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Abstract 

Biometric measurements of Mesozoic coccoliths (coccolith length and width) have been 

used in short-term biostratigraphic, taxonomic and palaeoecologic studies, but until now, not over 

longer time scales. Here we present a long time-series study (~30 million years) for the Upper 

Cretaceous, which aims to identify broad trends in coccolith size and to understand the factors 

governing coccolith size change over long time scales. We have generated biometric data for the 

dominant Upper Cretaceous coccolith groups, Broinsonia/Arkhangelskiella, Prediscosphaera, 

Retecapsa and Watznaueria, from 36 Cenomanian – Maastrichtian (100.5-66 Ma) samples from 

Goban Spur in the northeast Atlantic (DSDP Site 549). These data show that the coccolith sizes 

within Prediscosphaera, Retecapsa and Watznaueria were relatively stable through the Late 

Cretaceous, with mean size variation less than 0.7µm. Within the Broinsonia/Arkhangelskiella 

group there was more pronounced variation, with a mean size increase from ~6µm in the 

Cenomanian to ~10µm in the Campanian. This significant change in mean size was largely driven 

by evolutionary turnover (species origination and extinctions), and, in particular, the appearance 

of larger species/subspecies (Broinsonia parca parca, Broinsonia parca constricta, 

Arkhangelskiella cymbiformis) in the early Campanian, replacing smaller species, such as 

Broinsonia signata and Broinsonia enormis. Shorter-term size fluctuations within 

Broinsonia/Arkhangelskiella, observed across the late Cenomanian – Turonian and late 

Campanian – Maastrichtian intervals, may, however, reflect changing palaeoenvironmental 

conditions, such as sea surface temperature and nutrient availability. 
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Résumé 

Les dimensions des coccolites du Mésozoïque (longueur et largeur de coccolite) ont été 

utilisées dans des études biostratigraphique, taxonomique et paléoécologique sur le court-terme 

mais jusqu’à présent, jamais sur le long-terme. Ici, nous présentons l’étude d’une série 

chronologique à échelle de temps longue (~30 millions d’années) du Crétacé supérieur visant à 

identifier les tendances générales de la taille des coccolites et de comprendre les facteurs 

gouvernant les changements de taille des coccolites sur une échelle de temps longue. Nous avons 

généré des données biométriques pour les groupes de coccolites dominants au Crétacé supérieur, 

Broinsonia/Arkhangelskiella, Prediscosphaera, Retecapsa et Watznaueria, sur 36 échantillons du 

Cénomanien – Maastrichtien (100.5-66 Ma) provenant du Goban Spur dans l’Atlantique Nord-Est 

(DSDP Site 549). Ces données montrent que la taille des coccolites appartenant aux groupes 

Prediscosphaera, Retecapsa and Watznaueria fut relativement stable durant tout le Crétacé 

supérieur, avec une variation de la taille moyenne inférieure à 0.7 µm. Au sein du groupe 

Broinsonia/Arkhangelskiella les variations furent plus prononcées, avec une augmentation de la 

taille moyenne de ~6µm au Cénomanien jusqu’à ~10µm au Campanien. Ce changement 

significatif de la taille moyenne fut largement dû aux processus évolutifs (spéciations et 

extinctions), et en particulier à l’apparition d’espèce/sous-espèces plus larges (Broinsonia parca 

parca, Broinsonia parca constricta, Arkhangelskiella cymbiformis) au Campanien inférieur, 

remplaçant des espèces plus petites telles que Broinsonia signata et Broinsonia enormis. 

Cependant, les fluctuations à court-terme au sein du groupe Broinsonia/Arkhangelskiella, 

observées aux transitions Cénomanien – Turonien et Campanien – Maastrichtien, pourraient 

refléter un changement des conditions paléoenvironnemental tel que la température superficielle 

des eaux océanique et la disponibilité en nutriment. 
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1 Introduction 

Since Stradner (1963) and Perch-Nielsen (1968) first measured the morphometric features of 

Mesozoic calcareous nannofossils (coccolith length, coccolith width, ellipticity, etc.), biometry 

has been applied in a range of different studies, including biostratigraphy (e.g., Girgis, 1987), 

taxonomy (e.g., Hattner et al., 1980) and palaeoecology (e.g., Bornemann et al., 2003). Some of 
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these studies have used relatively arbitrary biometric limits to aid taxonomic subdivision of 

otherwise morphologically identical nannofossil taxa (e.g., Wise, 1983; Varol, 1989; Burnett, 

1997; Shamrock and Watkins, 2009), while others have applied statistical techniques to 

discriminate distinct populations of size delineated groups (e.g., Tremolada and Erba, 2002; 

Mattioli et al., 2004; Fraguas and Erba, 2010). Other studies have investigated the possible 

environmental forcing of size change, by looking at biometric trends through intervals of 

significant palaeoceanographic or palaeoclimatic change (e.g., oceanic anoxic event (OAE) 1a: 

Erba et al., 2010; OAE2: Linnert and Mutterlose, 2013). In some cases it has been claimed that 

these records reveal size changes across intervals of environmental change (e.g., Biscutum - Erba 

et al., 2010; Broinsonia - Linnert and Mutterlose, 2013; Discorhabdus - López-Otálvaro et al. 

2012; and Watznaueria britannica - Giraud et al., 2006), whereas other studies have shown very 

little or no change (Watznaueria - Bornemann and Mutterlose, 2006).  

