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Abstract—It has been shown that the knowledge of both channel
and data information at the base station prior to downlink trans-
mission can help increase the received signal-to-noise ratio (SNR)
of each user without the need to increase the transmitted power.
Achievability is based on the idea of phase alignment (PA) pre-
coding, where instead of nulling out the destructive interference, it
judiciously rotates the phases of the transmitted symbols. In this
way, they add up coherently at the intended user and yield higher
received SNRs. In addition, it is well known that regularized
channel inversion (RCI) precoding improves the performance of
channel inversion (CI) in multiantenna downlink communications.
In line with this and similar to the RCI precoding, in this paper,
we propose the idea of regularized PA (RPA), which is shown to
improve the performance of original PA precoding. To do this,
we first rectify the original PA precoding, deriving a closed-form
expression to evaluate the amount of transmit-power reduction
achieved for the same average output SNR compared with CI
precoding. We then use this new analysis to select the appropriate
regularization factor for our proposed RPA scheme. It is shown by
means of theoretical analysis and simulations that the proposed
RPA precoding outperforms CI, RCI, and PA precoders from
both symbol error rate (SER) and throughput perspectives and
provides a more power-efficient alternative. This is particularly
pronounced as the number of transmit antennas becomes larger,
where up to a 50-times reduction in the transmit power is achieved
by RPA (PA) compared with RCI (CI) precoding for a given
performance.

Index Terms—Linear precoding, multiantenna downlink trans-
mission, phase alignment (PA), power-efficient communications.

I. INTRODUCTION

U TILIZING multiantenna base stations (BSs) is one of
the most practical ways to achieve high performance in

the wireless downlink transmission. In the downlink scenario,
it makes sense to move the signal processing enhancements
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to the transmit side to keep mobile terminals (MTs) simple
and low cost. Most of the related literature on this topic has
focused on improving the system throughput. For example,
in [1], it has been shown that dirty paper coding (DPC) can
achieve the downlink capacity. However, since DPC is too
complex for the contemporary systems, some less-complex
nonlinear precoding techniques such as vector perturbation [2],
[3] and Tomlinson–Harashima precoding [4], [5] have been
proposed.

Although achieving less throughput, linear precoders are
more practical due to reduced possessing complexity compared
with their nonlinear counterparts. The least complex of the
available techniques, i.e., channel inversion (CI) [6], is a lin-
ear precoding technique that yields reasonable performance in
downlink communications. The generalization of CI precoding
for multiantenna receivers has been investigated in [7]. In [8], it
has been shown that the symbol error rate (SER) performance
given by CI precoding becomes worse with the increase in
the number of users. Regularized CI (RCI) proposed in [8]
attains some performance with respect to the conventional CI
in such a way that, with increasing the number of users, the
SER performance of each user remains fixed at low SNRs and
improves slightly at high SNRs.

In line with this, [9] presents a precoding technique based
on phase rotation [hereafter, we call it phase alignment (PA)]
for multiantenna downlink communications, where instead of
removing the harmful symbol-to-symbol interference, it rotates
the phases of the transmitted symbols such that the destructive
interference becomes constructive, eventually leading to more
received SNRs for fixed transmit power. Further, the superior
performance of PA precoding of [9] compared with conven-
tional linear precoders has been investigated in [10] and [11]
for cognitive radio networks.

Aside from increasing the throughput in downlink, designing
power-efficient precoders has become important in recent years.
The idea is to minimize the transmit power while securing the
same quality of service for each user. In this paper, we focus
on designing such a precoder that enables us to decrease the
transmit power to achieve the same average output SNR for
each user. Due to their practical complexity, in this paper, we
focus on linear precoders, and the contributions of this paper
can be summarized as follows.

1) We reformulate and enhance the performance analysis of
PA precoding [9] so that, in line with the aims of “green
communications” [12], the power efficiency (as opposed
to received SNR) can be optimized. In addition, we
complete the performance analysis of PA by analytically
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calculating the scaling factors obtained, where in [9], only
empirical scaling factors were used for the theoretical
results.

2) We propose an enhanced PA technique, namely, regular-
ized PA (RPA), where, based on the performance analysis
of PA, we derive the required regularization factor for
RPA.

3) We analytically derive the received SNR of the proposed
RPA scheme. We also show that, to achieve the same
average output SNR for each user, the transmit power re-
duction achieved by RPA compared with RCI precoding
is the same as that of PA compared with CI precoding.

4) We show that the power gains of RPA compared with its
counterparts PA, CI, and RCI magnify as the number of
transmit antennas increases, which aligns the proposed
scheme with the aims of massive multiple-input multiple-
output (MIMO) systems [13]. In particular, we observe
up to more than 50 times saving in the transmit power for
RPA (PA) compared with RCI (CI) for systems with up
to 100 transmit antennas.

5) We also consider the effect of channel estimation errors
on the performance of the proposed scheme. We show
that, with imperfect transmit-side channel state informa-
tion (CSIT), the performance trend of the proposed RPA
precoding follows the one of the conventional precoders,
which further implies that the RPA precoding is as sensi-
tive as the others to erroneous CSIT.

This paper is organized as follows. In Section II, the system
model and conventional linear precoding are presented. In
Section III, we reformulate and enhance the performance anal-
ysis of PA precoding. In Section IV, we propose the RPA
precoding. In Section V, the power efficiency of PA and RPA
precoding is evaluated. In Section VI, by using numerical simu-
lations, we show that the proposed RPA precoding outperforms
CI, RCI, and PA precoding and enables us to save more power
at transmit side for a fixed average received SNR at each user.
Finally, Section VII contains the conclusion.

