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Abstract

Water /solid interfaces are of utmost importance to a number of technological
processes. Theoretical studies, based on ab initio approaches are suitable to
unveil processes occurring at water/solid interfaces and can therefore be in-
strumental to delineate guidelines to improve the efficiency of these processes.
In this thesis we study several systems of current interest using ab initio meth-
ods based on density functional theory (DFT). By going often beyond the
use of standard DFT methods and approximations we have provided insights
into processes occurring at water/solid interfaces under ambient conditions
and in non stoichiometric conditions. Specifically, we will investigate the in-
teractions between water and ZnO, an important metal-oxide especially used
in industry to produce methanol. One of the most important results of this
study is that proton hopping is dramatically enhanced under wet conditions
compared to ideal ultra-high vacuum conditions. Also, we will compute the
friction between liquid water in contact with 2-D layered materials, and delin-
eate the guidelines on how to alter the friction coefficient in membranes used
for desalination or osmotic power harvesting. Finally, in collaboration with
Geoff Thornton’s group we have investigated the role of defects on the surface
chemistry of the rutile TiO9(110), which is the model oxide surface used in
photocatalysis applications. On the whole, in this work we have used ab ini-
tio methods to reduce the gap between the ultra-high vacuum-style studies
of adsorption on perfect defect-free surfaces and the complex behaviour of
liquid /solid interfaces under technologically relevant conditions.
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Chapter 1

Introduction

The interface between water and other substances is important to an enorm-
ous amount of phenomena in science, technology and in our every day life.
For instance, water is often considered to be the matrix of life for its active
role in biological systems (see e.g. Refs. [1, 2]). Also, water and aqueous solu-
tions in general are commonly used in electrochemistry. Applications include
hydrogen production from water splitting in photoelectrochemical cells [3],
and the energy conversion in fuel cells from Hs to produce electricity and
water as an exhaust product. Further, in the earth sciences the hydrological
cycle involves a series of complex multi-scale processes going from water pre-
cipitation to water evaporation, which are all fundamental to life on our

planet.

We could mention a never ending list of examples where the interactions
between water and other substrates or solutes are crucial, but the few ones

already tell us how broad and important the field of water/solid interfaces



is. As scientists interested in the properties of water at interfaces, our goal
would be to understand the nature of these interactions in intimate details,
up to the molecular level; to then be able to control and tailor the properties
of their constituent materials to finally produce a desired result. Referring to
the examples above, one such result could be for instance the development
of drugs that can bind more effectively to their targets to block specific en-
zymes, and this may be achieved through the understanding of the molecular
structure and dynamics of hydrated proteins [2]. Also, through the study of
the molecular structure of water adsorbed on solid surfaces and their inter-
actions with light, we hope to find the guidelines to design more efficient
photocatalysts for the splitting of water, so as to make the production of Hy
more affordable [4]. Further, by looking at the microscopic processes occur-
ring during ice formation in the atmosphere, we may design agents to prevent
or facilitate ice nucleation and thus enhance or limit the precipitation in a

specific region of the atmosphere.

In the mentioned examples the crucial steps are to reach molecular level
understanding of the interface of interest and then to control and modify
its properties. The idea to monitor and control the properties of materials
down to the atomic scale was perhaps first envisaged by Feynman in his
popular talk at the American Physical Society in 1959 “There’s Plenty of
Room at the Bottom” [5]. Since Feynman’s inspiring talk a lot of progress
has been made in the miniaturization of devices through e.g. the technique
of lithography and in the imaging of ever smaller systems, especially using
electron microscopes. However, not until the development of the scanning

tunneling microscope (STM) in 1980s did it become possible to image and
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move atoms in a controlled manner [6-8]. As a proof of the capabilities of the
STM, at the beginning researchers at IBM wrote the name of their company
moving individual Xenon atoms on a Ni(110) surface at 4 K [8]. Now they
have gone further, and they have created a movie of a boy playing with a
ball using CO molecules on a Cu substrate at around 5 K [9]. One of the
possible developments stemming from atomic-scale manipulation at this level
of complexity could be the design of atomic-scale memory for very big data

storage.

There is a large body of knowledge coming from STM surface science style
studies on the structure of water/metal and water/oxide interfaces [10, 11].
However, STM is not suitable to investigate water/solid interfaces under
ambient conditions, because experiments are performed under ultra-high va-
cuum (UHV) conditions and often at cryogenic temperatures. Even with the
atomic force microscope (AFM), that can be used to investigate liquid/solid
interfaces under ambient conditions, atomic resolution of complex interfaces
has not been achieved so far. Other techniques such as ambient pressure pho-
toelectron spectroscopy (APPS) have been used to gain insights on the struc-
ture and the reactivity of liquid/solid interfaces [12]. Nevertheless, APPS
being a spectroscopic technique, real space imaging is not possible, nor is
atomic-scale manipulation. Further, under ambient conditions important
processes occurring at the interface between liquid water and solid surfaces
are usually too fast to be temporally resolved using current techniques. An
important example is proton transfer at liquid water/solid interfaces, which
may occur on the femtosecond time scale. Monitoring spontaneous proton

transfer has not been achieved, but a way has been found to monitor proton
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transfer in solution via irradiation using infrared spectroscopy [13, 14]. Over-
all, current state of the art experiments have not so far reached spatial as
well as temporal atomic resolution and control of realistic liquid water/solid

interfaces.

On the other hand, computational techniques have reached such a state of
maturity that realistic liquid water/solid interfaces can be studied routinely
using atomistic simulations. Atomistic simulations have demonstrated to be
most useful for the explanation of experimental results [15], or to understand
processes occurring under extreme conditions of temperature and pressure,
such as in the middle “ice layers” of giant planets [16]. However, we are
slowly experiencing a shift: increasingly atomistic modelling is being used
for materials design, or to predict the phases of existing materials or even
to discover entirely new materials. For instance, atomistic simulations have
been used to identify hundreds of thousands of zeolites structures to improve

the efficiency of carbon dioxide capture and storage [17].

Electronic structure methods, especially those based on density functional
theory (DFT) simulations, are increasingly being used for the design of cata-
lysts, for e.g. the formation of methane from CO, or to prevent fuel cell
poisoning from CO oxidation (see Ref. [18] for a review). DFT simulations
are especially suitable to predict catalytic properties of materials and design
more efficient and cheaper catalysts for gas-phase reactions. However, in
many important electrochemical processes surfaces are in contact with a li-
quid phase. Reactions and processes at liquid /solid interfaces pose additional

challenges compared to gas-phase [18].
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Electronic structure methods based on DFT have been used to address
a number of important problems related to water on solid surfaces. These
include: i) What is the nature of the bonding and the adsorption structure
of water on a given surface under ideal UHV conditions and at 0 K7 ii) How
do different conditions of temperature and pressure affect the structure and
dynamics of water on surfaces? iii) How does the presence of surface defects
alter the stability of water on surfaces? These are some of the questions
which are important to improve our current understanding of water/solid
interfaces, and are therefore key to e.g. the design of better catalysts under
wet conditions or to improve the efficiency of nano-membranes used for de-
salination or power harvesting. These are also some of the typical questions

that we answer to in this thesis using DF'T.

