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Abstract

We have recently developed a new method based on edge-illumination
for retrieving a three-image representation of the sample. A minimum of
three intensity projections is required in order to retrieve the transmission,
refraction and ultra-small-angle scattering properties of the sample. Here
we show how the method can be adapted for particular cases in which
some degree of a priori information about the sample might be available,
limiting the number of required projections to two. Moreover, an iterative
algorithm to correct for non-ideal optical elements is proposed and tested
on numerical simulations, and finally validated on experimental data.

1 Introduction

X-ray Phase-Contrast Imaging (XPCI) overcomes limitations of conventional
radiography by introducing sensitivity also to the phase shifts suffered by the
X-ray beam as it travels through the sample [1]. Applications of XPCI are
extremely vast, ranging from biological and medical to security inspection and
materials science. Several approaches exist for obtaining phase-contrast images
in the X-ray regime, using large-scale synchrotron facilities and more compact
X-ray-tube-based equipment [2–17]. The imaging methods, their developments
and applications can also be found in recent reviews on the subject [18–21].
Edge-illumination [9] and its area imaging counter part coded-aperture [22] are
XPCI techniques capable of quantitative amplitude and phase retrieval [23].
These methods were implemented with synchrotron radiation [9] as well as with
rotating anode [22; 23] and microfocal [24] X-ray tubes. The retrieval of ultra-
small-angle X-ray scattering in the hard X-rays regime was also recently devel-
oped for an edge-illumination set-up [25]. This approach to quantitative XPCI
was proven to work under extremely weak coherence conditions, and uses the
full broadband spectrum typically produced by an X-ray tube. It simultaneously
produces three representations of the sample that can provide complementary
information for better identification and discrimination between materials and
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types of tissues [26–28]. The work presented here builds on these results, focus-
ing on the expansion of the method to include system imperfections that can
be encountered in practical situations and the exploitation of a priori knowl-
edge that might be available about the sample. Both analytical formulae and
an iterative algorithm are proposed and tested on numerical simulations. Fur-
thermore, it is shown how a simulation study for the noise propagation from
the intensity projections to the retrieved images enables the optimization of the
data acquisition scheme. Finally, the results are applied to experimental data,
and a discussion of possible limitations of the method is presented.

2 Methods

A typical experimental set-up for edge-illumination consists of an absorbing slit,
shaping the X-ray beam before it reaches the sample, aligned with an absorbing
edge, placed just in font of the detector pixels. This second absorbing element
serves as an analyser and converts fine angular deflections of the beam into
intensity variations recorded by the detector (Fig. 1(a)). This can be extended
to perform area imaging by stacking together a series of pre-sample apertures
and aligning them with the corresponding edges and detector pixels (Fig. 1(b)).
In a typical laboratory experiment, relatively large sources and short distances
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Figure 1: Typical experimental setups for (a) edge illumination and (b) coded-
aperture XPCI. (a) The X-ray beam, coming from the right-hand side, is shaped
by an absorbing slit and it is analysed with an absorbing edge just before the
detector pixel P . (b) This concept is adapted for area imaging by stacking
together a series or apertures M1 matching the relative apertures on the detector
mask M2.

are used, and the image formation can be described on a pixel-by-pixel basis
using geometrical optics. The image recorded by such a set-up can be described
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in the following way [25]:

I(x)

I0
= (L ∗O)(x−∆xR)t (1)

where I0 is the intensity going trough the pre-sample aperture, L is the illu-
mination function characteristic of the imaging system, ∗ denotes convolution
and the scattering distribution induced by the sample is represented by O.
∆xR = −∆θRzod is the beam shift due to the sample-induced refraction ∆θR
(zod is the distance between the object and the detector) and t is the fraction
of the total intensity transmitted through the sample. The functions L and O
can be rewritten as a sum of Gaussian functions, and Eq. 1 takes the general
form [25]:

I(x)

I0
= t
∑
m

∑
n

Amn exp

[
− (x− µmn)

2

2σ2
mn

]
(2)

where µmn = µm + µn, σ2
mn = σ2

m + σ2
n, Amn = AmAn(1/

√
2πσ2

mn). The func-
tions representing the illumination function and the scattering were expanded
as follows: L(x) =

∑N
n=1(An/

√
2πσ2

n) exp [−(x− µn)
2
/2σ2

n] and

O(x) =
∑M
m=1(Am/

√
2πσ2

m) exp [−(x− µm)
2
/2σ2

m], respectively.
Analytical inversion formulae were proposed for Eq. 2 by acquiring three

projection images with the displacement of the masks set to x2 = 0 and x1 =
−x3 [25]:

Ii = t AMN√
2πσ2

MN

exp
[
− (xi−∆xR)2

2σ2
MN

]
, i = 1, 2, 3 (3)

from which t, ∆xR and σ2
M can be retrieved:

t = 2x1

AMN

√
π

D+C I2 exp
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1
24
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]
∆xR = x1
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2x2
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2
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(4)

where C = −2 ln (I1/I2) and D = −2 ln (I3/I2), and a single Gaussian term was
used for L(x) and for O(x).