II. SYSTEM MODEL AND CONVENTIONAL

LINEAR PRECODING

We consider a multiuser downlink scenario where an N -
antenna transmitter communicating with MTs with M receive
antennas in total. Since no signal processing treatment is going
to be considered at each MT, the system configuration is
irrelevant to whether the receive antennas cooperate or not.
Therefore, the total number of receive antennas can belong
to one user or be shared by several users; however, as purely
transmitter-based precoders are most useful with single-antenna
receivers, we consider single-antenna MTs for the remainder of
this paper. We also assume that all the users are homogeneous
and experience independent fading [8], [9], [14]. The received
signals of all users can be expressed by

y = Hs+ z (1)

where y ∈ C
M×1, and H ∈ C

M×N denotes the channel from
N -antenna transmitter to M single-antenna users such that the

absolute values of channel coefficients, i.e., |hi,k|, are bounded
between a nonzero minimum value and a finite maximum
value. We further assume that elements of H can be mod-
eled by independent and identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and unit variance, i.e.,
hi,k ∼ CN (0, 1) for 1 ≤ i ≤ M , 1 ≤ k ≤ N , s ∈ C

N×1 is the
transmitted signal, and z ∈ C

M×1 is the circularly symmetric
additive white Gaussian noise with zero mean and variance σ2,
i.e., z ∼ CN (0, σ2I).

We further assume that the transmitted signal s in (1) can be
expressed as s = gΨc. Similar to [8], [9], and [15], we consider
g as the scaling factor that ensures transmit power constraint,
i.e., E{‖s‖2} = 1, where E{·} is the expectation operator. Ψ
is the precoding matrix, c represents the vector containing the
symbols chosen from a desired constellation, and since we
assume i.i.d. input signaling, we have E{ccH} = I, where the
superscript (·)H represents the Hermitian transpose.

Note that, throughout this paper, we consider the input SNR
as 1/σ2, whereas output SNR is defined as the SNR received
by each user.

Although the PA precoding (and, consequently, the proposed
RPA precoding) is applicable when N ≥ M ; hereafter, for
notational and analytical simplicity, we assume that the number
of transmit antennas is the same as the total number of receive
antennas, i.e., M = N = d, which is consistent with the same
assumption in [8] and [9].

A. Channel Inversion Precoding

Here, we briefly review the CI precoding. As is well known,
the precoding matrix can be defined as ΨCI = HHR−1, where
R = HHH is the covariance matrix of the channel. Conse-
quently, the transmitted signal in (1) is equal to

sCI = gCIΨCIc (2)

where the scaling factor is equal to [8]

gCI =
1√

Tr[R−1]
(3)

such that Tr(·) denotes “trace” operator.
For a given channel realization and with respect to the

normalizing factor, the unified output SNR for each user is
given by [8]

η′CI =
g2CI
σ2

=
1

σ2Tr[R−1]
. (4)

Since Tr [R−1] =
∑d

�=1 [R
−1]�,�, the output SNR for the �th

user can be shown by [14]

ηCI =
snrCI

[R−1]�,�
, 1 ≤ � ≤ d (5)

where [·]�,� denotes the �th diagonal element, and we have

snrCI =
1

dσ2
. (6)
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B. Regularized Channel Inversion Precoding

Here, we briefly reintroduce the RCI precoding and derive
a formula pertaining to its signal-to-interference-plus-noise
ratio (SINR). There is a degradation in the performance of
CI precoding in the multiple-input downlink communications
since it requires inverting the square matrix R, which is poorly
conditioned with high probability when d is large [8]. One tech-
nique often used to regularize an inverse (and, consequently, to
decrease the condition number of a matrix) is to add a multiple
of the identity matrix before inverting. In [8], it has been shown
that the optimum value for this regularization parameter of RCI
precoding is equal to 1/snrCI, where snrCI is defined in (6). For
RCI precoding, the transmitted signal can thus be shown by

sRCI = gRCIΨRCIc (7)

where ΨRCI = HH(R+ (1/snrCI)I)−1 is the precoding matrix,
and gRCI is the scaling factor that can be represented as [15]

gRCI =
1√√√√Tr

[
R

(
R+

1
snrCI

I

)−2
] . (8)

Note that, although the SINR of the RCI precoder can be
related to the eigenvalues of R [8], here, we derive the SINR
of RCI precoding in a different way since it also facilitates
the SINR analysis of the proposed RPA precoding, as will
be discussed later. To further proceed, first, we rewrite the
precoding matrix as

ΨRCI=HH

(
R+

1
snrCI

I

)−1

=

(
HHH+

1
snrCI

I

)−1

HH. (9)

Therefore, the received signal can be now represented as

y = gRCIH

(
HHH+

1
snrCI

I

)−1

HHc+ z. (10)

Let h� ∈ C
1×d denote the �th row of H and H� designate

the submatrix obtained by striking h� out of H. The received
signal at the �th user is then given by

y� = gRCIh�

(
HHH+

1
snrCI

I

)−1

HHc+ z�

= gRCIh�

(
HHH+

1
snrCI

I

)−1

hH
� c�

+

d∑
x �=�

gRCIh�

(
HHH+

1
snrCI

I

)−1

hH
xcx + z�. (11)

Note that, in the given equation, the term gRCIh� (H
HH+

(1/snrCI)I)−1hH
� c� is the desired signal of user �. By observing

that (HHH+ (1/snrCI)I) = (HH
�H� + (1/snrCI)I+ hH

� h�)
and based on the matrix inverse lemma,1 we have

(
HHH+

1
snrCI

I

)
−1hH

� =

(
HH

�H�+
1

snrCI
I

)
−1hH

�

1+h�

(
HH

�H�+
1

snrCI
I

)
−1hH

�

. (12)

1If x is a row vector, then (A+ xHx)−1xH = (A−1xH/(1 +

xA−1xH)) [16].

