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Abstract

Two main uses of categories are classification and feature inference, and category labels have

been widely shown to play a dominant role in feature inference. However, the nature of this influ-

ence remains unclear, and we evaluate two contrasting hypotheses formalized as mathematical

models: the label special-mechanism hypothesis and the label super-salience hypothesis. The spe-

cial-mechanism hypothesis is that category labels, unlike other features, trigger inference decision

making in reference to the category prototypes. This results in a tendency for prototype-compati-

ble inferences because the labels trigger a special mechanism rather than because of any influ-

ences they have on similarity evaluation. The super-salience hypothesis assumes that the large

label influence is due to their high salience and corresponding impact on similarity without any

need for a special mechanism. Application of the two models to a feature inference task based on

a family resemblance category structure yields strong support for the label super-salience hypothe-

sis and in particular does not support the need for a special mechanism based on prototypes.
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1. Introduction

Arguably the most important aspect of categories is that they facilitate the predictive

inference of hidden features. But how does category membership influence feature infer-

ence decision making? What does category membership information add? And in what

way is this information added?

It is not surprising that category labels as indicators of category membership should

receive a lot of attention in the context of feature inference decision making as they are
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clearly markers for a substantial amount of hidden information and knowledge about

category instances. For example, in their classic experiments Gelman and Markman

(1986) contrasted the influence of category labels versus perceptual similarity on feature

inference. One case comprised presenting participants with two instances and a testing

item. One instance was labeled as a bird, looked like a flamingo, and was said to have

the hidden feature of a right aortic arch, and the second was labeled a bat, looked like a

bat, and was said to have the hidden feature of a left aortic arch. The test case was

labeled a bird and looked like a dove, so while it had the same category label as the fla-

mingo instance (bird), it was perceptually more similar (in the picture) to the bat instance.

Participants were then asked to infer whether the test case had a right aortic arch, like the

matching category instance (bird), or a left aortic arch, like the more perceptually similar

instance of the bat category. Gelman and Markman’s main finding was that most adults

and the majority of children inferred a hidden feature consistent with an instance’s cate-

gory label, thus matching a perceptually dissimilar but nonetheless identically labeled

instance, even though there was another, perceptually more similar item but with a differ-

ent category label.

This method of contrasting category membership information with similarity has been

adapted, notably by Yamauchi and Markman (2000), to the more controlled stimuli in

perceptual categorization paradigms, on which the present research is based. In overview,

Yamauchi and Markman (2000) also found that category labels dominantly influenced

feature inferences even when overall perceptual similarity indicated a different response.

In more detail, they used a pure decision making task in which participants were given a

category summary containing all of the category instances presented simultaneously (sim-

ilar to Fig. 1). The key result was that participants made feature inferences consistent

with the prototype corresponding to the category label even when the other features in

the test case were from the prototype of the other category. Put differently, participants

made inference decisions consistent with the central tendency of the category indicated

by the category label even when simple similarity was higher to instances of the opposing

category.

Yamauchi and Markman’s (2000) main conclusion was that their results supported the

hypothesis that feature inference decision making focuses on the central tendency of the

category indicated by the instance’s category label. Specifically, “. . . information about

category membership molds the way people infer a characteristic [feature] of an object.

When the category membership of an object is known, people pay particular attention to

the feature value most prevalent in the members of the corresponding category [the proto-

type]” (p. 792). More generally they summarized their results to “indicate category mem-

bership is indeed a key determinant of inductive judgment and that category labels are

not simply another feature on par with other category features” (p. 793).

Central to the argument that labels are not the same as other features is that even if labels

are treated as simply features like other perceptual features they still are able to dominate

multiple other features to drive feature inference. That is, one label “feature” still dominates

multiple perceptual features. However, from the perspective of simple similarity, this

argument is based on the assumption that all the features influence similarity roughly
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equally. In the context of simple similarity, one feature might dominate others because it is

truly different from the others in terms of invoking different cognitive mechanisms, or it

might dominate others for the more basic reason that it is perceptually more salient and just

has a larger influence on similarity than other features but only as a matter of degree. We

will examine this seemingly subtle distinction between a special mechanism versus simple

salience below in greater detail, but it is worth emphasizing in advance that it results in sur-

prisingly large predicted differences a priori in people’s behavior.

To reiterate, category labels should and do have a large influence in decision making

consistent with their adaptive functionality, but the nature of this influence on decision

making is not clear. Put more precisely, the critical questions are as follows: Do category

labels trigger systematic prototype-compatible feature inferences? Or are they just espe-

cially salient features that have a large effect on similarity assessment to whatever repre-

sentation is available but no special tendency to produce integrative—that is, prototype-

compatible—decision making?

In our experiment, the instances from two categories were presented simultaneously

(Fig. 1), and participants then inferred missing features for test cases (e.g., Fig. 3). This

summary decision-making methodology was adapted from Yamauchi and Markman

(2000) and Murphy and Ross (1994, 2005), but it has been employed in the study of cate-

gory-based induction (see Hayes, Heit, & Swendsen, 2010; Murphy, 2002, for broad sum-

maries of category-based induction) and of course is widely used in decision-making

research.

Fig. 1. Category summary sheet with instances from two categories corresponding to the abstract category

structure in Table 1.

1596 M. K. Johansen et al. / Cognitive Science 39 (2015)



1.1. Predictions of the two main hypotheses formalized as models

The label special-mechanism hypothesis is in part derived from Yamauchi and Mark-

man (2000). It assumes that the category label strongly influences feature inference

because it indicates category membership, invokes the integration of the category proto-

type from the category instances in working memory during decision making, and so

results in a strong tendency for prototype-compatible feature inferences. This should

occur even if none of the stimulus features match that prototype’s features.