Although in principle DFT is exact, approximations have to be made to
practically solve the electronic structure problem. The most crucial approx-
imation is that of the exchange-correlation functional, where all the complex
quantum mechanical phenomena of the many-particle problem are hidden.
The particular approximations of the exchange-correlation functional can
have a dramatic impact on the accuracy of DFT to predict the structure
and dynamics of water/solid interfaces. Two of the most important issues
of standard exchange-correlation functionals are the presence self-interaction
error, and the lack of van der Waals dispersion interactions [19]. In order to
perform state-of-the-art DFT calculations of water /solid interfaces, it is im-
portant to address both these issues and we do so throughout this thesis. The
model used to describe water/solid interfaces can be of critical importance

for the accuracy of the results. It is important to ensure that the properties
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of interest are converged with the model used to describe the interface. Again

this issue is also addressed throughout in this study.

In this thesis we investigate a range of water/solid interfaces that pose a
number of scientific and technological challenges. Specifically, we use DFT-
based methods to provide guidelines on how to solve important problems
relating to heterogeneous catalysis and power harvesting. The systems in-
vestigated include water at the interface with TiOy and with ZnO — two of the
most important metal oxides in photocatalysis [1] and heterogeneous cata-
lysis [20] — and graphene and hexagonal boron nitride, which offer promising
alternatives to power harvesting using salinity concentration gradients (so-

called “blue energy”) [21], and to conventional desalination membranes [22].

After a brief introduction to DFT and to ab initio molecular dynamics
(AIMD) in Chapter 2, results on the structure of the clean and water covered
Zn0(1010) surface will be shown in Chapter 3. According to state-of-the-art
DFT calculations at different levels of theory, a fraction of water is dissociated
on the surface under ideal UHV-like conditions. This will pave the way
for the study of proton transfer on ZnO(1010) under aqueous conditions in
Chapter 4. By comparing the proton dynamics of water on ZnO(1010) under
UHV-like conditions with that under aqueous conditions it is found that
proton transfer is dramatically enhanced when ZnO(1010) is in contact with
liquid water. This can have important implications for ZnO-based catalytic

reactions, such as for the formation of methanol [20].

An astounding achievement of nanotechnology is the capability to manu-

facture carbon and other inorganic nano-sized membranes, which are prom-
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ising for their use in water desalination, energy conversion and as super-
capacitors [21-25]. In these applications liquid/solid friction is one of the
main sources of dissipation. In Chapter 5 the friction coefficient between
liquid water and graphene is compared with that between liquid water and
an hexagonal boron nitride sheet. AIMD simulations consistently reveal an
increased friction on boron nitride compared to graphene, although the liquid
film structure is almost indistinguishable between the two. In this study it is
demonstrated for the first time that AIMD can be used to compute transport
properties at liquid/solid interfaces, and that friction is a complex property
not directly related to the structure and wetting of the substrate. Guidelines
are also provided on how to manipulate liquid water/solid friction at the

nanoscale.

Finally, in Chapter 6 results are presented for the structure of the model
photocatalytic interface: water on rutile TiO2(110). An extensive series of
simulations using “flavours” of DF'T that correct one of its most encumber-
ing problems have been performed to interpret new surface X-ray diffraction
(SXRD) results from Geoff Thornton’s group at UCL on the adsorption of
water on TiOy(110) [26]. Particularly important in this study is the role of
point defects and inner surface relaxation to water dissociation and adsorp-
tion of OH species. DFT simulations beyond the standard approximations
have provided insights into the structure obtained from SXRD. This has al-
lowed us to make sound statements on ways to alter the OH concentration

on the surface, which is of utmost importance to the photocatalytic activity

of TiO,(110).
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Chapter 2

Theoretical background

Summary

Quantum mechanics and statistical mechanics lay the foundations for our
understanding of the properties of matter. In this chapter we first review the
fundamental definitions of the many-body Hamiltonian of electrons and nuc-
lei in condensed matter. This leads naturally to the introduction of density
functional theory, one of the most popular methods for the solution of the
many-body problem. We will then discuss ab initio molecular dynamics as a
method stemming from electronic structure theory and statistical mechanics
to efficiently sample phase space and that we will use throughout our study

of liquid/solid interfaces.



2.1. MANY-BODY PROBLEM OF INTERACTING
ELECTRONS AND NUCLEI

2.1 Many-body problem of interacting elec-

trons and nuclei

The Hamiltonian for a system of interacting electrons and nuclei is at the
root of the electronic structure problem. If we adopt Hartree atomic units

h=m, = e =1/4meyg = 1, the Hamiltonian H can be written as:

-1 Z ! !
H=—§ZZ:V?—Z\1~Z._—RI|+§;H

1 VAV
_ V2 4 2.1
2MIZ Z|RI—RJ| 1)
I I4J]
=T 4 VoA Ve +Th+ Vi, (2.2)

where lower case subscripts refer to the electrons, and upper case subscripts
refer to nuclei with charge Z and mass M. In eq. 2.2 the Hamiltonian has
been rewritten in a more compact way, where T, is the kinetic energy the
electrons, Vi_. is the potential acting on the electrons due to the nuclei,
V;_e is the electron-electron interaction and Vn_n is the interaction between
the nuclei. The significant velocity of the electrons (the Fermi velocity) is
~ 10% cm/s, and much larger than the ionic velocity, around 10° cm/s, such
that one can assume that at any instant of time the electrons are at their
ground state for that particular ionic configuration [27]. This is the Born-
Oppenheimer approximation, which is an excellent approximation in most
cases, e.g. for the calculation of the phonon dispersion of a crystal [28]. The
Born—Oppenheimer approximation represents also a starting point for the

description of more complex phenomena where electrons and phonons are

CHAPTER 2. THEORETICAL BACKGROUND
9



2.1. MANY-BODY PROBLEM OF INTERACTING
ELECTRONS AND NUCLEI

coupled. Typical examples are electron transport in metals and supercon-

ductivity, which can be treated for instance using perturbation theory [28, 29].

Within the Born—Oppenheimer approximation the time-independent solu-
tion of the Hamiltonian in eq. 2.1 is obtained by solving the many-body

Schrodinger equation, which is written as:

H|W) = (T + Voo + Ve + Vi) W) = E|W) (2.3)

where |U) is the eigenstate of the Hamiltonian and it represents the many-
body wavefunction which depends on the 3N electronic coordinates r;, i.e.
U(ry,ry,...,ry). Solution of eq. 2.3 gives a set of eigenfunctions and eigen-
values, F, the total energy. The lowest of the eigenvalues is the ground state
energy Fj, from which all ground-state properties can be obtained. These
include the cohesive energies of solids, their equilibrium crystal structure and
the phase transition between different structures, the nuclear motion, etc..
Even excited state properties such as the optical absorption spectra or the
phonon spectra can be obtained from a perturbation of the ground state
properties [27-29].