Therefore, by considering i.i.d. input signaling, i.e.,E{ccH}=I,
the desired signal energy of the �th user can be represented as

κ� = g2RCI

(
A�

1 +A�

)2

(13)

where A� = h� (H
H
�H� + (1/snrCI)I)−1hH

� .
The term

∑d
x �=� gRCIh� (H

HH+ (1/snrCI)I)−1hH
xcx in (11)

is the interference caused to the �th user. Similarly and by
doing some straightforward matrix manipulation, the power of
interference induced to the �th user can be shown as

�� =
g2RCIB�

(1 +A�)2
(14)

where

B�=h�

(
HH

�H�+
1

snrCI
I

)−1

HH
�H�

(
HH

�H�+
1

snrCI
I

)−1

hH
� .

(15)

Therefore, the SINR for the �th user can be shown as

ηRCI =
κ�

�� + σ2
=

g2RCIA
2
�

g2RCIB� + (1 +A�)2σ2
. (16)

III. PHASE ALIGNMENT REVISITED

Here, we represent the basic idea of the PA precoding. Note
that, although the PA precoding was defined in [9], it needs
to be redefined in a relatively different way. The reason is
that there is no closed-form expression for average output
SNR of PA precoding. However, in this paper, we derive a
closed-form expression for this average output SNR, which
eventually enables us to calculate the amount of transmit-power
reduction of PA precoding compared with CI precoding for a
fixed average output SNR at each user. This also facilitates
the selection of an optimized regularization parameter for the
proposed RPA precoding.

We note that the concept of PA is most beneficial in high-
interference scenarios where more gains are to be gleaned by
exploiting interference. In these scenarios, typically, low-order
modulation is employed to secure low error rates. Therefore,
while the benefits of the proposed scheme extend to high-order
quadrature amplitude modulations, here, we focus on low-order
phase-shift keying (PSK).

With PA precoding, instead of nulling out the destructive
symbol-to-symbol (or cochannel) interference (as being done
by R−1 for CI precoding), the knowledge of the data’s and
channels’ covariance matrices at transmit side can be used
to make the harmful interference constructive. Fig. 1 shows
how the PA precoding works for QPSK input signaling. If
we consider the signal of interest as c� = (1 + j)/

√
2 and

the interfering symbol as cx = (−1 + j)/
√

2, the symbol-to-
symbol cochannel interference ρ�,xcx resulted from cx to c�
through the (�, x)th element of channel’s covariance matrix R,
i.e., ρ�,x, is denoted by the dashed red arrow in the figure.
The phase of the interference ρ�,xcx with respect to the signal
of interest c� is denoted by θ�,x. For QPSK constellation, the
real and imaginary axes are decision thresholds. It is clear that,
for the interfering symbol cx, the resulting interference ρ�,xcx
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Fig. 1. PA for QPSK constellation. ÿ� is the received symbol without PA,
whereas ẏ� is the received symbol with PA.

is harmful since its accumulation with the signal of interest
moves the received symbol ÿ� closer to the QPSK decision
thresholds. The goal of the PA precoding is to correct the phase
of all transmitted symbols and to rotate the angle of correlation
between them such that the resulting symbols after precoding
are aligned to the signal of interest c�. The desired symbol c�
and the aligned interference ρ�,xcxθ�,x, respectively, are shown
by the solid green and red arrows in Fig. 1, which add up
to ẏ� denoted by solid blue one. With respect to the fact that
|c�| = |cx| = 1, the relative phase θ�,x can be expressed as

ρ�,xcxθ�,x ∝ c� → θ�,x =
(ρ�,xcx)

H

|ρ�,x|
c� (17)

where ∝ means linear proportionality. From (17), it is evident
that |θ�,x| = 1; therefore, the amplitude of the rotated correla-
tions remains unchanged. Now, matrix Rθ, which contains the
phase-rotated correlation elements, can be shown as

[Rθ]�,x = ρ�,xθ�,x = ρ�,x
(ρ�,xcx)

H

|ρ�,x|
c� = |ρ�,x|c�cHx (18)

where ρ�,x is the (�, x)th element of the channel’s covariance
matrix R. From the matricial notation perspective, (18) is
equivalent to

Rθ = |R| �Q (19)

where Q = ccH is the covariance matrix of the input data vector
c, � denotes the Hadamard (element-wise) matrix product, and
| · | represents the element-wise absolute value.

Remark 1: The PA precoding (and, consequently, the pro-
posed RPA precoding as will be discussed later) is linear, as
stated in [9]. However, this can be also deduced from (19) since
the Hadamard product is a linear operator.

Now, the precoding matrix can be shown as

ΨPA = HHR−1Rθ (20)

which yields

sPA = gPAΨPAc (21)

where the scaling factor is equal to [9]

gPA =
1√

Tr [R2
θR

−1]
. (22)

A. Output SNR

After going through the channel, the received signal related
to the �th user (� = 1, . . . , d) can be shown as

y� = gPA[Rθ]��c+ z� = gPA

d∑
x=1

|ρ�,x|c�cHxcx + z�

= gPAc�

d∑
x=1

|ρ�,x|+ z�

= gPAc�|ρ�,�|︸ ︷︷ ︸
desired signal

+ gPAc�

d∑
x=1
x �=�

|ρ�,x|

︸ ︷︷ ︸
constructive interference

+z� (23)

where [Rθ]�� denotes the �th row of matrix Rθ in (19), and z�
is the �th element of the noise vector z, which is the circularly
symmetric additive white Gaussian noise with zero mean and
variance σ2, i.e., z� ∼ CN (0, σ2). From (23), it can be seen
that the received signal of the �th user, due to the PA of the co-
stream interference, is a factor of only the desired symbol c� and
not the interfering symbols cx, as also shown in Fig. 1. Since
this interference contributes to the signal power, the effective
SINR instead of the conventional form (η̌ = (S/(I + σ2)))
can be expressed as η̂ = ((S + I)/σ2), where S denotes the
desired signal’s power, I is the additional signal power due to
the constructive interference, and σ2 denotes the noise variance
of each user. Therefore, it is basically a case of signal plus noise
at the receiver, and consequently, here, we present an SNR cal-
culation, as opposed to SINR. Hence, similar to CI precoding,
the output SNR of the �th user based on PA precoding can be
shown as