The majority of these biometric studies are focused on short intervals of 

palaeoenvironmental change (e.g., OAEs and stage boundaries) and there are no long-term records 

available for the Cretaceous. A small number of long term records have been documented for the 

Cenozoic interval (e.g. Henderiks and Rickaby, 2007; Hannisdal et al., 2012), and the most 

comprehensive of these highlights the influence of evolutionary controls on coccolith size changes 

(Herrmann and Thierstein, 2012). Several medium term (10-30 million years) Cenozoic studies 

have focused on specific taxonomic groups, such as Reticulofenestra (Young, 1990) and 

Calcidiscus (Knappertsbusch, 2000). Here, we document the size record of four dominant 

Cretaceous taxonomic groups, Broinsonia/Arkhangelskiella, Prediscosphaera, Retecapsa and 

Watznaueria, through ~30 million years of the Upper Cretaceous, a time interval of considerable 

environmental change, including OAEs, extreme warmth and the onset of long term climate 

cooling (Huber et al., 1995, 2002; Miller et al., 2005; Friedrich et al., 2012). The use of generic 

groups allows the collection of relatively large amounts of data representing the dominant 

Cretaceous taxa over long time scales. This enables us to assess the role of intra-generic evolution 

(species extinctions, originations) and species composition changes, on the size record of 

nannoplankton. We also present single species data (e.g., Arkhangelskiella cymbiformis, 

Broinsonia signata) although these have shorter stratigraphic ranges.  

 

2 Section and material 

The study section of Goban Spur (DSDP Site 549) was chosen for its relatively 

comprehensive coverage of the entire Upper Cretaceous interval (Cenomanian – Maastrichtian) 

and for the good preservation of calcareous nannofossils. We also have existing quantitative 

nannofossil assemblage data for this section, providing valuable background information (Linnert 
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et al., 2011). DSDP Site 549 is located 400km west of Ireland (Fig. 1) (49°05.28’N, 13°05.88’W) 

at a water depth of 2533m (De Graciansky et al., 1985a, b). The study interval includes a 59m 

thick middle Cenomanian – upper Maastrichtian sequence, but core recovery is poor through the 

middle Cenomanian – upper Santonian interval (Fig. 2)(De Graciansky et al., 1985a). An 

unconformity is present between the upper Campanian and the uppermost Maastrichtian cutting 

out most of the lower, and part of the upper Maastrichtian (~4 – 5Ma). All 36 study samples are 

nannofossil chalks and the calcareous nannofossils are moderately to well-preserved (De 

Graciansky et al., 1985a; Müller, 1985, Linnert et al., 2011). The site was located at a 

palaeolatitude of ~35°N in the Cenomanian and ~40°N in the late Campanian (Voigt et al., 2004, 

2008). 

 

3 Methods 

3.1 Experimental methods 

The samples were processed for calcareous nannofossil study using the settling method of 

Geisen et al. (1999) adapted from the original description of Beaufort (1991). The biometric work 

was performed using an Olympus BX51 light microscope with a Colour View II digital camera 

and the imaging software analySIS®. For each of the 36 samples, 60 specimens of each of the 

four taxonomic groups (Arkhangelskiella/Broinsonia, Prediscosphaera, Retecapsa and 

Watznaueria) were digitally imaged, a total of 240 specimens per sample. Specimens were chosen 

by scanning random traverses and all specimens were analysed, up to the total count, excluding 

those that were broken or heavily overgrown. Coccolith lengths and widths were measured using 

the measuring tool in analySIS®. The morphometric results were processed for mean values, 

standard deviations and 95% confidence intervals, using the software Statistica9.1. The terms 

small (3 – 5µm), medium (5 – 8µm), large (8µm – 12µm) and very large (> 12µm) were used, 

following the terminology of Young et al. (1997). 

 

3.2 Taxonomy 

Broinsonia/Arkhangelskiella spp. 

All specimens of Broinsonia with a cross-shaped central area structure were grouped into 

Broinsonia signata (Fig. 3, A). Medium-sized specimens with a plate-like central structure were 

included in Broinsonia enormis (Fig. 3, B) and larger specimens (> 9µm) were assigned to 

Broinsonia parca. We follow the subspecies descriptions of Wise (1983; Fig. 3, C), including 

Broinsonia parca expansa (width of central area > 2 x rim width), Broinsonia parca parca (width 

of central area > rim width) and Broinsonia parca constricta (width of central area < rim width). 

All specimens of Arkhangelskiella were included within Arkhangelskiella cymbiformis (Fig. 3, D). 
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Prediscosphaera spp. 

All specimens of Prediscosphaera were assigned to two species groups: those with diagonal 

cross-bars (e.g., P. cretacea, P. columnata, P.grandis, P. ponticula) to Prediscosphaera cretacea 

sensu lato (Fig. 3, E) and those with axial cross-bars (e.g., P. arkhangelskyi, P. spinosa, P. stoveri) 

to Prediscosphaera spinosa sensu lato (Fig. 3, F). 

 

Retecapsa spp. 

Five species of Retecapsa were recognised, including Retecapsa angustiforata (Fig. 3, G), 

Retecapsa crenulata (Fig. 3, H), Retecapsa ficula (Fig. 3, I), Retecapsa schizobrachiata and 

Retecapsa surirella (Fig. 3, J). Indeterminate specimens with damaged or missing diagnostic 

central area structures were assigned to Retecapsa spp. 

 

Watznaueria spp.  

Five species of Watznaueria were grouped as Watznaueria spp., including Watznaueria barnesiae 

(Fig. 3, K), Watznaueria biporta (Fig. 3, L), Watznaueria fossacincta (Fig. 3, M), Watznaueria 

ovata (Fig. 3, N) and Watznaueria quadriradiata. Watznaueria barnesiae is by far the most 

abundant (60-70%).  