The exact solution to eq. 2.3 is limited to a few very small systems, not-
ably, the H atom, Hy, and perturbatively the He atom. Another important
system in solid state physics for which an exact solution exists is the ho-
mogeneous electron gas [30], which is a model of interacting electrons in a

uniform positively charged background.

The number of electrons in condensed phase systems is of the order of

10?3, which makes it impractical (to say the least) to solve eq. 2.3 exactly for a
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

real system. Fortunately, methods to obtain approximate solutions to eq. 2.3
have been developed (see e.g. Ref. [31] for a review). In the following section
we provide an introduction to one of the most popular electronic structure

methods: Kohn-Sham density functional theory.

2.2 Introduction to density functional theory

Kohn-Sham density functional theory (DFT) is the most widely used method
for describing the electronic structure of materials [19]. The first and second
Hohenberg-Kohn theorems lay the foundations of DFT [32]. However, not
until the formulation of Kohn and Sham did DFT become a consistent and

practical method to solve the many body problem [33].

2.2.1 The foundations of DFT

The first Hohenberg-Kohn theorem states that in a system of interacting
electrons in the presence of an external potential ve.(r), the potential v, (r)
is determined uniquely by the ground state electron density ng(r), except
for a constant shift in the energy. Therefore, the ground state electron wave
function Wo(ry,re,...,ry) can be obtained simply by knowing the ground
state density ng(r). Accordingly, any ground state property of a material
can be obtained from the density. From this follows the second Hohenberg-
Kohn theorem, which states that there exists a universal functional of the
electron density (F[n(r)]) for any given external potential ve,(r) [28]. For

any external potential the ground state energy FEy can be obtained from the
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

minimization of this functional at the ground state density ng(r), namely:

Ey = E[no(r)] < En(r)]. (2.4)

Together the first and second Hohenberg-Kohn theorems attempt to find a
solution to the complicated many-body problem in terms of n(r) alone instead
of the much more complicated many-body wave function that depends on 3N

degrees of freedom.

Unfortunately, stating that a universal functional of the electron density
exists does not mean that it is known. In fact, accurate ways to express the
kinetic energy in eq. 2.3 only in terms of the density exist only for simple

metals and alloys [34].

2.2.2 The Kohn-Sham ansatz

A more successful approach to solve the many-body problem has been in-
troduced by Kohn and Sham [33]. The main idea of Kohn and Sham was
to reformulate the electron kinetic energy and the electron-electron interac-
tion of the interacting electron system in terms of a non-interacting one. All
the complexity arising from the quantum mechanical many-body interactions

is then reintroduced into a term called the exchange-correlation functional,
Ey[n(r)].

Following the Kohn-Sham ansatz, the Hamiltonian in eq. 2.3 can be re-
written in terms of a system of non-interacting particles, using a so-called
single-particle approach. The electron density can therefore be represented

by the electron density of a system of non-interacting particles. n(r) itself
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

is obtained as the sum of the squares of the non-interacting orbitals ¢y for

each spin o:

n(r)=) n(ro)= > WP (2.5)

o o 1

In Kohn-Sham theory the expectation value of the kinetic energy for the
interacting system appearing <T .) (see eq. 2.3) is approximated with the

single-particle kinetic energy 7T, given by:

Tin(r) = 5 303 [ dr(vurmpP. 26)

g

Analogously, the mean electron-electron interaction (V,_.) is approximated
with the single-particle energy for the electron-electron interaction, which is
just the Coulomb interaction energy for the self-interacting density (i.e. the
Hartree energy):

Fitarea[n(r)] = % / B gy ) (2.7)

r—r|

By approximating (T') with T, and (V._.) with Eharee, all the many-body
interactions are neglected. These are put into the exchange-correlation energy

E.., which is at the heart of Kohn-Sham DFT and defined as

Exc[n(r)] = <T> - Ts[n(r)] + <‘/€,e> - EHartree[n(r)] : (28)
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

The Kohn-Sham total energy functional altogether reads:

Exs[n(r)] = Ty[n(r)] + /d?"r Vert (T)1(T) + Enartree[n(r)] + Exc[n(r)] + Err,

(2.9)

where the integral of the external potential ve.(r) refers at minimum to the
potential acting on the electrons due to the nuclei and E;; is the energy due
to the interaction between the nuclei (see eq. 2.2). Using variational calculus

eq. 2.9 can be minimized, yielding the set of Kohn-Sham equations:

(~57 + o)) ) = 0r) =128, (200
. 5 n(r) dE,
ths = vealt) + [ @ L e )

where €] are the eigenvalues of eq. 2.10. The theory is now complete. Alto-

gether, eq. 2.5 and eq. 2.10 allow to solve the electronic structure problem.

In Kohn-Sham theory the electrons are viewed as independent particles,
moving under the effective potential vkg [19]. In this picture, however, the
wavefunction W(ry,re, ..., ry) but a set of fictitious single-particle orbitals.
The introduction of the single-particle orbitals means that N eigenvalue prob-
lems given by egs. 2.10 have to be solved. Obviously, the dependence on 3N
degrees of freedom from a computational point of view is not as appealing as

only on 3, as in the original formulation of Hohenberg and Kohn. However,
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

this is one of the prices to pay for the simplicity of Kohn-Sham DFT.

2.2.3 Exchange-correlation functionals

Another problem is that no explicit expression is known for the exchange
correlation functional F,.. Although Kohn-Sham DFT is exact, approxima-
tions have to be made for the exchange-correlation functional. The simplest

of these is the local density approximation (LDA):

Eve paln()] = / Ern(r)ese neg(n(r)). (2.12)

Within the LDA the exchange-correlation energy density €;._pes(n(r)) is ap-
proximated with that of the homogeneous electron gas evaluated locally (i.e.
at each point in space) at a given density. The exchange energy density
is known exactly for the homogeneous electron gas from Hartree-Fock the-
ory and the correlation energy has been calculated by fitting to very accurate
quantum Monte Carlo methods [35]. The LDA works well in cases of a slowly
varying density n(r), and it is seen to be a reasonable start in the calculation
of solids, atoms and molecules [19, 36]. However, it generally overbinds at-
omization energies of atoms and molecules too much. For instance, the mean
error for atomization energies with respect to a test set containing experi-
mental data with better than 1 kcal/mol precision (the so-called “chemical

accuracy”) is about 3.5 eV /atom with the LDA [19].

The generalized gradient approximation (GGA) is more sophisticated.
Now the exchange-correlation energy density depends also on the gradient of

the electron density, i.e. €;c—neg(n(r), Vn(r)). Popular functionals within the
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

GGA are e.g. PWO91 [37], PBE [38] and BLYP [39, 40]. Although GGAs have
shown an overall improvement over the LDA on the ground state properties
of solids, atomization energies of atoms and molecules, it is thought that some
properties are better described with the LDA. One important example is the
surface energy of solids [41-43]. More advanced formulations to express the
exchange correlation functional involve expansions to higher order derivatives

of the density, as e.g. the meta-GGA which uses the laplacian of the density.

2.2.4 Beyond standard density functionals

Even though many properties of solids, surfaces, and interfaces can be cap-
tured using standard density functionals within the LDA or the GGA, there
are some outstanding failures of standard functionals. These are notably the
lack of dispersion forces, and the inability to provide good estimates of the

band-gap of semiconductors and insulators.

