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Abstract

The aim of this thesis is to find ways to make advanced Markov Chain Monte

Carlo (MCMC) algorithms more efficient. Our framework is relevant for target

distributions defined as change of measures from Gaussian laws; we use this def-

inition because it provides the flexibility to apply our methods to a wider range

of problems –including models driven by Stochastic Differential Equations (SDE).

The advanced MCMC algorithms presented in this thesis are well-defined on the

infinite-dimensional path-space and exhibit superior properties in terms of compu-

tational complexity. The consequence of the well-definition of these algorithms is

that they have mesh-free mixing properties and their convergence time does not de-

teriorate when the dimension of the path increases. The contributions we make in

this thesis are in four areas: First, we present a new proof for the well-posedness

of the advanced Hybrid Monte Carlo (HMC) algorithm; this proof allows us to

verify the validity of the required assumptions for well-posedness in several practi-

cal applications. Second, by comparing analytically and with numerical examples

the computational costs of different algorithms, we show that the advanced Ran-

dom Walk Metropolis and the Metropolis-adjusted Langevin algorithm (MALA)

have similar complexity when applied to ‘long’ diffusion paths, whereas the HMC

algorithm is more efficient than both. Third, we demonstrate that the Golightly-

Wikinson transformation can be applied to a wider range of applications – than

the typically used Lamperti– when using HMC algorithms to sample from complex

target distributions such as SDEs with general diffusion coefficients. Four, we im-

plemented a novel joint update scheme to sample from a path observed with error,

where the path itself was driven by a fractional Brownian motion (fBm) instead

of a Wiener process. Here HMC’s scaling properties proved desirable, since, the

non-Markovian properties of fBm made techniques like blocking overly expensive.

We achieved this by a well-planned use of the Davies-Harte algorithm to provide

the mapping between fBm and uncorrelated white noise that we used to decouple

the a-priori involved model parameters from the high-dimensional latent variables.

Finally, we showed numerically that our proposed algorithm works efficiently and

provided ample comparisons to corroborate it.
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Chapter 1

Introduction

Markov Chain Monte Carlo (MCMC) methods have been around for more than

two decades now and provide an intuitive and powerful mechanism to sample from

complex posterior distributions where other methods may prove difficult to work1.

Due to the high versatility and power inherent of the MCMC methodology, the

range of applications has been increasing rapidly; this has in turn created a need

for the rapid advancement of MCMC methods. Not surprisingly, this need has ex-

tended to high-dimensional distributions, where standard MCMC methods could

break down, and some advanced MCMC methods are needed to improve efficiency.

In this thesis we will focus on studying such advanced algorithms as well as propos-

ing a few new ones. First, in this Chapter, we present the main standard MCMC

methods used in applications and that are relevant for the advanced methodol-

ogy shown in the next Chapter. Also, we present some introductory material for

Stochastic Differential Equations (SDEs), focusing on the aspects of these pro-

cesses which are important when developing the advanced MCMC algorithm on

the diffusion pathspace as presented in the next chapter.

1.1 Markov Chain Monte Carlo

In this section we provide a brief introduction to the basic concepts underpinning

the MCMC methodology as well as some more modern developments in terms of

new advanced methods that are robust in high-dimensions and that have provided

the motivation for this thesis.

1See e.g. [41, 14] for good summaries on the algorithms and applications
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1.1.1 Monte Carlo Integration

All MCMC algorithms stem from the same basic idea of Monte Carlo integration,

which is summarised in [41] and we include here for the sake of completion. The

main idea stems from adopting a Bayesian framework and we will be taking such

a Bayesian stance when explaining all these concepts.

Lets assume that we have observed data Y with unknown parameters θ, so

that the likelihood of the data is L(Y | θ). A Bayesian framework treats both

parameters and data as random variables, therefore using Bayes rule we obtain

the posterior distribution of main interest:

P (θ | Y ) ∝ P (θ)L(Y | θ). (1.1.1)

Consider the case we are given a function f = f(θ) and we are interested in

evaluating the posterior expectation:

E[f(θ) | Y ] =

∫
f(θ)P (θ | Y )dθ. (1.1.2)

The problem here is that in most cases (especially in high-dimensions or in the

presence of latent variables) the analytic evaluation of this integral is impossible.

The solution is to perform some sort of numerical integration using samples from

the posterior.

Now that we have shown the Bayesian motivation, we move towards a more

generic framework and also of more general interest. Assume that we are interested

in computing the following integral:

E[f(X)] =

∫
f(X)Π(X)dX (1.1.3)

for some given f = f(X) and distribution Π. Notice that in a Bayesian setting

Π(X) could correspond to posterior distribution as in (1.1.1). Lets also assume,

for the time being, than we can sample x1, x2, . . . , xn directly from Π(X). Then,

under some conditions on the distribution of f(xi) (e.g. finite L1-norm) it follows

that:

lim
n→∞

1

n

n∑
i=1

f(xi) −→ E[f(X)], almost surely (1.1.4)

via the Strong Law of Large Numbers (see e.g. [45]). This very important result

could be labeled Monte Carlo Integration and allows for an accurate estimate of

the unknown expectation when using large values of n. Assuming a finite second
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moment, the Central Limit Theorem dictates that the rate of convergence is of the

order O(1/
√
N).

1.1.2 Standard MCMC Algorithms

When discussing the Monte Carlo Integration principle in the previous section we

made the implicit assumption that one could easily generate samples from Π(X).

Unfortunately, this is not typically the case in a large variety of real life problems.

The principle behind Markov Chain Monte Carlo (MCMC) is simple: we are given

a maybe complex, high-dimensional distribution Π(X), which we will refer to from

now on as the ‘target’ distribution, and we want to generate samples {xt}t≥1 from

this target Π(X). We assume that we can’t sample from the target directly using

standard methods (e.g. inverse cdf or rejection sampling [67]). An effective solution

is to set up a Markov chain whose stationary distribution is Π(·). Once we have

this Markov chain at hand, we can sample its trajectory {x0, x1, ..., xn} using iter-

atively it’s transition dynamics P (Xt+1 | Xt), which depend on the current state.

Assuming we reach equilibrium, samples of the Markov chain can then be treated

as a correlated sample from the invariant (thus also equilibrium) distribution Π.

Typically, a first part of the Markov chain trajectory is discarded, i.e. a so-called

‘burn-in’ period must be taken under consideration.

Perhaps the most well-known MCMC algorithms correspond to following the

Metropolis-Hastings (MH) methodology. This methodology was originally devel-

oped by Metropolis [58] and later expanded and generalised by Hasting [48]. Due

to its general nature, the Metropolis-Hastings forms the basis for many of the spe-

cific MCMC algorithms used in practice. The MH algorithm develops a Markov

transition kernel P (· | ·) that has as equilibrium distribution the target Π(·), by

employing candidates from a simple proposal distribution Q(· | ·). The algorithm

works as follows:

1. A new candidate value Y is suggested from the proposal distribution given

the current value Xt i.e. Y ∼ Q(· | Xt).

2. This value is accepted with probability α(Xt, Y ) where:

α(Xt, Y ) = min

(
1,

Π(Y )Q(Xt|Y )

Π(Xt)Q(Y |Xt)

)
. (1.1.5)

If accepted, then the next Markov chain value is set equal to the proposed

value Xt+1 = Y ;

17



If rejected, then the next Markov chain value is set equal to the current

value Xt+1 = Xt.

3. Repeat until a long enough trajectory {X0, X1, . . . , Xt, . . .} has been drawn.

Given a sufficiently long burn-in time, say k, then {xk, xk+1, ..., xn} will be treated

as correlated samples with marginal distribution Π(X)2. The main reason that

the MH algorithm is so powerful is that Q(· | ·) can take, in principle, any form

its user wants3.

Later, we continue with the idea that the MH algorithm presented forms a

general framework that can provide a number of specific algorithms. The particular

type of MH algorithm chosen will depend on the choice of the proposal distribution

Q(· | ·). Consider, for example, using the following proposal distribution:

Q(Xt+1 | Xt) : Xt+1 = Xt + ξ,

where, ξ is distributed as a symmetric distribution, say a Gaussian one:

ξ ∼ N(0,Σ),

with Σ being a variance parameter which can be tuned further to improve the mix-

ing properties of the algorithm. This is equivalent to saying Q(· | ·) is determined

as follows:

Q(Xt+1 | Xt) ∼ N(Xt,Σ). (1.1.6)

This specification of MH corresponds to the Random Walk Metropolis (RWM)

with its main characteristic being that the proposal kernel Q(·|·) cancels out from

the acceptance probability (1.1.5) due to having Q(Y |Xt) = Q(Xt|Y ).

Another specification of MH is the one corresponding to the Independent Sam-

pler. In this case we propose a move independent of its current position, that

is:

Q(Xt+1|Xt) ≡ Q(Xt+1). (1.1.7)

We will be using a version of this algorithm in the context of the SDE applications

of interest in this thesis.

Then we move on to a different kind of MCMC algorithm called the Gibbs

sampler. Suppose we are interested in sampling a posterior on d parameters of in-

2There are now well-studied methods for determining the burn-in period, see e.g. [22], [13]
3Of course, some regularity conditions are needed to enforce convergence in equilibrium, see

e.g. [68]
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terest, say Θ = {θ1, θ2, . . . , θd}, from the joint distribution P (θ1, θ2, . . . , θd). Then,

the algorithm works like follows:

1. Choose suitable starting values for the parameters {θ1, θ2, . . . , θd}.

2. Alternate sampling all parameters, each one from its full conditional distri-

bution P (θi | all other variables) i.e. sample each univariate variable from

the conditional distribution given all the other variables.

3. Repeat previous step until a sufficient large trajectory is drawn.

Then, given a sufficiently large burn-in time, the algorithm will converge to the

target distribution Π(Θ). Again, convergence requires some regularity condition

on Π(Θ) as there will be instances when the algorithm will fail to convergence to

equilibrium or will converge very slowly for practical purposes. In the latter case

of slow convergence, a standard context where it arises is for Gibbs samplers in

the presence of strong correlation among variables4. We will return to this point

in more detail in subsequent sections.

It is important to notice that different algorithms can be derived by combining

the general direction within MH and Gibbs samplers. For instance, the Gibbs

sampler provides a way of sampling parameters according to a target joint prob-

ability distribution, but it requires being able to sample from the full conditional

distributions easily, e.g. the first one P (θ1 | θ2, . . . , θk)– something that may not be

possible for many problems5. Luckily, the MH methodology provides us a method

to overcome this problem: one simply applies the MH correction (i.e. proposal and

accept/reject rule) to each of the full conditionals if needed; the final algorithm will

always have the correct invariant distribution. This briefly describes the so-called

Metropolis-within-Gibbs methodology which is typically used in practice. The

conclusion is that we can nest MH algorithms within a Gibbs sampler to obtain

the final algorithm.

1.1.3 Derivative-Driven MCMC Algorithms

In the previous section, we looked at MCMC algorithms such as Random Walk

Metropolis (RWM) and the Independent Sampler6. RWM is often referred to

as a blind algorithm since the proposal kernel, in principle, does not depend on

the target distribution (in practice, for the algorithm to be effective, step-sizes in

4see [41]
5See [29] for some early attempts to overcome this problem using iterated rejection sampling
6See [41] for details on other algorithms
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different direction will have to somewhat adapt to the covariance structure of the

target).

In this section we look at ways of improving the proposal distribution by using

information –in the form of the gradient of the log-target density– in the proposal

mechanism. That is, we look at derivative-driven MCMC algorithms. Derivative-

driven methods use the first derivative of the target distribution to attempt to

produce proposals towards the center of the domain of the target distribution.

Our aim is to create better proposals that lead to a higher acceptance probability

and better mixing. It is important to notice that it is not necessarily the case that

derivative-driven algorithms are better than non-derivative-driven methods, as the

latter ones will always have the advantage that little needs to be known about the

target distribution derivatives to develop the algorithm.

The first derivative-driven method we cover is known as the Metropolis Ad-

justed Langevin Algorithm (MALA)7. MALA is based on the stationary prop-

erties of the so-called Langevin Stochastic Differential Equation (SDE). In the

equation below, Wt denotes a standard Brownian motion on Rd. Also, for ar-

bitrary function f = f(x1, x2, x3, . . . , xd) we define the gradient as the vector of

first-order partial derivatives, so that for an abstract function f = f(x) we have

∇f(x1, x2, x3 . . . , xd) = ( ∂f
∂x1
, ∂f
∂x2
, ∂f
∂x3
, . . . , ∂f

∂xd
)>.

Theorem 1.1.1. Langevin SDE:

Let Π be an arbitrary target distribution on Rd. Then, given regularity condi-

tions on Π (see e.g. [72]), the solution to the following SDE:

dXt = 1
2
C ∇ log Π(Xt)dt+

√
C dWt (1.1.8)

with C a positive-definite matrix on Rd×d, has invariant distribution Π(·).

Proof. This theorem can be proven using standard Fokker-Planck equations see

e.g. [38, 78] for a complete proof.

One intuitive reason why (1.1.8) provides some effective mechanism for sam-

pling from its equilibrium distribution Π(x), is that the drift in its expression

represents the direction of steepest ascent of the target distribution. From stan-

dard geometry arguments, ∇ log Π(Xt) is a vector perpendicular to the contour of

Π at X; this is known as the direction of steepest ascent (see [3]). In practice,

this should push the SDE process in the direction of the mode of the target dis-

tribution. It is important to notice that, if these dynamics could be implemented

7Which was originally proposed in [72]
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exactly in continuous or discrete time, then, because they have the correct invari-

ant distribution, a no accept/reject mechanism would be required (all moves would

be accepted with probability one).

Most frequently, it is not possible to simulate directly from this SDE (apart

from some very simple cases, for instance when Π is Gaussian). As we will show

in the next section, for computational purposes all such SDEs must be discritized

in time, so invariance with respect to Π will be lost and a MH correction must

be applied. Nevertheless, even with this approximation, the proposals that the

Langevin SDE produces should still be very effective for sampling Π. The simplest

discretization method is the explicit Euler scheme. Indeed, using this scheme

in (1.1.8) for a mesh h > 0 gives the following proposed transition:

Y = X + 1
2
C ∇ log Π(X)h+

√
C
√
h ξ. (1.1.9)

with ξ ∼ N(0, I). Here, both h and C should be viewed as tuning parameters

for the user to specify. So, we have now specified a proposal distribution Q(· | ·),
based on the Euler approximation of the Langevin SDE. By construction, we have

that:

Q(Y | X) ∼ N(X + 1
2
C∇ log Π(X)h, Ch). (1.1.10)

Since, the proposal is just a linear transformation of a random normal variable,

we can now plug in this proposal in the main MH framework to obtain MALA.

Both RWM and MALA are examples of ‘local-move’ algorithms, as typically a

small enough h will be chosen (especially in moderate to high dimension sizes) to

deliver good-enough acceptance probabilities. A common issue with such methods

is their ‘random walk behaviour’, that is: one typically needs 1/h steps to explore

the state space even if the standard deviation of each step is in fact O(
√
h).

We expand on the MALA algorithm and present now the Hybrid Monte Carlo

(HMC)8 method which is a fairly unique example of a non-local method that

generates large steps in the state space. To simplify our exposition we consider

the case where the target distribution is defined by its density in the form:

Π(x) ∝ exp{−Φ(x)} , (1.1.11)

for some differentiable function Φ : Rd 7→ R. The development of HMC can be

summarised into three separate components:

8see [34]
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i) a Hamiltonian flow,

ii) a numerical integrator, and

iii) an accept/reject rule.

HMC expands the phase space of the target distribution by adding an auxiliary

variable v of the same size as x such that we have the joint distribution on (x, v):

Π(x, v) ∝ exp{−H(x, v)} (1.1.12)

where

H(x, v) = 1
2
〈v,Mv〉+ Φ(x) (1.1.13)

for a positive-definite matrix M ∈ Rd×d. The function H = H(x, v) is known as

the Hamiltonian ‘Energy’ function. The auxiliary variable v should be thought

of as the ‘velocity’ variable, the original variable x is the ’location’ variable and

M as the ‘mass’ matrix to be specified by the user. So, in this setting, Φ(x) is

the ‘potential’ energy and 1
2
〈v,Mv〉 the ‘kinetic’ energy. We can use the standard

Hamiltonian equations to describe the evolution in time of the above system within

an energy-preserving environment. In particular, we introduce a time index t ≥ 0,

so that the Hamiltonian equations are as follows:

dx

dt
= M−1∂H

∂v
= v,

M
dv

dt
= −∂H

∂x
= −∇Φ(x). (1.1.14)

These equations are simply an application of Newton’s first law of motion. The

Hamiltonian differential equations give rise to a semigroup solution operator Ξt

which maps:

(x(t), v(t)) = Ξt(x(0), v(0)) (1.1.15)

and has three important properties9:

1. Conservation of Energy: H(Ξt(x(0), v(0))) = H((x(0), v(0))).

2. Conservation of Volume: Ξt(dx, dv) = (dx, dv).

3. Time Symmetricity: Ξt(x(t),−v(t)) = (x(0),−v(0)).

Reminiscent to the MALA case, where it is possible to apply the Langevin dy-

namics perfectly, the transition from the current position x(0) = x to x(t) using

9Which will be relevant when defining HMC, see [7]
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a sampled v(0) ∼ N(0,M−1) from its marginal distribution, would give rise to a

Markov transition in x-space that preserves Π(x). Hence, no accept/reject rule

would be needed to obtain Markov dynamics with the correct equilibrium distri-

bution. We are aware, though, that in practice we cannot typically obtain analytic

solutions for the Hamiltonian equations.

As with MALA, we must resort to the use of a time-discretization method.

The integrator of choice here is the so-called leapfrog integrator, since this scheme

maintains both the time reversibility and conservation of volume properties of the

original Hamiltonian equations10. The leapfrog integrator splits the Hamiltonian

dynamics (1.1.14) into two steps. Consider separating the Hamiltonian energy

function H(x, v) into two parts: H1 the potential energy and H2 the kinetic energy.

That is:

H = H1 +H2, H1 = Φ(x), H2 = 1
2
〈v,Mv〉. (1.1.16)

Now we look at Hamiltonian flows Ξt
1 and Ξt

2 as arising from applying Hamiltonian

equations to each of the energies H1 and H2 separately. That is, we have the

differential equations:

dx

dt
= M−1∂H1

∂v
= 0, M

dv

dt
= −∂H1

∂x
= −∇Φ(x), (1.1.17)

and
dx

dt
= M−1∂H2

∂v
= v, M

dv

dt
= 0. (1.1.18)

Now, it follows that these two separate flows can be solved explicitly giving:

Ξt
1(x, v) = (x, v − tM−1∇Φ(x)), Ξt

2(x, v) = (x+ tMv, v). (1.1.19)

One complete step of the leapfrog integration involves a half step of Ξ1, a full

step of Ξ2, followed by another half step of Ξ1. That is, we have the synthesized

operator:

Ψh = Ξ
h
2
1 ◦ Ξh

2 ◦ Ξ
h
2
1 . (1.1.20)

Ψh will now be applied for a number of times, say, I = bT
h
c, so that the discretized

dynamics will approximate the Hamiltonian flow on the time interval [0, T ], for

some time horizon11 T > 0. Then we obtain the following synthesis:

(xT , vT ) = Ψh(Ψh(Ψh . . .Ψh(x0, v0) . . . )), applied bT/hc times.

10For a proof, see e.g. [60]
11This is a free parameter to be specified by the user
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We will refer to this synthesis as the following mapping:

(xT , vT ) = ΨT
h (x0, v0).

We can observe in Figure 1.1 a graphical illustration of the the leapfrog integration:

Figure 1.1: Graphical illustration of a synthesis of leapfrog steps.

each arrow in the graph represents a single leapfrog step Ψh, whereas the end

point represents Ψ(T ) for a chosen time horizon T. We can also see in the graph,

how the terminal position of the algorithm ends up and how it depends on the

size of each leapfrog step h and the time horizon T . Both parameters are user-

specified, and some fine tuning is required, since for instance: if T is too small

the algorithm may exhibit random walk behaviour whereas if it is too big the

Hamiltonian trajectory may double-back on itself wasting computational resources.

Another remark motivated by Figure 1.1 , is that the mapping ΨT is exploring

a single contour which is linked to the initial choice of velocity v0. The final

algorithm, in fact, explores many contours as at each step it will sample a new

v0 ∼ N(0,M−1) before applying the leapfrog mapping Ψ
(T )
h step of the algorithm.

One topic of debate may be the choice of the mass matrix M . If the target

was a Gaussian measure N(0,Σ) for some covariance matrix Σ, then an optimal

choice is to set the mass function equal to the inverse of the covariance function

i.e. M = Σ−1. Intuitively, this means that areas of low variance will be assigned
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a large mass and vice-versa. We can think about the effect of this choice in terms

of the corresponding HMC dynamics for describing the movement of particles in

the phase space. Since the auxiliary variable v is interpreted as velocity, particles

(by the conservation of momentum) will move slower in areas of low variance and

faster in those of high variance. This means that the x-trajectory, which can

be thought as the location of particles, will explore better the state space of the

target distribution. Probabilistically, this is equivalent to transforming the target

distribution to a product of d univariate N(0, 1) Gaussians. For a non-Gaussian

target, it still makes sense to try to adjust M to the inverse of the covariance of

the target distribution.

Standard HMC:

(i) Assume current position x(n) = x0. Sample v0 ∼ N(0,M−1).

(ii) (a) update vh/2 = v0 − h
2
M−1∇Φ(x0);

(b) update xh = x0 + hvh/2;

(c) update vh = vh/2 − h
2
M−1∇Φ(xh);

(d) Repeat steps (a)− (c) over bT
h
c times.

(iii) Set x(n+1) = xT with probability 1 ∧ exp{H(x0, v0)−H(ΨT
h (x0, v0)},

otherwise set x(n+1) = x0 = x(n).

(iv) Repeat for n = 1, 2, 3, . . ..

Table 1.1: Specification of standard HMC.

Table 1.1 presents the standard HMC algorithm. Notice that the MH accep-

tance probability– that corrects the discretized dynamics so that the final method

has the correct invariant distribution– involves the changes in the energy function

between the initial configuration in the phase space and the final configuration

after synthesizing the leapfrog steps. For completeness we present, in Theorem

1.1.2 below, a simple proof that this particular acceptance probability provides a

correct algorithm12. Below we denote by Px the projection on the x component.

Theorem 1.1.2. Consider any one-step mapping Ψh with the following properties:

• it is time-reversible, that is, Ψh(xh,−vh) = (x0,−v0).

• it is volume-preserving, that is, Ψh(dx, dv) = (dx, dv).

12Versions of this proof can be found in several works, for example in the seminal paper of [34]
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Consider the composite map ΨT
h , that synthesizes bT/hc applications of Ψh. As-

sume current position x ∈ Rd and sample v ∼ N(0,M−1). Consider the Markov

transition so that the trajectory moves to x′ = Px(ΨT
h (x, v)) according to the ac-

ceptance probability:

α(x, v) = 1 ∧ exp{H(x, v)−H(Ψh(x, v))}

otherwise it stays at x (so x′ = x). Then, the Markov transition x 7→ x′ has

invariant distribution Π.