 

4 Results 

4.1 Size trends 

Three of the studied taxonomic groups (Prediscosphaera, Retecapsa, Watznaueria) show no 

significant size changes throughout the Late Cretaceous interval, as their mean size variations 

never exceed more than 0.7µm (Figs. 4, 5; Tab. 1). Pronounced size variations are only seen 

within the Broinsonia/Arkhangelskiella group, with size increasing from 6 – 7 µm in the 

Cenomanian-Santonian to 9 – 10µm across the Campanian – Maastrichtian interval (Figs. 4, 5; 

Tab. 1).  

 

4.2 Species compositions and size range 

Within the Broinsonia/Arkhangelskiella group, B. signata dominates throughout the 

Cenomanian (Fig. 6) but is largely superceded by B. enormis in the lower Turonian. The latter 

dominates through the Turonian – Santonian interval. A. cymbiformis and B. parca appear in the 

lower Campanian with the latter dominant in the lower Campanian and the former dominant in the 

upper Campanian. A. cymbiformis is the only species of the group that ranges into the upper 

Maastrichtian. The size distribution of species within Broinsonia/Arkhangelskiella differs 



	   6	  

markedly, with medium sized B. signata and B. enormis, medium to very large sized A. 

cymbiformis and large to very large B. parca (Fig. 7, Tab. 1). Of these species, A. cymbiformis is 

characterised by a very broad range of sizes, ranging from 5.7µm to 14.1µm. 

The genus Prediscosphaera spp. is dominated by P. cretacea s.l., which represents 

approximately 85% of all Prediscosphaera specimens (Fig. 6). With a mean length of 5.8µm (Fig. 

7, Tab. 1) this species plexus is slightly larger than the less common P. spinosa group (4.6µm). 

R. crenulata is the most common species within Retecapsa spp., followed by R. surirella 

and R. angustiforata (Fig. 6). R. ficula and R. schizobrachiata are rare. All common species of 

Retecapsa are relatively similar in mean size and size range (Fig. 7, Tab. 1). 

W. barnesiae is the most abundant species of Watznaueria (60-70%) (Fig. 6). W. 

fossacincta, W. biporta and W. ovata are rare, and only one specimen of W. quadriradiata was 

observed. With the exception of rare W. ovata and W. quadriata, all species have a similar size 

ranges (~3 – 9µm) and mean lengths (5.3 – 5.8µm; Fig. 7, Tab. 1). 

 

4.5 Correlation matrix 

A correlation matrix (Pearson Correlation; r-values) displaying various significant (>95%) 

pairings of the relative abundance (%) and mean length (meanL) of the studied taxa is given in 

Table 2. Data for absolute calcareous nannofossil abundance, species richness, relative 

abundances of individual taxa and Nutrient Index are taken from Linnert et al. (2011). The 

Nutrient Index (= Biscutum spp. + Zeugrhabdotus spp. + Tranolithus orionatus / Watznaueria 

spp.) was originally introduced by Gale et al. (2000) and modified by Linnert et al. (2011). The 

most pronounced positive pairings are the relative abundance of Prediscosphaera spp. with 

absolute nannofossil abundance  (0.76), the relative abundance of Prediscosphaera spp. with 

meanL of Broinsonia/Arkhangelskiella spp. (0.75), species richness with absolute nannofossil 

abundance  (0.64) and meanL of Retecapsa spp. with meanL of Prediscosphaera spp. (0.58). The 

most pronounced negative pairings are meanL of Watznaueria spp. with meanL of 

Broinsonia/Arkhangelskiella spp. (-0.73), relative abundance of Watznaueria spp. with relative 

abundance of Broinsonia/Arkhangelskiella spp. (-0.64), Nutrient Index with meanL of 

Broinsonia/Arkhangelskiella spp. (-0.62), Nutrient Index with meanL of Retecapsa spp. (-0.61) 

and Nutrient Index with relative abundance of Prediscosphaera spp. (-0.60). 

 

4.6 Reworking 

The uppermost Campanian interval between samples 393.49 mbsf and 391.19 mbsf includes 

evidence of nannofossil reworking, shown by the reappearance of Eiffellithus eximius and 

Reinhardtites anthophorus (both have last occurrences in Subzone UC15e; Burnett, 1998) above 
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strata assigned to nannofossil Zone UC16 (Linnert et al., 2011). The assumption of reworked 

material is supported by more frequent occurrences of taxa, which are common in the lower 

Campanian but rare in the uppermost Campanian (e.g., B. parca and B. signata; Fig.6). 

Consequently the size data of these three samples (393.49mbsf, 392.34mbsf, 391.19mbsf) are 

considered with caution as they may represent a mixed signal of lowermost Maastrichtian and 

lower Campanian material. In figures 5, 6 and 8 these three samples are marked with grey 

shading. 

 

5 Discussion 

5.1 Size evolution or species turnover of Broinsonia/Arkhangelskiella? 

Our data for species within the Broinsonia/Arkhangelskiella group show some distinct shifts 

in mean coccolith length, with all species showing some degree of size increase through their 

evolutionary lifetime (Fig. 8). This is a widely observed feature of Mesozoic and Cenozoic 

calcareous nannofossil species (e.g. Aubry et al., 2005). The largest size change is seen in B. 

parca, which increases by more than 3 µm through the lowermost Campanian (Fig. 8). This shift 

is reflected in the taxonomic subspecies classification of relatively small B. parca expansa (~9µm) 

and larger B. parca parca and B. parca constricta (> 10µm). The taxon A. cymbiformis shows 

another significant size increase from the upper Campanian to upper Maastrictian, confirming a 

trend seen in earlier studies (Girgis, 1987; Faris, 1995; Linnert and Mutterlose, 2009; Thibault, 

2010). The very broad range in coccolith sizes (6-14 µm) within this taxon, however, is a feature 

not seen in modern species. It most likely indicates that the taxonomic concept of A. cymbiformis 

applied here, represents a species plexus, including discrete taxa with more restricted coccolith 

size ranges. Varol (1989) and Burnett (1997), for instance, suggest that A. cymbiformis could be 

split into the three species: A. confusa (coccolith length < 8µm), A. cymbiformis (coccolith length 

> 8µm, rim width < 1.5µm) and Arkhangelskiella maastrichtiana (coccolith length > 10µm, rim 

width > 1.5µm). 

