
Measure Dynamics on a One-Dimensional
Continuous Trait Space: Theoretical
Foundations for Adaptive Dynamics∗

Ross Cressman
Department of Mathematics
Wilfrid Laurier University
Waterloo, Ontario N2L 3C5

Canada
rcressma@wlu.ca

Josef Hofbauer
Department of Mathematics
University College London
London WC1E 6BT, U.K.

jhofb@math.ucl.ac.uk

Department of Mathematics
University of Vienna
1090 Vienna, Austria
josef.hofbauer@univie.ac.at

August, 2004

Abstract. The measure dynamics approach to modelling single-species
coevolution with a one-dimensional trait space is developed and compared
to more traditional methods of adaptive dynamics and the Maximum Prin-
ciple. It is assumed that individual fitness results from pairwise interactions
together with a background fitness that depends only on total population
size. When fitness functions are quadratic in the real variables parame-
terizing the one-dimensional traits of interacting individuals, the following
results are derived. It is shown that among monomorphisms (i.e. measures
supported on a single trait value), the CSS (Continuously Stable Strategy)
characterize those that are Lyapunov stable and attract all initial measures
supported in an interval containing this trait value. In the cases where adap-
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tive dynamics predicts evolutionary branching, convergence to a dimorphism
is established. Extensions of these results to general fitness functions and/or
multi-dimensional trait space are discussed.

Keywords: Adaptive dynamics, CSS, evolutionary branching, replicator
equation, entropy, mean fitness, local superiority, strategy dominance, mea-
sure dynamics, weak topology

Running Head: Measure Dynamics on a Continuous Trait Space
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1 Introduction

Interest in adaptive dynamics as a means to examine stability of coevolution-
ary systems has grown exponentially over the past decade (see Abrams (2001)
and the references therein). Cornerstones for this theory are the stability con-
ditions (e.g. continuously stable strategy, convergence stability) developed
for the mean strategy dynamics of a single species with a one-dimensional
continuous trait space. We briefly summarize this approach in Section 2.1
for the special case when individual fitness is given by two-variable quadratic
functions defined on the trait space through pairwise interactions. As co-
evolution also involves a density dynamics on the total population size, we
include a background fitness (that is strategy independent and decreasing
with respect to density) to limit population growth. This has the effect that
stability of the coevolutionary system is completely determined by the strat-
egy dynamics. Here, adaptive dynamics predicts stability of a monomorphic
equilibrium (i.e. one where all individuals in the population are using the
same strategy) if, for all other monomorphisms that are small perturbations
of this equilibrium, trait substitution through nearby mutations is only suc-
cessful when this substitution moves the population closer to the equilibrium.
There is a general consensus among practitioners of adaptive dynamics

(e.g. Abrams and Matsuda, 1997) that the assumptions underlying this ap-
proach (e.g. maintenance of monomorphisms through trait substitution and
the suppression of population size effects) limit its applicability, especially as
the theory progresses to analyzing non equilibrium limiting behavior. One
alternative approach is to consider stability for only those coevolutionary
systems where the distribution of strategies has finite support (i.e. there
are only finitely many different individual strategies used by the population
during the course of evolution), probably close to the monomorphic equilib-
rium. This approach, which in some sense ignores the possibility of continual
though rare mutation, is closely related to the Maximum Principle promoted
by Vincent and co-workers (Cohen et al., 1999; Vincent et al., 1996)1 as
summarized in Section 2.2. Both the adaptive dynamics and the Maximum
Principle predictions for coevolution ultimately rest on the stability analy-
sis of finite-dimensional, deterministic systems of differential equations that
approximate the infinite-dimensional stochastic process of individual births,
deaths, interactions, etc. The theory relies on the fact that the approximation
is accurate as the number of individuals gets large.
It is always easier to criticize existing theories than to develop an alter-

1The literature here calls this the ESS maximum Principle. As the term ESS has several
possibly different connotations, we prefer to either drop this qualification altogether or to
replace it with the more neutral game-theoretic term of strict NE (Nash equilibrium).
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native. The deterministic alternative we prefer is dynamic stability in the
space of measures, an extension of the concepts developed for strategy distri-
butions to models that include density dependence. This infinite-dimensional
dynamical system has the advantage that it includes models of populations
with an arbitrary number of individual strategies. Dynamics on strategy dis-
tributions (and not just the mean) with continuous strategy spaces have also
been considered (Bomze, 1990, 1991; Oechssler and Riedel, 2001, 2002; Eshel
and Sansone, 2003) where quadratic interaction terms are quite commonly
used. In contrast to adaptive dynamics where monomorphic populations are
invaded by rare mutants, this literature considers the evolution of distribu-
tions close to the monomorphic equilibrium distribution. This approach also
has the potential to predict convergence to non monomorphic equilibria as
well as the evolution of non equilibrium behavior.
For these reasons (see also the final section), we consider this dynamics

(with the addition of background fitness) to better model the coevolutionary
process. The main purpose of this paper is then to develop the measure
dynamics method. To this end, Sections 3 and 4 generate convergence and
stability conditions for the measure dynamics in a general setting. These
results give exact conditions in Section 5 with our assumption of quadratic
pairwise interactions and background fitness which are then compared to
those of adaptive dynamics and the Maximum Principle. In particular, the
Summary of Section 5.1 can be interpreted as providing a measure dynamics
foundation for the theory of adaptive dynamics. Section 6 extends these
methods to other fitness functions on a one-dimensional trait space. Further
extensions to multi-dimensional trait space and to general fitness functions
are discussed in the final section, emphasizing the added analytic problems
that arise in these circumstances.

2 The Quadratic Pairwise Interaction Model

Suppose individuals in our single species use strategies that are parameter-
ized by a single real variable x belonging to a closed and bounded interval
S = [α, β]. All the dynamics considered in this paper are based on the fitness
of an individual with strategy (or trait) x. We take the game-theoretic ap-
proach (Maynard Smith, 1982; Eshel, 1983; Eshel et al., 1997) that assumes
individual fitness results from payoffs received during pairwise interactions.
For the quadratic pairwise interaction model, the payoff of an individual
using strategy x against one using strategy y is

π(x, y) = ax2 + bxy + cy2 + dx+ ey + f

4



where x, y ∈ [α, β].2 Through these interactions, fitness of an individual using
x is then taken to be the expected payoff this individual obtains in a random
pairwise interaction with another individual in the population. Population
size is assumed sufficiently large that stochastic effects resulting from a finite
population can be ignored.3

Fitness in coevolutionary models also depends on population density N .
To avoid some mathematical complications, we assume payoff is positive for
all strategy pairs when the population size N is zero (i.e. no Allee effect)
and negative when N is sufficiently large. The simplest way to accomplish
this mathematically is to add an appropriate density term to the individual
payoff function that is independent of the strategy pair (i.e. a “background”
fitness term) and decreasing in density (Cressman, 1992). Specifically, we
take

π(x, y,N) = ax2 + bxy + cy2 + dx+ ey + f(N) (1)

where f(N) is a decreasing function of N with derivative f 0(N) bounded
away from 0 and f(0) chosen to make π(x, y, 0) > 0 for all x, y ∈ [α, β].
In the remainder of this section, we briefly describe the approaches of

adaptive dynamics (Section 2.1) and the Maximum Principle (Section 2.2)
as they apply to the stability analysis of monomorphic populations when
payoff is given by (1).