These solutions can be specialized when a priori information about the sam-
ple is available. If it is known a priori that the sample under investigation
presents negligible refraction (∆xR = 0), the transmission and the scattering
image can be retrieved by using only two projections σ2

M =
x2
1

C − σ
2
N

t = I2
AMN

√
2πx2

1

C .
(5)

Similarly, for the case in which σM = 0 (negligible scattering) transmission and
refraction images can be retrieved from two projection images as ∆xR =

σ2
NE
x1

t = I1
AMN

√
2πσ2

N exp
[

(x2
1−Eσ

2
N )

2

2x2
1σ

2
N

] (6)
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where E = (1/2) log(I1/I3).
In an actual experiment, it can occur that the illumination function appears

with an offset, i.e. when the masks are completely mismatched one with respect
to the other, an intensity different from zero is recorded at the detector [29].
This could be due, for example, to a non-completely absorbing mask that would
let part of the radiation trough the opaque sectors. In order to account for
this, the illumination function needs to be represented with the addition of a
constant term c. For a relative displacement of the masks xi, the recorded image
becomes

Ii = t AMN√
2πσ2

MN

exp
[
− (xi−∆xR)2

2σ2
MN

]
+ tc (7)

where c is a constant, characteristic of the setup, that can be known from an
experimental measurement of L. If also t was known, it would be possible to
correct the measurements Ii by the amount tc and reduce to the problem in
Eq. 3. This is not usually the case, as t depends on the sample itself; however,
Eq. 7 can be solved by means of an iterative procedure. We start with the
initial guess that c = 0 and retrieve t, ∆xR and σ2

M with Eq. 4 by using the
three projection images acquired at x2 = 0, x1 and x3. This gives an initial
estimation for t that can be used to correct Ii, and the process is iterated. More
formally, we iterate over k = 0 . . .K the set of equations:

tk+1 = 2x1

AMN

√
π

Dk+Ck I2 exp
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2
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2
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2x2

1
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(8)

where {
Ck = −2 ln [(I1 − Ir)/(I2 − Ir)]
Dk = −2 ln [(I3 − Ir)/(I2 − Ir)]

(9)

and Ir = tkc[1 − (1/2k)]. Together with the iterative procedure, a stopping
criterion is required in order to establish the actual value of K. We decide when
to stop the iteration by monitoring the relative change in the retrieved images;
for example, by referring to t, we calculate

Lk =

√
1

N

∑
ij

(tk−1
ij − tkij)

2
(10)

where (i, j) run over the image pixels, and N is their total number. When the
iteration does not change the retrieved images any more, the loop is interrupted.
We note also that this approach can be analogously applied in the special cases
discussed above (Eq. 5 and Eq. 6).

The numerical phantoms used in the simulations consist of 512 × 512 pix-
els images with t, ∆θ and σM in the intervals [0.5, 1], [−5, 5] µrad and [0, 15]
µrad, respectively. They are composed of a vertical wedge (absorbing, refract-
ing and scattering) and a cylinder (absorbing and refracting) superimposed one
to the other (see also Fig. 4(d), 4(e) and 4(f)). With reference to Fig. 1, the
image plane is (x, y) and apertures are oriented vertically, along the y direc-
tion. The detector is modelled as an ideal single-photon-counter and the noise
is simulated by using Poisson statistics. The parameters for the illumination
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functions are extracted from the empirical measurement of L (see also below in
Fig. 2(b)). The masks parameters and the geometry are the same we used for
the experiment, which is described in the following.

The experimental set-up consists of a Mo target, rotating anode X-ray tube
(Rigaku MM007) and an amorphous Selenium flat panel (Anrad SMAM) with
a pixel pitch of p3 = 85 µm. The masks, manufactured to our design by Creatv
Microtech (Potomac, MD), were aligned with a stack of Newport (ILS150, MFA
and SR50) and Kohzu (SA07A-RM) stages. The pre-sample mask had a pitch
of p1 = 66.8 µm and apertures of b1 = 12 µm. The detector mask had a pitch
of p2 = 83.5 µm and apertures of b2 = 20 µm. The absorbing material was
gold, approximately 30 µm thick, on a graphite substrate. The field of view
was 4.8 × 4.8 cm. The source to detector distance was 2 m and the object to
detector distance zod = 40 cm. The I1 and I3 images where acquired using a
misalignment x1 = 12 µm. The phantom was composed of two step-wedges,
one made of five layers of paper (80 µm each) and the other of five layers of
polypropylene plastic (800 µm each).