Dispersion is a fully non-local interaction, part of van der Waals inter-
actions. It can be defined as the electron density response to instantaneous
density fluctuations in other regions of space. Dispersion gives rise to the well-
known attractive dipole dipole-induced interaction, which scales as —1/r5 for
large interatomic separations r. There exists a wide variety of methods to
account for dispersion within DFT (see Ref. [14] for a review). A class of very
popular methods involves the calculation of the dispersion energy from the
pairwise sum of a —Cg/r® term, where Cj is the dispersion coefficient [45-19)].
Each of these schemes differs in the way the Cg coefficients for the pair of

atoms are computed and on how the divergence at low separation is treated.

Another class of dispersion corrections is based on the calculation of the
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

dispersion interaction energy directly from the density and for this reason
they are usually called van der Waals density functionals [50-53]. The basic
idea of these methods is that the dispersion contribution to the total energy

functional is obtained by the non local correlation energy E™ defined as:

EZ” = /d3r1 d3ry n(ry)p(ry, ra)n(rse), (2.13)

where n(ry) and n(rg) are the electronic densities at coordinates rq and ra
and ¢(rq,ry) is an integration kernel that depends on the separation r; — ra
with the correct asymptotic behaviour —1/|ry — 13| for large separations.
The different van der Waals density functionals differ in the way the E™ is
calculated or in the way it is incorporated into the overall expression for the
total energy (see e.g. Ref. [14]). The correction of the van der Waals density
functionals is still pairwise, although they generally show an improvement in

the accuracy over the —Cj/r® empirical correction.

Corrections beyond the pairwise sums and that account for the fact that
the interactions between two electrons is screened by the presence of all the
other electrons generally require the calculations of more complicated and
more expensive expressions. One of the most popular approaches makes use
of the adiabatic connection fluctuation dissipation theorem [54, 55], within
the random phase approximation (RPA) [56, 57]. Although the RPA is at
present one of the most accurate methods for the calculation of bulk proper-
ties in condensed phase systems [58, 59], this comes also to a great computa-
tional cost. Indeed, while the cost of traditional DFT methods and pairwise

corrections scale with S% (where S is the system size), RPA-based methods
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2.2. INTRODUCTION TO DENSITY FUNCTIONAL THEORY

scale with S*.

Besides dispersion corrections, methods that predict more accurate band
structures in insulators or semiconductors have appeared already since quite
some time (see e.g. Ref. [60]). The prediction of too small a band-gap in insu-
lating materials is due to an error present in standard density functional ap-
proximations that is commonly referred to as self-interaction. Self-interaction
is caused — in non-Hartree Fock based methods — by the incomplete cancella-
tion between the Hartree energy of one electron interacting with itself and the
exchange energy of the same electron interacting with itself. The calculation
of band-gaps which are too small means that e.q. ground state properties
of insulators in the presence of point defects are generally not sufficiently
accurate. Perdew and Zunger first introduced a self-interaction correction
by adding a self-Coulomb term and a self-exchange-correlation term to the
total energy [60]. Also the DFT+U method can be used to correct for self-
interaction, where the additive Hubbard-U term penalizes an excessive delo-
calization of the orbitals and “pushes” the orbitals towards being either fully

occupied or fully unoccupied [61].

Further, the use of a certain fraction of exact exchange can correct for the
self-interaction error (see e.g. Ref. [62]). This is the approach followed when
using hybrid functionals. Popular hybrid functionals such as B3LYP [63,
64] and PBEO [65] (and its short range version HSE06 [66]) have shown to
generally improve the band-gap in semiconductors and insulators. However,
the calculation of exact exchange scales like S* and it comes at a greater cost

than standard functionals. RPA and other higher order methods like GW
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also improve the description of band-gaps, and we point the interested reader

to Refs. [28, 62, 67].
2.3 Solving the Kohn-Sham equations

The Kohn-Sham equations 2.5 and 2.10 form a complete set that allow to
solve the electronic structure problem. The procedure to solve the equa-

tions 2.5 and 2.10 involves the following steps:

1. Guess the initial density n(”)(r) at each point in space;

2. Solve the set of N independent (single-particle) eigenvalue problems

given by eq. 2.10;

3. Recompute density n!)(r) using eq. 2.5 from the orbitals obtained from
eq. 2.10;

4. If |InW(r) — n®(r)| < tolerance, then stop, otherwise update density

and start back from step 2.

Eqgs. 2.10 and 2.5 have to be solved together until a solution is found iterat-
ively, which means that the density and the Kohn-Sham potential have to be
consistent. From this the name self-consistent loop is given to the algorithm

just described.

2.3.1 Basis sets

To solve eq. 2.10 a set of N eigenvalue problems have to be solved for each
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orbital ¢;(r), which have to be expanded in a given basis set ¢(7):

Yi(r) = Z CipPp(r) (2.14)

where ¢;,, are the expansion coefficients and in principle P — oo, for 1;(r)
to be a complete basis set. In practice, we work with a finite number of
basis functions and we stop at a number of P which is large enough to give
properties converged to the desired accuracy. There exists a large number of
basis sets which generally fall into two main groups: i) atom centered and ii)

non-atom centered basis sets.

Among the different types of atom centered basis functions, Gaussian
type orbitals are among the most popular because the calculations of several
integrals and derivatives may be performed analytically. One of their main
drawbacks, however, is that they cannot represent the proper behaviour near
the nuclei, where the orbitals should have a “cusp”, instead of being flat.
Also, the accuracy of DF'T calculations with localized basis functions depends
critically on the size of the basis set. Basis-set incompleteness gives rise
to the so-called basis set superposition error, which manifests itself in e.g.
the calculation of the binding energy of dimers. In the calculation of the
binding energy, each monomer is effectively described by a larger basis in
the composite dimer than in the monomer, which gives rise to a non-physical
increase in the binding. Methods like the counterpoise correction exist to

correct for this error [31].

Among DFT codes that employ non-atom centered basis functions, those

that use plane waves are very popular because the evaluation of integrals
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makes large use of fast Fourier transforms and it is simple and efficient.
Plane waves DFT codes usually employ periodic boundary conditions because
they exploit the Bloch’s Theorem [27]. The expansion in plane waves comes
naturally from Bloch’s Theorem, which states that the eigenfunctions of a
Hamiltonian in a periodic potential are given by plane waves modulated
by functions which have the same periodicity of the lattice. Using Bloch’s

Theorem the plane wave basis set expansion reads:

Uk (T) = Ui (r) €' (2.15)

where k is a reciprocal vector within the first Brillouin zone and the function
unk(r) has the periodicity of the lattice, i.e. unk(r) = u,(r + R), for any
translation vector R in the Bravais lattice. In eq. 2.15 the subscript n is
denoted as band index and refers to the number of independent eigenvalues
for each value of k. Thanks to Bloch Theorem the wave vector k can always
be translated back to the first Brillouin zone, and the eigenvalues are also
periodic functions in the reciprocal space, i.e. €,xik = €x. This means
that it is possible to perform plane wave DFT calculations using only the
primitive unit cell, instead of a larger “supercell”. The only problem is that
we have to sample k-space, which means that we have to solve the Kohn-
Sham equations for a discrete set of k-points. The number of k-points is

usually increased until the property of interest is converged.

