) For each PDX, the absolute difference (βPatient- βXenograft) is calculated at each probe and 
binned into 1% methylation difference increments (described by the colour scale); the 
percentage of probes showing each methylation difference level is shown in the individual 
plots. 
b) Number and percentage of probes in each comparison changing by 0.51 or more, 
corresponding to all probes going from fully unmethylated to fully methylated and vice-
versa. 
 
 
 

5.3 Comparison of osteosarcoma PDXs across generations 

Interestingly, although each set of PDXs displays this shift with xenografting, a 

constant profile is then maintained within a xenograft lineage: T1X2A, T1X2B and 

their 2nd generation tumours all displayed consistent levels across features 

(Figure 5.2), as did T2X1 and T2X1X1, demonstrating that although the change in 
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host is linked to a slight increase in methylation levels, subsequent xenografting is 

not accompanied by additional changes. This is confirmed by the vastly reduced 

number of reversed methylation events observed between first and second 

generation PDXs as opposed to those identified within the first generation; Figure 

5.3 reveals that an average of only 0.07% (n=3) of CpG sites see their methylation 

scores increase or decrease by over 0.51 after the first generation. This result 

suggests either an initial reaction to the new host, that is then preserved in further 

generations (as the mice used were isogenic), or a loss of tumour heterogeneity as 

only a fragment of the initial patient sample was used for xenografting, or a 

combination of these two factors. The fact that loss of heterogeneity would be 

expected to persist in further generations as only a fragment of the grown tumour 

is transplanted at each passage, and that signal from new host stromal cells and 

vascularisation affect gene expression in specific pathways (such as extra cellular 

matrix formation)120 suggests that the observed epigenetic change is due primarily 

to implantation of the tumour into a new host. 

5.4 Validation with MeDIP-seq 

In addition to the methylation arrays, the osteosarcoma PDXs and patient samples 

were analysed by Methylated DNA Immunoprecipitation followed by low-coverage 

next-generation sequencing (MeDIP-seq42). Alignment, filtering of reads, and 

calling of differentially methylated regions (DMRs) were performed using the 

MeDUSA pipeline81. In order to minimise read contamination by mouse DNA, the 

fastq files were aligned separately to the human and mouse genomes and those 

reads aligning only to mouse were removed from downstream analysis.  
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In order to ensure that this approach yielded the most accurate set of human 

reads, I also filtered the reads using the Xenome122 protocol and compared the 

outputs (Figure 5.4).  

 

Figure 5.4: Comparison of read filtering methods 

Reads from sample T2X1 were filtered using either the Xenome protocol or simple 
alignments to hg19 and mm10 and exclusion of mouse-only reads. Retaining only reads 
that mapped to either human-only or both human and mouse, the overlap between the 
two methods was over 99%. This figure is based on the numbers from the T2X1 analysis 
but this was performed for all samples. 
 
 

Briefly, the Xenome method involves first indexing the graft and host genomes, 

here human (hg19) and mouse (mm10), respectively. The sample reads are then 

classified according to matches to the indexed genomes into the following five 

categories: host, graft, both, ambiguous, neither. As recommended by the authors, I 

included reads binned into either graft, both, or neither, and obtained an almost 

complete overlap (98.5 - 99.3%) with the read set obtained by simple alignment to 
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mm10 and hg19 followed by selection of reads mapping to human only or both 

human and mouse (Table 5.1). Therefore, this latter, simpler method is preferable 

to the Xenome protocol, at least in the case of this dataset, as it produces a nearly 

identical filtered read set with fewer steps and a much smaller computational load: 

the processing load is reduced by avoiding the genome indexing and read 

classifying steps prior to alignment, while data storage is also diminished by 

circumventing the need to store the indexed host and graft genomes. The final read 

counts aligning to human, mouse or both as determined by the Medusa-only 

method are shown in Table 5.2. 

 

Table 5.1: Overlaps in final read sets between filtering methods 

The Medusa-only and Xenome protocols described above were applied separately to each 
sample. The overlaps in final read sets are shown in this table. They range from 98.5-
99.3%. 
 
 

Interestingly, a small proportion of reads from the patient tumours align only to 

the mouse genome (0.5% and 0.35% in T1P and T2P, respectively), as shown in 

Table 5.2. These samples were stored separately from the fragments inserted into 

the mice and at no time came intentionally in contact with murine DNA. Therefore, 

I investigated two possible causes for this observation: these samples were 

accidentally contaminated with mouse DNA during the MeDIP portion of the 

experiment when all samples were processed together; or these reads are 

technical artefacts. 

SAMPLE

Count Percent Count Percent Count Percent

Final Overlap 2,216,467 99.0 2,328,746 98.5 3,105,555 98.6

SAMPLE

Count Percent Count Percent Count Percent

Final Overlap 4,240,738 98.5 3,119,375 98.8 2,844,791 98.7

SAMPLE

Count Percent Count Percent Count Percent

Final Overlap 12,103,693 99.3 9,892,537 99.2 14,750,660 99.3

T2P T2X1 T2X1X1

T1P T1X1 T1X2A

T1X2BT1X2AX1 T1X2BX1
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Sample T1P T1X1 T1X2A 

  Count Percent Count Percent Count Percent 

Human 2,232,237 99 2,351,595 62.97 3,132,476 68.64 

Mouse 11,189 0.5 1,357,335 36.34 1,397,076 30.61 

Both 5,690 0.25 12,906 0.35 17,095 0.37 

Sample T1X2AX1 T1X2B T1X2BX1 

  Count Percent Count Percent Count Percent 

Human 4,292,507 86.27 3,139,160 63.93 2,870,080 75.98 

Mouse 655,435 13.17 1,733,618 35.31 882,557 23.36 

Both 13,811 0.28 18,677 0.38 12,512 0.33 

Sample T2P T2X1 T2X1X1 

  Count Percent Count Percent Count Percent 

Human 12,154,767 99.11 9,936,285 85.2 14,793,302 85.16 

Mouse 43,526 0.35 1,645,907 14.11 2,454,625 14.13 

Both 32,518 0.27 40,219 0.34 61,171 0.35 

 

Table 5.2: Final MeDIP-seq read counts for OS samples 

The fastq files were aligned to both Human (hg19) and Mouse (mm10) genomes. Only 
reads that aligned to either Human-only or both Human and Mouse were retained for 
downstream analysis. 
 
 

The possibility of contamination during processing was assessed by performing 

the same alignment procedure on data produced from MeDIP-seq experiments 

conducted by another person (Dr. Matthias Lechner) in a project not involving any 

mouse DNA at any stage. Data from two human head and neck cancer samples was 

used for this test, and similar proportions of these reads aligned to mouse only: 

0.37% and 0.49%. This suggests that contamination is unlikely to be responsible 

for these misaligning reads. Further support for this conclusion was provided by 

the genomic distribution of the mouse-only reads from the OS tumours: 78.2% and 

74.2% of those sequences from T1P and T2P, respectively, mapped to repeat 

regions as annotated by the mouse UCSC repeat masker (mm10), with proportions 

of repeat types vastly differing from a random distribution; for example, over 30% 
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of those mouse-only reads mapping to repeats in the OS patient samples 

corresponded to rRNA (ribosomal RNA) repeats, while only 5% would be expected 

from a random distribution of contaminating reads. These findings strongly 

suggest that the small proportion of sequencing reads from the patient samples 

that aligned only to mouse are the result of a technical artefact and do not 

represent a biological contamination.  

Of the total 1,095 intra-tumour MeDIP-seq DMRs identified across all seven patient 

tumour/xenograft comparisons, 48 overlapped with 450K probes that showed a 

reversed methylation profile in the same comparison. The seemingly low overlap 

between the two methods is due to the bias of MeDIP-seq towards regions of high 

CpG density42, such as CpG islands, whereas the sites identified by the 450K as 

displaying reversed methylation were enriched for intergenic regions with low 

CpG density, as detailed in section 5.5. Despite this, at those 48 overlapping loci, 

the directionality of methylation change between patient tumour and xenograft 

was concordant between the two methods, with the same 22 gains and 26 losses of 

methylation identified in the PDXs.  

Similarly, in an inter-tumour comparison, when assessing the ability of a PDX to 

substitute for its matched patient tumour in an inter-tumour comparison (i.e. T1P 

vs T2P), 450K and MeDIP-seq both identified similar trends (Figure 5.5 and 

Figure 5.6): for each technology, the differences between the patient tumours T1P 

and T2P were assessed to act as a reference set; each PDX was then compared to 

the unmatched-patient to see if the same differential methylation was captured. 

MeDIP-seq showed similar levels of concordance in the comparisons as the 

methylation array, with the exception of two of the hypomethylation sets 

(T1PvT2X1 and T1PvT2X1X1) that displayed lower levels of concordance (22.4% 
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and 17.6%, respectively) in the MeDIP-seq data (Figure 5.6). These, however, 

represent only small absolute differences in concordance (66 and 70 DMRs of the 

T1P vs T2P comparison were not identified in T1P vs T2X1 and T1P vs T2X1X1, 

respectively) due to the overall low number of hypomethylated DMRs detected 

between the two patient tumours (n=85) as compared to hypermethylated 

(n=1,980).  
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Figure 5.5: PDXs as substitutes for patient tumours: 450K 

The absolute difference in β value between the two OS patient tumours is calculated at each 
probe. The absolute difference between each PDX and the patient tumour from the other 
tumour set is then assessed, and a ΔΔβ for those two differences is calculated and plotted as 
in Figure 3. A result close to zero indicates concordance between the two measurements at a 
given CpG site. 
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Figure 5.6: PDXs as substitutes for patient tumours: MeDIP-seq 

Analogous to the process described above but with MeDIP-seq, the number of DMRs 
between the two patient tumours that can be recapitulated between a PDX and the patient 
tumour are shown, for both hyper- and hypo-DMRs 
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5.5 Methylome changes in colon cancer and osteosarcoma 
PDXs 

In order to further investigate those few CpG sites with changing methylation 

levels after xenografting, an additional set of six patient tumour/xenograft colon 

cancer pairs from the OncoTrack consortium were assessed using  Illumina 450K 

arrays and processed with the R package ChAMP. Grouping these with the first 

generation PDXs derived from OS tumours yields a final cohort of ten sample pairs 

(Figure 5.7). Using the same Δβ threshold of 0.51 as for the OS samples, a similarly 

low number of probes were identified as changing with xenografting in the first 

generation, with an average of 3.18% (n=6). 

 

Figure 5.7: Assessment of methylation changes in OS and colon cancer PDXs 

a) For each PDX, at each probe, the absolute difference (βPatient- βXenograft) is calculated and 
binned into 1% methylation difference increments (described by the colour scale); the 
percentage of probes showing each methylation difference level is shown in the individual 
plots. 
b) Number and percentage of probes in each comparison changing by 0.51 or more, 
corresponding to all probes going from fully unmethylated to fully methylated and vice-
versa.  
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To assess whether changes in methylation could be generalised to any tumour 

undergoing this procedure or whether they are tumour or tumour type-specific, 

the overlap in these changing probes within- as well as between- tumour types 

was evaluated. Statistically significant overlaps were found within each tumour 

type, with 236 probes changing in all first generation OS PDXs and five probes in 

colon cancer PDXs (random resampling p-value<10-4); however, gene ontology 

tools (GREAT123, Panther124, DAVID125) did not reveal any particular functional 

links between these changing sites and no overlap was found between the two 

tumour types. This suggests that the changes in methylation observed with 

xenografting are unlikely to be due to a systematic reaction to the xenografting 

procedure but rather point to tumour-specificity. 

Finally, I assessed whether these methylation changes were more likely to occur in 

certain genomic and/or epigenomic features. As shown in Figure 5.8, these probes 

are depleted for promoter regions and CpG islands, but enriched for intergenic 

regions, particularly those with low CpG density (p-value <10-4).  
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Figure 5.8: Enrichment of (epi)genomic regions with changing methylation 
status after xenografting 

Each probe on the 450K array is annotated to a genomic (TSS1500, Body, 3’UTR…) and 
epigenomic (island, shore, shelf, none) region. These were combined for each probe to 
form a unique (epi)genomic annotation and enrichments were calculated using a random 
resampling strategy. TSS=Transcription start site, IGR = intergenic region 
 

In the OS cohort, one of the patient tumours produced three first-generation PDXs, 

grown in two animals. Two of the PDXs (T1X2A and T1X2B) were harvested from 

the same mouse, one from each of the flanks. Despite the limited sample size, this 

set-up provides novel and important insights into the potential tumour-specificity 

of the observed changes in methylation. The results displayed in Table 5.3 reveal 

that over 86% of probes changing in T1X2B also underwent major changes in 

T1X2A, and over 64% of changes were common between all three PDXs originating 

from T1P. These overlaps, much higher than those observed within or across 

tumour types further confirm tumour specificity of the observed methylation 

changes that accompany xenografting. 
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Table 5.3: Overlap of changing CpG sites between PDXs originating from the 
same patient tumour 

T1X2A and T1X2B were grown from T1P in two flanks of the same mouse. T1X1 was 
grown from T1P in a different animal. Overlap percentages were calculated based on the 
number of changing sites in T1X2B, the PDX with the fewest changes. Over 86% of probes 
changing in T1X2B also underwent major changes in T1X2A, and over 64% of changes 
were common between all three PDXs originating from T1P. 

5.6 Practical implications for the use of PDXs in 
epigenetic studies 

With a mean percentage of 2.7% (n = 11,110) of CpG sites undergoing major 

methylation shifts in first generation xenografts, PDXs appear to be more than 

adequate proxies for patient samples in methylation studies. However, the tumour-

specific nature of these methylation changes implies that no accurate prediction as 

to which 2.7% of the measured methylation scores will be affected can reasonably 

be made beyond a general statement concerning enrichment in intergenic regions. 

In order to aid in the design of future studies, I devised a model to test how many 

450K arrays should be run when comparing two groups of samples in order to 

minimise the effects of these tumour-specific xenografting-linked methylation 

changes. From a  total of 2,000 datasets from Marmal-aid126, a 450K data 

repository, I selected n (5 ≤ n ≤ 50)  random samples. A total of 11,110 random β-

values in each sample were then increased or decreased by 0.51 (5,555 of each). I 

#CpG Overlap

%CpG Overlap

Comparison T1P vs T1X1 T1P vs T1X2A T1P vs T1X2B

#CpG(Δβ≥0.51) 5272 2398 797

%CpG(Δβ≥0.51) 1.14 0.52 0.17

#CpG Overlap

%CpG Overlap 64.62

86.83

692

515
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subsequently compared the original n samples from Marmal-aid to their modified 

counterparts and assessed the number of sites that appeared to be significantly 

differentially methylated between the groups (Figure 5.9), as determined by a 

Wilcoxon rank-sum test with a non-adjusted p-value threshold of 0.05. 

This analysis revealed that the maximum number of probes significantly 

differentially methylated between the groups was eight, and if using 15 or more 

samples in each group, the xenografting-associated methylation changes might 

only significantly affect the differences between groups at two loci. This further 

demonstrates the suitability of tumour xenografts for methylome analysis. 

 

 

 

Figure 5.9: Model of the effect of PDX-associated methylation changes 

For sample numbers n from 5-50, n random samples were randomly selected from 2,000 
Marmal-aid datasets. Each sample was modified at 11,110 probes by β=0.51 and a 
Wilcoxon rank-sum test run between the original n samples and the modified versions. 
The number of significantly differentially methylated probes (p-value ≤ 0.05) for each n is 
plotted against n. 
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5.7 Conclusions and future work 

Xenografts of patient tumours are frequently used in both basic research and 

preclinical drug development as a model of the original malignancy115. They 

represent its morphology, heterogeneity, and development more accurately than 

can be achieved today from a tumour-derived cell line116 and can prove invaluable 

in providing additional sample material for the investigation of rare cancer types 

as well as a much needed filtering step in experimental pharmacology. 

However, our understanding of the genomic, epigenomic, and gene expression 

shifts that might occur when transplanting a tumour into a new host are poorly 

understood. Indeed, the xenografting procedure implies drastic changes in stroma, 

vascularisation, and heterogeneity for the tumour but surprisingly few studies 

have investigated how well these PDXs replicate the molecular make-up of the 

patient’s disease. Only one systematic genomic profiling of patient tumours and 

PDXs is available in the literature127, while the epigenome was also explored only 

once previously (but with now-outdated technology) finding no significant 

differences in the xenograft’s methylome121.  

With the advent of clinical developments based on epigenetics such as biomarkers 

for cancer128 and inhibitors affecting epigenetic modifiers129,  understanding and 

predicting how PDXs can epigenomically differ from patient tumours is of 

paramount importance and thus the aim of the study presented here was to 

provide an initial assessment of these variations. 

Using both rare (OS) and common (colon cancer) cancer types, I identified any 

large changes in methylation across the genome through two generations of PDXs. 

These were investigated with both microarrays and sequencing-based 

technologies and revealed that an average of 2.7% of the methylome displays a 
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reversed methylation profile after xenografting, while almost no further changes 

(<1%) are observed in subsequent generations.  The observed changes are 

tumour-specific and enriched for intergenic regions.  

In addition, a model is provided here to guide other researchers in their use of 

PDXs in epigenetic studies. The 2.7% of CpG sites with reversed methylation 

cannot be predicted a priori due to tumour-specificity, but full confidence in the 

capacity of a group of PDXs to replicate the methylation profile of the patient 

tumours can be achieved using 15 or more samples in each group thus diluting the 

statistical effect that xenografting-associated changes might have on the data. 

Future studies should aim to understand the root cause of the xenografting-

associated changes to inform the creation of ever more accurate proxies for patient 

samples as it is becoming increasingly apparent that the ability to replicate the full 

heterogeneity of a solid tumour will lead to the development of more targeted 

therapies130. 

Finally, technological advances may also provide alternative solutions to the 

limitations of existing tumour models such as classical cell lines and xenografts.  

For example, the development of three dimensional (3D) tumour models131 may 

provide an adequate middle ground between the over-simplified 2D tumour cell 

lines, and the inherently complex in vivo xenografts by accurately replicating 

vascularisation and stromal environment, while avoiding contamination by host 

DNA and the effects of unorthotopic xenografting. 
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6 DISCUSSION 
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6.1 The IDH idea 

6.1.1 Consequences of IDH mutations 

Recurrent IDH1/2 gain-of-function mutations have now been identified in a 

number of cancer types, and their impact on the methylation profile of affected 

cells has become quite clear: instead of the interconversion of isocitrate and α-KG, 

mutant IDH uses up α-KG to produce the oncometabolite 2-HG, which in turn 

competitively inhibits a number of α-KG-dependent enzymes, including the TET 

family of demethylases. This results in a genome-wide DNA hypermethylation 

phenotype. As described in Chapter 3, over 50% of CSs harbour a mutation in IDH1 

or IDH2 and through the use of the established 450K array and a novel 

microdroplet PCR-based assay I showed that 3,057 CpG sites are significantly 

hypermethylated in mutant CS relative to wild-type. These are enriched for island 

and promoter regions, thus replicating the overall CpG island methylator 

phenotype observed in glioma and AML. 

The functional consequences of this hypermethylation, however, are less clear. The 

simple expectation would be that hypermethylated gene promoters correlate with 

downregulation of the corresponding transcript’s expression. However, as 

mentioned in Chapter 3, no significant differential expression was identified in 

IDH-mutant CS relative to WT, and no correlation of directionality of change 

between promoter methylation and gene expression could even be established, 

with only half of the genes with hypermethylated promoters displaying any sign of 

downregulation. I have already discussed a possible explanation for these 

observations, involving a locking mechanism for prior chromatin changes, which 

could fit the currently accepted paradigm of coupled promoter methylation/gene 

downregulation. However, a different, and perhaps simpler, way of explaining 
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these apparent inconsistencies is to consider that the promoter-gene association 

that is generally assumed might be incorrect, or at least incomplete. Indeed, a 

recent study in the relationship between DNA methylation and gene expression in 

human fibroblasts concluded that “the location of CpG probes with respect to the 

gene provides relatively little information about the sign of the correlation”132, and 

the authors suggested that histone marks in the vicinity of 5mC were much more 

indicative of correlation between a particular methylated CpG and a gene. 

Moreover, others have shown that only 3.3% of intertumour variation in gene 

expression could be attributed to promoter methylation133 and that methylation of 

distal enhancers is often better correlated to gene expression. With the ongoing 

improvement of both our awareness of distal regulatory regions and the 

technology required to probe the physical plasticity of the genome (e.g. 

chromosome conformation capture) it would be beneficial to incorporate the 

possibility of long-range transcriptional regulation by DNA methylation into the 

routine investigation of methylation profiles and their consequences. 

Finally, further consideration should be given to the confounding impact of 

variations in mutational load across patient tumours as well as that of the 

heterogeneity of individual tumours. Subdividing sample cohorts into more 

precise, genetically similar groups could reveal associations with transcriptional 

regulation that are not apparent when using the more inclusive criterion of the 

mere presence of a particular mutation in a given sample. 

6.1.2 Hypermethylation and the Krebs cycle 

Interestingly, it has recently come to light that the IDH isoforms are not the only 

members of the Krebs cycle for which mutations are associated with genome-wide 

methylation changes. In particular, various studies have investigated mutations in 
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succinate dehydrogenase (SDH), the catalysing enzyme for the oxidation of 

succinate to fumarate. In paragangliomas and pheochromocytomas, for example, 

two separate studies identified a hypermethylation phenotype associated with 

mutations in SDH134,135. SDH is composed of four subunits (SDHA/B/C/D), and the 

mutations linked to DNA hypermethylation occur mainly in SDHB. This is further 

supported by the fact that cells from Sdhb-deficient mice displayed higher levels of 

5mC and lower 5hmC than their wild-type counterparts, as well as increased 

histone methylation135, thus closely replicating the phenotype observed in IDH 

mutant cells. In fact, the mechanism linking SDH mutations to hypermethylation 

also resembles that of IDH as succinate has been shown to competitively inhibit α-

KG-dependent dioxygenases including the TET hydroxylases136. Where these 

processes differ is in the type of mutation they originate from: while the IDH 

proteins gain a new function through mutation of particular residues, SDH is 

inactivated, and the causal mutations are widespread135. An alternative mechanism 

of SDH inactivation that bypasses the need for a mutation was recently reported137 

and involves the accumulation of 5mC in the promoter region of SDHC and the 

reduced expression of the corresponding transcript.  

When IDH mutations were initially being investigated for apparent links to 

hypermethylation, a strong supporting argument for the TET-inhibition 

mechanism was that mutations in IDH and TET were mutually exclusive in AML, 

but were both associated with DNA hypermethylation, suggesting they might be 

part of the same pathway. Similarly, in the study of paragangliomas135, only one 

sample was wild-type for SDH but still displayed the same hypermethylation 

profile; exome sequencing revealed mutations in yet another Krebs cycle protein, 

fumarate hydratase (FH). This enzyme catalyses the reversible conversion of 
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fumarate to malate, and accumulation of fumarate has also been shown to inhibit 

α-KG-dependent enzymes, much like 2-HG and succinate. 

Attempts at mitigating some of the functional effects of SDH loss have already been 

made with demethylating 5-aza-2’-deoxycytidine treatment reversing the 

increased migratory ability of chromaffin cells in vitro induced by Sdhb loss135, 

although it could be expected that being affected by loss-of-function mutations 

would make these new epigenetic effectors less attractive targets for therapy than 

IDH. 

6.1.3 Beyond DNA methylation 

Accumulation of 2-HG does not solely affect the TET enzymes but has, in theory, 

the potential to inhibit all proteins that depend on α-KG for their function, 

representing a set of over 70 putative targets, as shown in Table 6.1. In practice, 

however, not all of these enzymes are equally affected by 2-HG, and their 

sensitivity to the accumulation of this metabolite depends on their affinity for it138. 

The most sensitive happen to be the KDM family of histone demethylases, 

including those responsible for the demethylation of H3K9 and H3K36 (KDM4A, 

KDM4C, and KDM2A), giving mutant IDH the potential for major effects on multiple 

facets of the epigenome.  
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Table 6.1: Known and putative α-KG-dependent enzymes 

List of proteins with a dependence on α-KG, that could be affected by increased cellular 
levels of 2-HG. Original table from Losman et al.139 
 

6.1.4 Harnessing IDH 

Considering their presence in a portion of the patient population for a number of 

malignancies and their appearance early in tumourigenesis, it would have been 

plausible for IDH mutations to be suitable biomarkers for survival or tumour 

development. However, they do not appear to have the same prognostic impact 

across all malignancies. While they have been reported to have a positive effect on 

the survival of glioblastoma patients, with the median survival increasing from 15 

months for those producing only wild-type IDH to 31 months if a mutant allele is 

present140, it is still unclear whether this difference is actually related to the IDH 

mutation status or is in fact the consequence of other biological differences 

between those tumours appearing as primary malignancies (no mutations in IDH) 

and those developing from low-grade gliomas (IDH1 mutation frequency 

~70%)139. Reports on prognostic significance differ in AML too, from those 

showing no difference141, to those claiming increased142 or decreased143 risk of 

relapse. Finally in CS, no significant difference in survival was identified63. 

While IDH itself seems to have limited use as a biomarker, its product D-2-HG is 

more promising as intracellular 2-HG levels are directly correlated with the 

presence of mutant IDH in glioma27, AML144, and CS1. This is particularly relevant 
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for AML, as 2-HG is excreted from cells and its levels can be assessed in serum144, 

making it potentially a useful tool for AML diagnosis. Even solid and less accessible 

tumours such as gliomas could benefit from 2-HG as a biomarker, as reports 

suggest that magnetic resonance spectroscopy could be used to detect regions of 

high 2-HG levels145, which could potentially aid in surgery preparation or for a 

non-invasive initial diagnosis. Finally, 2-HG levels have already been shown to 

decrease with reduced AML burden and increase again with relapse146, indicating 

they could be used to monitor the effects of therapy in the case of tumours carrying 

mutant IDH. 

Aside from the potential use of 2-HG as a biomarker, the existence of mutant IDH 

and its presence in multiple tumour types are already being harnessed by the 

pharmaceutical industry. The methylation and gene expression data presented in 

Chapter 3 were shared with Agios, the company responsible for the development 

of the inhibitors AG-120 and AG-221. These molecules specifically target mutant 

forms of IDH1 and IDH2, respectively, and are currently in Phase 1 clinical 

trials129,147. 

Another way in which our understanding of mutant IDH and its consequences on 

the cancer epigenome can be utilised is by providing insights into the mechanisms 

that these mutations affect, specifically DNA demethylation, as discussed in the 

following section. 

6.2 DNA demethylation 

6.2.1 A novel mechanism for targeted demethylation 

With an apparently similar epigenetic phenotype, linked to the same gain-of-

function mutations emerging in multiple cancer types, a comparison of the 
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hypermethylated sites in each cancer was the next logical step. The dataset I 

generated for CS adequately complemented those already existing for AML and 

LGG as the only large AML dataset available in the public domain at the time was 

generated using the HELP assay, hindering a direct comparison with the 450K-

generated LGG data. Fortuitously, an additional dataset was generated for yet 

another cancer type, cholangiocarcinoma (CC), while this work was ongoing and 

could be incorporated into the meta-analysis, as discussed in Chapter 4. 

Through a gene and pathway analysis, I showed that although all four cancer types 

targeted the major cancer pathway involved with the downstream response to 

retinoic acid receptor activation, there was overall little overlap between any two 

cancer types in the genes affected by the hypermethylation, and in fact no overlap 

at all between the four. Thus multiple cancer types, presenting the same mutation, 

the same consequential increase in cellular 2-HG levels and the same inhibition of 

TET function, all displayed an overall hypermethylation of the genome, but at 

different CpG sites. This finding was not entirely surprising as the methylome is 

known to be tissue-specific, so the enzymes regulating it, such as the TET 

demethylases, could logically be expected to be themselves under some kind of 

tissue-specific regulation. This could conceivably be partly achieved through the 

rearrangement of chromatin to make target regions more or less accessible to TET 

proteins and CpG sites within open chromatin regions that should remain 

methylated could theoretically be protected from demethylation by methyl-

binding proteins. This seems an unlikely possibility, however, considering the 

energy expenditure that would be required to constantly maintain in their current 

state the 80% of genomic CpGs that are normally methylated. Hence the most 

likely mechanism for tissue-specific regulation of TET-mediated demethylation is 
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through the targeting of TET itself. Both TET1 and TET3 contain a CXXC domain 

that selectively binds unmethylated CpGs, while TET2 interacts with IDAX (a CXXC 

domain-containing protein) to compensate for the evolutionary loss of its own 

CXXC domain148. The exact role of these domains remains unclear, although they 

appear to regulate the degradation of TET148 . They have in any case not been 

shown to discriminate between different methylated CpGs and are thus unlikely 

candidates for the tissue-specific regulation of TET function. 

The meta-analysis mentioned above offered a unique opportunity to identify this 

potential DNA-binding partner for TET as the sites identified were 

hypermethylated due to the inhibition of TET by 2-HG, and as such should have in 

their vicinity a sequence recognised by that partner. Using motif analysis, ChIP-

qPCR and a co-immunoprecipitation experiment followed by western blotting, I 

identified EBF1 as a candidate binding partner for TET2 in the first targeted 

demethylation pathway to be described. 

Although EBF1 was indeed expressed in the CS tumour samples and cell lines, was 

shown through modelling analysis to have a structure compatible with interaction 

with TET2, and recognises a sequence present around the majority of the 

hypermethylated sites, future experiments should focus on the following questions 

to fully clarify the mechanism of TET targeting (Figure 6.1). Firstly, the 

demonstrated interaction only proves TET2 and EBF1 co-precipitate as part of a 

complex, but cannot distinguish between a direct and indirect interaction; 

moreover, other proteins potentially involved in the complex could play a crucial 

role in the targeting of TET2 or in supporting its interaction with EBF1 and should 

be investigated. Mass spectrometry of the EBF1 and TET2 interactomes should 

shed light on these questions but will require the availability of more specific 
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antibodies. Secondly, EBF1 is unlikely to be the sole protein with this function and 

is most likely to be itself under post-transcriptional control so it can target TET2 to 

a subset of CpG sites depending on cellular requirements. Other targeting partners 

for TET2 should be investigated, and the resolution of its interactome mentioned 

above should yield useful candidates. 

