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Evolutive Equilibrium Selection II: Quantal Response
Mechanisms

1. Introduction

The analysis of equilibrium selection based on quantal response mechanisms
is currently represented by two main branches in the game theoretic litera-
ture. Firstly, there is the branch which derived its primary inspiration from
models of the physical sciences for interacting particle systems. In this litera-
ture we include the analyses of Follmer(1974),Blume(1993),(1996), Herz(1993),
Aoki(1995), and Brock and Durlauf(1995). Secondly, we have the branch which
derives inspiration from the more traditional economic theory of probabilistic
choice models applied to a game theoretic setting, in particular the analyses
of McKelvey and Palfrey(1995),(1998) and Chen,Friedman and Thisse(1996).
Both approaches are remarkably similar in their use of quantal response mech-
anisms for the speci¯cation of individual strategy choice.
In many cases the ability to contrast di®erent equilibrium selection mech-

anisms is reduced because of the disparate assumptions employed by di®erent
investigators. In the case of distributional dynamics and quantal response equi-
libria however, there is quite an intimate relation between the literature in what
appear to be currently two separate research programs. In a sequence of pa-
pers Blume established what he termed the "statistical mechanical" approach to
equilibrium selection; the methodology uses techniques developed in the physical
sciences to investigate the interaction of individual agents in a primarily locally
interactive system; where "proximity" of agents in some context, e.g. spatial lo-
cation, is important in assessing the bene¯ts of di®erent strategies. In the case of
the analytical development of this theory the logit function plays a central role,
in representing the stochastic choice behaviour of agents, and thence in deter-
mining the equilibrium strategy. The logistic choice function also plays a central
role in the analytical development of McKelvey and Palfrey's "Quantal Response
Equilibria" model. This model may be viewed within the context of error prone
decision making, including the papers by Rosenthal(1989), Beja(1992), Ma and
Manove(1993), and Fey, McKelvey and Palfrey(1996).
In this paper we develop a model of what we term Evolutive Quantal Re-

sponse (EQR) mechanisms, and contrast the outcomes with the Quantal Re-
sponse Equilibria (QRE) as developed by McKelvey and Palfrey. A clear dis-
tinction between the two approaches can be noted; EQR is based on a dynamic
formulation of individual choice in the context of evolutionary game theory in
which games are played repeatedly in populations, and the aim is to determine
both the micro-con¯guration of strategy choices across the population, and the
dynamics of the population frequencies of the strategies played. Quantal Re-
sponse Equilibria focuses on the more traditional aspects of non-co-operative
game theory, i.e. on equilibrium in beliefs regarding strategies.We focus at-
tention on an analytical approach which enables closed form solutions to be
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constructed. We consider the case of all symmetric binary choice games, which
will include analysis of all well known generic games in this context, such as
Prisoner's dilemma, Stag-Hunt and Pure coordination games. In Section 2 we
set out the standard model for this case. Section 3 details the equilibrium for
what we term the microcon¯guration of agents by strategy choice, whilst in Sec-
tion 4 we derive the associated macrocon¯guration of agents. Section 5 details
the equilibrium selection procedure as the low noise limit of the macrocon¯g-
uration, and Section 6 notes the relationship of the implied selection and the
Nash equilibria of the associated game. Section 7 provide applications of the
methodology to a number of binary choice symmetric games. In the concluding
section we contrast the results and methodology with existing literature in this
¯eld.

2. The Basic Model: The Microcon¯guration of Agents over Strat-
egy Choice

The basic model can be quite simply outlined. We assume a population
consisting of N ¸ 2 agents. Each agent has the same set of strategy choices; for
the binary choice case, fs1; s2g: Time is discrete, in each time period one agent
is randomly selected and this agent has the choice of sticking to the existing
strategy being played, or switching to another strategy. The state of the system
we de¯ne as the microcon¯guration of strategy choice. At any date prior to the
choice of the agent selected to make their choice it can therefore be represented
by a string of lengthN , each component of the string being (for the binary choice
case) either s1 or s2. The process thus proceeds, given an initial designation
of the string in period 0 (the initial condition), an agent is selected to make
their choice. The choice is made and a new string is therefore generated in
period 1, this string is either identical to the string in period 0 (i.e. if the agent
selected sticks with the original choice of strategy) or the string deviates by
one component from the previous state, i.e. by one of the elements changing
from s1 to s2 or vice versa. As the process proceeds, interest may thus focus on
tracing the path of the string through time or if the interest of the researcher is
on equilibrium selection, on the long run probabilities of di®erent states of the
string being observed.
The string evolves either deterministically, if the choice of agents is solely