Although plane wave and Gaussian basis functions are among the most
popular, there is a growing demand for DFT codes that can treat efficiently

systems of several thousands of atoms. For instance, this has led to the
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development of codes that try to exploit the advantages of both methods,
using the so-called Gaussian plane wave method (GPW) [68]. Using the
GPW approach all integrals and derivatives in the Kohn-Sham equations
are computed using Gaussian basis functions, except for the integral of the
Hartree and of the exchange-correlation term, where auxiliary plane waves
are used. Using this approach sub-linear scaling has been obtained, allowing
calculations for systems containing several hundreds to thousands of atoms

to be performed routinely on large enough parallel machines [69].

2.3.2 Treating the core electrons

It is important to treat the core electrons even if they are not involved in
the bonding, otherwise the valence orbitals are not properly described due
to a poor description of electron-electron interactions. However, near the
nuclei the wavefunction has very many nodes and rapid oscillations due to
the strong Coulomb potential of the core electrons. Especially in plane waves
codes it is not efficient to describe the core electrons by simply using the basis
set expansion as in eq. 2.14, i.e. using an all-electron basis set. One needs
simply too many basis functions to treat correctly the rapid oscillations of

the core electrons near the nuclei.

A possible way to treat the core electrons is to use pseudopotentials. In
the pseudopotential method, the effects of the core electrons are replaced by
an effective potential acting on the orbitals of the valence electrons. In this
way the core electrons are effectively eliminated, thus reducing the cost of
the calculation. Also, the valence orbitals are replaced with pseudo-orbitals,

which have usually analytical forms. Within a cut-off radius r. from the
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nuclei, the pseudo-orbitals are much smoother than the reference orbitals.
Then, at a distance r > r., the pseudo-orbitals match with reference orbitals.
The pseudopotentials are usually divided in norm-conserving and ultra-soft
types. As the name suggests, the norm-conserving pseudopotentials require
the integral of the square modulus of the pseudo-orbital to be the same as that
of the reference orbital. On the other hand, with ultra-soft pseudopotentials
this constraint is relaxed and they are usually smoother and require a cut-off

radius not as small as the norm-conserving ones [70].

Another popular method to treat the core electrons is the projector aug-
mented wave (PAW) method [71]. The basic idea is to represent the all-
electron wavefunction |¢) with a smooth pseudo-wavefunction |¢), which
can be done by applying the linear operator T to [¢), that is [¢) = T |¢)).
The operator takes the form T = 14+ 3" (|¢m) — [¢m)) (fm| , where the sum
over m “partial waves” runs over the core region only and the (p,,| is a pro-
jector function that corrects for the difference within the region of the nuclei
between |¢)) and [). It can be seen from the expression for the operator T
that the all-electron wavefunction |¢) has to be obtained over the core region.
This can be done on radial grids using analytical Bessel functions. Although
the PAW method retains the core-electrons, they do not usually change dur-

ing the calculations, using the so called “frozen-core” approximation.
2.4 Ab initio Molecular Dynamics

The development of efficient algorithms and electronic structure codes and

of increasingly faster and bigger parallel machines has led to a revolution in
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computational materials science: the possibility to treat the thermal motion
of real systems including solids, liquids and solid/liquid interfaces using ab

initio molecular dynamics [28].

The pioneers of ab initio molecular dynamics were Car and Parrinello [72].
In the Car-Parrinello method, both the ions and the electrons are evolved
in time. Additional degrees of freedom are associated to the electronic mo-
tion to describe the fictitious electron dynamics. Using this approach the
self-consistent loop expressed by eq. 2.5 and 2.10 has to be solved only once
and then the ions and electrons can be evolved in time by integrating New-
ton’s equations of motion. The use of Car-Parrinello molecular dynamics
has opened the way for electronic structure methods to investigate an en-
tire range of problems far beyond previous capabilities. These include the
structure of liquid water and its infrared spectrum entirely from first prin-
ciples [73, 74]. Examples on perhaps even more complex systems are the
investigation of equilibrium properties of glucose in aqueous solution [75]

and of several phases of carbon at high pressures and temperatures [76].

Although Car-Parrinello molecular dynamics has represented an enorm-
ous step forward in the computation of materials, the trajectories might
deviate from the Born-Oppenheimer potential energy surface, with evident
problems in sampling effectively phase space. Also it is not straightforward
to choose an appropriate fictitious electron mass, and the time step must
be sufficiently small to account for the fast oscillations of the fictitious elec-
tron degrees of freedom (which are much greater than the frequencies of the

nuclei).
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An alternative approach is to perform ab initio molecular dynamics within
the Born-Oppenheimer approximation (here simply AIMD). The idea of
AIMD is simple: to compute the total energy and forces at each time step
by solving the self-consistent loop and integrate Newton’s equations of mo-
tion to obtain the trajectory of the ions. The development of ever more
efficient algorithms to solve the Kohn-Sham equations and to extrapolate
the ground state wavefunction at each time step (see e.g. Refs. [77, 78]) has
made the efficiency of AIMD within the Born-Oppenheimer approximation
comparable with the scheme proposed by Car and Parrinello. Within the
Born-Oppenheimer approximation and treating the nuclei as classical point-

like particles Newton’s second law reads:

. OFE
MRy = AR, F[{R,}]. (2.16)

Within Kohn-Sham DFT it is straightforward to compute the forces on
the nuclei F;[{R;}] thanks to the Hellmann-Feynman theorem which can
be viewed as a consequence of DFT being based on the variational prin-
ciple. From eq 2.9 for the Kohn-Sham total energy, the force equation using

Hellmann-Feynman theorem is expressed as:

8E . 8]2[ aE]] _ —/d?’n(r) (%ewt(r) . 8EH

- = . 2.1
OR; OR; OR; (217)

The right hand side of eq. 2.17 illustrates that it is relatively simple to obtain
the forces within DFT, and the time integration using standard schemes like

e.g. the Verlet algorithm is even less computationally demanding. From this
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it is clear that the bottleneck of any AIMD simulation is represented by the

calculation of the self-consistent loop.

2.4.1 AIMD in the canonical ensemble

Given a set of initial conditions (i.e. ionic coordinates and velocities), the
equations of motions can be integrated to perform an AIMD simulation in the
microcanonical ensemble, that is where the number of particles, the volume
and the total energy are conserved (NV E). Assuming that the simulation is
so long that all the regions of phase space at constant energy are explored, a
microcanonical distribution is generated and the time average of any quant-
ity equals its phase space average. This is the ergodic hypothesis, which is
a rather strong one especially in AIMD, where one is limited to trajector-
ies usually not longer than several tens of picosecond. Although especially
in systems with many degrees of freedom it is hard to prove (or disprove)
ergodicity, it is clear that the hypothesis will not hold in cases where there
are too high potential barriers, i.e. if there is a region of space where the

potential ve.(r) > E.

