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Abstract The two-dimensional free boundary problem in which the field is governed
by Poisson’s equation and for which the velocity of the free boundary is given by the
gradient of the field—Poisson growth—is considered. The problem is a generalisation
of classic Hele-Shaw free boundary flow or Laplacian growth problem and has many
applications. In the case when the right hand side of Poisson’s equation is constant,
a formulation is obtained in terms of the Schwarz function of the free boundary.
From this it is deduced that solutions of the Laplacian growth problem also satisfy
the Poisson growth problem, the only difference being in their time evolution. The
corresponding moment evolution equations, a Polubarinova–Galin type equation and
a Baiocchi-type transformation for Poisson growth are also presented. Some explicit
examples are given, one in which cusp formation is inhibited by the addition of the
Poisson term, and another for a growing finger in which the Poisson term selects the
width of the finger to be half that of the channel. For the more complicated case when
the right hand side is linear in one space direction, the Schwarz function method is
used to derive an exact solution describing a translating circular blob with changing
radius.
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1 Introduction

In the standard Hele-Shaw free boundary problem for fluid with zero surface tension,
the pressure, or velocity potential, satisfies Laplace’s equation in the fluid region, is
constant on its boundary and the normal velocity of the interface is given by the gra-
dient of the velocity potential in the normal direction. This simply formulated, but
nonlinear, two-dimensional free boundary problem has a remarkable variety of appli-
cations occurring over a wide range of lengthscales including oil recovery, flow in
porous media and injection moulding. Because of this, and with its rich mathemati-
cal structure becomingly increasingly evident, Laplacian growth, as it is also known,
has attracted much attention in the literature e.g. [9]. As a consequence, powerful
mathematical techniques, naturally formulated in terms of complex variables, have
been developed leading to the derivation of a variety of exact solutions for Laplacian
growth. These formulations include the Polubarinova–Galin equation [8,20], Richard-
son’s demonstration of an infinity of conservation laws for the moments of the fluid
[21], and a formulation in terms of the Schwarz function for the free boundary e.g.
[4].

The mathematical problem in which Laplace’s equation is replaced by Poisson’s
equation has received less attention, despite having important applications. When
the right hand side of Poisson’s equation is constant the model is equivalent to the
evaporation of thin liquid films [2]. Moment-based methods were used by [2] to derive
exact solutions, some of which displayed typical Laplacian growth type cusp formation
on the boundary.

When the upper plate of a Hele-Shaw cell is raised or lowered, the thickness of
the thin gap between the plates is time-dependent and this leads to the pressure inside
the blob satisfying Poisson’s equation with a time-dependent right-hand side. This
time-dependence can be scaled out, so that the right-hand side becomes constant.
Shelley et al. [22] studied this variable-gap Hele-Shaw problem and showed when
the upper plate is raised instability arises, this being analogous to the evaporation
case of [2]. Shelley et al. [22] examined the existence and regularity of solutions
and found exact and numerical solutions with and without surface tension, includ-
ing examples illustrating bubble fission and cusp formation. The multiply connected
problem has been tackled by Crowdy and Kang [3]. They used associated quadrature
domain identities to find explicit solutions which demonstrate that the usual well-
posed ‘squeeze’ case for singly connected domains can break down in finite time in
the multiply connected case. Another physical manifestation of Poisson growth is the
debonding of adhesively joined surfaces e.g. [12]. The thin gap between the surfaces
acts like a Hele-Shaw cell and air fingers penetrate the adhesive as the surfaces are
separated.

In addition to Laplacian growth, several authors, e.g. [10,13,14], have considered
other elliptic PDEs governing the interior of the fluid, as occurs, for example, in
flow of fluid in inhomogeneous porous media. Few explicit solutions are known for
these more general elliptic operators, one difficulty being their lack of conformal
invariance.