We have formalized the label special-mechanism hypothesis (Appendix A) in terms

of prototype representation (Blair & Homa, 2001; Homa, Rhoads, & Chambliss, 1979;

Homa, Sterling, & Trepel, 1981; Posner & Keele, 1968; Smith & Minda, 1998, 2000)

as applied to feature inference decision making (related to the applications of prototype

representation to category learning data in Johansen & Kruschke, 2005; Yamauchi &

Markman, 1998). For a feature inference test case, the model simply calculates the sim-

ilarity of the probe to the prototype which has the same category label as the probe,

relative to its similarity to the prototypes of all other categories, and then predicts the

missing prototype-compatible feature to the extent that the probe is similar to that pro-

totype. So the core aspect of this model is that the category label for the test case

uniquely determines how the representation is accessed, unlike other features which

merely influence similarity. Overall, this formalization corresponds to a strong tendency

for prototype-compatible feature inferences, as shown on a variety of testing cases

which we specify below.

The label super-salience hypothesis, on the other hand, is directly related to the simi-

larity and attention based account of the role of category labels summarized in part in

Sloutsky (2003) from a developmental perspective (see also Sloutsky and Fisher, 2004,

2011) and is related to the assessments of salience in Yamauchi and Markman (2000)

and Deng and Sloutsky (2013). The super-salience hypothesis assumes that a physical cat-

egory label, though a marker of category membership, can also be particularly salient

compared to the other stimulus features. Hence, the label may influence inference deci-

sion making relatively more than the other features due to its greater impact on similarity

assessment, without directly determining how the representation is accessed.

We have formalized (see Appendix A) the label super-salience hypothesis in terms of

an exemplar model (the generalized context model; Nosofsky, 1984, 1986) as applied to

feature inference decision making (see also Johansen & Kruschke, 2005; Yamauchi &

Markman, 1998). For a feature inference test case, the model calculates the similarity of

the case to the category instances that predict one feature inference relative to similarity

to instances that predict a contrasting feature inference, with a resulting response proba-

bility in proportion to those similarities. A significant difference from the special-mecha-

nism model is that the category labels are treated just like the other features in

determining similarity; their influence, like other features, is modulated by the amount of

attention they receive, but they do not have any special-mechanism invoking property of

determining the selected category to which similarity is computed. Critically, similarity

assessment need not result in any strong tendency for prototype-compatible feature
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inferences. On the contrary, a prototype-incompatible feature inference may be made if

the probe is similar to an exemplar with a prototype-incompatible feature.

An important difference between the models, which is a major focus of the experiment

reported here, arises in situations where a feature inference probe is more similar to the

prototype of one category (category A) than to the prototype of another category (B), but

at the same time is very similar to an instance of category A, which nonetheless has a

target feature typical of the prototype from the other category (B). Let us denote the

modal value of category A members for the missing feature as a and the modal value for

category B members as b. Assuming that attention is evenly distributed across all feature

dimensions as well as the category label, the super-salience model can predict that partic-

ipants might infer the value b for the missing feature, because similarity to the particular

category A instance strongly biases the similarity computation. The special-mechanism

model, in contrast, will predict that the value a is inferred. It does this because the

probe’s label invokes the category A prototype and therefore inherits the feature value

attached to the prototype.

Before describing how the experiment contrasted the models for the special-mechanism

and super-salience hypotheses, it is useful to emphasize the main process differences

between the models as summarized schematically in Fig. 2. Both models generate the

response probability of a particular feature inference (as indicated by “?”) for a given test

item with a given category label and set of features as indicated by “P(feature 1|given

LABEL A and feature x?xx)” at the center of the figure. The super-salience model,

shown at the bottom of the figure, determines the probability of feature 1 via similarity to

instances with feature 1 in all categories, so instance category labels influence similarity

in the same way as other features. In contrast, the special-mechanism model, shown at

the top of the figure, determines the probability of feature 1 via similarity to the proto-

Fig. 2. Schematic of the difference between the special-mechanism and super-salience models.
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type corresponding to the category label in the test item, Label A in this case, so the cat-

egory label has the special property of determining which prototype similarity is calcu-

lated in relation to and hence is handled differently from other features.

To contrast the label special-mechanism and label super-salience hypotheses, feature

inference test cases should differentiate category-integrated, prototype-based responding

from unintegrated responding based on similarity to particular category instances. To do

this, we have used a family resemblance category structure as shown in Table 1. The 16

category instances corresponding to the 16 stimuli in Fig. 1 are shown at the top of the

table where each row indicates a particular category instance. Each instance is associated

Table 1

Family resemblance abstract category structure and test cases in the experiment

Abstract Features Trial Types Trial Order

A 2111

A 1211

A 1121

A 1112

A 2111

A 1211

A 1121

A 1112

B 1222

B 2122

B 2212

B 2221

B 1222

B 2122

B 2212

B 2221

B 1?22 Non-Exception 3

A ?211 Non-Exception 5

B ?122 Non-Exception 10

A 2?11 Non-Exception 12

A 212? Label vs. Feature 4

B 11?2 Label vs. Feature 7

A 22?1 Label vs. Feature 9

B 121? Label vs. Feature 11

A 1?11 Exception 1

A ?111 Exception 2

B 2?22 Exception 6

B ?222 Exception 8

Note. The abstract category structure is composed of the 16 instances specified at the top of the left column,

and the testing items are at the bottom where a “?” indicates the dimension on which participants were asked to

infer the missing feature. The assignment of abstract to physical stimulus dimensions was as follows: category

label (A) = “Planet A” and category (B) = “Planet B”; dimension 1 was wing width, 1 = narrow and 2 = wide;

dimension 2 was nose cone shape, 1 = curved and 2 = pointed; dimension 3 was booster number, 1 or 2; and

dimension 4 was portal orientation, 1 = down and 2 = up. The second column specifies test trials of equivalent

types as specified in the main text. The actual order of the test cases is specified in the third column.
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with a category label (A or B) as shown in the first column and has four feature values

(1 or 2), one on each of four feature dimensions corresponding to the remaining four col-

umns, one for each of the four perceptual features composing the stimuli in Fig. 1. (See

the note in Table 1 for this mapping.) The bottom of Table 1 shows that three kinds of

test trials were used designated Label versus Feature, Exception, and Non-Exception

trials.