Proof. To simplify the presentation of the formulae, we omit the subscript h

from operators Ψh and ΨT
h . Assume, (x0, v0) ∼ exp{−H(x, v)} and (xT , vT ) =

Ψ(T )(x0, v0) where Ψ is both volume-preserving and time-reversible. Then,

P ((xT , vT )ε(dx, dv)) = P
(
(x0, v0)ε(dx, dv)

⋂
reject move

)
+

B︷ ︸︸ ︷
P
(
(x0, v0)εΨ−1(dx, dv)

⋂
accept move

)
= exp{−H(x, v)}dxdv · (1− 1 ∧ exp{H(x, v)−H(Ψ(x, v))}) (1.1.21)

+

∫
Ψ−1(dx,dv)

exp{−H(r, w))}drdw︸ ︷︷ ︸
I

·
(

1 ∧ exp{H(Ψ−1(x, v))−H(x, v)}
)
.

Now, making the change of variables (r′, w′) = Ψ(r, w) within the integral I defined

above together with the volume preservation of Ψ gives that:

I =

∫
dxdv

exp{−H(Ψ−1(r, w))}drdw ≡ exp{−H(Ψ−1(x, v))}dxdv.

Therefore, continuing from (1.1.21) we have that:

B = dxdv(exp{−H(Ψ−1(x, v))} ∧ exp{−H(x, v)}) =∫
dxdv

exp{−H(Ψ−1(r, w))} ∧ exp{−H(r, w)}drdw

= −
∫
dxd(−v)

exp{−H(Ψ−1(r,−w))} ∧ exp{−H(r, w)}drdw,

where in the last equation we have applied the change of variables w ↔ −w and

used the fact that H(r, w) ≡ H(r,−w). Because of the time-reversibility property
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of Ψ and the fact again that H(x, v) ≡ H(x,−v), we obtain that:

B = exp{−H(Ψ(x, v))} ∧ exp{−H(x, v)}dxdv ≡

exp{−H(x, v)}dxdv · 1 ∧ exp{H(x, v)−H(Ψ(x, v))}.

Plugging this final expression into (1.1.21) gives us:

P ((xT , vT )ε(dx, dv)) = exp{−H(x, v)}dxdv.

Thus, marginally we have that xT ∼ exp{−Φ(x)}, and this completes the proof.

1.2 Introduction to Diffusion Processes

The target distributions of interest for our advanced algorithms are defined on the

pathspace of diffusion processes, i.e. solutions of Stochastic Differential Equations

(SDEs). Thus, the distributions of interest are defined on the infinite-dimensional

Hilbert space of squared integrable paths, on some interval of interest [0, `] for

path-length ` > 0. Thus, we denote this separable Hilbert space as follows:

H = L2([0, `],R).

A big challenge here is the high-dimensionality of the state space (in theory infinite-

dimensional, in practice some finite-dimensional approximation, say on RN is used,

for some large enough N ≥ 1). We cover here briefly some of the basics aspects

on the theory of SDEs13.

The most basic diffusion process is known is the Wiener process (or Brownian

motion), which is defined as follows: Let Wt, t ≥ 0, be a Wiener process. Then

this process is uniquely specified by the following properties:

1. W0 = 0;

2. With probability 1, the sample path t → Wt is everywhere continuous and

nowhere differentiable;

3. Wt has independent increments on disjoint time intervals, with distribution

for 0 ≤ s < t, Wt −Ws ∼ N(0, t− s).

13The reader is referred e.g. in [65] for a more rigorous approach and extensive details
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Figure 1.2: An example of a Wiener process sample path.

In Figure 1.2 we can see an entire Wiener process Wt sample path plotted against

time.

The Wiener process forms the basis for most of the stochastic processes used in

this thesis. The standard method to construct a continuous-time diffusion process

is by using a SDE that resembles an ordinary differential equation which, apart

for the involvement of a stochastic component, is of the following general form:

dXt = b(Xt)dt+ σ(Xt)dWt, (1.2.1)

for some drift function b : R 7→ R and diffusion coefficient σ : R 7→ R. The

drift and the diffusion coefficient must satisfy the standard regulatory condition

to guarantee the existence and uniqueness of a global solution for (1.2.1)14. Typ-

ically, it is required that b is Lipschitz with a linear growth condition; similar

conditions must hold for σ. Notice that one can trivially extend (1.2.1) to a time-

inhomogeneous setting by allowing b and σ to also depend on time; for simplicity,

we have introduced the SDE in a time-homogeneous context.

14See e.g. [65] for details
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The solution Xt of (1.2.1) is typically impossible to obtain analytically. In

a numerical setting, one can use a multitude of approximate methods15 for the

simulation of sample paths of Xt. For the purposes of this thesis we will limit

ourselves to the simplest of methods, i.e. the standard Euler-Maruyama scheme.

When applied to (1.2.1), the Euler scheme requires a discretized grid of times

0 = t0 < t1 < · · · tN , and provides the sampling iteration:

Xti = Xti−1
+ b(Xti−1

)∆i + σ(Xti−1
)(Wti −Wti−1

), (1.2.2)

where ∆i = ti− ti−1. This scheme allows for easy generation of sample paths when

used on a personal computer. The size of the approximation error depends on the

smallness 16 of ∆t.

Another important process, which we will be involved in when discussing ad-

vanced algorithms, is the so-called Brownian bridge. In a similar way that random

variables can be conditioned on events or on other random variables, this can also

happen for stochastic process. In particular, given the Wiener process Wt, we can

condition it to start at point x at time 0 and to end at point y at time `. Then,

it can be shown either from first principles ([52]) in the Brownian motion case or

by using Doob h-transform (this provides bridges for general SDEs, [73]) that the

process Xt = Wt | W0 = x,W` = y can be defined as the solution of the SDE:

dXt =
y −Xt

`− t
dt+ dWt, X0 = x. (1.2.3)

This is precisely the definition of a Brownian bridge. A number of sample paths of a

Brownian bridge starting and finishing at 0 are shown in Figure 1.3 to give a visual

impression of Brownian bridge characteristics. Conditioned diffusion bridges, such

as the Brownian bridge, are later on shown to be useful for missing data problems

where we are interested in filling the gaps between observed data points. Notice

that, typically, there is not a simple explicit SDE expression for general conditioned

diffusion processes, so their sampling is a non-trivial problem.

1.2.1 SDE as Change of Measure from Gaussian Law

We now describe some expression for the distribution of the solution of an SDE,

and that later on will be used in the development of advanced MCMC methods

15See e.g. [53] and the references therein
16Typically, and under regulatory conditions, the weak error is O(∆) with ∆ = supi ∆i, with

the strong error being O(∆1/2), see [53] for proofs and details
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Figure 1.3: Brownian bridge sample paths starting at 0 and ending at 0.

for sampling from such SDEs and related processes. As we have seen in (1.1.5),

the Metropolis-Hastings algorithm requires the probability density function of the

target and proposal distribution. In finite dimensions such densities are typically

obtained with respect to the standard Lebesque measure on Rd. In the infinite-

dimensional Hilbert space H the role of the reference measure will be taken by the

law of the Brownian motion (sometimes called the Wiener measure).

Consider the following SDEs:

Π : dXt = b(Xt)dt+ dWt, t ∈ [0, `] (1.2.4)

Π0 : dXt = dWt, t ∈ [0, `]. (1.2.5)

We have denoted by Π and Π0 as the probability measures on H determined by

the above two processes. We are interested in obtaining here the density of Π with

respect to the Gaussian law17 Π0. Using simple terms: assume we observe a sample

pathXt, 0 ≤ t ≤ `, and we want to know if it belongs to the diffusion process (1.2.4)

or to the Brownian motion process (1.2.5). Then, the density dΠ/dΠ0 between

17This is also called the Radon-Nikodym derivative dΠ/dΠ0, see e.g. [10]
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the relevant probability measures provides essentially the likelihood of the given

sample path coming from Π versus the path coming from Π0. Hence, the reference

measure we are using here, Π0, is simply the Wiener measure. A general result

here is that, under some regulatory conditions on b, any process of the form (1.2.4)

is absolutely continuous with respect to the relevant Wiener measure, and the

probability density function dΠ/dΠ0 is provided by the Girsanov’s theorem18:

dΠ

dΠ0

(X) = exp

[ ∫ `

0

b(Xt)dXt −
1

2

∫ `

0

b2(Xt)dt

]
. (1.2.6)

So far we have restricted our attention to unit diffusion coefficients. In the

general case, we will be interested on an SDE of the form:

dXt = b(Xt)dt+ σ(Xt)dWt, (1.2.7)

with σ(Xt) being a non-constant function of Xt. It is well-known in the theory

of SDEs, that different diffusion coefficient functions lead to singular diffusion

probability laws, thus, we cannot expect to use the Wiener measure as a reference

measure for (1.2.7). The Girsanov density defined below generalizes for the case

of general diffusion coefficient. In this case, we look at the processes:

Π : dXt = b(Xt)dt+ σ(Xt)dWt, (1.2.8)

Π0 : dXt = σ(Xt)dWt, t ∈ [0, `], (1.2.9)

in which case we have the Girsanov density being equal to:

dΠ

dΠ0

(X) = exp

[ ∫ `

0

b(Xt)

σ(Xt)
dXt −

1

2

∫ `

0

b2(Xt)

σ2(Xt)
dt

]
=: G(X). (1.2.10)

In what follows below we focus on conditioned diffusion processes. In the

previous section we encountered ‘diffusion bridges’, that is, diffusion processes

that have been conditioned to start and end at some specific points. Assume now

that we are given a diffusion process Xt, defined by an SDE with general diffusion

coefficient as in (1.2.8). Then, we define the corresponding target diffusion bridge

starting at point x and ending at point y at time ` in the standard way as:

Xt | X0 = x, X` = y. (1.2.11)

18See e.g. [65]
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We are interested in sampling from such diffusion bridges. Notice, that standard

discretization schemes used in the unconditional setting are not useful when con-

ditioning is on the terminal position of the SDE, this is because it is typically

impossible to obtain the SDE expression for the conditioned19. Since, most typ-

ically, we will not have an analytical expression for the bridge, we will look at

MCMC methods for solving this sampling problem.

For this, we require a simpler process that generates proposals for the target

diffusion bridge, and thus, also the related density between probability measures

of two diffusion processes conditioned to end at the same point. This will involve

coming up with a new version of Girsanov’s theorem that will apply to diffusion

bridges, this is because the standard Girsanov’s theorem given in (1.2.10) involves

unconditional dynamics. Using Bayes’ rule for the Π and Π0 as defined in (1.2.8)

and (1.2.9) one can obtain the following expression20:

dΠ

dΠ0

(X|X0 = x,X` = y) =
Π(X` = y|X)Π(dX)/Π(X` ∈ dy)

Π0(X` = y|X)Π0(dX)/Π0(X` ∈ dy)
. (1.2.12)

We now briefly consider each term individually to try to gain some intuition

about its significance. The first ratio Π(X` = y|X)/Π0(X` = y|X) can simply

be replaced by 1, as we are considering sample paths X which are constrained to

have X` = y by definition. This involves the marginal distribution at time ` of

the two diffusion processes. The next fraction Π(dX)/Π0(dX) corresponds to the

unconditional Girsanov density given in (1.2.10). Summarising, we have that:

dΠ

dΠ0

(X|X` = y) = G(X)× Π0(X` ∈ dy|X0 = x)

Π(X` ∈ dy|X0 = x)
.

Notice now that Π(X` ∈ dy|X0 = x) corresponds to a transition probability for the

unconditional Markov process (1.2.8). We denote the transition density of (1.2.8)

as:

Π(X` ∈ dy|X0 = x) = p(`;x, y)dy. (1.2.13)

Then, we make a similar definition for the reference SDE in (1.2.9). That is, we

set:

Π0(X` ∈ dy|X0 = x) = q(`;x, y)dy. (1.2.14)

Bringing everything together, we have the following Girsanov density for diffusion

bridges:

19A notable exception as we have seen, is the case of the Brownian bridge
20Many times we suppress reference to the initial position X0 = x as it is easy to enforce
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dΠ

dΠ0

(X|X` = y) = G(X)× q(`;x, y)

p(`;x, y)
. (1.2.15)

We have achieved an intuitive derivation of the conditional version of Girsanov’s

theorem, which fits the practical algorithmic investigations of the thesis, while

avoiding stating technical assumptions and mathematical conditions21. A timely

comment here is that the fraction q(`;x, y)/p(`;x, y) is a constant when sampling

from the conditional distribution of X, thus, it will not be involved when setting up

MCMC algorithms as it cancels out when calculating the relevant MH acceptance

probability.

Now we focus on the practical problem of sampling from the diffusion bridge,

specified via the dynamics in (1.2.8) and the constraints in (1.2.11). The reference

measure Π0(X|X` = y) used in (1.2.15) is not useful for giving candidate paths,

generally it is not possible to generate sample paths from that distribution. In-

stead, following e.g. [44] we build an alternative diffusion bridge that can be easily

simulated. Earlier on we described the Brownian bridge and we wrote down the

equivalent SDE expression of it, i.e. Wt | W` = y which is described by the SDE

equation in (1.2.3). Notice that the drift function in the expression is:

b∗(Xt, t) =
y −Xt

`− t
, (1.2.16)

and it ensures that the diffusion process is ‘pushed’ towards the terminal position

y as t→ `. This motivates us to use the following SDE when generating candidate

paths for the target diffusion bridge:

dXt = b∗(Xt, t)dt+ σ(Xt)dWt, (1.2.17)

so that, due to the particular form of drift, Xt will indeed be a bridge that ends on

X` = y. This is a useful result. For instance, if we were to carry out an Independent

Sampler, then (1.2.17) could be used as a proposal. We can also find the density

of our target distribution with respect to this proposal SDE in (1.2.17). Let Πx,y

be the probability measure corresponding to the diffusion bridge of interest and

let Qx,y be the probability measure of the reference diffusion process above, that

is:

Πx,y : dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x, X` = y, (1.2.18)

Qx,y : dXt = b∗(Xt, t)dt+ σ(Xt)dWt, X0 = x, X` = y . (1.2.19)

21For a complete rigorous treatment the reader is referred to [30]
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We define the following function:

D(X) = exp

[ ∫ T

0

b(Xt)

σ(Xt)2
dXt −

1

2

∫ T

0

b2(Xt)

σ(Xt)2
dt

−
∫ T

0

b∗(Xt)

σ(Xt)2
dXt +

1

2

∫ T

0

(b∗(Xt, t))
2

σ(Xt)2

]
. (1.2.20)

which resembles a Girsanov density between the unconditional original SDE and

the reference one in (1.2.17). We can now use Bayes’ theorem from first principles

as before, or follow the works in [30] and [18] to obtain that:

dΠx,y

dQx,y
(X) =

Π(dX | X` = y)

Qx,y(dX)

=
Π(dX)

Qx,y(dX)p(`;x, y)
=

1

p(`;x, y)
×D(X). (1.2.21)

This density can now be used, say within the context of an Independent Sampler,

to determine the acceptance probability.

1.2.2 Path Transformations

The density functions found above can provide an Independent Sampler algorithm

targeting the diffusion bridge of interest. However, for some of the advanced

MCMC algorithms to be presented in the sequel, it will be necessary that the

reference measure is Gaussian; in general, this is certainly not the case for above

proposal Qx,y, when σ is non-constant. Another issue is that when there are

unknown parameters present in the diffusion coefficient function to be inferred

by some observations, then the reference measure Qx,y will also depend on these

parameters, and this can provide unsatisfying singularities when setting up MCMC

methods. Indeed, by using clever use of a transformation we can decouple the

latent parameters from the reference measure by mapping Qx,y → Π0. We use this

concept later on in the thesis, specifically in chapter 5 and a bit in section 3.3.

To enforce Gaussianity for the reference measure, we are obligated to transform

the target bridge into a process whose law is indeed absolutely continuous with

respect to a Gaussian measure22. There are two main methods in the literature

for achieving such an effect, which we briefly present next.

Consider the target distribution Πx,y in (1.2.18). A standard direction to ob-

tain a 1-1 transformation to produce a modified stochastic process Yt with unit

22Typically a Brownian bridge or a Brownian motion
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diffusion coefficient is via the Lamperti transformation. Assuming Xt is defined

by a SDE (1.2.18), then, we define the new process Yt as follows:

Yt ≡ γ(Xt) :=

∫ Xt

x

du

σ(u)
, (1.2.22)

Then, with a straightforward application of Itô’s lemma, we obtain that Yt will

itself solve the following SDE:

dYt = µY (Yt)dt+ dWt, Y0 = 0, Y` = γ(y). (1.2.23)

for drift function:

µY (Yt) =
b(γ−1(Yt))

σ(γ−1(Yt))
− 1

2
σ(γ−1(Yt)). (1.2.24)

One can now easily obtain the density of the distribution of Y with respect to a

Brownian bridge as given by the conditional version of the Girsanov density in

(1.2.15), after appropriately adjusting to the new starting and ending points. This

is precisely the Lamperti transformation, widely referenced in the literature for

SDEs23. A diffusion process that can be transformed to one with unit-diffusion

coefficient with Lamperti’s transformation (1.2.22), and its generalization to a

non-scalar case, is called reducible. For one dimensional diffusion processes such

as (1.2.7), it is, in principle, always possible to use the transformation (1.2.22).

However, multivariate diffusions are not always reducible. A negative and com-

monly used example is the standard bivariate stochastic volatility model24.

Because sometimes it is not possible to use the Lamperti transformation in

non-scalar SDEs, we now look at another transformation considered in the liter-

ature. This is the Golightly-Wilkinson transformation25, and which only requires

the existence of an inverse, σ−1(Xt) for the diffusion coefficient σ(Xt). This is a

much weaker condition than the conditions of reducibility required by the Lamperti

transformation. It is important to note that the Golightly-Wilkinson transforma-

tion as specified in this section is only relevant for diffusion bridges. Later on in

the thesis, in section 4.1, we provide a similar mapping to Golightly-Wilkinson

that is relevant to cases beyond diffusion bridges.

Hence, we can consider the SDE in (1.2.17) as a mapping which projects the

23A very thorough explanation of the transformation can be found in [2] and the very straight-
forward derivation using Itô’s formula can be found in [36]

24The work in [2] presents necessary and sufficient conditions for identifying reducible diffusions
in general dimension

25The Golightly-Wilkinson transformation was first seen in [44] and is based on the bridged
SDE (1.2.17)
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Brownian motion path Wt onto the actual bridge path Xt. That is, the very

definition of the SDE (1.2.17) gives rise to a mapping, say Ψ(·) such that:

X = Ψ(W ). (1.2.25)

Now recall that the actual target SDE is the bridge Πx,y defined in (1.2.18). With

X now referring to a path of this target SDE, we will transform it into:

X̃ = Ψ−1(X) . (1.2.26)

This is precisely the Golightly-Wilkinson transform. That is, we have defined the

connection between the target X and the transformation X̃:

dXt =
y −Xt

`− t
dt+ σ(Xt)dX̃t. (1.2.27)

The idea is that, X being a path of the reference measure Qx,y, then Ψ−1(X) would

deliver a Brownian motion. Now that X is a path from Πx,y, the transform Ψ−1(X)

does not give a Brownian motion, but a process that will be absolutely continuous

with respect to Brownian motion, due to the absolute continuity of the original

measures Πx,y and Qx,y. Indeed, from standard results on 1-1 transformations of

probability measures, we can find the relevant density. Let Π̃x,y denote the law of

Ψ−1(X) for X ∼ Πx,y, and Π0 the law of a standard Brownian motion on [0, `].

Then we have that:

dΠ̃x,y

dΠ0

(X̃) =
dΠx,y

dQx,y
(Ψ(X̃))

with the latter density being given in (1.2.21).

The Golightly-Wilkinson transformation will prove handy when we move onto

more complex algorithms. In practice it will allow us to make proposals like

X̃t which resemble brownian motion, and then transform it into Xt which looks

similar to the target distribution and has a known density (1.2.21). Notice that

the mapping X̃ 7→ X obtained via (1.2.27) cannot be determined exactly, it will

have to be found numerically. That is, we can construct an approximation using

Euler’s method (for some chosen step-size ∆t > 0) that gives us:

Xt+∆t = Xt +
y −Xt

`− t
∆t+ σ(Xt)(X̃t+∆t − X̃t), (1.2.28)

X0 = x.
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Equation (1.2.28) will be the one used in practice to obtain X = Ψ(X̃) when given

X̃ or the inverse (this is why we need σ(X) to be invertible) X̃ = Ψ−1(X), when

given X.

1.2.3 Independent Sampler: A Numerical Example

We will now apply the results from the previous Section to run an Independent

sampler on the path space of diffusion processes. The Independent Sampler26 (IS)

is a very simple sampler and, as we have mentioned, is a specific version of the

general Metropolis-Hastings algorithm. The name arises from the fact that each

proposal is sampled independently from the current value. Assume that the target

distribution is the diffusion bridge Πx,y in (1.2.18) for σ ≡ 1 (maybe after applying

the Lamperti transformation). With a slight abuse of notation, we write Π ≡ Πx,y

to simplify the expressions that follow. So, our proposal is basically the law of

a Brownian bridge with the same starting and ending points; we call its law Π0.

Recall that the expression in (1.2.15) provides the density dΠ/dΠ0. The algorithm

works as follows:

1. Proposal X ′ ∼ Π0 is sampled from a simple Brownian bridge independently

of current bridge X (see (1.2.3)).

2. If accepted, using the acceptance probability, then X ′ becomes the current

value, otherwise the next position remains X.

We know that (1.1.5) is the acceptance probability for a MH on finite-dimensional

spaces, with densities obtained with respect to a reference measure (typically the

Lebesque measure). We need to make some rearrangement when working on the

path space. For this, we take into account that this is an independent sampler

with Q(dx|X ′) = Π0(dx), similarly Q(dx′|X) = Π0(dx′) where Π0 is the proba-

bility measure of the Brownian bridge process as already mentioned. Hence, the

equation giving the acceptance probability (1.1.5) becomes:

α(x, x′) = min

(
1,

Π(dx′)Π0(dx)

Π(dx)Π0(dx′)

)
.

Expressing this as a fraction of Π(·)
Π0(·) we get:

α(x, x′) = min

(
1,

Π(dx′)
Π0(dx′)

Π(dx)
Π0(dx)

)

26Notice that a well-defined IS on the pathspace first appeared in [71]
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Notice that this expression makes sense on the infinite dimensional pathspace, as

we obtain the density (dΠ/dΠ0) from (1.2.15). That is, recalling the definition of

G(x) in (1.2.15), now considered for the case of unit diffusion coefficient, we get

the acceptance probability:

α(x, x′) = min

(
1,
G(x′)

G(x)

)
. (1.2.29)

As a simple numerical example of the methods described in this paper of the

diffusion bridge we simulate an Ornstein-Uhlenbeck27 diffusion process. This has

the following SDE:

dXt = r(µ−Xt)dt+ dWt , (1.2.30)

for some parameters r > 0, µ ∈ R. The mean of reversion µ affects where the

diffusion process will ‘gravitate around’, while the speed of reversion r affects how

closely the diffusion process follows the mean. This is a Gaussian process.

Now we are in a position to implement the IS algorithm on a personal computer.

We have a method of sampling Brownian bridges Π0(·) and a way of calculating the

acceptance probability. We will be running the code for an IS with the following

Ornstein-Uhlenbeck specification parameters: r = 3, µ = 4.6, X0 = 3, X` = 4,

` = 1. In Figure 1.4 we can observe a few diagnostic plots produced to judge the

quality of the algorithm.

The first graph in figure 1.4 is a trace plot that corresponds to the middle point

of all the diffusion processes being simulated. A good trace plot should show that

it converges rapidly to the stationary distribution and that it has a good mixing.

A trace plot which shows good mixing, traverses its posterior space rapidly, and it

can jump from one remote region of the posterior to another in relatively few steps.