The Poisson growth problem is formulated in Sect. 2 and its associated Schwarz
function equation derived. This equation is then used to derive the moment evolution
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equations, a Polubarinova–Galin type equation and an associated Baiocchi-type trans-
formation. Examples of explicit solutions are given in Sect. 3. The case when the right
hand side of Poisson’s equation is linear in one of the space variables is considered in
Sect. 4. The Schwarz function equation is derived and used to find an exact solution
consisting of a propagating circular blob with time-dependent radius.

2 Schwarz function formulation of the free boundary problem

2.1 Derivation of Schwarz function equation

Consider the free boundary problem for a domain �(t) in the (x, y)-plane

∇2φ = −β + Q(x, y), in �(t),

φ = 0 and vn = ∂φ/∂n on ∂�(t). (1)

Here β is a constant, Q represents any hydrodynamic singularities that are present
(e.g. point sources or sinks), φ is a real velocity potential such that u = ∇φ is the
velocity field, and vn is the normal velocity of the boundary ∂�(t). The task is to
find the evolution of the free boundary ∂�(t), which may be finite or infinite and
singly or multiply-connected, given some initial boundary shape ∂�(0). The problem
is illustrated in Fig. 1.

Equation (1) implies that ∇.u = −β; that is, depending on the sign of β there is a
source (β < 0) or sink (β > 0) distributed uniformly over the extent of the fluid blob.
The free boundary problem (1) is a generalisation of the standard Laplacian growth
or Hele-Shaw problem (β = 0) and is referred to here as the Poisson growth problem.

Introducing z = x + iy and defining φ = ψ − βzz̄/4, it follows that ∇2ψ = 0
and so ψ can be considered the real part of an analytic function w. Let g(z, t) be the
Schwarz function of the free boundary ∂�(t) i.e. g(z, t) is an analytic function in
the neighbourhood of ∂� such that g(z, t) = z̄ on ∂� [5]. Since φ = ψ − βzz̄/4 it
follows that on ∂�(t)

v̄ = ∂zw − β z̄/2 = ∂zw − βg/2, (2)

Fig. 1 The Poisson growth
problem with point source Q
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where v is the complex velocity field. It is known e.g. [1] that the boundary conditions
on ∂�(t) imply 2v̄ = ∂t g. Combining this with (2) gives

2∂zw = ∂t g + βg = e−βt∂t
(
geβt), (3)

Equation (3) is referred to as the Schwarz function equation for Poisson growth. Lacey
[11] discusses the behaviour of Schwarz function singularities in the case of Hele-Shaw
flow with a time-dependent gap for the case when there is no hydrodynamic forcing.
In particular he derives an explicit solution for the behaviour of an elliptical blob being
squeezed between the plates of a Hele-Shaw cell.

Strictly, the derivation of (3) applies on the free boundary only, but by analytic
continuation it applies everywhere in the fluid blob �(t) where the terms of (3) are
defined. If β = 0 then (3) reduces to the well-known Schwarz function relation
governing Laplacian growth e.g. [4]. Since the nature of the singularities of g and w
in (3) are independent of β, an immediate implication is that solutions of the Poisson
growth free boundary problem share the same geometries as the standard Hele-Shaw
problem although they will in general have different evolution.

As noted in [7] there is a connection between the Poisson growth problem and the
behaviour of a blob of fluid in a rotating Hele-Shaw cell of constant width. This is
immediately evident by comparing the Schwarz function equations in each case. In
the latter case the flow is subject to a centrifugal potential and has Schwarz function
equation [15]

2∂zw = ∂t g + ω∂z(zg), (4)

whereω is the rotation parameter. Rescaling z by the factor exp(βt) in (3) and choosing
ω = β gives (4).

