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1 Introduction

The analysis of timing decisions is of prime relevance in economic theory. For example, the timing

of patenting determines the rate of disclosure of innovations, and hence welfare assessments of R&D

activities and policies. Similarly, the timing of adoption of process innovations determines the basic

technological fundamentals of industrial organization problems. The timing of product innovation

and market entry is a major concern of both incumbents and potential entrants in contestable

markets. Such economics problems are typically represented as �preemption games�: models where

each agents�key strategic decision is the timing of a given action, players would be better o¤ if they

could jointly commit to postpone their actions, but there is a �rst-mover advantage in payo¤s.1

One obviously important feature of these timing problems is private information: the agents�

states in the game are only privately known and are stochastically changing over time. For ex-

ample, R&D competitors do not share information about their technological improvements before

�ling for a patent. R&D results are jealously kept secret and the practice of industrial espionage

has developed as a result of this. Similarly, the development of product and process innovations

is typically kept secret from potential competitors. This paper studies preemption games where

players� state stochastically changes over time, and their payo¤s depends on both players�states.

We derive general theoretical results that underline fundamental structural di¤erences with the

previous analyses of timing games. Furthermore, our analysis uncovers novel positive insights on

the timing of innovation adoption and patenting as well as novel welfare predictions and policy

implications.

Incorporating in the analysis the realistic feature that players�private information states change

over time generates novel conceptual obstacles. The only available information to a player is that

the opponent did not leave the game yet. How should a player update her beliefs on the opponent�s

state and hence on the risk of being preempted? If the opponent is still in the game at a late time,

should a player believe that likely the opponent will remain longer and take the risk of delaying

exit, or should she believe that the opponent is coming close to end the game and leave the race at

1Among the earliest examples of preemption games, see for example Reinganum (1981a) and Fudenberg and Tirole
(1985). Related to preemption games are their mirror-image games, wars of attritions, i.e. stopping games with a
late-mover advantage. Possibly the class of timing games that has been studied in more depth are auction models.
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the earliest opportunity? And how should a player react to her own state dynamics? Should she be

more willing to leave the game immediately after a large increment, so as to cash this increment in,

and avoid being preempted by the competitor and losing everything? Or should she more willing

to leave after an unlucky streak with no or minor state increments for fear that the opponent is

ahead of her in the game and coming close to end the game?

We provide de�nite answers to these questions in a stylized continuous time framework. In any

instant, each player�s state is the sum of past increments that arrive according to i.i.d. Poisson

processes. Conditionally on arrival, the value of the state increment is randomly drawn from

distributions identical and independent across players. Under mild assumptions on the players�

payo¤s, we show that (essentially) all equilibria are characterized by a time-dependent threshold

function: at each moment in time, an agent ends the game if and only if her state is above a certain

threshold. Contrary to simple-minded intuition, these preemption games do not unravel: despite

being ignorant of their opponent�s state, players do not immediately end the game, even when they

would lose everything if preempted.

We then show existence of time-decreasing threshold equilibrium, and we derive in closed-form

the ordinary di¤erential equation governing the equilibrium threshold. To illustrate the substantive

meaning of our equilibrium, consider for example a patent race where an innovation �is in the air�:

more than one �rms are working on it. As time advances, the competitors become more and

more concerned with the risk of preemption, and less willing to wait for additional results before

applying for a patent.2 From the standpoint of an outside observer, there is an inverse relation

between the timing of disclosure and the entity of innovations: we provide a strategic justi�cation

for the common wisdom that big things happen fast.

Our equilibrium comparative statics analysis surprisingly �nd that strengthening patent rights

does not necessarily lead to more innovation disclosure.3 In industries where research is more

expensive than development, stronger patent rights induce �rms to anticipate patenting. When

2Even though, in reality, one does not know precisely when the opponent starts competing, our model can be
easily extended to account for this by allowing the competitors to randomly entering the race over time.

3As well as patent races, our analysis equally applies to sponsored research tournaments (e.g. Aoki (2001)).
Venture capitalists, for example, frequently run R&D tournaments when they allow only the best entrepreneur to go
to the initial public o¤ering (IPO) market. In some research tournaments (e.g. the recent Federal Communications
Commission sponsored tournament to develop the best technology for high-de�nition television), the �rm with the
best idea wins an exclusive right for commercializing it.
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development is costlier than research, stronger patent protection laws induce �rms to procrasti-

nate disclosure.4 In the context of innovation adoption, elaborating on the model by Reinganum

(1981a), we unexpectedly �nd that, while subsidizing an innovation�s adoption makes it happen

faster, subsidizing the innovation development bears the perverse e¤ect of delaying the innovation

adoption.

Our welfare results, specialized to the patent race problem again, allows us to clarify the inter-

play of counteracting strategic ine¢ ciency e¤ects known to the R&D race literature. On the one

hand, patent races competitors do not want to rush to the patent o¢ ce too soon and disclose minor

innovations, they would rather wait until accumulating a technological edge. This strategic delay

may be distorsive because it yields duplication costs when di¤erent competitors are reinventing the

same innovations instead of disclosing them through patents. On the other hand, �rms do not want

to delay patenting too long, lest a competitor makes a similar discovery and beats them in the race

to the patent o¢ ce. Such strategic preemption is distorsive when it is socially wasteful to patent

and develop too many incremental innovations.

Our analysis clari�es that both e¤ects may coexist in a patent race, but excessive duplication

costs likely take place in early stages of the race, and excessive preemption in later stages. If a �rm

obtains a valuable innovation early in the race, it is not much concerned for the risk of being pre-

emptied, and would delay patenting in the hope of further increments. The social planner dislikes

this delay because it internalizes the futile duplication costs borne by the opponent trying to catch

up in the race. Later in the race, each �rm becomes more and more concerned that her opponent

will soon end the race. This fear of preemption feeds on itself in equilibrium and makes the �rms

willing to preempt each other and patent relatively unpro�table innovations.

This paper is presented as follows. After the literature review, section 3 presents the general

model with a few applications, and the equilibrium is characterized in section 4. The social planner�s

problem is studied in section 5, and section 6 concludes.

4 Interestingly, development costs can themselves be understood as a policy parameter, e.g. the FDA trials before
a patented drug is allowed to be produced and marketed.
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2 Literature Review

Timing and preemption games have been studied widely; but their compelling feature that private

information changes over time has not been previously incorporated in the analysis. Among the

earliest games ever studied is Duel (see for example, Karlin (1959)). In this simple two player

preemption game two duellists shoot at each other with e¢ cacy increasing over time.5 A number

of papers model patent races as preemption games. Possibly the earliest one is by Fudenberg et

al. (1983). Closer to our work, Weeds (2002) studies a model with symmetric information where

the value of the innovation changes stochastically over time. Lambrecht and Perraudin (2003)

study a preemption game with Brownian-motion where two �rms own options to buy an asset with

publicly observable value stochastically changing over time, and where strike prices are private

information. Unlike our general analysis, private information is of private value and constant over

time. Reinganum (1981a), Fudenberg and Tirole (1985) and Riordan (1992) study technology

adoption preemption games. Competitors may decide whether to immediately adopt or delay

the adoption of a process innovation disclosed by a �third party,� that reduces production costs.

Their analysis also applies to market entry problems. Trading in a �nancial bubbles can also be

understood as a preemption game (for example Abreu and Brunnermeier (2002)): Everyone wants

to sell before the bubble bursts but stay in as long as the bubble lasts.

Several papers on R&D races have highlighted either duplication costs or preemption e¤ects in

di¤erent models. In the �Poisson games�framework pioneered by Reinganum, (1981b, 1982), each

�rm selects its experimentation intensity over time, and this a¤ects the Poisson rate of an innovation

arrival. These models�equilibria display duplication costs: �rms overinvest in equilibrium. In the

�tug-of-war�models following Harris and Vickers (1985), �rms take turns in making costly steps

towards a ��nish line.� In the absence of uncertainty, a dramatic preemption e¤ect takes place:

Once a �rm is ahead in the race, its competitors immediately quit. But this e¤ect disappears

when introducing uncertainty in the duration of each step (Harris and Vickers (1987)), and again

equilibrium R&D displays duplication costs. Unlike these models, our analysis incorporates private

information, and proves that both preemption and duplication e¤ects may be present in a race, but

5This model has evident military and economic applications, e.g. Binmore (2004) motivates its study as a model
of patent races.
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they predominate at di¤erent stages of the race.

Related to preemption games are their mirror-image games, wars of attritions, i.e. timing games

with a late-mover advantage. Baye, Kovenock and de Vries (1993) apply these games to lobbying.

Bulow and Klemperer (1999) generalize the war of attrition (without private information) to the

case where the last k out of n players receive a higher payo¤, and provide applications to industry

dynamics. Fudenberg and Tirole (1986) model a duopoly war with changing demand as a war of

attrition with private information on marginal costs. Krishna and Morgan (1997) study general war

of attritions with private information. Unlike our contribution, none of these papers study stopping

games where private information changes while the race is running. Decamps and Mariotti (2003)

study a Poisson war-of-attrition where the cost of the irreversible invesment in an uncertain project

is private information. Players have an incentive to wait-and-see, before exercising their investment

option. Private information is only of private value, whereas in our game it has interdependent

value and changes over time.