Looking at the broader Broinsonia/Arkhangelskiella group, mean coccolith length increases 

markedly from the Santonian into the lower Campanian. This trend reflects a shift in dominance 

between different species in the group, with the smaller B. signata and B. enormis superceded by 

larger A. cymbiformis and B. parca (Figs 6, 8). Some of this trend, however, appears to include a 

significant size increase within B. parca, following its origination in the early Campanian. Shifts 

of species composition, in particular decreasing abundances of large B. parca (Figs. 6, 8), are 

perhaps also a reason for decreasing mean sizes of the Broinsonia/Arkhangelskiella group 

throughout a part (4 samples from 395.65 – 394.08mbsf) of the upper Campanian interval. This 

trend of decreasing mean size is, however, also seen within the stand-alone A. cymbiformis species 
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data (Fig. 8), suggesting an evolutionary trend. The size trends seen within the 

Broinsonia/Arkhangelskiella group therefore reflect both a succession of dominant species with 

distinct size ranges (B. enormis, B. signata vs. B. parca, A. cymbiformis) and evolutionary trends 

within putative single species (e.g., B. parca and A. cymbiformis). 

 

5.2 Size trends of Prediscosphaera, Retecapsa and Watznaueria 

In comparison to the size trends seen in the Broinsonia/Arkhangelskiella group, the other 

taxa studied - Prediscosphaera, Retecapsa, Watznaueria - show only minor variations in mean 

coccolith size (<1µm). This is a remarkable record of morphological stability, considering the data 

represent ~30 million years of evolutionary history. Although, like the 

Broinsonia/Arkhangelskiella group, these taxonomic groups incorporate multiple species (see 

Taxonomy section above), these minor size variations indicate that species within the genera are 

similar in size and remained so over long timescales. For example, all the dominant species of 

Retecapsa and Watznaueria show almost identical ranges in coccolith size (Fig. 7, Tab. 1). 

Prediscosphaera shows a greater range in coccolith size ranges, but following a gradual size 

increase early in their evolutionary history (Albian – early Turonian; e.g. Perch-Nielsen, 1985; 

Bown in Kennedy et al., 2000), their mean size record is relatively stable (Fig. 7, Tab. 1). This 

largely reflects the stable species composition within Prediscosphaera, with the dominant species 

being P. cretacea s.l. (>75% of the genus), whereas P. spinosa s.l. forms only a minor part (<25% 

of the genus, Fig. 6). A minor increase in size (~0.7µm) across the Cenomanian – Turonian 

transition may be related to the changing palaeoenvironments of OAE2 at Goban Spur (Linnert et 

al., 2011; Linnert and Mutterlose, 2013). 

 Prediscosphaera, Retecapsa and Watznaueria represent >50% of the entire calcareous 

nannofossil assemblage at Goban Spur (Linnert et al., 2011) and demonstrate relatively stable 

morphometric behaviour through the Upper Cretaceous. Stability in Upper Cretaceous coccolith 

size was also documented in a literature compilation by Aubry et al. (2005). This stability of the 

mean coccolith size is also coupled with relatively stable species composition within the three 

genera. None of the genera show major turnovers in species composition (e.g., replacements, 

extinctions) and the majority of included species are long ranging and seen throughout the ~30 

million year study interval. Such long-term stability of Prediscosphaera, Retecapsa and 

Watznaueria during the Late Cretaceous contrasts with the early history of these genera. The 

Jurassic record of Watznaueria, for instance, began with a ~15 million year long period (Toarcian 

– Bathonian), when most of the known species evolved (e.g. Cobianchi et al., 1992; Mattioli and 

Erba, 1999). These Jurassic Watznaueria were morphological more diverse (coexisting forms 

with cross, bridge or without specific central structure; e.g. Cobianchi et al., 1992; Mattioli and 
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Erba, 1999) than their Late Cretaceous descendants, which are dominated by specimens without 

central structures. The mean size of Jurassic Watznaueria was more variable as seen on 

Watznaueria britannica, which show fluctuations of (sub-) species composition (morphotypes A – 

F) significantly affecting their mean size (Giraud et al., 2006). The mid to Late Cretaceous 

Watznaueria are seemingly less affected by changes of subspecies composition as reflected by 

relatively stable mean sizes recorded here (Bornemann and Mutterlose, 2006; this study). This 

record of stability seen in Late Cretaceous Watznaueria and Retecapsa, and to some extent in 

Predicosphaera, is not seen in the Cenozoic evolutionary history of nannofossils, which is 

characterised by much shorter species longevities and higher turnover rates (Bown, 2005).  

 

5.3 Palaeoenvironmental influence? 

Our understanding of the possible effects of environmental change on coccolith size is 

limited. Data for single strain cultures suggest rather narrow size limits within populations and no 

obvious change in size under changing environmental conditions (e.g., Young and Westbroeck, 

1991, Quinn et al., 2003). Plankton studies, however have suggested that more variability may be 

present in recent taxa, such as, Emiliania huxleyi and Gephyrocapsa oceanica (e.g. Bollmann and 

Klaas, 2008; Bollmann et al., 2009; Triantaphyllou et al., 2010), with coccolith morphology (size, 

bridge angle, element thickness) showing some link to environmental factors like temperature and 

salinity. Longer-term geological studies have suggested both increasing size and decreasing 

coccolith size, in response to changing environmental conditions, such as ocean acidification 

(Iglesias et al., 2008; Beaufort et al., 2011). Studies in deeper time are problematic because of the 

difficulty of reconstructing palaeoenvironmental conditions and understanding the possible effects 

of variable preservation, however, decreasing size is often claimed to represent a response to 

stressful environmental conditions (e.g., Erba et al., 1995; Giraud et al., 2006; Erba et al., 2010). 