determined by the state of the string at the time they make their choice; or
in a random manner if choices are made with a procedure which includes a
random component. The principal focus is on the way in which agents choice
of strategy is made. The switch probability has been subject to widespread
research in recent years, and the relationship may be approached via a num-
ber of di®erent model structures. These include, (i). Cognitive/Best Response;
(ii) Learning/Stimulus-Response; (iii) Replicator/Evolution dynamics, and (iv).
Imitation. In this paper in order to pursue our study of quantal response equi-
libria we utilise the Cognitive/Best Response model.

3



In order to relate models to experimental work particular care has to be at-
tached to the de¯nition of the temporal structure of the model, and the nature
of the information that is passed to the agent on which choice is predicated. The
above procedure we have speci¯ed may be called random sequential updating
and is the form related to the randomised pair matching used by experimental-
ists in economics and psychology. In such experiments agents are matched in
which both make a simultaneous choice of strategy which determines the payo®
each makes. The information passed to the agent prior to strategy choice we
assume to be a transform of the existing state of that system; i.e. the current
string.
The model therefore comprises two essential elements, ¯rst there is the spec-

i¯cation of the dynamics of the microcon¯gurations of agents' choices, condi-
tional on knowledge of the methods by which agents make their choice of strat-
egy. Secondly there is the speci¯cation of that component based on the way in
which the agents' strategy choices are made.
We begin with developing a model which speci¯es the evolution of the mi-

crocon¯guration. First some de¯nitions:

De¯nition 1. A microcon¯guration,Km, of the system of agents is uniquely
de¯ned by a sequence of length N whose ith componentKm(i) denotes the state
of agent i in microcon¯guration Km:Without restriction, we de¯ne the state of
the agent to be either +1 or ¡1; indicating respectively the choice of strategy s1
or s2 . The con¯guration spaceR is given by the set of all possible con¯gurations.
If each agent can be in any one of two states, i.e. the choice of strategy s1 or s2
, the number of all possible con¯gurations in this case is 2N .Thus m is an index

which runs over the integers from 1 to 2N .

De¯nition 2. Let the system be in microcon¯guration Km, then a neigh-
bouring con¯guration Km

u is de¯ned as the con¯guration that is obtained from
Km by changing the state of agent u from +1 to ¡1 or vice versa.

Thus we have,

Km

u (j) = K
m(j) if j 6= u (1)

Km

u
(j) = ¡K(j) if j = u (2)

De¯nition 3. The neighbourhood RKm ² R is de¯ned as the set of all
neighbouring con¯gurations of Km.

We propose to specify a Markov chain de¯ning the transition probabilities
over the con¯guration space R:We require ¯rstly to specify the probability that
a given agent is selected to make a strategy choice in a given period; and then
secondly the probability that the agent chooses a particular strategy.
We propose to de¯ne the components of the Markov Chain as follows.
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De¯nition 4.
The probability that agent u frommicrocon¯gurationKm is selected to make

a strategy choice is,

G(u;Km) (3)

De¯nition 5
The probability that a change in the status of agent u from microcon¯gura-

tion Km is induced is de¯ned by,

A(u;Km) (4)

i.e. if agent u is currently playing strategy s1 then A(u;K
m) denotes the prob-

ability of a switch to strategy s2 and vice versa.