Park and Smith (2003) provide a general formulation and solution of stopping games in relation

to the payo¤ ranking of players depending of their exit order, without private information. Their

analysis subsumes both preemption games and wars of attrition. Finally, this paper contributes to

the literature on learning and experimentation in games, which dates back to Bolton and Harris

(1999), and has been further advanced by Bergemann and Valimaki (1997, 2000), Keller and Rady

(2003), and Cripps, Rady and Keller (2004).

3 The Game

Two players, A and B are engaged in the following timing game. The state of each player i at

any time t is expressed as xi (t) 2 R+; for example, xi may be the value of player i�s innovation in

a R&D race or innovation adoption game. Each player has independent Poisson arrivals of state

increments of rate � � 0: at any time t the next arrival � i � t is distributed according to the c.d.f.

H (� ij�; t) = 1� e��(� i�t). The distribution for the increment w 2 R+ -conditional on arrival- is G:

The c.d.f. G admits a density g and has connected support that contains 0: We assume that the
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distribution of increments is log-concave, i.e.

d logG (w) =dw = g (w) =G (w) is decreasing in w:

For example, increments may be negative exponentially distributed of parameter �, e.g. g (y) =

�e��y: Increments are independent across players. We let the expected value of an increment be

�w =
R1
0 wdG (w) : The renewal process we have just described de�nes implicitly a distribution of

the random state x of each player at time t; we denote the associated c.d.f. by F (t; x) ; and its

density by f (t; x) : For notational simplicity, we normalize to zero the state x (0) at time zero.

Each player i incurs a �ow cost c(x; t) at time t to remain in the game. We assume that c is

weakly increasing over time and state and bounded, setting c = c (0; 0) and �c = limt!1
x!1

c (x; t) : At

any point in time T; each player i may decide to stop the game and achieve payo¤u (xi (T ) ; xj (T )) :

This payo¤need not be instantaneous, but it may be obtained in a continuation game separate from

the timing game; for example, it may be the present discounted value of future market competition.

The opponent receives payo¤ u (xj (T ) ; xi (T )) : By de�nition of preemption game, the �rst-mover

has an advantage: there is a uniform (possibly small) bound � such that u (x; y) > u (x; y) + � for

any x; y not smaller than x(0):

Evidently, each player�s payo¤ is increasing in her own state, and we assume that u1 > 0 and

u1 � 0, this weak inequality allows the utility not to depend on one�s state when preempted by

the opponent. In order to highlight the competitive features of the environment, we also assume

that u2 � 0 and u2 � 0: an increment of the opponent state cannot increase a player�s payo¤. The

functions u and u are assumed to be C2:

For each player i = A;B, a history at time hti is a increasing path of states xi (�) for 0 � � < t:

In general, a pure strategy in this game is a measurable stopping time �i function of the history

hti; that identi�es the earliest moment at which �rm i is willing to stop the game given history hti:

Hence player i ends the game at time Ti = infft : �i
�
hti
�
= tg:6 It is natural to focus on strategies

�i that depend on the innovation state x and on calendar time t only, and not on the entire history

of increments hti.
7 The equilibrium belief of either player with respect to the opponent�s state y is

6For a general treatment on how to construct stopping time strategies in continuous time games and on their
interpretation, see Simon and Stinchcombe (1989).

7Because the underlying parameters of the process F are known, the player i does not draw any inference based
on her private history hti; additional to the inference based on the state x (t) :
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denoted by the c.d.f. � (y; t) : To simplify the analysis, as is customary in the timing-game literature,

we shall focus on symmetric equilibria: both players adopt the same equilibrium threshold strategy

�i and we shall henceforth omit the subscript i:

3.1 Applications

The general preemption game environment described above is of wide applicability. Here we present

some simple stylized economic problems that can be analyzed within the framework.

Patent races. In a patent race application, the two players are �rms who conduct research

activity at a �ow cost c (x; t) that depends on the state x and the time t: This research activity

improves the value of a patentable innovation over time. The state xi of �rm i corresponds to the

value of the innovation. As time goes by, and as the state increases, the research activity does not

become cheaper. At any time T , each �rm may end the game, patent and develop the innovation

xi (T ) : The patenting �rm receives the payo¤ u (xi (T ) ; xj (T )) and the competitor receives the

payo¤ u (xj (T ) ; xi (T )) : Evidently, being the �rst to patent an innovation gives an advantage,

ceteris paribus, and hence it is meaningful to state that u (xi (T ) ; xj (T )) > u (xi (T ) ; xj (T )) + �:

We single out in the payo¤s a cost c0 for patenting and developing an innovation, and assume that

u (xi (T ) ; xj (T )) = û (xi (T ) ; xj (T ))� c0; with û1 > 0 and û2 � 0:

One key feature of the patent institution is that it discloses the innovation and erases any claims

of partial ownership by competitors. If the innovation xj (T ) of �rm i�s opponent j is covered by i�s

patent, j will lose the bene�t of its research achievements. This in turns implies that when x � y;

the payo¤ u (x; y) for patenting an innovation x does not depend on y; nor does the opponent�s

payo¤ u (y; x). Hence in the context of patent races we assume that

û (x; y) = v (x) and u (y; x) = v (x) if x � y; with v0 > 0 and v0 � 0;

but we retain the possibility that payo¤s depend on both �rms states in the case that the patenting

�rm does not own the most advanced innovation.

In order to assess the e¤ect of patent policy on equilibrium, we shall also introduce the utility

speci�cation u (x; y;�) = � � û (x; y) ; where the policy parameter � that measures the extent to
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which the innovator captures the value of the innovation: for concreteness, � can be understood

as the breadth and length of the patent. Finally, we say that v(0) > c0 + �; so that, as long as one

is ahead in the race, the option of dropping out of the patent race is dominated by the option of

patenting one�s own innovations. This assumption allows us to focus the analysis on the patenting

choice.

An innovation adoption game. In the classic preemption game scenario studied by Rein-

ganum (1981) and later perfected by Fudenberg and Tirole (1985), an innovation is disclosed (and

patented) by a �third player�to competitors in a speci�c industry. It is common knowledge that the

innovation may potentially yield process optimizations that reduce production costs. A reduction

of production costs yields a competitive edge and tilts the pro�ts in favor of the �rst �rm adopting

the innovation. We focus on the case where the �rst-mover advantage is not immediately wiped

out when the second-mover adopts the process technology. Because the choice of adoption by the

second mover is a simple one-agent decision problem, we can summarize the problem as a preemp-

tion game, where the present discounted values of the continuation pro�ts at the moment of �rst

adoption of the innovation process are �1 and �2; with �1 > �2

As in Reinganum (1981) adopting the new process technology is costly. We expand her model

to posit adoption costs that depend on the stage of development of the innovation. The technology

is not readily implementable in the process and needs to be developed and tailored to each �rm�s

processes. This development and adaptation activity is private to each separate �rm. Within our

framework, it is natural to represent the stage of development of the innovation by �rm i at time

t by the state xi (t) ; and to posit that C (xi (t)) ; the cost of adoption of the process innovation

by �rm i depends solely on �rm i�s stage of technology development. Thus, we may study utility

speci�cations

u (x; y) = �1 � C (x) and u (y; x) = �2 � C (y) ; with C 0 < 0:

For simplicity, we also assume that c1 = 0 and omit the dependence of c (x; t) on x: In order to

assess the e¤ect of subsidization policies on equilibrium, we shall introduce the possibility that

development and technology adoption be subsidized, speci�cally that the cost functions c (x; t) and

C (x) may be reduced to �c (x; t) and 
C (x) ; where (1� �) denotes a innovation development
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subsidy, and (1� 
) a subsidy for innovation adoption.

Investigative Reports. Suppose that di¤erent teams of journalists from competing news

agencies, such as journals or television broadcasting networks, collect information on a big inves-

tigative report, such as one to uncover a government or military scandal. Thanks to the continuing

e¤orts of the journalists, more pieces of information are uncovered over time, and they accumulate

in determining the value of the report. We represent the quality of news agency i�s report at time

t by the state xi (t) : The game ends whenever one of the news agencies publishes or broadcast its

investigative report.

The journalists face a basic trade o¤ between anticipating or postponing the publication of their

investigative report. If they publish the report too early, they will break the news with a weak

story, that may lead in principle to defamation charges and to public opinion dismissal. If they

wait too long, they run the risk of being preempted by their competitors, and of losing everything.

Because breaking the news is all that matters, we assume that the payo¤ u (x; y) for being second in

publishing the report is negligible. Also, we suppose that the payo¤ for breaking the news depends

mostly on the quality of the report and is not much a¤ected by a subsequent competitor�s report.

In sum, the payo¤s for �breaking the news�and for �coming second�are:

u (x; y) = v (x) and u (x; y) = 0; with v(x) > � for all x; and v0 > 0:

4 The Equilibrium

Because strategies depend only on innovation state and calendar time, we let V (x; t) denote the

equilibrium value given state x at time t; and V be the value at the start of the game. The equation

determining the stopping time is:

V (x; t) = max

�Z
u (x; y)� (dy; t) ;W (x; t)

�
; (1)

where W is the equilibrium �ow value for remaining in the race.

We introduce three simple regularity assumptions.