During the Late Cretaceous, the proto-North Atlantic was subject to a range of 

palaeoenvironmental changes, including OAE2 (e.g. Schlanger and Jenkyns, 1976; Arthur et al., 

1987), short term warming (Cenomanian – early Turonian; e.g., Gustafsson et al., 2003; Forster et 

al., 2007), long term cooling (Turonian – Maastrichtian; e.g., Jenkyns et al., 1994; Huber et al., 

1995, 2002; Friedrich et al., 2012), changes of ocean circulation (e.g. Barrera and Savin, 1999; 

Hay 2008) and changes in palaeofertility (Linnert et al., 2011). Calcareous nannofossil data, 

expressed as a nutrient index (Biscutum spp. + Zeugrhabdotus spp. + Tranolithus orionatus / 

Watznaueria spp.) suggest that palaeofertility decreased from high values in the Cenomanian to 

lower fertility in the Campanian – Maastrichtian (Linnert et al., 2011). It has been hypothesised 

that both sea surface temperature and changes in surface water fertility may influence the size of 

calcareous nannofossils. The muted size variability seen in Prediscosphaera, Retecapsa, and 
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Watznaueria, however, suggests little if any link between the Late Cretaceous 

palaeoenvironmental trends and coccolith size, although some of these taxa do show negative 

correlations against the Nutrient Index (Tab.2). Previously assumed low nutrient preferences of 

these taxa (e.g., Erba et al., 1992; Eshet and Almogi-Labin, 1996; Linnert et al., 2011; Watkins et 

al., 1996), are mainly based on abundance counts and assemblage comparisons. Thus it might be 

more likely that these taxa migrated from unfavourable conditions (high nutrients) to more 

favourable ones (low nutrients) rather than demonstrating a response reflected in coccolith size 

change. Not all previous studies, however, have proposed low nutrient preferences for these taxa, 

e.g., Pittet and Mattioli (2002) suggested a mesotrophic affinity for Watznaueria and the studies of 

Mutterlose (1991) and Lees et al. (2005) posited a eurytopic character for this genus. Such a 

eurytopic affinity could explain the relatively stable mean size of Watznaueria in a changing 

environment. A mesotrophic character is also suggested for some species of Prediscosphaera (e.g. 

Eleson and Bralower, 2005; Hardas and Mutterlose, 2007) while other species (especially P. 

stoveri) are considered to be eutrophic (Crux, 1991). 

The size variation seen within the Broinsonia/Arkhangelskiella group, on the other hand, 

may be seen as a response to palaeoenvironment. Across the Cenomanian – Turonian transition 

changes in temperature (e.g. Gustafsson et al., 2003) and nutrients (e.g. Linnert et al., 2011) may 

have triggered the replacement of the medium sized B. signata (mean 6.1µm) by the smaller B. 

enormis (mean 5.4µm). The late Campanian – Maastrichtian peak cooling (e.g. Friedrich et al., 

2012) may have then caused the disappearance of large specimens of B. parca and A. 

cymbiformis. Currently, it is unclear which of these palaeoenvironmental factors (e.g. nutrients, 

temperature) was the dominant controlling factor on the mean size of 

Broinsonia/Arkhangelskiella. A negative correlation is seen between mean coccolith size and the 

Nutrient Index (-0.62, Tab. 2), suggesting the possibility of size increase in response to decreasing 

fertility. Previous Cenomanian/Turonian data, however, revealed a positive correlation between 

Broinsonia spp. coccolith length and Nutrient Index (0.59; Linnert and Mutterlose, 2013). The 

biometric results are also somewhat contradictory with regard to the gradual Late Cretaceous 

cooling, as the general size trend is one of increase from the Turonian – Campanian, decrease in 

the uppermost Campanian and increase again in the Maastrichtian (Figs. 5, 6, 8). These results 

suggest a complex relationship between coccolith size, nutrient levels and temperature, and may 

well reflect the selection of better-adapted variants with changing environmental conditions (with 

smaller, larger or similar sized liths) rather than evolutionary size changes of single (sub-) species 

(e.g., Schmidt et al., 2006).  
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5.4 Competition of (sub-)species as a control of coccolith size? 

Despite all four of the studied generic groups inhabiting the same broad palaeoenvironment, 

only Broinsonia/Arkhangelskiella displays significant size variations through this ~30 million year 

record of the Late Cretaceous. Even the trends in the Broinsonia/Arkhangelskiella group are 

arguably driven by species/subspecies replacements rather than by size changes of single (sub-) 

species per se. Studies of general Cenozoic coccolith size show similar size changes driven by the 

selection of larger or smaller sized taxa (Schmidt et al., 2006; Hermann and Thierstein, 2012), 

even if these studies are not directly comparable to our results from Broinsonia/Arkhangelskiella. 

The Eocene size maximum, for example, was largely the result of the appearance and abundance 

increase of large species within Chiasmolithus, Coccolithus, Helicosphaera and Reticulofenestra, 

whereas the Neogene size decrease was due to the demise of some of these large taxa, together 

with the appearance of small taxa, such as Emiliania and Gephyrocapsa (Hermann and Thierstein, 

2012). 