3 Results

The illumination function L ≡ B1 ∗S ∗B2 [25], where B1,2 are rectangular func-
tions and S is the source distribution projected at the detector plane, can be
represented with a Gaussian function when an extended source is used. b1,2 indi-
cate the pre-sample and the detector aperture widths, respectively. The validity
of this approximation depends on the particular values of the aperture widths,
the source size and the relative distances between them. For the geometry of
our experimental set-up, the maximum error {|L(x)− Lf (x)|}max between L(x)
and its Gaussian fit Lf (x) was calculated for several sets of apertures and source
dimensions. The results are reported in Fig. 2(a): the approximation is gener-
ally acceptable, and becomes increasingly reliable when a larger source is used.
Describing B1 and B2 with rectangular functions requires that the illumination
function reaches zero on the tails. This is not always the case for an actual
experiment and often an offset, typically between 5 − 30%, is observed. When
this is the case, L can be represented by a Gaussian term plus a constant term c.
In Fig. 2(b) the illumination function measured on experimental data is plotted
along with its fit by using a Gaussian term plus offset. The ideal illumination
function, calculated as L = B1∗S∗B2, and its single-Gaussian fit are also shown
in the same panel. For values of the illumination function above 0.4, a single
Gaussian term still provides a good approximation; this however gradually loses
accuracy as the illumination levels are diminished.

The iterative solution, for the retrieval of transmission, refraction and scat-
tering, was tested on the numerical phantom for c values of 0.2 and 0.3. The

error ek =
√

(1/N)
∑
ij (fij − fkij)

2
, where fij is the known exact distribution

of values and fkij is the one retrieved at the k-th iteration, is plotted against the
number of iterations in Fig. 3. The dashed lines indicates the error between the
exact and the retrieved solutions when c = 0, and the three channels are rep-
resented with different colours: t blue, ∆xR green and σ2

M red. The algorithm
converges to the exact solution within a few tens of iterations for c = 0.2 and less
than two hundreds for c = 0.3. As mentioned, the same correction algorithm
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Figure 2: (a) maximum error caused by the use of a Gaussian term to analyti-
cally describe the illumination function L for various b1 and b2 parameters, as a
function of the projected source size. The numbers indicated in the legend are
in µm. (b) graphical comparison between an ideal L (for b1 = 12µm, b2 = 20µm
and source width 70µm) and its Gaussian fit, and between an experimentally
measured L and its Gaussian plus offset fit.
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Figure 3: Convergence of the iterative solution for offset illumination functions,
c = 0.2 (triangles) and c = 0.3 (circles). (a) three-image retrieval in the general
case and (b) two-image retrieval for the special case ∆xR = 0.
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can be applied in the particular cases described above, where the acquisition
of only two images is required. As an example, the simulated Ii measurements
and the retrieved images are shown in Fig. 4. In this case, an offset c = 0.3 was
used and the images were retrieved with 200 iterations. A smaller c parameter
corresponds to a smaller number of iterations required to achieve the desired
accuracy, which is typically reached with a few seconds of computing time on a
standard desktop machine (2.33 GHz).

(a) (b) (c)

(d) (e) (f)

Figure 4: Example of simulated projection images I1 (a), I2 (b) and I3 (c),
with the pre-sample mask positioned respectively on the left-, top and right-
hand side of the illumination function. The transmission (d), refraction (e) and
scattering (f) are retrieved from a simulation with c = 0.3 offset and performing
200 iterations.

For evaluating the propagation of the noise from the projection images to the
retrieved ones, the data acquisition was simulated using Eq. 3 and assuming an
ideal single-photon-counting detector. The relative displacement x1 between the
masks was changed while keeping constant the number of photons transmitted
through the pre-sample aperture. Noise was added to the images according
to Poisson’s statistics. The results obtained using 104 photons are shown in
Fig. 5. The minimum error e is reached at x1 = {11.6, 12.6, 19.4}µm for
t, ∆xR and σ2

M respectively. The possible effect of photon statistics on the
above set of x1 values was investigated by repeating this set of simulations while
varying the total number of photons allowed through the sample aperture. No
significant difference was found, for a number of photons ranging between 10
and 106 the minima were always found to be within 0.5 µm from the positions
stated above. The minima are reached at different displacements for the three
parameters extracted. This is the result of the interplay between the accuracy in
the measurement of absorption, dominated by the detected number of photons,
of refraction, for which the maximum change in signal for a given ∆xR occurs
where the slope of the illumination function is maximum and of scattering for
which one would aim to minimize the amount of unscattered radiation reaching
the active area of the pixel.