2.1 Adaptive dynamics

The adaptive dynamics approach (Hofbauer and Sigmund, 1990) to stability
of a monomorphism is based on a concept, introduced by Eshel and coworkers
(e.g. Eshel, 1983; Eshel et al., 1997) for models without explicit density
dependence, that has come to be known as convergence stable (Christiansen,
1991; Taylor, 1989). A monomorphism x∗ is convergence stable if every y
sufficiently close (but not equal) to x∗ has a neighborhood U(y) such that
the fitness of any x ∈ U(y) when playing against y should be greater than
that of y against y if and only if x is closer to x∗ than y.
With density dependent adaptive dynamics (Metz et al., 1996; Marrow et

al., 1996; Dieckmann and Law, 1996), these fitnesses are calculated when pop-
ulation size is at its equilibrium value for the monomorphism x. We first find
the equilibrium density N(x0) for x0. That is, we solve π(x0, x0, N(x0)) = 0

2Unless otherwise stated, our variables x, y, x∗ etc are all assumed to belong to a closed
and bounded interval [α, β]. When these variables are restricted to a finite set (i.e. there
are a finite number of traits), π(x, y) is then an entry in the payoff matrix (Maynard
Smith, 1982).

3Also ignored is the fact an individual does not interact with himself.
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for N(x0) to obtain4

N (x0) = f−1
¡−(ax20 + bx20 + cx20 + dx0 + ex0)

¢
.

We assume x∗ ∈ (α, β) (i.e. in the interior of the trait space S). So x∗

is convergence stable if and only if there exists an ε > 0 such that for all
0 < |y − x∗| < ε there is a δ > 0 (which is usually taken less than ε and
dependent on y) such that, for all | x− y |< δ,

π(x, y,N (y)) > π(y, y,N (y)) = 0 (2)

if and only if 0 < |x− x∗| < |y − x∗|.
The intuition here is that mutations near y will only be successful if they

are between y and the monomorphism, thereby driving the population to x∗.
From (2), we consider the difference

π(x, y,N(y))− π(y, y,N(y))

= ax2 + bxy + cy2 + dx+ ey + f(N(y))− ¡ay2 + by2 + cy2 + dy + ey + f(N(y))
¢

= a(x2 − y2) + b(x− y)y + d(x− y)

= (x− y)[a (x+ y) + by + d].

If 2ax∗ + bx∗ + d > 0, then π(x, y,N (y)) − π(y, y,N (y)) < 0 if x∗ < x < y
and y is sufficiently close to x∗ so that a (x+ y) + by + d > 0. That is, x∗ is
not convergence stable. By a similar argument with 2ax∗ + bx∗ + d < 0, we
have that a necessary condition for x∗ to be convergence stable is

2ax∗ + bx∗ + d = 0.

That is, as a function of x, π(x, x∗, N(x∗)) has a critical point when x = x∗.
Furthermore, if 2a+ b = 0, then d = 0 and so

π(x, y,N(y))− π(y, y,N(y)) = (x− y) [a(x+ y)− 2ay] = a (x− y)2 .

Thus 2a + b 6= 0 if x∗ is convergence stable. This implies the dominating
term in π(x, y,N (y))−π(y, y,N (y)) is (2a+ b) (x− y) (y − x∗) and so x∗ is
convergence stable if and only if

2ax∗ + bx∗ + d = 0

2a+ b < 0.

4Since f(N) is strictly decreasing (and so has an inverse) with 0 in its range, N(x0) is
well-defined and positive. For these same reasons, N(x0) is globally asymptotically stable
for the density dynamics (cf. (4) below) when the population is monomorphic at x0.
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These conditions for convergence stability can be rewritten in their more
traditional form (e.g. Marrow et al., 1996) as

∂

∂x
π(x, x∗, N(x∗))|x=x∗= 0

∂2

∂x2
π(x, y,N(y))|x=y=x∗+ ∂2

∂x∂y
π(x, y,N(y))|x=y=x∗< 0.

If there are terms in π(x, y) of higher order than quadratic, then x∗ may be
convergence stable even if the last inequality is not strict (in which case these
higher order terms need to be considered).
Adaptive dynamics is concerned with the evolution of the mean strategy

of the population. Under the assumption that the ecological time scale (i.e.
the time scale for changes in population size) is much faster than the evo-
lutionary time scale on which the mean strategy evolves, adaptive dynamics
eliminates the ecological effect by asserting that the coevolutionary system
then tracks equilibrium population size (see also the discussion at the begin-
ning of this section). The canonical equation for the mean strategy evolution
near a monomorphic x∗ is then

dy

dt
= k(y)

∂

∂x
π(x, y,N(y))|x=y (3)

where k(y) is a positive function that is related to the evolutionary time
scale and to equilibrium size. For our quadratic payoff model, we have dy

dt
=

k(y) (2ay + by + d) = k(y)(2a+ b)(y−x∗). We see y is asymptotically stable
for the canonical equation if and only if y = x∗ where x∗ is convergence
stable.

2.2 The Maximum Principle

To simplify notation somewhat, we can shift the monomorphism x∗ = −d
2a+b

to 0 (and so x∗ = 0 ∈ (α, β)) by replacing x and y with x− d
2a+b

and y− d
2a+b

respectively. This has the effect of eliminating the dx term in (1) so we now
have5

π(x, y,N) = ax2 + bxy + cy2 + ey + f(N).

Vincent and coworkers (see Cohen et al., 1999 and the references therein)
take a different approach to model dynamics stability in coevolutionary sys-
tems. Following Vincent et al. (1996), the strategy x∗ = 0 (for them,

5This change of variables does shift e and f(N) by constants but these have no effect
on the mathematical analysis.
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a coalition of one) is evolutionarily stable for the equilibrium size N(x∗)
if, for all choices of finitely many mutant strategies {x2, ..., xr}, the state
(N(x∗), 0, ..., 0) is asymptotically stable for the population dynamics

ṅi = niFi(n1, ..., nr) (4)

where ni is the size of that part of the population where individuals use
strategy xi (here x1 is identified with x∗) and Fi(n1, ..., nr) is the expected
fitness of strategy xi when the population state is (n1, ..., nr).
When applied to our model with quadratic payoff functions and random

pairwise interactions that occur once per unit time for each individual, these
fitnesses behave additively to yield

Fi(n1, ..., nr) =
mX
j=1

nj
π(xi, xj, N)

N

where N =
P

nj.
To check stability, the r−dimensional system is linearized at (N(x∗), 0, ..., 0).

This has the form of an upper triangular r × r matrix with diagonal entries

N(x∗)
∂F1
∂n1

, F2, ..., Fr

where all these functions and partial derivatives are evaluated at (N(x∗), 0, ..., 0).
For i > 1, Fi = π(xi, x

∗, N(x∗)) = ax2i and
∂F1
∂n1

= ∂π(x∗,x∗,N)
∂N

= f 0(N(x∗)) < 0.
Thus x∗ = 0 is evolutionarily stable if a < 0 and unstable if a > 0.
Although the case a = 0 is quite important since it forms the basis of

models where fitness is linear in the individual’s choice of strategy (i.e. when
π(x, y,N) is linear in x), in our context we disregard this possibility as de-
generate and so conclude that x∗ = 0 is evolutionarily stable6 according to
Vincent and coworkers if and only if

a < 0.