Starting by direct analogy with Gelman and Markman’s (1986) classic contrast

between category labels versus similarity, Label versus Feature trials are so called

because they are composed of a category label from one category, but more features typi-

cal of the other category, together with a missing feature. The missing feature is then

queried. Consequently, the missing feature value as predicted by the prototype corre-

sponding to the category label is potentially different from the feature predicted by simi-

larity to the category instances, much like in Gelman and Markman’s study. For example,

in Table 1 the Label versus Feature test case B 11?2 shares more features with the

instances of Category A, which have many 1 features, than the instances of Category B,

which have many 2 features, so instance similarity tends to predict a 1 feature response

Fig. 3. Examples of testing trials from the experiment (Table 1) with a choice between two possible response

features.
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on the ? dimension. However, B 11?2 nonetheless has the label for category B, so the

category label predicts a 2 feature response matching the category B prototype, B 2222.

The top of Fig. 3 shows this example where, in particular, the two boosters feature corre-

sponds to the prototype associated with the label (Planet B) and the one booster feature

corresponds to instance similarity for the contrast category. Testing trials of this kind

featured prominently in Yamauchi and Markman (2000) and are important here as well.

Exception trials had a response feature predicted by the nearest, most similar category

instance that was different from the feature predicted by the category prototype corre-

sponding to the instance’s category label. For example, the nearest exemplar to the fea-

ture inference test case B ?222 in Table 1, that is the category instance B 1222, predicts

a different feature than the category prototype, B 2222, features 1 and 2, respectively.

The bottom of Fig. 3 shows this example where, in particular, the wide wings feature

corresponds to the prototype associated with the label (Planet B) and the narrow wings

feature corresponds to the feature from the most similar instance. Yamauchi and Mark-

man (2000) did not have testing trials of this type; however, the Exception trials are criti-

cal for allowing participants the possibility of exhibiting prototype-incompatible feature

inferences even in the presence of a large emphasis on the category labels as shown in

the Label versus Feature trials.

Lastly, for Non-Exception trials, instance similarity and the category prototype corre-

sponding to the category label predict the same feature. For example, the test case B ?

122 has B 2122 as its nearest instance, which predicts the same missing feature, 2, as the

category prototype, B 2222. In addition to providing important constraints on the model-

ing assessment, these trials provided a check that participants weren’t simply responding

randomly in the task.

We derive predictions from the special-mechanism and super-salience hypotheses for

these testing trial types in two ways: First, we generate predictions from the hypothesis

definitions. Then, we evaluate what the formalized versions of the hypotheses as models

can predict a priori for this category structure and testing trials across a broad range of

parameter values. Both the special-mechanism and super-salience hypotheses are consis-

tent with strongly label-consistent feature inferences on Label versus Feature trials. How-

ever, the hypotheses predict this for different reasons that can be differentiated by the

Exception trials.

The special mechanism hypothesis predicts label-consistent feature inferences because

the label, unlike the other features, has the unique tendency to invoke prototype-compati-

ble feature inferences. The special-mechanism hypothesis can predict differences in the

tendency for these prototype-compatible inferences as a function of how much attention

the instance label receives, but to the degree that the label receives a lot of attention then

this translates into a correspondingly strong tendency to predict prototype-compatible fea-

ture inferences for the Exception trials. Intuitively, because the label dominates and

forces reference to the prototypes, there is effectively no way to predict prototype-incom-

patible features because a given prototype does not include any.

Despite the apparent intuitive contrast between the hypotheses for this kind of testing

trial, the super-salience hypothesis can also predict label-consistent feature inferences but
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as a result of the dominant influence of the labels in similarity assessment to the category

instances, not the category prototypes. In addition, it also can predict differences in the

tendency for label-consistent feature inferences as a function of how much attention the

instance label receives. But critically the super-salience hypothesis is not constrained to

predict prototype-compatible features on Exception trials but is also consistent with

prototype-incompatible feature inferences. Intuitively, even if the label is dominant, the

test case can be so similar to a particular category instance that a prototype-incompatible

feature inference is predicted.

1.2. Model simulations

While the formal models were ultimately fitted to all the inference testing trial

responses of each participant individually (as reported later), it is useful for visualization

to combine test trials of a given type together, which we do both here and in the presen-

tation of the various experimental data sets. That is, both the model predictions and the

data were coded in terms of the proportion of label-based, prototype-compatible responses

across the trials of a given type. So, for example, for the four Label versus Feature test-

ing trials in Table 1, this proportion corresponds to the average proportion of prototype-

compatible responses (either predicted by the model or observed in the data) consistent

with the label present in each testing case across all four cases. Likewise, an average pro-

portion of prototype-compatible responses can be generated across the four Exception tri-

als in Table 1 (and also for the Non-Exception trials). This method of analysis has the

important advantage that different patterns of feature inference responses across the test-

ing cases in Table 1 can be represented as different points in a scatter plot of proportions

of prototype-compatible responses on Label versus Feature trials against Exception trials.

To test a priori predictions from the models (as specified in Appendix A), we gener-

ated a large number of simulated participants. Each simulated participant was produced

by selecting random values for each free parameter in the model from a reasonable range

of possible parameter values. These free parameters included a parameter for the amount

of label attention as well as a separate attention parameter for each of the four feature

dimensions. For each set of random parameters, the model generated response proportions

for each of the testing cases in Table 1 based on this category structure, and these were

averaged together to produce response proportions for each type of testing trial—Non-

Exception, Label versus Feature, and Exception. The Label versus Feature and Exception

proportions were then used to generate scatter plots in which each point represents a sin-

gle simulated participant.

The results of 3,000 simulated participants for the special-mechanism and super-sal-

ience models are shown in the top and bottom panels, respectively, of Fig. 4, where the

x-axis is the average proportion of prototype-compatible responses on the Exception trials

and the y-axis is the average proportion of prototype-compatible responses on the Label

versus Feature trials. In addition the gray-scale value (and shape) of each marker corre-

sponds to ranges of average response proportions on Non-Exception trials (tabulated

across the four Non-Exception trials) as specified in the figure’s key.
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What is immediately obvious from the simulations illustrated in Fig. 4 is that the mod-

els predict radically different things in this data space. There is very little overlap in

terms of what the models can predict except in the middle near guessing and near the top

right corner, which represents high prototype-compatible response proportions on Label

versus Feature and Exception trials. This corresponds to situations where most of the

Fig. 4. A priori predictions from the models corresponding to the label special-mechanism (top) and label

super-salience (bottom) hypotheses for the test cases (Table 1) based on 3,000 simulated participants each

using random parameter values as described in Appendix A. p.c. = prototype-compatible. The gray-scale of

the markers corresponds to average response proportion ranges for the Non-Exception trials.
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attention is allocated to the category labels and where both models make essentially the

same predictions.