ηPA =
g2PA
σ2

(
d∑

x=1

|ρ�,x|
)2

. (24)

Remark 2: As denoted in (19), PA precoding is only de-
pendent on the amplitudes of the elements of the channel’s
covariance matrix and the covariance matrix of the transmitted
data, which are known at the BS prior to downlink transmission;
therefore, by comparing (21) with (2), the major overhead of
PA compared with CI is related to computing Rθ = |R| �Q.
However, note that this calculation is going to be done at
the BS that has access to sufficient power and computing
facilities. Therefore, similar to CI and RCI precoding, the
signal processing enhancement of PA precoding is going to
be done at BS, and consequently, no overhead is introduced
to MTs. This, for example, implies that the MTs do not need
to know the relative phases θ�,x since based on (17) and
(18), this phase rotation is translated into amplification of the
desired symbols based on the magnitudes of the elements of
the covariance matrix of the channel. This is also reflected in
(23), indicating that, with PA precoding, the received signal of
user �, � = 1, . . . , d only depends on the intended symbol c� and
does not include the interfering symbols intended for the other
d− 1 MTs.
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TABLE I
STATISTICAL PROPERTIES OF |ρ�,x| (SEE APPENDIX A)

B. Average Output SNR of PA Precoding

Since no closed-form expression for average output SNR of
PA precoding is presented in [9], here, we calculate this value.
To compare the power efficiency of PA precoding with that of
CI precoding and to find an optimized regularization parameter
for our proposed scheme in the following, we should represent
the output SNR of PA precoding similar to that of CI precoding
in (5). To do this, by considering some simplifying steps and
by taking the expectation over ηPA in (24), we can represent the
average output SNR of each user as

η′PA =

E

{(
gPA

d∑
x=1

|ρ�,x|
)2

}
σ2

=

E
{
g2PA

}
E

{(
d∑

x=1
|ρ�,x|

)2
}

σ2
. (25)

Here, we have assumed that gPA is statistically independent of
the data and the channel’s covariance coefficients. While (22)
contradicts this assumption, this is an affordable and common
simplification to attain a closed-form approximation of the
average output SNR [17]. Moreover, for large d, this becomes
more justifiable, as derived by the law of large numbers. To
further proceed, we should derive the statistical properties of
random variable |ρ�,x|, which is presented in Table I (for a
proof, see Appendix A). Therefore, after some straightforward
manipulations, (25) can be expressed as

η′PA=
E
{
g2PA

}
σ2

[
d(d+1)+d(d−1)

(
1+

√
dπ+(d−2)

π

4

)]
. (26)

To calculate η′PA in (26), we need to have the value of E{g2PA}
using the following theorem.

Theorem 1: E{g2PA} can be represented as

E
{
g2PA

}
=

1
2d2Tr[R−1]

. (27)

Proof: See Appendix B. �
Therefore, (26) can be now written as

η′PA =
(d+ 1) + (d− 1)

(
1 +

√
dπ + (d− 2)π4

)
2dσ2Tr[R−1]

. (28)

Analogous to the same procedures of CI precoding in
(3)–(6), and with respect to (28) and by considering Tr[R−1] =∑d

�=1[R
−1]�,�, the average output SNR of PA precoding for the

�th user can be represented by

η′PA =
snrPA

[R−1]�,�
, 1 ≤ � ≤ d (29)

where

snrPA =
(d+ 1) + (d− 1)

(
1 +

√
dπ + (d− 2)π4

)
2d2σ2

. (30)

Now, the output SNR of PA precoding in (29) is of similar
form to that of CI precoding in (5) in the sense that both of these
equations have the same denominator. As stated previously, this
treatment of output SNR of PA precoding [from (25)–(29)] will
help us compare the power efficiency of PA precoding to that
of CI precoding, and it also facilitates the selection of the regu-
larization parameter for our proposed scheme in the following.

IV. REGULARIZED PHASE ALIGNMENT PRECODING

Earlier, we showed that the PA precoding aims to rotate
the phases of the transmitted symbols such that, for each MT,
the interference of the remaining d− 1 streams add up coher-
ently, and consequently, we can glean more received SNRs
for all MTs; however, since it inherently uses CI [see (20)],
the PA precoding is still problematic when the channel is ill-
conditioned. To overcome this deficiency, we propose to use the
concept of RCI precoding by adding a multiple of the identity
matrix (i.e., εI) to R before inverting. Following [8], we seek a
regularization parameter being only dependent on d and noise
variance. Since ε controls the amount of interference introduced
to each user, the most important point is how to choose ε to
get the optimum performance since ε can take on any positive
value. In Section II-B, we showed that, for RCI precoding, this
amount of ε is equal to the inverse of (6), which is optimal when
d is large and works well even with small d, as also discussed
in [8]. Since the output SNRs of CI and PA precoding resemble
each other [see (5) and (29)], analogous to RCI precoding
and by comparing (29) with (4)–(6), it turns out that one
good choice of ε for the proposed RPA precoding can now be
obtained via the inverse of (30). In Appendix C, we show that
this regularization parameter, i.e., ε = (1/snrPA), is optimum.
Furthermore, in Section VI, we will show that this choice of ε
as a regularization parameter achieves very good performance.
In this case, the transmitted signal s in (1) is given by

sRPA = gRPAΨRPAc (31)

where

ΨRPA = HH

(
R+

1
snrPA

I

)−1

Rθ (32)

is the precoding matrix, and the scaling factor can be shown as

gRPA=
1√√√√Tr

[
R

(
R+

1
snrPA

I

)−1

R2
θ

(
R+

1
snrPA

I

)−1
] .
(33)