The Maximum Principle is then equivalent to asserting that their “fitness
generating function”, π(x, x∗, N(x∗)), has a strict maximum at x = x∗ = 0
as a function of x.
This condition seems to have no immediate connection to that of con-

vergence stability. However, in the adaptive dynamics approach, it is often
assumed (Metz et al., 1996; Marrow et al., 1996) no mutant strategies x

6As mentioned in the Introduction, we prefer to designate this condition as stating x∗

is a strict NE.
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can invade x∗ (i.e. none have higher fitness than x∗ when the population is
monomorphic at x∗). This is equivalent (assuming a 6= 0) to a < 0. In fact,
the condition a < 0 was already assumed by Eshel (1983) when he combined
convergence stability with it to define a continuously stable strategy (CSS)
x∗ to be one that satisfies the two conditions, a < 0, 2a+ b < 0.7

On the other hand, it should be noted that adaptive dynamics is also
quite interested in the convergence stable situation with a > 0 since they view
this as an instance of sympatric speciation (Doebeli and Dieckmann, 2000)
and/or evolutionary branching (Metz et al., 1996; Geritz et al., 1997; Geritz
et al., 1998). Furthermore, Vincent et al. (1993) (see also Cohen et al., 1999)
have developed a mean strategy dynamics through their population dynamics
model above that leads back to the canonical equation. Nevertheless, it is
clear that there are discrepancies between these two approaches to modeling
monomorphic stability in coevolutionary systems.

3 Measure Dynamics

The coevolutionary dynamics we consider is a generalization of the popula-
tion dynamics (4) to the space of distributions of the population over the
continuous trait space S = [α, β]. Specifically, let µ be a finite measure de-
fined on the σ−algebra B of Borel subsets of S. When the population is in
state µ, the measure µ(B) for any B ∈ B is interpreted as the size of that
part of the population that is using strategies in B.8 Then µ(S) is the total
population size which we assume to be positive. The fitness of an individ-
ual using strategy x ∈ S is then its expected payoff in a random pairwise
interaction (plus the background fitness); namely,

π(x, µ) =
1

µ(S)

Z
S

π(x, y, µ(S))µ(dy) (5)

For our quadratic payoff functions, we obtain

π(x, µ) =
1

µ(S)

Z
S

(ax2 + bxy + cy2 + ey)µ(dy) + f(µ(S)).

The measure dynamics becomes

7This again requires quadratic fitness functions or else higher order terms may need to
be examined in critical cases.

8Again, population size is assumed to be large enough that population densities may
be used in place of numbers of individuals.

9



dµ

dt
(B) =

Z
B

π(x, µ)µ(dx). (6)

This assumes each individual engages on average in one random pairwise
interaction per unit time and reproduces offspring identical to itself (e.g.
asexual reproduction) at a net rate equal to its expected fitness (5). If death
rates are included in the model, they are assumed to be the same for all
individuals and incorporated into the net rate through the background fitness
function. Then (6) is the deterministic limit of the stochastic process as
population size gets large.
The first question that arises is whether there are solutions to this measure

dynamics. There are if µ has finite support9 at time 0 (i.e. if µ =
Pr

i=1 niδxi
where δxi is the Dirac delta measure with support {xi} and δxi ({xi}) = 1).
Then µ(S) =

P
nj = N and π(xi, µ) =

1
N

P
njπ(xi, xj, N). The dynamics

(6) is then the same as (4) in Section 2.2.
But we are more interested in the case where µ does not have finite (or

discrete) support, perhaps given through a continuous density function. To
show there are solutions to (6) in the general case, define the measure P as

P (B) = µ(B)/µ(S).

This is a probability measure (i.e. P (S) = 1) and we can rewrite individual
fitness of strategy x ∈ S as

π(x, P, µ(S)) =

Z
S

(ax2 + bxy + cy2 + ey)P (dy) + f(µ(S))

and population mean fitness as

π(P, P, µ(S)) =

Z
S

π(x, P, µ(S))P (dx).

A straightforward calculation using the quotient rule from calculus implies
the measure dynamics for the probability space is

dP

dt
(B) =

Z
B

(π(x, P, µ(S))− π(P,P, µ(S)))P (dx) (7)

9The support suppµ of a measure µ is the closed set of those x for which every open
neighbourhood of x has positive measure.
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Since π(x, P, µ(S))− π(P, P, µ(S)) does not depend on µ(S), we can ignore
the background fitness f(µ(S)) in (7) and take the fitness function to have
the form π(x, y, µ(S)) = π(x, y).
Dynamics of the form (7) with π(x, y) : S×S → R continuous have been

shown (e.g. Bomze, 1991; Oechssler and Riedel, 2001)10 to have solutions
Pt for all t ≥ 0 for any given initial condition where the derivative on the
left-hand side is taken with respect to the variational norm.
Furthermore, evolution of the total population size satisfies dµ

dt
(S) =

(
R
S

π(x, Pt, µ(S))Pt(dx))µ(S). This is a one-dimensional non-autonomous dy-

namics with continuous vector field and so has a unique solution for every
initial condition. Also, since π(x, Pt, 0) > 0 and π(x, Pt, µ(S)) < 0 for all Pt

if µ(S) is sufficiently large, the solution is bounded. Moreover, if Pt evolves
to P ∗, then µt converges to N∗P ∗ where N∗ is the unique positive popula-
tion size for which

R
S

π(x, P ∗, N∗)P ∗(dx) = 0. That is, for convergence and

stability of the measure dynamics (6), we can restrict attention to analyzing
these same properties for (7) instead.

4 The Dynamics on the Space of Probability
Measures

Our primary aim in the next section is the complete characterization of the
convergence and stability properties of the probability dynamics (7) for all
quadratic payoff functions and S = [α, β]. However, many of our results that
lead to this characterization in Section 5 are true for more general classes of
payoff functions and other trait spaces S. These general results are collected
in the present section. They rely on two Lyapunov functions, the relative (or
cross) entropy and the mean payoff that are developed in Sections 4.1 and
4.2 respectively.
For the sake of concreteness, we assume S is a compact metric space and

π(x, y) is a continuous payoff function on S×S. The replicator equation for a
continuous trait space (Bomze, 1990, 1991; Oechssler and Riedel, 2001, 2002;
Eshel and Sansone, 2003; Cressman, 2004) is then the measure dynamics

dP

dt
(B) =

Z
B

(π(x, P )− π(P,P ))P (dx) (8)

10In fact, they show that it is enough to assume that π(x, y) is bounded and Borel
measurable.
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on the set of probability measures ∆(S) on the Borel σ−algebra. This again
has a unique solution Pt for all initial P0 ∈ ∆(S).
An important issue is the topology to be used on ∆(S). We feel the

weak topology captures best the essence of convergence in coevolutionary
systems (Oechssler and Riedel, 2002; Eshel and Sansone, 2003). One reason
for this is that continuous population strategy distributions cannot be close
to a monomorphism in the alternative strong topology, which is equivalent
to the variational norm (Bomze, 1990, 1991; Oechssler and Riedel, 2001).
Convergence of Pt to P in the weak topology (also called the weak∗ topol-
ogy in functional analysis) means that

R
S
g(x)Pt(dx)→

R
S
g(x)P (dx) for all

continuous functions g : S → R. Since S is a compact metric space, ∆(S) is
compact and metrizable (Oechssler and Riedel, 2002). In particular, the set
of limit points of the trajectory Pt is nonempty even if it does not converge.
The topology will mostly be applied to neighborhoods of monomorphic

and dimorphic P ∗. For a probability measure P ∗ with finite support {x1, . . . , xm},
we can take a basis of ε−neighborhoods in the weak topology to be of the
form

{Q ∈ ∆(S) : |Q(Bε(xi))− P ∗({xi})| < ε ∀i = 1, . . . ,m}
where Bε(x) is the open ball of radius ε centered at x. Thus, a continuous
population strategy distribution is close to such a P ∗ if the proportion of
the population near each xi is approximately the proportion P ∗({xi}) for
P ∗. Furthermore, unlike the strong topology where two monomorphisms are
never close to each other, δx1 and δx2 are within ε of each other if and only if
the Euclidean distance between these points is less than ε. In the following,
all topological notions are taken for this weak topology, unless otherwise
stated.