Apart from the ergodicity problem, performing AIMD in the microca-
nonical ensemble poses the problem that usually experimental conditions are
not under constant energy. An ensemble that more closely resembles com-
mon experimental set-ups is the one where N, V and the temperature T
are conserved, i.e. the canonical ensemble. Although in the thermodynamic
limit (N — o0o) the canonical and the microcanonical ensembles are equival-
ent, most simulations are performed far away from this limit. Away from the

thermodynamic limit energy fluctuations are not negligible and have to be
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accounted for. Energy fluctuations are generated by a system in contact with
an external bath. Methods to account for the energy fluctuations to give a
constant temperature are called for an obvious reason thermostats, and have

been around since the 80s (see e.g. Ref. [79] for a review).

Here, we introduce the Nosé-Hoover chains thermostat, which is one of
the most popular schemes [80]. As opposed to e.g. the standard Nosé-Hoover
thermostat [81, 82], the Nosé-Hoover chains thermostat has been shown to
generate a canonical distribution for the positions and momenta even for the
most pathological model systems [30]. With the Nosé-Hoover chains ther-
mostat a number of fictitious equations of motion are added to control the
temperature and rescale the ionic velocities according to the target temperat-
ure. There is a number of equations of motions N, (chains) coupled together,
which rescale the ionic velocities according to the desired temperature, thus
mimicking the effect of the thermal bath. If we denote the actual momentum
for the ions as py, the fictitious momentum as p, and the associated variable
1, we can rewrite the equations of motion 2.16, now in the presence of the

thermostat as:
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It can be seen that in Newton’s equation for p; a new term appears (p,, /Q1)pr,
which in turn depends on another “chain” of N, — 1 equations. The term @),
is a parameter that sets the time scale over which the velocities are res-
caled. The presence of N, chains ensures the sampling of a canonical distri-

bution [80].

We conclude this section by mentioning that equilibrium transport prop-
erties, obtained from e.g. linear response theory (such as the friction coeffi-
cient computed in Chapter 5), may not be properly described. While ensuring
the sampling of the canonical distribution, the use of a thermostat such as
Nosé-Hoover chains might yield a fictitious dynamics. Tests on the calcula-
tion of dynamical properties under the NV E ensemble are therefore needed.
In the case that equilibrium transport properties are computed in the NV E

ensemble, the underlying assumption is that the system is large enough that
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the NVT and the NV E are equivalent and the temperature fluctuations
are therefore negligible (they scale as 1/ \/ﬁp, where N, is the number of
particles). It is possible to test the validity of this assumption by checking
the convergence of the desired transport properties using cells of increasing

system size.

Other ways of computing dynamical properties involve the use of non-
equilibrium molecular dynamics. In this case the system is effectively per-
turbed and the response to the perturbation measured, in pretty much the
same way as in experiments (see Ref. [83] for an example on the calcula-
tion of the friction coefficient). Using this approach the assumption of the
thermodynamic limit is relaxed. Nevertheless, non-equilibrium molecular
dynamics simulations are significantly more challenging, especially because
they require a much longer simulation time for the calculation of converged

dynamical properties.
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Chapter 3

Structure of clean and water

covered ZnO(1010)

3.1 Introduction

ZnO is a II-VI group semiconductor which has recently received a lot
of attention in nanotechnology applications for electrical energy conversion
from e.g. sunlight [84], ultrasonic waves [85] and mechanical energy [86]. ZnO
plays also a major role in heterogeneous catalysis, where Cu nanoparticles
deposited on ZnO surfaces are used for the synthesis of methanol, which is one
of the most important products of the chemical industry nowadays [20, 87]. Tt
is of great importance to characterize the electronic and structural properties
of clean ZnO surfaces because surface properties have an increased influence

on heterogeneous catalysis and on nano-devices, as opposed to those of the

bulk.
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Being a II-VI semiconductor, ZnO presents interesting chemical bond-
ing properties in that it exhibits a mixed covalent/ionic character. Under
ambient conditions ZnO crystallizes in the wurtzite structure consisting of
hexagonal Zn and O planes stacked in an alternate fashion, and where each
cation is tetrahedrally coordinated to four neighbouring anions and vice
versa. A tetrahedral structure is typical of group IV and III-V covalent
semiconductors, like Si, diamond and GaAs, but interestingly the degree of
ionicity is particularly pronounced in ZnO, which shows similarities with a

prototypical ionic insulator like MgO [88].

Like other wurtzite crystals, ZnO exposes four main facets: the non-polar
(1010) and (1120) orientations, and the polar (0001) and the (0001) ones,
which are Zn- and O-terminated, respectively. The (1010) orientation is the
most stable phase [87], and it has been the subject of many experimental
investigations since the Low Energy Electron Diffraction (LEED) study of
Lubinsky et al. [39-94]. Upon cleavage of the bulk crystal along the (1010)
plane, the surface structure looks like the one shown in Fig. 3.1. It forms an
hexagonal bilayer structure made of ZnO dimers running along [1210], with

each dimer separated by trenches along [0001].

Although there are no reports documenting major reconstructions, the
form and the degree of relaxation of the top surface atoms still remains
controversial. Specifically, several LEED works reported an inward relaxation
of the top Zn-atom of 0.45 /OX, and essentially no displacement of the top O-
atom (see e.g. Refs. [89-92]), and a resulting tilt of the top Zn—O bond with

the anion above the cation. On the other hand, a very small relaxation of the
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Figure 3.1: Tllustration of the structure of ZnO(1010) in top (a) and side (b) views.
Red and black circles are the O and Zn ions in the top layer, respectively. The
pink and grey circles are O and Zn ions in the layers underneath. The surface unit
cell is indicated by dashed lines.
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Zn-atom toward the bulk of 0.06 £ 0.02 A was found in a grazing incidence
X-ray diffraction (GIXD) experiment of Jedrecy et al., along with a larger
relaxation of the O-atom toward the bulk of 0.1240.02 A [93]. Accordingly,
the surface would exhibit an opposite tilting to what shown in the other

LEED studies with the anion below the cation.

The theoretical results on the details of the relaxation and of the tilting of
the top Zn- and O-atoms are also scattered. The first ab initio Hartree-Fock
or DFT-LDA studies on ZnO(1010) obtained using Gaussian basis functions
showed very small relaxations of about 0.1 A of the top Zn and O atoms
and a tilt of the Zn—-O bond of about 2° [95, 96]. A more recent study using
the B3LYP functional found similar results, although a slow convergence of
the surface structure with the number of layers has also been reported [97].
Even though B3LYP, like other hybrid functionals, have shown improved
description of bulk ZnO properties over LDA or other GGA based studies
(see e.g. Refs. [98]), in Ref. [97] the ions have only been relaxed along the
[1010] direction, while they have not been relaxed within the (1010) plane.
This is not a sound procedure, as ZnO dimer has six degrees of freedom
and the ions can move in all three directions. Other theoretical results from
plane waves calculations and with the LDA or PBE exchange-correlation
functionals found instead a converged structure using already 3 bilayer slabs
and showed a larger tilt of =~ 10° and a relaxation of the top Zn-atom between

—0.3 and —0.4 A with respect to bulk ZnO [88, 99)].