Therefore, the received signal can be now represented as

y = gRPAHHH

(
R+

1

snrPA
I

)−1

Rθc+ z

= gRPAH

(
HHH+

1

snrPA
I

)−1

HHRθc+ z. (34)
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Since Rθ = |R| �Q, we define

c
Δ
= Rθc =

⎛⎜⎜⎜⎜⎜⎝
c1

d∑
x=1

|ρ1, x|
...

cd
d∑

x=1
|ρd, x|

⎞⎟⎟⎟⎟⎟⎠ . (35)

Let c� denote the �th element of c and c� stand for the subvector
obtained by removing c� from c. Then, the received signal at
the �th user can be shown as

y� = gRPAh�

(
HHH+

1
snrPA

I

)−1

HHc+ z�

= gRPAh�

(
HHH+

1
snrPA

I

)−1

hH
� c�

+

d∑
x �=�

gRPAh�

(
HHH+

1
snrPA

I

)−1

hH
xcx + z�

= gRPAh�

(
HHH+

1
snrPA

I

)−1

hH
� c�︸ ︷︷ ︸

desired signal

+ gRPAh�

(
HHH+

1
snrPA

I

)−1

HH
� c�︸ ︷︷ ︸

interference

+z�. (36)

Since, based on the matrix inverse lemma, we have

(
HHH+

1
snrPA

I

)−1

hH
� =

(
HH

�H�+
1

snrPA
I

)−1

hH
�

1+h�

(
HH

�H�+
1

snrPA
I

)−1

hH
�

(37)
by considering i.i.d. input signaling, i.e., E{ccH} = I, the
output SINR of the �th user based on RPA precoding is equal to

ηRPA =
g2RPAG

2
�F�

g2RPAD� + (1 +G�)2σ2
(38)

where

F� =

(
d∑

x=1

|ρ�, x|
)2

G� =h�

(
HH

�H� +
1

snrPA
I

)−1

hH
�

D� =h�

(
HH

�H� +
1

snrPA
I

)−1

HH
�Υ�

× H�

(
HH

�H� +
1

snrPA
I

)−1

hH
�

such that Υ� = diag{F1, . . . , F�−1, F�+1, . . . , Fd}, and
diag{·} is the diagonal operator.

V. POWER EFFICIENCY

Here, we investigate the ability of PA and RPA precoding
to save the transmit power, which is more appropriate in the
sense of green communications. We want to investigate, for a
fixed average received SNR by each user, how much power-
saving RPA (PA) precoding achieves in comparison with RCI
(CI) precoding. If PPA and PCI, respectively, represent the
deployed power for each user by PA and CI precoding (via
replacing 1/σ2), then for the same received SNR for PA and
CI precoding, we have

ηCI=η′PA →

PCI

d[R−1]�, �
=

PPA

(
(d+ 1) + (d− 1)

(
1+

√
dπ+(d−2)π4

))
2d2[R−1]�, �

→ ξ
Δ
=

PPA

PCI

=
2d

(d+1)+(d− 1)
(

1+
√
dπ+(d− 2)π4

) (39)

which means that, with PA precoding, we can reduce the
deployed power by a factor of ξ to achieve the same aver-
age output SNR as CI precoding, which is equivalent to a
10 log10(ξ

−1) dB decrease in deployed power for each user.
We will show that this analytical result closely matches the
simulations.

If we define PRPA and PRCI as the deployed power by RPA
and RCI precoding, respectively, by using the numerical simu-
lations in the following, we show that, still, PRPA/PRCI ≈ ξ. Un-
fortunately, due to the complexity of MMSE expressions, it is
not possible to prove it mathematically; however, conceptually,
we can say that since there is a one-to-one mapping from PA to
RPA precoding, which is similar to that of CI to RCI precoding,
and all these four precoders are linear; therefore, we can expect
that PRPA/PRCI ≈ ξ.

One interesting observation from (39) is that the larger the
d value, the more power we can save at the transmit side. For
example, in the following, we show that, when d = 16, we
can decrease the transmit power of PA precoding by 9.8 dB
(a nearly tenfold reduction in transmit power) to deliver the
same average output SNR to each user compared with CI pre-
coding. This tenfold reduction is also there for RPA precoding
compared with RCI precoding, which makes the proposed RPA
precoding very vital at low input SNR ranges.

VI. NUMERICAL RESULTS

Here, we provide numerical results to show the superior
performance of the proposed RPA precoding compared with the
other three precoders.

In simulations and without loss of generality, we assume that
each user has one receive antenna, and the total number of users
is equal to the number of transmit antennas. We further consider
the same fading model as the one discussed in Section II.
Moreover, the output SNRs of CI, RCI, PA, and RPA precoding
are related to (5), (16), (24), and (38), respectively.

To verify the accuracy of the output SNR analysis and the de-
rived formula in (38), we evaluated the SER based on analytical
and simulation results in Fig. 2, and it turned out that the SER
curves of these two methods closely match. This confirms the
accuracy of the derived formula for the output SINR of RPA.
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Fig. 2. Comparison of the average SER of the RPA precoding scheme
based on analytical and simulation results for d = 4 and d = 16 and QPSK
constellation.

Fig. 3. Comparison of the average SER of CI, RCI, PA, and RPA precoding
schemes for d = 4 and d = 16 and QPSK constellation.

Fig. 3 shows the comparison of the average SER based on CI,
RCI, PA, and RPA precoding, where, by increasing the number
of users from d = 4 to d = 16 (and increasing the number of
transmit antennas accordingly), the following behaviors take
place.

1) CI Precoding: Each user experiences inferior SER per-
formance.