 

 

Figure 6.1: Interaction models for targeted demethylation 

A) Simple model of EBF1 targeting TET2 to a methylated CpG for demethylation 
B) EBF1 and TET2 might not interact directly; other factors might be required 
C) Even if the interaction is direct, other factors might be involved 
D) EBF1 is unlikely to be the sole protein with this targeting function 

6.2.2 Outlook on targeted demethylation therapy 

Various attempts have been made in the past to manipulate CpG methylation in 

both global and targeted ways, with limited success in vivo. DNMT inhibitors 

(DNMTi), for example, have been used to achieve whole-genome demethylation: 

the nucleoside analogues, 5-azacytidine and 5-aza-2’-deoxycytidine are FDA-

approved in the treatment of myeloid malignancies. The nitrogen on the 5-position 

of their pyrimidine ring disrupts the interaction between DNA and DNMT and 

traps DNMTs for proteosomal degradation14, leading to loss of methylation in 
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daughter cells after replication. However, these nucleoside analogues can be easily 

hydrolysed in aqueous solution and deaminated by cytidine deaminase, making 

them unstable and limiting their clinical application. Other cytidine analogues with 

improved stability, such as zebularine149, were also investigated but they displayed 

inefficient metabolic activation or inconsistent clinical efficacy150. Non-nucleoside 

inhibitors have also been developed in the hope that because they do not need to 

intercalate in the DNA they might be associated with lower toxicity, but they have 

shown limited hypomethylation activity in living cells14. 

Targeted methylation to repress the expression of specific genes has been 

attempted using various mechanisms: vander Gun et al.151 tried to silence 

epithelial cell adhesion molecule (EpCAM) expression using a mutant version of 

the CpG-specific DNA methyltransferase M.SssI coupled to a triple-helix-forming 

oligonucleotide specifically designed for the EpCAM gene. Although they achieved 

methylation of the targeted CpG, it did not have any effect on the promoter activity. 

Li et al.152 fused the catalytic domains of mouse Dnmt3a and Dnmt3b to an 

engineered zinc finger domain and showed targeted DNA methylation and 

repression of specific genes involved in Herpes Simplex Virus type 1 (HSV-1) 

infection in cell culture. Although successful, the authors acknowledged that 

methylating a specific promoter in culture on a virus genome is significantly 

different from achieving the same in mammalian cells and in vivo. 

Targeted demethylation, however, had not been attempted until recently even 

though it presents distinct advantages over methylation: only one allele of a 

tumour suppressor gene needs to be demethylated to regain function in the cell, 

even if the other allele is mutated, while oncogenes will not be repressed unless 

both alleles are methylated. Moreover, as ~80% of CpG sites in the human genome 
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are methylated, it is much easier to measure and validate a loss than a gain of 

methylation.  

With the advent of novel genomic editing technologies such as transcription 

activator-like effectors (TALEs) and clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas9, targeted alterations in the methylome have 

recently become more accessible, with the use of DNMT and TET domains already 

demonstrated in the case of TALEs153. Fusions of catalytically inactive Cas9 (dCas9) 

to transcriptional activation or repression domains (VP64 and KRAB, respectively) 

have already been shown to successfully affect the expression of human genes154, 

and the combination of dCas9 with DNMT and TET domains is currently under 

development by various groups. 

The authors of the study describing the TALE-TET construct raised a major 

concern regarding the off-target effects they observed. In addition to those due to 

actual unintended binding of the TALE, they noticed nonspecific demethylation 

caused by proteins acting from solution. The better understanding of targeted 

demethylation in vivo provided by the work described here could thus improve the 

specificity of such demethylating tools, by fusing a TET binding partner (or even 

only the domain interacting with TET) such as EBF1 to the TALE/CRISPR in order 

to recruit endogenous TET to the chosen site and avoid unintended demethylation 

from an overexpressed TET in solution. 

 

It is important to note that the work presented here was only possible due to the 

availability of the Stanmore Musculoskeletal Biobank developed by Prof. Adrienne 

Flanagan and colleagues. The fundamental issue with investigating rare 

malignancies is indeed the scarcity of patient samples. This is particularly true in 
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the case of epigenetic studies: higher amounts of starting material are often 

required in high-throughput technologies compared to standard genomic analyses, 

for example due to the necessary initial bisulfite conversion and subsequent clean-

up steps as in the case of the 450K array, although protocols relying on low cell 

numbers have been developed155 and might contribute to alleviating this issue. 

Targeted approaches also suffer from our current inability to in vitro amplify 

epigenetically-modified DNA (e.g. 5mC, 5hmC) making the finite nature of patient 

DNA a permanent concern and placing a constant emphasis on experimental 

optimisation.  

Moreover, even when a biobank is available for use in basic research, the low 

patient numbers remain an issue when attempting to translate a discovery to the 

clinic. Taking OS as an example, it most often presents in the younger population, 

the least likely to participate in clinical trials117, hence patient recruitment can 

often take several years. This in turn requires an efficient pre-clinical screening of 

candidate therapeutic agents, which is only possible with an accurate model of the 

disease in question that can faithfully replicate the in vivo conditions of a patient 

tumour. The use of PDXs, as well as alternative models (e.g. 3D cell culture), for 

both fundamental research of epigenetic cancer mechanisms and the screening of 

pre-clinical compounds targeting the epigenome, is discussed in the following 

section. 

6.3 PDXs in epigenetic studies 

6.3.1 Tumour cell lines 

An inconsistency has emerged between the usefulness of cell lines to further our 

understanding of cancer biology and the inability to translate that understanding 

into the clinic. Cell lines certainly present a number of useful characteristics: they 
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are easy to grow in vast numbers to provide large amounts of genomic material; 

they represent homogeneous populations making results easily reproducible 

within a cell line; they are easy to manipulate (e.g. genetically, metabolically); and 

they can faithfully replicate individual aspects of a disease’s biology, such as a 

particular pathway or the interaction of certain proteins, making them ideally 

suited to the investigation of well-contained mechanisms. 

However, those same characteristics can also be drawbacks to using cell lines as 

representative of patient tumours. The homogeneity of a cell population, for 

instance, means cultured cells cannot reproduce the heterogeneity of a solid 

tumour. Furthermore, cell lines, even when subsequently engrafted and grown in 

vivo, have not evolved within the natural tumour environment, and they will have 

undergone genetic and epigenetic changes to respond to a different set of 

pressures than those experienced by patient tumour cells156. Finally, evidence 

suggests that a cell line derived from a patient tumour will show a greater 

divergence in gene expression from that tumour than a xenograft would156. 

6.3.2 Genomics of PDXs  

As mentioned above, PDXs have proven particularly apt at replicating the genomic 

attributes of patient tumours. Most of the evidence for this comes from gene 

expression experiments. For example, genome-wide gene expression profiling of 

non-small-cell lung cancer PDXs showed that for 17 patient tumour/PDX pairs, the 

correlation coefficients ranged from 0.78 to 0.95, with ten of those displaying 

correlations above 0.9157. The gene expression in PDXs for pancreatic cancer was 

also deemed adequate enough to use some of the PDXs in the corresponding 

cancer genome sequencing initiative158. These advantages over cell lines remain, 

even when the cells are subsequently returned to an in vivo environment, grown 
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into xenografts156 and compared to PDXs of a similar age, demonstrating that it is 

the very act of in vitro culture that is primarily responsible for the genomic 

divergence of cell lines. 

The only study to date to have investigated the genetic drift associated with 

xenografting of tumours into mice showed that all CNVs are maintained in PDXs, 

and that while xenografts do initially present a small number of single nucleotide 

variants  (~4,300), the vast majority of changes that accumulate over time occur in 

non-coding parts of the genome127. 

6.3.3 PDXs in preclinical drug screening 

PDXs have been increasingly used to screen drugs before advancing them to 

human trials (Table 6.2) and xenografts’ responses to various compounds have 

been shown to correlate reasonably well with that of patients. In a study of 15 

colorectal cancer PDXs, for example, the xenografts tested for 5-fluorouracil, 

oxaliplatin or irinotecan exhibited a response concordant with their corresponding 

patients159. In addition, a separate study showed that colorectal PDX models could 

predict with 90% accuracy the response and resistance to the EGFR inhibitor 

cetuximab160. 
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Table 6.2: Preclinical drug screening conducted in PDXs 

A number of novel and approved drugs have been tested in PDXs from a variety of cancer 
types. Original table from Tentler et al.116 

6.3.4 PDXs as accurate epigenomic models of patient tumours 

Considering our growing understanding of the role of DNA methylation in tumour 

development, and the advent of global and targeted epigenetic therapies, it has 

become necessary to assess whether the epigenome is as stably maintained in 

PDXs as the genome has been shown to be, so these same tumour models can be 

used for both basic epigenetic research and preclinical screening of new 

compounds. 

Tumour model Approved agent tested Investigational agent 

Pancreatic ductal 

adenocarcinoma
Gemcitabine, erlotinib

Temsirolimus, saracatinib,  

bosutinib, MK-1775, IPI-504

NSCLC

Etoposide, carboplatin, gemcitabine, paclitaxel, 

vinorelbine, cetuximab, erlotinib, 

docetaxel, docetaxel–vinorelbine,  

docetaxel–gemcitabine, 

docetaxel–cisplatin, cisplatin

Sagopilone, diaziquone, 

pazelliptine, retelliptine

Melanoma

Actinomycin-

D, carmustine, doxorubicin bleomycin,  

cisplatin melphalan, mitomycin-C, 

vinblastine, cyclophosphamide, ifosfamide,  

lomustine, 5-FU, methotrexate, etoposide, 

paclitaxel, vindesine, temozolomide

NA

RCC Sorafenib, sunitinib NA

Breast cancer
Doxorubicin, cyclophosphamide, docetaxel,  

trastuzumab, ifosfamide, cisplatin, capecitabine
Degarelix

HNSCC Cisplatin, cetuximab
Diaziquone, pazelliptine, 

retelliptine

GBM Bevacizumab NA

Prostate cancer Bicalutamide NA

Ovarian cancer
5-FU, cyclophosphamide, doxorubicin,  

methotrexate, hexamethylmelamine, cisplatin
NA

HCC

5-FU,  

oxaliplatin, doxorubicin, cisplatin, estradiol,  

progesterone, dihydrotestosterone

Gefitinib, seocalcitol, brivanib

Abbreviations: 5-FU, 5-fluorouracil; GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; HNSCC, head and 

neck squamous-cell carcinoma; NA, not applicable; NSCLC, non-small-cell lung cancer; RCC, renal cell carcinoma.
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As described in Chapter 5, I used both microarray and sequencing-based methods 

to assess genome-wide variation in methylation between PDXs and the patient 

tumours they were derived from. This was done on both common and rare cancer 

types, colon cancer and osteosarcoma, respectively. On average, only 2.7% of 

assayed CpG sites saw their methylation shift from methylated to unmethylated or 

vice-versa with xenografting and these variations were tumour-specific. 

Interestingly, these few changes occurred mainly in intergenic regions, much like 

the genomic variation mentioned above127. However, while single nucleotide 

variants were found to accumulate with successive xenografting passages in that 

study127, almost no further methylation changes were observed in OS and colon 

cancer samples (< 1%). One of the explanations for the accumulation of genetic 

variants offered by the authors is ‘population bottlenecking’ by which the repeated 

cell population reduction with successive passages may arbitrarily select for 

passenger mutations. A similar mechanism in the epigenome is possible and two 

generations of PDXs might not be sufficient to observe it.  

Due to the tumour-specificity of the observed changes, no general prediction could 

be extrapolated regarding which CpG sites are most likely to be affected by 

xenografting of each individual tumour, Instead, I proposed a model for future 

studies to estimate the number of individual patient tumours that would need to 

be xenografted to statistically dilute down the xenografting-associated methylation 

changes and extract meaningful group characteristics with confidence.  

6.3.5 What future for PDXs? 

With their accurate representation of the genome and methylome, PDXs will surely 

continue to be essential tools in both fundamental research and preclinical 
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screening in the near future. However, they still present certain drawbacks that 

should be considered.  

For example, in the case of heterogeneous tumours, the xenografts of a single 

tumour fragment will be unable to fully replicate the entire tumour and the effects 

of companion cells with a different genetic or epigenetic make-up in tumour 

development or drug response might be incorrectly ignored by investigators. In 

addition, placing a human tumour within a murine environment, surrounded and 

supported by mouse tissue might have adverse effects on both transplantation 

success rate, and accurate tumour development; this issue is already being 

addressed through the co-transplantation of the tumour fragment with stroma 

from the tumour’s  original microenvironment161. Finally, maintaining live libraries 

of PDXs for large-scale studies is prohibitively expensive for smaller research 

groups, and often requires country-specific training and purpose-built facilities, 

making them a tool unavailable to many researchers.  

The constant improvements in sequencing technology might ultimately make the 

use of xenografts for expansion of patient sample material in basic research 

redundant. Whole-genome bisulfite sequencing (WGBS), for example, is currently 

too expensive for routine use, and methylation profiling projects often require 

large amounts of starting material to use in multiple test and validation 

experiments. However, considering the cost evolution of sequencing a human 

genome from ~$3 billion for the first to $1,000 with Illumina’s latest technological 

offering (HiSeq X Ten), it is not inconceivable that WGBS might soon be achievable 

at an affordable cost.  

Finally, the development of 3D tissue culture models that combine the advantages 

of both PDXs and cell lines while removing some of the concerns associated with 
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xenografts, such as microenvironment and cost, could provide an alternative to 

PDXs, including in preclinical drug screening162. With the development of 

(epi)genomic editing tools, these models could be further improved to fully 

recapitulate the heterogeneity of the original malignancy. This would provide the 

additional advantage of enhancing predictions of tumour evolution as well as drug 

response due to their close replication of the stresses and pressures the original 

tumour’s cells might be experiencing. 
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Abstract 

Background: The use of tumour xenografts is a well-established research tool in 
cancer genomics but has not yet been comprehensively evaluated for cancer 
epigenomics. Methods: In this study, we assessed the suitability of patient-derived 
tumour xenografts (PDXs) for methylome analysis using Infinium 450K Beadchips 
and MeDIP-seq.  

Results: Controlled for confounding host (mouse) sequences, comparison of 
primary PDXs and matching patient tumours in a rare (osteosarcoma) and 
common (colon) cancer revealed that an average 2.7% of the assayed CpG sites 
undergo major (Δβ≥0.51) methylation changes in a cancer-specific manner as a 
result of the xenografting procedure. No significant subsequent methylation 
changes were observed after a second round of xenografting between primary and 
secondary PDXs. Based on computational simulation using publically available 
methylation data, we additionally show that future studies comparing two groups 
of PDXs should use 15 or more samples in each group to minimise the impact of 
xenografting-associated changes in methylation on comparison results.  

Conclusions: Our results from rare and common cancers indicate that PDXs are a 
suitable discovery tool for cancer epigenomics and we provide guidance on how to 
overcome the observed limitations.  
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OF BRINP3 IN THE PATHOGENESIS OF ULCERATIVE COLITIS, 
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Abstract 

Background and aims: Mucosal abnormalities are potentially important in the 
primary pathogenesis of ulcerative colitis (UC). We investigated the mucosal 
transcriptomic expression profiles of biopsies from patients with UC and healthy 
controls (HC), taken from macroscopically non-inflamed tissue from the terminal 
ileum and three colonic locations with the objective of identifying abnormal 
molecules that might be involved in disease development.  

Methods: Whole-genome transcriptional analysis was performed on intestinal 
biopsies taken from 24 UC, 26 HC and 14 patients with Crohn’s disease. Differential 
gene expression analysis was performed at each tissue location separately and 
results were then meta-analysed using Fisher’s method. Significantly differentially 
expressed genes were validated using qPCR. Gene location within the colon was 
determined using immunohistochemistry, subcellular fractionation, electron and 
confocal microscopy. DNA methylation was quantified by pyrosequencing.  

Results: Seven probes were abnormally expressed throughout the colon in UC 
patients with Family with sequence similarity member 5 C (FAM5C) being the 
most significantly underexpressed. Attenuated expression of FAM5C in UC was 
independent of inflammation, unrelated to phenotype or treatment, and remained 
low at rebiopsy approximately 23 months later. FAM5C is localised to the brush 
border of the colonic epithelium and expression is influenced by DNA methylation 
within its promoter.  

Conclusion: Genome-wide expression analysis of non-inflamed mucosal biopsies 
from UC patients identified FAM5C as significantly under-expressed throughout 
the colon in a major sub-set of patients with UC. Low levels of this gene could 
predispose to or contribute to the maintenance of the characteristic mucosal 
inflammation seen in this condition. 
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Abstract 

DNA methylation analysis has become an integral part of biomedical research. For 
high-throughput applications such as epigenome-wide association studies, the 
Infinium HumanMethylation450 (450K) BeadChip is currently the platform of 
choice.  However, BeadChip processing relies on traditional bisulfite (BS) based 
protocols which cannot discriminate between 5-methylcytosine (5mC) and 5-
hydroxymethylcytosine (5hmC). Here, we report the adaptation of the recently 
developed oxidative bisulfite (oxBS) chemistry to specifically detect both 5mC and 
5hmC in a single workflow using 450K BeadChips, termed oxBS-450K. Supported 
by validation using mass spectrometry and pyrosequencing, we demonstrate 
reproducible (R2 > 0.99) detection of 5hmC in human brain tissue using the 
optimised oxBS-450K protocol described here. 
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Abstract  

Wilms tumours (WT), characterised by loss of imprinting at 11p15 and a paucity of 
recurrent mutations, are frequently found in association with nephrogenic rests 
(NR), lesions reminiscent of embryonic kidney. To test if aberrant DNA 
methylation is implicated in tumourigenesis, we performed methylome analysis on 
20 micro-dissected matched trios (WT, NR and normal kidney (NK)). NR/NK 
comparison revealed 629 differentially methylated regions (DMRs): 55% were 
hypermethylated, enriched for domains that are bivalent in embryonic stem cells 
and for genes expressed during development (P=2.49x10-5). NR/WT comparison 
revealed two WT subgroups; group-2 WT and NR were epigenetically 
indistinguishable whereas group-1 WT showed hypomethylation of renal 
development genes, hypermethylation of known and potential new WT tumour 
suppressor genes CASP8, H19, MIR195, RB1 and TSPAN32, and included all 
bilateral cases (P=0.032). This suggests that methylation analysis could aid 
treatment planning in bilateral disease and that some WT may be candidates for 
epigenetic-modifier therapy. 
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METHYLATION ANALYSIS SCRIPT 

setwd("~/Experiments/450K/FINAL 08.06.12/Wilcox 22.06.12") 
source("R:/R/450K scripts/Meth.Wil.R") 
 
##detpval=0.01,adj pval=0.001, deltamedbeta =0.35: without FFPE and FF replicates (mut7+8) or 
odd4 : 12+15 
data<-read.table("R:/Experiments/450K/FINAL 
08.06.12/data.betas.detpval.txt",header=TRUE,sep="\t") 
data.min4<-data[,-c(22:25,38:39,46:47)] 
data.noreps<-data.min4[,-c(36,37,50,51)] 
 
Methyl.W(data.noreps) 
"R:/Experiments/450K/FINAL 08.06.12/Wilcox 22.06.12/minFFreps/" 
#472655 probes after det pval 
 
 
##median difference threshold selection 
norm.csdata1<-
read.csv("minFFreps/full_dataset_det.pval.filter_nonorm.0.01.csv",header=T,sep=",") 
norm.csdata2<-norm.csdata1[complete.cases(norm.csdata1),] 
 
psort5<-as.matrix(norm.csdata2[,2:28]) 
 
psort5.2<-as.matrix(psort5) 
psort6<-as.matrix(psort5[,1:27]) 
wtmed<-as.matrix(c(1:nrow(psort6))) 
colnames(wtmed)<-"WT.median" 
mutmed<-as.matrix(c(1:nrow(psort6))) 
colnames(mutmed)<-"MUT.median" 
med.diff<-as.matrix(c(1:nrow(psort6))) 
colnames(med.diff)<-"MUTmed-WTmed" 
 
for (x in 1:nrow(psort6)) wtmed[x]<-((median(psort6[x,1:12]))) 
for (x in 1:nrow(psort6)) mutmed[x]<-((median(psort6[x,13:27]))) 
for (x in 1:nrow(psort6)) med.diff[x]<-(mutmed[x]-wtmed[x]) 
 
psort6.5<-cbind(norm.csdata2,wtmed,mutmed,med.diff) 
 
par(mfrow=c(1,1)) 
###random selection of 8175 median differences 
samp3<-replicate(1000,sample(psort6.5[,31],8175,replace=T),simplify="matrix") 
 
###plot of top8175median differences 
norm.cs_topinfo<-read.csv("minFFreps/topinfo.0.001_8175.csv",header=TRUE,sep=",") 
 
png("minFFreps/threshold.png") 
par(new=F) 
br2<-seq(-1,1,by=0.05) 
hist(samp3,freq=F,col=NULL,border="red",xlim=c(-
1,1),main="",xlab=NULL,breaks=br2,ylim=c(0,8)) 
par(new=T) 
hist(norm.cs_topinfo[,6],freq=F,col=NULL,border="blue",main=NULL,xlab= "Delta 
Median(Beta)",ylab=NULL,xlim=c(-1,1),breaks=br2,yaxt='n',ylim=c(0,8)) 
dev.off() 
 
###calculate percentage cut off break 
a<-hist(samp3,plot=F,breaks=br2) 
b<-cbind(matrix(a$breaks),matrix(c(999999,a$counts))) 
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a2<-hist(norm.cs_topinfo[,6],plot=F,breaks=br2) 
b2<-cbind(matrix(a2$breaks),matrix(c(999999,a2$counts))) 
 
###Find point in histogram where less than 2% of random values end up by chance-->gives <2% 
chance of false positive: 0.02*8175000=163,500 
###-->35% 
 
##Figures 
###adj-p.values: 
all.pvals<-read.table("minFFreps/data_adjp.values.txt",header=TRUE,sep="\t") 
br2=seq(0,1,by=0.05) 
p_adjusted<-all.pvals[,30] 
png("minFFreps//pval_distrib.png") 
hist(p_adjusted,col="gray",main="Distribution of p-values (All Data)",xlab="p-value",breaks=br2) 
dev.off() 
 
###median difference: 
topinfo<-read.csv("minFFreps/topinfo0.001_0.35_3057.modif.csv",header=TRUE,sep=",") 
br4=seq(-1,1,by=0.1) 
 
png("minFFreps/med.diff_distrib.png") 
hist(topinfo[,6],breaks=br4,labels=c("","","","","",7,8,"","","","","","",925,1381,614,116,6,"",""),col="gr
ey",xaxt="n",ylim=c(0,1500),xlab="<--Hypometh in Mutant    MUT-WT median difference   
Hypermeth in Mutant-->",main="") 
axis(1,at=c(seq(from=-1,to=1,by=0.2))) 
dev.off() 
 
png("minFFreps/med.diff_distrib_04.06.13.png",height=9,width=10,units="in",res=600) 
hist(topinfo[,6],breaks=br4,col="grey",xaxt="n",ylim=c(0,1500),xlab="MUT-WT median 
difference",main="",cex.lab=1.3,cex.axis=1.3) 
axis(1,at=c(seq(from=-1,to=1,by=0.2)),cex.axis=1.3) 
text(x=c(-0.45,-0.35,0.35,0.45,0.55,0.65,0.75), 
y=c(7,8,925,1381,614,116,6),labels=c(7,8,925,1381,614,116,6),cex=1.2,pos=3) 
dev.off() 
 
###islands,shores, shelves: 
island<-as.matrix(topinfo[,15]) 
summary(island) 
plot(topinfo[,15],col="blue",main="Observed",ylab="Frequency") 
 
####calculate percentage of each type in top list: 
island2<-as.matrix(summary(topinfo[,15])) 
row.names=1 
tempI<-as.matrix(c(1:nrow(island2))) 
for (x in 1:nrow(island2)) tempI[x]<-((island2[x]/nrow(island))*100) 
my.islands<-cbind(island2,tempI,sum(tempI)) 
colnames(my.islands)<-c("My.Total","My.Percentage","Check") 
 
####Extract from full list: 
fullislands<-read.table("minFFreps/fullset.islands.txt",header=T,sep="\t") 
names(fullislands) 
fullislands2<-as.vector(fullislands[,2]) 
 
####compare expected to observed: 
source("R:/R/rand.R") 
com.islands<-as.data.frame(cbind(Random.isl<-rand(fullislands2,3057,1000),my.islands)) 
attach(com.islands) 
 
com.islands2<-as.data.frame(c(1:nrow(com.islands))) 
for (x in 1:nrow(com.islands)) com.islands2[x]<-com.islands["My.Percentage"]-
com.islands["Percentage"] 
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com.islands3<-cbind(com.islands,com.islands2[,1]) 
colnames(com.islands3)<-c(colnames(com.islands),"Percentage Enrichment") 
com.islands4<-com.islands3[order(com.islands3[,7],decreasing=TRUE),] 
 
 
png("minFFreps/islands_enrichment_04.06.13.png",height=9,width=7,units="in",res=600) 
barplot(com.islands4[,7],main="",col=c("red","yellow","green","blue"), 
names.arg=rownames(com.islands4),ylab="%Enrichment",yaxt="n",ylim=c(-
25,25),cex.lab=1.3,cex.names=1.3) 
axis(2,at=c(seq(from=-25,to=25,by=10)),cex.axis=1.3) 
dev.off() 
 
###refgene groups 
norm.group<-read.csv("minFFreps/refgene groups_top3057.csv",header=F,sep=",") 
 
 
####calculate percentage of each type of refgene group in top list: 
norm.group6<-as.matrix(summary(norm.group[,1])) 
 
row.names=1 
 
tempG<-as.matrix(c(1:nrow(norm.group6))) 
for (x in 1:nrow(norm.group6)) tempG[x]<-((norm.group6[x]/nrow(norm.group))*100) 
 
my.grps<-cbind(norm.group6,tempG,sum(tempG)) 
colnames(my.grps)<-c("My.Total","My.Percentage","Check") 
 
####Calculate what percentage of each refgene group would be expected by random chance in a 
sample of the same size as top list: 
 
fullgroups<-read.csv("minFFreps/refgene groups_fullset.csv",header=F,sep=",") 
names(fullgroups) 
 
fullgroups2<-as.vector(fullgroups[,1]) 
 
 
####compare expected to observed: 
 
com.grps<-as.data.frame(cbind(Random<-rand(fullgroups2,3057,1000),my.grps)) 
attach(com.grps) 
 
com.grps2<-as.data.frame(c(1:nrow(com.grps))) 
 
for (x in 1:nrow(com.grps)) com.grps2[x]<-com.grps["My.Percentage"]-com.grps["Percentage"] 
com.grps3<-cbind(com.grps,com.grps2[,1]) 
colnames(com.grps3)<-c(colnames(com.grps),"Percentage Enrichment") 
com.grps4<-com.grps3[order(com.grps3[,7],decreasing=TRUE),] 
 
png("minFFreps/refgene 
groups_enrichment_04.06.13.png",height=9,width=10,units="in",res=600) 
barplot(com.grps4[,7],main="",col=c("red","orange","yellow","light green","dark 
green","blue","purple"), names.arg=rownames(com.grps4),ylab="%Enrichment",ylim=c(-
10,10),cex.axis=1.3,cex.lab=1.3,cex.names=1.3) 
dev.off() 
 
###heatmap supervised analysis 
clin.info<-read.table("minFFreps/clin.info3.1.txt",header=T,sep="\t") 
clin.info<-read.table("minFFreps/clin.info3.1_21.08.12.txt",header=T,sep="\t") 
clin.info3<-clin.info[-c(11,12,19,23,21,29),] 
 
#calculate correlation btwn IDH status and 2HG 
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idh.cor<-c(rep(1,12),rep(2,15)) 
hg.cor<-clin.info3[,10] 
cor.test(idh.cor,hg.cor,method="spearman") #rho=0.8422435  p-value = 3.618e-08 
 
#calculate correlation btwn cluster and 2HG 
cluster.f2<-function(Cluster){ 
  if (Cluster == "Cluster 1") 1 
  else if (Cluster == "Cluster 2") 2  
  else if (Cluster == "Cluster 3") 3 
} 
cluster.cor <- sapply(clin.info3$Cluster, cluster.f2) 
cor.test(cluster.cor,hg.cor,method="spearman") #rho=0.7878581  p-value = 1.071e-06 
 
#calculate correlation btwn IDH status and Age 
age.cor<-clin.info3[,6] 
cor.test(idh.cor,age.cor,method="spearman") #rho=0.4073254  p-value = 0.03496 
 
#calculate correlation btwn IDH status and sex 
sex.f2<-function(Sex) {if (Sex == "F") 2 else 1 } 
sex.cor <- sapply(clin.info3$Sex, sex.f2) 
 
cor.test(idh.cor,sex.cor,method="spearman")#rho=-0.16855  p-value = 0.4007 
 
#calculate correlation btwn IDH status and Grade 
grade.f2<-function(Grade){ 
  if (Grade == "Grade 1") 1 
  else if (Grade == "Grade 2") 2  
  else if (Grade == "Grade 3") 3 
  else if (Grade == "Dediff") 4 
} 
grade.cor <- sapply(clin.info3$Grade, grade.f2) 
 
cor.test(idh.cor,grade.cor,method="spearman")#rho=-0.2551171  p-value = 0.199 
 
library(heatmap.plus) 
library(gtools) 
source("R:/R/heatmap3_040613.R") 
 