De¯nition 6.
Consider two microcon¯gurations Km; Kl. The transition probability of

moving from state Km to state Kl is de¯ned by,

PKm;Kl = G(u;Km)A(u;Km) if Km 6= Kl and Kl 2 RKm (5)

PKm;Km = 1¡
X

l

PKm;Kl for all l such that Kl 2 RKm (6)

PKm;Kl = 0 otherwise (7)

Both G(u;Km) and A(u;Km) now have to be speci¯ed, and to these matters
we now turn.

Assumption 1. The probability of selecting an agent for the update process
is assumed to be uniform over all agents at all times, and is independent of the
current state of the system, Km; i.e.,

G(u;Km) = 1=N (8)

Now we turn to the factors a®ecting the switch probability A(u;Km).

Assumption 2
The functional form for A(u;Km) is assumed to be the logit function. The

probability that the agent u chooses strategy Si = +1 is then de¯ned by,

Pr ob(Si = +1; u;K
m) =

exp(¯uPayoff1(u;K
m))

exp(¯uPayoff1(u;Km)) + exp(¯uPayoff2(u;Km))
(9)

=
1

1 + exp(¡¯u(Payoff1(u;Km)¡ Payoff2(u;Km)))
(10)

5



=
1

1 + exp(¡¯uhu)
(11)

where ¯u ¸ 0; Payoffi i = 1; 2 denotes the payo®s from playing strategy 1 or
2, and

hu = Payoff1(u;K
m)¡ Payoff2(u;K

m) (12)

Whilst, we can similarly show that,

Pr ob(Si = ¡1; u;K
m) =

1

1 + exp(+¯uhu)
(13)

The probability of a switch from strategy +1 to ¡1 or vice-versa can thus be
written as,

A(u;Km) =
1

1 + exp(¯uKm(u)hu)
(14)

The parameter ¯u plays an important role in determining the probability of
selection of a particular strategy. As ¯u tends to in¯nity the logistic function
approaches the step function (see Fig.1), and the probabilistic model approaches
the deterministic model of best response. As ¯u tends to zero the choice of +1
or ¡1 will become equally likely; i.e. at ¯u = 0; Prob(Si = +1) = Prob(Si =
¡1) = 1=2:

Fig.1

The logistic function is of course widely used in the econometrics literature,
for a survey see e.g. Anderson,de Palma, and Thisse(1992).

3.The Micro-con¯guration of Strategy Choice.

Let pm(t) denote the probability mass associated with the microcon¯gura-
tion Km at time t. Let p(t) denote the vector of length 2N whose elements are
pm(t). The evolution of p(t) is then described by the Markov chain,
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p(t) = Pp(t¡ 1) (15)

subject to the initial distribution of states, p(0), and where the elements of the
matrix P are de¯ned by eqs.(5),(6),(7).
The equilibrium distribution over the micro-states follows from standard

application of Markov Chain theory. We assume henceforth that agents are not
distinguishable by ¯u; i:e: ¯u = ¯:

Theorem 1. Let the transition probabilities between states be de¯ned by
(5),(6), and (7) then there exists a unique stationary distribution, p¤ , given by,

p¤ = lim
t!1

p(¯; t) (16)

where the single element p¤mof the vector p
¤ is de¯ned by,

p¤m = (1=C)exp(
1

2
¯°(Km)) (17)

where C is the normalization constant de¯ned by,

C =
m=2

NX

m=1

exp(
1

2
¯°(Km)) (18)

and °(Km) is de¯ned by,

°(Km) =
i=NX

i=1

hiK
m(i) (19)

and hi de¯ned by eq.(42).

Proof:

The existence of a unique stationary distribution p¤ is guaranteed provided
that the Markov chain with probabilities de¯ned by (5),(6), and (7) is (i)¯nite,
(ii) homogeneous, (iii) a periodic and (iv) irreducible. The proofs that (15) does
indeed satisfy these properties are standard and therefore omitted. All that we
require is to determine that (17 ) does indeed represent the limiting distribution
given the transition probabilities (5),(6), and (7).
To do this we require to show that for any two states m; l of the Markov

chain the balance equation,

pmPml = plPlm (20)

holds, where pm denotes the probability of state K
m; pl the probability of state

Kl; and Pml the probability of a transference from state Km to state Kl:

First we simply note that,
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Km(i)hi = ¡
1

2

X

i

hiK
m
i (i) +

1

2

X

i

hiK
m(i) (21)

since Km
i (i) di®ers from Km(i) by a °ip of the ith unit of the string.