2.2 Moments

Suppose Q(x, y) = Qδ(x, y) where Q is constant, so that there is a point source of
constant strength Q at the origin. Define the kth moment as

Mk =
∫∫

�(t)
zkd A, k = 0, 1, 2 · · · . (5)

Using the complex form of Green’s theorem and (3) gives

∂t Mk = 1

2i

∮

∂�(t)
zk∂t g dz

= − β

2i

∮

∂�(t)
zk g dz + 1

i

∮

∂�(t)
zk∂zw dz

= −βMk + Qδk0. (6)

[2,22] obtained the same evolution equations for the moments in the absence of point
sources by direct integration of (1). More generally [7], write down an expression
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for the evolution of the integral of a harmonic function u(z) integrated over the fluid
domain in a variable-gap Hele-Shaw cell.

2.3 Polubarinova-Galian type equation

Denoting the moving boundary z(s, t), where s is an arc-length parameter, the normal
velocity of the boundary is

vn = Im(z̄t zs) = ∂nφ = ∂n(ψ − βzz̄/4). (7)

The complexified normal vector on ∂� is −i zs and ∇ = 2∂z̄ in conjugate coordinates.
Hence ∂nzz̄ = 2Im(z̄zs), and (7) becomes

Im [(z̄t + (β/2)z̄)zs] = ∂nψ = ∂sψ
∗, (8)

where ψ∗ is the harmonic conjugate of ψ . If there is a point source of strength Q
inside the fluid blob at z = 0 then on ∂�, ∂sψ

∗ > 0 and Qθ/2π = ψ∗ = s may be
used to parameterise the boundary giving

Im [(z̄t + (β/2)z̄)zθ ] = Q/2π. (9)

Equation (9) is of the type derived by [8,20], and reduces to their equations when
β = 0.

2.4 A related Baiocchi-type transform

Define the real function �, the Schwarz potential, by

� = zz̄

4
− 1

4

∫ z

gdz − 1

4

∫ z

gdz. (10)

Note that ∇2� = 1 in � and �z = �z̄ = 0 on ∂� which, in turn, implies � =
∂�/∂n = 0 on ∂�. Applying the operator e−βt (∂t eβt .) to (10) and using (3) gives

∂t� + β� = β

4
zz̄ − �w,

= β

4
zz̄ − ψ,

= −φ. (11)

When β = 0 this reduces to the standard Baiocchi transform for Hele-Shaw free
boundary flow e.g. [4].
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3 Examples

3.1 Circular blob

The boundary of a circle of radius a(t) and centre z = 0 has Schwarz function
g = a2/z. If the fluid region, which lies inside the circle, has no hydrodynamic
singularities (i.e. Q = 0) then w is analytic everywhere inside �(t). Comparing the
behaviour of the singular terms in (3) gives

d

dt
a2 + βa2 = 0, (12)

or, A(t) = A(0) exp(−βt) where A(t) = πa2 is the area of the circular blob. That
is, the blob remains circular and centred at the origin with its area either increasing or
decreasing exponentially according to the sign of β. Alternatively this result follows
directly from (6) with the realization M0 ≡ A or from (9) using z = a(t)eiθ .

3.2 Stability of a circular blob and bubble

Let z = a(ζ + εζ n), where a = a(t) and ε = ε(t) are real time-varying positive
parameters with 0 < ε � 1, be a map from the interior of the unit ζ -disk to the
interior of a perturbed circular blob of radius a. In polar coordinates the boundary of
the blob is given by r = a(1+ε cos(n−1)θ)+O(ε2), 0 ≤ θ < 2π , and so ε measures
the amplitude of a sinusoidal perturbation to the circular boundary. The interest here
is on the growth or decay of ε(t) with time. Since ζ̄ = ζ−1 on the boundary of the
blob, the Schwarz function of the blob boundary has behaviour as z → 0

g(z, t) = εan+1

zn
+ a2(1 + ε2n)

z
+ O(1),

≈ εan+1

zn
+ a2

z
+ O(1), (13)

where the approximation ε2 � n−1 has been used. For a point source of strength Q
at z = 0, the Schwarz function equation (3) becomes ∂t g + βg = Q/π z as z → 0.
Considering coefficients of the singular terms z−1 and z−n in (3) using (13) gives two
coupled ODEs for ε(t) and a(t)

d

dt
(a2)+ βa2 = Q

π
,

d

dt
(εan+1)+ βεan+1 = 0.