In addition, the results for Non-Exception trials, coded by symbol gray scale in

Fig. 4, more subtly indicate a difference between the models. In the top panel the

special-mechanism model predicts progressively higher average proportions on

Non-Exception trials (darker markers) as one moves farther to the right in the space,

that is higher prototype-compatible responding on Exception trials. Put another way, the

special-mechanism model appears to be constrained to predict response proportions near

0.5 on Non-Exception trials to the degree that the average response proportions on

Label versus Feature and Exception trials are near 0.5. This is not conceptually surpris-

ing in that the special-mechanism model’s ability to predict prototype-compatible

responding on Label versus Feature and Exception trials constrains it to also predict

prototype-compatible responding on Non-Exception trials as this is based on the same

prototypes. The super-salience model, on the other hand, is constrained in almost the

opposite way in that low Non-Exception proportions (near 0.5, indicated by lighter

markers in the bottom panel) correspond to Label versus Feature and Exception propor-

tions near the center of the space, but high proportions near 1 allow the model to get

to a wider range of locations in the data space. Conceptually this makes sense in that

the super-salience model is an exemplar model and hence its ability to predict propor-

tions near 0.5 on Non-Exception trials then tends to constrain Label versus Feature and

Exception trials also to be near 0.5. So overall, Non-Exception trial responding

constrains the models in different ways.

Intuitively the critical aspects of the difference between the models in this data space

arise from their different capacities to predict prototype-incompatible responses on Excep-

tion trials as a result of similarity to specific instances (left-right in this data space) while

at the same time predicting prototype-compatible responses on Label versus Feature trials

as a result of a lot of salience-driven attention to the category labels (up-down in the

space). To specify the qualitative difference between the models in more detail consider

the four quadrants of the data space: The special-mechanism model can account for a

range of responding in the right two quadrants (top panel in Fig. 4), while the super-sal-

ience model can account for a range of responding in the top two quadrants and at least

partly into the bottom left quadrant (bottom panel of Fig. 4).

The super-salience model can account for the full, left-right, range of responding on

Exception trials by adjusting how strongly its responding is determined by similarity to a

single nearest instance that predicts a prototype-incompatible feature versus similarity to

many instances predicting prototype-compatible features. In contrast, the special-mecha-

nism model does not have a systematic way to predict a tendency for prototype-incompat-

ible responding on these trials, on the left of the space, because its responses are derived

from the category prototypes and hence correspond to a tendency for prototype-compati-

ble feature inferences, hence on the right of the space. Further, these differences between

the models on Exception trials (left-right in the space) interact differently with the Label

versus Feature predictions (up-down in the space) in terms of differences in the amount

of attention to the category labels.
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Lastly, the hypotheses both imply differential responding depending on the relative pro-

portions of attention given to the category label versus other features as formalized in the

models by free attention parameters for the label and separately for each feature dimension.

However, the hypotheses also suggest that that these influences might be different across the

two models, so to assess this we calculated the proportion of label attention to total attention

(i.e., to both label and features) for each simulated participant in the context of each model.

These proportions were then tabulated as equivalence bands, for example, proportions of label

attention in the range 0.0–0.1 were treated as equivalent, 0.2–0.3, as another range, and so on.
In Fig. 5 the proportion of label attention is coded by the gray-scale key such that

more attention corresponds to a darker data marker (not to be confused with the gray

scaling indicating the proportion of Non-Exception trial responding in Fig. 4). For both

models, increases in label attention, and darker markers, correspond to stronger proto-

type-compatible responding on Label versus Feature trials (up–down in the space), but

this interacts differently with Exception trial responding for the two models (left–right).
Overall, the models make strongly contrasting predictions in this data space, and this dif-

ference is borne out by sharply different predictions for the data from individual partici-

pants in the following experiment.

2. Experiment

The family resemblance category structure used here (see Table 1) is closely related to

the category structure used by Yamauchi and Markman (2000). Importantly, it allows the

testing trial types described above to be contrasted: Label versus Feature, Exception, and

Non-Exception trials.

In addition to the “inference decision making” condition, this experiment included a

condition designed to clarify the role of the category labels in inference decision making

by indirectly manipulating their relative salience. In this “feature label” condition, one of

the feature dimensions in the stimuli, the wings of the rocket ships, was removed from

the stimuli throughout the entire experiment and replaced with its corresponding written

description, “WIDE WINGS”/“NARROW WINGS.” Other than the replacement of a

physical feature with a written descriptor, this “feature label” condition was the same as

the feature inference condition including the occurrence of category labels and the same

relative positioning of the category instances in the category summary.

In the context of the label super-salience and special-mechanism hypotheses, the pur-

pose of the feature label condition was to evaluate the influence of the category label as

the only word feature in the inference decision making condition by introducing another

word feature. The intent was to competitively reduce the salience of the category labels

as the only word features while leaving category membership information intact. This

manipulation of having two word labels for each instance, only one of which was a cate-

gory label, was suggested by Yamauchi and Markman’s (2000) Experiment 3. Though

their manipulation was somewhat different in that each instance only had a single label,

the results provided some of their most compelling evidence for the label special-mecha-
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nism hypothesis: For participants in their feature inference experiment who were told that

the word labels associated with each instance indicated a hidden feature, the proportion

of prototype-compatible feature inferences was lower than for participants who were told

that the labels indicated category membership. This result seems consistent with the label

special-mechanism hypothesis in that the label indicating category membership corre-

Fig. 5. A priori label attention predictions from the models corresponding to the label special-mechanism (top)

and super-salience (bottom) hypotheses for the test cases (Table 1) based on 3,000 simulated participants (the

same 3,000 as in Fig. 4), each using random parameter values as described in Appendix A. p.c. = prototype-

compatible. The gray-scale of the markers is the proportion of label attention, unlike in Fig. 4.
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sponded to more prototype compatible responding than when it indicated a hidden fea-

ture. But an alternative, simpler explanation of Yamauchi and Markman’s finding is that

the instructional manipulation influenced the salience of the category labels independently

of any special tendency to induce integrated prototype-compatible inferences. Saying that

a label represents an unseen feature might have reduced attention to it by implying that it

is less important than a category label and comparable to other visible features, hence

moderating the large expected influence on responding (i.e., the super-salience). This

might have particularly been the case as the labels “monek” and “plaple” sound more like

categories than features.