Thus the transition probability,

Pml = G(u;K
m)A(u;Km) (22)

= (1=N)(
1

1 + exp(¯Km(i)hi)
) (23)

may be written as,

= (1=N)(
1

1 + exp(¡ 1

2
¯(
P

i
hiK

m
i (i) +

P
i
hiKm(i)))

(24)

Starting from the L.H.S. of (20) we have,

pmPml = pmG(u;K
m)A(u;Km) (25)

= (1=C)exp(
1

2
¯
X

i

hiK
m(i))(1=N)(

1

1 + exp(¯Km(i)hi)
) (26)

= (1=C)exp(
1

2
¯
X

i

hiK
m(i))(1=N)(

1

1 + exp(1
2
¯(¡

P
i
hiKm

i (i) +
P

i
hiKm(i)))

)

(27)

= (1=C)exp(
1

2
¯
X

i

hiK
m
i (i))(1=N)(

exp(1
2
¯(
P

i hiK
m(i))¡

P
i hiK

m
i (i)))

1 + exp(1
2
¯(¡

P
i hiK

m
i (i) +

P
i hiK

m(i)))

(28)

= (1=C)exp(
1

2
¯
X

i

hiK
m
i (i))(1=N)(

1

1 + exp(1
2
¯(
P

i hiK
m
i (i)¡

P
i hiK

m(i)))
)

(29)

= (1=C)exp(
1

2
¯
X

i

hiK
m
i (i))(1=N)(

1

1 + exp(¡¯
P

i
hiKm(i))

) (30)

But since,

¡Km(i) =Km
i (i) (31)

= (1=C)exp(
1

2
¯
X

i

hiK
m
i (i))(1=N)(

1

1 + exp(¯
P

i hiK
m
i (i))

(32)

and from our de¯nition of Kl; since

pl = (1=C)exp(
1

2
¯
X

i

hiK
l
i(i)) (33)
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and,

Plm = G(u;K
l)A(u;Kl) = (1=N)(

1

1 + exp(¯
P

i hiK
l
i(i))

(34)

we thus have shown,

pmPml = plPlm (35)

We note that in the development of the micro-con¯guration quite a wide gen-
erality of di®erent model types may be allowed, in terms of the speci¯cation of
the payo®s which may di®er across agents or groups of agents.

4. The Macro-Con¯guration of Strategy Choice

Now in many instances our principal interest in the distribution p¤ is to
determine the numbers of agents playing the di®erent strategies, irrespective of
the named agents playing the strategy (i.e. independent of their identi¯cation
number i in the string Km). The distribution of the number of agents by
strategy we term the macro-con¯guration.
For binary choice games each agent is assumed to face the payo® matrix.

Player j

Player
i

s1 s2
s1 a(i; j) b(i; j)
s2 c(i; j) d(i; j)

(36)

where a; b; c; d 2 R.
The simplest case of information structure is where the agent knows the

existing microcon¯guration of strategy choice. For random pairing one statistic
the agent may wish to construct is therefore the expected payo®s resulting from
choice of a particular strategy. In the present analysis we restrict ourselves
to the case where for each agent i the payo®s are independent of the named
opponent j; and consider only symmetric games.
Letting s and r be respectively the numbers playing strategies S1 and S2 ,

including the agent making the choice. Then s+ r = N:

De¯nition 7.
The normalized payo®s for agent i are de¯ned as,

Payoffi(S1; K
m) = a(i)(s=N) + b(i)(r=N) (37)

Payoffi(S2; K
m) = c(i)(s=N) + d(i)(r=N) (38)
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i.e. we assume that the agent has the same probability of playing against them-
selves as any one other opponent. This assumption leads to some notational
simplicity.

The payo® di®erence is given by,

hi(K
m) = Payoffi(S1; K

m)¡ Payoffi(S2;K
m) (39)

Lemma 1.