Condition 1 For any x; y; u1(x; y) � u1(x; y):
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Condition 2 For any x; y; u11(x; y) � 0:

Condition 3 For any x; y; u12(x; y) � 0:

These assumptions are very mild. As an illustration, in the patent race application, they only

require that v00 � 0; and in the innovation adoption game that C 00 � 0: We verify in the Appendix

that under these regularity conditions, all the equilibrium strategies � can be represented as time-

dependent threshold functions z: According to such a strategy, a player ends the game at time

T = infft : x(t) � z(t)g:

Proposition 1 Under Conditions 1 - 3, for any t; in equilibrium, there is a unique threshold z

such that
R
u (x; y)� (dy; t) < (>)W (x; t) if and only if x < (>)z: Hence, any equilibrium strategy

� is represented by a time-dependent threshold function z(t):

To derive the dynamic program equation forW; the �ow value of not ending the game, we follow

a standard discrete-time approximation approach. The discrete-time version of W is:

W (x; t) = �c (x; t)� + e�r���
Z 1

0
W (x+ w; t+�)G (dw)

+ ��

Z z(t)

0

Z 1

z(t)�y
u (x; y + w)G (dw)� (dy; t) + e�r�u (x; z (t))minf0; � (z (t) ; t)� � (z (t+�) ; t)g

+ e�r�W (x; t+�)

"
1� ��� ��

Z z(t)

0
[1�G (z (t)� y)]� (dy; t)�minf0; � (z (t) ; t)� � (z (t+�) ; t)g

#
:

The �rst term is the �ow cost of staying in the game, the second term is the potential capital gain as

a result of obtaining one further state increment w: The third and fourth terms identify the payo¤

when the opponent ends the game: this may happen either because an increment w arrives to the

opponent and her state y + w crosses the threshold z (t) from below, or because the opponent�s

state y crosses the threshold z between time t and t+� without receiving a further increment: the

probability of such an event is minf0; � (z; t)� � (z (t+�) ; t)g: The last term identi�es the value

for staying in the game if no increments arrive and the opponent does not end the game.

We now study the inference problem with respect to the opponent�s innovation state y faced by

each player in equilibrium as the game develops over time. In general, a player should condition
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her inference at time t on the information that the opponent state y (�) has been smaller than

the threshold z (�) at any time � � t: This makes the explicit equilibrium calculation hardly

feasible. However, we will now show that the updating of beliefs � (y; t) is much simpler in equilibria

where the threshold functions z is decreasing over time. At any time t; player i may safely ignore

all information gathered on the opponent at any previous time � < t: Because the opponent

innovation state is increasing over time, once realized that y(t) � z(t); the additional information

that y(�) � z(�) for any � < t is redundant. Clearly, this major simpli�cation would be incorrect

if z were increasing on any non-degenerate time interval.

Lemma 1 In any time-decreasing threshold equilibrium, the equilibrium belief of either player with

respect to the opponent state y is the c.d.f. � (y; t) = F (t; y) =F (t; z (t)) at any time t in the game.

Proof. Because the equilibrium threshold function z (�) is increasing in time � ; the inequality

y(t) � z(t) implies that y(�) � z(�) for any � < t; for any increasing random sample path y(�):

Thus the equilibrium belief � (y; t) ; given that the opponent did not end the game at any time

t < � are such that:

Pr (y (t) < yjy(�) � z(�) for any � � t) = Pr (y (t) < yjy(t) � z(t)) = F (t; y) =F (t; z (t)) :

Substituting � (y; t) with F (t; y) =F (t; z (t)) in light of the previous Lemma, we can derive the

continuous-time approximation of W :

lim
�!0

�e
�r�W (x; t+�)� er0W (x; t)

�
= lim
�!0

@

@�

�
�e�r�W (x; t+�)

�
=

rW (x; t)�W2 (x; t) = �c (x; t) + �
Z 1

0
[W (x+ w; t)�W (x; t)]G (dw)

+�

Z z(t)

0

Z 1

z�y
[u (x; y + w)�W (x; t)]G (dw)

F (t; dy)

F (t; z (t))
� [u (x; z (t))�W (x; t)]

f (t; z (t))

F (t; z (t))
z0 (t) ;

so that the continuous-time �ow value for continuing the game simpli�es as:

rW (x; t) = V2 (x; t)� c (x; t) + �
Z 1

0
[V (x+ w; t)� V (x; t)]G (dw) (2)

+�

Z z(t)

0

Z 1

z�y
[u (x; y + w)� V (x; t)]G (dw) F (t; dy)

F (t; z (t))
� [u (x; z (t))� V (x; t)] f (t; z (t))

F (t; z (t))
z0 (t) ;
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where the �rst term is simply the change in value V because of passing time (which indirectly

a¤ects the beliefs over the opponent�s state through the distribution F ).

For any x � z (t) ; Lemma 1 implies that V (x; t) =
R z(t)
0 u (x; y) F (t;dy)

F (t;z(t)) : Substituting this into

the �ow value equation (2) and applying the condition that W (z (t) ; t) =
R z(t)
0 u (z (t) ; y) F (t;dy)

F (t;z(t))

from equation (1) we derive the ordinary di¤erential equation that governs any equilibrium time-

decreasing threshold function z:

r

Z z(t)

0
u (z(t); y)

F (t; dy)

F (t; z(t))
= �c (x; t) + �

Z z(t)

0

Z 1

0
[u (z (t) + w; y)� u (z (t) ; y)]G (dw) F (t; dy)

F (t; z(t))

+�

Z z(t)

0

Z 1

z(t)�y
[u (z (t) ; y + w)� u (z (t) ; y)]G (dw) F (t; dy)

F (t; z(t))

� [u (z (t) ; z (t))� u (z (t) ; z (t))] f (t; z (t))
F (t; z(t))

z0 (t) : (3)

The above analysis is summarized in the following result.

Theorem 1 Any time-decreasing equilibrium threshold z solves the Ordinary Di¤erential Equation

(3).

We shall now introduce regularity conditions that guarantee existence of equilibrium with de-

creasing threshold.

Condition 4 For any x � y; u2(x; y) � u2 (x; y) :

Condition 5 For any x; y; u22 � 0:

Condition 6 For any x � y;
R1
0 (�u2 (x+ w; y)� (�+ r)u2 (x; y))G (dw) � 0:

While the �rst two conditions are of simple interpretation, the last one requires some comments.

Condition 6 trivially holds if u2 = 0; so that the �rst-mover payo¤ does not depend on the oppo-

nent�s state. When u2 < 0; it requires that u12 is su¢ ciently negative (relative to u2); and it more

easily satis�ed when r is small relative to �: The conditions are very mild. As an illustration in

our patent race application, they require only that v00 (x) � 0; and they are always satis�ed in the

innovation adoption game.
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The �nal set of conditions, while apparently complex, are in fact fairly innocuous boundary

conditions. Condition 7 below only makes sure that the players are willing to enter the game

for low values of x; it can be understood as a normalization condition on u and u: Condition 8

avoids that they remain in the game forever for high values of x; given that u11 � 0 it is a very

mild restriction. Lifting these assumptions would only make the presentation of the equilibrium

characterization less transparent, with no added substantial value.

Condition 7 ru (0; 0) < �c+ �
R1
0 [u (w; 0) + u (0; w)� 2u (0; 0)]G (dw) :

Condition 8 For any y; limx!1 ru (x; y) > ��c+ limx!1 �
R1
0 [u (x+ w; y)� u (x; y)]G (dw) :

In the Appendix, we show time-dependent equilibrium threshold existence, and we characterize

equilibrium strategies at early and late stages of the game.

Theorem 2 Under conditions 1 - 8, there exists an equilibrium with time-decreasing threshold

function z: As time t converges to zero, z (t) converges to �z; the smallest z that solves the equation

ru (z; 0) = �c+ �
Z 1

0
[u (z + w; 0)� u (z; 0)]G (dw) + �

Z 1

z
[u (z; 0 + w)� u (z; 0)]G (dw) (4)

For t large enough, z (t) approximates z; the smallest z that solves the equation:

ru (z; z) = ��c+ �
Z 1

0
[u (z + w; z)� u (z; z)]G (dw) + �

Z 1

0
[u (z; z + w)� u (z; z)]G (dw) : (5)

This characterization results shows that, contrary to simple-minded intuition and unlike for

instance the tug-of-war model by Harris and Vickers (1985), these preemption games with private

information do not unravel. Despite being ignorant of their opponent�s state, players do not imme-

diately end the game. These is true even in the case that they would lose everything if preempted

(e.g. u > � and u = 0):

We conclude this subsection by showing how the above characterization results at early and late

stages extend to any possible time-decreasing threshold equilibria other than the ones for which we

proved existence in Theorem 2.
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Proposition 2 Under conditions 1 - 8, any possible time-decreasing equilibrium threshold function

z is such that

lim
t!0

z (t) = �z and lim
t!1

z (t) � z:

4.1 Comparative Statics for Patent Races and Innovation Adoption Games

We now study comparative statics of the equilibrium in Theorem 2 in the context of the applications

we introduced in the previous section, with respect to a number of variables of interest.

We consider �rst patent races. In the limits for t small and for t large, the equilibrium threshold

z is increasing in the cost of developing the innovation c0 and decreasing in the �ow cost of research

c (x; t) ; which we momentarily assume to be constant in time and state, to make the comparison

with c0 more transparent. These result are intuitive: if the cost of staying in the race increases, each

�rm patents less signi�cant innovations, whereas if the cost of developing the innovation increases,

each �rm chooses to accumulate more signi�cant innovations before ending the race.

Quite unexpectedly, making patent rights stronger does not necessarily increase innovation

disclosure. Increasing the policy parameters �; representing the appropriability of one�s innovation

(e.g. the breadth and length of patent) does not necessarily reduce the equilibrium threshold z.