Since the details of the relaxation are related to the ionic or covalent

character of the surface, and this can for instance affect the activity of ZnO-
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based catalysts, it is important to determine the extent of such relaxation.
DFT has been extensively used to solve complex surface reconstruction and
relaxation mechanisms in solid crystals (see e.g. Ref. [36]) and we will use
it here to shed light on the details of the surface relaxation of ZnO(1010).
In the first part of this chapter, we will compare the performance of several
exchange-correlation functionals for the description of the surface properties
of clean ZnO(1010). Specifically, we will show the results obtained from
the PBE functional along with methods that partially correct for the self-
interaction error of DFT, namely using a Hubbard-U correction [61] and the

HSEO06 hybrid functional [66].

In the second part of this Chapter we will focus on the adsorption of
water on ZnO(1010). Water is important in heterogeneous catalysis and in
electrochemistry because many such processes occur under wet conditions
and water may also participate during some steps of a reaction. In the case
of ZnO, water is expected to play a role in the performance of nanowire dye-
sensitized solar cells [84] and also in the synthesis of methanol because it
is a side-product of the reverse water-gas shift reaction [20, 100]. For this
reason there have been many experimental studies of water on well-defined

ZmO surfaces, including experiments in-house in Geoff Thornton’s group.

In any of such applications a major interest is whether or not water dis-
sociates on a surface. Although water dissociation has been reported on
many oxides (see e.g. Ref. [11]), the level of dissociation may depend on the
atomistic details of the surface and on the coverage. Insight on the level of

dissociation on oxide surfaces can be gained from surface science experiments
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performed on ideal defect-free oxide surfaces and under ultra-high vacuum
conditions. DFT calculations have often provided useful in the interpretation
of experimental data. With regards to ZnO(1010), DFT has been of aid to
reveal a (2 x 1) water superstructure on the surface which has been imaged
using scanning tunneling microscopy [100]. In this (2 x 1) superstructure one
out of every two water molecules is dissociated, forming a so-called partially

dissociated overlayer.

Previous theoretical work on the adsorption of water on ZnO(1010) has
focused on the structure of water using standard (i.e. GGA) density func-
tionals [100—-102]. Nevertheless, the water dissociation barrier resulting from
standard GGA functionals may be underestimated due to the self-interaction
error (see e.g. Ref. [19]). Also, it has been shown that the inclusion of dis-
persion interactions may alter the stability between two different adsorption
modes of benzene on Si(001) compared to standard GGA functionals that
neglect van der Waals dispersion forces [103]. Hence, in the second part
of the Chapter (see Section 3.4) we investigate the adsorption of water on
Zn0(1010) using methods beyond the GGA, which include a fraction of exact
exchange to give a better description of the water dissociation barrier, and

that account for dispersion interactions.
3.2 Computational details

Static DF'T calculations at zero K have been performed for the determina-
tion of the structure and energetics of clean and water covered ZnO(1010).

Within the framework of DF'T we have used two different codes: VASP [104-
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106], which uses plane waves to expand the wavefunctions of the valence
electrons and the projector augmented wave method to treat the core elec-
trons [71, 107]; and the CP2K/QUICKSTEP package [68, 69] which instead
uses a combination of Gaussian and plane wave basis functions while the
core electrons are treated using norm conserving pseudopotentials [108]. In
VASP we used six valence electrons for oxygen (2s%2p*) and twelve for zinc
(3d'"45?) and a cut-off of 500 eV for the plane wave expansion. Molecularly
optimized double-( valence polarized (m-DZVP) basis functions are used for
the Gaussian basis set [109] in CP2K and a 320 Ry cut-off for the plane wave
expansion. Using m-TZVP basis functions for oxygen and hydrogen atoms
changed the monomer adsorption energy by at most +15 meV/H50. In the
VASP calculations we have employed a k-point mesh density of 6 x 4 X 1 per
primitive surface unit cell with the Monkhorst-Pack scheme [110]. Because it
is only possible to sample k-space at the I" point in CP2K a 6 x 4 unit cell has
been used to reproduce the same k-point density as in the VASP calculations.
We have relaxed all the atoms in the unit cell for the study of the clean sur-
faces, while in the case of water adsorption we have adsorbed water on one
side of the slab and kept the other side fixed at its bulk-truncated position.
Further, when adsorbing water a dipole correction has been used in VASP
while the method by Martyna and Tuckerman [111] has been used in CP2K

to treat the electrostatic interactions along the direction of the vacuum.

The comparison between the CP2K and the VASP codes have been per-
formed using using the PBE functional [38]. Besides PBE we will also
show the comparison with functionals which partially correct for the self-

interaction error of DFT and that account for van der Waals dispersion
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forces. In bulk ZnO self-interaction gives rise to a significant underestim-
ation of the band-gap because of an excessive delocalization of Zn 3d-states.
For instance, PBE predicts a value of 0.7 eV, as compared to the experi-
mental gap of 3.4 eV [112]. DFT+U ameliorates this deficiency predicting
an improved gap, depending on the value of the Hubbard-U parameter used.
We apply the +U correction to PBE using with a value of U= 4.7 eV accord-
ing to Ref. [113]. Hybrid functionals also predict better gaps. We use the
HSEO06 [66] functional which predicts a gap of 2.5 eV, in much closer agree-
ment with the experimental value than PBE (see e.g. [98]). Since the too
large electron delocalization in PBE may affect the water dissociation barrier
we will compare the transition from the intact to the partially dissociated
state using the PBE and the HSE06 functional in Section 3.4. Further, van
der Waals interactions may provide important contributions to the binding
of water on solid surfaces, as shown e.g. in the case of 1D water chains on
Cu(110) or Ru(0001) [114]. For this reason we also performed calculations of
water adsorption on ZnO(1010) using Grimme’s D2 correction [46] and the

optPBE-vdW and optB86b-vdW functionals [50, 51].

3.3 Structure and energetics of clean ZnO(1010)

The structure of ZnO(1010) is shown in Fig. 3.2. Upon cleavage of the bulk
crystal the ions in the first layers will relax and tilt to compensate for the
missing bonds, as shown in Fig. 3.2(b). We focus here on the details and
the magnitude of such relaxations. Table 3.1 summarizes the results for

the structural and energetic properties of ZnO(1010) as obtained using a
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3 bilayer slab. We decide to model the ZnO(1010) using a 3 bilayer slab
because the structure and energetics are converged with such a number of
bilayers. In agreement with LEED and angle-resolved photoemission ex-

Table 3.1: Structure and energetics of ZnO(1010). Relaxation of the surface zinc
(Ad) (Zn)) and oxygen (Ad  (O)) atoms with respect to their bulk position, bond
length contraction (Cp ) and tilt angle w; of the first layer Zn and O atoms,
and the surface energy o obtained for a 3 bilayer slab with the VASP and CP2K
codes and with different functionals. Also reported are other DFT (PBE) and
experimental (LEED) results, where the bracketed numbers identify quantities
derived from those mentioned in the experiment.