4.1 Local Superiority

When S = {x1, ..., xm} is finite, the space of probability measures ∆(S)
is the set {q = (q1, ..., qm)|

Pm
j=1 qj = 1} of probability vectors where qi is

the proportion of the population using the ith strategy. The probability
measure dynamics is then the standard replicator game dynamics (Hofbauer
and Sigmund, 1998) with m ×m payoff matrix whose entries are π(xi, xj).
A standard way to prove the local asymptotic stability of a strategy p∗ is by
showing that it is a “matrix-ESS”11 (i.e. a strategy which, if all individuals

11As mentioned earlier, the term ESS is overused in the literature and so may have
several meanings for some readers. On the other hand, for games with a finite trait space,
there is one universally accepted meaning originating with Maynard Smith (1982) as an
evolutionarily stable strategy of the m×m payoff matrix A (hence a matrix-ESS).
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adopt it, cannot be successfully invaded by any other rare mutant strategy)
The proof uses the equivalent characterization of a matrix-ESS as a strategy
p∗ for which

π(p∗, q) > π(q, q) (9)

for all q close to p∗. Here closeness is meant either on each ray connecting p∗

with another strategy p, or simply in a Euclidean neighborhood.
Whereas these various versions of closeness are all equivalent in finite

games, there are many different versions for games with an infinite trait
space S (see also the Summary in Section 5.1). The weaker the topology
(or more general nearness concept) on ∆(S), the stronger the corresponding
version of “ESS”. Although we feel strongly that the results of Section 4
are compelling reasons to claim that the generalization of (9) to infinite trait
spaces with respect to the weak topology deserves the ESS designation, we
have used the phrase “locally superior in the weak topology” instead for this
concept in the following definition to avoid confusion. Also, the notion of
local superiority (Weibull, 1995) is now well-established for the case of a
finite trait space S as an alternative phrase to denote a matrix-ESS.12

Definition 1 P ∗ ∈ ∆(S) is a locally superior strategy (in the weak topology)
if, for all Q 6= P ∗ sufficiently close to P ∗,

π(P ∗, Q) > π(Q,Q) (10)

We say P ∗ is globally superior if this inequality is true for all Q 6= P ∗.

Our first main result given in the following theorem uses the concept
of cross entropy,13 as developed by Bomze (1991) for probability measure
dynamics. Indeed, suppose P is absolutely continuous with respect to Q and
its corresponding Radon-Nikodym derivative φ = dP

dQ
is bounded (i.e., there

is a C > 0 such that P (A) ≤ CQ(A) for all Borel sets A ⊂ S). Then the
cross entropy

L(Q) := KQ:P =

Z
S

log
dP

dQ
P (dx) =

Z
S

φ logφQ(dx)

is defined, nonnegative and finite. Furthermore, Lemma 2 in Bomze (1991)
shows that L(Qt) is defined along the orbit of Q, and its time derivative
satisfies

d

dt
L(Qt) = −π(P,Qt) + π(Qt, Qt) (11)

12In Oechssler and Riedel (2002), locally superior with respect to the weak topology is
called “evolutionarily robust”.
13In the finite case this cross entropy corresponds to the function L(q) =

P
i p
∗
i log

p∗i
qi

which like
Q

i q
p∗i
i is the well-known Lyapunov function near a matrix-ESS p∗.
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for all t ≥ 0. In particular, the cross entropy is decreasing if P is locally
superior and Qt is sufficiently close to P , a key fact in the proof of the
following theorem.

Theorem 2 If P ∗ is a locally superior strategy, which is Lyapunov stable,
then for any initial Q sufficiently close to P ∗ with suppQ ⊇ suppP ∗, Qt →
P ∗ as t → +∞. Moreover, if P ∗ is globally superior and Lyapunov stable
then for any initial Q ∈ ∆(S) with suppQ ⊇ suppP ∗, Qt → P ∗ as t→ +∞.

Proof. Let U1 be a compact neighborhood of P ∗ such that π(P ∗, P ) −
π(P,P ) > 0 holds for all P ∈ U1 \{P ∗}. Since P ∗ is Lyapunov stable there is
a neighborhood U2 of P ∗ such that for all Q ∈ U2 and t ≥ 0 we have Qt ∈ U1.
Suppose now that P ∗ is not an ω−limit point of such a Q. Then there is

an open neighborhood U3 of P ∗ with Qt /∈ U3 for all t ≥ 0. By compactness
π(P ∗, P )−π(P, P ) ≥ 2c > 0 for some c > 0 and all P ∈ U1\U3. By continuity,
for all P̃ close enough to P ∗ (in the weak topology) we have

π(P̃ , P )− π(P,P ) ≥ c > 0 ∀P ∈ U1 \ U3. (12)

Since supp(P ∗) ⊆ supp(Q), there is such a P̃ which is absolutely continuous
with respect to Q and whose Radon-Nikodym derivative dP̃

dQ
is bounded.14

By (11) and (12), the cross entropy L(Q) := KQ:P̃ is defined and satisfies

d

dt
L(Qt) ≤ −c < 0

along the solution Qt for t ≥ 0. Hence L(Qt) → −∞, a contradiction to
L(Q) ≥ 0.
This shows that P ∗ is an ω−limit point of Q. Since P ∗ is Lyapunov

stable, it is the unique ω−limit point of Q and hence Qt → P ∗. Finally, if
P ∗ is globally superior then take U1 = U2 = ∆(S).

This result generalizes Theorem 3 of Oechssler and Riedel (2002) who
proved it for monomorphisms P ∗ = δx∗ and initial Q with Q({x∗}) > 0 in
place of our weaker assumption x∗ ∈ suppQ. It is an open problem whether
the additional assumption of Lyapunov stability is really needed. When
the trait space is finite, Lyapunov stability follows from local superiority

14Such a P̃ exists since the weak closure of the set of probability measures that are
absolutely continuous with respect to Q and have bounded Radon-Nikodym derivative is
the set of all probability measures whose support is contained in suppQ. For example, for
s ∈ suppQ, and Un the 1

n—neighborhood of s, the uniform probability measures on Un∩
suppQ converge to δs.
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since the cross entropy L(Q) = KQ:P∗ =
P

i p
∗
i log

p∗i
qi
is then continuous in a

neighborhood of P ∗.15

It is essential suppQ ⊇ suppP ∗ for the conclusions given in Theorem 2
to be valid. This is due to the fact that the replicator equation (8) shares
the same property as (4) in that its support is invariant for all t ≥ 0.16 It is
also important to recognize that local asymptotic stability of (N(x∗), 0, ..., 0)
in the dynamics (4) for any finite choice of strategies {x∗, x2, ..., xr} does not
imply the corresponding discrete measure converges weakly to N(x∗)δx∗. At
a minimum, weak convergence requires the asymptotic stability of (4) to be
global for all finite choices of strategies that are sufficiently close to x∗.