(14)

Combining (14) into a single equation for ε gives

dε

dt
+ ε

2
(n + 1)

[
Q

πa2 − (n − 1)

(n + 1)
β

]
= 0. (15)



Poisson growth

Thus the flow is stable when Q > βπa2. This criteria is equivalent to saying that
stability follows when the blob expands in area since Q is the area flux due to a point
source while βπa2 is the rate of area loss due to the Poisson term. When Q = 0 the
blob is unstable if β > 0 as also found by [22].

A similar analysis for a perturbed circular bubble in an infinite fluid (as opposed to
a finite blob of fluid) using the map z = a(ζ−1 + εζ n) from the interior of the unit
ζ -disk to the exterior of the perturbed bubble and considering singular behaviour as
z → ∞ shows that a bubble is stable if Q < βπa2.

3.3 Limaçon

Consider the time-dependent map from the interior of the unit ζ -circle to the limaçon-
shaped fluid blob given by

z = aζ + bζ 2, (16)

where a(t) and b(t) are real, time-dependent parameters to be found. A point source
of strength Q is located at the origin and hence ∂zw → Q/2π z + O(1) as z → 0.
From (16) as z → 0 [see also (13)]

g = a2b

z2 + a2 + 2b2

z
+ O(1). (17)

Substituting (17) into (3) and comparing the singular behaviour of terms O(z−1)

and O(z−2) gives the following pair of coupled ODEs for a(t) and b(t)

d

dt
(a2b)+ βa2b = 0,

d

dt
(a2 + 2b2)+ β(a2 + 2b2) = Q

π
.

(18)

Note that (18) implies the existence of a steady state with b = 0 and a2 = Q/πβ
provided sgn(Qβ) > 0. This corresponds to a circular blob of radius

√
Q/πβ in

which the point source Q balances that due to a uniform sink βπa2. Figure 2 shows
the evolution of an initial limaçon with β = 1 (i.e. ‘evaporation’) with and without
the presence of a point source at the origin. In both cases the mass flux owing to the
distributed sink causes the limaçon to shrink. When Q > 0 the shrinkage is halted as
t → ∞ when the sink balances the mass source Q and the blob approaches a circle.
When Q = 0 (Laplacian growth) the problem is ill-posed and the limaçon forms a
cusp singularity (i.e. becoming a cardioid) in finite time.

3.4 A finger solution

Let

z = d(t)− log ζ + 2(1 − λ(t)) log

(
1 + a(t)ζ

2

)
, (19)
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Fig. 2 Evolution of a limaçon-shaped fluid blob with a(0) = 1, b(0) = .31 for β = 1. On the left the
initial limaçon shrinks toward a circular blob shape as t → ∞. This is the case when there is a point source
of strength Q/π = .195 at the origin of the circle. On the right is the case when there is no point source
present (Q = 0) and the blob begins to shrink forming a cusp singularity in finite time t ≈ .265

where a, d and λ are real time-dependent parameters, be a map from the interior of
the unit ζ disk to a finger of length d occupying the fraction λ of a channel of width
2π . For the map to be well-defined it is required that |a(t)| < 1. The fluid speed as
Re(z) → ∞ is unity.