In the context of the two hypotheses and corresponding models (Appendix A), if cate-

gory labels have a special status in terms of invoking a tendency for prototype-compatible

feature inferences, then a change in their salience should have little if any influence on

this tendency as long as their physical salience is sufficient to clearly indicate category

membership. But if the dominant influence of category labels on feature inference is due

to their super-salience, then the competitive salience of another feature should reduce this

influence. So the purpose of the feature label condition was to allow a further evaluation

of the super-salience and special-mechanism hypotheses by using a manipulation designed

to reduce the salience of the category labels but critically with Exception trials present to

allow participants to indicate nonintegrative responding.

2.1. Method

2.1.1. Participants
There were 25 and 31 participants, respectively, in the inference decision making and

feature label conditions of this experiment, most of whom were undergraduate psychol-

ogy students at Cardiff University.

2.1.2. Materials and procedure
All participants were instructed to carefully study the instances from two categories on a

category summary sheet (Fig. 1). This summary sheet was constantly available during test-

ing. Participants were asked to infer a missing feature for each of a series of category

instances by circling one of the two possible features shown below the instance (e.g., Fig. 3).

The abstract category structure and testing cases are shown in Table 1 together with

the abstract-to-physical-feature mapping for the four stimulus dimensions composing the

rocket ship stimuli (Fig. 1): wing width, nose cone shape, booster number, and portal ori-

entation. For example, B 1?22 indicates an inference test case where the instance was a

member of category B, had narrow wings, two boosters, and an up-oriented portal, and

participants were asked to infer the missing feature as either a pointed or curved nose.

The presentation order of the testing trials is shown in column 3 of Table 1.

The feature label condition was the same as the inference decision making condition

except that one of the feature dimensions, the wings, was removed from the physical stimu-

lus and replaced by a word label underneath each rocket ship for all of the category sum-

mary instances and testing items throughout the experiment. That is, a rocket with wide
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wings had the physical wings removed and the written label “WIDE WINGS” placed under-

neath it, and narrow wings were replaced with “NARROW WINGS.” Otherwise the

arrangement of the instances into categories on the summary sheet (Fig. 1) was the same.

2.2. Results and discussion

2.2.1. Inference decision making condition
The prototype-compatible response proportions for the Non-Exception, Label versus

Feature, and Exception trials in the inference decision making condition are shown on the

left of Fig. 6 with standard error bars, averaged across the trials of a particular type

(Table 1). All testing trial data were coded in terms of prototype-compatible responding,

that is, in reference to the category label present for each testing case and the category

prototypes, A 1111 and B 2222. So, for example, 0.92 of the participants in this condition

responded to the testing case A ?211, which asked for a response on the first feature

dimension, with the prototype-compatible feature 1 from the category prototype A 1111.

Not surprisingly most participants responded to the Non-Exception trials with the pro-

totype-compatible feature, 0.97. This is similar to the 0.89 for this trial type from Experi-

ment 1 of Yamauchi and Markman (2000).

For Label versus Feature trials, most participants responded consistently with the label-

based prototypes, 0.77. This indicates even more prototype-compatible responding than

on the Label versus Feature trials from Yamauchi and Markman (2000), 0.52.

Lastly, the Exception trials resulted in less than half of the participants’ responses,

0.41, being consistent with the label-based prototype. Yamauchi and Markman (2000) did

not have trials of this kind.

Fig. 6. Results from the inference decision making and feature label conditions in terms of average proto-

type-compatible response proportions by trial type (with standard error bars). See the main text for the defini-

tions of the Non-Exception, Label versus Feature, and Exception trial types.
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In contrast with the conclusions of Yamauchi and Markman (2000), the Exception trial

results do not support a special mechanism being invoked by the category label in terms

of responding in reference to the category prototypes: More than half of the responses

were contrary to the prototype corresponding to the category label, even though the

majority of other features also matched that prototype. On the other hand, this result is

consistent with the label super-salience hypothesis: High salience merely means that the

category label has a larger impact on decision making than the other feature dimensions.

But if that process is referencing a nearest exemplar, the label and other features both

contribute to similarity to that exemplar and hence agree, predicting the same feature.

The Exception trial results do not provide compelling evidence for the special-mecha-

nism hypothesis. But with the average data response proportion of 0.41 fairly close to

0.5, the result is also not clearly different from two-response guessing. This suggests con-

sideration of individual participant data.

The individual data indicate that participants were not just guessing on the Exception tri-

als. Each participant responded to four different Exception trials (Table 1), and the response

distribution on the left in Fig. 7 shows the proportion of participants who made a given

Fig. 7. Distributions of the number of prototype-compatible responses across the four Exception trials

(Table 1) in the decision making inference and feature label conditions. The dashed reference lines indicate

the proportion of participants expected to make a given number of prototype-compatible responses by chance

on the four Exception trials as determined by the binomial distribution, p(success) = 0.5, if responding corre-

sponded to random guessing between the two possible choices on each of the trials.
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number (0, 1, 2,. . .) of prototype-compatible responses across these four trials. The dashed

lines in the distribution provide a reference for chance responding as determined by the

binomial distribution for each possible number of prototype-compatible responses out of

four (based on a response probability of 0.5 for each of the two possible responses on a

given trial, p(success) = 0.5). The response distribution was strongly bimodal and differs

dramatically from the binomial distribution reference lines that roughly correspond to guess-

ing. At minimum, these data indicate little evidence of guessing.