This is because an increment in � increases both the value of stopping the race with the current

innovation, and the option value for remaining in the race and appropriating of a further innovation

increment. As it turns out the comparative statics with respect to � depend on the costs parameters

c and c0: If the development cost c0 is large relative to the research cost c; then stronger patent

rights induce �rms to anticipate patenting. On the other hand, if research is the costlier activity,

then an increment in breadth and length of a patent induces patent delays.

Proposition 3 In the limits for t small and for t large, the equilibrium threshold function z uni-

formly increases in the development cost c0 and decreases in research cost c: The relation between z

and the policy parameters �, the breadth and length of patent, is negative (positive) when c is small

(large) enough relative to c0; unless v is too large.

As far as the innovation game is concerned, in the limits for t small and for t large, the equilib-
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rium threshold z decreases both with the value of innovation �2 and with the �rst-mover advantage

�1��2: The result is intuitive: more valuable innovations are adopted earlier. Also intuitive is the

result that subsidizing the innovation adoption makes it happen faster. On the other hand, subsi-

dizing the innovation development bears the perverse e¤ect of delaying the innovation adoption.

Proposition 4 In the limits for t small and for t large, the equilibrium threshold function z uni-

formly decreases in the value of innovation �2 and with the �rst-mover advantage �1 � �2: It

also decreases when innovation adoption is subsidized, but it increases with subsidies in innovation

development.

5 Social Planner�s Problem

We consider the problem of a social planner that does not enjoy any informational advantage over

the players. The social planner instructs each player i = A;B with state x at time t to adopt

a second-best e¢ cient policy in the form of (symmetric) strategies ��: To make the comparison

with equilibrium transparent, we study strategies �� that depend on x and t only, and not on the

entire history of increments hti; for i = A;B: Such a second-best e¢ cient policy �
� maximizes joint

expected payo¤s, which we denote as V �(x; t):We denote by 
 (dy; t) the beliefs with respect to the

opponent�s state y: Because the optimal threshold function need not be decreasing in time, this

expression cannot be further simpli�ed.

The equation governing the social planner�s stopping problem is:

V � (x; t) = max

�Z
[u (x; y) + �u (y; x)] 
 (dy; t) ;W � (x; t)

�
:

We introduce conditions under which the optimal policy imposed by the social planner is identi�ed

by a threshold z� (t) for any time t: Hence, the social planner instructs each player i to patent at

the time Ti = infft : xi (t) > z� (t)g:

Condition 9 For any x; y; u11 � 0:

Condition 10 For any x; y; u12 � 0:
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Proposition 5 Under conditions 2, 3, 9, 10, for any t; there is a unique threshold z� in the social

planner�s problem, such that
R
[u (x; y) + �u (y; x)] 
 (dy; t) < (>)W � (x; t) if and only if x < (>)z�:

Hence, the optimal policy �� is described by a time-dependent threshold function z�:

The �ow equation of the social planner�s problem is as follows:

rW � (x; t) = �c (x; t)�
Z z(t)

0
c (y; t) 
 (dy; t) + �

�Z 1

0
V � (x+ w; t)G (dw)� V � (x; t)

�
+�

Z z(t)

0

Z 1

z(t)�y
(V � (w + y; t)� V � (x; t))G (dw) 
 (dy; t)

+
d
 (z (t) ; t)

dz
minf0; z0 (t)g [u (z; x) + u (x; z)� u (x; z)� u (z; x)] + V �2 (x; t) :

We highlight changes with respect to the equilibrium �ow equation (2). Clearly, the �ow cost

of waiting is c(x; t) +
R z(t)
0 c (y; t) 
 (dy; t) rather than c(x; t); because the player is requested to

internalize the cost of staying in the game paid by the other player. The third term, representing

the arrival of a good draw to the opponent which results in her stopping the game, now induces

contribution V � (w + y; t) to the total value. Similarly, the fourth term, representing the chance that

the opponent crosses the threshold without receiving any increment, now induces a contribution

u (z; x) + �u (x; z) to the �ow value of the social planner, but this contribution is balanced against

the loss u (x; z) + u (z; x) :Of course, V needs to be replaced by V � throughout.

Because for any t; V � (x; t) =
R
[u (x; y) + �u (y; x)] 
 (dy; t) for any x � z� (t) and W � (x; t) =R

[u (x; y) + �u (y; x)] 
 (dy; t) for x = z� (t) ; with appropriate manipulations, we obtain that the

optimal threshold z� (t) is determined by the condition that for any t;

r

Z z�(t)

0
[u (z� (t) ; y) + �u (y; z� (t))] 
 (dy; t; z�) = �c(x; t)�

Z z(t)

0
c (y; t) 
 (dy; t) (6)

+ �

Z z�(t)

0

Z 1

0
(u (z� (t) + "; y) + u (y; z� (t) + ")� u (z� (t) ; y)� u (y; z� (t)))G (d") 
 (dy; t; z�)

+ �

Z z�(t)

0

Z 1

z�(t)�y
(u (z� (t) ; y + ") + u (y + "; z� (t))� u (z� (t) ; y)� u (y; z� (t)))G (d") 
 (dy; t; z�) :

As for the equilibrium threshold z; appropriate boundary conditions make sure that the planner

will instruct the players to enter the game and will not force them to remain in the game forever.

Speci�cally, the following conditions make sure that z� (t) 2 (0;1) for any t:

Condition 11 r [u (0; 0) + �u (0; 0)] < �2�c+ 2�
R1
0 (u ("; 0) + u (0; ")� u (0; 0)� u (0; 0))G (d") :
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Condition 12 For any y;

lim
x!1

r [u (x; y) + �u (y; x)] > �2c+ lim
x!1

�

Z 1

0
(u (x+ "; y) + u (y; x+ ")� u (x; y)� u (y; x))G (d") :

Explicit computation of the optimal threshold function z� is severely impeded because the

beliefs 
 in equation (6) are a function of z� itself. Nevertheless it is possible to assess welfare

properties of equilibrium. Suppose that one�s opponent adopts the equilibrium threshold z (t) :

Then, the socially-optimal best-response is the threshold function (which we denote as z� with a

minor notational violation) that solves the following parametric equation:

r

Z z

0
[u (z�; y) + u (y; z)]

F (t; dy)

F (t; z)
= (7)

� c (x; t) + �
Z z

0

Z 1

0
(u (z� + "; y) + u (y; z + ")� u (z�; y)� u (y; z))G (d") F (t; dy)

F (t; z)

�
Z z(t)

0
c (y; t)

F (t; dy)

F (t; z)
+ �

Z z

0

Z 1

z�y
(u (z�; y + ") + u (y + "; z)� u (z�; y)� u (y; z))G (d") F (t; dy)

F (t; z)
:

Welfare properties of the equilibrium can then be assessed by comparing z with z�: As already

anticipated in the Introduction, the welfare analysis is especially meaningful in the context of

patent races, as it allows to identify the �duplication cost� and �preemption e¤ects� in the race.

These negative and positive equilibrium externalities can be assessed by subtracting the equilibrium

threshold di¤erential equation (3) from the parametric equation (7), specialized to the patent race

application, so as to obtain:

(r + �) [v (z�)� v (z)] = �
Z z(t)

0
c (y; t)

F (t; dy)

F (t; z)
� (r + �) v (z�) (8)

+�

Z 1

0
[v (z� + ")� v (z�) + v (z� + ")� v (z�)� v (z + ") + v (z)]G (d")

+�

Z z

0

Z 1

z�y
[v (y + ")� c0]G (d")

F (t; dy)

F (t; z)
� [(v (z)� c0)� v (z)]

f (t; z)

F (t; z)
z0 (t)

1 (Duplication Costs). On the one hand, the competitive �rm does not consider the dupli-

cation of costs, hence the �rst term capturing the expected cost borne by the opponent for

duplicating the leading �rm�s innovation.

2 (Preemption). On the other hand, the competitive �rm is concerned about preemption.

For this reason it has an incentive to anticipate patenting. This shows up in the last two

terms which are both positive because v � c0 > v and z0 < 0:
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The remaining terms are ambiguous, the third term corresponds to the di¤erence in the value

of an increment at z or at z�; where as the second one incorporates the (possibly negative) value

for �losing the race�.

Now we proceed to show that the relation between duplication cost e¤ect and preemption e¤ect

crucially depends on calendar time. We will show that, under some regularity conditions, in early

stages of the race, the �rst e¤ect dominates the second and hence that the social planner instructs

�rms to anticipate patenting with respect to any possible equilibrium solution z: In later stages, the

second e¤ect dominates the �rst and hence the social planner instructs �rms to postpone patenting

with respect to any possible equilibrium solution.

Proposition 6 As long as the development cost c0 is not too small and v (z� (0)) not too negative,

the equilibrium threshold z(t) is larger than the optimal best-response threshold z�(t) for su¢ ciently

early calendar time t:

Intuitively, if a �rm is su¢ ciently lucky to obtain valuable incremental innovations in a very

short time, it is not much concerned for the possibility that the opponent will quickly catch up and

win the patent race. As a result, the �rm will be willing to drag on experimenting in the attempt

to achieve a more pro�table innovation. The regulatory agency dislikes this delay in patenting

because, unlike the �rm, it internalizes the duplication cost borne by the opponent in the most

likely futile attempt to catch up. Therefore, it optimally instructs the �rm to immediately patent

the outcome of its lucky innovation streak.