2) RCI Precoding: The SER performance of each user re-
mains constant at low SNRs and improves slightly at high
SNRs, as also shown in [8].

3) PA Precoding: The SER performance of each user re-
mains almost constant for all SNR ranges.

4) RPA Precoding: Each user experiences remarkably better
SER performance for all SNR ranges.

As shown, for d = 4 and to achieve a fixed SER, RPA gives
us 2.5-dB gain compared with PA, and for d = 16, this gain is
about 10 dB at low SNRs and 15 dB at high SNRs.

Fig. 4. Comparison of the average SER of CI, RCI, PA, and RPA precoding
schemes for M = 10 and N = 16 and QPSK constellation.

Fig. 5. Probability density of the output SNR of each user based on different
precoding schemes and for d = 16. For CI and RCI precoding schemes, the
input SNR is equal to −10 dB, whereas for PA and RPA precoding schemes,
the input SNR is equal to −19.8 dB.

Fig. 4 shows the performance of the CI, RCI, PA, and RPA
precoding for M = 10, N = 16, and under QPSK signaling. As
revealed, the proposed RPA precoding is able to achieve better
performance even when the number of receive antennas is less
than the number of transmit antennas at the BS. However, when
N > M , the performance of the nonregularized precoders be-
comes very close to that of the regularized precoders.

In Figs. 5–7, we examine the power efficiency of PA and RPA
precoding. Fig. 5 shows the probability density of the output
SNR of each user based on different precoding schemes for the
case of d = 16. Based on our discussions in Section V and with
respect to (39), we expect that, for d = 16 and for a fixed aver-
age output SNR, PA, and RPA precoding, respectively, achieve
a 9.8-dB decrease in transmit power compared with CI and
RCI precoding for each user. Fig. 5 verifies this behavior. For
example, as shown, the mean of the output SNR of each user
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Fig. 6. CCDs of output SNR of each user based on different precoding
schemes and for d = 16. For CI and RCI precoding schemes, the input SNR
is equal to −10 dB, whereas for PA and RPA precoding schemes, the input
SNR is equal to −19.8 dB.

Fig. 7. Average power efficiency of RPA (PA) to RCI (CI) precoding.

based on RPA precoding with input SNR of −19.8 dB is almost
the same as that of RCI precoding with input SNR of −10 dB.

In Fig. 6, we compare the complementary cumulative distri-
butions (CCDs) of the output SNR of each user for the case
d = 16. As observed, the CCD of PA precoding with input
SNR of −19.8 dB is almost the same as that of CI precoding
with input SNR of −10 dB. Moreover, for 40% of channel
realizations, the minimum output SNR of each user based on
RPA precoding with input SNR of −19.8 dB is the same as that
of RCI precoding with input SNR of −10 dB.

Fig. 7 shows the power efficiency of the RPA (PA) to
RCI (CI) precoding. As shown, the larger the d value is,
the more power we can save at transmit side. This magnifies
the importance of PA and RPA precoding in the context of
massive MIMO. For example, with d = 100, the proposed RPA
precoding enables us to save nearly 17 dB (a 50-fold reduction)
transmit power compared with RCI precoding for each user,
which is significant at low input SNRs.

Fig. 8. Average throughput for CI, RCI, PA, and RPA precoding schemes for
d = 16 and for QPSK and 8-PSK constellations.

Fig. 9. Average SER performance for CI, RCI, PA, and RPA precoding
schemes for d = 4 and QPSK constellation. The CSIT error can depend on
SNR (β = 10, δ = 1) or be independent of SNR (β = 0.03, δ = 0).

The throughput benefits of different linear precoding tech-
niques are examined in Fig. 8 for the case of d = 16 and for
both QPSK and 8-PSK constellations. In the results depicted,
the throughput is expressed as (1 − blkerr) d log2 M bits per
channel use (bits/cu), where blkerr is the block error rate (here,
we considered each block consists of 128 symbols), M = 4 for
QPSK, and M = 8 for 8-PSK constellations. As revealed, the
proposed RPA precoding achieves better throughput compared
with the other three precoders. For example, at input SNR of
7.5 dB and for QPSK modulation, while CI, RCI, and PA
precoders give no throughput, RPA precoding attains 5 bits/cu.

So far, we have assumed that perfect CSIT is available at
the BS. However, since it is not practically easy to obtain
perfect CSIT, we examine the performance (or sensitivity) of
the proposed method to channel estimation errors. Fig. 9 shows
the average SER of different precoding schemes for QPSK
constellation. The SER results of perfect CSIT are also repeated
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for comparison. Following [18], we model the imperfect
CSIT as

Ĥ = H+E (40)

where the CSIT accuracy is characterized by the error matrix
E, which is assumed independent of the actual channel matrix
H. E can be further considered complex Gaussian with i.i.d.
elements, i.e.,

vec(E)∼NC(0, τI) with τ
Δ
=β

(
1
σ2

)−δ

, β>0; δ≥0 (41)

where 1/σ2 is the input SNR. With this model, the error
variance τ can depend on the SNR (δ �= 0) or be independent
of SNR (δ = 0). τ can be further assumed a parameter that
captures the quality of the channel estimation, which is possible
to be known a priori, depending on the channel dynamics
and channel estimation schemes [19]. Fig. 9 shows that, for
both SNR-dependent and SNR-independent error models, the
performance trend of RPA and PA precoding follows that of
RCI and CI precoding, which further implies that RPA and PA
are as sensitive as RCI and CI to channel imperfections.