Finally, the method was applied to the experimental projection images ac-
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Figure 5: Noise propagation to the retrieved images. The number of photons
(104) transmitted through the pre-sample aperture is kept constant while chang-
ing the relative displacement x1 between the masks. Optimum displacements
are x1 = {11.6, 12.6, 19.4}µm for t, ∆xR and σ2

M respectively.

quired operating the source at 35 kVp. Transmission, refraction and scattering
were retrieved by using the sets of equations 8 and 9, and the results are shown
in Fig. 6. The paper step-wedge is on the left-hand side while the polypropylene
one is on the right. It can be observed how polypropylene shows contrast only
in the absorption image (except for its edges), while paper exhibits some degree
of contrast in all the three channels. The iterative algorithm correctly compen-
sates for the excess of intensity which is observed in the projection images due
to the fact that the illumination function is offset from zero. In the panels Fig.
6(d) and Fig. 6(d), the transmission and scattering images are shown for the
two-image retrieval that assumes ∆xR = 0 (Eq. 5), for which the same iterative
correction scheme of Eq. 9 has been applied. The artefacts along the verti-
cal edges are due to the fact that refraction is assumed to be negligible, which
results in a poor approximation for those parts of the sample. The number of
iterations used for the three-image case was 280, which was estimated by looking
at the relative change in the retrieved images at each iteration. An example of
how this kind of plot enables stopping the iterative algorithm is shown in Fig.
7.

A remark on the possible limitations of this iterative approach is related
to beam hardening. The illumination function offset can be caused by a non-
complete absorption of the incoming radiation in the gold substrate of the de-
tector mask. This problem becomes more severe with increasing X-ray energy
since, for a given gold thickness, a larger fraction of the total intensity will
reach the detector passing through the gold layer. This introduces a sample-
dependent type of artefact which is demonstrated by the experimental images
in Fig. 8. These images were retrieved from projections acquired operating the
source at 45 kVp, and therefore introducing a harder component in X-ray beam
with respect to the previous case. A small residual signal can be observed in
the scattering image (Fig. 8(c)), stronger where the polypropylene is thicker.
This can be explained by the fact that the spectrum emerging from a thicker
layer of absorber is harder, and will therefore give a larger contribution to the
offset of the illumination function. Unfortunately this effect is sample- (and
position-) dependent and cannot be completely corrected with the algorithm
proposed here. Depending on the experimental conditions and on the quality
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Figure 6: Retrieval by using Eq. 8 and 9 on experimental projection images
acquired at 35 kVp. (a) transmission, (b) refraction and (c) scattering of the
phantom. The sensitivity is in the horizontal direction, the bright and dark
vertical stripes correspond to the paper and polypropylene edges, respectively.
The paper step-wedge is on the left-hand side while the polypropylene one is on
the right. Retrieval by using Eq. 5 and the iterative corrections of Eq. 9: (d)
transmission and (e) scattering.
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Figure 7: Stopping criterion for the experimental case. The number of iterations
was estimated to be 280, after which the retrieved image does not change any
more.
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(a) (b) (c)

Figure 8: Retrieval by using Eq. 8 and 9 on experimental projection images
acquired at 45 kVp. (a) transmission, (b) refraction and (c) scattering of the
phantom. The paper step-wedge is on the left-hand side while the polypropylene
one is on the right.

of the available optical elements, this could be a potential source of inaccu-
racy, for example when the different signals are combined in order to obtain
material-specific signatures.

4 Conclusions

A recently proposed method for multi-modal imaging with a laboratory set-up
based on edge illumination was further developed and extended. The retrieval
was specialized to particular cases in which some a priori knowledge on the sam-
ple is available, potentially limiting the minimum number of projection images
to two. An iterative algorithm to correct the inaccuracies in the retrieval re-
lated to the presence of an offset in the illumination function was developed and
tested both on numerical simulations and experimentally on a custom made
phantom. The propagation of noise from the intensity projections to the re-
trieved images was evaluated by means of numerical simulations, which enabled
the optimization of the data acquisition procedure. A brief discussion on the
possible limitations of the method, related to the local hardening of the X-ray
beam, was finally presented.
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