Our graph shows that the algorithm has explored the region of the posterior very

poorly: in its 10, 000 iterations only 0.8% of proposal moves were accepted. The

second graph shows the autocorrelation function(ACF), we can judge the quality

of an algorithm by the speed that the autocorrelation reaches zero. In this case it

took a lag of about 350 to reach zero, which is not satisfactory. Overall we consider

this algorithm to be a poor one. This simple example shows the need to develop

better algorithms on the pathspace, which is the main theme of this thesis.

27More information about the Ornstein-Uhlenbeck process can be found in the original pa-
per [82]
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Figure 1.4: Diagnostic Plots for Independent Sampler targeting an O-U bridge.
Top panel: Traceplot. Bottom Panel: Autocorrelation function.

1.3 A brief Note on Quadratic Variation

We provide some preliminary motivation for the pathspace algorithms, defined in

the next Chapter, by looking at the so-called quadratic variation (see e.g. [65]) of

a diffusion process. We assume that we are given the following SDE:

dXt = b(Xt)dt+ σ(Xt)dWt, (1.3.1)

its quadratic variation is then determined as follows:

〈X,X〉t = lim
∆tk→0

n∑
tk≤t

(
Xtk+1

−Xtk

)2 ≡
∫ t

0

σ(Xs)
2ds (1.3.2)

where the discrete-time instances 0 = t1 < t2 < · · · tk < tk+1 · · · with increment

∆tk = tk+1 − tk vanishing to 0. This limit can be shown to exist for general con-

tinuous diffusion processes under regulatory condition and in various convergence

forms (see e.g. [52]). We will henceforth restrict our attention to the case where:

σ ≡ 1,

in this case, paths from the target SDE have quadratic variation 〈X,X〉t ≡ t, with

probability 1. As we have seen with the Independent Sampler, one can generate

candidate paths for the target distribution (1.3.1) from a Brownian motion Π0 (or
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a Brownian bridge if we had imposed some condition X` = y).

Consider now a proposal mechanism of the X ′ = aX + bξ with ξ ∼ Π0 and

some constants a, b, so that in this case the proposal X ′ is a linear combination of

the current value X and a simple Brownian path ξ. This resembles the structure

of a proposal used within a standard RWM algorithm. The choice of a, b will be

critical when working on the infinite-dimensional pathspace, as naive choices can

deliver proposals X ′ out of the domain of the target distribution, thus, having an

acceptance probability of 0. We motivate this, by examining the choice of a, b

that deliver paths with the correct quadratic variation. That is, we wish to have

a proposal that has the same properties as the current value, hence, values a and

b must be chosen so that X ′ has the same quadratic variation as X. Intuitively,

it makes sense that we want to have proposals which have the same quadratic

variation as our target distribution. Quadratic variation is a definitive property of

SDE, if we were to have proposal that didn’t meet this requirement the acceptance

probability of the algorithm would converge to zero and the algorithm would break

down.

Using the bilinearity of the quadratic variation we have that:

〈X ′, X ′〉t = 〈aX + bξ, aX + bξ〉t
= a2〈X,X〉t + b2〈ξ, ξ〉t + 2ab〈X, ξ〉t
= (a2 + b2)t+ 2ab〈X, ξ〉t.

Notice that, due to the independency between X and ξ, it is a standard result (see

e.g. [65]) that:

〈X, ξ〉t = 0.

Thus, clearly we need to have:

a2 + b2 = 1.

So, if we let a = ρ ∈ (0, 1), then we are left with the following proposal:

X ′ = ρX +
√

1− ρ2 ξ (1.3.3)

and X ′ will have the same quadratic variation as X.

Some comments here are in order: First, the standard RWM would use a =

b = 1 and it would not work in this case since it would give the wrong quadratic

variation. Second, proposal (1.3.3) has the important property that it preserves

the reference Brownian motion (or Brownian bridge) measure. That is: if the tar-
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get distribution was indeed a Brownian motion, then the acceptance probability

should have been 1. Now that the target distribution is a general diffusion process,

the acceptance probability will not be 1, but because of to the absolute continu-

ity between the target and the Brownian motion, we expect that the acceptance

probability is well-defined and non-zero (in contrast with the standard RWM).

1.4 Gaussian Measures on Hilbert Spaces

We summarize here some background material (see e.g. [25]) on Gaussian distri-

butions on a separable Hilbert space H that will assist in the presentation of the

later Chapters of this thesis. The Cameron-Martin space, H0, of the Gaussian law

Π0 ≡ N(0, C) coincides with the image space of C1/2 and is formally defined below

in this section. Essentially, H0 includes all elements of the Hilbert space which

preserve the absolute continuity properties of Π0 upon translation. This is made

mathematically explicit via the following proposition:

Proposition 1.4.1. If T (x) = x + C1/2x0 for a constant x0 ∈ H then Π0 and

Π0 ◦ T−1 are absolutely continuous with respect to each other and with density:

d {Π0 ◦ T−1 }
dΠ0

(x) = exp
{
〈x0, C−1/2x〉 − 1

2
|x0|2

}
.

Proof. This is Theorem 2.21 of [25].

As we have already mentioned, for the diffusion pathspace we focus upon in this

thesis, the target distribution Π(dx) is defined on the Hilbert space of squared in-

tegrable paths H = L2([0, `],R) (with appropriate boundary conditions) for some

length ` > 0. The centered Gaussian reference measure Π0 corresponds to a

Brownian motion (thus, boundary condition x(0) = 0) or a Brownian Bridge

(x(0) = x(`) = 0). (Notice that the choice of 0-boundary conditions does not re-

strict the generality of the method, as the target with general boundary conditions

can be transformed into one of 0-boundary conditions upon translating with the

straight line that connects such general boundaries.)

The covariance operator is connected with the standard covariance function

c(u, v) of the Gaussian process via:

(Cf)(u) =

∫ `

0

c(u, v)f(v)dv , f ∈ H .

With this in mind, the covariance operators Cbm, Cbb of the Brownian motion and
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Brownian bridge respectively are as follows:

(Cbmf)(u) =

∫ `

0

(u ∧ v) f(v)dv = u

∫ `

0

f(v)dv −
∫ u

0

∫ s

0

f(v)dv ds ; (1.4.1)

(Cbbf)(u) =

∫ `

0

(u ∧ v − uv
`

) f(v)dv

=
u

`

∫ `

0

∫ s

0

f(v)dv ds−
∫ u

0

∫ s

0

f(v)dv ds . (1.4.2)

Definition 1.4.1. The Cameron-Martin spaces Hbm
0 and Hbb

0 of a Brownian mo-

tion and Brownian bridge respectively are analytically specified as follows28:

Hbm
0 =

{
x : [0, `] 7→ R : ∃ f ∈ L2([0, `],R) such that x(t) =

∫
[0,t]

f(s)ds
}

;

Hbb
0 =

{
x : [0, `] 7→ R : ∃ f ∈ L2([0, `],R) such that

x(t) =

∫
[0,t]

f(s)ds, x(`) = 0
}
.

The so-called Karhunen-Loève representation of the Gaussian law N(0, C) will

be used later on in the thesis. Analytically, considering the standard eigen-

decomposition {λp, φp}∞p=1 of C so that C φp = λp φp, we have that the (normalised)

eigenfunctions {φp}∞p=1 constitute an orthonormal basis for the Hilbert space H.

In particular, for x ∼ N(0, C) we have the expansion:

x =
∞∑
p=1

〈x, φp〉φp =
∞∑
p=1

xp φp =
∞∑
p=1

√
λp ξp φp , (1.4.3)

where {ξp}∞p=1 are iid variables from N(0, 1).

28See e.g. Lemma 2.3.14 of [11] for the case of Brownian motion; Brownian bridge involves the
extra boundary condition x(`) = 0
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Chapter 2

Advanced MCMC Methods

In this Chapter we present advanced versions of already established standard

MCMC algorithms which were discussed in the previous chapter. The term ‘ad-

vanced’ is used in this thesis to characterize those algorithms that (in contrast

with standard algorithms) are well-defined for target distributions Π on general

(separable) Hilbert spaces H that are defined as a change of measure with respect

to a centered Gaussian law Π0 = Π̃ = N(0, C) i.e.

dΠ

dΠ̃
(x) = exp{−Φ(x)}, (2.0.1)

where Φ(x) is a real-valued function defined onH (in the previous Chapter we used

the notation Π0 to denote the reference Gaussian measure, but in this Chapter it

will be convenient to switch the notation to Π̃). We sometimes refer to these

algorithms which are well defined and stable as ‘well-posed’. One consequence

of the ‘well-posedness’ of these algorithms is that they have mesh-free properties

that make their convergence properties stable upon increasing the dimension of

the resolution in the target distribution. This is particularly important when we

use MCMC to simulate SDE sample paths since, for practical purposes, the target

path will be time-discretized, thus, having mesh-free MCMC algorithms means

that as the discretization becomes finer the mixing time does not deteriorate.

2.1 Advanced MALA

Following the work from paper [8] we adapt the standard MALA algorithm de-

scribed in Section 1.1.3 to obtain a new version of it that it is well-defined for

infinite-dimensional target distributions Π as defined in (2.0.1).

Same as for the standard case, the development of advanced MALA builds upon

the properties of the Langevin SDE discussed in Section 1.1.3 for finite-dimensional

spaces. In the new setting where x refers to complete continuous paths, say, on
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H = L2([0, `],Rd), d ≥ 1 (we will use d = 1, unless otherwise stated,) we will be

using the variational derivative1 δ log Π(xt) instead of the gradient ∇ and, thus,

we work with the following H-valued SDE:

dxt = 1
2
C {δ log Π(xt)}dt+

√
C dWt, (2.1.1)

where Wt refers to the standard cylindrical Wiener process used in the derivation

of Stochastic Partial Differential Equations (SPDEs), (see e.g. [25]). The process

Wt represents a complex object, we interpret it for practical purposes as follows,

we have, for instance, that for any time-step h > 0:

√
C(Wt+h −Wh) ∼

√
hN(0, C),

so increments of the noise term in (2.1.1) can be generated by using samples

from the reference Gaussian measure Π0 ≡ N(0, C). It can be proven, that under

regularity conditions on C and Ψ the continuous-time Markov process (2.1.1) has

the target Π in (2.0.1) as its invariant distribution (see e.g. [47, 46]). We want to

emphasize here, that each instantaneous position xt is a complete path-element of

H, thus, we have that xt = {xt(u);u ∈ [0, `]}. Henceforth, we will use t and u to

refer to the time and space directions respectively. Also, to provide an example

for the computation of δΦ(x) needed in (2.1.1), we consider the fairly general case

where Φ(x) has the following form:

Φ(x) =

∫ T

0

Ψ(x(u))du. (2.1.2)

for some sufficiently smooth mapping Ψ : R 7→ R. Then, from standard calculus

on L2([0, `],R) the variational derivative δΦ is a path on [0, `] itself and is simply

given as:

(δΦ(x))(u) = Ψ′(x(u)), u ∈ [0, `],

which is a generalisation of a gradient on pathspace (see e.g. [39]).

As for standard MALA, one cannot typically solve the SDE (2.1.1) analytically,

so we will develop a time-discretization scheme that will deliver candidate paths

within a Metropolis-Hasting framework. The choice of discretization scheme will

be critically important for the developed algorithm. As we will soon explain, the

1The δ-notation refers to the Fréchet generalisation of differentiation on general Hilbert spaces;
in particular, on the pathspace, under sufficient regularity, it corresponds to the notion of the
variational derivative
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choice for instance, of a simple Euler scheme would provide proposals that would be

out of the domain of the target Π, so they would have zero acceptance probability.

Notice that since we have Π̃ = N(0, C), the target Π can be formally defined via

the density:

Π(x) ∝ exp{−Φ(x)− 1
2
〈x, C−1x〉},

with 〈·, ·〉 being the inner product of the Hilbert space H. Using this expression

within the Langevin SDE (2.1.1), we can rewrite the latter as:

dxt =
(
−1

2
CδΦ(x)− x

)
dt+

√
C dWt. (2.1.3)

To time-discretize the Langevin SDE (2.1.3) we introduce a semi-implicit Euler

scheme of the form:

x′ − x =
(

1
2
CδΦ(x)− θx− (1− θ)x′

)
h+
√
hN(0, C),

for parameter θ ∈ [0, 1]. Notice that we use an implicit scheme only on the linear

path of the drift; also, θ = 1 corresponds to the standard explicit Euler scheme.

In [8] it was shown empirically and theoretically that the only semi-implicit scheme

that produces proposals with non-zero acceptance probability is the one that sets

θ = 1
2
, that is, the scheme that sets:

x′ − x =
(

1
2
CδΦ(x)− 1

2
x− 1

2
x′
)
h+
√
hN(0, C).

After re-arranging, the proposed move x′ is expressed as:

x′ =
1− h

4

1 + h
4

x+

√
h

1 + h
4

(
ξ −

√
h
4
CδΦ(x)

)
, (2.1.4)

for ξ ∼ N(0, C).
We can now provide some intuition about the reason why only when θ = 1/2

we can achieve a scheme with ‘appropriate’ candidate proposals x′. Assume the

setting that Π corresponds to the distribution of a target diffusion bridge of unit

diffusion coefficient on some interval [0, `], as for instance in the numerical example

with the Ornstein-Uhlenbeck bridge in Section 1.2.3 (so, here Π0 corresponds to

the Gaussian law of a Brownian bridge). Recalling the discussion in Section 1.3,

we can now think about the quadratic variation properties of x and x′.

Assuming x ∼ Π̃ or x ∼ Π, the quadratic variation of x at the terminal position

` is equal to `. Now, if we were to ignore the non-linear term CδΦ(x) for a moment,

the proposal (2.1.4) would coincide with the ‘advanced’ version of the random walk
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proposal in (1.3.3) which was shown to preserve the quadratic variation properties

of the paths. That is, the sum of the squares of the coefficients of x and ξ in

(2.1.4) is equal to 1. This is a very critical remark for the well-posedness of the

final algorithm. Considering CδΦ(x) does not affect the almost-sure properties of

x′ (compared to not considering that term) since2, CδΦ(x) will typically belong

in the image space of C1/2, thus the laws ξ and ξ −
√
h/4 CδΦ(x) are absolutely

continuous with respect to each other.

C is essentially a ‘smoothing’ operator, so for any typical x ∼ Π, we have that

CδΦ(x) will be smooth (thus, it’s quadratic variation will be zero). This is obvious

also from the exact specification of C for the case of the Brownian bridge in (1.4.2)

in Section 1.4. Hence, the consideration of the quadratic variation already provides

some intuition for the significance of selecting θ = 1/2 and scheme (2.1.4). Next,

we will be more formal, and define analytically the advanced MALA algorithm.

We define the advanced MALA algorithm by following the derivations in [8].

We introduce some notation to find the relevant acceptance probability on the

Hilbert spaceH. The development follows the theory in [81] which defines Metropolis-

Hastings algorithms on general state spaces.

Let Q(dx′|x) be the Markov transition kernel determined by the proposal

(2.1.4). First, we define a bivariate law and its symmetrisation:

µ(dx, dx′) := Π(dx)Q(dx′|x)

µT (dx, dx′) := Π(dx′)Q(dx|x′),

so that if (X, Y ) ∼ µ, then (Y,X) ∼ µ>. Following closely the generic specification

of the accept/reject ratio from [81], if µ ' µT (where ‘'’ means that the two

relevant measures are absolutely continuous with each other) then, the acceptance

probability is ‘well-behaved’ (i.e. it is not identically equal to zero, which is the

case when µ and µ> are not absolutely continuous to each other) and equal to:

α(x, x′) = 1 ∧ dµ
T

dµ
(x, x′). (2.1.5)

Remark 2.1.1. In the case that all probability measures involved (namely Π(dx)

and Q(dx′|x)) had a density with respect to a common reference measure (in the

standard finite-dimensional settings, this would typically be the Lebesque measure)

then the above expression (2.1.5) simplifies to the usual Metropolis-Hastings ac-

ceptance probability. The difference in our infinite-dimensional set-up is that, typ-

2As we have seen in Section 1.4, and in particular Proposition 1.4.1
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ically, there is not a common reference measure for the probability laws Q(dx′|x)

over all current positions x. That is, we typically have that the laws Q(dx′|x1) and

Q(dx′|x2) are singular for different x1 and x2. The non–existence of a common

reference measure, thus, makes it necessary to instead consider simultaneously the

joint bivariate laws of the current and proposed values x and x′.

Finding the density involved in (2.1.5) is not a trivial task.We will need to work

with a corresponding bivariate reference measure. For this reason, we define the

following bivariate Gaussian law and its symmetrization:

µ̃(dx, dx′) = Π̃(dx)Q̃(dx′|x)

µ̃T (dx, dx′) = Π̃(dx′)Q̃(dx|x′)

where Π̃ is the reference Gaussian measure, and Q̃(dx′|x) represents the distribu-

tion for the proposal that omits the non-linear term, that is:

x′ =
1− h

4

1 + h
4

x+

√
h

1 + h
4

ξ. (2.1.6)

It is easy to check3 that the bivariate Gaussian measure µ̃ is symmetric, so that

in fact:

µ̃(dx, dx′) ≡ µ̃T (dx, dx′).

Now, using µ̃ as the reference measure, we can re-write the density appearing in

the acceptance probability in (2.1.5) as follows:

dµT

dµ
(x, x′) =

dµT/dµ̃T

dµ/dµ̃
(x, x′) =

dΠ
dΠ̃

(x′)dQ
dQ̃

(x|x′)
dΠ
dΠ̃

(x)dQ
dQ̃

(x′|x)
. (2.1.7)

Notice now that dΠ/dΠ̃ is simply the original target density (i.e. we have the

expression (dΠ/dΠ̃)(x) = exp{−Φ(x)}). It remains to find the density dQ

dQ̃
(x′|x) for

any x ∈ H. Rewriting side-by-side the dynamics gives rise to these two transition

probability measures:

Q(dx′|x) : x′ =
1− h

4

1 + h
4

x+

√
h

1 + h
4

(
ξ + C1/2g(x)

)
,

Q̃(dx′|x) : x′ =
1− h

4

1 + h
4

x+

√
h

1 + h
4

ξ,

3See [8] for the analytical illustration
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where we have defined:

g(x) := −
√

h
4
C1/2δΦ(x). (2.1.8)

Now, for any fixed x ∈ H, let ρx(u) denote the density of the Gaussian law of

ξ + C1/2g(x) with respect to the law of ξ (recall that ξ ∼ Π̃). Using Proposition

1.4.1 from Section 1.4 (the constant element x0 used there corresponds now to

g(x)), hence, we have that:

ρx(u) = exp
{
〈g(x), C−1/2u〉 − 1

2
|g(x)|2

}
≡ exp

{
− 〈
√

h
4
δΦ(x), u〉 − h

8
〈CδΦ(x), δΦ(x)〉

}
(2.1.9)

to get the second expression we used the analytical expression for g(x) in (2.1.8).

Now, the actual density we are interested in involves probability measures that

are simply an 1-1 transform of the laws with the density obtained in (2.1.9) above.

And, thus, defining explicitly the transform mapping as:

rx(ξ) :=
1− h

4

1 + h
4

x+

√
h

1 + h
4

ξ,

we immediately obtain that:

dQ

dQ̃
(x′|x) = ρx(r

−1
x (x′)). (2.1.10)

We have now finished with the calculation of the required bivariate density in

(2.1.7), thus, also with the acceptance probability of the advanced MALA in

(2.1.5). We can now carry out some calculations using the analytical expressions

above derived to obtain the following equality:

log
(dµ
dµ̃

(x, x′)
)

= c− Φ(x)− h
4
〈CδΦ(x), δΦ(x)〉−

− 1
2
〈δΦ(x), x′ − x〉 − h

4
〈δΦ(x), x′ + x〉 (2.1.11)

for some constant c ∈ R.

2.2 Advanced HMC

We now present here a derivation of advanced HMC. The advanced HMC algorithm

was first introduced in [7]. A new contribution in this thesis is the derivation

of a novel proof for the well-posedness of advanced HMC that avoids many of
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the technicalities of the proof in [7] and, more importantly, applies under weaker

conditions on the target distribution. The findings in this Section have already

being published in paper [5].

Recall that the target distribution is formally expressed as:

Π(x) ∝ {−Φ(x)− 1
2
〈x, Lx〉}, x ∈ H, (2.2.1)

where we have now explicitly defined the inverse covariance matrix of the reference

Gaussian law:

L := C−1.

Recall the definition of standard HMC from Table 1.1, and the related quantities

x∗ (the proposal), h (the leapfrog step-size), and T (the time horizon). By going

back to our initial arguments of Quadratic Variation in section 1.3 it is immediately

obvious that the standard HMC scheme would not produce proposals suitable to

the target distribution. Notice that applying the standard HMC algorithm in

Table 1.1 on some N -dimensional projection of Π in (2.2.1), for N ≥ 1, would give

an algorithm where the proposal x? would become an increasingly inappropriate

candidate for a sample from the target with increasing N ([7]); thus, the acceptance

probability would vanish with increasing dimension– N , assuming parameters h,

T was kept fixed. Indeed, considering our standard scenario where Π corresponds

to the law of a diffusion bridge with unit diffusion coefficient and the reference

measure being the corresponding Brownian bridge, any single standard leapfrog

step applied in this context would project Brownian bridge paths to paths of

the wrong quadratic variation which would then necessarily have zero acceptance

probability. In particular, the results in [6] suggest that one must decrease the step-

size h to O(N−1/4) in order to control the acceptance probability for increasing N .

The advanced HMC algorithm avoids this degeneration by exploiting the definition

of the target as a change of measure from a Gaussian law and allows for fixed step-

size h = O(1)– even at the infinite-dimensional setting when N =∞.

We can now recall the development of the Hamiltonian dynamics, as shown also

for the standard HMC algorithm in Section 1.1.3. Notice that the target density

involves here the extra quadratic term 1
2
〈x, Lx〉 compared to the presentation for

the standard HMC due to the presence of the reference Gaussian measure. Thus,

in this context, the corresponding total energy function becomes as follows:

H(x, v;M) = Φ(x) + 1
2
〈x, Lx〉+ 1

2
〈v,Mv〉, (2.2.2)

for some mass matrix M (recall that x should be interpreted as the ‘location’
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variable and v as the ‘velocity’ variable). Recall that the Hamiltonian equations

are determined as follows:

dx

dt
= M−1∂H

∂v
, M

dv

dt
=
∂H

∂x
, (2.2.3)

or equivalently,
dx

dt
= v, M

dv

dt
= −Lx− δΦ(x). (2.2.4)

The choice of the mass matrix is important for the efficiency of standard HMC. In

the infinite-dimensional context here, we have to be very careful with the choice

of M to obtain a well-defined algorithm that has non-zero acceptance probability.

Indeed, following [7] we select:

M = L.