PBECP2K PBEVASP PBE+U HSE06 Other Theory? Expt.?
Ad, (Zn)(A) ~0.28 ~0.34 049 —0.33 ~0.36 0.45+0.1
Ad | (O)(A) ~0.01 ~0.03 024  —0.05 ~0.04 ~0.05+0.1
w1 7.8° 9.4° 7.7° 8.3° 10.1° 12° + 5°
A(O1—Zny) (A) 0.27 0.31 0.25 0.27 0.33 0.40 + 0.1
Cp, (%) —6.5 —6.9 ~6.9 -7.0 ~7.2 -3
o (meV/A2) 52.2 52.0 54.2 59.5 49.9 -

@ Reference [88]
b Reference [90]

periments [90-92], our calculations predict an inward relaxation of the top
Zn atom compared to bulk ZnO (Ad,(Zn)), while the oxygen remains in its
bulk position. This results in a tilting of the Zn—O bond in the top layer,
with the cation below the anion, as seen in Fig. 3.2(b). A moderate tilting of
the surface atoms with the surface cation moving downwards has been con-
firmed by other experimental studies and it also agrees with the PBE study
from Meyer et al. [38]. The same type of surface reconstruction has been re-
ported in other II-VI zinc-blende and wurtzite semiconductors [99, 115], and
the underlying mechanism results from a competition between dehybridiza-
tion from sp? to sp?, typical of semiconductor surfaces, and charge transfer

characteristic of ionic compounds (see e.g. Ref. [88]).

Upon formation of the surface, the top Zn and O atoms pass from being
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< /C \P

Figure 3.2: Tllustration of the structure of ZnO(1010) in top (a) and side (b) views.
Red and black circles are the O and Zn ions in the first layer, which are labelled
as Op and Zny, respectively. The pink and grey circles are O and Zn ions in the
second layer, labelled as Oy and Zns. Also indicated is the tilt angle in the first
two layers. The surface unit cell is indicated by dashed lines.
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fourfold to threefold coordinated. In a predominantly covalent system the
cation tends then to rehybridize from sp® to sp? and move towards the anions
underneath, without significantly changing the bond length with the top
anion (see e.g. Refs. [36, 88]). To compensate for the missing ions in a
dominantly ionic compound instead, the attraction between the surface ions
will be stronger compared to the bulk case, as is that towards the inner ions.
This results in an overall relaxation towards the bulk and on a contraction

of the surface bond-length, but without any tilting [36, 88]).

In ZnO we observe both a tilting of the top surface bond, (typical of
covalently bound systems), and a surface relaxation towards the bulk with a
contraction of the top Zn—O bond (typical of ionic systems). Only the GIXD
work from Jedrecy et al. [93] has indicated a very small inward relaxation of
the surface Zn atom (only —0.06 £ 0.02 A), with the surface resulting in an
almost bulk-like structure. In that study the surface oxygen is also predicted
to lie 0.06 & 0.06 A below the zinc but this would be very unusual since, so
far no wurtzite crystal in the (1010) orientation has been reported to have a

tilt with the cation above the anion.

From Table 3.1 it can be seen that PBE predicts a value of Ad, (Zn) of
—0.28 and —0.35 A from CP2K and VASP, respectively. The value obtained
from HSEQ6 is close to the PBE one, while PBE+U slightly overestimates the
inward relaxation. Although PBE+U shows an inward oxygen relaxation of
—0.24 A, it is evident that the surface Zn-atom relaxes more towards the bulk,
lying below the oxygen atom independent of the code or functional used. The

net inward relaxation of the cation determines a pronounced tilting of the top
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Zn—0 bond with respect to the bulk-truncated surface of approximately 10° is
indicated by wy in Table 3.1 and displayed in Fig.3.2. We have also computed
the quantity A(O;—Zn;) which is the difference along [1010] between the
position of the top oxygen and the top zinc atom, further illustrating that
the oxygen atom lies between 0.3 and 0.4 A above the zinc. As the top Zn
and O atoms pass from being tetrahedrally coordinated to being three-fold
coordinated, the surface Zn—O bond contracts of about 7% compared to the

bulk, as illustrated by the bond length contraction Cp .

An important quantity that measures the energetic cost needed to cut a

bulk crystal into two semi-infinite ones is is the surface energy o, defined as

1
0 = ﬂ(Esmb - NZEbulk>: (3-1)

where Fg,;, is the total energy of a slab with N; bilayers in the case of ZnO,
Epu is the total energy of the bulk system per bilayer and A is the surface
area exposed. The difference in total energy between a slab with N; + 1
bilayers and N, bilayers converges to the bulk total energy FEj, ;. provided
that IV; is large enough (see e.g. Ref. [116]), so we decide to compute Epy,, as
Ega(Ni+1) — Egq(N;) with N; = 6. We obtain values of the surface energies
which are around 52 meV/ A? with PBE, while PBE+U and HSE06 predict
slightly larger values of 54.2 and 59.5 meV/ AQ, respectively. PBE and other
GGA functionals are thought to underestimate surface energies of materials.
In absence of experimental values of the surface energy we can compare with
the LDA functional which is believed to perform better than GGAs from

simple arguments based on jellium calculations and on experiments on simple

CHAPTER 3. STRUCTURE OF CLEAN AND WATER COVERED
ZNO(1010)
41



3.3. STRUCTURE AND ENERGETICS OF CLEAN ZNO(1010)

metals such as Pb or on simple oxides such as MgO [411-13]. Meyer et al.
computed o using LDA obtaining a larger value compared to PBE of 71.7
meV /A2 [38]. Using a fraction of exact exchange with the HSE06 functional
we obtain an improvement on the surface energy, closer to the LDA value.
It remains to be seen if the improvement of the surface energy with HSE06
is quite general and consistent with other systems, but overall more reliable
experiments on the surface energies of materials would be welcomed for the

benchmark of different functionals.

We mentioned that the surface relaxation and the surface energy are
converged using 3 bilayer slabs to model the surface. We show that it is
indeed the case by computing the quantities described in Table 3.1 as a
function of the number of bilayers. Specifically, Fig. 3.3(a) illustrates that
the distances between the atoms in the first bilayer projected along [1010]
are all converged using a 3 bilayer slab. This is also true for w; and ws,
which are the tilting angles of the Zn-O bonds in the first and second layer,
respectively. The surface energy is also converged for a 3 bilayer slab as
displayed in Fig. 3.4, where we also show a comparison with the different

functionals used.

In order to estimate how much the surface relaxation and tilting propag-
ates into the bulk we have computed the tilting angle and the parallel bond-
length contraction Cp | for an 18 layer slab as illustrated in Figs. 3.5(a) and
3.5(b), respectively. We only show the results obtained from PBE bulk Zn—
O bond length and the surface ones — as the other functionals illustrate a

very similar picture. It is clear that the the tilting propagates only 3 — 4
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Figure 3.3: Structural relaxations (Fig. 3.3(a)) and tilt angles (Fig. 3.3(b)) relative
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