VII. CONCLUSION

We have considered linear precoders in multiantenna down-
link communications. We reformulated the PA precoding that
aims to rotate the phases of transmit symbols such that they
cause constructive interference. Unlike CI precoding where we
null out the interference completely, there is no need to remove
the interference by using PA precoding. Because of this and
by considering fixed transmit power, PA precoding gives more
output SNR to each user compared with CI precoding. How-
ever, the PA precoding is still problematic when the channel
is ill-conditioned. Therefore, in this paper, we have proposed
an enhanced version of PA precoding (named RPA), and we
showed that it achieves better SER and throughput than CI,
RCI, and PA precoding, particularly when the number of users
becomes larger. We also showed that PA and RPA precoding
enable us to decrease the deployed power at transmit side to
achieve the same average output SNR for each user, compared
with CI and RCI precoding, respectively. This transmit-power
reduction is more significant when there is a large number of
transmit antennas. We also illustrated that, even with imperfect
CSIT, the performance trend of the proposed RPA precoding
follows that of conventional precoders.

APPENDIX A
STATISTICAL PROPERTIES OF |ρ�, x|

By expanding the complex multiplications of matrix R =
HHH for the case � �= x, we have

|ρ�, x| =

⎛⎝[
d∑

n=1

(
hr
�,nh

r
x,n + hi

�, nh
i
x,n

)]2

+

[
d∑

n=1

(
hi
�, nh

r
x,n − hr

�,nh
i
x,n

)]2
⎞⎠ 1

2

(42)

where the notations hr
�,n = � (h�, n), hi

�, n = � (h�, n) are used
for convenience, and h�,n is used to denote the generic channel
coefficient of the nth transmit antenna to the �th MT. Since we
assumed that hr

�,n, hi
�, n, hr

x,n, hi
x,n ∈ CN (0, (1/2)), we have

E
{
hr
�,nh

r
x,n

}
= 0 and var

{
hr
�,nh

r
x,n

}
=

1
4
. (43)

The same applies to all combinations of real and imaginary
coefficients that appear in (42). Therefore

E
{
hr
�,nh

r
x,n + hi

�, nh
i
x,n

}
= 0

var
{
hr
�,nh

r
x,n + hi

�, nh
i
x,n

}
=

1
2

(44)

E

{
d∑

n=1

(
hr
�,nh

r
x,n + hi

�, nh
i
x,n

)}
= 0

var

{
d∑

n=1

(
hr
�,nh

r
x,n + hi

�, nh
i
x,n

)}
=

d

2
Δ
= μ. (45)

Due to the symmetry of the real and imaginary parts of the
channel taps, the values of (45) also apply to the second
term on the right-hand side of (42). Consequently, |ρ�, x| is
a Rayleigh variable with E{|ρ�, x|} =

√
2μΓ(3/2) = (

√
dπ/2)

and E{|ρ�, x|2} = 2μΓ(2) = d [20], where Γ(·) is the gamma
function such that Γ(1) = 1, Γ(1/2) =

√
π, and Γ(1 + x) =

xΓ(x).
For the case of � = x, we have

|ρ�, �| =
d∑

n=1

|h�,n|2 =

d∑
n=1

[(
hr
�,n

)2
+
(
hi
�, n

)2]
. (46)

Since hr
�,n, hi

�, n ∈ CN (0, (1/2)), |ρ�, �| is a χ-square ran-
dom variable with 2d degrees of freedom, i.e., |ρ�, �| ∼
χ2
2d, and E{|ρ�, �|} = 2dε = d, and var{|ρ�, �|} = 4dε2 = d

[20], where ε
Δ
= var{hr

�,n} = (1/2), therefore, E{|ρ�, �|2} =

[E{|ρ�, �|}]2 + var{|ρ�, �|} = d(d+ 1).

APPENDIX B
E{g2PA}

Based on (22), we have

g2PA =
1

Tr [R2
θR

−1]
. (47)

Therefore, to calculate E{g2PA}, we should find the value of
E{Tr[R2

θR
−1]}−1. Since both R2

θ and R−1 are Hermitian
matrices, by using eigendecomposition, we have

R2
θ =UθΛθU

H
θ (48)

R−1 =UrΛrU
H
r (49)

where Uθ and Ur are unitary matrices containing the eigenvec-
tors of R2

θ and R−1, respectively, and Λθ and Λr are diagonal
matrices consisting of eigenvalues of R2

θ and R−1, respectively.
Note that since we assumed i.i.d. input signaling, R2

θ and
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Uθ are random matrices. Therefore, E{Tr[R2
θR

−1]} can be
written as

E
{
Tr

[
R2

θR
−1
]}

=E
{
Tr

[
UθΛθU

H
θUrΛrU

H
r

]}
=E

{
Tr

[
UH

rUθΛθU
H
θUrΛr

]}
. (50)

Now, if we define U
Δ
= UH

rUθ, (50) can be shown by

E
{
Tr

[
R2

θR
−1
]}

=E
{
Tr

[
UΛθU

HΛr

]}
=E

{
d∑

i=1

d∑
k=1

λr, iλθ, k|ui, k|2
}

(51)

where λr, i and λθ, k are the ith and the kth diagonal elements of
matrices Λr and Λθ, respectively, and ui, k denotes the (i, k)th
element of unitary matrix U.

To continue, we consider the following theorem [21].
Theorem 2: If the Hermitian unitary invariant2 random ma-

trix W can be eigendecomposed as W = UΛUH, then the
unitary matrix U, which is a Haar3 matrix, is independent of
the diagonal matrix Λ.

Since both Uθ and Ur are random matrices, so is U; hence,
E{|ui, k|2} = (1/d) [21], and based on Theorem 2, we can
write (51) as

E
{
Tr

[
R2

θR
−1
]}

=

d∑
i=1

d∑
k=1

λr, iE{λθ, k}E
{
|ui, k|2

}
=

1
d
E
{
Tr

[
R2

θ

]}
Tr[R−1]. (52)

Note that, since R−1 is a square matrix, E {Tr[R−1]} is not
defined [21]. To further proceed, we consider the following
lemma.

Lemma 1: Tr[R2
θ] = Tr[R2].