Another approach to understanding the relationship between coccolith morphology and 

environmental changes is through cultured coccolithophores. Single strain culture experiments 

using C. leptoporus, for example, showed that coccolith size barely responded to changing 

parameters, such as, light and temperature (Quinn et al., 2003). These experiments led to a 

reinterpretation of existing Cenozoic Calcidiscus size data (~24 million years; Knappertsbusch, 

2000) as the observed size variations were therefore explained by abundance fluctuations in 

different strains, which may represent cryptic species, rather than by adaptation of a single strain 

to environmental changes (Quinn et al., 2003, Schmidt et al., 2006). Emiliania huxleyi is a species 

plexus with different coccolith morphotypes (Young and Westbroeck, 1991), each apparently 

genetically distinct, and changes in environmental factors (temperature, nutrients) cannot induce a 

change from one morphotype to another (Young and Westbroeck, 1991). Plankton studies, 

however, have suggested some link between environment and coccolith morphology (size, bridge 

angle, element thickness) but these studies could not distinguish whether this was due to single 

species plasticity or to the existence of several morphologically-identical sibling species with 

narrow ecologic niches (E. huxleyi: Bollmann et al., 2009; Triantaphyllou et al., 2010; G. 

oceanica: Bollmann and Klaas, 2008). A more recent experiment comparing the plasticity of 

mono- and polyclonal cultures of E. huxleyi at different CO2 levels, reveals that a single strain 

may adapt to the changing environmental conditions by evolving new, better adapted genotypes 

(Lohbeck et al., 2012). This adaption was, however, only seen in growth rate and in the production 

of particulate inorganic carbon, whereas significant changes in cell size were limited to the 

multiclonal experiments (Lohbeck et al., 2012). 
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The morphospecies of Broinsonia/Arkhangelskiella show far greater morphological 

disparity than the subspecies of C. leptoporus (Quinn et al., 2003), E. huxleyi (Young and 

Westbroeck, 1991) and G. oceanica (e.g. Bollmann and Klaas, 2008). It is thus most likely that 

the large fluctuations in mean coccolith size we have documented represent shifts in abundance 

between different-sized species (extinctions, origination, species replacements). Furthermore it is 

likely that even single ‘morphospecies’ within the Broinsonia/Arkhangelskiella group (e.g., A. 

cymbiformis) may represent multiple cryptic taxa. Such a pattern of similar morphology but 

different coccolith size ranges is also seen within the modern taxon Coccolithus pelagicus, with 

two subspecies now recognised, the smaller C. pelagicus pelagicus and larger C. pelagicus 

braarudii (Saez et al., 2003; Geisen et al., 2004). These different subspecies also display distinct 

ecological preferences (C. pelagicus: Saez et al., 2003; Geisen et al., 2004; E. huxleyi: Poulten et 

al., 2011). These observations from modern taxa serve as our best models for explaining fossil 

data from extinct taxa, such as A. cymbiformis. Palaeoenvironmental changes may well have 

caused abundance fluctuations among different A. cymbiformis subspecies, causing the observed 

shifting trends in mean coccolith size. A model for how environmental change may have 

controlled subspecies composition and mean size is provided by the multiclonal experiment of 

Lohbeck et al (2012), where increases in ambient CO2 concentrations led to selection of a single 

E. huxleyi genotype, which was apparently larger then the overall mean of the six starting 

genotypes.  

Does the low size variability of Prediscosphaera, Retecapsa and Watznaueria, on the other 

hand, indicate lower evolutionary turnover rates during the Late Cretaceous (e.g. originations, 

extinctions) compared with Broinsonia/Arkhangelskiella? In the case of Prediscosphaera, it 

appears to have been characterised by a similar rate of species origination throughout the Late 

Cretaceous. At least nine species of Prediscosphaera are recognised within the Upper Cretaceous, 

a number similar to the ten species/subspecies of Broinsonia/Arkhangelskiella (e.g., Burnett, 

1998). Thus, size changes, and especially mean size, are probably not sensitive enough measures 

of coccolith morphology to fully describe and reflect evolutionary rates. Even though evolutionary 

turnovers within Prediscosphaera did not affect the mean size, they affected minimum and 

maximum lengths within the genus. Trends of decreasing minimum and increasing maximum 

lengths (Fig. 4) are thus linked to the origination of very small (P. stoveri) and very large species 

(P. grandis) of Prediscospheara. 

 

6 Conclusions 

Within the four major Late Cretaceous taxonomic groups studied here, significant coccolith 

size variations are limited to taxa of the Broinsonia/Arkhangelskiella group only. 
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Prediscosphaera, Retecapsa and Watznaueria show only minor (<0.5µm) size variations through 

the Late Cretaceous interval. Thus, both palaeoenvironmental factors and intrageneric evolution 

(species originations, extinctions, replacements), apparently had little influence on the mean size 

of these three taxa, which represent more than 50% of the Upper Cretaceous calcareous 

nannofossil assemblage. The large fluctuations of coccolith size observed within 

Broinsonia/Arkhangelskiella, on the other hand, were mainly the result of (sub-) species 

originations, replacements and extinctions. The early Campanian size increase of ~3µm, for 

instance, was due to the replacement of smaller species (B. signata, B. enormis) by larger ones (B. 

parca, A. cymbiformis). Abundance fluctuations of different-sized subspecies (e.g., large vs. small 

A .cymbiformis) may also have influenced the size variations seen within individual 

morphospecies. Some of these abundance fluctuations were probably induced by 

palaeoenvironmental changes, as different-sized species or subspecies may have preferred 

different palaeoecologic conditions. The impact of palaeoenvironmental change on 

Broinsonia/Arkhangelskiella is well seen across critical intervals such as the 

Cenomanian/Turonian and Campanian/Maastrichtian boundaries. During the 

Cenomanian/Turonian transition, warming combined with changing nutrient availability may thus 

have favoured smaller sized B. enormis rather than larger B. signata, resulting in the size 

reduction seen at that time. The late Campanian cooling, on the other hand, may have caused the 

replacement of B. parca and larger A. cymbiformis (>9µm) by the smaller subspecies of A. 

cymbiformis (<8µm).  
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8 Taxonomic appendix 
Calcareous nannofossil taxa mentioned in text and figures; full references of the taxa mentioned herein are 

given in Bown (1998).  