Remark 1. The following observations are useful to identify locally/globally
superior strategies. First, every locally superior strategy P ∗ is a Nash equi-
librium (NE) (i.e. π(P ∗, P ∗) ≥ π(Q,P ∗) for all Q ∈ ∆(S)). Indeed, given
Q ∈ ∆(S), for all nonnegative ε sufficiently close to zero

0 ≤ π(P ∗, P ∗ + ε(Q− P ∗))− π(P ∗ + ε(Q− P ∗), P ∗ + ε(Q− P ∗))

= επ(P ∗ −Q,P ∗ + ε(Q− P ∗))

Thus, for ε→ 0, we get 0 ≤ π(P ∗ −Q,P ∗).
Second, if the game is negative definite (i.e. π(P −Q,P −Q) < 0 for all

Q 6= P ) then there exists a globally superior strategy. To see this, let P ∗ be
any NE. Then, for all Q 6= P ∗

π(P ∗, Q)− π(Q,Q) = π(P ∗ −Q,P ∗) + π(P ∗ −Q,Q− P ∗)

≥ π(P ∗ −Q,Q− P ∗) > 0.

Conversely, if P ∗ is locally superior (on each ray connecting P ∗ with another
strategy Q) with full support then the game is negative definite.17

4.2 Potential Games

Consider now a symmetric payoff function π : S → S, i.e. π(x, y) = π(y, x),
that is assumed to be continuous. Note that, for quadratic fitness func-
15Unfortunately, L(Q) taken in the proof of Theorem 2 is not a continuous function in

the weak topology for a continuous strategy space S and so Lyapunov stability is no longer
automatic.
16In fact, Q0 and Qt are mutually absolutely continuous measures, as shown by Bomze

(1991).
17If P ∗ is globally superior but does not have full support then the game is not necessarily

negative definite, as already games with two strategies show. A game is negative definite if
and only if the mean payoff function P 7→ π(P, P ) is strictly concave on ∆. Our quadratic
games are negative semi-definite if and only if b ≤ 0.
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tions and S = [α, β], the dynamics (7) is unchanged if we take the symmet-
ric version π(x, y) = ax2 + bxy + ay2 as our payoff function. By common
game-theoretic usage, games with symmetric payoff matrices are known as
“potential” games.
By the symmetry of π, the expected payoff satisfies

d

dt
π(P,P ) = 2

Z
S

Z
S

π(x, y)[π(x, P )− π(P,P )]P (dx)P (dy)

= 2

Z
S

(π(x, P )− π(P,P ))2P (dx) ≥ 0. (13)

By the continuity of π(x, P ) in x, d
dt
π(P, P ) = 0 if and only if π(x, P ) =

π(P,P ) for all x in the support of P if and only if P is a rest point of (8).18

Thus π(P,P ) is a strict Lyapunov function on ∆(S) in that it is strictly
increasing under (8) unless at equilibrium.
Since ∆(S) is compact in the weak topology and π(P,P ) is a continuous

function, P ∗ will be Lyapunov stable if it is an isolated local maximizer
of π(P,P ) with respect to the weak topology. For finite games, a strategy
P ∗ is a local maximizer of π(P,P ) if and only if it is locally superior, see
e.g. Hofbauer and Sigmund (1998). In general only the direction proved in
the following lemma is true, as shown by the counterexample given in the
Summary of Section 5.1.

Lemma 3 If P ∗ is locally superior then it is an isolated local maximizer of
the mean fitness function π(P,P ).

Proof. Since P ∗ is a Nash equilibrium, π(P ∗, P ∗) ≥ π(Q,P ∗) = π(P ∗, Q) >
π(Q,Q) for all Q sufficiently close to P ∗.

Combining the above discussion with Theorem 2 we get

Theorem 4 If P ∗ is a locally superior strategy (with respect to the weak
topology) in a potential game, then P ∗ is Lyapunov stable and for any initial
Q sufficiently close to P ∗ with suppQ ⊇ suppP ∗, Qt → P ∗. If P ∗ is globally
superior with suppQ ⊇ suppP ∗, then Qt → P ∗.

This theorem was proved by Bomze (1990) in the special case where
π(x, y) depends only on x and by Oechssler and Riedel (2002) when π(x, y)
is symmetric and P ∗ is a monomorphism.
18This is the extension to continuous strategy spaces of one part of the Fundamental

Theorem of Natural Selection that states mean fitness increases unless at equilibrium. If π
is not symmetric, then d

dtπ(P, P ) =
R
S

R
S

[π(x, y) + π(y, x)] [π(x,P ) − π(P,P )]P (dx)P (dy)

may be negative.
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5 Dynamic Stability for Quadratic Payoff Func-
tions

Let us apply the general theory above to our quadratic payoff function
π(x, y) = ax2 + bxy + ay2 where the interesting monomorphism is x∗ = 0
and we assume a 6= 0. For this, the following formulas for π(P,Q) etc. in
terms of the mean E(P ) and the variance V ar(P ) of a probability mea-
sure P are useful. It is even convenient to consider higher order moments:
let Pk =

R
xkP (dx) be the kth moment of P . Then P1 = E(P ) and

P2 = V ar(P ) + P 21 . We get π(x, P ) = ax2 + bxP1 + aP2,

π(P,Q) = aP2 + bP1Q1 + aQ2 =

= a(V ar(P ) +E(P )2 + V ar(Q) +E(Q)2) + bE(P )E(Q)). (14)

π(P,P ) = 2aV ar(P ) + (2a+ b)E(P )2, (15)

π(x, P )− π(P,P ) = a(x2 − P2) + b(xP1 − P 21 ), (16)

π(P −Q,P −Q) = b(E(P )−E(Q))2. (17)

Our classification of the stability of δ0 in Sections 5.1 and 5.2 is based
first on whether a is negative or positive and then on subclasses depending
on the value of b. This classification scheme is similar to that given by Metz
et al. (1996) (see also Geritz et al., 1997; Diekmann, 2004) for the adaptive
dynamics approach.
One reason for using this classification scheme is that the subspace of

probability measures that are symmetric about 0 is invariant for our quadratic
payoff functions, and on this subspace, the variance is increasing if a > 0 and
decreasing if a < 0. To see this invariance, note that symmetry implies
P1 = 0 and so dP

dt
(B) = dP

dt
(−B) from (16) and (8).

Furthermore, from (16) and

Ṗk =

Z
xkdṖ =

Z
xk [π(x, P )− π(P, P )]P (dx),

the differential equations for the moments are

Ṗ1 = aP3 + (b− a)P1P2 − bP 3
1 (18)

Ṗ2 = aP4 − aP 2
2 + bP1P3 − bP 2

1P2 (19)

Ṗ3 = aP5 − aP2P3 + bP1P4 − bP 2
1P3 (20)

. . .

Obviously, if the initial P is symmetric around 0, then so is Pt, hence the odd
moments vanish and the variance satisfies Ṗ2 = a(P4 − P 2

2 ). Since P4 ≥ P 2
2

(with equality for point measures), variance increases if a > 0 and decreases
if a < 0. In particular, this shows instability of δ0 for a > 0.