#associate colours with different aspects of clin.info 
 
group.f <- function(Group) {if (Group == "WT") "green" else "red" } 
grp.col3 <- sapply(clin.info3$Group, group.f) 
 
sex.f<-function(Sex) {if (Sex == "F") "grey" else "black" } 
sex.col3 <- sapply(clin.info3$Sex, sex.f) 
 
grade.f<-function(Grade){ 
  if (Grade == "Grade 1") "yellow"  
  else if (Grade == "Grade 2") "orange"  
  else if (Grade == "Grade 3") "orange3" 
  else if (Grade == "Dediff") "brown" 
} 
grade.col3 <- sapply(clin.info3$Grade, grade.f) 
 
age.f<-function(Age){ 
  if (Age < 50) "yellow"  
  else if (Age >= 50 & Age<60) "light green"  
  else if (Age >= 60 & Age<70) "light blue" 
  else if (Age >= 70 & Age<85) "tomato" 
  else if (Age == "NA") "black" 
} 
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age.col3 <- sapply(clin.info3$Age, age.f) 
 
hg.f<-function(ngpml.2HG){ 
  if (ngpml.2HG <1) "black" 
  else if (ngpml.2HG < 1000 & ngpml.2HG >1 ) "yellow"  
  else if (ngpml.2HG >= 1000 & ngpml.2HG < 5000 ) "green"  
  else if (ngpml.2HG >= 5000 & ngpml.2HG < 10000 ) "blue" 
  else if (ngpml.2HG >= 10000 & ngpml.2HG) "red" 
   
} 
ngpml.2HG.col3 <- sapply(clin.info3$ngpml.2HG, hg.f) 
 
 
cluster.f<-function(Cluster){ 
  if (Cluster == "Cluster 1") "light blue"  
  else if (Cluster == "Cluster 2") "light blue4"  
  else if (Cluster == "Cluster 3") "dark blue" 
} 
cluster.col3 <- sapply(clin.info3$Cluster, cluster.f) 
 
all.colors3 <- cbind(grp.col3,sex.col3,grade.col3,age.col3,ngpml.2HG.col3,cluster.col3) 
colnames(all.colors3)<-c("IDH","Sex","Grade","Age","2HG","Cluster") 
 
#plot heatmap 
 
clab3<-all.colors3 
 
 
main_title="" 
par(cex.main=1) 
 
Lab.palette2 <- colorRampPalette(c("yellow","light blue","blue"), space = "Lab") 
 
#function arguments below: 
#top.cs2=needs to be a matrix with rows corresponding to probes and columns to samples; all 
numeric: do not include a column with targetIDs 
#hclustfun: as far as I know only hclust works here, but you can try others 
#labCol: you need to change the name in there from top.cs2 to your data name 
#NumColSideColors: spaces out the colour bars on top of the heatmap based on the number of bars 
you are placing there: eg if you have 6 variables you want to plot, NumColSideColors=6 
 
top.noreps<-read.csv("minFFreps/topinfo_and_betas0.001_0.35_3057.csv",header=T,sep=",") 
top.noreps2<-as.matrix(top.noreps[,2:28]) 
 
#renaming samples 
colnames(top.noreps) 
clin.info3[,2] 
comp.names<-cbind(colnames(top.noreps2[,1:27]),as.data.frame(clin.info3[,2])) 
 
top.noreps3<-top.noreps[,1:28] 
colnames(top.noreps3)=c("TargetID",as.character(clin.info3[,1])) 
top.noreps4<-as.matrix(top.noreps3[,2:28]) 
colnames(top.noreps4) 
 
 
source("R:/R/heatmap3_040613.R") 
 
png("minFFreps/supervised_heatmap_3057_04.06.13.png",height=9,width=10,units="in",res=600) 
 
heatmap.3(top.noreps4,na.rm = TRUE, scale="none",hclustfun=hclust, dendrogram="column", 
margins=c(14,18), Rowv=FALSE, Colv=TRUE, ColSideColors=clab3, symbreaks=FALSE, key=TRUE, 
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symkey=FALSE, density.info="none", trace="none", main=main_title, 
labCol=colnames(top.noreps4),cexRow=0.1, col=Lab.palette2(20), NumColSideColors=7, 
KeyValueName="Beta Value",cexCol=1.1) 
 
legend("bottomleft",legend=c("IDH","Mutant","Wild-Type","","Sex","F","M","","Grade","Grade 
1","Grade 2","Grade 3","Dediff","","Age","<50","51-60","61-70",">71","","2-
HG(ng/ml)","<1,000","1,001-5,000","5,001-10,000",">10,000","N/A","","Cluster","1: Low","2: 
Intermediate","3: High"), 
fill=c("white","red","green","white","white","grey","black","white","white","yellow","orange","orang
e3","brown","white","white","yellow","light green","light 
blue","tomato","white","white","yellow","green","blue","red","black","white","white","light 
blue","light blue4","dark blue"), border=FALSE, bty="n", y.intersp = 0.85, cex=1.1) 
 
dev.off() 
 
##Consensus clustering 
source("http://bioconductor.org/biocLite.R") 
biocLite("ConsensusClusterPlus") 
library(ConsensusClusterPlus) 
 
 
#  
# cs.var<-read.csv("R:/Experiments/450K/FINAL 
08.06.12/Wilcox_min4/full_dataset_det.pval.filter_nonorm.0.01.csv",header=TRUE,sep=",") 
# cs.var2<-cs.var[complete.cases(cs.var),] 
 
 
cs.var2<-norm.csdata1[complete.cases(norm.csdata1),] 
mad.m<-matrix(1:nrow(cs.var2)) 
colnames(mad.m)<-"MAD" 
mad.m<-apply(cs.var2[,2:28],1,mad) 
 
 
cs.mad3<-cbind(cs.var2,mad.m) 
cs.mad4<-cs.mad3[order(cs.mad3[,29],decreasing=TRUE),] 
 
 
mad150<-cs.mad4[1:150,1:28] 
# write.table(mad100,"R:/Experiments/450K/FINAL 
08.06.12/Wilcox_min4/mad100.data.txt",col.names=T,sep="\t",row.names=F) 
mad150.noIDs<-as.matrix(mad150[,2:28]) 
 
##ConsensusClusterPlusHighRes is in sep R script 
results.mad150.km<-
ConsensusClusterPlusHighRes(mad150.noIDs,clusterAlg="km",maxK=9,reps=500,distance="euclid
ean",plot="png",title="minFFreps/150km.consensus_31.05.13_7/",tmyPal=Lab.palette2(20)) 
 
results.mad150.km[[2]][[2]]$order 
results.mad150.km[[4]][["consensusClass"]] 
 
# mad300<-cs.mad4[1:300,1:28] 
# # write.table(mad100,"R:/Experiments/450K/FINAL 
08.06.12/Wilcox_min4/mad100.data.txt",col.names=T,sep="\t",row.names=F) 
# mad300.noIDs<-as.matrix(mad300[,2:28]) 
#  
#  
# results.mad300.km<-
ConsensusClusterPlus(mad300.noIDs,clusterAlg="km",maxK=9,reps=500,distance="euclidean",plot
="pdf",title="minFFreps/300km.consensus/",tmyPal=Lab.palette2(20)) 
#  
# results.mad300.km[[4]][["consensusClass"]] #2mutants miscluster 
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#  
# results.mad300.km[[3]][["consensusClass"]] #1 Wt cluster, 2 mutant clusters, 1 mut sample 
misclusters 
 
# mad500<-cs.mad4[1:500,1:28] 
# # write.table(mad100,"R:/Experiments/450K/FINAL 
08.06.12/Wilcox_min4/mad100.data.txt",col.names=T,sep="\t",row.names=F) 
# mad500.noIDs<-as.matrix(mad500[,2:28]) 
#  
#  
# results.mad500.km<-
ConsensusClusterPlus(mad500.noIDs,clusterAlg="km",maxK=9,reps=500,distance="euclidean",plot
="pdf",title="minFFreps/500km.consensus/",tmyPal=Lab.palette2(20)) 
#  
# results.mad500.km[[4]][["consensusClass"]] #2mutants miscluster 
#  
# results.mad500.km[[3]][["consensusClass"]] #1 Wt cluster, 2 mutant clusters, 1 mut sample 
misclusters 
 
 
##plot heatmap with samples in order of consensus cluster: need to reorder the data and the 
clin.info and the colors 
 
mad150.noIDs2<-mad150.noIDs 
colnames(mad150.noIDs2)=c(as.character(clin.info3[,1])) 
 
top.cs2.cons.o<-mad150.noIDs2[,c(results.mad150.km[[4]][[2]]$order)] 
clin.info.cons.o<-clin.info3[c(results.mad150.km[[4]][[2]]$order),] 
 
grp.col.o <- sapply(clin.info.cons.o$Group, group.f) 
sex.col.o <- sapply(clin.info.cons.o$Sex, sex.f) 
grade.col.o <- sapply(clin.info.cons.o$Grade, grade.f) 
age.col.o <- sapply(clin.info.cons.o$Age, age.f) 
ngpml.2HG.col.o <- sapply(clin.info.cons.o$ngpml.2HG, hg.f) 
 
all.colors.o <- cbind(grp.col.o,sex.col.o,grade.col.o,age.col.o,ngpml.2HG.col.o) 
colnames(all.colors.o)<-c("IDH","Sex","Grade","Age","HG") 
 
clab.o <- all.colors.o 
 
main_title="" 
par(cex.main=1) 
 
Lab.palette2 <- colorRampPalette(c("yellow","light blue","blue"), space = "Lab") 
##make the same plot again to get the color key for consensus 
#save as png 
png(file="minFFreps/consensus key.png",height=9,width=10,units="in",res=600) 
heatmap.3(top.cs2.cons.o,na.rm = TRUE, scale="none",hclustfun=hclust, dendrogram=NULL, 
margins=c(14,18), Rowv=FALSE, Colv=FALSE, ColSideColors=clab.o, symbreaks=FALSE, key=TRUE, 
symkey=FALSE, density.info="none", trace="none", main=main_title, 
labCol=colnames(top.cs2.cons.o),cexRow=0.1, col=Lab.palette2(20), NumColSideColors=5, 
KeyValueName="Consensus") 
 
legend("left",legend=c("IDH","Mutant","Wild-Type","","Sex","F","M","","Grade","Grade 1","Grade 
2","Grade 3","Dediff","","Age","<50","51-60","61-70",">71","","2-HG(ng/ml)","<1,000","1,001-
5,000","5,001-10,000",">10,000","N/A"), 
fill=c("white","red","green","white","white","grey","black","white","white","yellow","orange","orang
e3","brown","white","white","yellow","light green","light 
blue","tomato","white","white","yellow","green","blue","red","black"), border=FALSE, bty="n", 
y.intersp = 0.9, cex=0.7) 
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dev.off() 
 
##calculate mean beta value for each cluster in to 3057 probes 
top3057<-read.csv("R:/Experiments/450K/FINAL 
08.06.12/Wilcox_min4/minFFreps/topinfo_and_betas0.001_0.35_3057.csv",sep=",",header=T) 
top3057_2<-top3057[,2:28] 
 
clin.info<-read.table("R:/Experiments/450K/FINAL 08.06.12/clin.info3.1.txt",header=T,sep="\t") 
clin.info[,2] 
clin.info3<-clin.info[-c(11,12,19,23,21,29),] 
 
high.clust<-top3057_2[,c(27,13,15,22,16,18,14,25)] 
int.clust<-top3057_2[,-c(1:12,27,13,15,22,16,18,14,25)] 
low.clust<-top3057_2[,c(1:12)] 
 
high.clust2<-stack(high.clust)$values 
median(high.clust2) #0.7515689 
mean(high.clust2) #0.725014 
 
int.clust2<-stack(int.clust)$values 
median(int.clust2) #0.5477938 
mean(int.clust2) #0.5159579 
 
low.clust2<-stack(low.clust)$values 
median(low.clust2) #0.1594047 
mean(low.clust2) #0.2072573 
 
 
########################Automated analysis 
 
Methyl.W<-function(dataset, 
                   dataset.layout=c(1,2,3), 
                   det.pval.filter=c(FALSE,TRUE), 
                   det.pval.filterlevel=0.01, 
                   quant.norm=c(FALSE,TRUE), 
                   total_group1_samples=0, 
                   total_group2_samples=0, 
                   folder="C:\\", 
                   p.val=0, 
                   group1.name="Group1", 
                   group2.name="Group2", 
                   med.diff.threshold=0){ 
   
  dataset<-dataset[complete.cases(dataset),] 
   
   
  cat("\n","Dataset layout. Choose one of the following:","\n","\n","1)TargetIDs, then beta values for 
each sample","\n","\n","2)TargetIDs, then, for each sample: 1 column beta, 1 column det. p-val(in 
that order)","\n","\n","3)TargetIDs, then, for each sample: 1 column det. p-val, 1 column Signal A, 1 
column signal B (in that order)","\n") # prompt  
  dataset.layout<-scan(n=1,what=character()) 
   
   
  cat("\n","Name of sample group 1?","\n") # prompt  
  group1.name<-scan(n=1,what=character()) 
   
  cat("\n","How many samples in group 1?","\n") # prompt  
  total_group1_samples<-scan(n=1) 
   
  cat("\n","Name of sample group 2?","\n") # prompt  
  group2.name<-scan(n=1,what=character()) 
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  cat("\n","How many samples in group 2?","\n") # prompt  
  total_group2_samples<-scan(n=1) 
   
  total_number_samples<-total_group1_samples+total_group2_samples 
   
  cat("\n","Folder location for output files","\n","(Eg:","T:\\Paul\\450K\\450Kauto\\)","\n") # 
prompt  
  folder<-scan(n=1,what=character()) 
   
  if (dataset.layout==1)  {                                                               #######just betas 
    if(ncol(dataset)>((total_number_samples)+1)|ncol(dataset)<((total_number_samples)+1)) 
stop("Layout different from layout 1 requirements") 
    det.pval.filter==FALSE 
    det.pval.filterlevel==0.01 
    quant.norm==FALSE 
    dataset<-dataset[complete.cases(dataset),] 
    print("Dimensions of dataset (no det pval filter or normalisation): ") 
    print(dim(dataset)) 
     
  } 
   
  else if (dataset.layout==2){                                                            ####beta,det.pval 
    if(ncol(dataset)>((2*total_number_samples)+1)|ncol(dataset)<((2*total_number_samples)+1)) 
stop("Layout different from layout 2 requirements") 
    quant.norm==FALSE 
    cat("\n","Apply a Detection p-value filter? (TRUE/FALSE)","\n") # prompt  
    det.pval.filter<-scan(n=1,what=logical()) 
     
    if (det.pval.filter==FALSE) { 
      det.pval.filterlevel==0.01 
      print("The Detection pval filter is OFF & No quantile Normalisation possible") 
      dataset<-dataset[,c(1,seq(from=2,to=ncol(dataset),by=2))] 
      dataset<-dataset[complete.cases(dataset),] 
      print("Dimensions of dataset (no det pval filter or normalisation): ") 
      print(dim(dataset)) 
      write.csv (dataset, file=paste(folder,"full_dataset_nofilter_nonorm.",".csv",sep=""), row.names=F, 
quote=FALSE) 
    } 
     
    else if (det.pval.filter==TRUE) { 
      cat("\n","What Detection p-value threshold?","\n") # prompt  
      det.pval.filterlevel<-scan(n=1) 
      print("The Detection pval filter is ON & No quantile Normalisation possible") 
      data.pvals<-dataset[,c(1,seq(from=3,to=ncol(dataset),by=2))] 
      data.betas<-dataset[,c(1,seq(from=2,to=ncol(dataset),by=2))] 
      data.test<-data.pvals[rowSums(data.pvals[,c(2:ncol(data.pvals))]>det.pval.filterlevel)<1,] 
      idx1<-match(data.test[,1],data.betas[,1]) 
      dataset<-data.betas[idx1,] 
      dataset<-dataset[complete.cases(dataset),] 
      print("Dimensions of dataset after det pval filter (no normalisation): ") 
      print(dim(dataset)) 
      write.csv (dataset, 
file=paste(folder,"full_dataset_det.pval.filter_nonorm.",det.pval.filterlevel,".csv",sep=""), 
row.names=F, quote=FALSE) 
       
    } 
  } 
   
  else if (dataset.layout==3) {                                                           ####det.pval,A,B 
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    if(ncol(dataset)>((3*total_number_samples)+1)|ncol(dataset)<((3*total_number_samples)+1)) 
stop("Layout different from layout 3 requirements") 
    cat("\n","Apply a Detection p-value filter? (TRUE/FALSE)","\n") # prompt  
    det.pval.filter<-scan(n=1,what=logical()) 
     
    if (det.pval.filter==FALSE) { 
      det.pval.filterlevel==0.01 
      cat("\n","Perform quantile normalisation of the data? (TRUE/FALSE)","\n") # prompt  
      quant.norm<-scan(n=1,what=logical()) 
       
      if (quant.norm==FALSE) { 
        print("The Detection pval filter is OFF & Quantile Normalisation is OFF") 
        betas.fromsignals<-
matrix(c(1:(total_number_samples*(nrow(dataset)))),byrow=TRUE,nrow=nrow(dataset)) 
        print(dim(betas.fromsignals)) 
        for (x in 1:nrow(dataset))  for (y in seq(from=3, to=ncol(dataset),by=3)) 
betas.fromsignals[x,y/3]<-(dataset[x,y+1]/(dataset[x,y]+dataset[x,y+1])) 
         
        betas.and.TIDs<-cbind(dataset[,1],as.data.frame(betas.fromsignals)) 
        names.list1<-c(colnames(dataset[,c(1,seq(from=2, to=ncol(dataset),by=3))])) 
        names.df1<-as.data.frame(matrix(1:length(names.list1),byrow=TRUE,nrow=1)) 
        for (x in 1:length(names.list1)) names.df1[x]<-strsplit(names.list1[x],".Detection.Pval") 
        colnames(betas.and.TIDs)<-names.df1 
        dataset<-betas.and.TIDs 
        dataset<-dataset[complete.cases(dataset),] 
        print("Dimensions of dataset (no det pval filter or normalisation): ") 
        print(dim(dataset)) 
        write.csv (dataset, file=paste(folder,"full_dataset_nofilter_nonorm.",".csv",sep=""), 
row.names=F, quote=FALSE) 
      } 
       
      else if (quant.norm==TRUE) { 
        print("The Detection pval filter is OFF & Quantile Normalisation is ON") 
        data.sigA<-as.matrix(dataset[,c(seq(from=3,to=ncol(dataset),by=3))]) 
        data.sigB<-as.matrix(dataset[,c(seq(from=4,to=ncol(dataset),by=3))]) 
        library(preprocessCore) 
        sigA.qnorm<-normalize.quantiles(data.sigA,copy=F) 
        sigB.qnorm<-normalize.quantiles(data.sigB,copy=F) 
         
        betas.fromsignals<-
matrix(c(1:(total_number_samples*(nrow(dataset)))),byrow=TRUE,nrow=nrow(dataset)) 
        for (x in 1:nrow(betas.fromsignals))  for (y in 1:ncol(betas.fromsignals)) 
betas.fromsignals[x,y]<-(data.sigB[x,y]/(data.sigA[x,y]+data.sigB[x,y])) 
         
        betas.and.TIDs<-cbind(dataset[,1],as.data.frame(betas.fromsignals)) 
        names.list1<-c(colnames(dataset[,c(1,seq(from=2, to=ncol(dataset),by=3))])) 
        names.df1<-as.data.frame(matrix(1:length(names.list1),byrow=TRUE,nrow=1)) 
        for (x in 1:length(names.list1)) names.df1[x]<-strsplit(names.list1[x],".Detection.Pval") 
        colnames(betas.and.TIDs)<-names.df1 
        dataset<-betas.and.TIDs 
        dataset<-dataset[complete.cases(dataset),] 
        print("Dimensions of dataset after normalisation (no det pval filter): ") 
        print(dim(dataset)) 
        write.csv (dataset, file=paste(folder,"full_dataset_nofilter_quant.norm.",".csv",sep=""), 
row.names=F, quote=FALSE) 
      } 
    } 
     
    else if (det.pval.filter==TRUE) { 
      cat("\n","What Detection p-value threshold?","\n") # prompt  
      det.pval.filterlevel<-scan(n=1) 
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      cat("\n","Perform quantile normalisation of the data? (TRUE/FALSE)","\n") # prompt  
      quant.norm<-scan(n=1,what=logical()) 
       
      if(quant.norm==FALSE) { 
        print("The Detection pval filter is ON & Quantile Normalisation is OFF") 
        data.pvals<-dataset[,c(1,seq(from=2,to=ncol(dataset),by=3))] 
        data.test<-data.pvals[rowSums(data.pvals[,c(2:ncol(data.pvals))]>det.pval.filterlevel)<1,] 
         
        betas.fromsignals<-
matrix(c(1:(total_number_samples*(nrow(dataset)))),byrow=TRUE,nrow=nrow(dataset)) 
        for (x in 1:nrow(dataset))  for (y in seq(from=3, to=ncol(dataset),by=3))  
betas.fromsignals[x,y/3]<-(dataset[x,y+1]/(dataset[x,y]+dataset[x,y+1])) 
         
        betas.and.TIDs<-cbind(dataset[,1],as.data.frame(betas.fromsignals)) 
        names.list1<-c(colnames(dataset[,c(1,seq(from=2, to=ncol(dataset),by=3))])) 
        names.df1<-as.data.frame(matrix(1:length(names.list1),byrow=TRUE,nrow=1)) 
        for (x in 1:length(names.list1)) names.df1[x]<-strsplit(names.list1[x],".Detection.Pval") 
        colnames(betas.and.TIDs)<-names.df1 
        idx1<-match(data.test[,1],betas.and.TIDs[,1]) 
        dataset<-betas.and.TIDs[idx1,] 
        dataset<-dataset[complete.cases(dataset),] 
        print("Dimensions of dataset after det pval filter (no normalisation): ") 
        print(dim(dataset)) 
        write.csv (dataset, 
file=paste(folder,"full_dataset_det.pval.filter_nonorm.",det.pval.filterlevel,".csv",sep=""), 
row.names=F, quote=FALSE) 
      } 
       
      else if (quant.norm==TRUE) { 
        print("The Detection pval filter is ON & Quantile Normalisation is ON") 
        data.pvals<-dataset[,c(1,seq(from=2,to=ncol(dataset),by=3))] 
        data.test<-data.pvals[rowSums(data.pvals[,c(2:ncol(data.pvals))]>det.pval.filterlevel)<1,] 
         
        data.sigA<-as.matrix(dataset[,c(seq(from=3,to=ncol(dataset),by=3))]) 
        data.sigB<-as.matrix(dataset[,c(seq(from=4,to=ncol(dataset),by=3))]) 
        library(preprocessCore) 
        sigA.qnorm<-normalize.quantiles(data.sigA,copy=F) 
        sigB.qnorm<-normalize.quantiles(data.sigB,copy=F) 
        print("Data normalisation complete") 
        betas.fromsignals<-
matrix(c(1:(total_number_samples*(nrow(dataset)))),byrow=TRUE,nrow=nrow(dataset)) 
        for (x in 1:nrow(betas.fromsignals))  for (y in 1:ncol(betas.fromsignals)) 
betas.fromsignals[x,y]<-(data.sigB[x,y]/(data.sigA[x,y]+data.sigB[x,y])) 
        print("beta-value calculations complete") 
        betas.and.TIDs<-cbind(dataset[,1],as.data.frame(betas.fromsignals)) 
         
        names.list1<-c(colnames(dataset[,c(1,seq(from=2, to=ncol(dataset),by=3))])) 
        names.df1<-as.data.frame(matrix(1:length(names.list1),byrow=TRUE,nrow=1)) 
        for (x in 1:length(names.list1)) names.df1[x]<-strsplit(names.list1[x],".Detection.Pval") 
        colnames(betas.and.TIDs)<-names.df1 
         
        idx1<-match(data.test[,1],betas.and.TIDs[,1]) 
        dataset<-betas.and.TIDs[idx1,] 
        dataset<-dataset[complete.cases(dataset),] 
        print("Dimensions of dataset after det pval filter and normalisation: ") 
        print(dim(dataset)) 
        write.csv (dataset, 
file=paste(folder,"full_dataset_det.pval.filter_quant.norm.",det.pval.filterlevel,".csv",sep=""), 
row.names=F, quote=FALSE) 
      } 
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    } 
  } 
   
   
  cat("\n","Adjusted p-value threshold after t-test?","\n") # prompt  
  p.val<-scan(n=1) 
   
  cat("\n","Median difference threshold?","\n") # prompt  
  med.diff.threshold<-scan(n=1) 
   
  ##1)STATS 
   
  ####a)t.tests + p.value adjustment: Filter 1 
   
   
  norm.mcs<-as.matrix(dataset[1:nrow(dataset),2:c(total_number_samples+1)]) 
  print("Dimensions of starting dataset without TargetID column are:") 
  print(dim(norm.mcs)) 
  f<-c(rep(0,total_group1_samples),rep(1,total_group2_samples)) 
  pv = rep(0,nrow(norm.mcs))  
  for (i in 1:nrow(norm.mcs)) { pv[i]=wilcox.test(norm.mcs[i,] ~ f)$p.value }  
   
  pv2<-as.matrix(pv) 
   
  #performs t.tests on each row 
   
  norm.csdatatt<-cbind(dataset,pv2) 
  print("Dimensions of dataset after wilcoxon test:") 
  print(dim(norm.csdatatt)) 
  #combines norm.csdata dataframe with the stats for each row 
   
  norm.csp<-
cbind(norm.csdatatt,p.adjust(norm.csdatatt[,c(total_number_samples+2)],method="BH")) 
  #multiple test correction (adjusts the p values) 
  print("Dimensions of dataset after p.value adjustment:") 
  print(dim(norm.csp)) 
  write.table (norm.csp, file=paste(folder,"data_adjp.values.txt",sep=""), sep="\t", col.names=T, 
row.names=F, quote=FALSE) 
   
   
  norm.psort3<-norm.csp[order(norm.csp[,c(total_number_samples+3)]),] 
  norm.psort4<-norm.psort3[norm.psort3[,c(total_number_samples+3)]<=p.val,] 
  attach(norm.psort4,warn.conflicts=FALSE) 
  print("Dimensions of dataset after p.value threshold selection:") 
  print(dim(norm.psort4)) 
   
  write.table(norm.psort4, 
file=paste(folder,"data_adjp.values_",p.val,"_",nrow(norm.psort4),".txt",sep=""), sep="\t", 
col.names=T, row.names=F, quote=FALSE) 
   
  ####b)Means, Medians 
  norm.psort5.2<-as.matrix(norm.psort4) 
  norm.psort6<-as.matrix(norm.psort4[,2:c(total_number_samples+3)]) 
   
  group1.med<-as.matrix(c(1:nrow(norm.psort6))) 
  colnames(group1.med)<-group1.name 
  group2.med<-as.matrix(c(1:nrow(norm.psort6))) 
  colnames(group2.med)<-group2.name 
  med.diff<-as.matrix(c(1:nrow(norm.psort6))) 
  colnames(med.diff)=paste("med.diff.",group2.name,".minus.",group1.name,sep="") 
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  for (x in 1:nrow(norm.psort6)) group1.med[x]<-
((median(norm.psort6[x,2:c(total_group1_samples+1)]))) 
  for (x in 1:nrow(norm.psort6)) group2.med[x]<-
((median(norm.psort6[x,c(total_group1_samples+2):c(total_number_samples+1)]))) 
  for (x in 1:nrow(norm.psort6)) med.diff[x]<-(group2.med[x]-group1.med[x]) 
   
  norm.psort7<-data.frame(norm.psort5.2,group1.med,group2.med,med.diff) 
   
  norm.psort8<-norm.psort7[order(norm.psort7[,1]),] 
  attach(norm.psort8,warn.conflicts=FALSE) 
  print(names(norm.psort8)) 
  
 
  ##2) GENETIC INFO + FILTER 2 
   
  norm.gen.info<-
read.csv("T:\\Infinium_Methylation_Data_Repository\\InfiniumManifest\\genomic_info2.csv",hea
der=T,sep=",") 
  norm.gen.info2<-norm.gen.info[order(norm.gen.info[,1]),] 
  norm.idx<-match(norm.psort8[,1],norm.gen.info2[,1]) 
  norm.gen.info3<-norm.gen.info2[norm.idx,] 
  norm.cs_topinfo_and_betas<-cbind(norm.psort8,norm.gen.info3) 
  write.csv (norm.cs_topinfo_and_betas, 
file=paste(folder,"data_betas_and_gen.info.",p.val,"_",nrow(norm.psort4),".csv",sep=""), 
row.names=F, quote=FALSE) 
   
   
  norm.cs_topinfo<-
norm.cs_topinfo_and_betas[,c(1,c(total_number_samples+2):c(total_number_samples+22))] 
  write.csv (norm.cs_topinfo, file=paste(folder,"topinfo.",p.val,"_",nrow(norm.psort4),".csv",sep=""), 
row.names=F, quote=FALSE) 
   
  norm.cs_topinfo2<-norm.cs_topinfo[rev(order(abs(norm.cs_topinfo[,6]))),] 
   
  norm.cs_topinfo3<-norm.cs_topinfo2[abs(norm.cs_topinfo2[,6])>=med.diff.threshold,] 
  write.csv (norm.cs_topinfo3, 
file=paste(folder,"topinfo",p.val,"_",med.diff.threshold,"_",nrow(norm.cs_topinfo3),".csv",sep=""), 
row.names=F, quote=FALSE) 
   
   
  norm.cs_topinfo4<-
norm.cs_topinfo_and_betas[abs(norm.cs_topinfo_and_betas[,c(total_number_samples+6)])>=med.di
ff.threshold,] 
  write.csv (norm.cs_topinfo4, 
file=paste(folder,"topinfo_and_betas",p.val,"_",med.diff.threshold,"_",nrow(norm.cs_topinfo4),".csv",
sep=""), row.names=F, quote=FALSE) 
   
  norm.genes<-norm.cs_topinfo3[,"UCSC_REFGENE_NAME"] 
  norm.genes2<-as.vector(norm.genes)   
   
  write.csv (norm.genes2, file=paste(folder,p.val,"_",med.diff.threshold,"_genes",".csv",sep=""), 
row.names=F, quote=FALSE) 
   
  norm.genes3<-as.matrix(unique(unlist(strsplit(norm.genes2, "\\;")))) 
  write.csv (norm.genes3, 
file=paste(folder,p.val,"_",med.diff.threshold,"_genes_nodups",".csv",sep=""), row.names=F, 
quote=FALSE) 
   
  print("Number of selected probes after p-value and median difference filters:") 
  print(dim(norm.cs_topinfo3)) 
} 