Proposition 7 As long as limt!1 v (z� (t)) and the discount rate r are not too large, the equi-

librium threshold z(t) is smaller than the optimal best-response threshold z�(t) for su¢ ciently late

calendar time t:

Intuitively, as time goes by, each �rm becomes more and more afraid that her opponent will

soon end the race and rip the however meager innovations that it has so far achieved. But this

fear of prevention feeds on itself in equilibrium and makes the �rm willing to preempt and patent

relatively unpro�table innovations. The regulatory agency would like the �rm instead to persist
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in experimenting in the expectation of making more progress and eventually patent more valuable

innovations.

6 Conclusion

We have presented a general analysis of preemption games with private information changing over

time. The analysis of timing decisions is of prime relevance in several economic problems such as

patent races, innovation adoption and market entry problems. A previously neglected feature of

these preemption games is that the agents�states (e.g. R&D �rms�technological improvements)

change over time and are kept secret throughout the game. This paper has studied the general

class of preemption games with private information randomly changing over time. Under mild

conditions, we have proved that all equilibria are described by a time-dependent threshold. A

player ends the game if and only if her state is above a certain threshold. We have proved existence

of equilibrium described by a time-decreasing threshold, and derived in closed form the expression

of the ordinary di¤erential equation governing the equilibrium threshold. This characterization

provides a strategic rationale for the common wisdom that �big things happen fast.�

Our analysis uncovers novel positive and normative insights. In the context of patent races

we surprisingly �nd that making patent rights stronger may not lead to higher innovation rates

when development is costlier than research. Most importantly, our analysis makes the classic

welfare trade-o¤ between duplication costs and preemption e¤ects precise: Compared with socially

optimal rules, equilibrium strategies display excessive duplication costs in early stages of the race,

and excessive preemption in later stages. In the context of innovation adoption, we �nd that

subsidizing innovation development may delay its adoption.

A Appendix: Properties of the Distribution F (t; y) =F (t; z) :

Before proceeding with the analysis, we introduce the following preliminaries.

De�nition 3 For any two c.d.f.s H1;H2; we say that H1 � H2 if and only if, for all x � z;

H1 (x)

H1 (z)
� H2 (x)

H2 (z)
:

19



Remark 4 This de�nition says that for all z the distributions H2 conditional on the set fx � zg
is greater than the corresponding distribution for H1 in �rst order stochastic dominance.

Lemma 2 The c.d.f.s H1 and H2 are ordered as H1 � H2 if and only if for any two decreasing

functions f1; f2 R
f1 (x) f2 (x)H1 (dx)R
f2 (x)H1 (dx)

�
R
f1 (x) f2 (x)H2 (dx)R
f2 (x)H2 (dx)

:

Proof. Su¢ ciency is immediate by taking f2 to be the indicator function of the set fx � zg.
To prove necessity, let f2 =

P
�i� fx � zig for positive scalars �i, where � fx � zig is the indicator

function of fx � zig : Without loss of generality let zi � zi+1:R
f1 (x) f2 (x)H1 (dx)R
f2 (x)H1 (dx)

=

P
�i
R zi f1 (x)H1 (dx)P
�iH1 (zi)

=
X�R zi f1 (x)H1 (dx)

H1 (zi)

��
�iH1 (zi)P
�iH1 (zi)

�
�
X�R zi f1 (x)H2 (dx)

H2 (zi)

��
�iH1 (zi)P
�iH1 (zi)

�
So need to show:X�R zi f1 (x)H2 (dx)

H2 (zi)

���
�iH1 (zi)P
�iH1 (zi)

�
�
�
�iH2 (zi)P
�iH2 (zi)

��
� 0:

Observe that the last inequality is a weighted average and since f1 is a decreasing function, the

terms in the �rst bracket are decreasing in zi:

Hence, it su¢ ces to show that for all k;Pk
i=1 �iH1 (zi)P
�iH1 (zi)

�
Pk
i=1 �iH2 (zi)P
�iH2 (zi)

(9)

Now notice that for any i; since H1 � H2 and zi � zi+1

�iH1 (zi)

�i+1H1 (zi+1)
� �iH2 (zi)

�i+1H2 (zi+1)

which can easily be shown to imply (9).

We can now state our results on the properties of F (t; y) =F (t; z) in their full generality. We

start by showing that such a distribution is stochastically increasing in time.

Theorem 5 If the c.d.f. G of the random increment w is log-concave, i.e. the inverse hazard rate

g (w) =G (w) is weakly decreasing in w; then the c.d.f. F (t; y) =F (t; z) is stochastically increasing

in t for any z and y � z:
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Proof. We express the innovation state X (t) c.d.f. at time t; by making the relation with the

number of increment arrivals K (t) at time t explicit:

F (z; t) = Pr (X (t) � z) =
1X
k=0

Fk (X (t) � zjK (t) = k) Pr (K (t) = k) =
1X
k=0

Fk (z)�k (t) ;

where Fk (z) is the innovation state X (t) c.d.f. at time t conditional on k arrivals, and �k (t) is

the Poisson distribution with arrival rate �; of the number of increment arrivals k at time t; setting

��1 = 0: We shall make use of following properties of the Poisson distribution and arrival rate �;

�k�1 (t) = e��t(�t)k�1=(k � 1)! =
�
k

�t

�
e��t(�t)k=k! =

�
k

�t

�
�k (t) (10)

�
�k (t) = �e��t

�
(�t)k�1= (k � 1)!� (�t)k=k!

�
= �

�
�k�1 (t)� �k (t)

�
Noting that Fk (z) is independent of calendar time t; we can write:

d

dt

�
F (t; y)

F (t; z)

�
=
d

dt

�P1
k=0 Fk (y)�k (t)P1
k=0 Fk (z)�k (t)

�
/

 1X
k=0

Fk (y) _�k (t)

! 1X
k=0

Fk (z)�k (t)

!
�
 1X
k=0

Fk (z) _�k (t)

! 1X
k=0

Fk (y)�k (t)

!

=

 1X
k=0

Fk (y)�k�1 (t)

! 1X
k=0

Fk (z)�k (t)

!
�
 1X
k=0

Fk (z)�k�1 (t)

! 1X
k=0

Fk (y)�k (t)

!

/

P1
k=0

�
Fk(y)
Fk(z)

�
Fk (z)�k�1 (t)P1

k=0 Fk (z)�k�1 (t)
�

P1
k=0

�
Fk(y)
Fk(z)

�
Fk (z)�k (t)P1

k=0 Fk (z)�k (t)
:

We now apply Lemma 2 to show that the above quantity is negative. We let

f1(k) = Fk (z) ; f2(k) =
Fk (y)

Fk (z)
; H1 (k) =

X
j�k

�j�1 (t) ; and H2 (k) =
X
j�k

�j (t) :

Because the increments w are positive, f1(k) is decreasing in k (i.e. Fk (z) is stochastically increasing

in k): Hence to apply Lemma 2 we need to verify that H1 � H2 and that f2 (k) is decreasing in k:
This is proved in the next two Lemmata.

Lemma 3 If the c.d.f. G is log-concave, then Fk (y) =Fk (z) is decreasing in k for all z; i.e. Fk �
Fk+1, for all k:

Proof. Since F0 (0) = 1; it follows immediately that F0 � F1: Hence, it is su¢ cient to prove

that

Fk � Fk+1 ) Fk+1 � Fk+2;

and then proceed by induction over k: This follows by Lemma 2 because for any y � z;

Fk+2 (y)

Fk+2 (z)
=

R y
0 G (y � x)Fk+1 (dx)R z
0 G (z � x)Fk+1 (dx)

=

R y
0
G(y�x)
G(z�x)G (z � x)Fk+1 (dx)R z
0 G (z � x)Fk+1 (dx)

;
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and because G (z � x) is a decreasing function of x; as long as G (y � x) =G (z � x) is decreasing in
x; i.e.

g (z � x)
G (z � x) �

g (y � x)
G (y � x) for z � y;

which is equivalent to log-concavity of G:

Lemma 4 For any pair k � m; P
j�k �j�1 (t)P
j�m �j�1 (t)

�
P
j�k �j (t)P
j�m �j (t)

:

Proof. Because for any l 2 f0; 1g;P
j�k �j�l (t)P
j�m �j�l (t)

=

 P
j�k �j�l (t)P
j�k+1 �j�l (t)

! P
j�k+1 �j�l (t)P
j�k+2 �j�l (t)

!
:::

 P
j�m�1 �j�l (t)P
j�m �j�l (t)

!
;

it is su¢ cient to show that:P
j�k �j�1 (t)P
j�k+1 �j�1 (t)

=

P
j�k j�j (t)P
j�k+1 j�j (t)

�
P
j�k �j (t)P
j�k+1 �j (t)

(by using one of the properties (10) of the Poisson distribution �j); or equivalently that

1

1 +
(k+1)�k+1(t)P

j�k j�j(t)

� 1

1 +
�k+1(t)P
j�k �j(t)

;

which holds because (k + 1) =j > 1 for any j � k.

This concludes the proof of the Theorem.