17



5.1 Case 1: a < 0

This is the case where x∗ = 0 is a strict NE, i.e. π(0, 0) > π(x, 0) for all
x 6= 0.

5.1.1 Case 1a: a+ b < 0.

From (15), we see that π(P, P ) ≤ 0 with equality if and only if P = P ∗ = δ0.
Thus P ∗ is the unique global maximizer of the mean fitness function (and
there are no other local maximizers). Hence P ∗ = δ0 is Lyapunov stable by
section 4.2. Furthermore, from (16), if Q 6= P ∗, then

π(δ0, Q)− π(Q,Q) = −aV ar(Q)− (a+ b)E(Q)2 > 0.

Thus P ∗ = δ0 is globally superior and by Theorem 2 it attracts all initial Q0

that have 0 ∈ suppQ0.

5.1.2 Case 1b: 2a+ b < 0 ≤ a+ b.

We still have P ∗ = δ0 as the unique global maximizer of mean fitness and so
Lyapunov stable but it is no longer locally superior. However, the following
theorem that uses an iterated domination argument between pure strategies
shows P ∗ still attracts all initial Q0 with full support.

Theorem 5 Suppose a < 0 and 2a+b < 0 ≤ a+b. If the support of Q0 is an
interval that contains x∗ = 0, then Qt converges to δ0 (in the weak topology).

Proof. Without loss of generality, assume suppQ ⊇ [0, β]. Let x0 = − bβ
2a
.

Then 0 < x0 < β. Take A = [x0 + 3ε, β] and B = [x0 + ε, x0 + 2ε] where
x0 + 3ε < β and ε is positive.
Then, another application of the quotient rule yields

d

dt

µ
Q(B)

Q(A)

¶
=

1

Q(A)2

Z
S

Z
A

Z
B

(π(x, z)− π(y, z))Q(dx)Q(dy)

Q(dz).
(21)

For x ∈ B, y ∈ A, z ∈ S, we have

π(x, z)−π(y, z) = ax2+bxz−ay2−byz = (x−y)[a(x+y)+bz] > −2aε2 > 0.
(22)

Thus, d
dt
(Q(B)
Q(A)

) ≥ −Q(B)
Q(A)

2aε2 > 0. Thus d
dt
(Q(B)
Q(A)

) grows to infinity with
exponential order. In particular, limQt(A) is 0 as t approaches infinity. Now
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choose ε so that x0+3ε = (x0+β)/2 (i.e. ε = (β−x0)/6). Then limQt([(x0+
β)/2, β] is 0. Now suppose we have shown limQt[γ, β] = 0 for some 0 <
γ < β. We will iterate the above argument to show limQt[

x0+β
2

γ, γ] = 0.
Take A = [−βγ/2a + 3ε, γ] and B = [−βγ/2a + ε,−βγ/2a + 2ε] where
−βγ/2a+ 3ε < γ. Then

d

dt

µ
Q(B)

Q(A)

¶
=

1

Q(A)2

Z
[γ,β]

[

Z
A

Z
B

(π(x, z)− π(y, z))Q(dx)Q(dy)]Q(dz)

+
1

Q(A)2

Z
S−[γ,β]

[

Z
A

Z
B

(π(x, z)− π(y, z))Q(dx)Q(dy)]Q(dz)

≥ −(Q([γ, β]2K +Q(S − [γ, β])2aε2)Q(B)
Q(A)

≥ −aε2Q(B)
Q(A)

for t sufficiently large. HereK = maxx,y∈S |π(x, y)|. In particular, limQt(A) =
0. Thus, by iteration, we can take γ = [(x0 + β)/2]nβ for all n ∈ Z and so
limQt([γ, β]) = 0 for all γ > 0.
A similar argument on the interval [α, γ] with γ < 0 completes the proof.

In game-theoretic terms, inequality (22) asserts that every x ∈ B strictly
dominates every y ∈ A. The proof is then essentially the iterated elimina-
tion of strictly dominated pure strategies. This technique is well-known for
games with finite trait space (e.g. Samuelson and Zhang, 1992; Hofbauer
and Weibull, 1996) but this seems to be one of the first instances where it is
used in games with a continuum of pure strategies.19

The method of proof can extend the statement of the Theorem to mea-
sures that do not have full support as long as the “gap” between points in
the support of Q0 is not too great. This gap must decrease as we get closer to
x∗. In particular, if one wants to approximate the measure dynamics with a
discrete version similar to (4), then one needs the grid to become finer as we
approach x∗. Otherwise, say if the grid is uniform, the most we can expect is
that the support of Qt will approach an interval containing x∗ and that this
interval will approach x∗ as the number of points in the grid increases.

19Since the original version of this paper was submitted for publication, Frank Riedel
(personal communication) pointed out Heifetz et al. (2003) used this method for their
analysis of the evolution of preferences based on the replicator equation.
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5.1.3 Case 1c: 2a+ b = 0.

π(P,P ) = 0 for all P = δx with x ∈ [α, β]. In this degenerate case the payoff
function π(x, y) = a(x− y)2 is translation invariant. Every δs is a strict NE
and maximizer of π(P, P ).

5.1.4 Case 1d: 2a+ b > 0.

Here P = δ0 is a saddle point, and P = δα and P = δβ are the only
local maximizers of π(P,P ). These endpoints are also locally superior with
respect to those Q whose support is either [α,−ε] or [ε, β] respectively. This
gives us a bistable situation where some initial Q0 close to δ0 evolve to one
monomorphism supported at one endpoint and some to the other. In fact,
by continuity of π(Q,Q), δβ attracts those Q0 with full support that have
Q0([α, 0]) sufficiently small.

Summary. The four subcases of this section clarify the relevance of the
CSS concept and the importance of the topology chosen for ∆(S).
First, Cases 1a and 1b combine to show that a CSS x∗ = 0 in the interior

of [α, β] (i.e. a < 0 and 2a + b < 0) is Lyapunov stable and every initial
Q with full support converges to δ0 in the weak topology. Moreover, it is
already clear from (15) that δ0 is unstable if 2a + b > 0. These results give
a strong measure theoretic justification of the CSS concept that lies at the
heart of adaptive dynamics.
It must be pointed out, however, that there is a significant difference

between the basins of attraction of δ0 that are CSS depending on the sign of
a+b. If a+b < 0, δ0 is known as a good invader (Kisdi and Meszéna, 1995) or
a neighborhood invader strategy (NIS) (McKelvey and Apaloo, 1995; Apaloo,
1997). This latter condition can be used to prove convergence in Case 1a with
a single domination argument (Cressman, 2004) (see also Eshel and Sansone,
2003) that avoids the entropy technique used in the proof of Theorem 2. To
illustrate this difference, suppose Q0 is a dimorphism with support {0, s},
with 0 < s ≤ β. Then a + b < 0 implies Qt converges to δ0 in the weak
topology.
On the other hand, if a+b > 0, the dynamics (8) restricted to the support

{0, s} is bistable: with q = Qt({0}) and 1− q = Qt({s}) we get
q̇ = q(1− q)[q(π(0, 0)− π(s, 0)) + (1− q)(π(0, s)− π(s, s))]

= q(1− q)s2[bq − (a+ b)] (23)