Appendices 

   190 

INTEGRATED METHYLATION AND GENE EXPRESSION ANALYSIS 

SCRIPT 

#data for 46 CS samples processed on Illumina HT12v4 arrays, exported from GenomeStudio: 
probe level info, no normalisation or bg correction 
#subsequent analysis follows method described by Ritchie et al.(2011) 
setwd("~/Experiments/GEM/CS/CS_110814") 
library (limma) 
 
cs<-read.ilmn(files="allcs_probe_raw.txt",ctrlfiles="allcs_controls.txt", probeid 
="ProbeID",annotation ="TargetID",other.columns=c("Detection Pval","Avg_ NBEADS")) 
dim(cs) 
cs$targets 
cs$E[1:5 , ] 
table (cs$genes$Status) 
 
proportion<-propexpr(cs) 
proportion 
t.test(proportion[1:30],proportion[31:46]) 
#same proportion of probes expressed in both sample grps: 
#  
# Welch Two Sample t-test 
#  
# data:  proportion[1:30] and proportion[31:46] 
# t = -1.5732, df = 37.143, p-value = 0.1242 
# alternative hypothesis: true difference in means is not equal to 0 
# 95 percent confidence interval: 
#   -0.030152424  0.003792949 
# sample estimates: 
#   mean of x mean of y  
# 0.4343614 0.4475411  
 
#normalisation 
cs.norm<-neqc(cs) 
dim(cs.norm) 
par(mfrow=c(3,1)) 
boxplot(log2(cs$E[cs$gene$Status=="regular",]), 
range=0,las=2,xlab="",ylab=expression(log[2](intensity)),main="Regular probes") 
 
boxplot(log2(cs$E[cs$gene$Status=="NEGATIVE",]), 
range=0,las=2,xlab="",ylab=expression(log[2](intensity)),main="Negative Control probes probes") 
boxplot(cs.norm$E, range=0, ylab=expression(log[2](intensity)),las=2,xlab=22,main="Regular 
probes, NEQC normalized") 
 
##MDS 
#by idh status 
par(mfrow=c(1,1)) 
plotMDS(cs.norm$E,col=c(rep("red",30),rep("green",16))) 
png("gx_mds.png",height=9,width=10,units="in",res=600) 
plotMDS(cs.norm$E,col=c(rep("red",30),rep("green",16))) 
dev.off() 
#by batch 
par(mfrow=c(1,1)) 
png("gx_mds_batch.png",height=9,width=10,units="in",res=600) 
plotMDS(cs.norm$E,col=c(rep("blue",16),rep("orange",14),rep("blue",6),rep("orange",10))) 
dev.off() 
##filtering based on probe annotation (bad, good, perfect) 
library(illuminaHumanv4.db) 
illuminaHumanv4() 
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ids<-as.character(rownames(cs.norm)) 
ids2<-unlist(mget(ids,revmap(illuminaHumanv4ARRAYADDRESS),ifnotfound=NA)) ##converts 
illuminaHumanv4 illumina IDs with rpefix ILMN to numeric ArrayAddressIDs  found in cs.norm 
qual<-unlist(mget(ids2,illuminaHumanv4PROBEQUALITY,ifnotfound=NA)) ##queries probe 
quality of new IDs, gives result as a list, which is then converted to a vector 
table(qual) 
AveSignal=rowMeans(cs.norm$E) 
boxplot(AveSignal~qual) 
rem<-qual=="No match"|qual=="Bad" 
cs.norm.filt<-cs.norm[!rem,] 
dim(cs.norm) 
dim(cs.norm.filt) 
 
 
##cluster samples based on highly variable probes 
IQR<-apply(cs.norm.filt$E,1,IQR,na.rm=TRUE) 
topVar<-order(IQR,decreasing=TRUE)[1:500] 
d<-dist(t(cs.norm.filt$E[topVar,])) 
plot(hclust(d),main="Cluster on 500 most variable probes") 
 
##make heatmap to show differences btwn grps 
Lab.palette2 <- colorRampPalette(c("red","black","green"), space = "Lab") 
 
png("gx_heatmap.png",height=9,width=10,units="in",res=600) 
heatmap(cs.norm.filt$E[topVar,],keep.dendro=T,margins=c(10,5),ColSideColors=c(rep("red",30),re
p("green",16)),col=Lab.palette2(20)) 
dev.off() 
 
##Differential Expression Analysis 
#####summarise values rom rep arrays +set up contrast btwn diff samples +assess array quality 
rna<-factor(c(rep("MUT",30),rep("WT",16))) 
design<-model.matrix(~0+rna) 
colnames(design)<-levels(rna) 
aw<-arrayWeights(cs.norm.filt,design) 
aw 
fit<-lmFit(cs.norm.filt,design,weights=aw) 
contrasts<-makeContrasts(MUT-WT,levels=design) 
contr.fit<-eBayes(contrasts.fit(fit,contrasts)) 
topTable(contr.fit,coef=1) 
par(mfrow=c(1,2)) 
volcanoplot(contr.fit, main="MUT-WT") 
smoothScatter(contr.fit$Amean,contr.fit$coef,xlab="average intensity",ylab="log-ratio") 
abline(h=0,col=2,lty=2) 
 
#####Annotation 
library(illuminaHumanv4.db) 
ids <- as.character(rownames(contr.fit$genes)) 
ids2 <- unlist(mget(ids, revmap(illuminaHumanv4ARRAYADDRESS), ifnotfound=NA)) 
chr <- mget(ids2, illuminaHumanv4CHR, ifnotfound = NA) 
cytoband<- mget(ids2, illuminaHumanv4MAP, ifnotfound = NA) 
entrezid <- mget(ids2, illuminaHumanv4ENTREZID, ifnotfound = NA) 
symbol <- mget(ids2, illuminaHumanv4SYMBOL, ifnotfound = NA) 
genename <- mget(ids2, illuminaHumanv4GENENAME, ifnotfound = NA) 
anno <- data.frame(Ill_ID = ids2, Chr = 
as.character(chr),Cytoband=as.character(cytoband),EntrezID=as.numeric(entrezid),Symbol=as.cha
racter(symbol),Name=as.character(genename)) 
contr.fit$genes <- anno 
topTable(contr.fit,sort.by="none") 
#write.fit(contr.fit, file ="cs_results_110814.txt",adjust="BH",F.adjust="BH",sep="\t") 
 
##heatmaps 



Appendices 

   192 

Lab.palette2 <- colorRampPalette(c("red","black","green"), space = "Lab") 
a<-topTable(contr.fit,sort.by="none",n=Inf) 
a2<-a[order(a$P.Value,decreasing=F),] 
an<-rownames(a2[1:500,]) 
png("gx_heatmap_top500pvalue.png",height=9,width=10,units="in",res=600) 
heatmap(cs.norm.filt$E[an,],keep.dendro=T,margins=c(10,5),ColSideColors=c(rep("red",30),rep("g
reen",16)),col=Lab.palette2(20)) 
dev.off() 
a3<-a[order(abs(a$logFC),decreasing=T),] 
am<-rownames(a3[1:500,]) 
png("gx_heatmap_top500abslogFC.png",height=9,width=10,units="in",res=600) 
heatmap(cs.norm.filt$E[am,],keep.dendro=T,margins=c(10,5),ColSideColors=c(rep("red",30),rep("g
reen",16)),col=Lab.palette2(20)) 
dev.off() 
 
#Write full results table 
res<-topTable(contr.fit,sort.by="p",n=Inf) 
write.table(res,"cs_results_110814.txt",sep="\t",quote=F, row.names=F) 
#gx with  p-value<=0.05 (non-adjusted) #1646 probes 
res_0.05<-res[which(res$P.Value<=0.05),] 
#gx with logFC >abs(2) (no p-value cut-off) #2 probes 
res_fc2<-res[which(abs(res$logFC)>=2),] 
#gx with logFC >abs(2) (p-value<=0.05 (non-adjusted)) #same 2 probes as above 
res_fc2_0.05<-res[which(abs(res$logFC)>=2 & res$P.Value<=0.05),] 
#gx with logFC >abs(1.5)(no p-value cut-off) #5 probes 
res_fc15<-res[which(abs(res$logFC)>=1.5),] 
#gx with logFC >abs(1.5) (p-value<=0.05 (non-adjusted)) 
res_fc15_0.05<-res[which(abs(res$logFC)>=1.5 & res$P.Value<=0.05),] # same 5 probes as above 
 
#############Integrate with Methylation 
setwd("~/Experiments/GEM/CS/CS_110814") 
#logFC explained: if +ve, then higher expression in mut; if -ve, then higher expression in wt 
 
#split gx and me by unique gene name 
me<-read.delim("Meth_3057.txt",sep="\t",header=T) 
me.l<-split(me,me$UCSC_REFGENE_NAME,drop=TRUE) 
gx<-read.delim("cs_results_110814.txt",sep="\t",header=T) 
#gx.l<-split(gx,gx$Symbol,drop=TRUE) too memory intensive 
#instead copied the cs_results_110814.txt file on the server and ran ####awk '{print > $5".txt"}' 
cs_results_110814.txt#### to split the file by Symbol into multiple files each named after one gene; 
these were then copied back onto the desktop in the folder gx_split_bygene 
 
setwd("~/Experiments/GEM/CS/CS_110814/gx_split_bygene/") 
a<-list.files() 
gx.l<-lapply(a, read.delim, sep = "\t",header=FALSE) 
names(gx.l)<-gsub(".txt","",a) 
gx.l<-lapply(gx.l,setNames,nm=names(gx)) 
 
#in genes in me, remove probes not in TSS region, and remove any genes with no probes after that 
filter 
keep_TSS<-function(data) { 
  data<-data[which(data$UCSC_REFGENE_GROUP=="TSS1500" | 
data$UCSC_REFGENE_GROUP=="TSS200"),] 
} 
me2.l<-lapply(me.l,keep_TSS) 
to_remove<-vector() 
for (i in 1:length(me2.l)){ 
  if (nrow(me2.l[[i]])==0) to_remove<-c(to_remove,names(me2.l)[i]) 
} 
isNameInIndex <- names(me2.l) %in% to_remove 
me3.l<-me2.l[!isNameInIndex] 
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#keep in me genes only those with either one probe or multiple probes that agree within each gene 
#all the ones left are hypermethylated in MUT so all agree 
 
#keep in gx only those with either one probe or multiple probes that agree within the gene 
options(warn=2)#transforms warnings into errors so stops loop at problematic row# use warn=0 
tor eturn to default 
gx.l<-gx.l[-3546] #contained the cs_results_110814 file in there 
to_remove2<-vector() 
for (i in 1:length(gx.l)){ 
  if (nrow(gx.l[[i]])>1) { 
    tot<-nrow(gx.l[[i]]) 
    pos<-nrow(gx.l[[i]][which(gx.l[[i]]$logFC > 0),]) 
    neg<-nrow(gx.l[[i]][which(gx.l[[i]]$logFC < 0),]) 
    if (tot!=pos & tot!=neg) to_remove2<-c(to_remove2,names(gx.l)[i])         
  } 
} 
isNameInIndex2 <- names(gx.l) %in% to_remove2 
gx2.l<-gx.l[!isNameInIndex2] 
 
#make list for gx and me with only genes contained in both 
#525 unique gene names in me; 16342 unique gene names in gx 
b<-intersect(unique(names(me3.l)),unique(names(gx2.l))) 
length(b)  #387 
me4.l<-me3.l[which(names(me3.l) %in% b)] 
gx4.l<-gx2.l[which(names(gx2.l) %in% b)] 
setwd("~/Experiments/GEM/CS/CS_110814") 
save(me4.l, file="me4.RData") 
save(gx4.l,file="gx4.RData") 
 
#single data frame for gx 
res<-data.frame(rep(0,length(b)),rep(0,length(b))) 
names(res)<-c("Gene","AVGlogFC") 
for (i in 1:length(gx4.l)){ 
  res[i,1]<-names(gx4.l[i]) 
  res[i,2]<-mean(gx4.l[[i]]$logFC) 
} 
write.table(res,"results_387genes_probemin1.txt",row.names=FALSE,quote=FALSE,sep="\t") 
 
#how many go each way? 
nrow(res[which(res[,2]<0),]) #213 which represents 55% of the 387 genes.... 
 
#number of probes in each me gene? 
a<-vector() 
for (i in 1:length(me3.l)){a<-c(a,(nrow(me3.l[[i]])))} 
 
#repeat analysis above with only me genes with num probes>=n 
#######n>=2 
to_remove3<-vector() 
for (i in 1:length(me3.l)){ 
  if (nrow(me3.l[[i]])<2) to_remove3<-c(to_remove3,names(me3.l)[i]) 
} 
isNameInIndex3 <- names(me3.l) %in% to_remove3 
me4.l<-me3.l[!isNameInIndex3] 
 
#228 unique gene names in me; 16342 unique gene names in gx 
b2<-intersect(unique(names(me4.l)),unique(names(gx2.l))) 
length(b2)  #171 
 
me4.l<-me4.l[which(names(me4.l) %in% b2)] 
gx4.l<-gx2.l[which(names(gx2.l) %in% b2)] 
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#single data frame for gx 
res2<-data.frame(rep(0,length(b2)),rep(0,length(b2))) 
names(res2)<-c("Gene","AVGlogFC") 
 
for (i in 1:length(gx4.l)){ 
  res2[i,1]<-names(gx4.l[i]) 
  res2[i,2]<-mean(gx4.l[[i]]$logFC) 
} 
 
#how many go each way? 
nrow(res2[which(res2[,2]<0),]) #102 which represents 59.6% of the 171 genes.... 
write.table(res2,"results_171genes_probemin2.txt",row.names=FALSE,quote=FALSE,sep="\t") 
 
#######n>=3 
to_remove3<-vector() 
for (i in 1:length(me3.l)){ 
  if (nrow(me3.l[[i]])<3) to_remove3<-c(to_remove3,names(me3.l)[i]) 
} 
isNameInIndex3 <- names(me3.l) %in% to_remove3 
me4.l<-me3.l[!isNameInIndex3] 
 
#113 unique gene names in me; 16342 unique gene names in gx 
b2<-intersect(unique(names(me4.l)),unique(names(gx2.l))) 
length(b2)  #89 
 
me4.l<-me4.l[which(names(me4.l) %in% b2)] 
gx4.l<-gx2.l[which(names(gx2.l) %in% b2)] 
 
#single data frame for gx 
res2<-data.frame(rep(0,length(b2)),rep(0,length(b2))) 
names(res2)<-c("Gene","AVGlogFC") 
 
for (i in 1:length(gx4.l)){ 
  res2[i,1]<-names(gx4.l[i]) 
  res2[i,2]<-mean(gx4.l[[i]]$logFC) 
} 
 
#how many go each way? 
nrow(res2[which(res2[,2]<0),]) #55 which represents 61.8% of the 89 genes.... 
write.table(res2,"results_89genes_probemin3.txt",row.names=FALSE,quote=FALSE,sep="\t") 
 
 
#######n>=5 
to_remove3<-vector() 
for (i in 1:length(me3.l)){ 
  if (nrow(me3.l[[i]])<5) to_remove3<-c(to_remove3,names(me3.l)[i]) 
} 
isNameInIndex3 <- names(me3.l) %in% to_remove3 
me4.l<-me3.l[!isNameInIndex3] 
 
#32 unique gene names in me; 16342 unique gene names in gx 
b2<-intersect(unique(names(me4.l)),unique(names(gx2.l))) 
length(b2)  #25 
 
me4.l<-me4.l[which(names(me4.l) %in% b2)] 
gx4.l<-gx2.l[which(names(gx2.l) %in% b2)] 
 
#single data frame for gx 
res2<-data.frame(rep(0,length(b2)),rep(0,length(b2))) 
names(res2)<-c("Gene","AVGlogFC") 
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for (i in 1:length(gx4.l)){ 
  res2[i,1]<-names(gx4.l[i]) 
  res2[i,2]<-mean(gx4.l[[i]]$logFC) 
} 
 
#how many go each way? 
nrow(res2[which(res2[,2]<0),]) #16 which represents 64% of the 25 genes.... 
write.table(res2,"results_25genes_probemin5.txt",row.names=FALSE,quote=FALSE,sep="\t") 
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CNV ANALYSIS SCRIPT 

#450K CNV: All samples 
Ran modified ChAMP CNA on all MUTs (test+rep) and all WTs (test+rep) + prepared files for  and 
ran GISTIC 
##Run modified ChAMP CNA 
The script of champ CNA function was adapted by Andy to use a reference control group; need 
more than one sample in reference grp so actually using 'Blood' grp as reference and 'reference' grp 
as blood sample grp. 
###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples") 
library(ChAMP) 
myLoad=champ.load(methValue="B",QCimages=TRUE,filterXY=FALSE,filterDetP=TRUE,filterBeads
=TRUE,beadCutoff=0.05,detPcut=0.01) 
boxplot(myLoad$intensity) #intensities look evenly distributed: no batch correction 
source("R:/R/CNV/champ_cna_modif_240414.R") 
``` 
The output can be found in resultsChamp/CNA 
##Prep files for  and run GISTIC 2.0 
Take all the output files for each sample group and stick them together;write file without 
header;also prepare marker files for hg19 
###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples") 
all<-list.files("resultsChamp/CNA",pattern=".txt",full.names=TRUE) 
mut<-all[grep("CNA/MUT",all)] 
wt<-all[grep("CNA/WT",all)] 
mut_full<-do.call("rbind", lapply(mut, read.delim, header = FALSE)) 
mut_full<-mut_full[-which(mut_full[,1]=="ID"),] 
write.table(mut_full,"all_MUT_for_gistic.txt",col.names=F,sep="\t",quote=F,row.names=FALSE) 
wt_full<-do.call("rbind", lapply(wt, read.delim, header = FALSE)) 
wt_full<-wt_full[-which(wt_full[,1]=="ID"),] 
write.table(wt_full,"all_WT_for_gistic.txt",col.names=F,sep="\t",quote=F,row.names=FALSE) 
#marker files for GISTIC;remove unknown chromosomes from hg19 version 
hg19<-read.delim("markers_file_hg19.txt",sep="\t",header=F) 
hg19b<-hg19[-which(hg19[,2]==""),] 
hg19b<-droplevels(hg19b) 
write.table(hg19b,"markers_file_hg19.txt",sep="\t",quote=FALSE,col.names=FALSE,row.names=FA
LSE) 
``` 
###Run GISTIC 2.0 for all samples separated into MUT and WT 
Ran it twice(once for mut once for wt) at http://genepattern.broadinstitute.org/ with the following 
settings 
- refgene file: Human Hg19 
- seg file: all_MUT_for_gistic.txt OR all_WT_for_gistic.txt 
- markers file: markers_file_hg19.txt 
- array list file: none 
- cnv file: none 
- gene gistic: yes 
- amp/del threshold: 0.3 
- join segment file: 4 
- qv thresh: 0.05 
- removeX: yes 
- cap val: 1.5 
- confidence level: 0.95 
- run broad analysis: yes 
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- broad length cutoff: 0.98 
- max sample segs: 10000 
- arm peel: yes 
- output prefix:allmut OR allWT 
Output is saved within "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples/GISTIC_output" 
 
###Run GISTIC 2.0 for all samples combined into one group 
Used same settings as above but the seg file is all_MUTandWT_for_gistic.txt 
 
Output is saved within "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed/GISTIC_output" 
 
###Run GISTIC 2.0 for all 450K samples that overlap with a CytoSNP sample 
Run twice (once for mut, once for wt) and used same settings as above with the 
all_MUT_for_gistic.txt or all_WT_for_gistic.txt seg file 
Use array list files arraylistfile_MUT_450matchingcCyto and arraylistfile_WT_450matchingcCyto 
 
Output is saved within "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_450samples_matching_cytosnp/GISTIC_output" 
 
#CytoSNP CNV: all samples 
Run DnaCopy and GISTIC on cytosnp data (adapted from script by A.Feber);these are hg19 build 
 
##In R: 
working directory:"~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytosnp" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytosnp") 
cyto<-read.table("Chondro_R_vlaue.txt", header=TRUE, sep="\t") 
 
#change sample names to match 450k 
name_trans<-read.delim("cytosnp_450k_names.txt",sep="\t",header=F) 
temp<-seq(1:11) 
for (i in 1:11){ 
  temp[i]<-
as.character(name_trans[which(paste("X",name_trans[,1],".R",sep="")==names(cyto[i+3])),2]) 
} 
 
new_names<-c(names(cyto[1:3]),temp,"BC")             
names(cyto)<-new_names              
 
names<-names(cyto) 
 
#Quantile normalise 
library(preprocessCore) 
 
tmp<-as.matrix(cyto[,4:15]) 
tmpqn<-normalize.quantiles(tmp) 
cytoqn<-cbind(cyto[,1:3],tmpqn) 
names(cytoqn)<-names 
 
#Calculate Log2  
cytoqnlog<-log2(cytoqn[,4:15]) 
cytoqnlog<-cbind(cyto[,1:3], cytoqnlog) 
 
#quantile norm log ratio 
cytoqnlogratio<-vector() 
 
for (i in 4:15){ 
  test<-cytoqnlog[,i]-cytoqnlog[,15] 
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  cytoqnlogratio<-cbind(cytoqnlogratio,test) 
} 
cytoqnlogratio<-cbind(cytoqn[,1:3],cytoqnlogratio) 
colnames(cytoqnlogratio)<-colnames(cytoqn) 
 
#Replcases Chr X adn Y with 23 and 24 
levels(cytoqnlogratio$Chr)[levels(cytoqnlogratio$Chr)=='X']='23' 
levels(cytoqnlogratio$Chr)[levels(cytoqnlogratio$Chr)=='Y']='24' 
 
#converts factors to numeric intergers 
ymp<-as.numeric(levels(cytoqnlogratio$Chr))[cytoqnlogratio$Chr] 
 
#Runs CNA 
library(DNAcopy) 
 
CNA.object <- CNA(cbind(cytoqnlogratio[,4:14]), ymp, cytoqnlogratio$Position ,data.type = 
"logratio", sampleid = names[4:14]) 
 
smoothed.CNA.object <- smooth.CNA(CNA.object) 
segment.smoothed.CNA.object <- segment(smoothed.CNA.object, verbose = 1) 
 
seg<-print(segment.smoothed.CNA.object) 
table_name<-"ALL_cyto_qn.txt" 
 
 
#remove sample that wasnt run on 450k WT 13 and reorder table with muts and WT 
seg2<-seg[-which(seg[,1]=="WT_13_FF_13394"),] 
 
write.table(seg2,table_name, sep="\t", col.names=F, row.names=F, quote=FALSE) 
 
#make markers file for gistic 
markers<-cyto[,1:3] 
write.table(markers,"markers_file_cyto_hg19.txt",sep="\t",quote=FALSE,col.names=FALSE,row.na
mes=FALSE) 
 
``` 
 
##Run GISTIC 2.0 
 
Use same settings as above 
Out put is saved within "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytosnp/GISTIC_output" 
 
 
 
 
 
 
#450K vs CytoSNP on matched samples 
 
##Preparing data 
###In R: 
 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
cyto<-read.delim("CNV_cytosnp/ALL_cyto_qn.txt",sep="\t",header=F) 
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k450mut<-
read.delim("CNV_450samples_matching_cytosnp/all_MUT_for_gistic.txt",sep="\t",header=F) 
k450wt<-
read.delim("CNV_450samples_matching_cytosnp/all_WT_for_gistic.txt",sep="\t",header=F) 
k450<-rbind(k450mut[which(gsub("._qn", "", k450mut[,1]) %in% 
cyto[,1]),],k450wt[which(gsub("._qn", "", k450wt[,1]) %in% cyto[,1]),]) 
 
 
#calculate segment lengths 
seg_length<-function(df){ 
  for (i in 1:nrow(df)){ 
    df[i,7]<-df[i,4]-df[i,3] 
  } 
  return(df) 
} 
 
cyto<-seg_length(cyto) 
k450<-seg_length(k450) 
k450[,1]<-gsub("._qn", "", k450[,1]) 
 
 
cyto_amp<-cyto[which(cyto[,6]>0),] 
cyto_amp$ALTID<-paste("chr",cyto_amp[,2],"_",cyto_amp[,3],"_",cyto_amp[,4],sep="") 
cyto_amp<-split(cyto_amp,cyto_amp[,1]) 
 
cyto_del<-cyto[which(cyto[,6]<0),] 
cyto_del$ALTID<-paste("chr",cyto_del[,2],"_",cyto_del[,3],"_",cyto_del[,4],sep="") 
cyto_del<-split(cyto_del,cyto_del[,1]) 
 
 
 
k450_amp<-k450[which(k450[,6]>0),] 
k450_amp$ALTID<-paste("chr",k450_amp[,2],"_",k450_amp[,3],"_",k450_amp[,4],sep="") 
k450_amp<-split(k450_amp,k450_amp[,1]) 
 
k450_del<-k450[which(k450[,6]<0),] 
k450_del$ALTID<-paste("chr",k450_del[,2],"_",k450_del[,3],"_",k450_del[,4],sep="") 
k450_del<-split(k450_del,k450_del[,1]) 
 
 
par(new=F) 
hist(log10(k450[,7]),col=NULL,border="orange",xlim=c(0,9),main="",xlab=NULL,ylim=c(0,1000)) 
par(new=T) 
hist(log10(cyto[,7]),col=NULL,border="black",xlim=c(0,9),main=NULL,xlab="log10(CNV 
size)",ylim=c(0,1000),ylab=NULL,yaxt='n') 
 
 
``` 
 
##Comparing Cytosnp and 450 on matched samples:LARGE ALTERATIONS (>=10Mb) 
 
###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
#select large alterations (>10Mb) 
cyto_large<-cyto[which(cyto[,7]>=10000000),] 
k450_large<-k450[which(k450[,7]>=10000000),] 
 
#Find overlap: prepare files for bedtools in galaxy 
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gal450<-
data.frame(paste("chr",k450_large[,2],sep=""),k450_large[,3],k450_large[,4],k450_large[,1]) 
names(gal450)<-c("chr","start","stop","SegmentID") 
gal450_l<-list() 
count=1 
for (i in unique(gal450$SegmentID)){ 
  gal450_l[[count]]<-subset(gal450,gal450$SegmentID==i) 
  gal450_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(gal450_l[[count]]),1),sep="") 
  count=count+1 
} 
names(gal450_l)<-unique(gal450$SegmentID) 
 
lapply(names(gal450_l),function (x) write.table(format(gal450_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVS450/",x,"_coords_withID_450_forgalaxay.txt",sep=""),sep="\t",col.names=F,
row.names=F,quote=F )   ) 
 
galcyto<-data.frame(paste("chr",cyto_large[,2],sep=""),cyto_large[,3],cyto_large[,4],cyto_large[,1]) 
names(galcyto)<-c("chr","start","stop","SegmentID") 
galcyto_l<-list() 
count=1 
for (i in unique(galcyto$SegmentID)){ 
  galcyto_l[[count]]<-subset(galcyto,galcyto$SegmentID==i) 
  galcyto_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galcyto_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galcyto_l)<-unique(galcyto$SegmentID) 
 
lapply(names(galcyto_l),function (x) write.table(format(galcyto_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVS450/",x,"_coords_withID_cyto_forgalaxay.txt",sep=""),sep="\t",col.names=F,
row.names=F,quote=F )   ) 
 
``` 
 
###In Galaxy: 
 
The files coords_withID_450_forgalaxay.txt and coords_withID_cyto_forgalaxay.txt for each matched 
sample pair were uploaded to Galaxy(http://bifx-core.bio.ed.ac.uk:8080/galaxy/)as interval format 
to assess overlaps using the tool in: 'Operate on Genomic Intervals-->Join', with the following 
settings: 
- Join: coords_withID_450_forgalaxay.txt 
- with: coords_withID_cyto_forgalaxay.txt 
- with min overlap: 1bp 
- Return: Only records that are joined (INNER JOIN) 
 
The output file was downloaded to R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450/xxxx_OVERLAP.txt 
 
 
###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450" 
 
```{r,eval=F} 
 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450") 
temp=list.files(pattern="*_OVERLAP") 
sample.l<-sapply(temp,function(x) 
read.delim(x,header=FALSE,sep="\t",row.names=NULL),simplify=FALSE) 
 
results<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
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  results[i,1]<-gsub("_OVERLAP.txt", "", names[i]) 
  results[i,2]<-nrow(gal450[which(gal450$SegmentID==results[i,1]),]) 
  results[i,3]<-nrow(galcyto[which(galcyto$SegmentID==results[i,1]),]) 
  results[i,4]<-nrow(unique(sample.l[[i]][4])) 
  results[i,5]<-100*(as.numeric(results[i,4])/as.numeric(results[i,2])) 
} 
colnames(results)<-
c("SampleID","N_large_alt_in_450","N_large_alt_in_cyto","N_large_alt_overlap_in_cyto","Percentage_
overlap_in_cytosnp") 
 