Using the data space from the a priori model predictions in Fig. 4, a more detailed way

of looking at the individual participant data can be had from a scatter plot of the average

Fig. 8. Average proportion of prototype-compatible (p.c.) responses across the trials of a given type, Exception

and Label versus Feature (Table 1), plotted against each other for the inference decision making (top) and fea-

ture label (bottom) conditions. A small, systematic offset has been added to some data points that had identical

values so data density can be seen, for example, the four data points in the top right-hand corner of the top panel.
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Exception trial response proportions from Fig. 7 against the average proportions for the four

Label versus Feature trials specified in Table 1. This scatter plot in the top panel of Fig. 8

(with identical points slightly offset to indicate data density) suggests quite strong

constraints on where participants do and do not tend to fall in this data space. In particular,

the pattern of data bears a noticeable resemblance to the a priori predictions of the super-sal-

ience model at the bottom of Fig. 4 while being in marked contrast to the a priori predic-

tions of the special-mechanism model at the top of Fig. 4.

The results of fitting the special-mechanism and super-salience models (Appendix A)

to the data from each participant individually are reported in the same Exception against

Label versus Feature data space (see Fig. 9). Specifically, the data from the top panel in

Fig. 8 appear as small diamonds in Fig. 9 while the model fit predictions are shown as

circles whose size and gray-scale indicate the RMSD fit value: A large black circle spa-

tially separated from the data diamonds indicates poor predictions while a small white

circle centered on a data diamond indicates perfect predictions. Identical model predic-

tions for identical data points are offset slightly to indicate data density (as with the data

in the top panel of Fig. 8).

The special-mechanism model (top of Fig. 9) was able to account for the data in the

top right-hand corner of the data space as was the super-salience model. However, the

special-mechanism model was unable to account for the bulk of the data, which lie on

the left in the scatter plots. Note, though, that there was one unusual data point in the

bottom right corner of the data space which the special-mechanism model accounted for

perfectly and the super-salience model accounted for poorly. However, overall, the super-

salience model accounted for the data at the level of individual participants significantly

better than the special-mechanism model (average RMSD 0.16 vs. 0.34, t(48) = �3.73,

p < .001), and again even the super-salience model’s poorer accounts of some specific

individuals still fall in parts of the data space that contain almost all the data, unlike the

special-mechanism model which failed qualitatively for most of the participants.

Finally, the top panel of Fig. 10 shows the proportion of label attention given by the

super-salience model when accounting for each participant in the data space (Fig. 8, top

panel), again consistent with the a priori predictions at the bottom of Fig. 5. The propor-

tion of label attention was highest in the top right corner and lowest toward the bottom

left. (Note that the super-salience model was not able to account for the strange data

point at the bottom right-hand corner anyway, as discussed above, so its label attention

parameter should be largely ignored here.) Although only observed in some participants,

the “super-salience” of the category label should be considered a potential mechanism to

account for the dominance of the category label via salience-driven selective attention.

2.2.2. Feature label condition
An important result for the feature label condition that needs to be emphasized at the

outset arises from modeling analysis reported in detail below: The category label atten-

tion parameter in the super-salience model was significantly smaller for fits of participants

in the feature label condition compared to the inference condition (0.19 vs. 0.36 average

attention weight parameters, t(37) = �2.23, p < .032, assuming unequal variance). Hence,
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the feature label manipulation did have an influence on the amount of attention the cate-

gory labels received and by implication their salience. However, the results specifically

for the label versus feature trials, as shown on the right in Fig. 6, indicate that the propor-

tion of prototype-compatible responses was not lower than in the standard inference con-

dition on the left. In fact it was (insignificantly) higher. But the Exception trials here

resulted in marginally fewer prototype-compatible responses than the decision making

inference condition (t(37.55) = 1.871, p = .069, assuming unequal variance, or Mann–

Fig. 9. Special-mechanism and super-salience model fits to individual participant data from the inference

decision making condition. The data are indicated by small black diamonds while the models’ predictions are

indicated by circles whose size and gray-scale shade indicate how well the model fit a given participant as

measured by RMSD. A model accounting for a participant’s data perfectly corresponds to a small light-col-

ored circle centered on a small diamond (e.g., the four data points in the top right-hand corner). When a

model did not account for a participant well, this corresponds to a large dark circle far away from the small

diamond indicating the data. Some of the data and model predictions have been shifted slightly so as not to

obscure each other. p.c. = prototype-compatible.
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Whitney U = 310.5, p = .183). And more tellingly, the distribution of Exception trial

responding illustrated on the right in Fig. 7 shows a lack of the bimodality found in the

inference decision making condition, indicating less prototype-compatible responding. In

addition, the data space scatter plot in the bottom panel of Fig 8 clearly resembles the a

priori model predictions in Fig. 4 of the super-salience model much more than those of

the special-mechanism model.

The model hypothesis testing results for the feature label condition are shown in

Fig. 11. Specifically, the super-salience model shown at the bottom of the figure

accounted for the individual participant data significantly better than the special-mecha-

nism model at the top of the figure—average RMSD 0.21 versus 0.44, t(60) = �7.80,

p < .001. Even the poorer fits of the super-salience model tend to fall in regions of the

data space containing the vast majority of the data (i.e., on the left of the data space).

Fig. 10. Proportion of label attention in different ranges for the fit of the super-salience model to the data for

each participant in the Exception against Label versus Feature data space for the inference decision making

condition (top panel), corresponding to the data space in the top panel of Fig. 8, and the feature label condi-

tion (bottom panel) corresponding to the data space in the bottom panel of Fig. 8.

M. K. Johansen et al. / Cognitive Science 39 (2015) 1613



The one exception to this is the unusual data point in the bottom middle of the space

(0.5, 0.25), and neither model was able to account for the data of this participant, in the

main because their average response proportion for the Non-Exception trials was very

low, 0.25. (This was the only participant in both conditions to score this low on the Non-

Exception trials.) Both models were able to account for the data point in the top right

corner perfectly by attending solely to the category label. However, the fewer data points

in the top right quadrant here in the feature label condition (one, as shown in the bottom

Fig. 11. Special-mechanism and super-salience model fits to individual participant data from the feature label

condition. The data are indicated by small black diamonds while the models’ predictions are indicated by cir-

cles whose size and gray-scale shade indicate how well the model fit a given participant as measured by

RMSD. When the model accounted for a participant’s data perfectly, this corresponds to a small light-colored

circle centered on a small diamond (e.g., the one data point in the top right-hand corner). When a model did

not account for a participant well, this corresponds to a large dark circle far away from the small diamond

indicating the data. Some of the data and model predictions have been shifted slightly so as not to obscure

each other. p.c. = prototype-compatible.
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panel of Fig. 8) versus in the inference decision making condition (seven, as shown in

the top panel of Fig. 8) are consistent with less attention to the label. Likewise the pro-

portions of label attention in the super-salience model fits to individual participants are

consistent with this, as shown in the data space at the bottom of Fig. 10. Thus, the fea-

ture label manipulation reduced label salience in a way that can be well accounted for by

the super-salience hypothesis.