Hence q̇ < 0 if 0 < q < (a + b)/b. (Note that 0 < (a + b)/b < 1/2 which
means that δ0 has the larger basin of attraction on this line than δs.) Thus,
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q → 0 if q is sufficiently small initially. This result also follows from (15)
since π(qδ0 + (1− q)δs, qδ0 + (1− q)δs) = s2(bq2 − 2(a+ b)q + 2a+ b) which
is a quadratic function of q with minimum at q = (a+ b)/b. Since π(Q,Q) is
increasing, Qt → δs if 0 < Q0({0}) < (a+ b)/b. Furthermore, by continuity
of π(Q,Q) in the weak topology, for ε sufficiently small, if suppQ0 = [−ε, ε]∪
[s− ε, s+ ε] and Q0([s− ε, s+ ε]) < (a+ b)/b, then Qt([s− ε, s+ ε])→ 1 as
t→∞ (actually, Qt converges weakly to δs−ε by the argument in the proof
of Theorem 5).
The above analysis also shows that the convergence results of Theorem 4

need not be true if we only assume P ∗ is the unique global maximizer of the
expected payoff π(P,P ).
Cases 1c and 1d illustrate the importance of the chosen topology for

convergence and stability results. Specifically, δ0 is locally superior with
respect to the variational norm20 if and only if a < 0. That is, even in
these last two cases when mean fitness at δ0 is less than that of any other
monomorphism, δ0 is locally superior in the strong topology (in fact, every
δs in Case 1c is locally superior). Thus, δ0 is Lyapunov stable in this strong
topology, and further Qt converges weakly to δ0, if Q0({0}) is close to 1 as
shown by Oechssler and Riedel (2001) (see also Bomze, 1990).

5.2 Case 2: a > 0

From (15), any local maximizer of π(P,P ) must have as large a variance as
possible given E(P ∗) =: E. Thus the support of P ∗ is contained in {α, β}.
In fact, P ∗E = p∗1δβ + p∗2δα where p

∗
1 =

E−α
β−α and p∗2 =

β−E
β−α . Thus, we need to

maximize

Var(P ∗E) = 2a(p
∗
1(E − β)2 + p∗2(E − α)2) + (2a+ b)E2

for E ∈ [α, β]. This expression simplifies to

Var(P ∗E) = −2a(E − α)(E − β) + (2a+ b)E2 = bE2 + 2a(α+ β)E − 2aαβ.

If b < 0, this is a downwards parabola that has a unique maximum at
E∗ = −a

b
(α+ β). Depending on whether E∗ is outside or inside the interval

S, the unique local maximizer is given by P ∗ = δβ if (a + b)β + aα ≥ 0, by
P ∗ = δα if (a+b)α+aβ ≤ 0 and by the above dimorphism if (a+b)β+aα < 0
and (a+b)α+aβ > 0. Since P ∗ is a NE and the game is negative semidefinite

20This norm corresponds to the strong topology with respect to which local superiority
is often called “strongly uninvadable” (e.g. Bomze, 1991).
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by (17),

π(P ∗, Q)− π(Q,Q) = π(P ∗ −Q,P ∗) + π(P ∗ −Q,Q− P ∗)

≥ π(P ∗ −Q,Q− P ∗) = −b(E(P ∗)−E(Q))2 ≥ 0.
Furthermore, if E(P ∗) = E(Q), then π(P ∗, Q) − π(Q,Q) = a(V ar(P ∗) −
V ar(Q)) from (14) and (15). Thus, π(P ∗, Q)−π(Q,Q) > 0 unless P ∗ and Q
have the same mean and variance. Since P ∗ is the unique probability measure
that has the largest variance for a given mean, P ∗ is globally superior. By
Theorem 4, P ∗ is Lyapunov stable and attracts every Q0 whose support
contains that of P ∗.

5.2.1 Case 2a: 2a+ b < 0.

In this case we have the situation which is often referred to in the adap-
tive dynamics literature as evolutionary branching (Geritz et al, 1997). It is
straightforward to show that P ∗ is then a dimorphism. By the above rea-
soning for b < 0, P ∗ is Lyapunov stable and attracts any initial Q(0) whose
support includes {α, β} since it is globally superior.

5.2.2 Case 2b: 2a+ b ≥ 0 and b < 0.

P ∗ is still globally superior but could be either a dimorphism or one of the
monomorphisms δβ or δα.

5.2.3 Case 2c: b > 0.

In this final case, f(E) is an upwards parabola which has δβ and δα as the
local maximizers of π(P, P ). This is again the bistable situation as in Case
1d.

5.3 Normal Distributions with S = R

Following Oechssler and Riedel (2002) we consider special solutions Qt of (8)
with S = R that are normal distributions with meanm(t) and variance V (t),
i.e.,

dQt

dx
=

1p
2πV (t)

e−
(x−m(t))2
2V (t) (24)

From dṖ
dP
(x) = π(x, P )− π(P,P ) we obtain

− d

dt

·
(x−m(t))2

2V (t)
+
1

2
log V (t)

¸
= a(x2 −m(t)2) + bm(t)(x−m(t))− aV (t)
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which reduces to

V̇ = 2aV 2 ṁ = (2a+ b)mV (25)

Hence (24) are solutions of (8) if and only if the mean and variance satisfy
the differential equations (25).
This illustrates nicely the meaning of the two crucial parameters a and

2a+b: the equation for the mean resembles the canonical equation of adaptive
dynamics. Note that, for a > 0, the variance goes to infinity in finite time.
Such a blow up is possible only for non—compact S.

6 Non-Quadratic Payoff Functions

The method developed in Section 4 and the proof of Theorem 5 can be used to
analyze probability measure dynamics beyond the quadratic payoff functions
considered in Section 5. For instance, the domination argument used in the
proof of Theorem 5 remains valid if we restrict the support of Q0 to be
an interval sufficiently close to x∗ so that the quadratic terms in the Taylor
expansion of π(x, y) about (x∗, x∗) are predominant. In particular, a CSS that
is not an NIS continues to attract all such initial Q0. Moreover, the one-time
domination argument of Cressman (2004) (see the Summary in Section 5.1)
shows the same result for arbitrary support sufficiently close to x∗ when x∗

is CSS and NIS. Thus, the CSS condition will continue to guarantee local
convergence in the absence of the symmetry implied by only quadratic terms
in the payoff function - what is lost is whether the CSS remains Lyapunov
stable. Conversely, if x∗ is not CSS then a reverse domination argument
shows instability of δx∗.
In the other case of particular interest to adaptive dynamics (i.e. the evo-

lutionary branching of Case 2a), a convergence stable x∗ with πxx(x∗, x∗) > 0
will be unstable in the measure dynamics whether π(x, y) is quadratic or
not. What is not so clear is what the measure dynamics will evolve to in
this situation without the quadratic payoffs that imply a globally stable di-
morphism emerges that is supported on the endpoints of the trait space S
since mean fitness grows as variance increases. However, our results apply to
nonquadratic payoff functions of the form π(x, y) = φ(x) + bxy + φ(y) with
b < 0 and φ an arbitrary smooth function. Since such games are negative
semidefinite, if there is a unique maximizer P ∗ of the mean fitness then P ∗

is globally superior and hence attracts all initial Q with full support. If φ
is a symmetric function (i.e. φ(−x) = φ(x)) and φxx(0) > 0 then there is
no monomorphic NE, and hence P ∗ is supported on at least two traits. As
an example take b = −5 and φ(x) = 2x2 − x4 on the trait space S = R. If
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suppQ0 contains both maxima of φ (i.e. {−1, 1}), the theory from Section 4
proves Qt converges to the Lyapunov stable dimorphism P ∗ = 1

2
δ1 +

1
2
δ−1 in

the weak topology. This follows from the fact P ∗ is globally superior since

π(P ∗, Q)− π(Q,Q)

=

Z
S

Z
S

(φ(x)− 5xy + φ(y))P ∗(dx)Q(dy)−
Z
S

Z
S

(φ(x)− 5xy + φ(y))Q(dx)Q(dy)

=
1

2
(φ(1) + φ(−1))−

Z
S

φ(y)Q(dy) + 5E(Q)2

> 0

unless suppQ = {−1, 1} and E(Q) = 0 (i.e. unless Q = P ∗.)