 
#split amp and del 
 
 
create_ALTID<-function(df){ 
  df$ALTID_k450<-paste(df[,1],"_",df[,2],"_",df[,3],sep="") 
  df$ALTID_cyto<-paste(df[,5],"_",df[,6],"_",df[,7],sep="") 
  return(df) 
} 
 
sample.l<-lapply(sample.l,create_ALTID) 
 
results_amp<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
  results_amp[i,1]<-gsub("_OVERLAP.txt", "", names[i]) 
  results_amp[i,2]<-nrow(k450_amp[[i]][which(k450_amp[[i]][,7]>=10000000),]) 
  results_amp[i,3]<-nrow(cyto_amp[[i]][which(cyto_amp[[i]][,7]>=10000000),]) 
  results_amp[i,4]<-length(unique(sample.l[[i]][which(sample.l[[i]][,9] %in% k450_amp[[i]][,8] & 
sample.l[[i]][,10] %in% cyto_amp[[i]][,8]),4])) 
  results_amp[i,5]<-100*(as.numeric(results_amp[i,4])/as.numeric(results_amp[i,2])) 
} 
colnames(results_amp)<-
c("SampleID","N_large_amp_in_450","N_large_amp_in_cyto","N_large_amp_overlap_in_cyto","Percen
tage_overlap_in_cytosnp") 
 
results_del<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
  results_del[i,1]<-gsub("_OVERLAP.txt", "", names[i]) 
  results_del[i,2]<-nrow(k450_del[[i]][which(k450_del[[i]][,7]>=10000000),]) 
  results_del[i,3]<-nrow(cyto_del[[i]][which(cyto_del[[i]][,7]>=10000000),]) 
  results_del[i,4]<-length(unique(sample.l[[i]][which(sample.l[[i]][,9] %in% k450_del[[i]][,8] & 
sample.l[[i]][,10] %in% cyto_del[[i]][,8]),4])) 
  results_del[i,5]<-100*(as.numeric(results_del[i,4])/as.numeric(results_del[i,2])) 
} 
colnames(results_del)<-
c("SampleID","N_large_del_in_450","N_large_del_in_cyto","N_large_del_overlap_in_cyto","Percentage
_overlap_in_cytosnp") 
 
``` 
 
 
##Comparing Cytosnp and 450 on matched samples:SMALL ALTERATIONS (<=1Mb) 
 
###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
#select small alterations (<=1Mb) 
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cyto_small<-cyto[which(cyto[,7]<=1000000),] 
k450_small<-k450[which(k450[,7]<=1000000),] 
 
#Find overlap: prepare files for bedtools in galaxy 
 
gal450small<-
data.frame(paste("chr",k450_small[,2],sep=""),k450_small[,3],k450_small[,4],k450_small[,1]) 
names(gal450small)<-c("chr","start","stop","SegmentID") 
gal450small_l<-list() 
count=1 
for (i in unique(gal450small$SegmentID)){ 
  gal450small_l[[count]]<-subset(gal450small,gal450small$SegmentID==i) 
  gal450small_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(gal450small_l[[count]]),1),sep="") 
  count=count+1 
} 
names(gal450small_l)<-unique(gal450small$SegmentID) 
 
lapply(names(gal450small_l),function (x) write.table(format(gal450small_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVS450/",x,"_coords_withID_450_forgalaxay_SMALL_ALT.txt",sep=""),sep="\t",
col.names=F,row.names=F,quote=F )   ) 
 
galcytosmall<-
data.frame(paste("chr",cyto_small[,2],sep=""),cyto_small[,3],cyto_small[,4],cyto_small[,1]) 
names(galcytosmall)<-c("chr","start","stop","SegmentID") 
galcytosmall_l<-list() 
count=1 
for (i in unique(galcytosmall$SegmentID)){ 
  galcytosmall_l[[count]]<-subset(galcytosmall,galcytosmall$SegmentID==i) 
  galcytosmall_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galcytosmall_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galcytosmall_l)<-unique(galcytosmall$SegmentID) 
 
lapply(names(galcytosmall_l),function (x) write.table(format(galcytosmall_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVS450/",x,"_coords_withID_cyto_forgalaxay_SMALL_ALT.txt",sep=""),sep="\t",
col.names=F,row.names=F,quote=F )   ) 
 
``` 
 
###In Galaxy: 
The files coords_withID_450_forgalaxay_SMALL_ALT.txt and 
coords_withID_cyto_forgalaxay_SMALL_ALT.txt for each matched sample pair were uploaded to 
Galaxy(http://bifx-core.bio.ed.ac.uk:8080/galaxy/)as interval format to assess overlaps using the 
tool in: 'Operate on Genomic Intervals-->Join', with the following settings: 
- Join: coords_withID_450_forgalaxay_SMALL_ALT.txt 
- with: coords_withID_cyto_forgalaxay_SMALL_ALT.txt 
- with min overlap: 1bp 
- Return: Only records that are joined (INNER JOIN) 
The output file was downloaded to R:\Experiments\Other 
Experiments\CNV\20140815_CS_CNV\CNV_cytoVS450\small\xxxx_SMALL_ALT_OVERLAP.txt 
 
 
###In R: 
working directory: "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450/small" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450/small") 
temp=list.files(pattern="*_SMALL_ALT_OVERLAP") 
sample_small.l<-sapply(temp,function(x) 
read.delim(x,header=FALSE,sep="\t",row.names=NULL),simplify=FALSE) 
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results_small<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
for (i in 1:length(names)){ 
  results_small[i,1]<-gsub("_SMALL_ALT_OVERLAP.txt", "", names[i]) 
  results_small[i,2]<-nrow(gal450small[which(gal450small$SegmentID==results_small[i,1]),]) 
  results_small[i,3]<-nrow(galcytosmall[which(galcytosmall$SegmentID==results_small[i,1]),]) 
  results_small[i,4]<-nrow(unique(sample_small.l[[i]][4])) 
  results_small[i,5]<-100*(as.numeric(results_small[i,4])/as.numeric(results_small[i,2])) 
} 
colnames(results_small)<-
c("SampleID","N_small_alt_in_450","N_small_alt_in_cyto","N_small_alt_overlap_in_cyto","Percentage_
overlap_in_cytosnp") 
 
 
#split amp and del 
 
 
create_ALTID<-function(df){ 
  df$ALTID_k450<-paste(df[,1],"_",df[,2],"_",df[,3],sep="") 
  df$ALTID_cyto<-paste(df[,5],"_",df[,6],"_",df[,7],sep="") 
  return(df) 
} 
 
sample_small.l<-lapply(sample_small.l,create_ALTID) 
 
results_small_amp<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
for (i in 1:length(names)){ 
  results_small_amp[i,1]<-gsub("_SMALL_ALT_OVERLAP.txt", "", names[i]) 
  results_small_amp[i,2]<-nrow(k450_amp[[i]][which(k450_amp[[i]][,7]<=1000000),]) 
  results_small_amp[i,3]<-nrow(cyto_amp[[i]][which(cyto_amp[[i]][,7]<=1000000),]) 
  results_small_amp[i,4]<-length(unique(sample_small.l[[i]][which(sample_small.l[[i]][,9] %in% 
k450_amp[[i]][,8] & sample_small.l[[i]][,10] %in% cyto_amp[[i]][,8]),4])) 
  results_small_amp[i,5]<-
100*(as.numeric(results_small_amp[i,4])/as.numeric(results_small_amp[i,2])) 
} 
colnames(results_small_amp)<-
c("SampleID","N_small_amp_in_450","N_small_amp_in_cyto","N_small_amp_overlap_in_cyto","Perce
ntage_overlap_in_cytosnp") 
 
results_small_del<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
for (i in 1:length(names)){ 
  results_small_del[i,1]<-gsub("_SMALL_ALT_OVERLAP.txt", "", names[i]) 
  results_small_del[i,2]<-nrow(k450_del[[i]][which(k450_del[[i]][,7]<=1000000),]) 
  results_small_del[i,3]<-nrow(cyto_del[[i]][which(cyto_del[[i]][,7]<=1000000),]) 
  results_small_del[i,4]<-length(unique(sample_small.l[[i]][which(sample_small.l[[i]][,9] %in% 
k450_del[[i]][,8] & sample_small.l[[i]][,10] %in% cyto_del[[i]][,8]),4])) 
  results_small_del[i,5]<-
100*(as.numeric(results_small_del[i,4])/as.numeric(results_small_del[i,2])) 
} 
colnames(results_small_del)<-
c("SampleID","N_small_del_in_450","N_small_del_in_cyto","N_small_del_overlap_in_cyto","Percentag
e_overlap_in_cytosnp") 
 
``` 
 
 
much lower overlap: check how many markers in cytosnp in  450k regions where no overlap 
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###In R: 
working directory: "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450/small" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450/small") 
`%ni%` <- Negate(`%in%`) 
 
names<-names(sample_small.l) 
nool_amp<-list() 
nool_del<list() 
for (i in 1:length(names)){ 
  nool_amp[[i]]<-k450_amp[[i]][which(k450_amp[[i]][,7]<=1000000 & k450_amp[[i]][,8] %ni% 
sample_small.l[[i]][,9]),] 
  nool_del[[i]]<-k450_del[[i]][which(k450_del[[i]][,7]<=1000000 & k450_del[[i]][,8] %ni% 
sample_small.l[[i]][,9]),] 
} 
 
markers<-read.delim("R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytosnp/markers_file_cyto_hg19.txt",sep="\t",header=
F) 
 
cyto_mark_num<-function(df){ 
  for (i in 1:nrow(df)){ 
    df$num_cyto_markers[i]<-nrow(markers[which(markers[,3]>=df[i,3] & markers[,3]<=df[i,4]),]) 
  } 
  return(df) 
} 
 
nool_amp2<-lapply(nool_amp,cyto_mark_num) 
nool_del2<-lapply(nool_del,cyto_mark_num) 
 
nool_amp_results<-matrix(rep(0,40),nrow=10) 
for (i in 1:length(names)){ 
  nool_amp_results[i,1]<-gsub("_SMALL_ALT_OVERLAP.txt", "", names[i]) 
  nool_amp_results[i,2]<-nrow(nool_amp2[[i]]) 
  nool_amp_results[i,3]<-nrow(nool_amp2[[i]][which(nool_amp2[[i]][,9]<4),]) 
  nool_amp_results[i,4]<-
100*(as.numeric(nool_amp_results[i,3])/as.numeric(nool_amp_results[i,2])) 
} 
colnames(nool_amp_results)<-
c("SampleID","N_small_amp_nooverlap","N_small_amp_with_lessthan4cytomarkers","Percentage_s
mall_amp_with_lessthan4cytomarkers") 
 
 
nool_del_results<-matrix(rep(0,40),nrow=10) 
for (i in 1:length(names)){ 
  nool_del_results[i,1]<-gsub("_SMALL_ALT_OVERLAP.txt", "", names[i]) 
  nool_del_results[i,2]<-nrow(nool_del2[[i]]) 
  nool_del_results[i,3]<-nrow(nool_del2[[i]][which(nool_del2[[i]][,9]<4),]) 
  nool_del_results[i,4]<-100*(as.numeric(nool_del_results[i,3])/as.numeric(nool_del_results[i,2])) 
} 
colnames(nool_del_results)<-
c("SampleID","N_small_del_nooverlap","N_small_del_with_lessthan4cytomarkers","Percentage_smal
l_del_with_lessthan4cytomarkers") 
 
``` 
 
 
##Writing the comparisons to file 
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###In R: 
working directory: "~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450" 
 
```{r,eval=F} 
 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVS450") 
 
write.table(results_amp,"Large_amp_10mb_comp.txt",sep="\t",col.names=TRUE,row.names=FALSE
,quote=F) 
write.table(results_del,"Large_del_10mb_comp.txt",sep="\t",col.names=TRUE,row.names=FALSE,qu
ote=F) 
write.table(results_small_amp,"Small_amp_1mb_comp.txt",sep="\t",col.names=TRUE,row.names=F
ALSE,quote=F) 
write.table(results_small_del,"Small_del_1mb_comp.txt",sep="\t",col.names=TRUE,row.names=FAL
SE,quote=F) 
 
write.table(nool_amp_results,"Small_amp_nool_cytomarkers.txt",sep="\t",col.names=TRUE,row.na
mes=FALSE,quote=F) 
write.table(nool_del_results,"Small_del_nool_cytomarkers.txt",sep="\t",col.names=TRUE,row.name
s=FALSE,quote=F) 
 
``` 
 
 
 
#Exome vs CytoSNP 
The 10 samples run on CytoSNP were also processed by Tarpey et al. by exome and/or SNP 6.0 
array 
Very low overlap between 450K and Exome, so what's the overlap between exome and snp? 
 
 
##Preparing Data: 
 
###In R: 
working directory:"~/Experiments/Other Experiments/CNV/20140815_CS_CNV" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
cyto<-read.delim("CNV_cytosnp/ALL_cyto_qn.txt",sep="\t",header=F) 
 
#read in exome samples from amf paper (Tarpey et al 2013) 
amf<-read.delim("CNV_allsamples_mixed/sup_table7_Tarpey2013.txt",sep="\t",header=T) 
 
amf<-amf[,c(5,2,3,4,1,1)] 
 
#keep only the amf samples that overlap with cytosnp 
equiv_ID<-read.delim("CNV_allsamples_mixed/Tarpey_PG_ID_overlaps.txt",sep="\t",header=T) 
 
amf2<-amf[which(amf$Sample %in% equiv_ID$Tarpey_ID),] 
 
 
#rename the amf samples with the cytosnp sample names 
 
amf3<-merge(amf2,equiv_ID, by.x="Sample", by.y="Tarpey_ID") 
amf3[,1]<-amf3[,7] 
amf3<-amf3[,-7] 
 
#calculate segment lengths 
seg_length<-function(df){ 
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  for (i in 1:nrow(df)){ 
    df[i,7]<-df[i,4]-df[i,3] 
  } 
  return(df) 
} 
 
cyto<-seg_length(cyto) 
amf3<-seg_length(amf3) 
 
cyto_amp<-cyto[which(cyto[,6]>0),] 
cyto_amp$ALTID<-paste("chr",cyto_amp[,2],"_",cyto_amp[,3],"_",cyto_amp[,4],sep="") 
cyto_amp<-split(cyto_amp,cyto_amp[,1]) 
 
cyto_del<-cyto[which(cyto[,6]<0),] 
cyto_del$ALTID<-paste("chr",cyto_del[,2],"_",cyto_del[,3],"_",cyto_del[,4],sep="") 
cyto_del<-split(cyto_del,cyto_del[,1]) 
 
amf_amp<-amf3[which(amf3[,6]=="Amp"),] 
amf_amp$ALTID<-paste("chr",amf_amp[,2],"_",amf_amp[,3],"_",amf_amp[,4],sep="") 
amf_amp<-split(amf_amp,amf_amp[,1]) 
 
amf_del<-amf3[which(amf3[,6]=="Del"),] 
amf_del$ALTID<-paste("chr",amf_del[,2],"_",amf_del[,3],"_",amf_del[,4],sep="") 
amf_del<-split(amf_del,amf_del[,1]) 
 
 
``` 
 
 
##Comparing Exome and CytoSNP on matched samples: Large Alterations (>=10Mb): 
 
 
###In R: 
working directory: “~/Experiments/Other Experiments/CNV/20140815_CS_CNV” 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
#select large alterations (>10Mb) 
cyto_large<-cyto[which(cyto[,7]>=10000000),] 
amf_large<-amf3[which(amf3[,7]>=10000000),] 
 
#prepare files for galaxy:cyto 
galcyto<-data.frame(paste("chr",cyto_large[,2],sep=""),cyto_large[,3],cyto_large[,4],cyto_large[,1]) 
names(galcyto)<-c("chr","start","stop","SegmentID") 
galcyto_l<-list() 
count=1 
for (i in unique(galcyto$SegmentID)){ 
  galcyto_l[[count]]<-subset(galcyto,galcyto$SegmentID==i) 
  galcyto_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galcyto_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galcyto_l)<-unique(galcyto$SegmentID) 
 
lapply(names(galcyto_l),function (x) write.table(format(galcyto_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVSamf/",x,"_coords_withID_cyto_forgalaxay.txt",sep=""),sep="\t",col.names=F,
row.names=F,quote=F )   ) 
 
#prepare files for galaxy:amf 
galamf<-data.frame(paste("chr",amf_large[,2],sep=""),amf_large[,3],amf_large[,4],amf_large[,1]) 
names(galamf)<-c("chr","start","stop","SegmentID") 
galamf_l<-list() 
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count=1 
for (i in unique(galamf$SegmentID)){ 
  galamf_l[[count]]<-subset(galamf,galamf$SegmentID==i) 
  galamf_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galamf_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galamf_l)<-unique(galamf$SegmentID) 
 
lapply(names(galamf_l),function (x) write.table(format(galamf_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVSamf/",x,"_coords_withID_amf_forgalaxay.txt",sep=""),sep="\t",col.names=F,r
ow.names=F,quote=F )   ) 
#only one large alteration in amf 
``` 
 
###In Galaxy: 
The files coords_withID_cyto_forgalaxay.txt and coords_withID_amf_forgalaxay.txt for the matched 
sample pair (WT14) were uploaded to Galaxy(http://bifx-core.bio.ed.ac.uk:8080/galaxy/)as 
interval format to assess overlaps using the tool in: ‘Operate on Genomic Intervals–>Join’, with the 
following settings:  
- Join: coords_withID_cyto_forgalaxay.txt  
- with: coords_withID_amf_forgalaxay.txt  
- with min overlap: 1bp  
- Return: Only records that are joined (INNER JOIN) 
 
 
The output file was downloaded to "R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf/xxxx_OVERLAP.txt" 
 
###In R: 
working directory: “~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf” 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf") 
 
temp=list.files(pattern="*_OVERLAP") 
sample.l<-sapply(temp,function(x) 
read.delim(x,header=FALSE,sep="\t",row.names=NULL),simplify=FALSE) 
names(sample.l)<-gsub("_OVERLAP.txt", "", names(sample.l)) 
 
results<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
  results[i,1]<-names[i] 
  results[i,2]<-nrow(galamf[which(galamf$SegmentID==results[i,1]),]) 
  results[i,3]<-nrow(galcyto[which(galcyto$SegmentID==results[i,1]),]) 
  results[i,4]<-nrow(unique(sample.l[[i]][4])) 
  results[i,5]<-100*(as.numeric(results[i,4])/as.numeric(results[i,2])) 
} 
colnames(results)<-
c("SampleID","N_large_alt_in_amf","N_large_alt_in_cyto","N_large_alt_overlap_in_cyto","Percentage_
amf_that_overlap_in_cytosnp") 
 
 
 
#split amp and del 
 
 
 
create_ALTID<-function(df){ 
  df$ALTID_amf<-paste(df[,5],"_",df[,6],"_",df[,7],sep="") 
  df$ALTID_cyto<-paste(df[,1],"_",df[,2],"_",df[,3],sep="") 
  return(df) 
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} 
 
sample.l<-lapply(sample.l,create_ALTID) 
 
results_amp<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
  results_amp[i,1]<-names[i] 
  results_amp[i,2]<-
nrow(amf_amp[[match(results_amp[i,1],names(amf_amp))]][which(amf_amp[[match(results_amp[
i,1],names(amf_amp))]][,7]>=10000000),]) 
  results_amp[i,3]<-
nrow(cyto_amp[[match(results_amp[i,1],names(cyto_amp))]][which(cyto_amp[[match(results_am
p[i,1],names(cyto_amp))]][,7]>=10000000),]) 
  results_amp[i,4]<-
length(unique(sample.l[[match(results_amp[i,1],names(sample.l))]][which(sample.l[[match(result
s_amp[i,1],names(sample.l))]][,9] %in% amf_amp[[match(results_amp[i,1],names(amf_amp))]][,8] 
& sample.l[[match(results_amp[i,1],names(sample.l))]][,10] %in% 
cyto_amp[[match(results_amp[i,1],names(cyto_amp))]][,8]),4])) 
  results_amp[i,5]<-100*(as.numeric(results_amp[i,4])/as.numeric(results_amp[i,2])) 
} 
colnames(results_amp)<-
c("SampleID","N_large_amp_in_amf","N_large_amp_in_cyto","N_large_amp_overlap_in_cyto","Percen
tage_overlap_in_cytosnp") 
 
results_del<-matrix(rep(0,50),nrow=10) 
names<-names(sample.l) 
for (i in 1:length(names)){ 
  results_del[i,1]<-gsub("_OVERLAP.txt", "", names[i]) 
  results_del[i,2]<-
nrow(amf_del[[match(results_del[i,1],names(amf_del))]][which(amf_del[[match(results_del[i,1],na
mes(amf_del))]][,7]>=10000000),]) 
  results_del[i,3]<-
nrow(cyto_del[[match(results_del[i,1],names(cyto_del))]][which(cyto_del[[match(results_del[i,1],n
ames(cyto_del))]][,7]>=10000000),]) 
  results_del[i,4]<-
length(unique(sample.l[[match(results_del[i,1],names(sample.l))]][which(sample.l[[match(results_
del[i,1],names(sample.l))]][,9] %in% amf_del[[match(results_del[i,1],names(amf_del))]][,8] & 
sample.l[[match(results_del[i,1],names(sample.l))]][,10] %in% 
cyto_del[[match(results_del[i,1],names(cyto_del))]][,8]),4])) 
  results_del[i,5]<-100*(as.numeric(results_del[i,4])/as.numeric(results_del[i,2])) 
} 
colnames(results_del)<-
c("SampleID","N_large_del_in_amf","N_large_del_in_cyto","N_large_del_overlap_in_cyto","Percentage
_overlap_in_cytosnp") 
 
 
``` 
 
 
 
##Comparing Exome and CytoSNP on matched samples: Small Alterations (<=1Mb): 
 
 
###In R: 
working directory: “~/Experiments/Other Experiments/CNV/20140815_CS_CNV” 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV") 
 
#select small alterations (<=1Mb) 
cyto_small<-cyto[which(cyto[,7]<=1000000),] 
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amf_small<-amf3[which(amf3[,7]<=1000000),] 
 
#prepare files for galaxy:cyto 
galcytosmall<-
data.frame(paste("chr",cyto_small[,2],sep=""),cyto_small[,3],cyto_small[,4],cyto_small[,1]) 
names(galcytosmall)<-c("chr","start","stop","SegmentID") 
galcytosmall_l<-list() 
count=1 
for (i in unique(galcytosmall$SegmentID)){ 
  galcytosmall_l[[count]]<-subset(galcytosmall,galcytosmall$SegmentID==i) 
  galcytosmall_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galcytosmall_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galcytosmall_l)<-unique(galcytosmall$SegmentID) 
 
lapply(names(galcytosmall_l),function (x) write.table(format(galcytosmall_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVSamf/small/",x,"_coords_withID_cyto_forgalaxay_SMALL_ALT.txt",sep=""),se
p="\t",col.names=F,row.names=F,quote=F )   ) 
 
#prepare files for galaxy:amf 
galamfsmall<-
data.frame(paste("chr",amf_small[,2],sep=""),amf_small[,3],amf_small[,4],amf_small[,1]) 
names(galamfsmall)<-c("chr","start","stop","SegmentID") 
galamfsmall_l<-list() 
count=1 
for (i in unique(galamfsmall$SegmentID)){ 
  galamfsmall_l[[count]]<-subset(galamfsmall,galamfsmall$SegmentID==i) 
  galamfsmall_l[[count]]$SegmentID<-paste(i,"_",seq(1,nrow(galamfsmall_l[[count]]),1),sep="") 
  count=count+1 
} 
names(galamfsmall_l)<-unique(galamfsmall$SegmentID) 
 
lapply(names(galamfsmall_l),function (x) write.table(format(galamfsmall_l[[x]],scientific=FALSE), 
file=paste("CNV_cytoVSamf/small/",x,"_coords_withID_amf_forgalaxay_SMALL_ALT.txt",sep=""),sep
="\t",col.names=F,row.names=F,quote=F )   ) 
 
``` 
 
###In Galaxy: 
The files coords_withID_cyto_forgalaxay_SMALL_ALT.txt and 
coords_withID_amf_forgalaxay_SMALL_ALT.txt for the matched sample pairs  were uploaded to 
Galaxy(http://bifx-core.bio.ed.ac.uk:8080/galaxy/)as interval format to assess overlaps using the 
tool in: ‘Operate on Genomic Intervals–>Join’, with the following settings:  
- Join: coords_withID_cyto_forgalaxay_SMALL_ALT.txt  
- with: coords_withID_amf_forgalaxay_SMALL_ALT.txt  
- with min overlap: 1bp  
- Return: Only records that are joined (INNER JOIN) 
 
 
The output file was downloaded to "R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf/small/xxxx_SMALL_ALT_OVERLAP.txt" 
 
###In R: 
working directory: “~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf/small” 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf/small") 
 
temp=list.files(pattern="*_OVERLAP") 
sample_small.l<-sapply(temp,function(x) 
read.delim(x,header=FALSE,sep="\t",row.names=NULL),simplify=FALSE) 
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names(sample_small.l)<-gsub("_SMALL_ALT_OVERLAP.txt", "", names(sample_small.l)) 
 
results_small<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
for (i in 1:length(names)){ 
  results_small[i,1]<-names[i] 
  results_small[i,2]<-nrow(galamfsmall[which(galamfsmall$SegmentID==results_small[i,1]),]) 
  results_small[i,3]<-nrow(galcytosmall[which(galcytosmall$SegmentID==results_small[i,1]),]) 
  results_small[i,4]<-nrow(unique(sample_small.l[[i]][4]))-1 
  results_small[i,5]<-100*(as.numeric(results_small[i,4])/as.numeric(results_small[i,2])) 
} 
colnames(results_small)<-
c("SampleID","N_small_alt_in_amf","N_small_alt_in_cyto","N_small_alt_overlap_in_cyto","Percentage_
amf_that_overlap_in_cytosnp") 
 
 
 
#split amp and del 
 
create_ALTID<-function(df){ 
  df$ALTID_amf<-paste(df[,5],"_",df[,6],"_",df[,7],sep="") 
  df$ALTID_cyto<-paste(df[,1],"_",df[,2],"_",df[,3],sep="") 
  return(df) 
} 
 
sample_small.l<-lapply(sample_small.l,create_ALTID) 
 
results_small_amp<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
 
for (i in 1:length(names)){ 
  results_small_amp[i,1]<-names[i] 
  results_small_amp[i,2]<-
nrow(amf_amp[[match(results_small_amp[i,1],names(amf_amp))]][which(amf_amp[[match(results
_small_amp[i,1],names(amf_amp))]][,7]<=1000000),]) 
  results_small_amp[i,3]<-
nrow(cyto_amp[[match(results_small_amp[i,1],names(cyto_amp))]][which(cyto_amp[[match(resul
ts_small_amp[i,1],names(cyto_amp))]][,7]<=1000000),]) 
  results_small_amp[i,4]<-
length(unique(sample_small.l[[match(results_small_amp[i,1],names(sample_small.l))]][which(sam
ple_small.l[[match(results_small_amp[i,1],names(sample_small.l))]][,9] %in% 
amf_amp[[match(results_small_amp[i,1],names(amf_amp))]][,8] & 
sample_small.l[[match(results_small_amp[i,1],names(sample_small.l))]][,10] %in% 
cyto_amp[[match(results_small_amp[i,1],names(cyto_amp))]][,8]),4])) 
  results_small_amp[i,5]<-
100*(as.numeric(results_small_amp[i,4])/as.numeric(results_small_amp[i,2])) 
} 
colnames(results_small_amp)<-
c("SampleID","N_small_amp_in_amf","N_small_amp_in_cyto","N_small_amp_overlap_in_cyto","Perce
ntage_overlap_in_cytosnp") 
 
results_small_del<-matrix(rep(0,50),nrow=10) 
names<-names(sample_small.l) 
 
for (i in 1:length(names)){ 
  results_small_del[i,1]<-names[i] 
  results_small_del[i,2]<-
nrow(amf_del[[match(results_small_del[i,1],names(amf_del))]][which(amf_del[[match(results_sma
ll_del[i,1],names(amf_del))]][,7]<=1000000),]) 
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  results_small_del[i,3]<-
nrow(cyto_del[[match(results_small_del[i,1],names(cyto_del))]][which(cyto_del[[match(results_sm
all_del[i,1],names(cyto_del))]][,7]<=1000000),]) 
  results_small_del[i,4]<-
length(unique(sample_small.l[[match(results_small_del[i,1],names(sample_small.l))]][which(sampl
e_small.l[[match(results_small_del[i,1],names(sample_small.l))]][,9] %in% 
amf_del[[match(results_small_del[i,1],names(amf_del))]][,8] & 
sample_small.l[[match(results_small_del[i,1],names(sample_small.l))]][,10] %in% 
cyto_del[[match(results_small_del[i,1],names(cyto_del))]][,8]),4])) 
  results_small_del[i,5]<-
100*(as.numeric(results_small_del[i,4])/as.numeric(results_small_del[i,2])) 
} 
colnames(results_small_del)<-
c("SampleID","N_small_del_in_amf","N_small_del_in_cyto","N_small_del_overlap_in_cyto","Percentag
e_overlap_in_cytosnp") 
 
``` 
 
 
 
 
##Writing the comparisons to file 
working directory: “~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf” 
 
###In R: 
working directory: “~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf/small” 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_cytoVSamf") 
 
write.table(results_amp,"Large_amp_10mb_comp.txt",sep="\t",col.names=TRUE,row.names=FALSE
,quote=F) 
write.table(results_del,"Large_del_10mb_comp.txt",sep="\t",col.names=TRUE,row.names=FALSE,qu
ote=F) 
write.table(results_small_amp,"Small_amp_1mb_comp.txt",sep="\t",col.names=TRUE,row.names=F
ALSE,quote=F) 
write.table(results_small_del,"Small_del_1mb_comp.txt",sep="\t",col.names=TRUE,row.names=FAL
SE,quote=F) 
 