We now show that the limit distribution of F (t; �) =F (t; z) for t!1 converges to a point mass

on the upper bound of its support z:

Theorem 6 If the increment c.d.f. G (w) is di¤erentiable, of connected support that includes

w = 0; then for any z; the c.d.f. F (t; �) =F (t; z) concentrates all mass on z as t goes to in�nity,
i.e.

lim
t!1

F (t; y)

F (t; z)
= 0 for any y < z:

Proof. For any z; we have shown in Theorem 5 that d
dt
F (t;y)
F (t;z) < 0 for any y and t: Because

F (t; y) =F (t; z) � 0 for any t; the c.d.f. F (t; �) =F (t; z) must converge pointwise for t ! 1 to a

c.d.f. ~F (�; z) ; and the time derivative of F (t; y) =F (t; z) must converge to zero as t!1: That is,
~F (�; z) must be a �xed point of the law of motion induced by the time derivative of F (t; y) =F (t; z) :
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Suppose by contradiction that ~F (y; z) � � > 0 for some y > 0; and hence that F (t; y) =F (t; z) �
� > 0 for all t: Let

y0 = inf

�
y < zjF (t; y)

F (t; z)
� �
�
; so that

Z z

0

F (t; z � x)
F (t; z)

G (dx) � " > 0

provided that G has connected support. Exploiting the continuity of G; pick � : G (�) < " and

consider any y : y0 < y < y0 + �: Then it must be the case that:Z y

0

F (t; y � x)
F (t; y)

g (x) dx < G (�) ;

because F (t; y � x) < F (t; y) for any x > 0, and hence that

F (t; y)

F (t; z)

�Z y

0

F (t; y � x)
F (t; y)

g (x) dx�
Z y

0

F (t; z � x)
F (t; z)

g (x) dx

�
<
F (t; y)

F (t; z)
[G (�)� "] < 0:

Because the time t is arbitrary, this is in contradiction with:

lim
t!1

d

dt

F (t; y)

F (t; z)
= lim
t!1

lim
�!0

1

�

�
F (t+�; y)

F (t+�; z)
� F (t; y)
F (t; z)

�
= lim

t!1
lim
�!0

1

�

�
(1� ��)F (t; y) + ��

R y
0 F (t; y � x) g (x) dx

(1� ��)F (t; z) + ��
R y
0 F (t; z � x) g (x) dx

� F (t; y)
F (t; z)

�

= lim
t!1

lim
�!0

1

�

F (t; y)

F (t; z)

24(1� ��) + �� R y0 F (t;y�x)
F (t;y) g (x) dx

(1� ��) + ��
R y
0
F (t;z�x)
F (t;z) g (x) dx

� 1

35
/ lim

t!1

F (t; y)

F (t; z)

�Z y

0

F (t; y � x)
F (t; y)

g (x) dx�
Z y

0

F (t; z � x)
F (t; z)

g (x) dx

�
= 0:

B Appendix. Omitted Proofs.

Proof of Proposition 1. Since W and V are di¤erentiable, we only need to show that for any t

and any x such that
R
u (x; y)� (dy; t) < W (x; t) = V (x; t)

W1 (x; t) <

Z
u1 (x; y)� (dy; t)

because this implies that the functions W (x; t) and
R
u (x; y)� (dy; t) ; cross only once. Since

d
dx

�R
u (x; y)� (dy; t)

�
> 0; it follows that

R
u (x; y)� (dy; t) dominates W (x; t) for any x larger

than the crossing point.

Consider any state (x; t), such that V (x; t) = W (x; t) and hence � (x; t) > t for any optimal

strategy � of either of the two players (say player A); player A optimally chooses to remain in the
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race at (x; t) : For any x0 < x and state (x0; t) ; let V (x0; t;�0) be the value associated to applying

the same strategy � re-scaled by a factor x� x0; i.e. the strategy �0 such that

�0
�
x00 + x0; �

�
= �

�
x00 + x; �

�
for any � � t and x00 � 0:

Fixing player B�s strategy �B (which does not depend on x); the optimal payo¤ at state (x; t) is

V (x; t) =

Z
E [V (x+ x; y + y; t;�; �B)]� (dy; t) ;

and the expected payo¤ for playing strategy �0 starting at state (x0; t) is

V
�
x0; t;�0

�
=

Z
E
�
V
�
x0 + x; y + y; t;�0; �B

��
� (dy; t)

where the expectation E is taken with respect to the sample paths x = fx (�) : � � tg and
y = fy (�) : � � tg; generated by the i.i.d. innovation processes in our model, and such that
x (t) = 0 and y (t) = 0:

Because the innovation process is the sum of increments with Poisson arrival, for any pair of

sample paths x and y; the realized time-t payo¤ of player A is:

V (x+ x; y + y; t;�; �B) = u (x+ x (TA) ; y + y (TA))� (TA < TB) e
�r(TA�t)

+u (x+ x (TB) ; y + y (TB))� (TA > TB) e
�r(TB�t) �

Z minfTA;TBg

0
c (x+ x (t) ; t) e�rvdv;

where TB = inff� : �B (y (�) + y; �) = �g and TA = inff� : � (x (�) + x; �) = �g; and � (Ti < Tj)
denotes the indicator function over the set of paths (x;y) such that Ti < Tj :

For the same paths x and y; if player A adopts strategy �0 starting at the state (x0; t) ; the

realized time-t payo¤ is:

V
�
x0 + x; y + y; t;�; �B

�
= u

�
x0 + x (TA) ; y + y (TA)

�
� (TA < TB) e

�r(TA�t)

+u
�
x0 + x (TB) ; y + y (TB)

�
� (TA > TB) e

�r(TB�t) �
Z minfTA;TBg

0
c
�
x0 + x (t) ; t

�
e�rvdv;

where T 0A = inff� : �0 (x (�) + x0; �) = �g is the stopping time induced by strategy �0 on the path
x0: Noting that T 0A = TA; we obtain:

V (x+ x; y + y; t;�; �B)� V
�
x0 + x; y + y; t;�0; �B

�
=

�
u (x+ x (TA) ; y + y (TA))� u

�
x0 + x (TA) ; y + y (TA)

��
e�r(TA�t)� (TA < TB)

+
�
u (x+ x (TA) ; y + y (TA))� u

�
x0 + x (TA) ; y + y (TA)

��
e�r(TB�t)� (TB < TA)

�
Z minfTA;TBg

0

�
c (x+ x (t) ; t)� c

�
x0 + x (t) ; t

��
e�rvdv:
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Compounding across sample paths, (x;y) ; we obtain:

V (x; t)� V
�
x0; t;�0

�
=

Z
fE[
�
u (x+ x (TA) ; y + y (TA))� u

�
x0 + x (TA) ; y + y (TA)

��
e�r(TA�t)� (TA < TB)

+
�
u (x+ x (TB) ; y + y (TB))� u

�
x0 + x (TB) ; y + y (TB)

��
e�r(TB�t)� (TB < TA)

�
Z minfTA;TBg

0

�
c (x+ x (t) ; t)� c

�
x0 + x (t) ; t

��#)
� (dy; t) :

Notice that

W (x; t)�W
�
x0; t

�
= V (x; t)� V

�
x0; t

�
� V (x; t)� V

�
x0; t;�0

�
;

hence
W (x; t)�W (x0; t)

x� x0

�
Z �

E
��
u (x+ x (TA) ; y + y (TA))� u (x0 + x (TA) ; y + y (TA))

x� x0

�
e�r(TA�t)� (TA < TB)

+

�
u (x+ x (TB) ; y + y (TB))� u (x0 + x (TB) ; y + y (TB))

x� x0

�
e�r(TB�t)� (TB < TA)

�
Z minfTA;TBg

0

�
c (x+ x (t) ; t)� c (x0 + x (t) ; t)

x� x0

�
e�rvdv

#)
� (dy; t) :

Since

lim
x�x0

�
u (x+ x (TA) ; y + y (TA))� u (x0 + x (TA) ; y + y (TA))

x� x0

�
= u1 (x+ x (TA) ; y + y (TA)) ;

lim
x�x0

�
u (x+ x (TB) ; y + y (TB))� u (x0 + x (TB) ; y + y (TB))

x� x0

�
= u1 (x+ x (TB) ; y + y (TB)) ;

lim
x�x0

�
c (x+ x (t) ; t)� c (x0 + x (t) ; t)

x� x0

�
= c1 (x+ x (t) ; t) ;

the conditions 1, 2 and 3, together with c1 � 0; yield:

lim
x�x0!0

W (x; t)�W (x0; t)

x� x0 � lim
x�x0

Z �
E
��
u (x; y)� u (x0; y)

x� x0

�
e�r(TA�t)� (TA < TB)

+

�
u (x; y)� u (x0; y)

x� x0

�
e�r(TB�t)� (TB < TA)

��
� (dy; t)

= lim
x�x0

Z �
u (x; y)� u (x0; y)

x� x0

�
fE[e�r(TA�t)� (TA < TB) + e�r(TB�t)� (TB < TA)]g� (dy; t)

Because E [TAjTA < TB] > 0; E [TBjTB < TA] > 0; and TA and TB are independent of x0; the

quantity E[e�r(TA�t)� (TA < TB)+ e�r(TB�t)� (TB < TA)] is strictly smaller than 1 and constant in
x0: Thus:

lim
x�x0!0

W (x; t)�W (x0; t)

x� x0 < lim
x�x0

Z �
u (x; y)� u (x0; y)

x� x0

�
� (dy; t) ; and hence

W1 (x; t) <
d

dx

�Z
u (x; y)� (dy; t)

�
:
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Proofs of Theorems 2 and Proposition 2. The construction hinges on the comparison of

the ODE (3) with the parametric equation

� (z; t) = r

Z z

0
u (z; y)

F (t; dy)

F (t; z)
+ c (x; t)� �

Z z

0

Z 1

0
[u (z + w; y)� u (z; y)]G (dw) F (t; dy)