The payo® di®erence hi can be written in terms of the summation of the
sequence Km(j). Letting,

G = (a¡ c)¡ (b¡ d) (40)

H = (a¡ c) + (b¡ d) (41)

then,

hi = (1=2(N))(G
X

j

Km(j) +H(N)) (42)

Proof:

If

hi = (1=2(N))(G
X

j

Km(j) +H(N)) (43)

then since,

X

j

K(j) = s¡ r (44)

hi = (1=2(N))(G(s¡ r) +H(s+ r)) (45)

= (1=2(N))((G+H)(s)¡ (G¡H)r) (46)

= (1=2(N))((2(a¡ c)(s) + (2(b¡ d))r) (47)

= Payoffi(S1)¡ Payoffi(S2) (48)

Now consider the micro-con¯guration where we have,

p¤m = (1=C) exp(
1

2
¯°(Km)) (49)

= (1=C) exp(
1

2
¯
X

i

hiK
m(i)) (50)
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subst. for the payo® di®erence we have,

= (1=C) exp(
1

2
¯
X

i

(Payoffi(S1;K
m)¡ Payoffi(S2; K

m))Km(i)) (51)

= (1=C) exp(
1

2
¯[
X

i

(1=2(N))(G
X

j

Km(j) +HN))Km(i))] (52)

Considering the exponent of (52), for any population with s and r , the
exponent may be written as,

1

4N
¯[G(M2)] +

1

2
¯HM (53)

where,

M =
NX

i=1

K(i) = s¡ r (54)

Thus the probability of any con¯guration depends only on the numbers in total
playing strategy S1 or S2. Since the number of the agents playing S2 is r then
the number playing S1 is N ¡ r: Thus,

M =
NX

i=1

K(i) = (N ¡ r)¡ r = N ¡ 2r (55)

and there are
¡
N
r

¢
such arrangements of agents playing S1 or S2:Thus the prob-

ability of ¯nding r agents playing S2, is given by,

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G(M2)

N
] +

1

2
¯HM ] (56)

The non-normalized frequency of the number of agents playing S2 is then,

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G(N ¡ 2r)2

N
] +

1

2
¯H(N ¡ 2r)] (57)

which may be written in terms of the expected payo®s as

p(r) =
N !

r!(N ¡ r)!
exp(

1

2
¯f(Payoffi(S1)¡ Payoffi(S2))(N ¡ 2r)g) (58)

To derive the normalized distribution we divide (58) through by the normal-
ization constant,

C =
NX

r=0

p(r) =
NX

r=0

f
N !

r!(N ¡ r)!
exp(

1

2
¯f(Payoffi(S1)¡Payoffi(S2))(N¡2r)g)g

(59)
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5. The Equilibrium Selection Procedure

Equilibrium selection is predicated on the elimination of uncertainty as re-
gards the agents choice of strategy, i.e. as agents perceive the best response to
the existing con¯guration of strategy choice.The selection procedure thus con-
sists of noting the limiting form of the normalized distribution of (58) as the ¯
parameter is taken to in¯nity, i.e.,

lim
¯!1

p(r) = lim
¯!1

1

C

N!

r!(N ¡ r)!
exp(

1

2
¯f(Payoffi(S1)¡Payoffi(S2))(N¡2r)g)

(60)
Since (60) is a discrete distribution de¯ned over the total number of agents,
N, the solution for the exact properties of the limiting distribution will rely on
computational methods considered in Section 7. However, analytical approx-
imations to the stationary values of the normalized distribution p(r) may be
considered; and the resulting values compared with the exact numerical com-
putations in Section 7.
Let us assume that the number in the population is quite large, so that,

r¤ = r=N (61)

may be viewed as a continuous variable. A typical plot of p(r) will then appear
as Fig.2; and our interest lies in determining the stationary values of p(r).