``` 
#Novel alterations in central CS 
Extracted list of published alterations from output of pubmed search for chondrosarcoma and copy 
number; 
##Compile list of known CNVs 
###From Tarpey, 2013 
####In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed") 
#load in list of alterations from nat gen paper (49 cs): 
amf<-read.delim("sup_table7_Tarpey2013.txt",sep="\t",header=T) 
amf_del<-amf[which(amf$Type=="Del"),2:5] 
amf_amp<-amf[which(amf$Type=="Amp"),2:5] 
amf_del$Chromosome<-paste("chr",amf_del$Chromosome,sep="") 
amf_amp$Chromosome<-paste("chr",amf_amp$Chromosome,sep="") 
 
write.table(amf_del,"amf_del_forgalaxy.txt",sep="\t",col.names=F,row.names=F,quote=F) 
write.table(amf_amp,"amf_amp_forgalaxy.txt",sep="\t",col.names=F,row.names=F,quote=F) 
``` 
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####In Linux: 
Can't actually do this in galaxy(wanted to merge overlapping regions and get a count of samples 
contributing to each overlap), need to do this is linux with bedtools; 
Copy amf_del and amf_amp to server and do the following: 
```{r,eval=F} 
cd paulg/CS_CNV/ 
sortBed -i amf_amp_forgalaxy.txt | bedtools merge -i stdin -nms > amf_amp_MERGED.bed 
sortBed -i amf_del_forgalaxy.txt | bedtools merge -i stdin -nms > amf_del_MERGED.bed 
``` 
####Back on local PC in R 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed") 
amf_amp<-read.delim("amf_amp_MERGED.bed",sep="\t",header=F) 
amf_del<-read.delim("amf_del_MERGED.bed",sep="\t",header=F) 
names(amf_amp)<-c("Chr","Start","End","Samples") 
names(amf_del)<-c("Chr","Start","End","Samples") 
#files saved to "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis" as 
Tarpey2013_Gains_GRCh37_hg19_merged and Tarpey2013_Losses_GRCh37_hg19_merged 
``` 
###Combine with Hallor, 2009 
Hallor files saved in "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis" as 
Hallor2009_Gains_hg19_merged and Hallor2009_Losses_hg19_merged 
####In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis") 
tarpey_amp<-read.delim("Tarpey2013_Gains_GRCh37_hg19_merged.txt",sep="\t",header=F) 
tarpey_del<-read.delim("Tarpey2013_Losses_GRCh37_hg19_merged.txt",sep="\t",header=F) 
hallor_amp<-read.delim("Hallor2009_Gains_hg19_merged.txt",sep="\t",header=F) 
hallor_del<-read.delim("Hallor2009_Losses_hg19_merged.txt",sep="\t",header=F) 
#combine the two sets and write to file: 
known_amp<-rbind(tarpey_amp,hallor_amp) 
known_del<-rbind(tarpey_del,hallor_del) 
write.table(known_amp,"known_Gains_hg19.txt",col.names=F,row.names=F,sep="\t",quote=F) 
write.table(known_del,"known_Losses_hg19.txt",col.names=F,row.names=F,sep="\t",quote=F) 
``` 
##Load 450K CNVs as output by GISTIC 
###Run ChAMP CNA pipeline on all 450K samples together 
####In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed") 
library(ChAMP) 
myLoad=champ.load(methValue="B",QCimages=TRUE,filterXY=FALSE,filterDetP=TRUE,filterBeads
=TRUE,beadCutoff=0.05,detPcut=0.01) 
source("R:/R/CNV/champ_cna_modif_240414.R") 
#output in resultsChamp/CNA 
``` 
####In GISTIC: 
same settings as for the all samples at the very top of this script but put the allWT and allmut files 
together into one and change output prefix to all_samples_mixed 
####In R: 
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Load in all lesions conf 0.95 from GISTIC; the original lesions file (without the '_MODIF' suffix) is 
slightly modified in excel 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed" 
 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/CNV_allsamples_mixed") 
gis<-
read.delim("GISTIC_output/all_samples_mixed/all_samples_mixed.all_lesions.conf_95_MODIF.txt",s
ep="\t",header=T) 
#51 samples total 
#across each row, calc sum of samples with '1' or '2' (==amplitude >0.3), put sum in sep column, 
then calculate percentage of samples 
gis<-gis[1:113,] 
for (i in 1:nrow(gis)) { 
  gis$Total_morethan_1[i]<-(sum(gis[i,10:60]==1)+sum(gis[i,10:60]==2)) 
  gis$Perc_morethan_1[i]<-100*(gis$Total_morethan_1[i]/51) 
  gis$Total_at_2[i]<-sum(gis[i,10:60]==2) 
  gis$Perc_at_2[i]<-100*(gis$Total_at_2[i]/51) 
} 
#split into amp and del 
gis_amp<-gis[grep("Amplification",gis[,1]),c(1:9,61:64)] 
gis_del<-gis[grep("Deletion",gis[,1]),c(1:9,61:64)] 
#write to file in "~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis" 
write.table(gis_amp,"R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis/k450_Gains_hg19.txt",col.names
=T,row.names=F,sep="\t",quote=F) 
write.table(gis_del,"R:/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis/k450_Losses_hg19.txt",col.name
s=T,row.names=F,sep="\t",quote=F) 
``` 
##Compare 450K and previously known CNVs 
###In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis") 
known_amp<-read.delim("known_Gains_hg19.txt",header=F,sep="\t") 
known_del<-read.delim("known_Losses_hg19.txt",header=F,sep="\t") 
gis_amp<-read.delim("k450_Gains_hg19.txt",header=T,sep="\t") 
gis_del<-read.delim("k450_Losses_hg19.txt",header=T,sep="\t") 
library(IRanges) 
library(GenomicRanges) 
 
 
known_amp.gr <- GRanges(seqnames=known_amp[,1], ranges=IRanges(start=known_amp[,2], 
end= known_amp[,3])) 
known_del.gr <- GRanges(seqnames=known_del[,1], ranges=IRanges(start=known_del[,2], end= 
known_del[,3])) 
 
gis_amp.gr <- GRanges(seqnames=gis_amp[,3], ranges=IRanges(start=gis_amp[,4], end= 
gis_amp[,5])) 
gis_del.gr <- GRanges(seqnames=gis_del[,3], ranges=IRanges(start=gis_del[,4], end= gis_del[,5])) 
#check overlaps btwn gis and known 
amp_countOverlap <- countOverlaps(gis_amp.gr, known_amp.gr) 
amp_findOverlap <- as.data.frame(findOverlaps(gis_amp.gr, known_amp.gr)) #22 
amp_gis_idx<-as.vector(amp_findOverlap[,1]) 
amp_known_idx<-as.vector(amp_findOverlap[,2]) 
temp1<-data.frame() 
for (i in amp_gis_idx) temp1<-rbind(temp1,gis_amp[i,]) 
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temp2<-data.frame() 
for (i in amp_known_idx) temp2<-rbind(temp2,known_amp[i,]) 
amp_gisknown_overlap<-cbind(temp1,temp2) 
write.table(amp_gisknown_overlap,"amp_gisknown_overlap.txt",sep="\t",col.names=T,row.names=
F,quote=F) 
del_countOverlap <- countOverlaps(gis_del.gr, known_del.gr) 
del_findOverlap <- as.data.frame(findOverlaps(gis_del.gr, known_del.gr)) #5 
del_gis_idx<-as.vector(del_findOverlap[,1]) 
del_known_idx<-as.vector(del_findOverlap[,2]) 
temp1<-data.frame() 
for (i in del_gis_idx) temp1<-rbind(temp1,gis_del[i,]) 
temp2<-data.frame() 
for (i in del_known_idx) temp2<-rbind(temp2,known_del[i,]) 
del_gisknown_overlap<-cbind(temp1,temp2) 
write.table(del_gisknown_overlap,"del_gisknown_overlap.txt",sep="\t",col.names=T,row.names=F,q
uote=F) 
#make tables for those that don't overlap from gis 
`%ni%` <- Negate(`%in%`) 
amp_gis_NOoverlap<-gis_amp[which(rownames(gis_amp) %ni% amp_gis_idx),] 
del_gis_NOoverlap<-gis_del[which(rownames(gis_del) %ni% del_gis_idx),] 
write.table(amp_gis_NOoverlap,"amp_gis_NOoverlap.txt",sep="\t",col.names=T,row.names=F,quote
=F) 
write.table(del_gis_NOoverlap,"del_gis_NOoverlap.txt",sep="\t",col.names=T,row.names=F,quote=F
) 
#make tables for those that don't overlap from amf 
`%ni%` <- Negate(`%in%`) 
amp_known_NOoverlap<-known_amp[which(rownames(known_amp) %ni% amp_known_idx),] 
del_known_NOoverlap<-known_del[which(rownames(known_del) %ni% del_known_idx),] 
write.table(amp_known_NOoverlap,"amp_known_NOoverlap.txt",sep="\t",col.names=T,row.names
=F,quote=F) 
write.table(del_known_NOoverlap,"del_known_NOoverlap.txt",sep="\t",col.names=T,row.names=F,
quote=F) 
``` 
##Plot Karyotype 
Make three files to use in this utility to plot a karyotype: "http://db.systemsbiology.net/gestalt/cgi-
pub/genomeMapBlocks.pl" ; this will plot one set of regions on the left side of the chrom and one 
set on the right in chosen colours 
Info about the utility: "https://groups.google.com/forum/?hl=en#!topic/isb-famgen/SJd6ee0ujyA 
and here: https://www.biostars.org/p/16738/" 
make one file for all known only and one for all gis only and one for those alterations overlapping in 
both. the first two need 4 columns: chr, start,stop, colour; overlapping file needs 5: chr start stop ID 
colour 
Plot known-only on the left and gis-only on the right and use the following colours: 
- green: gains 
- red: losses 
The third file with the overlapping regions: 
- green common gains 
- red common losses 
###In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis") 
#file for background colour 
bg<-read.delim("karyo_background.txt",sep="\t",header=F) 
bg$Start<-1 
bg<-bg[,c(1,4,2,3)] 
bg3<-bg 
names(bg3)<-c("Chr","Start","Stop","Colour") 
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file1a<-amp_known_NOoverlap[,1:3] 
file1a$Colour<-"green" 
names(file1a)<-c("Chr","Start","Stop","Colour") 
file1b<-del_known_NOoverlap[,1:3] 
file1b$Colour<-"red" 
names(file1b)<-c("Chr","Start","Stop","Colour") 
bg1<-bg 
names(bg1)<-c("Chr","Start","Stop","Colour") 
file1<-rbind(bg1,file1a,file1b) 
write.table(file1,"karyo_file1.txt",sep="\t",col.names=F,row.names=F,quote=F) 
file2a<-amp_gis_NOoverlap[,3:5] 
file2a$Colour<-"green" 
names(file2a)<-c("Chr","Start","Stop","Colour") 
file2b<-del_gis_NOoverlap[,3:5] 
file2b$Colour<-"red" 
names(file2b)<-c("Chr","Start","Stop","Colour") 
bg2<-bg 
names(bg2)<-c("Chr","Start","Stop","Colour") 
file2<-rbind(bg2,file2a,file2b) 
write.table(file2,"karyo_file2.txt",sep="\t",col.names=F,row.names=F,quote=F) 
file3a<-amp_gisknown_overlap[,3:5] 
file3a$Colour<-"green" 
names(file3a)<-c("Chr","Start","Stop","Colour") 
file3b<-del_gisknown_overlap[,3:5] 
file3b$Colour<-"red" 
names(file3b)<-c("Chr","Start","Stop","Colour") 
file3<-rbind(file3a,file3b) 
file3$ID<-"test" 
file3<-file3[,c(1,2,3,5,4)] 
write.table(file3,"karyo_file3.txt",sep="\t",col.names=F,row.names=F,quote=F) 
#when plotting, change in the data for gis, at chr20 the deletion starting at 1 to starting at 2 
otherwise bg is blue for some reason 
``` 
##Novel recurrent CNVs 
Pick non-overlapping alterations from 450k(gis), that have recurrence >20% (20% of samples with 
amplitude>0.3) and are larger than 10Kb 
###In R: 
working directory:"~/Experiments/Other 
Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis" 
```{r,eval=F} 
setwd("~/Experiments/Other Experiments/CNV/20140815_CS_CNV/pubmed_files_for_analysis") 
amp<-read.delim("amp_gis_NOoverlap.txt",sep="\t",header=T) 
del<-read.delim("del_gis_NOoverlap.txt",sep="\t",header=T) 
amp2<-amp[which(amp$Region_length >= 10000 & amp$Perc_morethan_1>20),] 
del2<-del[which(del$Region_length >= 10000 & del$Perc_morethan_1>20),] 
amp3<-amp2[,c(3:5)] 
del3<-del2[,c(3:5)] 
write.table(amp3,"amp_novel.txt",sep="\t",col.names=F,row.names=F,quote=F) 
write.table(del3,"del_novel.txt",sep="\t",col.names=F,row.names=F,quote=F) 
``` 
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FULL ANALYSIS SCRIPT 

 
ANALYSIS OF 450K DATA 
cd /medical_genomics/paulg/xeno_450k 
##########RUN CHAMP ON T1vT2 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k") 
library(ChAMP)     
myLoad=champ.load(methValue="B",QCimages=TRUE,filterXY=TRUE,filterDetP=TRUE,filterBeads=
TRUE,beadCutoff=0.05,detPcut=0.01) 
myNorm=champ.norm(methValue="B",norm="BMIQ",filterXY=TRUE,QCimages=TRUE) 
save(myNorm,file="myNorm.RData") 
norm<-myNorm$beta 
write.table(norm,"all_norm_betas.txt",sep="\t",row.names=TRUE) 
#norm<-read.delim("all_norm_betas.txt",sep="\t",row.names=1,header=T) 
champ.SVD() 
limma=champ.MVP(bedFile=TRUE) 
lasso=champ.lasso(fromFile=TRUE, limma=limma,bedFile=TRUE) 
champ.CNA() 
 
norm.anno<-merge(norm,limma,by="row.names") 
write.table(norm.anno,"all_norm_betas_annotated.txt",sep="\t",row.names=FALSE) 
#norm.anno<-read.delim("all_norm_betas_annotated.txt",sep="\t",header=T) 
#Close R 
 
##########DISTRIBUTION OF METHYLATION BY FEATURE 
#filter the list of normalised  probes to exclude all those with detectable signal in mouse only. 
#ran MB1 kidney on same chip as xeno samples; 45934 probes pass det pvalue threshold of 0.01; 
need to remove these from analysis (some already removed as in sex chr or snps); probe list 
extracted from genomestudio and saved in paulg/xeno_450k/Analysis_mouse_filtered/ 
 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k") 
#norm.anno<-read.delim("all_norm_betas_annotated.txt",sep="\t",header=T) 
#ex.probes<-
read.delim("Analysis_mouse_filtered/mouse_probes_to_exclude.txt",sep="\t",header=T) 
#names(ex.probes)<-"probeID" 
#norm.anno.ex<-norm.anno[!(norm.anno$probeID %in% ex.probes$probeID),] 
#write.table(norm.anno.ex,"Analysis_mouse_filtered/filtered_norm_betas_annotated.txt",sep="\t",r
ow.names=FALSE) 
norm.anno.ex<-
read.delim("Analysis_mouse_filtered/filtered_norm_betas_annotated.txt",sep="\t",header=T) 
source("/medical_genomics/paulg/scripts_misc/color_bar.R") #has function to plot color bar 
legend 
Lab.palette.1<-colorRampPalette(c("yellow","green","blue")) 
options(digits=22) 
 
feat2.l<-list() 
 feat2.l$Whole_Genome<-norm.anno.ex 
 feat2.l$Shore<-
norm.anno.ex[which(norm.anno.ex$RELATION_TO_UCSC_CPG_ISLAND=="N_Shore" | 
norm.anno.ex$RELATION_TO_UCSC_CPG_ISLAND=="S_Shore"),] 
 feat2.l$Shelf<-
norm.anno.ex[which(norm.anno.ex$RELATION_TO_UCSC_CPG_ISLAND=="N_Shelf" | 
norm.anno.ex$RELATION_TO_UCSC_CPG_ISLAND=="S_Shelf"),] 
 feat2.l$Island<-
norm.anno.ex[which(norm.anno.ex$RELATION_TO_UCSC_CPG_ISLAND=="Island"),] 
 feat2.l$TSS1500<-norm.anno.ex[which(norm.anno.ex$feature.1=="TSS1500"),] 



Appendices 

   217 

 feat2.l$TSS200<-norm.anno.ex[which(norm.anno.ex$feature.1=="TSS200"),] 
 feat2.l$UTR3<-norm.anno.ex[which(norm.anno.ex$feature.1=="3'UTR"),] 
 feat2.l$UTR5<-norm.anno.ex[which(norm.anno.ex$feature.1=="5'UTR"),] 
 feat2.l$Exon_1st<-norm.anno.ex[which(norm.anno.ex$feature.1=="1stExon"),] 
 feat2.l$Body<-norm.anno.ex[which(norm.anno.ex$feature.1=="Body"),] 
 feat2.l$IGR<-norm.anno.ex[which(norm.anno.ex$feature.1=="IGR"),] 
 feat2.l$Enhancer<-norm.anno.ex[which(norm.anno.ex$ENHANCER==TRUE),] 
 feat2.l$miRNA<-norm.anno.ex[grep("^MIR",norm.anno.ex$gene.1),] 
 
#plot T1 
results_T1.ex<-vector("list",13) 
names(results_T1.ex)<-c("Whole 
Genome","Shore","Shelf","Island","TSS1500","TSS200","3'UTR","5'UTR","1st 
Exon","Body","IGR","Enhancer","miRNA") 
results_T1.ex<-lapply(results_T1.ex,function(x) 
matrix(rep(0,600),nrow=100,dimnames=list(seq(1,100,1),colnames(norm.anno.ex[,2:7])))) 
for (k in 1:13){ 
 for (i in 2:7) {results_T1.ex[[k]][1,i-1]<-
100*(nrow(feat2.l[[k]][which(feat2.l[[k]][,i]<=0.01),])/nrow(feat2.l[[k]])) } 
 for (i in 2:7) for (j in seq(0.02,1,0.01)) {results_T1.ex[[k]][(j*100),i-1]<-
100*(nrow(feat2.l[[k]][which(feat2.l[[k]][,i]>(j-0.01) & feat2.l[[k]][,i]<=j),])/nrow(feat2.l[[k]]))} 
 surplus<-vector("list",6) 
 for (i in 2:7) {surplus[[i-1]]<-(100-(sum(results_T1.ex[[k]][1:100,i-1])))/100}  
 for (i in 2:7) for (j in 1:100) {results_T1.ex[[k]][j,i-1]<-results_T1.ex[[k]][j,i-1]+surplus[[i-
1]]} 
 } 
temp_T1<-Reduce(cbind,results_T1.ex) 
colnames(temp_T1)<-paste(rep(names(results_T1.ex),each=6),"_",colnames(temp_T1),sep="") 
write.table(temp_T1,"Analysis_mouse_filtered/Features_T1.txt",sep="\t",col.names=T,row.names=
F) 
 
png(file="Analysis_mouse_filtered/Features_T1.png",height=4,width=4.5,units="in",res=600) 
par(mfrow=c(4,4)) 
for (k in 1:13){ 
 par(mar=c(1.5,1.6,1,0.5)) 
 out<-
barplot(results_T1.ex[[k]][,1:6],beside=FALSE,col=Lab.palette.1(100),border=NA,main=names(res
ults_T1.ex[k]),las=1,xaxt='n') 
 mtext(c("T1P","T1X1","T1X2A","T1X2B","T1X2AX1","T1X2BX1"),side=1,at=out,cex=1,las
=2) 
 } 
dev.off() 
 
 
 
 
#plot T2 
results_T2.ex<-vector("list",13) 
names(results_T2.ex)<-c("Whole 
Genome","Shore","Shelf","Island","TSS1500","TSS200","3'UTR","5'UTR","1st 
Exon","Body","IGR","Enhancer","miRNA") 
results_T2.ex<-lapply(results_T2.ex,function(x) 
matrix(rep(0,300),nrow=100,dimnames=list(seq(1,100,1),colnames(norm.anno.ex[,8:10])))) 
for (k in 1:13){ 
 for (i in 8:10) {results_T2.ex[[k]][1,i-7]<-
100*(nrow(feat2.l[[k]][which(feat2.l[[k]][,i]<=0.01),])/nrow(feat2.l[[k]])) } 
 for (i in 8:10) for (j in seq(0.02,1,0.01)) {results_T2.ex[[k]][(j*100),i-7]<-
100*(nrow(feat2.l[[k]][which(feat2.l[[k]][,i]>(j-0.01) & feat2.l[[k]][,i]<=j),])/nrow(feat2.l[[k]]))} 
 surplus<-vector("list",3) 
 for (i in 8:10) {surplus[[i-7]]<-(100-(sum(results_T2.ex[[k]][1:100,i-7])))/100}  
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 for (i in 8:10) for (j in 1:100) {results_T2.ex[[k]][j,i-7]<-results_T2.ex[[k]][j,i-
7]+surplus[[i-7]]} 
 } 
 
temp_T2<-Reduce(cbind,results_T2.ex) 
colnames(temp_T2)<-paste(rep(names(results_T2.ex),each=3),"_",colnames(temp_T2),sep="") 
write.table(temp_T2,"Analysis_mouse_filtered/Features_T2.txt",sep="\t",col.names=T,row.names=
F) 
 
   
 
png(file="Analysis_mouse_filtered/Features_T2.png",height=4,width=4.5,units="in",res=600) 
par(mfrow=c(4,4)) 
for (k in 1:13){ 
 par(mar=c(1.5,1.6,1,0.5)) 
 out<-
barplot(results_T2.ex[[k]][,1:3],beside=FALSE,col=Lab.palette.1(100),border=NA,main=names(res
ults_T2.ex[k]),las=1,xaxt='n') 
 mtext(c("T2P","T2X1","T2X1X1"),side=1,at=out,cex=1,las=2) 
 } 
dev.off() 
 
 
 
#plot colour bar legend for both plots 
png(file="Analysis_mouse_filtered/Features_legend.png",height=4,width=0.65,units="in",res=600) 
par(mar=c(1.5,1.6,1,0.5)) 
color.bar(Lab.palette.1(100), min=0, max=1,title='Beta Value') 
dev.off() 
 
 
#Close R 
 
########INTRA-TUMOUR DIFFERENCES: DELTA BETA ON P vs X 
Sample_20746_7  T1P 
Sample_20746_A  T1X1 
Sample_20747_LA  T1X2A 
Sample_20747_RA  T1X2B 
Sample_20747_LB  T1X2AX1 
Sample_20747_RB  T1X2BX1 
Sample_18727  T2P 
Sample_18727_A  T2X1 
Sample_18727_B  T2X1X1 
 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k/Analysis_mouse_filtered") 
data<-read.delim("filtered_norm_betas_annotated.txt",sep="\t",header=T) #all normalised beta 
values minus those that pass det pval filter 0.01 in mouse kidney sample 
source("/medical_genomics/paulg/scripts_misc/color_bar.R") #has function to plot color bar 
legend 
Lab.palette.2<-colorRampPalette(c("green","yellow","orange","red")) 
options(digits=22) 
 
 
dB.l<-list() #create list of delta beta values 
 dB.l$T1PvT1X1<-data.frame(data$probeID,abs(data$Sample_20746_7-
data$Sample_20746_A),(data$Sample_20746_7-data$Sample_20746_A)) 
 dB.l$T1PvT1X2A<-data.frame(data$probeID,abs(data$Sample_20746_7-
data$Sample_20747_LA),(data$Sample_20746_7-data$Sample_20747_LA)) 
 dB.l$T1PvT1X2B<-data.frame(data$probeID,abs(data$Sample_20746_7-
data$Sample_20747_RA),(data$Sample_20746_7-data$Sample_20747_RA)) 
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 dB.l$T1PvT1X2AX1<-data.frame(data$probeID,abs(data$Sample_20746_7-
data$Sample_20747_LB),(data$Sample_20746_7-data$Sample_20747_LB)) 
 dB.l$T1PvT1X2BX1<-data.frame(data$probeID,abs(data$Sample_20746_7-
data$Sample_20747_RB),(data$Sample_20746_7-data$Sample_20747_RB)) 
 dB.l$T2PvT2X1<-data.frame(data$probeID,abs(data$Sample_18727-
data$Sample_18727_A),(data$Sample_18727-data$Sample_18727_A)) 
 dB.l$T2PvT2X1X1<-data.frame(data$probeID,abs(data$Sample_18727-
data$Sample_18727_B),(data$Sample_18727-data$Sample_18727_B)) 
 dB.l$T1X2AvT1X2AX1<-data.frame(data$probeID,abs(data$Sample_20747_LA-
data$Sample_20747_LB),(data$Sample_20747_LA-data$Sample_20747_LB)) 
 dB.l$T1X2BvT1X2BX1<-data.frame(data$probeID,abs(data$Sample_20747_RA-
data$Sample_20747_RB),(data$Sample_20747_RA-data$Sample_20747_RB)) 
 dB.l$T2X1vT2X1X1<-data.frame(data$probeID,abs(data$Sample_18727_A-
data$Sample_18727_B),(data$Sample_18727_A-data$Sample_18727_B)) 
 
results_dB<-matrix(rep(0,1000),nrow=100,dimnames=list(seq(1,100,1),names(dB.l))) 
 
for (k in 1:10){ 
 results_dB[1,k]<-100*(nrow(dB.l[[k]][which(dB.l[[k]][,2]<=0.01),])/nrow(dB.l[[k]])) 
 for (j in seq(0.02,1,0.01)) {results_dB[(j*100),k]<-
100*(nrow(dB.l[[k]][which(dB.l[[k]][,2]>(j-0.01) & dB.l[[k]][,2]<=j),])/nrow(dB.l[[k]]))} 
 surplus<-(100-(sum(results_dB[1:100,k]))) 
 results_dB[1,k]<-results_dB[1,k]+surplus 
} 
 
write.table(results_dB,"dB_table.txt",sep="\t",col.names=NA,row.names=TRUE,quote=FALSE) 
png(file="dB.png",height=4,width=4.5,units="in",res=600) 
par(mar=c(3.5,2,1.2,4)) 
out<-
barplot(results_dB,beside=FALSE,col=Lab.palette.2(100),border=NA,main="DeltaBeta",las=1,xaxt='
n') 
mtext(names(dB.l),side=1,at=out,cex=1,las=3) 
subplot(color.bar(Lab.palette.2(100), min=0, max=1),x=14,y=50,size=c(0.3,3.2)) 
dev.off() 
 
 
#Those probes that do change btwn primary and xeno: what genes? what function in human? in 
mouse? random or overlap? more than expected by chance? 
 
#Selecting probes that change: set a threshold of 0.51 difference; rationale: from Lee's work we 
know fully unmeth can show up as high as 0.31 and fully meth as low as 0.82 so 0.51 difference 
should capture all probes that go from unmeth to meth or vice versa. 
options(digits=5) 
ch.l<-list() 
for (k in 1:10) {ch.l[[k]]<-dB.l[[k]][which(dB.l[[k]][,2]>=0.51),]} 
names(ch.l)<-names(dB.l) 
sapply(names(ch.l),function(x) write.table(ch.l[[x]], 
file=paste(x,"_deltabeta0.51",".txt",sep=""),sep="\t",quote=F,row.names=F))   
  
 
ch.m<-
matrix(rep(0,20),nrow=2,dimnames=list(c("Num_probes_ch>0.51","Percentage"),names(ch.l))) 
for (k in 1:10) { 
ch.m[1,k]<-nrow(ch.l[[k]]) 
ch.m[2,k]<-(ch.m[1,k]/463558)*100     
} 
write.table(ch.m,"dB_changes_0.51.txt",sep="\t",quote=F,col.names=NA) 
 
#what overlaps? 
library(made4) 
int12<-intersect(ch.l[[1]][,1],ch.l[[2]][,1]) 



Appendices 

   220 

int34<-intersect(ch.l[[3]][,1],ch.l[[4]][,1]) 
int1234<-intersect(int12,int34) 
int_T1<-intersect(int1234,ch.l[[5]][,1]) #415 
int_T2<-intersect(ch.l[[6]][,1],ch.l[[7]][,1]) #25595 
 
#overlap btwn all? 
int_T1T2<-intersect(int_T1,int_T2) #171 
 
#significant overlap? 
all<-data[,1] #all probe IDs on the array (minus those excluded at the start) 
 
temp<-
matrix(rep(0,30000),nrow=10000,dimnames=list(c(1:10000),c("T1_rand_overlap","T2_rand_overl
ap","T1T2_rand_overlap"))) 
for (i in 1:10000){ 
temp1.1<-sample(all,5272) 
temp1.2<-sample(all,2398) 
temp1.3<-sample(all,797) 
temp1.4<-sample(all,6994) 
temp1.5<-sample(all,4153) 
temp2.1<-sample(all,28939) 
temp2.2<-sample(all,29959) 
temp3.1<-sample(all,415)       
temp3.2<-sample(all,25595) 
 
int1.12<-intersect(temp1.1,temp1.2) 
int1.34<-intersect(temp1.3,temp1.4) 
int1.1234<-intersect(int1.12,int1.34) 
temp[i,1]<-length(intersect(int1.1234,temp1.5)) 
 
temp[i,2]<-length(intersect(temp2.1,temp2.2)) 
temp[i,3]<-length(intersect(temp3.1,temp3.2)) 
 
rm(temp1.1,temp1.2,temp1.3,temp1.4,temp1.5,temp2.1,temp2.2,int1.12,int1.34,int1.1234,temp3.1,
temp3.2) 
} 
max(temp[,1]) #0 
max(temp[,2]) #2229 
max(temp[,3]) #47 
#yes, overlaps are significant for both tumours at empirical pvalue<=10^-4 
 
 
#what's the det pvalue of those probes that overlap on the MB1 kidney sample? 
mb1.det<-read.delim("../MB1_kidney_alldetpvalues.txt",header=T,sep="\t") 
int_T1_2<-data.frame(as.factor(int_T1)) 
names(int_T1_2)<-"TargetID" 
int_T2_2<-data.frame(as.factor(int_T2)) 
names(int_T2_2)<-"TargetID" 
 
int_T1_det<-merge(int_T1_2,mb1.det) 
int_T2_det<-merge(int_T2_2,mb1.det) 
 
no clear link between det pvalue and the overlap; seem to be all over the place. 
 
#export table of hg19 coordinates of those overlapping probes in each tumour set, liftover to mm9, 
and run in GREAT. 
full.anno<-read.delim("../Full_450K_Annotation.txt",sep="\t",header=T,row.names=1) 
int_T1.anno<-full.anno[(rownames(full.anno) %in% int_T1_2$TargetID),c(1,2)] 