Following the intuition mentioned in Section 1.1.3 for the mass matrix aiming

at resembling the inverse covariance of the target distribution, it is clear that

the choice of M = L is ideal when the target is the reference Gaussian measure

N(0, C). Since the actual target is a change of measure from this reference law,

M = L seems like a sensible choice. We will see as we develop advanced MALA,

that this is a choice that allows us to have a well-defined algorithm in the infinite-

dimensional Hilbert space H. Thus, we can now write the energy function as

follows:

H(x, v) = Φ(x) + 1
2
〈x, Lx〉+ 1

2
〈v, Lv〉, x ∈ H, (2.2.5)

and the Hamiltonian equations as:

dx

dt
= v,

dv

dt
= −x− CδΦ(x). (2.2.6)

In order to derive the advanced algorithm, the Hamiltonian equations (2.2.6)

are split into two equations4:

dx

dt
= 0 ,

dv

dt
= −C δΦ(x) ; (2.2.7)

dx

dt
= v ,

dv

dt
= −x . (2.2.8)

Notice that both equations can be solved analytically. We construct a numerical

integrator for (2.2.6) by synthesising steps on (2.2.7) and (2.2.8). Analytically, we

4This development of the method follows closely [7]; a similar splitting of the Hamiltonian
equations used in [60], but in a different context
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define the solution operators of (2.2.7) and (2.2.8) as follows:

Ξt(x, v) = (x, v − t C δΦ(x)) ; (2.2.9)

Ξ̃t(x, v) =
(

cos(t)x+ sin(t) v, − sin(t)x+ cos(t) v
)
. (2.2.10)

The numerical integrator for (2.2.6) is defined as follows:

Ψh = Ξh/2 ◦ Ξ̃h∗ ◦ Ξh/2 , (2.2.11)

for small h, h∗ > 0. We can synthesize steps up to some time horizon T . We define

I = [T
h

] (2.2.12)

letting the operator ΨI
h correspond to the synthesis of I steps Ψh. ΨI

h provides the

proposals for the MCMC steps. Now is a good time to state the assumption under

which advanced HMC will be well-defined in infinite-dimensions:

Assumption 2.2.1. C δΦ(x) is an element of the Cameron-Martin space of the

Gaussian measure Π0 (so C δΦ(x) ∈ Im C1/2) for all x in a set with probability 1

under Π0.

Based on Assumption 2.2.1, we make a remark that motivates the well-posedness

of advanced HMC.

Remark 2.2.1. Critically, operators Ξt(x, v), Ξ̃t(x, v) have the property that they

preserve the absolute continuity properties of an input random pair (x, v) dis-

tributed according to the Gaussian law:

Q0(x, v) ∝ exp{−1
2
〈x, Lx〉 − 1

2
〈v, Lv〉} , (2.2.13)

(so, also for any other distribution absolutely continuous w.r.t. Q0). This is obvious

for Ξ̃t(x, v) as it defines a rotation, so this map is in fact invariant for Q0. Then,

as illustrated with Proposition 1.4.1, Assumption 2.2.1 guarantees precisely that

also Ξt(x, v) preserves absolute continuity of Q0.

We will use h∗ such that:

cos(h∗) = 1−h2/4
1+h2/4

, (2.2.14)

though any choice is, in principle, allowed. For this particular choice, it can be

easily checked that the integrator (x0, v0) 7→ Ψh(x0, v0) =: (xh, vh) and it can be
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equivalently expressed as:

vh/2 = v0 − h
2

x0 + xh
2

− h
2
C δΦ(x0) ,

xh = x0 + h vh/2 , (2.2.15)

vh = vh/2 − h
2

x0 + xh
2

− h
2
C δΦ(xh) ,

and that now can be interpreted as a semi-implicit-type integrator of (2.2.6). Under

the interpretation (2.2.15), the justification for the choice of (2.2.14) is that it

delivers an integrator Ψh that carries out steps of similar size h in the x and v

directions, which is in accordance with standard HMC.

The complete algorithm is determined in Table 2.1. As with the standard HMC

in Section 1.1.3, Px denotes projection onto the x-argument.

Advanced HMC on Hilbert space H:

(i) Start with an initial value x(0) ∼ N(0, C) and set k = 0.

(ii) Given x(k) sample v(k) ∼ N(0, C) and propose

x? = Px ΨI
h(x

(k), v(k)) .

(iii) Consider
a = 1 ∧ exp{−∆H(x(k), v(k))} (2.2.16)

for ∆H = H(ΨI
h(x, v))−H(x, v).

(iv) Set x(k+1) = x? with probability a; otherwise set x(k+1) = x(k).

(v) Set k → k + 1 and go to (ii).

Table 2.1: Advanced HMC on H, with target Π(x) in (2.2.1).

Remark 2.2.2. The acceptance probability in Table 2.1 is here defined only for-

mally, as H(x, v) = ∞ with probability 1. To see that, notice that using the

Karhunen-Loève expansion introduced in (1.4.3) for x ∼ N(0, C) we have that

〈x, Lx〉 ≡
∑∞

p=1 ξ
2
p, for ξp iid N(0, 1). We re-express the acceptance probabil-

ity in the following section in a way that illustrates that the difference ∆H =

H(ΨI
h(x, v)) − H(x, v) is a.s. well-defined; from a practical point of view, for the

N-dimensional projection used in practice one could still use directly the expression
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∆H = H(ΨI
h(x, v))−H(x, v) as each of the two H-terms will grow as O(N).

Remark 2.2.3. We will not prove the existence of a solution for the continuous-

time Hamiltonian equations on Hilbert space (2.2.7)-(2.2.8) or that the solution

would preserve Π(x, v) as such proofs are beyond the scope of this thesis. In Section

2.2.1 below we will prove the validity of the algorithm in Table 2.1 which uses

directly the numerical integrators of these equations in (2.2.9)-(2.2.10). This seems

to suffice from a practical point of view: our proof below indicates that the algorithm

will not collapse as N →∞ but will converge to a limit, with N being the dimension

of the vector used when we discretize the complete infinite-dimensional diffusion

paths when running the algorithms on a personal computer. Later, for a fixed finite

dimension N , we can resort to the properties of finite-dimensional Hamiltonian

equations to justify that, under standard regulatory conditions, they will indeed

preserve the N-dimensional target distribution and, thus, we can attain average

acceptance probabilities arbitrarily close to 1 by decreasing the step-size h.

2.2.1 Validity of Advanced HMC

We will now prove analytically that the algorithm, as described in Table 2.1, is well

defined on the Hilbert space H = L2([0, `],R) and gives rise to Markov dynamics

on the x-argument that preserve the target distribution Π in (2.2.1). The proof

for the well-posedness of the algorithm in infinite dimensions will build upon the

intuitive understanding described in Remark 2.2.1.

For the next proof, we define the operator Ψ̃I
h which is as ΨI

h but with the non-

linear parts set to zero, that is Φ ≡ 0. We consider the Gaussian product measure

Q0 = N(0, C)⊗N(0, C) on H×H as in (2.2.13) and the bivariate distribution Q

defined via the change of measure:

Q(dx, dv) = exp{−Φ(x)}Q0(dx, dv).

We also consider the sequence of probability measures on H×H:

Q(i) = Q ◦Ψ−ih , 1 ≤ i ≤ I,

the sequence

(xi, vi) = Ψ i
h(x0, v0),

and set:

g(x) := −h
2
C1/2δΦ(x), x ∈ H.
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Notice that under Assumption 2.2.1, g(x) is a well-defined element of the Hilbert

space H a.s. under Π0. One can think of Q(i)(dx, dv) as the ‘flow’ of the joint

distribution of the location and velocity components, started from stationarity, and

evolving due to the application of the leapfrog deterministic maps. For instance, in

a simple finite-dimensional setup we could simply use standard change-of-variables

formulae to determine the sequence of probability distributions Q(i)(dx, dv). In

our infinite-dimensional context, extra caution is needed as we cannot apply the

change-of-variables formula anymore (for instance, it is not obvious how to extend

the Jacobian to the infinite-dimensional setting). Also, some care is needed for

the choice of reference measure with respect to which we will calculate relevant

densities.

As already mentioned, Proposition 1.4.1 specifies the density of a translation

of a centered Gaussian measure with respect to ‘smooth’ constant elements of the

Cameron-Martin of the Gaussian measure (which coincides with the image space

of C1/2). We can now prove the following result:

Proposition 2.2.1. We have that:

dQ(i)

dQ0

(xi, vi) =
dQ(i−1)

dQ0

(xi−1,vi−1)×G(xi, vi)

×G(xi−1, vi−1 + C1/2g(xi−1)),

where we have defined:

d{Q0 ◦ Ξ−1
h/2}

dQ0

= exp{〈g(x), C−1/2v〉 − 1
2
|g(x)|2} =: G(x, v).

Proof. We will use the chain rule and Proposition 1.4.1. Recall that for any two

measurable spaces (E, E), (E ′, E ′), probability measures M , M0 on (E, E) and

1-1 mapping F : (E, E) 7→ (E ′, E ′), we have the following identity rule for the

Radon-Nikodym derivative:

d{M1 ◦ F−1}
d{M0 ◦ F−1}

(x) =
dM1

dM0

(F−1(x)) . (2.2.17)

Following the definition of Ψh from (2.2.11), we have the equality of probability

measures:

Q(i) = Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃−1

h∗ ◦ Ξ−1
h/2 . (2.2.18)
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Thus, we have that:

dQ(i)

dQ0

(xi, vi) =
d {Q(i−1) ◦ Ξ−1

h/2 ◦ Ξ̃−1
h∗ ◦ Ξ−1

h/2}
dQ0

(xi, vi)

=
d {Q(i−1) ◦ Ξ−1

h/2 ◦ Ξ̃−1
h∗ ◦ Ξ−1

h/2}
d {Q0 ◦ Ξ−1

h/2}
(xi, vi)×

d {Q0 ◦ Ξ−1
h/2}

dQ0

(xi, vi)

=
d {Q(i−1) ◦ Ξ−1

h/2 ◦ Ξ̃−1
h∗ }

dQ0

(Ξ−1
h/2(xi, vi))×G(xi, vi), (2.2.19)

where we have used the chain rule in the second line, then the identity (2.2.17) and

finally Proposition 1.4.1 (in this case with x0 ≡ g(x)) in the third line. Using the

fact that Q0 ◦ Ξ̃−1
h∗ ≡ Q0 (as Ξ̃h∗ is a rotation that clearly preserves the bivariate

Gaussian law Q0) and upon observing that we have the following identity:

(Ξ̃−1
h∗ ◦ Ξ−1

h/2)(xi, vi) ≡ Ξh/2(xi−1, vi−1),

then, we obtain that:

d {Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃−1

h∗ }
dQ0

(Ξ−1
h/2(xi, vi)) ≡

d {Q(i−1) ◦ Ξ−1
h/2}

dQ0

(Ξh/2(xi−1, vi−1)).

Finally, working as in (2.2.19) we have that:

d {Q(i−1) ◦ Ξ−1
h/2}

dQ0

(Ξh/2(xi−1, vi−1)) =

=
dQ(i−1)

dQ0

(xi−1, vi−1)×
d {Q0 ◦ Ξ−1

h/2}
dQ0

(Ξh/2(xi−1, vi−1))

=
dQ(i−1)

dQ0

(xi−1, vi−1)×G(Ξh/2(xi−1, vi−1)).

The definition of Ξh/2 gives that:

G(Ξh/2(xi−1, vi−1)) ≡ G(xi−1, vi−1 + h
2
C1/2g(xi−1)).

By following through the calculation from (2.2.19) we have now proven the re-

quested result.
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Thus, using Proposition 2.2.1 iteratively we have now obtained that:

dQ(I)

dQ0

(xI , vI) =
dQ

dQ0

(x0, v0)×
I∏
i=1

G(xi, vi)G(xi−1, vi−1 + C1/2g(xi−1)). (2.2.20)

Now, following the definition of Ψh in (2.2.11), we set:

v−i−1 = Pv Ξh/2(xi−1, vi−1) ≡ vi−1 + C1/2g(xi−1),

v+
i = Pv ( Ξ̃h∗ ◦ Ξh/2(xi−1, vi−1) ) ≡ vi − C1/2g(xi).

(Pv denotes projection onto the v-argument.) Using these definitions, for any

h, h∗ > 0 we have that:

log{G(xi, vi)G(xi−1, vi−1 + h
2
C1/2g(xi−1)) } =

= 〈h
2
g(xi), C−1/2vi〉 − 1

2
|h

2
g(xi)|2 + 〈h

2
g(xi−1), C−1/2vi−1〉+ 1

2
|h

2
g(xi−1)|2

= 1
2
〈vi, Lvi〉 − 1

2
〈v+
i , Lv

+
i 〉 − 1

2
〈vi−1, Lvi−1〉+ 1

2
〈v−i−1, Lv

−
i−1〉

= 1
2
〈xi, Lxi〉+ 1

2
〈vi, Lvi〉 − 1

2
〈xi−1, Lxi−1〉 − 1

2
〈vi−1, Lvi−1〉 .

The last equation is due to the mapping (xi−1, v
−
i−1) 7→ (xi, v

+
i ) corresponding to

the modulus-preserving rotation Ξ̃h∗ . Thus, we can rewrite (2.2.20) as follows:

dQ(I)

dQ0

(xI , vI) = exp{∆H(x0, v0)− Φ(xI)}. (2.2.21)

The above expression will now be used for proving the main result below.

Remark 2.2.4. The operator Ψh (thus, also ΨI
h) has the following properties:

i) Ψh is symmetric, that is Ψh ◦ S ◦Ψh = S where S(x, v) = (x,−v).

ii) Ψh is (formally) volume-preserving, as it preserves volume when H ≡ Rd.

Theorem 2.2.1. The Markov chain with transition dynamics specified in Table 2.1

has invariant distribution Π(x) in (2.2.1).

Proof. Assuming stationarity, so that (x0, v0) ∼ Q, we can write for the next

position, x′, of the Markov chain (recall that (xI , vI) = ΨI
h(x0, v0)):

x′ = I [U ≤ a(Ψ−Ih (xI , vI)) ]xI + I [U > a(x0, v0) ]x0,

for a uniform random variable U ∼ Un [0, 1]. Let f : H 7→ R be bounded and
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continuous. We need to prove that:

E [ f(x′) ] = E [ f(x0) ].

Integrating out U from above we get:

E [ f(x′) ] = E[ f(xI) a(x0, v0) ]− E[ f(x0) a(x0, v0) ] + E [ f(x0) ]. (2.2.22)

The integrators in expectations/integrals are explicitly shown as a subscript of E,

hence it is important to notice that:

E[ f(xI) a(x0, v0) ] = EQ(I) [ f(xI) a(Ψ−Ih (xI , vI)) ]

(2.2.21)
= EQ0 [ f(xI) a(Ψ−Ih (xI , vI)) e

∆H(Ψ−Ih (xI ,vI))−Φ(xI) ]

= EQ0 [ f(xI) ( 1 ∧ e∆H(Ψ−Ih (xI ,vI)) ) e−Φ(xI) ]

= EQ[ f(xI) · 1 ∧ e∆H(Ψ−Ih (xI ,vI)) ]

= EQ[ f(xI) · 1 ∧ e∆H(Ψ−Ih (xI ,−vI)) ]. (2.2.23)

(For the last equation, notice that (xI , vI) and (xI ,−vI) have the same law Q.)

Next, due to the symmetricity property ΨI
h ◦ S ◦ΨI

h = S of the leapfrog operator

in Remark 2.2.4 we have that Ψ−Ih ◦ S = S ◦ΨI
h. Thus, we have:

∆H(Ψ−Ih (xI ,−vI))) = ∆H(S ◦ΨI
h(xI , vI)))

= H(S(xI , vI))−H(S ◦ΨI
h(xI , vI)) ≡ −∆H(xI , vI),

which is the last equation where we used the fact that H ◦S = H due to the energy

H being quadratic in the velocity v. Thus, using this in (2.2.23), we have that:

E[ f(xI) a(x0, v0) ] = EQ[ f(xI)a(xI , vI) ] ≡ E[ f(x0) a(x0, v0) ]. (2.2.24)

So, from (2.2.22), the proof is now complete.

Remark 2.2.5. The demonstration of validity of standard HMC [34] does not

require the recursive calculation of the forward density (2.2.21) as it exploits the

preservation of volume (unit Jacobian) for the mapping (x0, v0) 7→ ψIh(x0, v0) to

directly prove the analogue to (2.2.24). So, finding (2.2.21) overcomes the difficulty

of making sense of a Jacobian for the transform ΨI
h on the infinite-dimensional

Hilbert space.
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2.3 Summary of Advanced Methods

A number of advanced MCMC algorithms corresponding to an upgrade of standard

RWM, MALA and HMC and adapted to the infinite-dimensional pathspace are

now available. So far in Section 2.1 we have defined advanced MALA. Then, in

Section 2.2 we have defined advanced HMC. Following [8], a small modification

of advanced MALA– whereby one uses only the ‘blind’ part of the proposal in

2.1.6– provides the advanced RWM. Here we briefly summarise all the advanced

algorithms and the dynamics employed for their derivation.

The starting point for MALA is a Langevin SDE with drift 1
2
C δ log Π(x) and

diffusion coefficient C1/2, that is, after a calculation on the drift:

dx

dt
= −1

2
x− 1

2
C δΦ(x) + C1/2 dW

dt
. (2.3.1)

In an Euclidean setting {Wt} denotes a standard Brownian motion, whereas in the

pathspace it denotes a cylindrical Brownian motion. In both cases, the process

can be easily understood via the distribution of it’s increments, as C1/2 (Wt+s−Wt)√
s

∼
N(0, C). On pathspace, the SDE (2.3.1) is shown in [8] to have invariant distri-

bution Π under Lipschitz continuity and absolute boundedness assumptions on

δΦ. In the interesting, from a practical point of view, case of nonlinearity, this

SDE cannot be solved analytically. So, a proposal can be derived via the following

Euler-type scheme on (2.3.1) for an finite increment ∆t > 0:

x′ − x = −∆t (θ x′

2
+ (1− θ)x

2
)− ∆t

2
C δΦ(x) +

√
∆tN(0, C). (2.3.2)

Standard MALA is derived from an explicit Euler scheme with θ = 0 and advanced

pathspace MALA from a semi-implicit scheme with θ = 1/2. Contrasting (2.3.2)

with the leapfrog steps (2.2.15), one can observe that standard (resp. advanced)

MALA is a particular case of standard (resp. advanced) HMC when choosing

h =
√

∆t and a single leapfrog step I = 1. Finally, the advanced RWM algorithm

on pathspace is derived in [8] via proposal (2.3.2) for θ = 1/2 and also by omitting

the nonlinear term C δΦ(x). That is, the proposal for advanced RWM is:

x′ = ρ x+
√

1− ρ2N(0, C),

with parameter

ρ =
1− ∆t

4

1 + ∆t
4

.

The Metropolis-Hastings acceptance probability for this proposal (see [8]) is remi-
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niscent of the one for standard RWM, namely 1∧(Π(x′)/Π(x)), which also explains

the interpretation of this algorithm as ‘advanced RWM’. Table 2.2 summarises the

three pathspace samplers looked at in this Chapter together with their standard

versions for finite-dimensional spaces.

Algorithm Pathspace Proposal Standard Proposal

HMC x′ = PxΨI
h(x, v) x′ = PxψIh(x, v)

MALA x′ = ρ x+
√

1− ρ2 v − ∆t
2
C δΦ(x) x′ = (1− ∆t

2
)x− ∆t

2
C δΦ(x) +

√
∆t v

RWM x′ = ρ x+
√

1− ρ2 v x′ = x+
√

∆t v

Table 2.2: Advanced MCMC algorithms on pathspace together with their stan-
dard versions. In all cases v ∼ N(0, C). HMC for I = 1 and h =

√
∆t coincides

with MALA.
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Chapter 3

Investigation of Algorithmic

Efficiency of Advanced MCMC

Algorithms

In this chapter we investigate the performance of the hitherto mentioned advanced

MCMC algorithms through the application of a variety of statistical models driven

by diffusion processes. Also, we obtain analytical mathematical results for a par-

ticular target diffusion bridge by examining the relationship between the length of

the bridge and the complexity of the algorithm. More specifically, we increase the

length ` of the target bridge and investigate the choice of step-size as a function of

` so that the acceptance probability is controlled. This also provides evidence for

the mixing time of the algorithms. An important conclusion here is that, for the

case of long bridges, advanced MALA and RWM have similar behaviour, whereas

advanced HMC performs much better. Thus, the take-home message is that well

thought out use of information about the derivative of the target density can have

an important impact on the performance of MCMC methodology. As far as ana-

lytical results is concerned, we first start with RWM and MALA and exploit many

of the calculations carried out in [83] where the quantity of interest was not the

length of the bridge, but rather the ‘strength’ of non-linearity for the target bridge

(determined by a parameter of the drift function). We then produce some analyt-

ical results for the case of advanced HMC. These findings have been published in

our paper [5].

3.0.1 Analytical study of RWM and MALA

The derivations that follow in this Section will exploit a number of analytical

results obtained in [83]. The model of interest here is an Ornstein-Uhlenbeck
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diffusion bridge with reversion parameter κ and mean µ = 0, namely:

dXt = −κXtdt+ dBt,

X0 = X` = 0. (3.0.1)

From Girsanov’s theorem we get that the target distribution is defined on the

Hilbert space H = L2([0, `],R) and is expressed in the general form of (2.0.1), so

that:

dΠ

dΠ̃
(x) = exp{−Φ(x)} ;

Π̃ = N(0, Cbb) , Φ(x) = κ2

2

∫ `

0

x2(u)du+ c , (3.0.2)

for some constant c ∈ R, with N(0, Cbb) the distribution of a standard Brownian

bridge with x(0) = x(`) = 0 (recall here that Cbb denotes the covariance operator of

the Brownian bridge, analytically specified in (1.4.2)). We look at the complexity

of pathspace samplers as a function of the length ` of the bridge. The work

in [83] has looked at identifying the complexity of advanced RWM and MALA for

increasing κ > 0. We will perform a similar complexity analysis for the case of

the length of the bridge ` > 0, and include, also for the first time, an analysis for

advanced HMC. All the advanced algorithms are defined as in Table 2.2.

Note 3.0.1. For practical purposes, we use a specific case of an Ornstein-Uhlenbeck

process for our analytical results. It still remains to show these scaling results for a

general case. Regardless, our results for a OU bridge still provide some insight on

how other models might scale. In section 3.1 we use numerical methods to compare

various different models.

Our main result summarises the mixing times as follows:

RWM : O(`2) ;

MALA : O(`2) ; (3.0.3)

HMC : O(`) .

The notion of mixing time is used here in an informal, practical manner and should

not be confused with analytical definitions of various different versions of mixing

times appearing in the Markov chain literature. In particular, the results below

provide appropriate scalings of the step-sizes for the relevant MCMC samplers

as a function of ` that deliver non-vanishing acceptance probabilities as ` grows.

62



Then, informal arguments are used to connect mixing times with the inverse of

such step-sizes.

Note 3.0.2. We only consider the case where the Markov Chain is in equilibrium,

so we do not directly examine burn-in times. It is not immediately obvious that

these results can be extrapolated to the case where the chain is not in stationarity.

Notice that the acceptance probability for both advanced RWM and MALA

can be written as:

a(x, v) = 1 ∧ eR(x,v)

for some appropriate choice of exponent R = R(x, v).

Theorem 3.0.1. Consider the advanced RWM and MALA algorithms as speci-

fied in Table 2.2 targeting the OU-bridge in (3.0.2). Let a = a(x, v) denote the

acceptance probability for both algorithms. For any constant c > 0 we then have:

i) If ∆t = c/`2 then lim sup`E[α] > 0.

ii) If ∆t = c/`ε for ε ∈ (0, 2) then E[α]→ 0 as `→∞.

Proof. To prove the first result we will use several of the analytical results in [83].