7 Discussion

This paper is meant to introduce measure dynamics as a means to model co-
evolutionary systems and to compare this theory to other, more established,
approaches such as adaptive dynamics. The comparison is most complete in
the basic model of coevolution where stability of a monomorphism in a sin-
gle species with a one-dimensional continuous trait space is analyzed. This
necessarily entailed several simplifying assumptions that we would like to
address in this concluding section.
We have already discussed to some extent the issue of symmetric payoff

functions in Section 6. There is no doubt symmetry is an important tool in
our development of the theory for a general setting in Section 4 (see especially
Lemma 3 and its proof that shows a locally superior strategy is Lyapunov
stable). On the other hand, the quadratic approximation to fitness functions
about a monomorphism x∗ provide this symmetry and can be used to describe
local behavior of the dynamics of probability measures with support near x∗.
Dependence on total population size (i.e. density dependence) is included

in our model by assuming a background fitness that is strategy independent.
This has the effect that density dependence essentially disappears from the
measure space dynamics of Section 3 (as well as the adaptive models sum-
marized in Section 2). General density dependence is more difficult from a
technical perspective. One attempt to avoid this problem is to assume, as is
often done in the adaptive dynamics approach, that the population instanta-
neously tracks its equilibrium density for a given probability measure. This
approach is usually justified by appealing to a dichotomy between the time
scales for the population dynamics (ecological time scale) versus strategy evo-
lution (evolutionary time scale). That is, it is assumed ecological changes are
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much faster than evolutionary ones. The dynamics is then reduced to one on
the “stationary density surface” (SDS) where the fitness π(x, P ) is assumed
to be given by π(x, P,N(P )) whereN(P ) is on the stationary density surface.
We feel such an assumption places a severe restriction on the applicability
of adaptive dynamics, especially as the theory considers non monomorphic
limiting behavior. On the other hand, there is some evidence the SDS con-
tinues to play an important role when there is no separation of time scales, at
least when there is a finite number of strategies as in Section 2.2. The SDS
can then be used to separate the density effect from the local asymptotic
stability analysis of the mean strategy dynamics for both monomorphisms
and polymorphisms in single species (Cressman, 1992) or multiple species
(Cressman and Garay, 2003) models of coevolution. Of particular relevance
for us is the result for monomorphisms; namely, a monomorphism is locally
asymptotically stable in the coevolutionary model of combined density and
strategy evolution when there is a finite number of strategies if and only if
the monomorphic density dynamics is asymptotically stable at equilibrium
strategy and the induced strategy dynamics on the stationary density sur-
face is asymptotically stable (no matter what the relative rates of ecology
and evolution are). For our measure dynamics model with general density
dependent payoffs, we conjecture a stationary density surface will continue
to predict local behavior near a monomorphism but not for general equi-
libria P ∗ distributed over the trait space (see also our comments on higher
dimensional trait space below).
Mutation has not been explicitly added to our model. Our perspective is

that this effect is already included by considering arbitrary initial population
distributions over the strategy space. In this sense, all potential mutations
are already present in the system to start with and, if this “mutation” is
successful, it will grow in relative size compared to other possible strategies.
In particular, our formalism includes systems that are initially concentrated
near a monomorphic equilibrium with a small subpopulation concentrated
around a “mutant” strategy. There is no doubt this modelling of “mutation”
is different than the mutation and trait substitution or the finite number of
fixed mutants of Sections 2.1 and 2.2 respectively. On the other hand, our re-
sults also allow one to introduce rare mutations in the more traditional sense
by letting the system evolve arbitrarily close to a stable equilibrium between
mutation events. Theorems 2 and 4 then show the perturbed system will
stay close to a locally superior equilibrium distribution P ∗ that is Lyapunov
stable and eventually return to it.
The adaptive dynamics approach has also been extended to multi-dimen-

sional strategy spaces (e.g. Meszéna et al., 2001) and/or multi-species models
(e.g. Marrow et al., 1996). For a single-species monomorphic equilibrium x∗
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in a compact trait space in Rn (such as a ball or hypercube), the mea-
sure dynamics approach applied here suggests the method of assuming the
CSS conditions hold along any ray (as in Meszéna et al., 2001) from x∗ is
particularly relevant. Indeed, it is straightforward to see that the CSS con-
ditions along any ray are necessary for stability of δ0 (simply take initial
measures supported on this ray). On the other hand, under the additional
condition corresponding to NIS, convergence to x∗ can be shown in the weak
topology when initial distributions have support sufficiently close to x∗ (this
uses an argument similar to Cressman (2004)). A precise characterization of
measure-theoretic stability is an open problem.
However, in other multi-dimensional or multi-species situations (e.g. non-

monomorphic P ∗ or especially if there is non-equilibrium behavior of the
adaptive dynamics such as cyclic behavior in a single-species model or in
a two-species predator-prey system), we are quite skeptical that the con-
clusions from the measure dynamics approach will correspond to that from
adaptive dynamics. There is in fact evidence from coevolutionary models
based on finite trait spaces (e.g. Abrams and Matsuda, 1997) that questions
the relevance of those adaptive dynamics approaches that assume popula-
tion size(s) tracks its equilibrium value in these circumstances (Marrow et
al, 1996; Dieckmann and Law, 1996). It is hoped that future results from
the measure dynamics model will contribute to this ongoing debate. Models
that exhibit non-equilibrium behavior also call into question the assumption
that fitness functions are based on pairwise interactions. It seems more rea-
sonable that in such situations, π(x, µ) should depend on the measure in a
more complicated way than simply averaging the payoffs between individ-
ual interactions. In fact, such non-pairwise fitness functions were proposed
from the outset of coevolutionary models (e.g. Roughgarden, 1979) where
Lotka-Volterra type models were proposed with interaction coefficients given
by Gaussian distributions depending on the separation of strategies from the
mean.
We view this paper as a first, but crucial, step to compare the infinite-

dimensional measure dynamics approach to modelling coevolutionary sys-
tems with more traditional finite-dimensional dynamical methods, thereby
providing a solid theoretical foundation to predict long term behavior in co-
evolutionary systems. From this perspective, our results (see especially the
Summary in Section 5.1 that the CSS plays a central role in understand-
ing convergence and stability of the measure dynamics at a monomorphism)
show the adaptive method is clearly a valid shortcut to analyzing measure-
theoretic coevolutionary models when there are quadratic pairwise interac-
tions. As discussed above, there are many obstacles to a general theory, but
the end results should be equally rewarding.
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