int_T1.anno$chromosome<-paste("chr",int_T1.anno[,1],sep="") 
int_T1.anno$stop<-(int_T1.anno$MAPINFO + 1) 
int_T1.anno<-int_T1.anno[,c(3,2,4)] 
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int_T2.anno<-full.anno[(rownames(full.anno) %in% int_T2_2$TargetID),c(1,2)] 
int_T2.anno$chromosome<-paste("chr",int_T2.anno[,1],sep="") 
int_T2.anno$stop<-(int_T2.anno$MAPINFO + 1) 
int_T2.anno<-int_T2.anno[,c(3,2,4)] 
write.table(int_T1.anno,"T1_overlap_changing_probes_hg19coord.bed",sep="\t",col.names=F,row.n
ames=F,quote=F) 
write.table(int_T2.anno,"T2_overlap_changing_probes_hg19coord.bed",sep="\t",col.names=F,row.n
ames=F,quote=F) 
 
 
#Check dB as well for two technical replicates run on same chip to see what differences to expect if 
sample identical. 
#read in BC1-4 from first 450k experiment; pvalue det filter at 0.01 already applied in genome 
studio 
setwd("/medical_genomics/paulg/xeno_450k/") 
bc<-read.delim("BC_replicates_betas_detpval0.01.txt",header=T,sep="\t") 
Lab.palette.2<-colorRampPalette(c("green","yellow","orange","red")) 
source("/medical_genomics/paulg/scripts_misc/color_bar.R") #has function to plot color bar 
legend 
library(Hmisc) 
 
bc.l<-list() #create list of delta beta values 
 bc.l$BC1vBC2<-data.frame(bc$TargetID,abs(bc$BC1.AVG_Beta-bc$BC2.AVG_Beta)) 
 bc.l$BC1vBC3<-data.frame(bc$TargetID,abs(bc$BC1.AVG_Beta-bc$BC3.AVG_Beta)) 
 bc.l$BC1vBC4<-data.frame(bc$TargetID,abs(bc$BC1.AVG_Beta-bc$BC4.AVG_Beta)) 
  
 
 
results_bc<-matrix(rep(0,300),nrow=100,dimnames=list(seq(1,100,1),names(bc.l))) 
 
for (k in 1:3){ 
 results_bc[1,k]<-100*(nrow(bc.l[[k]][which(bc.l[[k]][,2]<=0.01),])/nrow(bc.l[[k]])) 
 for (j in seq(0.02,1,0.01)) {results_bc[(j*100),k]<-
100*(nrow(bc.l[[k]][which(bc.l[[k]][,2]>(j-0.01) & bc.l[[k]][,2]<=j),])/nrow(bc.l[[k]]))} 
 surplus<-(100-(sum(results_bc[1:100,k]))) 
 results_bc[1,k]<-results_bc[1,k]+surplus 
} 
 
 
png(file="Analysis_mouse_filtered/dB_BCreplicates.png",height=4,width=4.5,units="in",res=600) 
par(mar=c(3.5,2,1.2,4)) 
out<-
barplot(results_bc,beside=FALSE,col=Lab.palette.2(100),border=NA,main="DeltaBeta",las=1,xaxt='
n') 
mtext(names(bc.l),side=1,at=out,cex=1,las=3) 
subplot(color.bar(Lab.palette.2(100), min=0, max=1),x=4.2,y=50,size=c(0.3,3.2)) 
dev.off() 
 
#evidently much less change;Selecting probes that change: set a threshold of 0.5 difference;  
bc_ch.l<-list() 
for (k in 1:3) {bc_ch.l[[k]]<-bc.l[[k]][which(bc.l[[k]][,2]>=0.5),]} 
names(bc_ch.l)<-names(bc.l) 
bc_ch.m<-matrix(rep(0,3),nrow=1,dimnames=list(1,names(bc_ch.l))) 
for (k in 1:3) {bc_ch.m[1,k]<-nrow(bc_ch.l[[k]])} 
#only 0,2 and 2 probes change >=0.5. 
 
 
 
##########INTER TUMOUR DIFFERENCES: HOW WELL DO XENOS SUBSTITUTE FOR PRIMARY? 
#Compare the differences found between T1P and T2P vs those found between (eg) T1P and T2X1 
(delta delta beta) 
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#T1PvT2P    
#T1PvT2X1   
#T1PvT2X1X1   
#T1X1vT2P   
#T1X2AvT2P   
#T1X2BvT2P   
#T1X2AX1vT2P   
#T1X2BX1vT2P 
 
setwd("/medical_genomics/paulg/xeno_450k/Analysis_mouse_filtered") 
ddB.l<-list() #create list of delta delta beta values 
 ddB.l$T1PvT2X1_T1PvT2P<-data.frame(data$probeID,abs(abs(data$Sample_20746_7-
data$Sample_18727_A)-abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1PvT2X1X1_T1PvT2P<-data.frame(data$probeID,abs(abs(data$Sample_20746_7-
data$Sample_18727_B)-abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1X1vT2P_T1PvT2P<-data.frame(data$probeID,abs(abs(data$Sample_20746_A-
data$Sample_18727)-abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1X2AvT2P_T1PvT2P<-
data.frame(data$probeID,abs(abs(data$Sample_20747_LA-data$Sample_18727)-
abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1X2BvT2P_T1PvT2P<-
data.frame(data$probeID,abs(abs(data$Sample_20747_RA-data$Sample_18727)-
abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1X2AX1vT2P_T1PvT2P<-
data.frame(data$probeID,abs(abs(data$Sample_20747_LB-data$Sample_18727)-
abs(data$Sample_20746_7-data$Sample_18727))) 
 ddB.l$T1X2BX1vT2P_T1PvT2P<-
data.frame(data$probeID,abs(abs(data$Sample_20747_RB-data$Sample_18727)-
abs(data$Sample_20746_7-data$Sample_18727))) 
 
results_ddB<-matrix(rep(0,700),nrow=100,dimnames=list(seq(1,100,1),names(ddB.l))) 
 
for (k in 1:7){ 
 results_ddB[1,k]<-
100*(nrow(ddB.l[[k]][which(ddB.l[[k]][,2]<=0.01),])/nrow(ddB.l[[k]])) 
 for (j in seq(0.02,1,0.01)) {results_ddB[(j*100),k]<-
100*(nrow(ddB.l[[k]][which(ddB.l[[k]][,2]>(j-0.01) & ddB.l[[k]][,2]<=j),])/nrow(ddB.l[[k]]))} 
 surplus<-(100-(sum(results_ddB[1:100,k])))     
 results_ddB[1,k]<-results_ddB[1,k]+surplus 
} 
 
write.table(results_ddB,"ddB_table.txt",sep="\t",col.names=NA,row.names=TRUE,quote=FALSE) 
png(file="ddB.png",height=4,width=4.5,units="in",res=600) 
par(mar=c(3.5,2,1.2,4)) 
out<-
barplot(results_ddB,beside=FALSE,col=Lab.palette.2(100),border=NA,main="DeltaDeltaBeta",las=1
,xaxt='n') 
mtext(names(ddB.l),side=1,at=out,cex=1,las=3) 
subplot(color.bar(Lab.palette.2(100), min=0, max=1),x=9.8,y=50,size=c(0.3,3.2)) 
dev.off() 
 
 
##########EXCLUDED MOUSE PROBES 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k") 
 
#full.anno<-read.delim("Full_450K_Annotation.txt",sep="\t",header=T,row.names=1) 
#ex.probes<-
read.delim("Analysis_mouse_filtered/mouse_probes_to_exclude.txt",sep="\t",header=T) 
#ex.probes.anno<-full.anno[(rownames(full.anno) %in% ex.probes$TargetID),] 
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#write.table(ex.probes.anno,"Analysis_mouse_filtered/mouse_probes_to_exclude_annotated.txt",se
p="\t",col.names=NA) 
ex.probes.anno<-
read.delim("Analysis_mouse_filtered/mouse_probes_to_exclude_annotated.txt",sep="\t",header=T,r
ow.names=1) 
#The coordinates of the probes to exlude were converted to mm9 using liftover and fed into GREAT 
for ontology analysis (using the full 450K coords also converted to mm9 as background); results in 
R:/Experiments/Xenograft/450K_xeno/Excluded mouse probes/ 
 
 
ANALYSIS OF MEDIP-SEQ DATA 
 
####################Separating Human and Mouse Reads: Manual method 
 
##########Run Medusa pt1+2 
#medusa is run twice, once aligning to human (hg19), once to mouse (mm10); version used is v2.1 
#fastq files are located in /medical_genomics/medip_seq/paul_180613/sequence_data 
 
#config file for running medusa on human is 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt12_031213.cfg 
#alignments (incl. bed and sorted BAM files) to human are located in 
/medical_genomics/paulg/xeno_medip/human_align 
#run medusa on human using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt12_031213.cfg -t 
Sample_20746_7,Sample_20746_A,Sample_20747_LA,Sample_20747_RA,Sample_20747_LB,Sample_
20747_RB,Sample_18727,Sample_18727_A,Sample_18727_B -c 0 & 
 
#config file for running medusa on mouse is 
/medical_genomics/paulg/xeno_medip/configs/medusa_mouse_pt12_031213.cfg 
#alignments (incl. bed and sorted BAM files) to mouse are located in 
/medical_genomics/paulg/xeno_medip/mouse_align 
#run medusa on mouse using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_mouse_pt12_031213.cfg -t 
Sample_20746_7,Sample_20746_A,Sample_20747_LA,Sample_20747_RA,Sample_20747_LB,Sample_
20747_RB,Sample_18727,Sample_18727_A,Sample_18727_B -c 0 & 
 
##########Classify reads 
#Using the bed files generated by medusa (stored in human_align and mouse_align) categorise read 
pairs as human, mouse, both. 
cd /medical_genomics/paulg/xeno_medip/human_vs_mouse 
#Open R 
 
source("/medical_genomics/paulg/scripts_misc/set_comps_function.R") 
set_comps(Sample_list=c("Sample_18727", "Sample_18727_A", "Sample_18727_B", 
"Sample_20746_7", "Sample_20746_A", "Sample_20747_LA", "Sample_20747_LB", 
"Sample_20747_RA", "Sample_20747_RB"), 
hfolder="/medical_genomics/paulg/xeno_medip/human_align/", 
mfolder="/medical_genomics/paulg/xeno_medip/mouse_align/", 
outfolder="/medical_genomics/paulg/xeno_medip/human_vs_mouse/") 
 
#Close R 
 
#remove quotes from the sample bed files: 
sed -i 's/\"//g' *.bed 
 
##########Side Analysis to look at reads from primary human tumour that map only to mouse 
#Checked that Matt's HN samples also have read pairs that map only to mouse, in similar 
proportions: HN105(54349 mouse only/224172 mouse read pairs), HN96(45100 mouse 
only/181766 mouse read pairs) 
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#Load /medical_genomics/paulg/xeno_medip/human_vs_mouse/Sample_18727_mouse.bed and 
Sample_20746_7_mouse.bed into Ensembl to plot distribution across genome: covers whole 
genome 
 
#Import the repeatmasker file (to 
/medical_genomics/paulg/xeno_medip/human_vs_mouse/mouseonly_fromhumanonly/) for 
mouse mm10 from ucsc to compare with list of overlaps; Only keep the chr, start and end and 
repeat type columns (cut) and remove header line (sed);then do overlaps 
 
cut -f 6,7,8,12 mouse_UCSC_repeatmasker_021213 > 
mouse_UCSC_repeatmasker_021213_coords.bed 
sed -i 1d mouse_UCSC_repeatmasker_021213_coords.bed #1d stands for 1st line, delete 
 
intersectBed -a ../Sample_18727_mouse.bed -b mouse_UCSC_repeatmasker_021213_coords.bed -
wa -u -f 0.25|wc -l 
#32314 (74.2%) 
intersectBed -a ../Sample_20746_7_mouse.bed -b mouse_UCSC_repeatmasker_021213_coords.bed -
wa -u -f 0.25|wc -l 
#8752 (78.2%) 
 
#Write these to file (with the entry from repeats file for repeat type; will get more entries because if 
A overlaps with multiple entries in B, will get all of them) 
intersectBed -a ../Sample_18727_mouse.bed -b mouse_UCSC_repeatmasker_021213_coords.bed -
wa -wb -f 0.25 > Sample_18727_mouse_REPEATS.bed 
intersectBed -a ../Sample_20746_7_mouse.bed -b mouse_UCSC_repeatmasker_021213_coords.bed -
wa -wb -f 0.25 > Sample_20746_7_mouse_REPEATS.bed 
 
#Get distribution of repeat types 
cat Sample_18727_mouse_REPEATS.bed | awk '{print $10}' | sort | uniq -c > 
Sample_18727_mouse_REPEATS_distrib.text 
cat Sample_20746_7_mouse_REPEATS.bed | awk '{print $10}' | sort | uniq -c > 
Sample_20746_7_mouse_REPEATS_distrib.text 
 
#Conclusion: When trying to identify cell type from mouse reads in xeno samples, use mouse repeat 
masker on those reads first to make sure reads used are from mouse cells in the human tumour and 
not from human reads that map to mouse anyway. 
 
 
   
####################Separating Human and Mouse Reads: Xenome method 
 
#run from within /medical_genomics/paulg/xeno_medip/xenome/ 
 
##########Index human(graft) and mouse(host) genomes 
 
./xenome-1.0.1-r/xenome index --kmer-size 25 --max-memory 25 --num-threads 8 --verbose --
prefix ../index/ --graft /local_data/genomic_data/human/GRCh37/ucsc/human_hg19_full.fa --host 
/local_data/genomic_data/mouse/GRCm38/ucsc_mm10/mm10_main.fa 
 
##########Classify sample reads 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_R2.fastq --graft-name 
human --host-name mouse --output-filename-prefix Sample_18727 >Sample_18727_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_A_R1.fastq --fastq-in 
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/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_A_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_18727_A > 
Sample_18727_A_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_B_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_18727_B_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_18727_B > 
Sample_18727_B_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20746_7_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20746_7_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20746_7 > 
Sample_20746_7_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20746_A_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20746_A_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20746_A > 
Sample_20746_A_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_LA_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_LA_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20747_LA > 
Sample_20747_LA_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_RA_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_RA_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20747_RA > 
Sample_20747_RA_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_LB_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_LB_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20747_LB > 
Sample_20747_LB_stats.txt 
 
./xenome-1.0.1-r/xenome classify --max-memory 25 --num-threads 8 --verbose --prefix ./index/ --
pairs --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_RB_R1.fastq --fastq-in 
/medical_genomics/medip_seq/paul_180613/sequence_data/Sample_20747_RB_R2.fastq --graft-
name human --host-name mouse --output-filename-prefix Sample_20747_RB > 
Sample_20747_RB_stats.txt 
 
##########Run Medusa pt1+2 
#The output of xenome is fastq files for human, mouse, both, neither, ambiguous. Need to merge 
fastq files for each sample. Xenome recommends using human+both+ambiguous(hba) together and 
mouse+both+ambiguous(mba) together. Run hba and mba but also run mouse alone on xeno 
samples to get mouse only signature. 
 
#merge fastq files and then move them to merged_fastqs 
cd /medical_genomics/paulg/xeno_medip/xenome/ 
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cat Sample_18727_human_1.fastq Sample_18727_both_1.fastq Sample_18727_ambiguous_1.fastq > 
Sample_18727_hba_R1.fastq 
cat Sample_18727_human_2.fastq Sample_18727_both_2.fastq Sample_18727_ambiguous_2.fastq > 
Sample_18727_hba_R2.fastq 
cat Sample_18727_A_human_1.fastq Sample_18727_A_both_1.fastq 
Sample_18727_A_ambiguous_1.fastq > Sample_18727_A_hba_R1.fastq 
cat Sample_18727_A_human_2.fastq Sample_18727_A_both_2.fastq 
Sample_18727_A_ambiguous_2.fastq > Sample_18727_A_hba_R2.fastq 
cat Sample_18727_B_human_1.fastq Sample_18727_B_both_1.fastq 
Sample_18727_B_ambiguous_1.fastq > Sample_18727_B_hba_R1.fastq 
cat Sample_18727_B_human_2.fastq Sample_18727_B_both_2.fastq 
Sample_18727_B_ambiguous_2.fastq > Sample_18727_B_hba_R2.fastq 
cat Sample_20746_7_human_1.fastq Sample_20746_7_both_1.fastq 
Sample_20746_7_ambiguous_1.fastq > Sample_20746_7_hba_R1.fastq 
cat Sample_20746_7_human_2.fastq Sample_20746_7_both_2.fastq 
Sample_20746_7_ambiguous_2.fastq > Sample_20746_7_hba_R2.fastq 
cat Sample_20746_A_human_1.fastq Sample_20746_A_both_1.fastq 
Sample_20746_A_ambiguous_1.fastq > Sample_20746_A_hba_R1.fastq 
cat Sample_20746_A_human_2.fastq Sample_20746_A_both_2.fastq 
Sample_20746_A_ambiguous_2.fastq > Sample_20746_A_hba_R2.fastq 
cat Sample_20747_LA_human_1.fastq Sample_20747_LA_both_1.fastq 
Sample_20747_LA_ambiguous_1.fastq > Sample_20747_LA_hba_R1.fastq 
cat Sample_20747_LA_human_2.fastq Sample_20747_LA_both_2.fastq 
Sample_20747_LA_ambiguous_2.fastq > Sample_20747_LA_hba_R2.fastq 
cat Sample_20747_LB_human_1.fastq Sample_20747_LB_both_1.fastq 
Sample_20747_LB_ambiguous_1.fastq > Sample_20747_LB_hba_R1.fastq 
cat Sample_20747_LB_human_2.fastq Sample_20747_LB_both_2.fastq 
Sample_20747_LB_ambiguous_2.fastq > Sample_20747_LB_hba_R2.fastq 
cat Sample_20747_RA_human_1.fastq Sample_20747_RA_both_1.fastq 
Sample_20747_RA_ambiguous_1.fastq > Sample_20747_RA_hba_R1.fastq 
cat Sample_20747_RA_human_2.fastq Sample_20747_RA_both_2.fastq 
Sample_20747_RA_ambiguous_2.fastq > Sample_20747_RA_hba_R2.fastq 
cat Sample_20747_RB_human_1.fastq Sample_20747_RB_both_1.fastq 
Sample_20747_RB_ambiguous_1.fastq > Sample_20747_RB_hba_R1.fastq 
cat Sample_20747_RB_human_2.fastq Sample_20747_RB_both_2.fastq 
Sample_20747_RB_ambiguous_2.fastq > Sample_20747_RB_hba_R2.fastq 
 
cat Sample_18727_mouse_1.fastq Sample_18727_both_1.fastq Sample_18727_ambiguous_1.fastq > 
Sample_18727_mba_R1.fastq 
cat Sample_18727_mouse_2.fastq Sample_18727_both_2.fastq Sample_18727_ambiguous_2.fastq > 
Sample_18727_mba_R2.fastq 
cat Sample_18727_A_mouse_1.fastq Sample_18727_A_both_1.fastq 
Sample_18727_A_ambiguous_1.fastq > Sample_18727_A_mba_R1.fastq 
cat Sample_18727_A_mouse_2.fastq Sample_18727_A_both_2.fastq 
Sample_18727_A_ambiguous_2.fastq > Sample_18727_A_mba_R2.fastq 
cat Sample_18727_B_mouse_1.fastq Sample_18727_B_both_1.fastq 
Sample_18727_B_ambiguous_1.fastq > Sample_18727_B_mba_R1.fastq 
cat Sample_18727_B_mouse_2.fastq Sample_18727_B_both_2.fastq 
Sample_18727_B_ambiguous_2.fastq > Sample_18727_B_mba_R2.fastq 
cat Sample_20746_7_mouse_1.fastq Sample_20746_7_both_1.fastq 
Sample_20746_7_ambiguous_1.fastq > Sample_20746_7_mba_R1.fastq 
cat Sample_20746_7_mouse_2.fastq Sample_20746_7_both_2.fastq 
Sample_20746_7_ambiguous_2.fastq > Sample_20746_7_mba_R2.fastq 
cat Sample_20746_A_mouse_1.fastq Sample_20746_A_both_1.fastq 
Sample_20746_A_ambiguous_1.fastq > Sample_20746_A_mba_R1.fastq 
cat Sample_20746_A_mouse_2.fastq Sample_20746_A_both_2.fastq 
Sample_20746_A_ambiguous_2.fastq > Sample_20746_A_mba_R2.fastq 
cat Sample_20747_LA_mouse_1.fastq Sample_20747_LA_both_1.fastq 
Sample_20747_LA_ambiguous_1.fastq > Sample_20747_LA_mba_R1.fastq 
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cat Sample_20747_LA_mouse_2.fastq Sample_20747_LA_both_2.fastq 
Sample_20747_LA_ambiguous_2.fastq > Sample_20747_LA_mba_R2.fastq 
cat Sample_20747_LB_mouse_1.fastq Sample_20747_LB_both_1.fastq 
Sample_20747_LB_ambiguous_1.fastq > Sample_20747_LB_mba_R1.fastq 
cat Sample_20747_LB_mouse_2.fastq Sample_20747_LB_both_2.fastq 
Sample_20747_LB_ambiguous_2.fastq > Sample_20747_LB_mba_R2.fastq 
cat Sample_20747_RA_mouse_1.fastq Sample_20747_RA_both_1.fastq 
Sample_20747_RA_ambiguous_1.fastq > Sample_20747_RA_mba_R1.fastq 
cat Sample_20747_RA_mouse_2.fastq Sample_20747_RA_both_2.fastq 
Sample_20747_RA_ambiguous_2.fastq > Sample_20747_RA_mba_R2.fastq 
cat Sample_20747_RB_mouse_1.fastq Sample_20747_RB_both_1.fastq 
Sample_20747_RB_ambiguous_1.fastq > Sample_20747_RB_mba_R1.fastq 
cat Sample_20747_RB_mouse_2.fastq Sample_20747_RB_both_2.fastq 
Sample_20747_RB_ambiguous_2.fastq > Sample_20747_RB_mba_R2.fastq 
 
cp Sample_18727_mouse_1.fastq Sample_18727_mouse_R1.fastq 
cp Sample_18727_mouse_2.fastq Sample_18727_mouse_R2.fastq 
cp Sample_18727_A_mouse_1.fastq Sample_18727_A_mouse_R1.fastq 
cp Sample_18727_A_mouse_2.fastq Sample_18727_A_mouse_R2.fastq 
cp Sample_18727_B_mouse_1.fastq Sample_18727_B_mouse_R1.fastq 
cp Sample_18727_B_mouse_2.fastq Sample_18727_B_mouse_R2.fastq 
cp Sample_20746_7_mouse_1.fastq Sample_20746_7_mouse_R1.fastq 
cp Sample_20746_7_mouse_2.fastq Sample_20746_7_mouse_R2.fastq 
cp Sample_20746_A_mouse_1.fastq Sample_20746_A_mouse_R1.fastq 
cp Sample_20746_A_mouse_2.fastq Sample_20746_A_mouse_R2.fastq 
cp Sample_20747_LA_mouse_1.fastq Sample_20747_LA_mouse_R1.fastq 
cp Sample_20747_LA_mouse_2.fastq Sample_20747_LA_mouse_R2.fastq 
cp Sample_20747_LB_mouse_1.fastq Sample_20747_LB_mouse_R1.fastq 
cp Sample_20747_LB_mouse_2.fastq Sample_20747_LB_mouse_R2.fastq 
cp Sample_20747_RA_mouse_1.fastq Sample_20747_RA_mouse_R1.fastq 
cp Sample_20747_RA_mouse_2.fastq Sample_20747_RA_mouse_R2.fastq 
cp Sample_20747_RB_mouse_1.fastq Sample_20747_RB_mouse_R1.fastq 
cp Sample_20747_RB_mouse_2.fastq Sample_20747_RB_mouse_R2.fastq 
 
#it seems xenome removed the @ sign at the start of the readIDs in the fastq and the + on the 3rd 
line of each read. 
sed -i 's/HSQ/@HSQ/g;s/^$/+/g' *.fastq 
 
 
#medusa is run 3 times, once aligning hba to human (hg19), once mba to mouse (mm10) and once 
mouse to mouse; version used is v2.1 
#fastq files are located in /medical_genomics/paulg/xeno_medip/xenome/merged_fastqs/ 
 
#config file for running medusa on human is 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_hba_pt12_061213.cfg 
#alignments (incl. bed and sorted BAM files) to human are located in 
/medical_genomics/paulg/xeno_medip/xenome/hba_align 
#run medusa on human using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_hba_pt12_061213.cfg -t 
Sample_20746_7_hba,Sample_20746_A_hba,Sample_20747_LA_hba,Sample_20747_RA_hba,Sample_
20747_LB_hba,Sample_20747_RB_hba,Sample_18727_hba,Sample_18727_A_hba,Sample_18727_B_
hba -c 0 & 
 
#config file for running medusa on mouse is 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_mba_pt12_061213.cfg 
#alignments (incl. bed and sorted BAM files) to mouse are located in 
/medical_genomics/paulg/xeno_medip/xenome/mba_align 
#run medusa on mouse using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_mba_pt12_061213.cfg -t 
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Sample_20746_7_mba,Sample_20746_A_mba,Sample_20747_LA_mba,Sample_20747_RA_mba,Samp
le_20747_LB_mba,Sample_20747_RB_mba,Sample_18727_mba,Sample_18727_A_mba,Sample_1872
7_B_mba -c 0 & 
 
#config file for running medusa on mouse is 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_m_pt12_061213.cfg 
#alignments (incl. bed and sorted BAM files) to mouse are located in 
/medical_genomics/paulg/xeno_medip/xenome/m_align 
#run medusa on mouse using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_m_pt12_061213.cfg -t 
Sample_20746_7_mouse,Sample_20746_A_mouse,Sample_20747_LA_mouse,Sample_20747_RA_mo
use,Sample_20747_LB_mouse,Sample_20747_RB_mouse,Sample_18727_mouse,Sample_18727_A_m
ouse,Sample_18727_B_mouse -c 0 & 
 
 
#for some reason hba for Sample 18727 has not aligned (made error when pasting h ba and a 
togeher and then changing headers (inserted 2 @' signs); rerun medusa on just that sample: 
#config file for running medusa is 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_hba_pt12_18727_200114.cfg 
#run medusa on human using this command in /medical_genomics/paulg/medusa/v2_1 : 
nohup perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_xenome_hba_pt12_18727_200114.cfg -t 
Sample_18727_hba -c 0 & 
 
 
 
####################Comparing reads obtained from the two methods 
 
#Compare reads from human+both to hba; mouse+both to mba; mouse to m 
 
#Using the bed files generated by medusa (stored in xenome/hba_align, xenome/mba_align, 
xenome/m_align, human_align and mouse_align)  
cd /medical_genomics/paulg/xeno_medip/Manual_vs_Xenome 
 
#Open R 
 
source("/medical_genomics/paulg/scripts_misc/set_comps_function_2.R") 
set_comps_2(Sample_list=c("Sample_18727", "Sample_18727_A", "Sample_18727_B", 
"Sample_20746_7", "Sample_20746_A", "Sample_20747_LA", "Sample_20747_LB", 
"Sample_20747_RA", "Sample_20747_RB")) 
 
#Close R 
 
#Conclusion: get almost identical results so might as well use simpler manual method 
 
 
##########DMRs:INDIVIDUAL COMPARISONS (THESE HAVE BEEN RUN WITH PVALUE 0.05 
AND 0.1; latest version of config files has 0.05 (and so the files in the DMR folders that don't have 
the pvalue within the name have been overwritten with latest version as well (0.05)) 
Sample_20746_7  T1P 
Sample_20746_A  T1X1 
Sample_20747_LA  T1X2A 
Sample_20747_RA  T1X2B 
Sample_20747_LB  T1X2AX1 
Sample_20747_RB  T1X2BX1 
Sample_18727  T2P 
Sample_18727_A  T2X1 
Sample_18727_B  T2X1X1 
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perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT2P_230114.cfg -t 
Sample_20746_7 -c Sample_18727 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT2X1_230114.cfg -t 
Sample_20746_7 -c Sample_18727_A 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT2X1X1_230114.cfg -t 
Sample_20746_7 -c Sample_18727_B 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X1vT2P_060214.cfg -t 