First, for proving (i): notice that it is sufficient to show that sup` |R(x, v)|L1 <∞
since for any λ > |R|L1 we have the inequality:

E[1 ∧ eR] ≥ exp(−λ)

(
1− |R|L1

λ

)
. (3.0.4)

Result (i) illustrates that using the scaling ∆t = c/`2 provides an acceptance

probability that does not deteriorate to zero when increasing `. The second result

in (ii) illustrates that any step-size larger than the one in (i) will provide an

unstable algorithm with diminishing acceptance probability for an increasing `.

To prove (ii), we need to identify the term in R that has the largest L1-norm. We

denote this term as J . Intuitively, this term will lie in the interval (−∞, 0) and

will be approaching −∞ faster than the term |R − J |. Following [83], we carry

out our proof by using the following inequality, for any γ > 0:

E[1 ∧ eR] ≤ P [R ≥ −γ] + e−γ

= P [{R ≥ −γ}
⋂
|R− J | ≤ γ] + P [{R ≥ −γ}

⋂
|R− J | > γ]

≤ P [J ≥ −2γ] + P [|R− J | > γ] + e−γ

≤ P [J ≥ −2γ] +
|R− J |L1

γ
+ e−γ, (3.0.5)
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where we used Chebyshev’s Inequality. To prove that E[α] → 0 we will use the

above inequality and choose an appropriate γ that grows to infinity faster than

|R − J |L1 but slower than the growth of |J |L1 . To do this we must examine all

the terms in R using the Karhunen-Loève expansion (see 1.4) for the Gaussian

measure corresponding to the OU-bridge.

We can borrow directly the following results from [83], where we have as-

sumed that we are in stationarity so that x is distributed according to the target

OU-bridge and u is distributed according to the relevant reference measure corre-

sponding to a Brownian bridge:

E|x|2 =
`

2κ`
− 1

2κ2
; E|Cx|2 =

`4

90κ2
− 1

6κ4
+

l

2κ5 tanh(κ`)
;

E[〈x, Cx〉] =
3 + κ2`2

6κ4
− `

2κ3 tanh(κ`)
;

E[〈x, C3x〉] =
945 + 315κ2`2 − 21κ4`4 + 2κ6`6

1890κ8
− `

2κ7 tanh(κ`)
;

E|v|2 =
`2

6
; E[〈v, Cv〉] =

`4

90
;

E[〈x, v〉2] =
3 + κ2

6κ4
− `

2κ3 tanh(κ`)
;

E[〈Cx, v〉2] =
945 + 315κ2`2 − 21κ4`4 + 2κ6`6

1890κ8
;

E[〈C2x, v〉2] =

467775 + 155925κ2`2 − 10395κ4`4 + 990κ6`6 − 99κ8`8 + 10κ10`10

467775κ12
. (3.0.6)

These results will be used for both advanced RWM and MALA algorithms.

Proof for Advanced RWM:

Notice now that for the case of advanced RWM we have that:

R(x, v) =
κ2

2(1 + ∆t
4

)2
∆t〈x, x〉 − κ2

2(1 + ∆
4

)2
∆t〈v, v〉

−
κ2(1− ∆t

4
)

(1 + ∆t
4

)2

√
∆t〈x, v〉.

Using the results from (3.0.6), we can see that setting ∆t = c/`2 would make the

L1-norm of each of these summands O(1). Thus, we obtain that sup` |R(x, v)|L1 <

∞. For the negative result we identify the term, termed J , in the analytical
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expression for R(x, v) with the largest L1-norm. Specifically:

J = − κ2

2(1 + ∆t
4

)2
∆t〈v, v〉. (3.0.7)

Thus, we have that:

|J |L1 = O(∆t `2); |R− J |L1 = O(
√

∆t `).

We now use (3.0.5) under the following choice of γ = (∆t `2)2/3 → ∞. This

selection implies that |R − J |L1/γ → 0 as ` → ∞. We now turn our attention to

the term P [J ≥ −2γ], and show that it converges to zero (the intuition being that

term J deviates to −∞ faster than −2γ). To prove this, we need to look at the

analytical definition of J . Using the rescaling properties of a Brownian bridge, we

can re-write vt` =
√
` ṽt where we have that ṽ is a standard Brownian bridge on

[0, 1]. Thus, we can re-write:

〈v, v〉 =

∫ `

0

v2
t dt = `

∫ 1

0

v2
t`dt ≡ `2

∫ 1

0

ṽ2
t dt = `2|ṽ|2.

Hence, we have that:

P [J ≥ −2γ] = P
[
|ṽ|2 ≤ 4(1 + ∆t/4)2

κ2

γ

∆t `2

]
(3.0.8)

which goes to 0 when `→∞ as γ
∆t `2
→ 0.
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Proof for Advanced MALA:

The proof for the case of advanced MALA follows the same pattern. The first step

is to obtain the analytical expression for R(x, v). Following the calculations in [83]

we have that:

R(x,v) =
κ2

8(1 + ∆t
4

)2
∆t2〈x, x〉 − κ6

32(1 + ∆t
4

)2
∆t3〈Cx, Cx〉

−
κ4(1− ∆t

4
)

8(1 + ∆t
4

)2
∆t2〈x, Cx〉+

κ2

8(1 + ∆t
4

)2
∆t2〈x, Cx〉

− κ6

32(1 + ∆t
4

)2
∆t3〈C2x, Cx〉+

κ4(1− ∆t
4

)

8(1 + ∆t
4

)2
∆t2〈Cx, Cx〉

− κ2

8(1 + ∆t
4

)2
∆t2〈v, v〉 − κ2

8(1 + ∆t
4

)2
∆t2〈v, Cv〉

−
κ2(1− ∆t

4
)

4(1 + ∆t
4

)2
∆t3/2〈x, v〉+

κ4

8(1 + ∆t
4

)2
∆t5/2〈Cx, v〉

−
κ2(1− ∆t

4
)

4(1 + ∆t
4

)2
∆t3/2〈Cx, v〉+

κ4

8(1 + ∆t
4

)2
∆t5/2〈C2x, v〉. (3.0.9)

In the case when we use step-size ∆t = c/`2, using the analytical calculations

in (3.0.6) we see that all terms above have bounded L1-norm, thus, obtaining im-

mediately that sup` |R(x, v)|L1 <∞. It now remains to show that when ∆t = c/`ε

with ε ∈ (0, 2) then E[a]→ 0. First we use (3.0.5) and the analytical calculations

in (3.0.6). To do this we need to identify the term J with the largest L1-norm,

which is the following:

J = − κ6

32(1 + ∆t
4

)2
∆t3〈C2x, Cx〉.

In particular, using the calculations in (3.0.6) we find that:

|J |L1 = O(∆t3`6); |R− J |L1 = O(∆t5/2`5).

Again, the idea is to choose γ having an L1-norm larger than R − J but smaller

than J . Indeed, in this case we apply (3.0.5) with the choice γ = (∆t`2)11/4. As

with the case with RWM, and with this choice of γ the second and third terms

in (3.0.5) will clearly vanish as `→∞. Some care is needed for the first term, for

which we have that:

P [J ≥ −2γ] ≤ P

[
1

π2 + κ2

1

π6
ξ2

1 ≤
32(1 + ∆t/4)2

κ6

1

(∆t`2)1/4

]
→ P [ξ2

1 ≤ 0] = 0.
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This completes the proof.

3.0.2 Analytical study for HMC

We now derive the corresponding results for HMC. First, we introduce some new

notation. We rewrite the HMC leapfrog scheme Ψh as a transition matrix:

Ψh =

 ρ− (1− ρ)κ2C
√

1− ρ2

− I−(ρ−(1−ρ)κ2C)2√
1−ρ2

ρ− (1− ρ)κ2C

 . (3.0.10)

It is useful here to add a remark on the Karhunen-Loève expansion.

Remark 3.0.1. Karhunen-Loève expansion for Brownian and OU Bridge: The

Karhunen-Loève expansion (see Section 1.4) of the Gaussian distributions corre-

sponding to the target OU-bridge and the reference Brownian bridge is used in this

Section. In particular, we will use the orthonormal basis {φp}∞p=1 of H correspond-

ing to the eigenfunctions of Cbb and make the standard correspondence x 7→ {xp}∞p=1

between an element x ∈ H and it’s squared summable co-ordinates xp = 〈x, φp〉
w.r.t. the basis {φp}. In particular, recall from Section 1.4 that the eigen-structure

{λp, φp}∞p=1 of Cbb is specified as follows:

λp =
`2

π2p2
; φp(u) =

√
2

`
sin(

πpu

`
). (3.0.11)

Then, the Karhunen-Loève expansion of the two Gaussian distributions w.r.t. the

above basis of sinusoidals is as below (see e.g. [83]):

BB: x =
∞∑
p=1

`

πp
ξp φp ; OU Bridge: x =

∞∑
p=1

1√
π2p2

`2
+ κ2

ξp φp, (3.0.12)

where {ξp}∞p=1 are iid variables from N(0, 1).

Similarly, as for the RWM and MALA case, we can rewrite (3.0.10) in terms

of the co-ordinates {xp}∞p=1 and {vp}∞p=1 of the complete paths x and v from their

Karhunen-Loève expansion x =
∑∞

p=1 xpφp and v =
∑∞

p=1 vpφp, then we can write

the transition for each coordinate as:

Ψh,p =

 ρ− (1− ρ)κ2λp
√

1− ρ2

−1−(ρ−(1−ρ)κ2λp)2√
1−ρ2

ρ− (1− ρ)κ2λp

 (3.0.13)
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where {λp = `2/(π2p2)}∞p=1 are the eigen-values of Cbb. Powers of the above matrix

are determined by its eigen-structure. Therefore, we only consider the case when

there are complex eigenvalues, i.e. when:

|ρ− (1− ρ)κ2λp| < 1. (3.0.14)

Since the Jacobian of the above matrix is unit, having eigenvalues greater than

1 will cause the powers to explode rendering the algorithm unstable. The above

condition is equivalent to requiring that (4 − c2

`2
− 22c2κ2

p2π2 )/(4 + c2

`2
) lie in (−1, 1),

which can be easily seen to be guaranteed, for any l ≥ l0 > 0 and for all p ≥ 1,

under the condition:

cκ < 2π.

Due to condition (3.0.14), it is reasonable to assume that a θp exists such that:

cos(θp) = ρ− (1− ρ)κ2λp; sin(θp) =
√

1− cos2(θp);

ap =

√
1− ρ2

sin(θp)
. (3.0.15)

Thus, (3.0.13) can be rewritten as:

Ψh,p =

 cos(θp) ap sin(θp)

− 1
ap

sin(θp) cos(θp)

 . (3.0.16)

Notice that if ap was a constant that didn’t depend on θp then (3.0.16) would

correspond precisely to a clockwise elliptical rotation around the axis, where θp is

the angle of rotation and ap corresponds to the shape of the ellipsoid (see figure 3.1).

In reality, this is not the exactly the case, but it serves as a good illustration of

the effect of the leapfrog integration. Critically, representation (3.0.16) provides a

mechanism for getting an analytical expression for the synthesis of several leapfrog

steps. In particular, we have that:

ΨI
h,p =

 cos(θp) ap sin(θp)

− 1
ap

sin(θp) cos(θp)

I

=

 cos(Iθp) ap sin(Iθp)

− 1
ap

sin(Iθp) cos(Iθp)

 . (3.0.17)

We can now prove the following result:
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Figure 3.1: The Elliptical Rotation of a Point via Matrix (3.0.16)

Proposition 3.0.1. Consider the advanced HMC algorithm (as described in Ta-

ble 2.2) with target distribution the OU-bridge Π from (3.0.2). If α = α(x, v) is the

acceptance probability of current position x and v ∼ N(0, C), then in stationarity

(x ∼ Π) we have the following:

If h = c/` with cκ < 2π then lim sup`E[α] > 0.

Proof. We exploit the representation of ΨI
h in (3.0.17). Recall that we denote

(xi, vi) = Ψi
h(x0, v0), for number of leapfrog steps 0 ≤ i ≤ I. Given the particular

context that Π is the OU-bridge in (3.0.1), we can rewrite the change of energy as

follows:

∆H = H(xI , vI)−H(x0, v0) =

κ2

2
〈xI , xI〉+ 1

2
〈xI , C−1xI〉+ 1

2
〈vI , C−1vI〉

− κ2

2
〈x0, x0〉 − 1

2
〈x0, C−1x0〉 − 1

2
〈v0, C−1x0〉. (3.0.18)

69



Clearly, using the derivation in (3.0.17), we get the following analytical expressions:

xI = cos(Iθ)x0 + a sin(Iθ)v0

vI = − 1
a

sin(Iθ)x0 + cos(Iθ)v0, (3.0.19)

Notice that we have used in (3.0.19) the notation for operators and coordinates

interchangeably. That is, sin(Iθ) is an operator such that we have sin(Iθ)x =

{sin(Iθp)xp}∞p=1 where {xp} are the co-ordinates of x ∈ H w.r.t. to the orthonor-

mal basis corresponding to the eigen-functions of Cbb. The same interpretation

can be used to explain the operation of sin(2Iθ) on elements of H. Similarly

ax ≡ {apxp}∞p=1 ≡
∑

p apxpφp. The sequences {θp} and {ap} have been defined

in (3.0.15). and we can substitute (3.0.19) into (3.0.18) to get that:

∆H = 〈(κ2
2

cos2(Iθ) + 1
2

cos2(Iθ)C−1 + 1
2α2 sin2(Iθ)C−1 − κ2

2
− 1

2
C−1)x0, x0〉

+ 〈(κ2
2
α2 sin2(Iθ) + 1

2
α2 sin2(Iθ)C−1 + 1

2
cos2(Iθ)C−1 − 1

2
C−1)v0, v0〉

+ 〈(κ2α sin(Iθ) cos(Iθ) + α cos(Iθ) sin(Iθ)C−1 − 1
α

sin(Iθ) cos(Iθ)C−1)x0, v0〉.
(3.0.20)

After some calculations we get:

∆H(x0, v0) = H(xI , vI)−H(x0, v0) ≡ 〈Ax0, x0〉+ 〈Bv0, v0〉+ 〈Gx0, v0〉 (3.0.21)

for the operators (for convenience we set C ≡ Cbb):

A = −1
2

sin2(Iθ)P ; B = 1
2

sin2(Iθ)a2P ; G = 1
2

sin(2Iθ)aP ;

P = κ2I + (1− 1
a2

)(C)−1. (3.0.22)

Now, if we denote by COU the covariance matrix of the OU target bridge, then

the corresponding Karhunen-Loève expansion implies the eigenstructure {λp,OU , φp}∞p=1

for COU with eigen-values:

λp,OU =
1

π2p2

`2
+ κ2

. (3.0.23)

Plugging these eigen-values into (3.0.15) we get that:

ap = λ−1/2
p λ

1/2
p,OUcp; c2

p = (
1

c2κ2
− 1

4p2π2
)−1. (3.0.24)
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Notice that the term c2
p is guaranteed to be positive by the condition cκ < 2π. In

particular we have that:

c2
p ≤M, (3.0.25)

for some constant M > 0. Using the above calculations into (3.0.22), and recalling

the convention P ≡ (Pp)
∞
p=1, we get that:

Pp =
p2π2

`2
+ κ2 −

( `2

p2π2 )(p
2π2

`2
+ κ2)

c2
p

p2π2

`2

= (1− 1
c2p

)
p2π2

`2
+ κ2(1− 1

c2p
)

≡ (
p2π2

`2
+ κ2)(1− 1

c2p
). (3.0.26)

It follows from (3.0.24) that:

0 ≤ 1− 1

c2
p

≡ h2

2 + h2

2

κ2`2

p2π2

1

1 + ρ
, (3.0.27)

therefore,

Pp ≡ (
p2π2

`2
+ κ2)

κ2h2`2

(2 + h2

2
)(1 + ρ)

1

p2π2
. (3.0.28)

The latter, can be equivalently re-expressed as the operator:

P ≡ C−1
OU C κ2 h2

(2+h2

2
)(1+ρ)

so that:

0 ≤ Pp ≤M λ−1
p,OU λp

1

`2
, (3.0.29)

for some constant M > 0. Taking squares in (3.0.21), we have that:

E [ (∆H)2 ] = E [ 〈Ax0, x0〉2 ] + E [ 〈Bv0, v0〉2 ]

+ E [ 〈Gx0, v0〉2 ] + 2E [ 〈Ax0, x0〉 ]E [ 〈Bv0, v0〉 ] (3.0.30)

since the rest of the expectations will be equal to zero. Henceforth, {Ai}∞i=1,

{Bi}∞i=1, {Gi}∞i=1 denote the eigenvalues of the operators A, B, G respectively.

Recalling that 〈Ax0, x0〉 =
∑∞

i=1Aix
2
0,i, we have:

E[〈Ax0, x0〉2] = V ar[〈Ax0, x0〉] + E2[〈Ax0, x0〉] (3.0.31)
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and, in more detail we have that:

V ar[〈Ax0, x0〉] = V ar

(
∞∑
i=1

Aix
2
0,i

)
=
∞∑
i=1

A2
iV ar

(
x2

0,i

)
=
∞∑
i=1

A2
iλ

2
OU,iV ar

(
z2
i

)
= 2

∞∑
i=1

A2
iλ

2
OU,i (3.0.32)

where, zi are iid from N(0, 1). This gives the result:

E[〈Ax0, x0〉2] = 2
∞∑
i=1

A2
iλ

2
OU,i +

∞∑
i=1

(AiλOU,i) .s (3.0.33)

Using similar calculations for the rest of the terms in (3.0.30), we obtain that:

E [ (∆H)2 ] = 2
∞∑
i=1

A2
i λ

2
i,OU + 2

∞∑
i=1

B2
i λ

2
i +

( ∞∑
i=1

(
Ai λi,OU +Bi λi

) )2

+
∞∑
i=1

G2
i λi,OU λi. (3.0.34)

It remains to show that all involved terms above are upper bounded to complete

the proof. We have that:

∞∑
i=1

A2
i λ

2
i,OU ≤M

∞∑
i=1

λ−2
i,OU λ

2
i

1

`4
λ2
i,OU = M

∞∑
i=1

1

i4 π4
<∞ .

Using similar calculations we get that:

∞∑
i=1

B2
i λ

2
i ≤M

∞∑
i=1

λ−2
i λ2

i,OU c
4
i λ
−2
i,OU λ

2
i

1

`4
λ2
i ≤M

∞∑
i=1

1

i4 π4
<∞ ,

and:

∞∑
i=1

G2
i λi,OU λi ≤M

∞∑
i=1

λ−1
i λi,OU c

2
i λ
−2
i,OU λ

2
i

1

`4
λi,OU λi

≤M

∞∑
i=1

1

i4 π4
<∞ .

Finally, we turn to the third term on the right-hand side of (3.0.34) and we

have the last term. For this term it is simpler to take the absolute value, instead
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of the square, and use the analytical expression of Ai and Bi. We have that:

∣∣ ∞∑
i=1

(
Ai λi,OU +Bi λi

) ∣∣ = 1
2

∣∣ ∞∑
i=1

sin2(Iθi)Pi (−λi,OU + a2
i λi)

∣∣
= 1

2

∣∣ ∞∑
i=1

sin2(Iθi)Pi λi,OU (c2
i − 1)

∣∣
≤M

∞∑
i=1

λi
1

`2
= M

∞∑
i=1

1

i2π2
<∞ .

Hence, we have shown that sup` E [ ∆H2 ] < ∞, which as shown in (3.0.4), is

sufficient for completing the proof.

Remark 3.0.2. We can now make some informal arguments to connect the above

step-sizes, that control the average acceptance probability for the advanced RWM,

MALA and HMC algorithms, with their mixing times –and as stated in (3.0.3) it

involves their inverses. We are now going to consider the effect of the proposal of

each algorithm for increasing ` on a fixed time-window of a path, say on [0, `0] for

some `0 > 0. For HMC, the synthesis of I = bT
h
c leapfrog steps will give a proposal

moving the whole sub-path on [0, `0] an O(1)-distance within it’s state space. To

show that, we ignore for a moment the effect of the nonlinear map Ξh/2 at the the

leapfrog update in (2.2.11) and focus on the synthesis of I linear maps Ξ̃h∗. This

gives:

Ξ̃I
h∗ =

 cos(Ih∗) sin(Ih∗)

− sin(Ih∗) cos(Ih∗)

 −→
 cos(T ) sin(T )

− sin(T ) cos(T )

 , as `→∞ .

The effect of the nonlinear operator Ξh/2 does not have such a simple interpretation,

but it should not offset the main effect of proposals making O(1)-steps from a

current position, for an arbitrarily large `. Thus, as a function of `, the mixing

time for advanced HMC only corresponds to the order of the number of leapfrog

steps, O(`). For advanced RWM, shown in Table 2.2, for ∆t = c/`2 we can express

the proposal as:

x∗ = (1 +O(`−2))x+
√
c
`

(1 +O(`−2)) ξ . (3.0.35)

Here, due to the random walk nature of the proposal, the algorithm will have to

synthesize O(`2)-steps to move O(1)-distance from a current position for a fixed

point of the sub-path in (0, `0], thus the O(`2)-mixing time. Finally, for MALA, we

have to refer to the interpretation of the algorithm as a discretization of an SDE on

the pathspace, as expressed in (2.3.1). Without being too rigorous here, advanced
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MALA essentially carries out steps of size ∆t = O(`−2) along the continuous-time

dynamics, thus, it will require 1/∆t = O(`2) steps to propagate a point of the

sub-path on [0, `0] an O(1)-distance from it’s current position.

Of course, a rigorous analysis of mixing times would involve characterising the

eigenvalues of the Markov chains, but this is beyond the scope of this thesis.

3.1 Numerical Illustration

In this Section, we employ the advanced algorithms of Table 2.1 to perform various

simulation experiments involving diffusion bridges, stochastic volatility and latent

diffusion survival models. In all these experiments, we treat the involved model

parameters as known and focus on the update of the latent diffusion path. The

aim is to assess and compare the performance of the algorithms on various aspects,

including efficiency of the MCMC output and central processor unit (CPU) time.

To measure CPU time in two different computing environments, the simulations

for diffusion bridges and stochastic volatility models were carried out in MATLAB,

whereas for the latent diffusion survival models the C programming language was

used. The measure used to compare algorithms is the Effective Sample Size whose

derivation is detailed in [40]. ESS can be interpreted as a measure of the equivalent

size of independent samples corresponding to the dependent sample obtained from

the MCMC simulation. It is calculated as follows:

ESS =
N

1 + 2
∑

k γ(k)
, (3.1.1)

where, N is the number of posterior samples and
∑

k γ(k) is the sum of the first k

sample autocorrelation, where k is a suitably chosen truncation point 1. Intuitively

we notice that samples that are completely independent will have an ESS equal

to the posterior sample size, and samples that are completely dependent will have

an ESS equal to 1. A similar approach was also taken in [42] where the minimum

ESS, taken over a number of univariate MCMC trajectories, was used. In our

context, the MCMC performance is assessed by monitoring the posterior draws of

the diffusion, recorded at a fine partition of its path, and reporting the minimum

ESS over these points. The number k was set to a high enough value so that the

minimum ESS, for a large enough number of iterations (set to 100,000), stabilises

for all algorithms. The value of ESS was multiplied by a factor of 100 to reflect the

1The use of ESS is frequent in the MCMC literature, see e.g. [40]
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percentage of the total MCMC iterations that can be considered as independent

draws from the posterior.

The MCMC algorithms employed consist of an Independent Sampler proposing

from the reference Brownian path Π̃ and the advanced algorithms in Table 2.1.