Fig.2
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The assumptions under which Fig.2 was constructed may be found in Section
7 below.
An analytical approximation to the stationary values of the distribution p(r)

may be determined as follows.
From eq.(57) consider the ratio,

q(r) =
p(r + 1)

p(r)
=
N ¡ r

r + 1
expf¡¯G(N ¡ 2r ¡ 1)=(N)¡ ¯Hg (62)

At the maxima and minima then,

p(r) s p(r + 1) (63)

and for large N we approximate equality, and so,

expf¡¯G(N ¡ 2r ¡ 1)=(N)¡ ¯Hg =
r + 1

N ¡ r
(64)

let,

r¤ =
r

N
and q¤ =

N ¡ r

N
(65)

denote respectively the proportions playing strategy S2 and strategy S1, then
(64 ) for large N may be written,

expf¡¯(G(1¡ 2r¤) +H)g =
r¤

1¡ r¤
(66)

i.e.,

r¤ =
1

1 + expf¯(G(1¡ 2r¤) +H)g
(67)

i.e. the stationary points of the equilibrium distribution are equal to the ¯xed
points of the logit transformation.
Note that in the present theory the ¯xed points of the logit transformation

are not of themselves an equilibrium selection mechanism The ¯xed points de-
termine the set of candidates from which the selection is made, but the primary
selection mechanism remains the distribution function (60).

6. Nash Equilibria

The question that now may be asked is whether the equilibrium selection
procedure always takes the population to any of the Nash equilibria of the
associated game. First consider the ¯xed points of the logit function. Since
these ¯xed points are the equilibrium candidates proposed by McKelvey and
Palfrey(1995), then it has already been established, assuming that r¤ can be
treated as a continuous variable, that for ¯nite ¯ then the ¯xed points of the
logit do not coincide with any of the Nash equilibria. The question therefore
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arises as to whether the quantal response equilibria pick out the Nash equilibria
as ¯ !1:
To this end we may make use of Theorem 2 established by McKelvey and

Palfrey(1995) that the limit points of the logit equilibria approach the Nash
equilibria of the underlying game as ¯ ! 1: Given that this is the case then
we have established,
(1) The values of r that determine the stationary points of the probability

distribution p(r) are equal to the ¯xed points of the logit transformation (the
"logit equilibria").
(2) By McKelvey and Palfrey(1995) Theorem 2 the ¯xed points of the logit

transform converge on the Nash equilibria as ¯ !1:
(3) Thus the stationary points of the probability distribution p(r) converge

on the Nash equilibria as ¯ !1:
The question of which of the Nash equilibria are selected however remains,

and here there is a substantial di®erence between the evolutionary methodology
proposed in the present paper and that proposed by McKelvey and Palfrey.
McKelvey and Palfrey(1995) propose to "de¯ne a unique selection from the set of
Nash equilibrium by "tracing" the graph of the logit equilibrium correspondence
beginning at the centroid of the strategy simplex (the unique solution when ¯ =
0) and continuing for larger and larger values of ¯:" In the evolutionary selection
process it is that value of r to which the normalized frequency distribution p(r)
converges as ¯ !1

7. Applications

We are now in a position to apply the EQR methodology to the problem
of equilibrium selection in a number of games. We begin with the Stag-Hunt
game.

(1).The Stag-Hunt Game
The payo® matrix for the Stag-Hunt game is given by,

s1 s2
s1 ®; ® ®; 0
s2 0; ® 1; 1

(68)

where 0 < ® < 1: Thus s1 is the 'safe strategy' ; irrespective of what the other
player does, ® is guaranteed. If s2 is played it might yield a superior payo® of
1 , but only if the other player also plays s2; it only yields 0 if the other player
plays s1: Two strict Nash equilibria exist [s1; s1] and [s2; s2]:
Which equilibrium is chosen as ¯ ! 1: In order to pursue the question,

we consider the distribution p(r) generated for the case where N = 50; and the
payo® ® = 0:6:
Thus,
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s1 s2
s1 ®; ® ®; 0
s2 0; ® 1; 1

=
s1 s2

s1 0:6; 0:6 0:6; 0
s2 0; 0:6 1; 1

(69)

and so,

G = (a¡ c)¡ (b¡ d) = (0:6)¡ (0:6¡ 1) = 1 (70)

H = (a¡ c) + (b¡ d) = (0:6) + (0:6¡ 1) = 0:2 (71)