3. General discussion

A category label serves as a marker of category membership, but at least in perceptual

categorization, a label is also likely to be a highly salient feature which attracts a lot of

attention. The experiment reported here presented a summary of family resemblance per-

ceptual categories (Fig. 1) and asked participants to make a variety of feature inferences

(Table 1) in this purely decision making task with the category summary constantly pres-

ent. The Label versus Feature trials pitted the category label from one category against

several typical features of the other category and showed that category labels have a

dominant influence on feature inference relative to other features, consistent with prior

research (e.g., Gelman & Markman, 1986; Sloutsky, 2003; Yamauchi & Markman, 2000;

but see Deng & Sloutsky, 2013). We have evaluated this influence in the context of two

hypotheses and corresponding formal models (Appendix A): The label special-mechanism

hypothesis implies that the category label invokes the integration of category information

in working memory during feature inference decision making because it directly indicates

category membership, unlike other features, and then critically results in a systematic ten-

dency for prototype-compatible feature inferences. In contrast, the more parsimonious

label super-salience hypothesis implies that the dominant influence of category labels on

feature inference can be explained, not by invoking a special mechanism, but by their sal-

ience and corresponding influence on the similarity assessment process. The additional

mechanism of integrative decision making producing prototype-compatible feature infer-

ences is not needed. Exception test trials were very similar to particular category

instances which nonetheless had atypical, prototype-incompatible features for the queried

feature. The results for these trials in particular were consistent with the label super-sal-

ience hypothesis and did not support the need for the additional processes in the label

special-mechanism hypothesis.

Most important, both the a priori predictions and individual participant fits of models

formalizing these two hypotheses (Appendix A) strongly falsified the special-mechanism

hypothesis and were consistent with the super-salience hypothesis. Lastly, an additional

feature label condition replaced one of the perceptual features of the category instances

with a word feature so as to compete with the salient category labels as the only words

present in the inference decision making condition. The modeling results for these feature

label condition data indicate that the category labels received less attention in this condi-

tion compared to the inference decision making condition, but in addition these results
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still strongly falsified the special-mechanism model while being consistent with the super-

salience model.

A constrained view of these conclusions is that they represent an even more focused

version of non-normative single-category influence on feature inference in the face of

uncertain categories (Murphy & Ross, 1994) down to single nearest instances for speci-

fied category membership, in contrast with the multiple influences prescribed by, for

example, the Rational Model (Anderson, 1991), and normative Bayesian perspectives in

general. Further, in this context, it can be argued that this nearest neighbor kind of rea-

soning arises out of the affordances of the pure decision making task and its summary

presentation of categories rather than being indicative of how decision making based on

internal representations actually works. However, if that is true for the present research,

then it also quite strongly constrains the conclusions, not only of Yamauchi and Markman

(2000) specifically, but, more generally, of the many studies that have evaluated decision

making in reference to external summary representations. At minimum, the present

research suggests that evaluations of decision making in reference to an external represen-

tation need to measure the possibility of nearest neighbor effects especially when drawing

conclusions that seem to imply representational integration of category information.

It is worth emphasizing that the special mechanism view of category labels is intui-

tively compelling in a way that is theoretically challenging and not simply a straw man:

It is almost impossible to conceive of categories as being adaptive without the ability to

mediate hidden feature prediction via the integration of instance information. But for cat-

egories to be more predictive than random sets of instances, it seems unavoidable that

they must integrate the instance information such that one feature is a more probable

inference than another, for example if more instances have had that feature. Put even

more strongly, this basically corresponds to the idea that inferring a missing feature for a

category member should normatively reference the category prototype because of the spe-

cial category-indicating role of the category label. Murphy’s (2002) summary statement

about category-based induction is relevant here: “If read literally, almost all the work on

category-based induction takes a prototype view of concepts” (p. 265). There are, how-

ever, several reasons why a normative status for prototypes in the context of feature infer-

ence is potentially misleading:

Even if a category instance is clearly a member of only a single category, an unlikely

state of affairs in the real world, there are many cases where high similarity to a particu-

lar instance of the category should override category-level information in terms of making

a feature inference. For example, having been told that a particular instance is a bird

would generally make the inference that it flies quite sensible unless the instance was par-

ticularly similar to a penguin, emphasizing that there are times when membership in some

categories is best ignored. At least sometimes basing feature inferences on strong similar-

ity to specific instances seems very adaptive.

Fundamentally, categories can possess whatever magic ingredient makes them more

predictive for feature inference than random groupings of instances without having a spe-

cial status in terms of invoking special mechanisms relative to other instance features.

That is, category labels can be functionally predictive without invoking prototype-compat-
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ible inferences because categories already represent a higher level of abstraction than

their instances. But this abstraction is represented by an additional feature corresponding

to a category label. As such, they already have the potential to incorporate additional

information which allows them to influence similarity assessment in a functional way that

still need not be qualitatively, mechanistically different than other features. As an exam-

ple, an instance may have the following features some of which are more abstract than

others: feathers, wings, clever-looking, member-of-bird-category, edible, and so on. In

terms of inferring a hidden feature, the alternative to the special-mechanism hypothesis is

that category labels are just particularly abstract and perhaps very salient features which

are otherwise treated comparably to other features in selective attention-driven similarity

assessment.