The algorithms were tuned to achieve certain acceptance probability levels that,

according to our experience and previous literature, are associated with better

performance. Specifically, we aimed to attain an acceptance probability2 around

(15% - 30%) for RWM, (50%-70%) for MALA and (65%-85%) for HMC. To explore

the performance of HMC we first fixed the number of leapfrog steps (e.g. to

5 or 10) and then recorded the minimum ESS for various levels of acceptance

probability. We then considered cases with additional leapfrog steps. For each

of these algorithms, we monitor the values of the minimum ESS, CPU times and

their ratio in absolute and relative terms. The results herewith presented contain

the best version of these algorithms.

3.1.1 Diffusions Observed at a Discrete Skeleton

Consider the diffusion discussed in Section 3.0.1, i.e. an OU process with SDE:

dXt = −κXtdt+ dBt , 0 ≤ t ≤ ` ,

with X0 = 0 and an observation at time ` = 1. We set X1 = 0 and consider 3

different values for κ, i.e. 12, 20, 30 in our investigation of the MCMC performance.

The MCMC components comprise of the equidistant points from a discrete skeleton

of the diffusion. The discretization step was set to δ = 0.02. Table 3.1 provides

the results, i.e. the values of the minimum ESS, CPU times and their absolute and

relative ratio. The HMC algorithm consisted of 5 leapfrog steps with the parameter

h set to values (0.43, 0.26, 0.17) for values of κ equal to (12, 20, 30) respectively.

For advanced MALA, that can be thought as HMC with a single leapfrog step,

the corresponding values of h =
√

∆t were very similar (0.45, 0.26, 0.18) indicating

much smaller total steps. Overall, advanced HMC consistently overperforms, in

terms of ESS, the other algorithms. In particular, for κ = 30, HMC is faster

than the Independent Sampler by a factor of over 30. Its performance remains

at high levels as we increase κ and does not deteriorate as δ becomes smaller,

as indicated by the results obtained for δ = 0.01 and δ = 0.005. In line with the

results of [83] and Section 3.0.2, we notice a substantial improvement over advanced

2The optimal acceptance probability was selected based on the following research, for RWM
and MALA see [41] and for HMC see [6]
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MALA suggesting a more efficient use of the gradient within HMC. MALA offers

some improvement over RWM and Independent Sampler, but at a heavy additional

computational cost. The Independent Sampler performs reasonably well for κ = 12

(acceptance rate of 16%) but its performance drops substantially as κ increases

and the acceptance rate becomes smaller; 8% for κ = 20 and 1.2% for κ = 30.

κ = 12 min(ESS) time min(ESS)
time

relative min(ESS)
time

IS 3.9173 4.8811 0.8025 2.1733

RWM 3.9584 5.8925 0.6718 1.8192

MALA 4.0112 10.8626 0.3693 1

HMC (δ = 0.02) 35.7274 20.8695 1.7119 4.6361

HMC (δ = 0.01) 35.8903 32.5594 1.1023 2.9848

HMC (δ = 0.005) 35.5875 51.6085 0.6895 1.8670

κ = 20 min(ESS) time min(ESS)
time

relative min(ESS)
time

IS 0.5013 4.4977 0.1115 1

RWM 1.0086 5.4445 0.1853 1.6621

MALA 1.6202 10.0588 0.1611 1.4452

HMC 26.6214 20.8841 1.2747 11.4369

κ = 30 min(ESS) time min(ESS)
time

relative min(ESS)
time

IS 0.1012 4.7043 0.0215 1

RWM 0.4343 5.7229 0.0759 3.5277

MALA 0.5372 10.0438 0.0535 2.4863

HMC 13.3350 20.4831 0.6510 30.2631

Table 3.1: Relative efficiency via the minimum ESS (%) and CPU times (sec-
onds), for the advanced pathspace algorithms - Case of OU bridges. IS denotes
the Independent Sampler.

3.1.2 Stochastic Volatility Models

The following stochastic volatility model was used to simulate data:dSt = exp(Vt/2)dBt , 0 ≤ t ≤ ` ;

dVt = κ(µ− Vt)dt+ σdWt .

The parameters were set according to previous analyses based on similar models

for the S&P500 dataset [18]. Specifically, we set κ = 0.03, µ = 0.07, σ2 = 0.03
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Sampler min(ESS) time 100× min(ESS)
time

relative min(ESS)
time

RWM 0.1400 161.8298 0.0865 1.3561

MALA 0.2181 341.8737 0.0638 1.0000

HMC (5 steps) 2.5695 689.6767 0.3726 5.8400

HMC (10 steps) 8.1655 1188.1201 0.6873 10.7729

HMC (20 steps) 8.3216 2200.1311 0.3782 5.9288

Table 3.2: Relative efficiency, via the minimum ESS (%) and CPU times (sec-
onds) for the diffusion pathspace algorithms - Case of stochastic volatility paths.

and V0 = 0. We considered about a year measured in days (` = 250) and recorded

observations at a daily frequency (250 data points). The transformation of Vt to a

unit volatility diffusion was utilised to write the target density and construct the

HMC algorithms. The model for a pair of consecutive observations, (yi−1, yi) can

be written as: yi|yi−1 ∼ N
(
yi−1,

∫ ti
ti−1

exp(σxs)ds
)

;

dXt = κ
(
µ
σ
−Xt

)
dt+ dWt , t0 ≤ t ≤ t1 .

The results are shown in Table 3.2. The Independent sampler performs very poorly

in this case, with an acceptance rate below 10−4, and is omitted from the table.

MALA provides a small improvement over RWM which is nevertheless not enough

to cover the associated increase in the corresponding computations. Nevertheless,

this is not the case for HMC that reaches its optimal performance roughly at 10

leapfrog steps. Advanced HMC offers a considerable improvement, being nearly

8 times faster than RWM and 11 times faster than MALA. Parameter h, that

corresponded to the desired acceptance probability levels, was 0.085 for the MALA

algorithm and 0.075 for all the versions of the HMC algorithm.

3.1.3 Latent Diffusion Survival models

This Section provides a numerical illustration of simulated data from a latent dif-

fusion survival model appearing in [70]. Survival models target the probability of

an individual i surviving up to time u or else P (Y > u), where Y denotes the event

time. The aim is to model the hazard function h(u) that reflects the probability

that an event will occur in the infinitesimal period [u, u+ du) by retrieving infor-

mation from available data in the form of event times. Latent diffusion survival

models [1, 70] provide parametric formulations for h(u), which is assumed to be
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a positive function h(·) of a diffusion process x = x(s). The motivation in such

models is to consider an underlying process that results in the occurrence of each

event [1]. The distribution function for a single observation yi is given as follows:

F
(
yi|x

)
= 1− exp

(
−
∫ yi

0

h(x(s))ds
)
, 0 < yi ≤ ` ,

with density:

f
(
yi|x

)
= h(x(yi)) exp

(
−
∫ yi

0

h(x(s))ds
)
, 0 < yi ≤ ` .

The likelihood for the observed event times y = (y1, . . . , yn), with maxi yi ≤ `, can

be written as:

f
(
y|x
)

=
[ n∏
i=1

h(x(yi))
]

exp
(
−

n∑
i=1

∫ yi

0

h(x(s))ds
)
. (3.1.2)

For ease of exposition we assume that x(s) corresponds to a diffusion with unit

coefficient and drift function ν(x). Hence, the log-density log((dΠ/dΠ0)(x|y)) for

the latent diffusion3 x becomes (up to an additive normalising constant):

n∑
i=1

{
log h (x(yi))−

∫ yi

0

h(x(s))ds
}

+

∫ `

0

ν(x(s))dx(s)− 1

2

∫ `

0

ν2(x(s))ds

where Π0 denotes the distribution of a standard Brownian motion. Specifically, we

assume the scenario that the underlying diffusion process is specified as follows:

dXt = −(1.4 sin(Xt)dt+ 1)dt+ dBt , X0 = 2 .

so that the likelihood for event times Y = {Y1, . . . , Yn} is given by:

p
(
y|η−1(x)

)
=
[ n∏
i=1

x2
yi

]
exp

(
−

n∑
i=1

∫ yi

0

x2
sds
)
.

Table 3.3 provides the measures of performance for the algorithms4 in Table

3For more information about such models, including cases of censored data, the reader is
referred to [70]

4The calculations in this Section were obtained using the C programming language, for the
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Sampler min(ESS) time 100× min(ESS)
time

relative min(ESS)
time

RWM (δ = 0.01) 0.1039 55.2342 0.1881 1

MALA (δ = 0.2) 0.6466 87.5021 0.7389 3.9284

HMC (δ = 0.15) 25.2985 248.0301 10.1997 54.2229

Table 3.3: Relative efficiency, via the minimum ESS (%) and CPU times (sec-
onds) for the advanced pathspace algorithms - Case of latent diffusion survival
model.
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Figure 3.2: 95% Pointwise credible intervals (blue dashed lines) overlayed on the
true path of X (red solid line).

2.1. Similar to the stochastic volatility simulation experiment, the independent

sampler is associated with an extremely low acceptance rate, thus, rendering it

unfeasible in practice. RWM also performs poorly. A very small step is required

to achieve the desired acceptance rate, thus, resulting in very small moves around

the diffusion pathspace. MALA with h = 0.2 performs better in this case, but

a massively better performance is achieved by the advanced HMC. Specifically,

HMC with 10 leapfrog steps and h = 0.15 is about 54 times faster than RWM.

Figure 3.2 depicts the trajectory of Xt, determining the hazard function that was

used to generate the data. The figure displays 95% pointwise credible intervals

obtained from the HMC algorithm appearing in Table 3.3.

previous two applications we used MATLAB
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3.2 Calculation of CδΦ(x)

Hitherto, for the derivation of advanced MALA and HMC, we have taken for

granted that CδΦ(x) is an element of the Cameron-Martin space5 of the reference

Gaussian measure Π̃ = N(0, C). In this Section we verify this assumption for a

large class of target distributions, therefore, demonstrating that these advanced

methods are well-defined for typical SDE-driven models.

Motivated by the expression of the negative log-density arising in the applica-

tion in Section 3.1 we will carry out calculations assuming the following general

form:

Φ(x) = α(x(t1), x(t2), . . . , x(tM)) + β(I1, I2, . . . , IL) + γ(S1, S2, . . . , SJ) (3.2.1)

where we have set:

Il =

∫ `

0

zl(s, x(s))ds , 1 ≤ l ≤ L ; Sj =

∫ `

0

rj(s, x(s))dx(s) , 1 ≤ j ≤ J ,

for positive integers M,L, J , times t1 < t2 < · · · < tM in [0, `] that could be

determined by some data Y and functions α, β, γ, zl, rj determined via the partic-

ular model. All applications in Section 3.1 correspond to particular instances of

this generic structure. Here, the target posterior distribution Π(dx) is defined on

the Hilbert space of squared integrable paths H = L2([0, `],R) (with appropriate

boundary conditions). The centered Gaussian reference measure Π0 corresponds

to a Brownian motion (thus, boundary condition x(0) = 0) or a Brownian Bridge

(x(0) = x(`) = 0). Recall here the specification of the covariance operators Cbm, Cbb

and Cameron-Martin spaces Hbm
0 , Hbb

0 of a Brownian motion and Brownian bridge

respectively in Section 1.4. We make the following definitions, for the relevant

range of subscripts:

αm =
∂α

∂xm
(xt1 , xt2 , . . . , xtM ) ; βl =

∂β

∂Il
(I1, I2, . . . , IL) ;

γj =
∂γ

∂Sj
(S1, S2, . . . , SJ) ; z′l =

∂zl
∂x

; r′j =
∂rj
∂x

.

Remark 3.2.1. With a somewhat abuse of notation, path-elements {CbmδΦ(x)},
{CbbδΦ(x)} found in Proposition 3.2.1 below are obtained (at least for the terms

in Φ(x) involving stochastic integrals) by recognising that the N-dimensional al-

5See Assumption 2.2.1
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gorithm used in practice, after using finite-difference, corresponds to applying the

finite-difference scheme on the Hilbert-space-valued algorithm employing precisely

the shown paths {CbmδΦ(x)} and {CbbδΦ(x)} within its specification. (So, here

δΦ(x) corresponds to a variational derivative only formally.)6

Proposition 3.2.1. For the functional Φ(x) given in (3.2.1), for any x ∈ H:

(
CbmδΦ(x)

)
(u) =

M∑
m=1

αm ·
(
u I [u < tm ] + ti I [u ≥ tm ]

)
+

L∑
l=1

βl ·
(
u

∫ `

0

z′l(v, x(v))dv −
∫ u

0

∫ s

0

z′l(v, x(v))dv ds
)

+
J∑
j=1

γj ·
(
u
(
rj(`, x(`)) +

∫ `

0

dqj(v)
)
−
∫ u

0

∫ s

0

dqj(v) ds
)
, u ∈ [0, `] ,

for the integrator

dqj(v) = r′j(v, x(v))dx(v)− drj(v, x(v)) .

Also:

(
CbbδΦ(x)

)
(u) =

M∑
m=1

αm ·
(
u I [u < ti ] + ti I [u ≥ ti ]− u ti/`

)
+

L∑
l=1

βl ·
(u
`

∫ `

0

∫ s

0

z′l(v, x(v))dv ds−
∫ u

0

∫ s

0

z′l(v, x(v))dv ds
)

+
J∑
j=1

γj ·
(u
`

∫ `

0

∫ s

0

dqj(v) ds−
∫ u

0

∫ s

0

dqj(v) ds
)
, u ∈ [0, `] .

Proof. We use the analytical expressions for Cbm, Cbb given in (1.4.1) and (1.4.2) re-

spectively. For the first term in the expression for Φ, namely α = α(x(t1), x(t2), . . . , x(tM)),

we can formally write:

(δα)(s) =
M∑
m=1

αm · δti(ds),

where δti is the Dirac measure centered at ti. Applying Cbm and Cbb will give im-

mediately the terms in the first lines of the expression for Cbm δΦ(x) and Cbm δΦ(x)

in the statement of the proposition. For the second term β = β(I1, I2, . . . , IL) , we

6This remark applies also to a similar result shown in Proposition 4.1.1 in the next Chapter
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have the variational derivative:

(δβ)(s) =
L∑
l=1

βl · z′l(s, x(s)).

Again, applying Cbm and Cbb will give the terms in the second lines of the expression

for Cbm δΦ(x) and Cbm δΦ(x) in the statement of the proposition.

We proceed to the term γ = γ(S1, S2, . . . , SJ) with the stochastic integrals.

The algorithm applied in practice will involve a finite-difference approximation

of the stochastic integrals {Sj}. Down below we sometimes sacrifice accuracy of

notation to avoid taking too much space for what otherwise involve straightforward

derivative calculations. Consider the discretized time instances 0 = s0 < s1 <

· · · sN−1 < sN = `, denoting three consecutive discrete time instances among the

above by s− < s < s+, the finite-difference approximation, say SNj , of Sj can be

written as follows:

SNj =
∑

s∈{s1,...,sN}

rj(s−, x(s−))(x(s)− x(s−)).

We can now calculate the partial derivative of Sj w.r.t. to the one of the N vari-

ables, x(s), making up the discretized path. Notice that x(s) will appear in two

terms in the summation, unless it is the last point x(sN) of the x-vector when

it will only appear once. This explains the following calculation of the partial

derivatives:

∂Sj
∂x(s)

= ∆q(s) , s ∈ {s1, . . . , sN−1} ;
∂Sj

∂x(sN)
= rj(sN−1, x(sN−1)), (3.2.2)

where we have defined:

∆q(s) = r′(s, x(s))(x(s+)− x(s))− (rj(s, x(s)− rj(s−, x(s−))).

Overall, we have that:

∂γ

∂x(s)
=

J∑
j=1

γj ·
∂SNj
∂x(s)

. (3.2.3)

Then, the N × N discretized covariance operator Cbm = (min{si, sk})i,k, corre-

sponding to the covariance matrix of a standard Brownian motion at the time

instances s1, s2, . . . , sN (this is the discretized version of Cbm), can easily be shown
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to apply to a finite-dimensional vector f ∈ RN as follows:

(Cbmf)u = su ·
( N∑
i=1

fi
)
−

u−1∑
k=1

( k∑
i=1

fi
)

∆sk+1, u = 1, 2, . . . , N, (3.2.4)

where ∆sk+1 = sk+1 − sk. Combining (3.2.2), (3.2.3) and, (3.2.4) will give (with

∇ denoting the gradient) the following:

(Cbm∇γ)u =

J∑
j=1

γj ·
(
su
(
rj(sN−1, x(sN−1)) +

N−1∑
i=1

∆q(si)
)
−

u−1∑
k=1

( k∑
i=1

∆q(si)
)
∆sk+1

)
which now can be recognised as the finite-difference discretization of the term

appearing in the third line of the expression for CbmδΦ(x) in the statement of

the proposition. A similar approach for the Brownian bridge case, considering

the discrete time instances 0 = s0 < s1 < · · · sN−1 < sN < sN+1 = ` , and the

corresponding N -dimensional matrix Cbb is represented as below:

(Cbbf)u = su
`
·
N∑
k=1

( k∑
i=1

fi
)

∆sk+1 −
u−1∑
k=1

( k∑
i=1

fi
)

∆sk+1, u = 1, . . . , N, (3.2.5)

where now:

SNj =
∑

s∈{s1,...,sN+1}

rj(s−, x(s−))(x(s)− x(s−));
∂Sj
∂x(si)

= ∆q(si),

where ∆q(s) is as defined earlier and 1 ≤ i ≤ N . This gives the following calcula-

tion:

(Cbb∇γ)u =
J∑
j=1

γj ·
( su
`

( N∑
k=1

( k∑
i=1

∆q(si)
)
∆sk+1 −

u−1∑
k=1

( k∑
i=1

∆q(si)
)
∆sk+1

)
,

immediately recognised as the finite-difference discretization of the term appearing

in the third line of the expression for CbbδΦ(x) in the statement of the proposition.

Thus, in both cases the first terms appearing in the specification of {CbmδΦ(x)}
and {CbbδΦ(x)} in the proposition, are continuous and piece-wise linear in u (there

is a turn at the time instances of the observations) so still lie within the Cameron-

Martin spacesHbm
0 , Hbb

0 respectively (even if the variational derivative δα itself will

not necessarily lie within the Hilbert space, as shown in the proof). The second
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terms are clearly a.s. elements of the corresponding spaces Hbm
0 , Hbb

0 under weak

continuity conditions on z′l. Finally, for the third terms, again weak regulatory

conditions on rj and r′j guarantee that the corresponding paths in u are elements

of the appropriate Cameron-Martin spaces.

3.3 Conclusions: Future Work

In this chapter we have studied the relative efficiency and well-posedness of HMC,

as well as its performance in a variety of applications. We have also compared,

analytically and with numerical examples, the computational costs of different

advanced MCMC methods. We have shown that both– advanced Random Walk

Metropolis (RWM) and Metropolis-adjusted Langevin Algorithm (MALA)– have

similar complexity when applied to ’long’ diffusion paths, whereas HMC is more

efficient than both of them. These desirable properties make HMC an ideal algo-

rithm to be used for parameter inference.

In this Section we provide a simple illustration of an application of parameter

inference with HMC in the form of a Metropolis-within-Gibbs sampler. In contrast

with Section 3.1, here we try to infer unknown model parameters. In a later

chapter we will be using a similar framework to perform parameter inference on

more complex diffusion models driven by fractional Brownian motion. As said

before, this Section is only meant to serve as a simple illustration on how to

treat the infinite-dimensional diffusion paths as a latent variable within a data

augmentation framework7, this is: when the main interest lies in identifying other

model parameters.

Consider the following example where the stochastic processes of interest (Xt, qt)

are defined via the bivariate SDE:

dXt = σθ(qt)dBt , (3.3.1)

dqt = µθ(qt)dt+ dWt , t ∈ [0, `] , (3.3.2)

where Bt andWt represent independent standard Wiener processes, for appropriate

mappings σθ(qt), µθ(qt) involving some parameter θ. Now assume we have observed

Xt at a collection of discrete time instances, so that we have the data:

Y = {Xt0 , Xt1 , Xt2 , ..., Xtn} ,

7See e.g. [80]
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for some t0 < t1 < t2 < · · · < tn = ` and n ≥ 1. This regime corresponds to a

case of a stochastic volatility model. In this example we cannot observe directly

the process qt, instead, we only observe the data Y . Inference of the parameters

θ, given the information in Y , is not straightforward due to the unavailability

of the conditional density p(Y |θ), thus, we can approach this problem via data

augmentation and a carefully designed Metropolis-within-Gibbs sampler.

To summarise, we want to sample from the posterior distribution the parame-

ters we wish to draw inference from (θ in this case):

p(θ | Y ) ∝ p(Y |θ)p(θ) . (3.3.3)

Using a Gibbs sampler, we repeat the following steps for i = 0, 1, . . .:

Step 1: θ(i+1) ∼ p(θ|q(i), Y ) ,

Step 2: q(i+1) ∼ p(q|θ(i+1), Y ) , (3.3.4)

so that, after a sufficiently large burn-in period, then the samples of θ should come

from the target posterior distribution (see [41]). That is: to perform the Gibbs

sampler we start off from the analytically available joint distribution:

p(Y, q, θ) = p(Y |q, θ) p(q|θ, qt0) p(qt0|θ) p(θ) (3.3.5)

so that we simply have:

p(θ|q, Y ) ∝ p(Y, q, θ) ; p(q|θ, Y ) ∝ p(Y, q, θ) (3.3.6)

which is invoked within the Gibbs approach to sample θ and q. In particular, we

have that:

p(Y |q, θ) =
n∏
i=1

p(Xti | Xti−1
, q, θ)

= c×
n∏
i=1

I
− 1

2
i · e−

(Xti
−Xti−1

)2

2Ii (3.3.7)

for a constant c > 0 not depending on q, θ, where Ii is obtained via Ito’s isometry

(see [65]) as:

Ii =

∫ ti

ti−1

σ2
θ(qs)ds . (3.3.8)

Then, the density p(q | θ, qt0) can be obtained as a Radon-Nikodym derivative
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with respect to a Gaussian measure. That is, using Girsanov’s theorem we can

formally write:

p(q | θ, qt0) = c× exp{−Φ(q)} × e−
1
2
〈(q−m),L(q−m)〉 (3.3.9)

for L the inverse covariance of the Brownian motion on [0, `] and m the constant

path equal to qt0 throughout [0, `], where we have set:

Φ(q) = Mθ(q0)−Mθ(qtn) +

∫ tn

t0

gθ(qs)ds (3.3.10)

for:

Mθ(v) =

∫ v

µθ(u)du ; gθ(v) = 1
2
(µ2

θ + µ′θ)(v) . (3.3.11)

For p(qt0 | θ), one common choice is that it is specified as the equilibrium distri-

bution of q, though, other choices could be considered.

Now we turn our attention to the first step of (3.3.4), that is, sampling p(θ |
q, Y ). A standard choice here involves considering a RWM step:

• Set θ′ = θ(i) + ξ where, for a user specified h, ξ ∼ N(0, h) ;

• Accept/reject so that θ(i+1) = θ′ w.p. α(θ′, θ(i)) = 1 ∧ p(θ′,Y,q)

p(θ(i),Y,q)
.