Ahmuellerella Reinhardt 1964  
A. octoradiata (Górka 1957) Reinhardt 1966 
Arkhangelskiella Vekshina 1959 
A. cymbiformis Vekshina 1959 
Biscutum Black in Black and Barnes 1959 
Broinsonia Bukry 1969 
B. enormis (Shumenko 1968) Manivit 1971 
B. parca (Stradner 1963) Bukry 1969 
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B. parca ssp. constricta Hattner et al 1980 
B. parca ssp. expansa Wise and Watkins in Wise 1983 
B. parca ssp. parca (Stradner 1963) Bukry 1969 
B. signata (Noël 1969) Noël 1970 
Calcidiscus Kamptner 1950 
C. leptoporus (Murray and Blackman 1898) Loeblich and Tappan 1978 
Chiasmolithus Hay, Mohler and Wade 1966 
Coccolithus Schwarz 1894 
C. pelagicus (Wallich 1871) Schiller 1930 
C. pelagicus ssp. braarudii (Gaarder 1962) Geisen et al. 2002 
C. pelagicus ssp. pelagicus (Wallich 1871) Schiller 1930 
Cyclagelosphaera Noël 1965 
C. margerelii Noël 1965 
Emiliania Hay and Mohler in Hay et al. 1967 
E. huxleyi (Lohmann 1902) Hay and Mohler in Hay et al. 1967 
Gartnerago Bukry 1969 
G. segmentatum (Stover 1966) Thierstein 1974 
Gephyrocapsa Kamptner 1943 
G. oceanica Kamptner 1943 
Helicosphaera Kampner 1954 
Kamptnerius Deflandre 1959 
K. magnificus Deflandre 1959 
Nephrolithus Górka 1957 
N. frequens Górka 1957 
Prediscosphaera Vekshina 1959 
P. arkhangelskyi (Reinhardt 1965) Perch-Nielsen 1984 
P. columnata (Stover 1966) Perch-Nielsen 1984 
P. cretacea (Arkhangelsky 1912) Gartner 1968 
P. grandis Perch-Nielsen 1979 
P. ponticula (Bukry 1969) Perch-Nielsen 1984 
P. spinosa (Bramlette and Martini 1964) Gartner 1968 
P. stoveri (Perch-Nielsen 1968) Shafik and Stradner 1971 
Retecapsa Black 1971 
R. angustiforata Black 1971 
R. crenulata (Bramlette and Martini 1964) Grün in Grün and Allemann 1975 
R. ficula (Stover 1966) Burnett 1998 
R. schizobrachiata (Gartner 1968) Grün in Grün and Allemann  
R. surirella (Deflandre and Fert 1954) Grün in Grün and Allemann 1975 
Reticulofenestra Hay et al. 1966 
Tranolithus Stover 1966 
T. orionatus (Reinhardt 1966a) Reinhardt 1966b 
Watznaueria Reinhardt 1964 
W. barnesiae (Black 1959) Perch-Nielsen 1968 
W. biporta Bukry 1969 
W. britannica (Stradner 1963) Perch-Nielsen 1968 
W. fossacincta (Black 1971) Bown in Bown and Cooper 1989 
W. manivitiae Bukry 1973 
W. ovata Bukry 1969 
W. quadriradiata Bukry 1969 
Zeugrhabdotus Reinhardt 1965 
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Figure captions: 

Fig.1: Map of the northeast Atlantic showing DSDP Leg 80 sites (modified after De Graciansky 

et al., 1985b). 

Fig.2:  Schematic lithology, stratigraphy, recovery and samples here of the Cenomanian – 

Maastrichtian interval from DSDP Site 549 (after De Graciansky et al., 1985a; Linnert et 

al., 2011; Upper Cretaceous nannofossil zonation after Burnett, 1998). 

Fig.3: LM images of specimens of the studied genera (scale bar = 10µm). 

Fig.4: Scatter plots of coccolith length (Lmax) vs. coccolith width (Wmax) of the studied genera. 
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Fig.5: Fluctuation of mean length and mean width of the studied genera through the Cenomanian 

– Maastrichtian interval of DSDP Site 549. Calcareous nannofossil biostratigraphy after 

Linnert et al. (2011). 

Fig.6: Comparison of mean lengths of the studied genera with their relative abundances, their 

species compositions, the Nutrient Index and the relative abundance of cool water taxa (A. 

octoradiata, G. segmentatum, K. magnificus, N. frequens; e.g. Thierstein, 1976, 1981; 

Wind, 1979; Pospichal and Wise, 1990; Lees, 2002). 

Fig.7: Size histograms showing the length distribution of the species within the studied genera. 

Fig.8: Mean size fluctuations of the single species of Broinsonia/Arkhangelskiella spp. (black 

curves with dots) against the size evolution of the entire group (grey shaded area in the 

background). The table below is giving the numbers of specimens of each species observed 

in each sample. 