While this research does not support a special mechanism view of category labels spe-

cifically in terms of invoking category prototypes in the context of inference decision

making, it does not preclude other kinds of special status for category labels relative to

other features. For example, even high label salience arguably gives the label a special

status relative to other features. And at a higher level, Yamauchi, Kohn, and Yu (2007)

used a mouse tracking paradigm to demonstrate that participants spent more time looking

at category labels than other features. More generally there have been a variety of dem-

onstrations that category labels result in behavioral differences from other features (e.g.,

Yamauchi, 2009; Yamauchi & Yu, 2008), and these have been used to support the idea

that category labels indicate category membership and as such serve as an indicator that

a rich category structure of featural information is available. Having said that, when cate-

gory labels are not available and/or category membership is uncertain, people often use

feature-based strategies to drive feature inference (e.g., Griffiths, Hayes, & Newell,

2012). So full clarification of the role that category labels play in feature inference will

likely require well-understood category representations and thoroughly evaluated salience

and selective attention to assess whether special mechanisms are required for feature

inference beyond those for categorization.
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Appendix A: Specification of the special-mechanism and super-salience hypotheses
as formal models together with Monte-Carlo simulation and parameter fitting
procedures

The special-mechanism and super-salience hypotheses were formalized by extending

exemplar and prototype models of categorization to feature inference decision making as

in their application to feature inference category learning (Johansen & Kruschke, 2005;

Yamauchi & Markman, 1998). Specifically the super-salience model was adapted from

Nosofsky’s (1986) Generalized Context Model, which embodies exemplar representation,

and the special-mechanism model was adapted from a multiplicative prototype model

(e.g., Estes, 1986), which of course embodies prototype representation.

Super-salience model. The super-salience model used Eq. 1 to calculate the similarity,

gij, between a particular test item i in the bottom of Table 1 (e.g., an Exception trial) and

a particular category instance j in the top of Table 1 (e.g., a member of category A). The

stimulus feature value for the test item on stimulus dimension k in Table 1, xik in Eq. 1,

gij ¼ exp �c
X

k 6¼ respdm

wk j xik � xjkj
 !

ð1Þ

is compared to the feature value for the instance in the representation also on dimension

k, xjk, by taking the absolute difference between them, |xik � xjk|, which is then multiplied

by a dimensional attention value, wk. These attentionally weighted dimensional differ-

ences are summed across the k dimensions where for the category structure in Table 1

k = 5, one dimension for the category label plus four other feature dimensions. However,

even though there were five different dimensions for this structure (Table 1), a given test

item only included four of them, as indicated by k 6¼ respdm for the summation, where

the missing dimension is the response dimension for that test case (the ?’s in the testing

items in Table 1). Lastly, the weighted sum is multiplied by –c, a similarity scaling

parameter for the similarity space, and exponentiated. In this model, the category label

therefore functions exactly like a feature, although its salience may be greater.

The super-salience model generates the response probability of a given feature for a

particular test trial using Eq. 2. The probability of feature 1 for testing case i, P(f = 1|i),

Pðf ¼ 1jiÞ ¼

P
j2f¼1

gij

 !c

P
j2f¼1

gij

 !c

þ P
j2f¼2

gij

 !c ð2Þ

is the sum of the similarities to instances that have f = 1 on the response dimension

(j 2 f = 1) raised to the power c, the response determinism parameter, and then divided
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by the same sum as the numerator plus the sum of similarities to instances that have

f = 2. (The response determinism parameter specifies how strongly a given amount of

evidence gets pushed toward the response probability extremes of 0 or 1.)

Special-mechanism model. The special-mechanism model for feature inference also

used Eq. 1. But instead of calculating similarity to each of the category instances (at the

top of Table 1), it calculates similarity between a test item and each of the category pro-

totypes, A 1111 for category A or B 2222 for category B.

The response probability equation for the special-mechanism model, given in Eq. 3,

looks similar to Eq. 2 except with similarity to prototypes rather than exemplars. That is,

the probability of feature 1 for test instance i, P(f = 1 | i), is the similarity to the prototype

Pðf ¼ 1jiÞ ¼ gi1ð Þc
gi1ð Þc þ gi2ð Þc ð3Þ

with a 1 feature on the response dimension, gi1, raised to power c, divided by that simi-

larity plus the similarity to the prototype with a 2 feature on the response dimension, also

raised to power c.
Finally, P(f = 1|i) for each test case was converted to the proportion of prototype-com-

patible responding for that test case (to match the tabulation of the participant data in

Figs. 6 and 7) depending on the category label present for that test case: If the label was

for category A (in Table 1), then the proportion of prototype-compatible responding was

directly P(f = 1|i). However, if the category label was for category B (in Table 1), then

the proportion of prototype-compatible responding was 1�P(f = 1|i) as there are only two

categories in this category structure.

Fitting procedure. As specified above, both models have seven parameters: one label

attention parameter, four feature attention parameters, one similarity scaling parameter,

and one response determinism parameter. However, for both models, the similarity scal-

ing parameter is underconstrained/redundant if all five attention parameters are free.

Alternatively, the similarity scaling parameter can be treated as a free parameter and the

five attention parameters constrained to sum to 1 with only four of them free parameters.

Lastly, the response determinism parameter is underconstrained/redundant for the proto-

type model (Nosofsky & Zaki, 2002).

The Monte-Carlo simulations for the special-mechanism and super-salience models

based on the category structure in Table 1 were generated by sampling random values for

the free parameters in Eqs. 1–3 for each simulated participant: The label and feature

attention parameters were randomly sampled from the interval [0,1] while the specificity

parameter, c, and the response determinism parameter, c, were sampled from the interval

[0,10]. Both models were applied to the same simulated participants. The predictions for

a given set of parameters were tabulated for each set of testing trials—Non-Exception,

Label versus Feature, and Exception—by averaging across the response proportions for

trials of a given type (e.g., the four Non-Exception trials in Table 1). The results for these

simulations are shown in Figs. 4 and 5.
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The models were fitted to individual participant data by adjusting the nonredundant

free parameters in the above equations via a hill-climbing procedure to minimize the dis-

crepancy between the data and the model predictions for all of the individual testing trials

in Table 1 as determined by root-mean-squared deviation. Multiple starting points were

used for the hill-climbing procedure to determine best fitting parameters. Note that

although the model predictions were tabulated by calculating average response propor-

tions across trials of a given type to match the way the data are tabulated in Fig. 8, the

models were fitted to all 12 individual testing trials at the bottom of Table 1 for each

participant.
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