In the second step of the Gibbs sampler we are interested in sampling the high-

dimensional volatility path from p(q|θ, Y ), and at this point we can use one of our

advanced MCMC algorithms. One choice would be to update the whole q-path over

[0, `] simultaneously, using, say, an HMC sampler. If we take a simplistic approach

we can update q as a single continuous path starting from qt0 using an HMC and

we could implement (3.3.4). For long time intervals, it may be beneficial to split

up the q-path into a series of overlapping blocks and update each one separately– a

strategy known as blocking (see [69]). With the exception of the last block, every

single block has a conditioned starting and ending point, so we will treat those as

diffusion bridges. The reason for using an overlapping block is to guarantee that

all points of q get updates after a full sweep. We can summarise the sequence of

steps for the block update as follows: for a block-size user parameter l = (tn−t0)/k

for some k ≥ 1:

1. Initiate qt0 .

2. Update q-bridge with fixed points qt0 to qt0+l.

3. Update next bridge from qt0+l/2 to qt0+3l/2
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4. Repeat for all overlapping bridges by incrementing initial time by l/2.

5. Update path with starting point qtn−l until time tn.

To be precise about the full conditional distribution for each relevant block, let us

consider an arbitrary bridge with starting point at time S and ending point at T ,

i.e. qS:T . Then, clearly, the full conditional distribution is as follows:

p(qS:T |qelse, θ, Y ) ∝ p(qS:T , qelse, θ, Y )

∝ p(qS:T |qS, qT , θ)p(Y |q, θ) . (3.3.12)

where we now have:

p(qS:T |qS, qT , θ) ∝ exp{−Φ(qS:T )} × e−
1
2

〈
(qS:T−mS:T ), LS:T (qS:T−mS:T )

〉
(3.3.13)

where:

Φ(qS:T ) =

∫ T

S

gθ(qu)du−Mθ(qtn) I [T = tn ] (3.3.14)

with mS:T the straight line between qS, qT and LS:T the inverse covariance of a

Brownian bridge from starting point 0 to ending point 0 of lenght T − S (in the

single case T = tn, mS:T is the line which is always equal to qS over [S, T ], and

LS:T the inverse covariance of a standard Brownian motion on a time interval of

length T − S).

As seen in previous chapters, our advanced MCMC methods are relevant for

target distributions defined as a change of measure from a reference Gaussian law,

as is the case in (3.3.12). We can simplify the expression for the target distribution

as follows:

p(qS:T |qelse, θ, Y ) ∝ p(qS:T |qS, qT , θ) p(Y |q, θ)

= cθ × exp {−G(qS:T )} × e−
1
2

〈
(qS:T−mS:T ), LS:T (qS:T−mS:T )

〉
(3.3.15)

where we have set:

G(qS:T ) = Φ(qS:T ) +
∑

i:[ti−1,ti]∩[S,T ]6=∅

(
(Xti−Xti−1 )2

2Ii
+ 1

2
log Ii

)
(3.3.16)

We now have all the necessary parts to run the advanced MCMC algorithms.

As mentioned before, we have defined this algorithm as an illustration and we

will not run it in this section. We return to the topic of Parameter Inference in

Chapter 5, where we use a similar sampling scheme for a more complex model. In
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the sequel, blocking as described in this section, is no longer possible and HMC’s

superior scaling properties will become more relevant.
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Chapter 4

Advanced Algorithms for

Processes with General Diffusion

Coefficient

In this chapter, we consider the general case where the diffusion process of interest

is defined via the d-dimensional SDE (for some d ≥ 1):

dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, t ∈ [0, `] (4.0.1)

where σ = σ(·; θ) : Rd 7→ Rd×d is a non-constant matrix diffusion coefficient. So

far, we have presented advanced MCMC algorithms for models driven by SDEs,

in the context of a constant diffusion coefficient σ, or for cases when the SDE

of interest can be transformed into one of constant diffusion coefficient. We will

review such transformations here, and look in particular for approaches that can

be relevant beyond a scalar context.

In the context of a non-scalar diffusion Xt, defined by the equation in (4.0.1),

it is not guaranteed that X can be transformed into an SDE of unit diffusion

coefficient. Indeed, the Lamperti transform in such a multivariate context would

look at the existence of a mapping Xt 7→ X̃t = η(Xt) (with η = (η1, η2, . . . , ηd)
> :

Rd 7→ Rd) such that, for all x in the state space of Xt:

Dη(x) · σ(x) = Id (4.0.2)

where we have defined the d× d matrix of partial derivatives Dη = (∂ηi/∂xj)
d
i,j=1.

This follows directly from the multivariate version of Itô’s formula, see e.g. [2]. Ait-

Sahalia’s work in [2] also shows the existence of a mapping η where the property

in (4.0.2) is equivalent to the diffusion coefficient matrix satisfying ∂σ−1
ij /∂xk =

∂σik/∂xj for all i, j, k with j < k. This certainly restricts considerably the appli-
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cability of the Lamperti transform in the cases of non-scalar diffusions.

It would be relatively simple to come up with models for where it does not

exist an appropriate mapping η that solves the differential equation (4.0.2). The

Heston model, originally described in [49], is a mathematical model commonly used

to describe the joint evolution of the price and volatility of an underlying asset.

Heston’s model corresponds to a stochastic volatility model that is described by

the following bivariate SDE:

dSt = µStdt+
√
νtSt dW

S
t ,

dνt = κ(θ − νt) dt+ ξ
√
νt dW

ν
t , (4.0.3)

with St, νt denoting the price and volatility processes respectively, W S
t , W ν

t the

relative Wiener processes driving the SDE (assumed independent here, though a

leverage effect could also be considered) and µ, κ, θ, ξ being appropriate model

parameters. Then, one can easily work with Ait-Sahalia’s condition to show that

for this model there is no solution to equation (4.0.2).

There are, however, other methods suggested in the literature with a wider

scope for transforming a diffusion model of multiplicative noise into a distribution

which can be expressed as a change of measure from a Gaussian law. Indeed, our

advanced MCMC algorithms are relevant for posterior distributions on pathspace

which are absolutely continuous w.r.t. Brownian motion related distributions, and

it is of interest to verify the well-definition of such algorithms on the pathspace

when using such alternative transforms.

4.1 Beyond the Lamperti Transform

The method introduced in [18] maps the process of interest Xt onto the driving

Wiener noise X̃t = Wt of the SDE, similarly to the Wilkinson-Golightly trans-

formation we described earlier in section 1.2.2. Assuming some relevant data Y

with conditional likelihood p(y|x), and since the prior on X̃ is simply the Wiener

measure Π0 = N(0, Cbm), we can write the posterior distribution on X̃ as:

dΠ

dΠ0

(x̃) ∝ p(y|x) =: exp{−Φ(x̃)} .

Thus, via an application of Bayes theorem and the transform considered, we have

obtained a target distribution which is within the class of distributions that can be

tackled by our advanced MCMC samplers. It remains to calculate CbmδΦ(x̃) in this
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context and show that with probability 1 in x̃ this path lies within the Cameron-

Martin space of the reference Wiener measure1. Differentiation of Φ(x̃) will involve

finding derivatives of x w.r.t. the driving noise x̃. So it is not a surprise that the

dynamics of the so-called Malliavin derivative DsXt (see e.g. [37]) will appear in

the calculations as they are precisely meant to describe changes in the process

under small changes in the driving noise. More particularly, DsXt expresses the

rate of change of the process X at time t when the driving noise changes at time

s < t and, following [37]), we have that DsXt is analytically defined as follows

(ignoring model parameters):

dYt
Yt

= b′(Xt)dt+ σ′(Xt) dWt , Y0 = 1 ;

DsXt = Yt
Ys
σ(Xs) I [ s ≤ t ] .

We will assume here a scalar setting and the following general structure for2 Φ(x̃) =

− log(p(y|x)) for appropriate mappings α, β, z1, z2, . . . , zL:

Φ(x̃) = Φx(x(x̃)) = α(x(t1), x(t2), . . . , x(tM))

+ β
( ∫ `

0

z1(s, x(s))ds,

∫ `

0

z2(s, x(s))ds,

∫ `

0

zL(s, x(s))ds
)
. (4.1.1)

The terms αm, βl appearing below correspond to partial derivatives of the func-

tionals α, β (w.r.t. the m-th and l-th argument respectively) as in the case of

Proposition 3.2.1.

Proposition 4.1.1. For the functional Φ(x̃) given in (4.1.1), for any x̃ ∈ H we

have the following expression:

(
CbmδΦ(x̃)

)
(u) =

M∑
m=1

αm ·
(

(u ∧ tm) (Fm,tm + σ(xtm))−
∫ u∧tm

0

Fm,rdr
)

+
L∑
l=1

βl ·
(
u (Gl,` + Jl,`) +

∫ u

0

(Gl,r + Jl,r)dr
)
, u ∈ [0, `] ,

for the processes, for m = 1, 2, . . . ,M and l = 1, 2, . . . , L:

1Recall from Section 1.4 that this corresponds to showing that Cbm δΦ(x̃) is a weakly differ-
entiable mapping on [0, `]

2Compared with the structure assumed earlier in (3.2.1) we do not include here stochastic
integral terms to avoid excessively cumbersome expressions
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Fm,r =

∫ r

0

e
∫ tm
s

(
µ′(xu)du+σ′(xu)dx̃u

)
dQs ;

Gl,r =

∫ r

0

∫ `

s

z′l(t, xt) e
∫ t
s

(
µ′(xu)du+σ′(xu)dx̃u

)
dt dQs ;

Jl,r =

∫ r

0

z′l(s, xs)σ(xs)ds ,

with integrator:

dQs = σ(xs)(b
′(xs)du+ σ′(xs)dx̃s)− dσ(xs) .

Focusing on the properties of the calculated path CbmδΦ(x̃) over its domain

of definition u ∈ [0, `], it is easy to check the following: a.s. in x̃, the first terms

in the expression obtained above are continuous, piece-wise linear with points of

non-differentiability at the data instances t1, t2, . . . , tM . Then, under the weak

assumption that the processes r 7→ Gl,r, r 7→ Jl,r are a.s. continuous, we have

that the second terms in the calculation in Proposition 4.1.1 are a.s. differentiable.

Thus, under weak conditions Assumption 2.2.1 requiring that CbmδΦ(x̃) be in the

Cameron-Martin space of the reference Gaussian measure is satisfied and advanced

MALA and HMC are well-defined on the pathspace in the present context.

Proof. Consider a collection of discrete time instances 0 < s1 < s2 < · · · < sN

with s0 = 0 and sN = ` that include the data instances, so that:

{t1, t2, . . . , tM} ⊂ {s1, s2, . . . , sN} .

Let ∆si = si− si−1. We will consider the following finite-difference approximation

Φ(x̃) = Φ(x̃1, x̃2, . . . , x̃N) of the negative log-density:

Φ(x̃) = Φ1(x̃) + Φ2(x̃) = α(xi1 , xi2 , . . . , xiM ) (4.1.2)

+ β
( N∑
i=1

z1(si−1, xi−1)∆si,
N∑
i=1

z2(si−1, xi−1)∆si, . . . ,
N∑
i=1

zL(si−1, xi−1)∆si

)
for indices i1, i2, . . . iM such that sim = tm, for m = 1, 2, . . .M , and vector x

constructed via the finite-difference approximation:

xi = xi−1 + b(xi−1)∆si + σ(xi−1)∆x̃i ,

for i = 1, 2, . . . , N with x0 equal to a specified fixed initial condition. We will
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be using the obtained expression in (3.2.4) for the N × N covariance matrix

C = Cbm = (min{si, sj})i,j of a standard brownian motion at the time instances

s1, s2, . . . , sN . The function Φ : RN 7→ R in (4.1.2) and the matrix C fully specify a

finite-difference approximation of the original target defined on the Hilbert space.

Now, we have the following recursion for the derivatives

Yi,j =
∂xi
∂x̃j

,

for any j ≥ 1:

Yi,j = Yi−1,j + b′(xi−1)Yi−1,j∆si + σ′(xi−1)Yi−1,j ∆x̃i ; i > j + 1

Yj+1,j = Yj,j + b′(xj)Yj,j∆sj+1 + σ′(xi−1)Yj,j ∆x̃j+1 − σ(xj) ;

Yj,j = σ(xj−1) ;

Yi,j = 0 , i < j .

So, we can obtain that, for i > j + 1:

log(Yi,j) = log(Yi−1,j) + log
(
1 + b′(xi−1)∆si + σ′(xi−1)∆x̃i

)
,

and using this recursion we get that:

Yi,j = ∆Qj × e
∑i
k=j+2 log

(
1+b′(xk−1)∆sk+σ′(xk−1)∆x̃k

)
, i ≥ j + 1 , (4.1.3)

Yj,j = σ(xj−1) (4.1.4)

Yi,j = 0 , i < j , (4.1.5)

where we have set:

∆Qj ≡ Yj+1,j = σ(xj−1)(b′(xj)∆sj+1 + σ′(xj)∆x̃j+1)−∆σ(xj) ,

and ∆σ(xj) = σ(xj)−σ(xj−1). We will also define for 1 ≤ m ≤M and 1 ≤ l ≤ L:

Fm,r =
r∑
j=1

Yim,j , r < im ;

Gl,r =
r∑
j=1

( ∑
i≥j+1

z′l(si, xi)∆si+1

)
Yi,j ;

Jl,r =
r∑
j=1

z′l(sj, xj)Yj,j ∆sj+1 .
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The above sequences will appear in the calculation of partial derivatives of Φ(x̃).

It is important to notice here that these sequences indeed constitute a finite-

difference approximation of their continuous-time counterparts appearing at the

statement of the proposition: to see that one only needs to look at the an-

alytical definition of Yi,j in equations (4.1.3)-(4.1.4), and realise that the sum∑
k log

(
1 + b′(xk−1)∆sk + σ′(xk−1)∆x̃k

)
is essentially a finite-difference approxi-

mation of
∫

(b′(xu)du+ σ′(xu)dx̃u) as for ε ≈ 0 we have that log(1 + ε) ≈ ε.

We can now proceed with the calculation of the partial derivatives of Φ. Clearly:

∂Φ

∂x̃j
=
∂Φ1

∂x̃j
+
∂Φ2

∂x̃j
=
∑
i≥j

(∂Φ1

∂xi
· Yi,j +

∂Φ2

∂xi
· Yi,j

)
.

We can easily get:

∑
i≥j

∂Φ1

∂xi
· Yi,j =

M∑
m=1

αmYim,j .

Using (3.2.4), a long but otherwise straightforward calculation will give that, for

vector index 1 ≤ u ≤ N :

(C∇Φ1(x̃))u =
M∑
m=1

αm

(
su∧im (Fm,im−1 + Yim,im)−

u∧im−1∑
k=1

Fm,k ∆sk+1

)
. (4.1.6)

Proceeding to the second term, Φ2(x̃), we have that:

∑
i≥j

∂Φ1

∂xi
· Yi,j =

L∑
l=1

βl
∑
i≥j

z′l(si, xi)∆si+1 Yi,j .

We now multiply with the covariance matrix C to obtain, after some calculations,

for 1 ≤ u ≤ N :

(C∇Φ2(x̃))u =
L∑
l=1

βl

(
su (Gl,N + Jl,N )−

u−1∑
k=1

(Gl,k + Jl,k
)

∆sk+1

)
. (4.1.7)

Upon inspection, (4.1.6)-(4.1.7) provide the proof of the statement of the proposi-

tion.
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4.2 Advanced RWM in a

Golightly-Wilkinson framework

We want to emphasize here that the approach described in Section 4.1 is appli-

cable when, given the diffusion path x, there exists a non-trivial data likelihood

p(y|x) w.r.t. the Lebesque measure. So, for instance, this context does not cover

the case of directly observed processes and an alternative approach will have to

be followed. In particular, the method which is relevant in the case of directly

observed processes is the Golightly-Wilkinson transformation. Due to the great

importance of this data regime, we will illustrate this approach here in the context

of using RWM, to simulate from an SDE with a non-constant diffusion coefficient.

In Section 1.2.2, we introduced the Golightly-Wilkinson transformation and

discussed its advantage over the Lamperti transformation. As discussed above,

and since we are now in the context of directly observed processes, that we can

assume the following modeling scenario:

Πx,y : dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt , (4.2.1)

X0 = x , X` = y ,

where,

x, y ∈ Rd, b : Rd 7→ Rd,

σ : Rd 7→ Rd×d,

with the the direct observation X` = y giving rise to the target distribution Πx,y

corresponding to a diffusion bridge. Recapping from Section 1.2.2, we develop

an alternative diffusion bridge process which is easy to sample from by using the

following SDE:

Qx,y : dXt =
y −Xt

`− t
dt+ σ(Xt; θ)dWt , (4.2.2)

The particular choice of drift function in the above expression ensures that the

diffusion processes is ‘pushed’ towards the terminal position y, when t → `. In

this context, we are required now to obtain the density dΠx,y

dQx,y
, which is given via

the bridge version of Girsanov’s theorem in (1.2.21).

As we have seen before, one way to think of the SDE in (4.2.2) is as a map-

ping which projects the Brownian motion path Wt onto an actual bridge Xt, i.e.
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expression (4.2.2) gives rise to a map:

X = Ψ(W ) .

The inverse of this mapping will also be relevant here. With X now referring to

the target bridge from Πx,y, we have the transformation:

X̃ = Ψ−1(X),

where the target X̃ is a process with a distribution that will be absolutely con-

tinuous w.r.t. the Wiener law of the Brownian motion path W . This mapping

corresponds precisely to the Golightly-Wilkinson transformation.

Once we have obtained a target distribution, which is a change of measure

from a Gaussian law, the complete machinery of our advanced MCMC methods

becomes immediately relevant, in the form of RWM, MALA or HMC methods.

Focusing on advanced RWM we can use the above transform to propose values in

the standard advanced RWM approach:

x̃′ = ρ x̃+
√

1− ρ2 ξ (4.2.3)

for a step-size ρ ∈ (0, 1), where ξ is a standard Brownian motion path, x̃ is the

current path in the MCMC sampler and x̃′ is the proposed path. As discussed in

the presentation of advanced RWM earlier in the thesis, this particular structure

of the proposal mechanism ensures that the law x̃ is absolutely continuous with

that of the target distribution, so it will have a non-trivial acceptance probability

on the infinite-dimensional pathspace.

Due to the above absolute continuity properties, we can use the same arguments

for the acceptance probability as in Section 1.2.1 and Section 1.2.3 (specifically

equation (1.2.21)). Analytically, from standard results on 1-1 transformations of

probability measures we can find the relevant probability density involved in the

acceptance probability. Let Π̃x,y denote the law of Ψ−1(X) for X ∼ Πx,y, and Π0

the law of a standard Brownian motion on [0, `]. Then we have:

dΠ̃x,y

dΠ0

(X̃) =
dΠx,y

dQx,y
(Ψ(X̃)) =: D(Ψ(X̃ ′)) (4.2.4)

with the latter density being given via the diffusion bridge version of Girsanov’s

theorem in (1.2.20). Recall from the discussion over advanced RWM in Sec-

tion 1.2.1, that the identification of the target distribution as a change of measure
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from a Gaussian law provides immediately the relevant Metropolis-Hastings ac-

ceptance probability. Indeed, we have that:

α(X̃, X̃ ′) = min

(
1,
D(Ψ(x̃′))

D(Ψ(x̃))

)
. (4.2.5)

This completes the algorithm, which we summarise in Table 4.1.

RWM, general σ

Target diffusion dXt = b(Xt; θ)dt+ σ(Xt; θ)dWt, for X0 = x, X` = y

Proposal x̃′ = ρx̃+
√

1− ρ2 ξ

Acceptance probability min
(

1, D(Ψ(x̃′))
D(Ψ(x̃))

)
Table 4.1: Advanced RWM, for target distribution that of a diffusion bridge with
non-constant diffusion coefficient

4.2.1 Advanced RWM for a diffusion bridge with non-constant

diffusion coefficient, explained with a numerical ex-

ample

The algorithm we described in the previous section was defined for a d-dimensional

SDE and uses a Wilkinson-Golightly mapping. Indeed, one of the advantages

of this type of mapping versus the Lamperti transformation is that Wilkinson-

Golightly only requires the existence of the inverse σ−1. Since this condition is

weaker, it can be used in a wider range of problems than the Lamperti transform.

In this section we provide a one dimensional example of the RWM algorithm

as described in table 4.1. The example we provide is a Cox-Ingersoll-Ross (CIR)

bridge, a diffusion first proposed in the context of modelling interest rates in [23].

In particular, we propose the following model:

dXt = r(µ−Xt)dt+ σ
√
Xt dWt ,

X0 = x, X` = y .

Note 4.2.1. We have selected a relatively simple example for our explanation

since the Lamperti transform could have been used instead. Our objective is to

illustrate how the Wilkinson-Golightly transform could be used in a simple context.

In the next Chapter we will be using mappings in a more complex context where

the Lamperti transform can not be used.
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We will be applying the advanced RWM algorithm on this model under the

following specification of the CIR parameters: r = 3, µ = 4.6, X0 = 3, Xl = 4,

` = 1. Figure 4.1 shows some diagnostic plots from the output of the advanced

Figure 4.1: Diagnostics Plots for advanced RWM targeting a Cox-Ingersoll-Ross
bridge. Top panel: Traceplot. Bottom Panel: Autocorrelation function.

MCMC algorithm. Notice that the trace plot for the mid-point of the complete

path looks reasonably good. Also, the burn-in time also seems to be relatively

short, reaching equilibrium in about 100 iterations. The relevant ACF plot reaches

0 in about 80 lags, which is quite satisfactory. In summary, it seems that the

algorithm is behaving as expected. We tried a finer resolution and still obtained

a very similar graphic representation.

4.3 Summary

In previous chapters, we have shown how SDEs with non-constant diffusion co-

efficient can be transformed to SDEs with unit diffusion coefficients. We have

expanded on this in this chapter by showing that some clever use of mapping

can be applied to a wider range of applications than the Lamperti when using

advanced MCMC algorithms to sample from complex target distributions such as

d-dimensional SDEs with general diffusion coefficients. Most importantly, we have

shown that CbmδΦ(x̃) is part of the Cameron-Martin space and that HMC and

MALA are well behaved algorithms in this context.

As an example, we analytically adapted this mapping to work for an advanced

RWM algorithm using a d-dimensional SDE as a target. Finally, we used this

scheme numerically to simulate a Cox-Ingersoll model. We found that our scheme
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has good mixing and low autocorrelation despite not using a derivative driven

method.
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Chapter 5

Parameter Inference for SDEs

Driven by Fractional Noise

5.1 Introduction to fBm

Originally introduced in [57], fractional Brownian Motion (fBm) is a continuous

time Gaussian process. We will denote it here as BH = {BH
t ; t ∈ [0, `]}, for some

relevant length of time ` > 0, with H ∈ (0, 1) being the Hurst parameter specifying

fBm. The main innovation introduced in fBm, as compared to regular Brownian

motion, is the presence of the Hurst parameter H which describes the level of long

range dependence for fBm values. In particular, the covariance function for BH is

specified as follows:

E[BH
t B

H
s ] = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
, (5.1.1)

where we have that BH
0 = 0, and the mean is zero for all t ≥ 0.

To quantify better the effect of the Hurst parameter H on the memory prop-

erties of fBm, we define the increments over time periods of length δ = `/N , for

some integer N ≥ 1, as:

G(j) = BH
jδ −BH

(j−1)δ , 1 ≤ j ≤ N , (5.1.2)

so that we have the N -dimensional vector of Gaussian increments1:

GN = {G(j) : 1 ≤ j ≤ N} . (5.1.3)

Using (5.1.1), it is easy to check that fGn has the following autocovariances (for

1Such increments are sometimes given the name of fractional Gaussian noise (fGn) in the
literature (for instance, in [66])
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any integer j, j0 ≥ 1):

γδ(j) := E[G(j + j0)G(j0)] = 1
2
δ2H(j + 1)2H + 1

2
δ2H(j − 1)2H − δ2Hj2H . (5.1.4)

It is now easy to check that different values of H will have the following effect on

the correlation of the increments of BH :

• if 0 < H < 1
2
, then the increments are negatively correlated;

• if H = 1
2

then the increments are independent, and BH is simply the Wiener

process;

• if 1
2
< H < 1 then the increments are positively correlated (i.e. γδ(j) > 0).