The Schwarz function of the finger boundary is

g = d(t)+ (2λ− 1) log ζ + 2(1 − λ) log

(
ζ + a

2

)
, (20)

which, as z → ∞, has behaviour

g → (1 − 2λ)z + 2λd − 4λ(1 − λ) log 2 + 2(1 − λ) log a + O(z−1). (21)

The Schwarz function (20) has a logarithmic singularity at ζ = −a and because
there are no point sources or sinks in the fluid, there are no singularities of the type
(z − z(−a))−1 in ∂zw, and hence (3) implies z(−a) = const or

d − log |a| + 2(1 − λ) log

(
1 − a2

2

)
= const. (22)

As z → ∞, ∂zw = 1 and (21) combined with (3) yields, considering terms of
O(z),

dλ

dt
+ βλ = β/2, (23)

and considering O(1) terms

(
d

dt
+ β

) [
2λd − 4λ(1 − λ) log 2 + 2(1 − λ) log |a|] = 2. (24)

An immediate feature implied by (23) is that when β > 0 a steady state is reached
with λ = 1/2. That is, the Poisson growth term selects the finger width to be precisely



Poisson growth

Fig. 3 Evolution of a Poisson growth Saffman–Taylor finger, with β = 0.2, in a channel of width 2π . The
finger propagates to the right with the interface shown at times 5, 10, 20 and 40, and the initial values of
the parameters are d(0) = 0, λ(0) = 0.45 and a(0) = 0.01

half the width of the channel. This is consistent with observations which show that
λ = 1/2 is the preferred finger width in the Laplacian growth, or Hele-Shaw, problem
where it is known as a Saffman–Taylor finger. Much theoretical effort has been made
in seeking to explain selection of the half-width finger in Laplacian growth. This
effort has either focussed on surface tension in providing the selection mechanism e.g.
[17,23], or, more recently, through the nonlinear stability (without surface tension) of
the time-evolving fingers [16]. The result here is consistent with that of [16] in that the
Poisson term provides a perturbation to the evolving finger, permitting the half-width
finger to be selected. Here, for large times, (24) implies the steady finger has length
d = 2/β − log(a/2) where a → 1 provided β � 2. A plot of an evolving finger
given by (19) with β = 0.2 is shown in Fig. 3, where the time-dependent parameters
have been found by solving ODEs (22), (23) and (24) numerically.

If β < 0 the finger solution breaks down in finite time as it either becomes an
infinitely thin finger when λ(0) < 1/2, or occupies the full width of the channel if
λ(0) > 1/2.

3.5 Application to the geometry of valleys

The case when β > 0 is of possible relevance to the geometry of valleys cut by
groundwater seepage [18]. The flow of groundwater in sandy soil is governed by

∇2h2 = −2P

K
, (25)
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where h(x, y) be the elevation of the water table above some impermeable layer,
K > 0 is the constant sand conductivity and P > 0 is the rate of precipitation (assumed
constant over a timescale of many tens of years). Assuming the valley geometry is
related to the local water table depth [18], its shape is governed by a Poisson growth
problem (1) with Q = 0 and β > 0 proportional to P/K . As discussed in Sect. 3.4
this means that an individual valley in a periodic array tends to a steady shape with,
for sufficiently small P , a ≈ 1 and λ = 1/2, so that, from (19), the valley boundary
is given by x = d + log(cos y) i.e. a Saffman–Taylor finger. This is precisely the
same boundary derived by [18] who used arguments based on field measurements
which relate the flux of groundwater to the curvature of the valley finding excellent
agreement between this theoretically predicted valley shape and field observations.
While this close comparison is appealing, it is not clear that the assumption that the
valley geometry is directly related to the local water table depth holds. In fact it seems
likely that the general valley geometry problem is more complicated with the shape
of the valley being determined by both a Poisson growth problem for the groundwater
depth outside the valley itself, and a Laplacian growth problem inside the valley
governing erosion of the valley walls [19]. This is an area of current investigation.

4 Linear variation in the mass forcing

Consider the case in which the governing equation inside a finite fluid blob is

∇2φ = 8γ x, (26)

where γ > 0 is a constant. This might occur, for example, when the ‘evaporation’ rate
varies linearly in a particular direction and is such that when x changes sign the forcing
goes from mass loss to mass injection. This may occur, for example, in a Hele-Shaw
cell when the upper plate is tilted about the axis x = 0, although in this scenario the
LHS is no longer the Laplacian operator–see [6].