F (t; z)

��
Z z

0

Z 1

z�y
[u (z; y + w)� u (z; y)]G (dw) F (t; dy)

F (t; z)
: (11)

Lemma 5 (Auxiliary Solution) For any t; the equation � (z; t) = 0 admits a solution z: Under

the Conditions 4 - 6, the selection

ẑ (t) = min fz : �(z; t) = 0g

is strictly decreasing in t:

Proof. For any t; conditions (7) and (8) make sure that the function � (z; t) is negative for z

small enough and positive for z large enough. By continuity, � admits a zero z for any t:

To show that d�=dt > 0; because Ft (dy) is increasing in t in FSD sense by Theorem 5 and c is

non-decreasing in t; we only need to establish that for all z and y � z;

0 <
d

dy

�
ru (z; y)� �

Z 1

0
(u (z + "; y)� u (z; y))G (d")� �

Z 1

z�y
(�u (z; y + ")� u (z; y))G (d")

�
= �

Z 1

0
� (u2 (z + "; y)� �u2 (z; y)� ru2 (z; y))G (d")� �

Z 1

z�y
(�u2 (z; y + ")� u2 (z; y))G (d")

�� (�u (z; z)� u (z; y)) g (z � y) ;

this follows from Conditions 6 (applied to the �rst term), 4 and 5 (applied to the second term), and

because u > �u and u2 < 0. Therefore the selection ẑ (t) is strictly decreasing in t while possibly

discontinuous.

We now establish that, as long as t is bounded away from zero, the ODE (3) has a well-behaved

solution �eld. Clearly, at t = 0; the derivative z0 (0) is indeterminate because f (0; z) =F (0; z) = 0

for any z > 0: We shall complete the solution at zero later on.

Lemma 6 (Existence) For any small �� > 0; consider the set R
�
��
�
= f(t; z) : t > ��; z > 0g: For

any initial condition (�; z�) 2 R
�
��
�
; the ODE (3) has a unique (twice-di¤erentiable) solution path

z (t; �; z�) in R
�
��
�
such that z (�) = z�:
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Proof. Consider the Cauchy problem described by the ODE (3) together with initial condition

(�; z) in the open rectangle R
�
��
�
: We write the ODE in the form:

z0 = q (z; t) �
R z
0

�
ru (z; y)� �

R1
0 [u (z + w; y)� u (z; y)]G (dw)

�
F (t; dy) =F (t; z)

[u (z; z)� u (z; z)] f (t; z) =F (t; z)

+
�
R z
0 �
R1
z�y [u (z; y + w)� u (z; y)]G (dw)F (t; dy) =F (t; z) + c (x; t)

[u (z; z)� u (z; z)] f (t; z) =F (t; z) :

For any bound B; the function q (z; t) is bounded on the open rectangle R
�
��;B

�
= f(t; z) : �� <

t < B; 0 < z < Bg and Lipschitz continuous i.e. there is a uniform bound K such that jq (z; t) �
q (z0; t0) j � K k(z; t)� (z0; t0)k for any (z; t) and (z0; t0) in R

�
��;B

�
close to each other. The numer-

ator is bounded because it is an expected value, and the quantity [u (z; z)� u (z; z)] f (t; z) =F (t; z)
is bigger than zero, because u (z; z) is bounded above u (z; z) and because f (t; z) =F (t; z (t)) is

bounded away from zero for t > ��: The claim then follows by application of the Picard and Lindel-

hof general existence and uniqueness Theorem (see e.g., Hurewitz, 1963).

We are left to show that the ODE (3) has an admissible (i.e. strictly decreasing and non-

explosive).

Lemma 7 (Admissibility) For any small � > �� > 0; there is a initial state z�� such that the

solution path z (t) of the ODE (3) with initial condition (�; z�� ) ; is strictly decreasing and non-

explosive (i.e. well-de�ned onto the entire range t > ��):

Proof. Take any time T > �; and consider the solution path z (t; �; z�) such that z (T ; �; z�) =

ẑ (T ) ; the two solutions coincide at T . By Lemma 6, the solution path z (t; �; z�) must be twice

di¤erentiable in any open interval (T � "; T ) : We shall now prove that z (t; �; z�) < ẑ (t) for all

t 2 (T � "; T ) ; with " small enough. Suppose �rst that ẑ(t) is discontinuous at T: Then there
is a � > 0 such that ẑ (t) > z (T ; �; z�) + � for all t 2 (T � "; T ) : Hence z (t; �; z�) < ẑ (t) for

all t 2 (T � "; T ) by continuity of z (t; �; z�) : Second, suppose that ẑ is continuous at T: By the
de�nition of ẑ(t); for any point z � ẑ (t) and z close enough to ẑ (t) ; it must be that � (z; t) � 0;
unless ẑ is discontinuous at t: Because ẑ has only a countable set of discontinuity points, and

f (z (t; �; z�) ; t)

F (t; z (t; �; z�))
> 0

we obtain that z0 (t; �; z�) � 0 for almost all t 2 (T � "; T ) such that z (t; �; z�) > ẑ (t) : Because

ẑ (t) is strictly decreasing, it cannot be the case that z (t; �; z�) converges to z (T ; �; z�) = ẑ (T ) if

z (t; �; z�) � ẑ (t) for any t smaller than T and close to T:

By the converse argument, for any t < T; if z (t; �; z�) < ẑ (t) ; then z0 (t; �; z�) < 0; consistently

with ẑ0 (t) < 0; continuity of z (t; �; z�) and the condition that z (T ; �; z�) = ẑ(T ): We conclude

by continuity that if the solution path z (t; �; z�) coincides with ẑ (t) at t = T; then it lies below
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ẑ and is strictly decreasing for all t < T ; i.e. z (t; �; z�) < ẑ(t) and z0 (t; �; z�) < 0 for all t < T:

Furthermore, because z0 (t; �; z�) < 0; the solution path z (t; �; z�) lies entirely in the admissible set

R
�
��
�
:

By Lemma 6, for any point (z; t) in R
�
��
�
; the solution path z (t) such that z (t) = z is unique.

Hence for any T 0 > T the solution path z (T ; �; z�) such that z (T ; �; z�) = ẑ(T ) must lie uniformly

above the solution z (T 0; �; z0�) such that z (T
0; �; z0�) = ẑ(T 0); i.e. z (t; �; z�) > z (t; �; z0�) for any

t: For any T > � we identify by (�; z�;T ) the initial condition (�; z�) pinning down the solution

path z (T ; �; z�) such that z (T ; �; z�) = ẑ(T ): The initial state z�;T is decreasing in T and bounded,

because z (t; �; z�;T ) > z (T ; �; z�) = ẑ(T ): Hence there exists a limit z�� for T !1: By construction,
the solution path z (t; �; z�� ) is decreasing on the whole range t > �: Note that z�� < ẑ (�) for any

� > 0:

The above Lemmata have proved existence only of an admissible solution of the ODE (3) �the

one identi�ed by the solution path z (t; �; z�� )�there may be other admissible (i.e. decreasing and

non-explosive) solution paths z (t; �; z�) with z� < z�� : Hence proving the �rst part of Theorem

2. The next two results apply to all such solutions, hence proving the second part of Theorem 2

together with Proposition 2. The �rst one completes the construction of the admissible solutions

z (t) by taking the limit for � ! 0 (and hence �� ! 0):

Lemma 8 (Solution Completion for � ! 0) For any admissible (i.e. decreasing and non-explosive)

solution path z (t) of the ODE (3),

lim
�!0+

f (z (�) ; �)

F (z (�) ; �)
z0 (�) = 0 and lim

�!0+
z (�) � ẑ (0) :

Hence z (0) solves equation (4).

Proof. We inspect again the ODE (3). By continuity of the process describing the opponent

state y(t); it must be that
f (z; 0)

F (z; 0)
= 0 for any z > 0:

It follows that (i) the derivative z0 (t) is indeterminate at t = 0; (ii) the solution z (0) = ẑ (0) is a

solution of the ODE at t = 0; and (iii)

lim
�!0+

z (�) = ẑ (0) ; unless lim
�!0+

f (z (�) ; �)

F (z (�) ; �)
z0 (�) 2 R�:

By the properties of Poisson arrival.

lim
�!0+

f (z (�) ; �)

F (z (�) ; �)
z0 (�) = lim

�!0+
��g (z (�)) z0 (�)

1� �� + ��G (z (�)) = lim
�!0+

��g (z) z0 (�)
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but lim�!0+ ��g (z) z
0 (�) 2 R� is in contradiction with z (�) < ẑ (�) for any � small enough. In

fact, it requires that z0 (�) = k=� + o(1=�); where k is a negative constant and o (1=�) denotes a

term that converges to zero if multiplied by � when � ! 0; hence it requires that lim�!0+ z (�) =

lim�!0+ �k log � = +1: This shows that

lim
�!0+

f (z (�) ; �)

F (z (�) ; �)
z0 (�) = 0 and hence that lim

�!0+
z (�) � ẑ (0) :

The �nal Lemma determines the bound for z !1:

Lemma 9 (Bound) For any admissible (i.e. decreasing and non-explosive) solution path z (t) of

the ODE (3),

z (t) < lim
t!1

z (t) � z; for any t;

where z solves equation (5). The weak inequality is satis�ed as an equality by the solution for which

existence is proved in Lemma 7.