Thus,

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G((N ¡ 2r)2 ¡N)

(N)
] +

1

2
¯H(N ¡ 2r)] (72)

=
40!

r!(40¡ r)!
exp(

1

4
¯[
((50¡ 2r)2 ¡ 50)

(50)
] +

1

2
¯0:2(50¡ 2r)] (73)

Fig.3

Fig.3. illustrates normalized p(r) for the case where ¯ = 0:001:
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Fig.4

Fig4 illustrates p(r) for the case where ¯ = 1:

Fig.5

Fig.5 illustrates p(r) for the case where ¯ = 2:
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Fig.6

Fig.6 illustrates p(r) for the case where ¯ = 2:5:

Fig.7

Fig.7 illustrates p(r) for the case where ¯ = 4: As can be seen although
there are two Nash equilibria the selection mechanism results in convergence
on the equilibrium in which all agents play strategy 1, the risk -neutral Pareto
dominated equilibria.
For the case where ® = 0:5; we have,
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Fig.8

Fig.8 illustrates p(r) for the case where ¯ = 4:The case illustrated in Fig.2

above was for the Stag-Hunt game with ® = 0:51 and ¯ = 2:5, N = 50:

(2). Pure Co-ordination

As an example of the pure co-ordination case we consider the payo® matrix,

s1 s2
s1 1; 1 0; 0
s2 0; 0 2; 2

(74)

and so,

G = (a¡ c)¡ (b¡ d) = 3 (75)

H = (a¡ c) + (b¡ d) = ¡1 (76)

Thus,

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G((N ¡ 2r)2 ¡N)

(N)
] +

1

2
¯H(N ¡ 2r)] (77)

=
50!

r!(50¡ r)!
exp(

1

4
¯[
3((50¡ 2r)2 ¡ 50)

(50)
] +

1

2
¯(¡1)(50¡ 2r)] (78)
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Fig.9

Fig.9 illustrates the case for ¯ = 0:5:

Fig.10

Fig.10 shows p(r) for the case ¯ = 1; and hence convergence on S2 as the
equilibrium selected.

(3). Hawk-Dove.

As an example of the hawk-dove game we consider the payo® matrix,

s1 s2
s1 0:5; 0:5 0; 1
s2 1; 0 0:5(1¡ c); 0:5(1¡ c)

(79)
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and so,

G = (a¡ c)¡ (b¡ d) = ¡0:5c (80)

H = (a¡ c) + (b¡ d) = ¡1 + 0:5c (81)

If c > 1 the game has a unique symmetric mixed strategy Nash equilibrium, in
which case each player uses the strategy (1 ¡ (1=c); 1=c): If c < 1 then there is
a unique mixed strategy Nash equilibrium in which each agent plays the pure
strategy s2: First consider the case c = 3.Then G = ¡1:5; H = 0:5, then, for
¯ = 10

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G((N ¡ 2r)2 ¡N)

(N)
] +

1

2
¯H(N ¡ 2r)] (82)

=
50!

r!(50¡ r)!
exp(

1

4
¯[
3((50¡ 2r)2 ¡ 50)

(50)
] +

1

2
¯(¡1)(50¡ 2r)] (83)

Fig.11

and we have the case illustrated in Fig 11. For the case of c = 0:5 we have
the solution in Fig.12.
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Fig.12

(4). Battle of the Sexes.

As an example of the battle of the sexes game we consider the payo® matrix,

s1 s2
s1 0; 0 1; 2
s2 2; 1 0; 0

(84)

and so,

G = (a¡ c)¡ (b¡ d) = ¡3 (85)

H = (a¡ c) + (b¡ d) = ¡1 (86)

The only nondegenerate mixed strategy Nash equilibrium of the game has S2 =
2=3.