Proceeding as in Sect. 2, let

φ = ψ + γ

2
zz̄(z + z̄), (27)

where ψ is harmonic and is the real part of an associated complex analytic potential
w. Thus, the complex velocity is

v̄ = ∂zw + γ (2zz̄ + z̄2). (28)

The boundary condition 2v̄ = ∂t g and (28) combine to give the following Schwarz
function relation valid on ∂�

∂t g − 4γ zg − 2γ g2 = 2∂zw, (29)

which, again, by analytic continuation can be extended throughout �.
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An exact solution is now described for (29): consider a circular blob of radius a(t)
centred on the Re(z)-axis at z = b(t) with no hydrodynamic sources. The Schwarz
function for the boundary of this blob is

g = b + a2

z − b
. (30)

Taking the time derivative of (30) and substituting into (29) and equating coefficients
of the singular terms of O(z−b)−1 and O(z−b)−2 gives the following pair of coupled
ODEs for a(t) and b(t)

da

dt
= 4γ ab,

db

dt
= 2γ a2. (31)

By inspection (31) represents a circular blob translating in the positive direction. The
radius of the blob decreases if it is centred in the region x < 0 and increases if x > 0.
An exact solution to (31) is obtained by differentiating the equation for db/dt in (31)
with respect to time and then substituting for ada/dt using the other equation of (31)
to find an differential equation in b alone which is, after integrating once,

db

dt
= 4γ b2 + C, (32)

where C is constant. Once db/dt is known the area of the circular blob πa2 can be
found from (31) i.e. a2 = db/dt/2γ . At t = 0 let a = a0 > 0 and b = b0.

If b2
0 > a2

0/2 then (32) gives

b = −d0coth
[
4d0γ t − coth−1 (b0/d0)

]
, (33)

where d0 =
√

b2
0 − a2

0/2. The solution (33) behaves differently according to the
sign of b0: (i) For b0 > 0 (33) implies b(t) → ∞ in the finite time t∗ =
coth−1 (b0/d0) /4γ d0. In this case the problem is ill-posed with the blob propagat-
ing infinite distance and becoming infinitely large at t = t∗. (ii) For b0 < 0, as
t → ∞, b → −d0 monotonically (i.e. b approaches −d0 smoothly from below) and
a(t)2 = 2d2

0 cosech2
[
4d0γ t − coth−1 (b0/d0)

] → 0 as t → ∞. This corresponds to
a diminishing circular blob which ‘evaporates’ completely as it approaches x = −d0
as t → ∞.

If b2
0 < a2

0/2 then the solution to (32) is

b = e0tan
[
4e0d0γ t + tan−1 (b0/e0)

]
, (34)

where e0 =
√

a2
0/2 − b2

0. In this case if b0 < 0 then the blob initially shrinks
while propagating toward positive x , before crossing into the region x > 0 where
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Fig. 4 Behaviour of the blob radius a(t) and centre x = b(t) subject to a linearly varying mass forcing
with initial conditions a(0) = 1 and b(0) = −0.7. Here γ = 1/2

it begins to grow eventually becoming unbounded in size in finite time t∗∗ =
[π/2 − tan−1(b0/e0)]/(4γ e0d0). An example showing the behaviour of a(t) and b(t)
of a circular blob first decreasing in size and then increasing once its centre crosses
x = 0 is shown in Fig. 4.

5 Conclusions

The Poisson growth problem has been formulated in terms of the Schwarz function
of the free boundary for the cases when the right hand side is either constant or
varies linearly in one space direction. Simple examples of exact solutions have been
derived. Although not presented here, it is straightforward to find the Schwarz function
equation when the right hand side of Poisson’s equation depends only on the radial
coordinate r2 = zz̄ = zg on ∂�, in which case a trivial solution is a non-translating
circular blob with time-dependent area. It is of interest to explore the possibility of
formulating Schwarz function equations and finding explicit solutions for other forms
of functional dependence of the right hand side of Poisson’s equation.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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