Proof: To continue with the proof, we only need to show
that the �th diagonal elements of R2

θ and R2 are the same. Since
matrix Rθ is Hermitian, we have R2

θ = RθR
H
θ . Hence, we can

write

α�, � =

d∑
i=1

r�, ir
H
�, i (53)

where α�, � is the �th diagonal element of R2
θ, and r�, i is the

(�, i)th element of Rθ. Based on (18), r�, i = |ρ�, i|c�cHi , where
c� is the �th element of the data vector c. Therefore, we can
rewrite (53) as

α�, � =

d∑
i=1

|ρ�, i|c�cHi
(
|ρ�, i|c�cHi

)H
=

d∑
i=1

|ρ�, i|c�cHi cicH� |ρ�, i|H

=
d∑

i=1

|ρ�, i|2 =
d∑

i=1

ρ�, iρ
H
�, i. (54)

2A Hermitian random matrix W is called unitary invariant if the joint
distribution of its entries equals that of VWVH for any unitary matrix V
independent of W.

3A d× d random matrix U is a Haar matrix (also called isotropic in the
multiantenna literature) if it is uniformly distributed on the set of d× d unitary
matrices.

Therefore, from (54), we can deduce that the �th diagonal
element of R2

θ, i.e., α�, �, is equal to that of R2 = RRH, which
is denoted by

∑d
i=1 ρ�, iρ

H
�, i. �

Therefore, we have

E
{
g2PA

}
=

d

E {Tr [R2]}Tr[R−1]
(55)

and since E{Tr[R2]} = 2d3 [21], E{g2PA} can be shown as

E
{
g2PA

}
=

1
2d2Tr[R−1]

. (56)

APPENDIX C
ON THE OPTIMALITY OF THE REGULARIZATION

PARAMETER 1/SNRPA

We show the regularization parameter used in Section IV for
the proposed RPA precoding is optimum.

By considering (32), we redefine the RPA precoder as

ΨRPA = ΦRθ. (57)

Φ can be then found by using the following MMSE criterion:

argmin
Φ

E
{
‖HΦc+ fz− c‖22

}
(58)

where c is defined in (35), and

f =
1

gRPA
=
√

Tr
[
ΨH

RPAΨRPA

]
=
√

Tr
[
RH

θΦ
HΦRθ

]
(59)

where gRPA is the scaling factor of the RPA precoding. The
inclusion of f in (58) is due to the fact that, in all precoding
schemes (e.g., CI and RCI) the power of noise is affected by the
precoding matrix, and consequently, this effect can be reflected
through a multiplicative factor such as f . This can be perceived
with respect to the fact that, at the transmit side, the transmit-
ted signals are scaled by gRPA to meet the power constraints;
consequently, at the receive side, the received signals should be
scaled back by 1/gRPA, which further appears as a multiplicative
factor for the noise vector.

To further proceed, we consider the following two lemmas.
Lemma 2: E{ccH} = ωI, where

ω = d
[
(d+ 1) + (d− 1)

(
1 +

√
dπ + (d− 2)

π

4

)]
. (60)

Proof: With respect to the fact that E{ccH} = I, we have

E{ccH} = diag

⎛⎝E

⎧⎨⎩
(

d∑
x=1

|ρ1, x|
)2

⎫⎬⎭
. . . ,E

⎧⎨⎩
(

d∑
x=1

|ρd,x|
)2

⎫⎬⎭
⎞⎠ . (61)

By considering the statistical properties of |ρ�, x| presented in
Table I and after some straightforward manipulations, the claim
follows. �
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Lemma 3: E {R2
θ} = νI, where

ν = 2d2. (62)

Proof: Based on (35) and by considering the fact that
E {ccH} = I, we have

E
{
R2

θ

}
= diag

(
E
{
[R2]1,1

}
, . . . ,E

{
[R2]d, d

})
. (63)

Since R is a Hermitian matrix, we have

[R2]�, � =
d∑

i=1

|ρ�, i|2. (64)

Thus, based on Table I, we have E {[R2]�, �} = 2d2, and the
claim follows. �

Therefore, the objective function in (58) can be shown as

J = E

{
Tr

[
(HΦc+ fz− c) (HΦc+ fz− c)H

]}
. (65)

With respect to the fact that the data and noise are independent
of each other and both are also independent of channel matrix
H, the objective function in (65) can be rewritten as

J = E
{
Tr

[
HΦccHΦHHH + f2zzH + ccH −HΦccH

− ccHΦHHH
]}

. (66)

Therefore, by considering Lemma 2 and Lemma 3, the objective
function can be shown as

J = ωTr
[
ΦHHHHΦ

]
+ dνσ2 Tr

[
ΦHΦ

]
− ωTr [HΦ]

−ωTr
[
ΦHHH

]
+ dω. (67)

To further proceed, we consider the following assumptions [22].

1) Φ and ΦH are treated as independent variables.
2) (∂Tr[AΦ]/∂Φ) = (∂Tr[ΦA]/∂Φ) = A.

Now, with respect to the aforementioned assumptions, the
sought precoder Φ can be found by differentiating J with
respect to Φ and setting it equal to zero, which yields

∂J

∂Φ
= ωΦHHHH+ dνσ2ΦH − ωH = 0

⇒ Φ = HH

(
HHH +

dνσ2

ω
I

)−1

. (68)

With respect to (57), the RPA precoder is defined as ΨRPA =
ΦRθ. Now, as revealed in (68), the regularization parame-
ter, i.e., the multiplicative factor of the identity matrix, is
(dνσ2/ω), which is exactly equal to 1/snrPA, where snrPA has
been already defined in (30).

Note that since the Hessian matrix of the MSE objective
function is positive definite, the expression in (68) is a global

minimizer for the considered MMSE optimization problem,
which implies on the optimality of the derived regularization
parameter.
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