Sample_20746_A -c Sample_18727 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X2AvT2P_060214.cfg -t 
Sample_20747_LA -c Sample_18727 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X2BvT2P_060214.cfg -t 
Sample_20747_RA -c Sample_18727 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X2AX1vT2P_060214.cfg -t 
Sample_20747_LB -c Sample_18727 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X2BX1vT2P_060214.cfg -t 
Sample_20747_RB -c Sample_18727 
 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1X1vT2X1_060214.cfg -t 
Sample_20746_A -c Sample_18727_A 
 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT1X1_060214.cfg -t 
Sample_20746_7 -c Sample_20746_A 
#THESE HAVE ONLY BEEN RUN AT PVALUE 0.05: 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT1X2A_200214.cfg -t 
Sample_20746_7 -c Sample_20747_LA 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT1X2B_200214.cfg -t 
Sample_20746_7 -c Sample_20747_RA 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT1X2AX1_200214.cfg -t 
Sample_20746_7 -c Sample_20747_LB 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T1PvT1X2BX1_200214.cfg -t 
Sample_20746_7 -c Sample_20747_RB 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T2PvT2X1_200214.cfg -t 
Sample_18727 -c Sample_18727_A 
perl medusa.pl -p 
/medical_genomics/paulg/xeno_medip/configs/medusa_human_pt34_T2PvT2X1X1_200214.cfg -t 
Sample_18727 -c Sample_18727_B 
 
#these commands list all line counts for the dmr files 
find /medical_genomics/paulg/xeno_medip/human_align/ -name 
"medips_dmrs_hyperTreatment_p0.05.bed" -exec wc -l {} \; 
find /medical_genomics/paulg/xeno_medip/human_align/ -name 
"medips_dmrs_hypoTreatment_p0.05.bed" -exec wc -l {} \; 
 
#results from pvalue 0.1 
   hyper/hypo # overlap with T1PvT2P % overlap with T1PvT2P 
T1PvT2P   2162/88   
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T1PvT2X1  2410/70  1623/21   75.1/23.9 
T1PvT2X1X1  2501/77  1594/17   73.7/19.3 
T1X1vT2P  4386/230 1246/82   57.6/93.2 
T1X2AvT2P  5271/200 1423/82   65.8/93.2 
T1X2BvT2P  4388/188 1354/80   62.6/90.1 
T1X2AX1vT2P  6459/371 1417/85   65.5/96.6 
T1X2BX1vT2P  4425/206 1351/82   62.5/93.2 
 
T1X1vT2X1  4395/132 1153/25   53.3/28.4 
T1PvT1X1  460/126 
 
#results from pvalue 0.05 
   hyper/hypo # overlap with T1PvT2P % overlap with T1PvT2P 
T1PvT2P   1980/85   
T1PvT2X1  2129/61  1482/19   74.8/22.4 
T1PvT2X1X1  2298/66  1453/15   73.4/17.6 
T1X1vT2P  4158/223 1180/79   59.6/92.9 
T1X2AvT2P  4999/191 1338/77   67.6/90.6 
T1X2BvT2P  4126/177 1277/77   64.5/90.6 
T1X2AX1vT2P  6074/359 1324/82   66.9/96.5 
T1X2BX1vT2P  4203/200 1276/79   64.4/92.9 
 
T1X1vT2X1  3918/119 1078/22   54.4/25.9 
 
T1PvT1X1  373/74 
T1PvT1X2A  368/151 
T1PvT1X2B  373/68 
T1PvT1X2AX1  600/54 
T1PvT1X2BX1  313/67 
T2PvT2X1  376/795 
T2PvT2X1X1  735/1193 
 
###############overlap of dmrs intra-tumour with 450k mvps 
#####first assign probeIDs to all DMRs that have a match on the 450k 
###create full_450k coordinates table with probeIDs 
cd /medical_genomics/xeno_450k 
#Open R 
anno<-read.delim("Full_450K_Annotation.txt",sep="\t",header=TRUE) 
anno2<-data.frame(anno[,1]) 
anno2$Chr<-paste("chr",anno$CHR,sep="") 
anno2$Start<-anno$MAPINFO 
anno2$End<-anno$MAPINFO +1 
anno3<-anno2[,c(2,3,4,1)] 
anno3<-anno3[-which(anno3$Chr=="chr"),] 
 
write.table(anno3,"medip_v_450/coords_450.bed",col.names=F,row.names=F,quote=F,sep="\t") 
#Close R 
 
###-wa -wb -loj: use bedtools with these options to report all the original coordinates of A(dmrs) 
whether there's an overlap or not and B(450karray coords) if there is an overlap. 
 
cd /medical_genomics/paulg/xeno_450k/medip_v_450 
 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X1/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X1_hyperdmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2A/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2A_hyperdmr_450.txt 
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intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2B/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2B_hyperdmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2AX1/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2AX1_hyperdmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2BX1/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2BX1_hyperdmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T2PvT2X1/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T2PvT2X1_hyperdmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T2PvT2X1X1/medips_dmrs_hyperTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T2PvT2X1X1_hyperdmr_450.txt 
 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X1/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X1_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2A/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2A_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2B/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2B_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2AX1/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2AX1_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T1PvT1X2BX1/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T1PvT1X2BX1_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T2PvT2X1/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T2PvT2X1_hypodmr_450.txt 
intersectBed -a 
../../xeno_medip/human_align/dmr_T2PvT2X1X1/medips_dmrs_hypoTreatment_p0.05.bed -b 
coords_450.bed -wa -wb -loj > T2PvT2X1X1_hypodmr_450.txt 
   
 
#####then see how many of intra tumour mvps(large >0.51) are validated 
cd /medical_genomics/paulg/xeno_450k 
#Open R 
 
setwd("/medical_genomics/paulg/xeno_450k") 
temp1=list.files("Analysis_mouse_filtered/",pattern="*deltabeta0.51.txt") 
samp1.l<-sapply(temp1,function(x) 
read.delim(paste("Analysis_mouse_filtered/",x,sep=""),header=T,sep="\t",row.names=NULL),simpl
ify=FALSE) 
#remove 1stv2nd gen comps 
samp1.l<-samp1.l[-c(6,7,10)] 
#rename objects in list and colnames and label each probe as hyper or hypo in xeno 
for (k in 1:7){ 
names(samp1.l)[k]<-gsub("_deltabeta0.51.txt","",names(samp1.l)[k]) 
names(samp1.l[[k]])<-c("probeID","ChinXeno","DeltaBeta") 
for (i in 1:nrow(samp1.l[[k]])){ 
if (samp1.l[[k]][i,3]<0) samp1.l[[k]][i,2]<-"hyper" 
else if (samp1.l[[k]][i,3]>0) samp1.l[[k]][i,2]<-"hypo" 
} 
} 
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#Do the same for medip results(these were done with prim as treatment and xeno as control, so 
hypo and hyper are reversed) 
temp2=list.files("medip_v_450/",pattern="*dmr_450.txt") 
samp2.l<-sapply(temp2,function(x) 
read.delim(paste("medip_v_450/",x,sep=""),header=F,sep="\t",row.names=NULL),simplify=FALSE) 
for (k in 1:14){ 
samp2.l[[k]]<-samp2.l[[k]][-which(samp2.l[[k]][8]=="."),c(4,8)] 
} 
 
for (k in c(1,3,5,7,9,11,13)){ 
samp2.l[[k]]$ChinXeno<-"hypo" 
samp2.l[[k]]<-samp2.l[[k]][,c(2,3,1)] 
names(samp2.l[[k]])<-c("probeID","ChinXeno_dmr","dmrID") 
} 
 
for (k in c(2,4,6,8,10,12)){ 
samp2.l[[k]]$ChinXeno<-"hyper" 
samp2.l[[k]]<-samp2.l[[k]][,c(2,3,1)] 
names(samp2.l[[k]])<-c("probeID","ChinXeno_dmr","dmrID") 
} 
 
samp3.l<-samp2.l 
for (k in c(1,3,5,7,9,11,13)){ 
samp3.l[[k]]<-rbind(samp2.l[[k]],samp2.l[[k+1]]) 
} 
 
samp2.l<-samp3.l[c(1,3,5,7,9,11,13)] 
names(samp2.l)<-names(samp1.l) 
 
#create matrix of unique counts of probe IDs for each sample comp and each 
direction(hyper/hypo) 
comps<-matrix(rep(0,28),nrow=4,
 dimnames=list(c("hyper_450","hypo_450","hyper_medip","hypo_medip"),names(samp1.l
)))   
for (k in 1:7) { 
comps[1,k]<-nrow(samp1.l[[k]][which(samp1.l[[k]][,2]=="hyper"),]) 
comps[2,k]<-nrow(samp1.l[[k]][which(samp1.l[[k]][,2]=="hypo"),]) 
comps[3,k]<-nrow(samp2.l[[k]][which(samp2.l[[k]][,2]=="hyper"),]) 
comps[4,k]<-nrow(samp2.l[[k]][which(samp2.l[[k]][,2]=="hypo"),]) 
} 
 
write.table(comps,"medip_v_450/hyper_hypo_numbers.txt",col.names=NA,sep="\t",quote=F) 
#merge the two sample data frames by probeID 
samp12.l<-list() 
for (k in 1:7) { 
samp12.l[[k]]<-merge(samp1.l[[k]],samp2.l[[k]],by="probeID") 
} 
names(samp12.l)<-names(samp1.l) 
 
#write counts and percentages of overlaps 
comps2<-matrix(rep(0,40),nrow=5,dimnames=list(c("Total probes","Num Same Change in Medip 
and 450","Perc same change","Num hyper","Num hypo"),c(names(samp1.l),"Total"))) 
       
for (k in 1:7) { 
comps2[1,k]<-nrow(samp12.l[[k]]) 
if (comps2[1,k] != 0) { 
comps2[2,k]<-nrow(samp12.l[[k]][which(samp12.l[[k]][2]==samp12.l[[k]][4]),]) 
comps2[3,k]<-(comps2[2,k]/comps2[1,k])*100 
comps2[4,k]<-nrow(samp12.l[[k]][which(samp12.l[[k]][2]=="hyper"),]) 
comps2[5,k]<-nrow(samp12.l[[k]][which(samp12.l[[k]][2]=="hypo"),]) 
} 
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else {     
comps2[2,k]<-0 
comps2[3,k]<-0 
comps2[4,k]<-0 
comps2[5,k]<-0 
} 
} 
comps2[1,8]<-sum(comps2[1,c(1:7)]) 
comps2[2,8]<-sum(comps2[2,c(1:7)]) 
comps2[3,8]<-(comps2[2,8]/comps2[1,8])*100 
comps2[4,8]<-sum(comps2[4,c(1:7)]) 
comps2[5,8]<-sum(comps2[5,c(1:7)]) 
   
 
write.table(comps2,"medip_v_450/overlap_medip_450_perc.txt",col.names=NA,sep="\t",quote=F) 
 
       
ONCOTRACK 450K 
 
 
####################ANALYSIS OF 450K DATA 
cd /medical_genomics/paulg/xeno_450k/Oncotrack 
 
##########RUN CHAMP ON T1vT2 
#Results are stored in /medical_genomics/paulg/xeno_450k/resultsChamp 
#Open R 
 
setwd("/medical_genomics/paulg/xeno_450k/Oncotrack") 
library(ChAMP) 
myLoad=champ.load(methValue="B",QCimages=TRUE,filterXY=TRUE,filterDetP=TRUE,filterBeads=
TRUE,beadCutoff=0.05,detPcut=0.01) 
myNorm=champ.norm(methValue="B",norm="BMIQ",filterXY=TRUE,QCimages=TRUE) 
save(myNorm,file="myNorm.RData") 
norm<-myNorm$beta 
write.table(norm,"onco_all_norm_betas.    txt",sep="\t",row.names=TRUE) 
#norm<-read.delim("onco_all_norm_betas.txt",sep="\t",row.names=1,header=T) 
champ.SVD() 
limma=champ.MVP(bedFile=TRUE) 
lasso=champ.lasso(fromFile=TRUE, limma=limma,bedFile=TRUE) 
champ.CNA() 
 
norm.anno<-merge(norm,limma,by="row.names") 
write.table(norm.anno,"onco_all_norm_betas_annotated.txt",sep="\t",row.names=FALSE) 
#norm.anno<-read.delim("onco_all_norm_betas_annotated.txt",sep="\t",header=T) 
 
#Close R 
 
#filter the list of normalised  probes to exclude all those with detectable signal in mouse only. 
#ran MB1 kidney on same chip as xeno samples; 45934 probes pass det pvalue threshold of 0.01; 
need to remove these from analysis (some already removed as in sex chr or snps); probe list 
extracted from genomestudio and saved in paulg/xeno_450k/Oncotrack/Analysis_mouse_filtered/ 
 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k/Oncotrack")    
 
#norm.anno<-read.delim("onco_all_norm_betas_annotated.txt",sep="\t",header=T) 
#ex.probes<-
read.delim("Analysis_mouse_filtered/mouse_probes_to_exclude.txt",sep="\t",header=T) 
#names(ex.probes)<-"probeID" 
#norm.anno.ex<-norm.anno[!(norm.anno$probeID %in% ex.probes$probeID),] 
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#write.table(norm.anno.ex,"Analysis_mouse_filtered/onco_filtered_norm_betas_annotated.txt",sep=
"\t",row.names=FALSE) 
norm.anno.ex<-
read.delim("Analysis_mouse_filtered/onco_filtered_norm_betas_annotated.txt",sep="\t",header=T) 
 
 
########INTRA-TUMOUR DIFFERENCES: DELTA BETA ON P vs X 
 
#Open R 
setwd("/medical_genomics/paulg/xeno_450k/Oncotrack/Analysis_mouse_filtered") 
data<-read.delim("onco_filtered_norm_betas_annotated.txt",sep="\t",header=T) #all normalised 
beta values minus those that pass det pval filter 0.01 in mouse kidney sample 
source("/medical_genomics/paulg/scripts_misc/color_bar.R") #has function to plot color bar 
legend 
Lab.palette.2<-colorRampPalette(c("green","yellow","orange","red")) 
options(digits=22) 
 
 
dB.l<-list() #create list of delta beta values 
 dB.l$T108vX108<-data.frame(data$probeID,abs(data$T108-data$X108)) 
 dB.l$T109vX109<-data.frame(data$probeID,abs(data$T109-data$X109)) 
 dB.l$T114vX114<-data.frame(data$probeID,abs(data$T114-data$X114)) 
 dB.l$T116vX116<-data.frame(data$probeID,abs(data$T116-data$X116)) 
 dB.l$T118vX118<-data.frame(data$probeID,abs(data$T118-data$X118)) 
 dB.l$T135vX135<-data.frame(data$probeID,abs(data$T135-data$X135)) 
 
results_dB<-matrix(rep(0,600),nrow=100,dimnames=list(seq(1,100,1),names(dB.l))) 
 
for (k in 1:6){ 
 results_dB[1,k]<-100*(nrow(dB.l[[k]][which(dB.l[[k]][,2]<=0.01),])/nrow(dB.l[[k]])) 
 for (j in seq(0.02,1,0.01)) {results_dB[(j*100),k]<-
100*(nrow(dB.l[[k]][which(dB.l[[k]][,2]>(j-0.01) & dB.l[[k]][,2]<=j),])/nrow(dB.l[[k]]))} 
 surplus<-(100-(sum(results_dB[1:100,k]))) 
 results_dB[1,k]<-results_dB[1,k]+surplus 
} 
 
write.table(results_dB,"onco_dB_table.txt",sep="\t",col.names=NA,row.names=TRUE,quote=FALSE) 
png(file="dB.png",height=4,width=4.5,units="in",res=600) 
par(mar=c(3.5,2,1.2,4)) 
out<-
barplot(results_dB,beside=FALSE,col=Lab.palette.2(100),border=NA,main="DeltaBeta",las=1,xaxt='
n') 
mtext(names(dB.l),side=1,at=out,cex=1,las=3) 
subplot(color.bar(Lab.palette.2(100), min=0, max=1),x=9.8,y=50,size=c(0.3,3.2)) 
dev.off() 
 
 
#Those probes that do change btwn primary and xeno 
 
#Selecting probes that change: set a threshold of 0.51 difference; rationale: from Lee's work we 
know fully unmeth can show up as high as 0.31 and fully meth as low as 0.82 so 0.51 difference 
should capture all probes that go from unmeth to meth or vice versa. 
options(digits=5) 
ch.l<-list() 
for (k in 1:6) {ch.l[[k]]<-dB.l[[k]][which(dB.l[[k]][,2]>=0.51),]} 
names(ch.l)<-names(dB.l) 
sapply(names(ch.l),function(x) write.table(ch.l[[x]], 
file=paste(x,"_deltabeta0.51",".txt",sep=""),sep="\t",quote=F,row.names=F))   
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ch.m<-
matrix(rep(0,12),nrow=2,dimnames=list(c("Num_probes_ch>0.51","Percentage"),names(ch.l))) 
for (k in 1:6) { 
ch.m[1,k]<-nrow(ch.l[[k]]) 
ch.m[2,k]<-(ch.m[1,k]/385724)*100     
} 
write.table(ch.m,"dB_changes_0.51.txt",sep="\t",quote=F,col.names=NA) 
 
#what overlaps? 
library(made4) 
int12<-intersect(ch.l[[1]][,1],ch.l[[2]][,1]) 
int34<-intersect(ch.l[[3]][,1],ch.l[[4]][,1]) 
int1234<-intersect(int12,int34) 
int56<-intersect(ch.l[[5]][,1],ch.l[[6]][,1]) 
 
#overlap btwn all? 
int_onco<-intersect(int1234,int56) #5 
 
#significant overlap? 
all<-data[,1] #all probe IDs on the array (minus those excluded at the start) 
 
temp<-matrix(rep(0,10000),nrow=10000,dimnames=list(c(1:10000),c("onco_rand_overlap"))) 
for (i in 1:10000){ 
temp1.1<-sample(all,2848) 
temp1.2<-sample(all,34649) 
temp1.3<-sample(all,1729) 
temp1.4<-sample(all,1851) 
temp1.5<-sample(all,23315) 
temp1.6<-sample(all,9306) 
 
int1.12<-intersect(temp1.1,temp1.2) 
int1.34<-intersect(temp1.3,temp1.4) 
int1.1234<-intersect(int1.12,int1.34) 
int1.56<-intersect(temp1.5,temp1.6) 
int1.123456<-intersect(int1.1234,int1.56) 
temp[i,1]<-length(int1.123456) 
 
rm(temp1.1,temp1.2,temp1.3,temp1.4,temp1.5,temp1.6,int1.12,int1.34,int1.1234,int1.56,int1.1234
56) 
} 
max(temp[,1]) #0 
 
#yes, overlaps are significant at empirical pvalue<=10^-4 
 
 
###############################################Put Onco and 1st gen OS 
samples together 
setwd("/medical_genomics/paulg/xeno_450k") 
onco<-
read.delim("Oncotrack/Analysis_mouse_filtered/onco_filtered_norm_betas_annotated.txt",sep="\t",
header=T)  
os<-read.delim("Analysis_mouse_filtered/filtered_norm_betas_annotated.txt",sep="\t",header=T)  
 
source("/medical_genomics/paulg/scripts_misc/color_bar.R") #has function to plot color bar 
legend 
Lab.palette.2<-colorRampPalette(c("green","yellow","orange","red")) 
options(digits=22) 
 
 
dB.l<-list() #create list of delta beta values 
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 dB.l$T1PvT1X1<-
data.frame(os$probeID,os$CHR,os$MAPINFO,os$gene.1,os$feature.1,os$RELATION_TO_UCSC_CPG_
ISLAND,os$feat.rel,abs(os$Sample_20746_7-os$Sample_20746_A),(os$Sample_20746_7-
os$Sample_20746_A)) 
 dB.l$T1PvT1X2A<-
data.frame(os$probeID,os$CHR,os$MAPINFO,os$gene.1,os$feature.1,os$RELATION_TO_UCSC_CPG_
ISLAND,os$feat.rel,abs(os$Sample_20746_7-os$Sample_20747_LA),(os$Sample_20746_7-
os$Sample_20747_LA)) 
 dB.l$T1PvT1X2B<-
data.frame(os$probeID,os$CHR,os$MAPINFO,os$gene.1,os$feature.1,os$RELATION_TO_UCSC_CPG_
ISLAND,os$feat.rel,abs(os$Sample_20746_7-os$Sample_20747_RA),(os$Sample_20746_7-
os$Sample_20747_RA)) 
 dB.l$T2PvT2X1<-
data.frame(os$probeID,os$CHR,os$MAPINFO,os$gene.1,os$feature.1,os$RELATION_TO_UCSC_CPG_
ISLAND,os$feat.rel,abs(os$Sample_18727-os$Sample_18727_A),(os$Sample_18727-
os$Sample_18727_A)) 
 dB.l$T108vX108<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T108-onco$X108),(onco$T108-onco$X108)) 
 dB.l$T109vX109<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T109-onco$X109),(onco$T109-onco$X109)) 
 dB.l$T114vX114<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T114-onco$X114),(onco$T114-onco$X114)) 
 dB.l$T116vX116<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T116-onco$X116),(onco$T116-onco$X116)) 
 dB.l$T118vX118<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T118-onco$X118),(onco$T118-onco$X118)) 
 dB.l$T135vX135<-
data.frame(onco$probeID,onco$CHR,onco$MAPINFO,onco$gene.1,onco$feature.1,onco$RELATION
_TO_UCSC_CPG_ISLAND,onco$feat.rel,abs(onco$T135-onco$X135),(onco$T135-onco$X135)) 
 
results_dB<-matrix(rep(0,1000),nrow=100,dimnames=list(seq(1,100,1),names(dB.l))) 
 
for (k in 1:10){ 
 results_dB[1,k]<-100*(nrow(dB.l[[k]][which(dB.l[[k]][,8]<=0.01),])/nrow(dB.l[[k]])) 
 for (j in seq(0.02,1,0.01)) {results_dB[(j*100),k]<-
100*(nrow(dB.l[[k]][which(dB.l[[k]][,8]>(j-0.01) & dB.l[[k]][,8]<=j),])/nrow(dB.l[[k]]))} 
 surplus<-(100-(sum(results_dB[1:100,k]))) 
 results_dB[1,k]<-results_dB[1,k]+surplus 
} 
 
write.table(results_dB,"OS_ONCO/dB_table.txt",sep="\t",col.names=NA,row.names=TRUE,quote=FA
LSE) 
png(file="OS_ONCO/dB.png",height=1.6,width=4.5,units="in",res=600) 
par(mar=c(1.5,2,1.2,4)) 
out<-barplot(results_dB,beside=FALSE,col=Lab.palette.2(100),border=NA,main="",las=1,xaxt='n') 
mtext(names(dB.l),side=1,at=out,cex=1,las=1) 
subplot(color.bar(Lab.palette.2(100), min=0, max=1,title='Beta 
Difference'),x=14,y=50,size=c(0.2,1.0)) 
dev.off() 
 
 
#Those probes that do change btwn primary and xeno 
 
#Selecting probes that change: set a threshold of 0.51 difference; rationale: from Lee's work we 
know fully unmeth can show up as high as 0.31 and fully meth as low as 0.82 so 0.51 difference 
should capture all probes that go from unmeth to meth or vice versa. 
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options(digits=5) 
ch.l<-list() 
for (k in 1:10) {ch.l[[k]]<-dB.l[[k]][which(dB.l[[k]][,8]>=0.51),]} 
names(ch.l)<-names(dB.l) 
sapply(names(ch.l),function(x) write.table(ch.l[[x]], 
file=paste("OS_ONCO/",x,"_deltabeta0.51",".txt",sep=""),sep="\t",quote=F,row.names=F)) 
    
 
ch.m<-
matrix(rep(0,40),nrow=4,dimnames=list(c("Num_probes_ch>0.51","Percentage","Percentage 
change Hypermethylation","Percentage change Hypomethylation"),names(ch.l))) 
for (k in 5:10) { 
ch.m[1,k]<-nrow(ch.l[[k]]) 
ch.m[2,k]<-(ch.m[1,k]/385724)*100 
ch.m[3,k]<-(nrow(ch.l[[k]][which(ch.l[[k]][,9]<0),])/nrow(ch.l[[k]]))*100 
ch.m[4,k]<-(nrow(ch.l[[k]][which(ch.l[[k]][,9]>0),])/nrow(ch.l[[k]]))*100  
} 
for (k in 1:4) { 
ch.m[1,k]<-nrow(ch.l[[k]]) 
ch.m[2,k]<-(ch.m[1,k]/463558)*100 
ch.m[3,k]<-(nrow(ch.l[[k]][which(ch.l[[k]][,9]<0),])/nrow(ch.l[[k]]))*100 
ch.m[4,k]<-(nrow(ch.l[[k]][which(ch.l[[k]][,9]>0),])/nrow(ch.l[[k]]))*100   
  
} 
write.table(ch.m,"OS_ONCO/dB_changes_0.51.txt",sep="\t",quote=F,col.names=NA) 
 
####put together data from all those probes that change 
probes<-matrix() 
for (k in 1:10){probes<-rbind(probes,as.matrix(ch.l[[k]][1]))} 
probes<-unique(probes) 
probes<-probes[-1,] 
probes<-as.factor(probes) 
temp_os<-os[which(os$probeID %in% probes),] 
temp_onco<-onco[which(onco$probeID %in% probes),] 
all<-merge(temp_os,temp_onco,by="probeID") 
all<-all[,c(1,3:6,9:10,42:53,18:19,21,25,30,33,37)] 
 
all$Diff_Sample_20746_A<-all$Sample_20746_A-all$Sample_20746_7 
all$Diff_Sample_20747_LA<-all$Sample_20747_LA-all$Sample_20746_7 
all$Diff_Sample_20747_RA<-all$Sample_20747_RA-all$Sample_20746_7 
all$Diff_Sample_18727_A<-all$Sample_18727_A-all$Sample_18727 
all$Diff_X108<-all$X108-all$T108 
all$Diff_X109<-all$X109-all$T109 
all$Diff_X114<-all$X114-all$T114 
all$Diff_X116<-all$X116-all$T116 
all$Diff_X118<-all$X118-all$T118 
all$Diff_X135<-all$X135-all$T135 
 
all$HyperPerc<-rep(0,nrow(all)) 
all$HypoPerc<-rep(0,nrow(all)) 
for (i in 1:nrow(all)){ 
all[i,37]<-10*(length(all[i,which(all[i,27:36]>0)]))    
all[i,38]<-10*(length(all[i,which(all[i,27:36]<0)])) 
} 
 
write.table(all,"OS_ONCO/all.txt",sep="\t",quote=F,col.names=T,row.names=F) 
 
 
 
#all<-read.delim("all.txt",sep="\t",header=T) 
anno<-read.delim("Full_450K_Annotation.txt",sep="\t",header=TRUE)     
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feat<-as.matrix(all$feat.rel.x) 
feat2<-as.matrix(summary(all$feat.rel.x)) 
tempI<-as.matrix(c(1:nrow(feat2))) 
for (x in 1:nrow(feat2)) tempI[x]<-((feat2[x]/nrow(feat))*100) 
my.feat<-cbind(feat2,tempI,sum(tempI)) 
colnames(my.feat)<-c("My.Total","My.Percentage","Check") 
 
fullfeat<-as.vector(anno$feat.rel) 
source("/medical_genomics/paulg/scripts_misc/rand.R") 
 
com.feat<-as.data.frame(cbind(Random.feat<-rand(fullfeat,nrow(all),1000),my.feat)) 
attach(com.feat) 
 
com.feat2<-as.data.frame(c(1:nrow(com.feat))) 
for (x in 1:nrow(com.feat)) com.feat2[x]<-com.feat["My.Percentage"]-com.feat["Percentage"] 
com.feat3<-cbind(com.feat,com.feat2[,1]) 
colnames(com.feat3)<-c(colnames(com.feat),"Percentage Enrichment") 
com.feat4<-com.feat3[order(com.feat3[,7],decreasing=TRUE),] 
 
Lab.palette.3<-colorRampPalette(c("green","yellow","orange","pink","red","brown","blue")) 
png("OS_ONCO/features_enrichment.png",height=6,width=10,units="in",res=600) 
par(mar=c(7,2,1.2,4)) 
out<-barplot(com.feat4[,7],main="",ylab="%Enrichment",yaxt="n",ylim=c(-
5,5),cex.lab=1.3,col=Lab.palette.3(nrow(com.feat4)),border=NA,xaxt="n") 
mtext(rownames(com.feat4),side=1,at=out,cex=1,las=2) 
axis(2,at=c(seq(from=-5,to=5,by=1)),cex.axis=1.3,las=2) 
dev.off() 
 
 
####Calculate overlaps within and across tumour types 
temp<-list.files("OS_ONCO/",pattern="*_deltabeta0.51.txt") 
temp.l<-sapply(temp,function(x) 
read.delim(paste("OS_ONCO/",x,sep=""),header=T,sep="\t",row.names=NULL),simplify=FALSE) 
 
 
names(temp.l)<-gsub("_deltabeta0.51.txt","",names(temp.l)) 
 
#ONCO: 
in1<-intersect(temp.l[[1]][,1],temp.l[[2]][,1]) 
in2<-intersect(temp.l[[3]][,1],temp.l[[4]][,1]) 
in3<-intersect(temp.l[[5]][,1],temp.l[[6]][,1]) 
in12<-intersect(in1,in2) 
in123<-intersect(in12,in3) 
length(in123) #5 
in123.df<-data.frame(in123) 
names(in123.df)<-"onco.probeID" 
onco_ol<-merge(temp.l[[1]],in123.df) 
 
write.table(onco_ol,"OS_ONCO/onco_overlap_info.txt",sep="\t",col.names=TRUE,row.names=FALSE
,quote=FALSE) 
  
#OS: 
in1<-intersect(temp.l[[7]][,1],temp.l[[8]][,1]) 
in2<-intersect(temp.l[[9]][,1],temp.l[[10]][,1]) 
in12<-intersect(in1,in2) 
length(in12) #236 
in12.df<-data.frame(in12) 
names(in12.df)<-"os.probeID" 
os_ol<-merge(temp.l[[7]],in12.df) 
os_ol 
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write.table(os_ol,"OS_ONCO/os_overlap_info.txt",sep="\t",col.names=TRUE,row.names=FALSE,quot
e=FALSE) 
 
 
#OS AND ONCO 
test<-merge(onco_ol,os_ol,by.x="onco.probeID",by.y="os.probeID") 
#no overlap     

 

 