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G((N ¡ 2r)2 ¡N)

(N)
] +

1

2
¯H(N ¡ 2r)] (87)

=
50!

r!(50¡ r)!
exp(

1

4
¯[
¡3((50¡ 2r)2 ¡ 50)

(50)
] +

1

2
¯(¡1)(50¡ 2r)] (88)

Consider the case for ¯ = 10; then Fig.13 illustrates convergence to the Nash
equilibrium.
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Fig.13

(5). The Prisoner's Dilemma

As an example of the prisoner's dilemma game we consider the payo® matrix,

s1 s2
s1 3; 3 0; 5
s2 5; 0 1; 1

(89)

and so,

G = (a¡ c)¡ (b¡ d) = ¡1 (90)

H = (a¡ c) + (b¡ d) = ¡3 (91)

p(r) =
N !

r!(N ¡ r)!
exp(

1

4
¯[
G((N ¡ 2r)2 ¡N)

(N)
] +

1

2
¯H(N ¡ 2r)] (92)

=
50!

r!(50¡ r)!
exp(

1

4
¯[
¡1((50¡ 2r)2 ¡ 50)

(50)
] +

1

2
¯(¡3)(50¡ 2r)] (93)

Consider the case for ¯ = 10; then Fig.14 illustrates convergence to the Nash
equilibrium.

22



Fig.14

8.Conclusion

The proposed equilibrium selection mechanism established by the above
methodology may be compared with results from the existing literature in this
¯eld. Firstly, consider the comparison with the "statistical mechanical" ap-
proach to strategic interaction studied by Blume(1993), (1996), Herz(1993),
Brock and Durlauf(1995),Durlauf(1996). A major aspect of this literature was
in emphasising the role of local interactive behaviour, with the consequence that
the outcome of this procedure was bound to focus on the microdistributions of
strategy choice, i.e.the distributions of type (17) considered above. By chang-
ing the assumption to global pairwise matching we are able as a consequence
to establish the macro distributions over strategy choice, and thence establish
the relationship to the more traditional econometric approach to strategy choice
via the quantal response model. However the essential component of the "sta-
tistical mechanical approach" is the use of a dynamic process, in our present
case the Markov chain, which allows the distribution function over choices to
be determined. We regard the lack of such a formal dynamical process within
the econometric quantal response approach, as being the major distinguishing
feature between an evolutive and non-evolutive equilibrium selection process.
Thus when we turn to the quantal response literature, we can see that the

major di®erence with the present approach does lie with the construction of the
evolutionary process by which the change in the probability distribution over
agent choices is determined, absent from the McKelvey and Palfrey(1995),(1996)
and associated papers. In QRE models, the requirement for equilibrium is that
the probability of each and every agents choice is equal to the current proportion
in the population making that choice. The method by which the equilibrium
distribution is known to agents is left unstated as is common in all deduc-
tive models of this type. An extension of the QRE to incorporate a dynamic
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adjustment mechanism was proposed by Chen, Friedman and Thisse(1996) in
which they identify knowledge of the mixed strategies of other players with
the average of observed behaviour of the players from the initial period to the
present, as they note "the empirical distributions generate the beliefs that play-
ers have about one another". This mechanism provides a rationale as to why the
equilibrium distribution should be known to all agents, however the proposed
equilibrium selection mechanism is identical to that proposed by McKelvey and
Palfrey(1995).
The clear distinction between the QRE model of McKelvey and Palfrey, and

the extension of Chen, Friedman and Thisse, compared to the evolutive quantal
response model can thus be clearly seen. Both QRE and EQR generate the same
set of candidates from which the equilibrium selection is made, i.e.,. the ¯xed
points of the quantal response contraction, However di®er formally in terms of
the selection process with regard to the equilibrium that is chosen. Selection in
both is determined by the low noise limit, i.e. taking the noise parameter to zero,
(i.e. equivalent to taking the ¯ parameter to in¯nity).Under EQRMcKelvey and
Palfrey "de¯ne a unique selection from the set of Nash equilibrium by "tracing"
the graph of the logit equilibrium correspondence beginning at the centroid of
the strategy simplex (the unique solution when ¯ = 0) and continuing for larger
and larger values of ¯:" In contrast the EQR equilibrium selected results from
knowledge of the probability distribution over agents choices, and the limiting
form of this distribution as the low noise limit is taken.
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