Tab.1: Summary of biometric data through time intervals and for single species. minL = minimum 

length; meanL = mean length; maxL = maximum length; meanW = mean width 

Tab.2: Correlation matrix (r-values) of absolute abundance, species richness, mean lengths and 

relative abundances of the studied genera, Nutrient Index and frequency of cool water taxa 

(A. octoradiata, G. segmentatum, K. magnificus, N. frequens; e.g. Thierstein, 1976, 1981; 

Wind, 1979; Pospichal and Wise, 1990; Lees, 2002). All data except the size data are from 

Linnert et al. (2011). 



















Broinsonia/Arkhangelskiella Prediscosphaera	  spp.

minL meanL maxL meanW minL meanL maxL meanW

all	  specimens	  (n=2160) 4.1 7.7 14.1 5.7 all	  specimens	  (n=2160) 3.1 5.6 10.5 4.8

Cenomanian	  specimens	  (n=300) 4.1 6.1 8.3 4.5 Cenomanian	  specimens	  (n=300) 3.2 4.9 8.0 4.5

Turonian	  specimens	  (n=300) 4.2 5.7 7.1 4.1 Turonian	  specimens	  (n=300) 3.6 5.6 8.2 5.1

Coniacian	  -‐	  Santonian	  spec.	  (n=480) 4.6 6.7 9.4 4.9 Coniacian	  -‐	  Santonian	  spec.	  (n=480) 3.4 5.9 9.4 5.2

Campanian	  specimens	  (n=900) 5.5 9.0 13.2 6.7 Campanian	  specimens	  (n=900) 3.1 5.6 10.5 4.7

Maastrichtian	  specimens	  (n=180) 6.3 9.9 14.1 7.5 Maastrichtian	  specimens	  (n=180) 3.2 5.9 9.8 4.9

Broinsonia	  signata	  (n=463) 4.1 6.0 8.3 4.4 Prediscosphaera	  cretacea	  s.l.	  (n=1799) 3.1 5.8 10.5 5.1

Broinsonia	  enormis	  (n=711) 4.2 6.4 9.4 4.7 Prediscosphaera	  spinosa	  s.l.	  (n=361) 3.2 4.6 9.0 3.7

Broinsonia	  parca	  ssp.	  (n=236) 7.3 11.0 13.2 8.5

Arkhangelskiella	  cymbiformis	  (n=750) 5.7 8.8 14.1 6.6

Retecapsa	  spp. Watznaueria	  spp.

minL meanL maxL meanW minL meanL maxL meanW

all	  specimens	  (n=2160) 3.3 6.4 10.3 5.2 all	  specimens	  (n=2160) 2.7 5.6 9.6 4.7

Cenomanian	  specimens	  (n=300) 3.3 6.1 9.2 5.0 Cenomanian	  specimens	  (n=300) 2.7 5.8 8.8 4.8

Turonian	  specimens	  (n=300) 3.7 6.1 8.0 5.1 Turonian	  specimens	  (n=300) 2.9 5.8 8.7 4.8

Coniacian	  -‐	  Santonian	  spec.	  (n=480) 3.7 6.7 9.0 5.5 Coniacian	  -‐	  Santonian	  spec.	  (n=480) 3.3 5.9 9.0 5.0

Campanian	  specimens	  (n=900) 3.8 6.4 9.6 5.3 Campanian	  specimens	  (n=900) 3.1 5.5 9.5 4.6

Maastrichtian	  specimens	  (n=180) 4.4 6.5 10.3 5.3 Maastrichtian	  specimens	  (n=180) 3.3 5.1 9.6 4.3

Retecapsa	  angustiforata	  (n=394) 4.8 6.8 9.0 5.8 Watznaueria	  barnesiae	  (n=1388) 2.7 5.6 9.6 4.7

Retecapsa	  crenulata	  (n=652) 4.2 6.4 9.4 5.2 Watznaueria	  biporta	  (n=247) 2.9 5.3 8.8 4.4

Retecapsa	  ficula	  (n=245) 4.4 6.3 9.3 5.2 Watznaueria	  fossacincta	  (n=471) 3.7 5.8 9.1 4.9

Retecapsa	  schizobrachiata	  (n=4) 7.7 8.0 8.5 6.7 Watznaueria	  ovata	  (n=38) 3.1 4.8 6.0 3.9

Retecapsa	  surirella	  (n=446) 4.2 6.5 9.6 5.2 Watznaueria	  quadriradiata	  (n=1) 4.9 4.9 4.9 4.3

Retecapsa	  spp.	  (n=419) 3.3 6.0 10.3 4.9 Cyclogelasphaera	  spp.	  (n=15) 3.8 5.8 8.7 5.6
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abs. abundance 1.00

simple diversity 0.64 1.00

meanL Broinsonia/Arkhangelskiella 0.53 0.37 1.00

meanL Prediscosphaera 0.17 -0.21 0.11 1.00

meanL Retecapsa 0.38 0.01 0.23 0.58 1.00

meanL Watznaueria -0.30 -0.17 -0.73 0.04 0.10 1.00

%Broinsonia/Arkhangelskiella 0.16 -0.07 0.40 0.24 0.16 -0.42 1.00

%Prediscosphaera spp. 0.76 0.50 0.75 0.11 0.42 -0.44 0.36 1.00

%Retecapsa spp. 0.31 0.13 0.34 0.36 0.54 -0.09 -0.01 0.31 1.00

%Watznaueria spp. -0.45 -0.47 -0.49 0.03 -0.06 0.30 -0.64 -0.54 -0.05 1.00

NutrientIndex1 -0.49 -0.10 -0.62 -0.59 -0.61 0.35 -0.25 -0.60 -0.57 -0.01 1.00

cool water taxa 0.37 0.19 0.49 0.17 0.16 -0.35 0.37 0.57 0.05 -0.47 -0.29

significant	  at	  the	  level	  of	  95% 0.36

significant	  at	  the	  level	  of	  99% -‐0.45
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