Proof. Because by de�nition ẑ(t) = min fz : �(z; t) = 0g ; it must that � (z; t) > 0 for almost
any point z > ẑ (t) and z close enough to ẑ (t) : This implies that z0 (t; �; z�) � 0 for the solution path
z (t; �; z�) such that z (t; �; z�) = z: Therefore any admissible solution path z (t) must be such that

z (t) < ẑ(t); thus providing an upper bound. Because by Theorem 6, limt!1 F (t; y) =F (t; z) = 0

for any z > 0 and y < z; and hence for t large enough, equation (11) is approximated by equation

(5).

Proof of Proposition 3. As shown in Theorem 2, in the limits for t small and t large, the

equilibrium threshold z is approximated by the selection

ẑ (t) = min fz : �(z; t) = 0g ; where

� (z; t) = c+ r [v (z)� c0]

� �
Z z

0

�Z 1

0
[v (z + w)� v (z)]G (dw) +

Z 1

z�y
[v (y + w)� v (z) + c0]G (dw)

�
F (t; dy)

F (t; z)
:

The threshold z uniformly decreases in c because:

@

@c
�(z; t) = 1 > 0:

The threshold z uniformly increases in c0 because:

@

@c0
�(z; t) = � (�+ r) < 0:
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Let

� (z; t;�) = r [�v (z)� c0] + c� ��
Z 1

0
[v (z + w)� v (z)]G (dw)

+�

Z z

0

Z 1

z�y
[�v (z)� c0 � v (y + w)]G (dw)

F (t; dy)

F (t; z)
:

We then calculate:

@

@�
�(z; t; �) = (r + �)v (z)� �

Z 1

0
[v (z + w)� v (z)]G (dw)

= (r + �)v (z)� 1

�
[r [�v (z)� c0] + c

+�

Z z

0

Z 1

z�y
[�v (z)� c0 � v (y + w)]G (dw)

F (t; dy)

F (t; z)
]

/ (r + �)c0 � c+ �
Z z

0

Z 1

z�y
[v (y + w)G (dw)

F (t; dy)

F (t; z)
]:

This quantity is negative (positive) when c is large (small) enough relative to c0; as long as v is

small enough.

Proof of Proposition 4. As shown in Theorem 2, in the limits for t small and t large, the

equilibrium threshold z is approximated by the selection

ẑ (t) = min fz : �(z; t) = 0g ;

where, letting �1 = �2 +�:

� (z; t;�; 
) = r (�2 +�� 
C (z)) + �c (x; t)� �
Z 1

0
[
C (z)� 
C (z + w)]G (dw)

+�

Z z

0
� [1�G (z � y)] F (t; dy)

F (t; z)
:

Because,

@

@�2
�(z; t;�; 
) = r > 0;

@

@�
�(z; t;�; 
) = r + �

Z z

0
[1�G (z � y)] F (t; dy)

F (t; z)
> 0;

it follows that @z=@�2 < 0 and @z=@� < 0: Also,

@

@

�(z; t;�; 
) = �rC (z)� �

Z 1

0
[C (z)� C (z + w)]G (dw)

= �rC (z)� 1



�
r (�1 � 
C (z)) + c (x; t) + �

Z z

0
[�1 ��2] [1�G (z � y)]

F (t; dy)

F (t; z)

�
= �1




�
r�1 + c (x; t) + �

Z z

0
[�1 ��2] [1�G (z � y)]

F (t; dy)

F (t; z)

�
< 0;
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Incrementing the subsidy, reduces 
; makes � increase, and hence reduces z; anticipating technology

adoption.
@

@�
�(z; t) = c (x; t) > 0:

Incrementing the subsidy, reduces �; hence making � decrease, and increasing z; delaying technology

adoption.

Proof of Proposition 5. Since W � and V � are di¤erentiable, and u1 > 0; �u1 � 0; we only
need to show that for any t; x such that

R
[u (x; y) + �u (y; x)] 
 (t; dy; z�) < W � (x; t) ;

W �
1 (x; t) <

d

dx

�Z
[u (x; y) + �u (y; x)] 
 (t; dy; z�)

�
We proceed as in the proof of Proposition 1: consider any state (x; t) such that V � (x; t) =W � (x; t) ;

given any optimal strategy �; we construct the strategy �0 such that �0 (x00 + x0; �) = � (x00 + x; �)

for any � � t and x00 � 0; with expected payo¤ V � (x0; t;�0) at state (x0; t) : Thus

lim
x0!x

W � (x; t)�W � (x0; t)

x� x0 � V � (x; t)� V � (x0; t;�0)
x� x0

=

R
fE [V � (x+ x; y + y; t;�; �B)]� E [V � (x0 + x; y + y; t;�0; �B)]g 
 (t; dy; z�)

x� x0

=

Z �
E
��
u (x+ x (TA) ; y + y (TA))� u (x0 + x (TA) ; y + y (TA))

x� x0

+
u (y + y (TA) ; x+ x (TA))� u (y + y (TA) ; x0 + x (TA))

x� x0

�
e�r(TA�t)� (TA < TB)

+

�
u (x+ x (TB) ; y + y (TB))� u (x0 + x (TB) ; y + y (TB))

x� x0

+
u (y + y (TB) ; x+ x (TB))� u (y + y (TB) ; x0 + x (TB))

x� x0

�
e�r(TB�t)� (TB < TA)

�
Z minfTA;TBg

0

�
c (x+ x (t) ; t)� c

�
x0 + x (t) ; t

��
e�rvdv

#)

 (t; dy; z�)

where the expectation E, the sample paths x,y and the stopping times TA; TB are as in the

proof of Proposition 1.

Because c1 �; u11 � 0; u11 � 0; u12 � 0; and u12 � 0; we thus obtain:

lim
x�x0!0

W � (x; t)�W � (x0; t)

x� x0 < lim
x�x0

Z �
u (x; y)� u (x0; y) + u (x; y)� u (x0; y)

x� x0

�

 (t; dy; z�) :
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Proof of Proposition 6. Because z (0) > 0; and because of the continuity of the process

describing the opponent state y(t); it follows that for any y > 0;

lim
t!0+

F (t; y)

F (t; z (t))
= 1:

As we show in the Appendix (Lemma 8),

lim
t!0+

f (z (t) ; t)

F (z (t) ; t)
z0 (t) = 0;

for any possible admissible solution z (t) of the ODE (3). Thus, equation (8) for t small enough is

approximated by:

(r + �) [v (z�)� v (z)] = �
Z 1

z
[v (0 + ")� c0]G (d")� (r + �) v (z�)� c

+�

Z 1

0
[v (z� + ")� v (z�) + v (z� + ")� v (z�)� v (z + ") + v (z)]G (d") :

By contradiction, suppose that z� > z: Then by concavity of v; [v (z� + ")� v (z�)� (v (z + ")� v (z))] �
0 for all ": Evidently, �

R1
z [v (z� + ")� v (z�)]G (d") � 0 because v0 � 0; and because the next

inequalities will be satis�ed with slack, and we assumed v (z� (0)) not to be too negative, we are

left to show that

�c+ �
Z 1

z
[v (0 + ")� c0]G (d") < 0;

this quantity is indeed negative for c0 ! 1 (because v (0 + ") would �xed and c0 ! 1; if were z
bounded, and because the quantity would converge to something smaller than �c if it were that
z !1):

Proof of Proposition 7. As we show in the Appendix (Theorem 6), for any y < z;

lim
t!1

F (t; y)

F (t; z)
= 0;

Hence equation (8) approximates for large t:

(r + �) [v (z�)� v (z)] = �c (z�; t)� (r + �) v (z�) (12)

+�

Z 1

0
[v (z� + ")� v (z�) + v (z� + ")� v (z�)� v (z + ") + v (z)]G (d")

+�

Z 1

0
[v (z + ")� c0]G (d")� [(v (z)� c0)� v (z)]

f (t; z)

F (t; z)
z0 (t)

By contradiction, suppose that z > z�: Then by concavity of v; [v (z� + ")� v (z�)� (v (z + ")� v (z))] �
0 for all ": Evidently, � [(v (z)� c0)� v (z)] z0 (t) f (t; z) =F (t; z) � 0 because z0 < 0 and v (z)�c0 >
v (z) : Because the next inequalities will be satis�ed with slack, and we assumed rv (z� (0)) not to

be too large, we are left to show to generate a contradiction by showing that

�c (z�; t) + �
Z 1

0
[v (z� + ")� v (z�)]G (d") + �

Z 1

0
[v (z + ")� c0 � v (z�)]G (d") > 0:

32



Because v (z)�c0 > v (z�) ; and by the conditions v0 � 0; v00 � 0; the hypothesis that z > z� implies
that the above expression is strictly larger than

�c (z�; t) + �
Z 1

0
[v (z + ")� v (z) + v (z + ")� v (z)]G (d")

= �c (z�; t) + 2�
Z 1

0

v (z + ") + v (z + ")

2
� v (z) + v (z)

2
G (d")

> �c (z; t) + 2�
Z 1

0

�
v (z + ") + v (z + ")

2
� v (z) + c0

2

�
G (d")

= �c (z; t) + �
Z 1

0
(v (z + ")� v (z))G (d") + �

Z 1

0
(v (z + ")� v (z) + c0)G (d") = rv (z) > 0:

where the �rst inequality follows from c1 � 0 and v (z) < v (z) � c0; the last equality holds
for the equilibrium threshold z and t large enough (see equation 5), and the last inequality follows

from v(z) > c0:
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