As mentioned above, when H = 1/2, fBm is simply a Brownian Motion (or Wiener

process), thus fBm can be thought of as a generalization of the Brownian motion

allowing for memory in its increments.
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Figure 5.1: An illustration of the effect the Hurst coefficient has on fBm.

We will now detail some of interesting properties of fBm2:

2The proofs of the statements that follow can be found in [66]
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Self-Similarity

Same as for the standard Brownian Motion, fBm is self similar. That is, for any

c > 0:

{BH
t }t≥0 = {cHBH

t/c}t≥0.

Long-Range Dependence

A process, say Xt, is said to have long range dependence when the auto-covariance

function E[XtXt+k] (assuming Xt is of zero mean) decreases slow enough as k ≥ 1

increases so that we have that:

∞∑
k=0

E[XtXt+k] =∞ .

When H > 1/2 it can be shown that:

∞∑
k=0

E[BH
1 (BH

k+1 −BH
k )] =∞ , (5.1.5)

so that, indeed, the increments of fBm exhibit long range dependence for H > 1/2.

The same infinite series becomes finite when H < 1/2.

P-order Variation

The p-variation of an fBm BH on [0, `] is specified as follows3:

p-th variation := lim
n→∞

2n−1∑
j=0

∣∣BH
j+1
2n

`
−BH

j
2n
`

∣∣p =


0, pH > 1 ,

∞, pH < 1 ,

`, pH = 1 .

(5.1.6)

Notice that in the case where p = 2 and H = 1/2, by using (5.1.6) we can retrieve

the quadratic-variation of the standard Brownian motion, that is, we have the

well-known result (for B denoting standard Brownian motion):

lim
n→∞

2n−1∑
j=0

∣∣B j+1
2n

` −B j
2n
`

∣∣2 = ` .

The memory properties of fBm have been found to be desirable for many models

in a variety of scientific fields, with financial mathematics being an important area

of application. There have been attempts to use fBm for modelling the underlying

3A formal proof and discussion of these results can be found in [28, 27]
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price of an asset, for instance by generalising the geometric Brownian motion as

follows:

dSt = µStdt+ σStdB
H
t ,

for the relevant parameters µ, σ. Such an approach raises some concerns as the

introduction of memory violates the no-arbitrage rule (see for instance [17, 76])

due to the noise process not being a martingale anymore. Some more popular

models which respect the no-arbitrage rule have been constructed by specifying,

instead, the underlying volatility process via an fBm, so that for a price process

we have:

dSt = µStdt+ σ(Yt)StdBt,

for some function σ, with Yt being now a stochastic process itself driven by fBm

(see e.g. [20, 21]). Besides financial mathematics, fBm has been used in a wide

range of applications. Another important area of application is Biophysics where

fBm-driven processes are used to model sub-diffusions within proteins (see [54]),

and in telecommunications it has been used to model ethernet traffic [55, 84].

5.1.1 Davies-Harte method for simulating fBm

We use the exact Davies-Harte method to simulate fBm sample paths, originally

introduced in [26]. First though, we will briefly explain the standard Cholesky

decomposition approach to further motivate the computational advantages of the

Davies-Harte method that we will present later on. Given an N -dimensional Gaus-

sian vector with zero mean and covariance matrix Σ, the Cholesky method involves

decomposing Σ as:

Σ = ΓΓ>, (5.1.7)

where Γ is the lower triangular matrix in the decomposition. Since Σ is the covari-

ance matrix, then, loosely speaking, Γ can be thought of as the ‘standard-deviation’

matrix. It is now trivial, that given a sample u ∼ N(0, I) in N -dimensions, we

get:

v = Γu,

which provides a sample from N(0,Σ).

It is easy to see how this result is useful in the context of simulating fBm.

Constructing the relevant covariance matrix based on the fBm covariance function

in (5.1.1) so that:

Σ =
(
E[BH

ti
BH
tj

]
)N
i,j=1

, (5.1.8)

for some ordered time instances 0 < t1 < t2 < · · · < tN , we can then derive
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the Cholesky decomposition of Σ and set v = Γu as above to construct an fBm

sample path at these N time points. One concern with this approach is that the

computational cost of performing the Cholesky decomposition is typically O(N3).

The Davies-Harte method (detailed e.g. in [85]) follows a different approach

compared to the Cholesky decomposition method, and by exploiting a fast Fourier

transform (FFT) it achieves the sampling task with O(N logN) calculations. No-

tice though that the method is relevant only for regular grids, so that the relevant

time instances ti need to be equidistant.

We describe the Davies-Harte method here since the details in the development

of the method are relevant for the MCMC algorithms we will construct later on

in this Chapter. Consider an fBm path BH defined on a regular grid of N points

with step size δ = `/N . Then, we consider the increments for BH on this grid,

giving rise to the vector GN of increments defined in (5.1.2), with autocovariance

function γδ(j) defined in (5.1.4).

The Davies-Harte method simulates GN by using a 2N -sized vector of i.i.d

N(0, 1) samples. It exploits the fact that the increments’ vector GN is stationary,

thus, its covariance matrix is Toeplitz. Indeed, the covariance matrix of GN for

δ = 1 (that is ` = N ; we will use the notation γ(j) as a shorthand for γδ(j) when

δ = 1) is as follows:

Σ =


γ(0) γ(1) . . . γ(N − 2) γ(N − 1)

γ(1) γ(0) . . . γ(N − 1) γ(N − 2)
...

...
...

...

γ(N − 1) γ(N − 2) . . . γ(1) γ(0)

 .

We also define the matrix:

Σf =


0 γ(N − 1) . . . γ(2) γ(1)

γ(N − 1) 0 . . . γ(3) γ(2)
...

...
...

...

γ(1) γ(2) . . . γ(N − 1) 0

 .

These covariance matrices are then embedded within the following circular matrix:

C =

 Σ Σf

Σf Σ

 .
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The matrix C is circular in the sense that the last element in a row in C becomes

the first element in the next row. This structure allows for a simple eigen-expansion

for C. In particular, we can write the decomposition:

C = PΛHP
∗

where P is a (2N)× (2N)-matrix with the following elements:

Pjk = 1√
2N

exp(−2πi jk
2N

), 0 ≤ j, k ≤ 2N − 1 ,

for the complex i such that i2 = −1. Then P ∗ is the complex transpose of P . We

also define the diagonal matrix:

ΛH = diag{λ0, λ1, . . . , λ2N−1} , (5.1.9)

with the following eigenvalues:

λk =
2N−1∑
j=0

c0,j exp(−2πi jk
2N

) , (5.1.10)

where c0,j, for 0 ≤ j ≤ 2N − 1, are the components of the first row of the circular

matrix C. Notice that using FFT, the components of λH can be calculated with

O(N logN) calculations. We can easily obtain:

√
C = P

√
ΛHP

∗ . (5.1.11)

Note 5.1.1. Here it is necessary that λk ≥ 0. It is shown in the literature that

this is, indeed, the case for a general sequence of covariances γ(j) if either one of

the following conditions is met:

1. the auto-covariance sequence γ(j) is non-negative, decreasing and a convex

function of j ≥ 1 (see [33, 43]); or:

2. we are in a stationary context and we have that γ(j) < 0 for k > 0 (see [24]).

In Section 4.2 of [24] it is shown that fBm satisfies the second condition when

0 < H < 1/2. For the case where 1/2 ≤ H < 1 the first condition is shown to hold

in [43, 19].

We can now summarise the Davies-Harte sampling algorithm as follows: First,
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we simulate Z0 ∼ N(0, I2N) and then we calculate
√
C = P

√
ΛHP

∗. Calculating:

√
CZ0 = P

√
ΛHP

∗Z0 (5.1.12)

and retrieving the first N values provide precisely the required fBm sample on the

regular grid with δ = 1. Proposition 3 of [85] proposes a small variation of the

above approach that replaces the O(N logN) computation P ∗Z0 with an alterna-

tive which costs O(N). The method involves simulating directly the distribution

W = P ∗Z0 as follows:

1. Sample independently W0,WN ∼ N(0, 1)

2. Sample independently V, V ′ ∼ N(0, IN−1)

3. Let Wj = 1√
2
(Vj + iV ′j ) and W2N−j = 1√

2
(Vj − iV ′j ), for 1 ≤ j ≤ N − 1.

We can observe that this is equivalent to calculating the following:

P
√

ΛHMZ ,

for a vector Z ∼ N(0, I2N) where M is a matrix:

M =

 M11 M12

M21 M22


for the following sub-matrices:

M11 = diag{1, 1/
√

2, 1/
√

2, . . . , 1/
√

2};

M12 = {mij}, with mi,i−1 = 1/
√

2 for 1 ≤ i ≤ N − 1 and mi,j = 0 otherwise;

M21 = {mij}, with mi,N−i = 1/
√

2 for 1 ≤ i ≤ N − 1 and mi,j = 0 otherwise;

M22 = diaginv{1,−i/
√

2,−i/
√

2, . . . ,−i/
√

2} .

Finally, due to the self-similarity property of fBm, we can generate fGn corre-

sponding to an fBm sampler path on a regular grid of arbitrary step-size δ > 0 by

setting:

GN = P1:N

{
δH P

√
ΛHMZ

}
, (5.1.13)

where P1:N denotes a projection onto the first N co-ordinates. This concludes our

description of the Davies-Harte algorithm.
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5.1.2 Alternative Methods for Simulating fBm

In this Chapter we use the exact Davies-Harte method to simulate fBm– which

is just one of many different methods for generating fBm sample paths. In fact,

there are many available algorithms, both exact and approximate, summarised for

instance in [32]. Here, we provide a brief discussion on one alternative method

that is popular in recent literature and we explain the reasons why we have chosen

the Davies-Harte method.

An effective method for generating fBm sample paths is the so-called condition-

alized random midpoint displacement or RMDl,r (for some algorithmic parameters

l, r ≥ 1), originally developed in [63]. Unlike Davies-Harte, RMDl,r is an approx-

imate method for simulating fBm and it involves some difficult to quantify bias.

The main properties of the method are as follows:

• Computational Costs: RMDl,r has costs of O(N), which makes it more

effective than Davies-Harte which has costs of O(N logN).

• On-the-Fly Generation: RMDl,r can operate ‘on-the-fly’, i.e. it can be

used to generate fBm traces without a-priori knowledge of the length of the

path [63].

• Bias: one can try to tune algorithmic parameters l and r to obtain an

algorithm with small bias4 and make it comparable to the Davies-Harte

method. In the sequel, since we have already been using the Euler method

to discretize diffusion processes driven by fBm, it could be argued that the

small amount of bias intrinsic in RMDl,r should have a minimal effect on the

properties of the overall algorithm compared to using an exact algorithm.

Despite the above described characteristics of RMDl,r we still chose to use the

Davies-Harte method for the MCMC algorithms, we will expand on this later in the

Chapter. The main reason on selecting the Davies-Harte algorithm boils down to

a simple convenient expression in the form of a linear mapping between a vector of

i.i.d. normal values and the required fBm path. This allows us to easily transform

between the two, which we later use to break the dependence between variables

and calculate derivatives for gradient-based MCMC methods. In contrast, RMDl,r

is constructed by means of bisections and interpolations [63], which do not allow

for a simple clean expression.

4In empirical studies e.g. [32] RMD3,3 has been found to have relatively small error
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5.1.3 Numerical Approximation of fBm-Driven Diffusion

The Davies-Harte method provides a fast way for simulating sample paths of BH ,

thus, allowing for the generation of paths for general non-linear diffusions of the

form:

dXt = b(Xt)dt+ σ(Xt)dB
H
t (5.1.14)

(for some relevant drift and diffusion coefficient functions b and σ respectively)

using Euler’s method, that is, by setting:

Xiδ ≈ X(i−1)δ + b(X(i−1)δ)δ + σ(X(i−1)δ)(B
H
iδ −BH

(i−1)δ) .

Such a simple discretization scheme has been shown to have a diminishing bias

as δ → 0 in the case where H ≥ 1
2
, but caution is needed when H < 1/2, as

the Euler approximation of stochastic integrals with respect to fBm can explode

in that case as δ → 0. This has to do with the fact that when H < 1/2 the

‘roughness’ of fBm is more intense than when H = 1/2 (and certainly more than

when H > 1/2). Indeed, recall from (5.1.6) that when H < 1/2 the quadratic

variation of fBm explodes5. Here, we look at a particular stochastic integral and

illustrate the issues that can arise when H < 1/2. We apply the Euler scheme to

discretize the stochastic integral
∫
BH
t dB

H
t as follows:

∫ `

0

BH
t dB

H
t ≈

N∑
i=1

BH
(i−1)δ(B

H
iδ −BH

(i−1)δ) , (5.1.15)

for δ = `/N , and some large N ≥ 1. Then, through some simple algebraic manip-

ulations we can get that:

N∑
i=1

BH
(i−1)δ(B

H
iδ −BH

(i−1)δ) =

=
N∑
i=1

{ (BHiδ )2

2
−

(BH
(i−1)δ

)2

2

}
− 1

2

N∑
i=1

(BH
iδ −BH

(i−1)δ)
2 . (5.1.16)

The first quantity on the RHS of (5.1.16) only concerns the first and last values

of BH as the rest gets canceled out, whereas the second quantity is the quadratic

variation of BH (as N →∞). We know from (5.1.6) that the quadratic variation

of fBm goes to infinity when H < 1/2, thus, the Euler scheme in (5.1.16) will also

diverge to infinity. Notice that the definition itself of a stochastic integral when

5For some general investigation on this matter we refer the reader to [56]
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H < 1/2 can be done via different approaches, see e.g. [9].

Thus, to discretize SDEs driven by fBm when H < 1/2 in the context of a non-

constant diffusion coefficient we need a mechanism that will overcome the above

issue. The approach suggested in [56] involves using the Doss-Sussmann represen-

tation (introduced in [79], see also [64]), to define the solution of an SDE of the

type in (5.1.14). Under the Doss-Sussmann interpretation, standard calculus rules

apply 6, thus, we can remove the diffusion coefficient with a simple transformation,

and then apply the Euler scheme in a process with unit diffusion coefficient.

Here we only include a quick overview of the approach sketched above7. Con-

sider the SDE (5.1.14) written now in an integral form:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dB
H
s . (5.1.17)

The Doss-Sussmann approach makes sense of a solution for (5.1.17) in a pathwise

manner. That is, for any fixed fBm path Bs(ω), we obtain solutions for (5.1.17)

for arbitrary smooth paths (i.e. continuously differentiable paths) in a small neigh-

borhood of Bs(ω), and then define the solution of (5.1.17) as the limit of these

solutions as the neighborhood gets tighter. The work in [79] shows all the theoret-

ical details for making this approach rigorous. A consequence of making sense of

a solution in this way is that standard calculus rules will apply when considering

transformations of Xt. Another relevant detail, following [79], is that the solution

of the SDE in (5.1.17) is determined as:

Xt = φ(BH
t , Zt) , (5.1.18)

where the function φ(x, y) : R2 7→ R satisfies ∂
∂x
φ(x, y) = σ(φ(x, y)), φ(0, y) = y

for all y ∈ R, and the process Zt solves the random ordinary differential equation:

Zt = X0 +

∫ t

0

a(BH
s , Zs)ds , (5.1.19)

where we have set:

a(x, y) = b(φ(x, y)) exp
{
−
∫ x

0

σ′(φ(u, y))du
}
. (5.1.20)

Then, it can be shown that under the conditions that σ is continuously differen-

6For H = 1/2 the Doss-Sussmann approach coincides with the Stratonovich interpretation of
the solution of an SDE, for which it is known that standard calculus rules also apply

7For a more detailed explanation the reader is referred to [79, 56]
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tiable and both b and σ′ are locally Lipschitsz, the specification of the solution Yt

in (5.1.18) is unique.

The Doss-Sussmann interpretation is relevant for anyH ∈ (0, 1) (again see [56]),

and as mentioned earlier coincides with the Stratonovich interpretation of stan-

dard SDEs with H = 1/2, see [79]. Critically, it allows for standard calculus rules,

thus, considering a sufficiently smooth mapping h and the process h(Xt), we get

the following change of variables rule:

h(Xt) = h(X0) +

∫ t

0

h′(Xs)b(Xs)ds+

∫ t

0

h′(Ys)σ(Ys)dB
H
s . (5.1.21)

This is critical, since setting h(y) =
∫ y

(1/σ)(u)du will allow for transforming the

original SDE to one that has a constant diffusion coefficient.

Hence, we can now describe the numerical scheme for the approximation of the

SDE in (5.1.14) on the regular grid {iδ}, for i = 1, 2, . . . N , and δ = `/N . We also

allow for the possibility that the drift function and diffusion coefficients depend

on some parameter θ (thus, we assume that b(x) = b(x, θ) and σ(x) = σ(x, θ)),

as this will be needed later on when developing our Bayesian inference method.

Thus, we have:

(i) Consider the process Ft =
∫ Xt
x0
σ−1(u, θ)du =: F (Xt, θ, x0). It can be easily

shown, using standard calculus, that Ft solves the SDE:

dFt = bF (Ft, θ, x0)dt+ dBH
t , F0 = 0 ,

where bF (·, θ, x0) = (b/σ)
(
F−1(·, θ, x0), θ

)
.

(ii) Apply now the standard Euler scheme, for G(i) = BH
iδ −BH

(i−1)δ:

Fi − Fi−1 = bF (Fi−1, θ, x0) δ +G(i) , F0 = 0 . (5.1.22)

(iii) Return Xi = F−1(Fi, θ, x0), for 1 ≤ i ≤ N , with X0 = x0.

We want to briefly mention that the Doss-Sussmann interpretation can be used

also for multi-dimensional SDEs, but only for scalar fBm-noise. Also, there are

many other interpretations for solving SDEs when H < 1/2, with corresponding

numerical schemes which must be higher-order (compared to Euler) for the approx-

imations to converge, see for instance [62, 31, 59], but the technicalities involved

are beyond the scope of this thesis.
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5.2 Statistical Inference with fBm

We now develop an advanced MCMC algorithm for performing parameter inference

for diffusion models driven by fBm. As in Section 3.3, we adopt a data augmen-

tation framework8 wherebdeyay the driving fBm is treated as a latent variable.

Given the parameters and the latent fBm, we can calculate the likelihood of the

data. The algorithm we describe here will be of the advanced HMC type and will

have a cost of O(N logN) per step induced by the complexity of the Davies-Harte

method for simulating the driving fBm.

More specifically, we aim to perform some Bayesian inference about the pa-

rameters of the following SDE:

dXt = b(Xt, θ)dt+ σ(Xt, θ)dB
H
t , (5.2.1)

given that we observe the process Xt with error:

Yti = Xti +N(0, ξ2) , (5.2.2)

for some ordered discrete time instances 0 < t1 < t2 < · · · < tn = ` (by convention

t0 = 0). Thus, the unknown parameter vector here is (θ,H, ξ).

Note 5.2.1. We use the model in (5.2.1) and (5.2.2) for illustration purposes.

But we should mention that the method described here is relevant for more general

data regimes than the one in (5.2.2). In particular, any context where we can have

an explicit expression of the likelihood of data Y given the underlying process X,

can in principle, be treated with our method.

Notice, that for the model structure in (5.2.1) and (5.2.2), we can sketch the

dependencies among the involved variables via the hierarchical graph in Figure 5.2.

In a data augmentation setup, an MCMC algorithm will try to sample from the

posterior distribution of the parameter vector θ and the latent diffusion path given

the data. A first issue that we need to tackle here is that BH and H are highly

correlated. In fact, given the complete continuous path of BH we can uniquely

identify H, so that the distribution of H given BH is a Dirac measure. This is

apparent for instance from the p-th variation results in (5.1.6). Indeed, using the

p-variations of a given path from BH we could easily construct a mechanism for

identifying H.

We could simply adjust p by increasing it when the p-variation of the given

8Data augmentation was originally described in [80] but expanded for our context in [71]
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Figure 5.2: Dependency Graph of default model

BH sample path is equal to zero and decreasing it when the p-variation diverges

towards infinity, until finding the value of p for which the variation would be non-

zero finite– thus, also identifying the value of the Hurst parameter H as 1/p. In

practice, a discretization of BH will be used within the algorithm, so that the

dependence with H will not be as extreme as above, but it will still be high. It is

well documented that high correlations between latent variables and parameters

can lead to very inefficient Gibbs samplers or other MCMC algorithms9.

Thus, it is important to disentangle BH and H and we can achieve this by using

the Davies-Harte method of Section 5.1.1. Indeed, in Section 5.1.1 we described the

Davies-Harte method that generates fBm sample paths using FFT. The method

boils down to the 1 − 1 linear mapping Z 7→ GN = P1:N { δH P
√

ΛHMZ } in

(5.1.13) that transforms a 2N -dimensional vector Z ∼ N(0, I2N) into an fGN at

N discrete time instances of step-size δ. That is, we have:

BH = F (Z,H), (5.2.3)

where F is a linear transform. So, we will use the 2N -vector Z as a latent variable

in our method instead of BH– as Z and H are now a-priori independent (see the

new hierarchical model structure in Figure 5.3).

Under this new model interpretation, we can write the posterior distribution

9See e.g. [75, 15, 16, 74, 61]
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Figure 5.3: Dependency Graph 2, using transformation to de-couple dependen-
cies

of interest as follows:

p(H,Z, θ, ξ|Y ) ∝ p(Y |H,Z, θ, ξ)p(H)p(Z)p(θ)p(ξ) , (5.2.4)

where, from (5.2.2) we have that:

p(Y |H,Z, θ) =
n∏
i=1

1√
2πξ2

e
−(Yti

−Xti )
2

2ξ2 . (5.2.5)

Having the full conditional distribution allows us to define an MCMC algo-

rithm. In this case we will be using advanced HMC methods to do update the

parameters H,θ and latent variables Z.

Note 5.2.2. For the remainder of this Chapter we will assume that the error

variance parameter ξ is fixed and known, so it doesn’t have to be inferred from

the data. Our presentation for the development of the method agrees with the

numerical examples we show later in this Chapter where, indeed, we fixed ξ, as

otherwise the MCMC trajectory got trapped and did not converge. We have left

the issue of inferring ξ for future work.

5.2.1 A HMC-within-Gibbs Sampler

We first present a Metropolis-within-Gibbs sampler where the updating of H, θ, Z

is in an order established from their corresponding full conditional distributions.

We apply the following approach: For the low-dimensional parameters H and θ

we use a standard HMC as described in Table 1.1 in Section 1.1.3, whereas for the
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high-dimensional parameter Z, we exploit the fact that its target distribution is

a change of measure from a Gaussian law10 and apply the advanced HMC algo-

rithm as described in Table 2.1 in Section 2.2. Notice that in the present context,

the covariance matrix for the reference Gaussian law in the change of measure is

simply the identity matrix I2N . As we may remember, one important effect of the

advanced HMC sampler is that its mixing time is mesh-free, that is: it will not

get worse with increasing N .

Step 1 Update H from p(H|θ, Z, Y ) ∝ p(Y |H,Z, θ)p(H) using standard HMC.

Step 2 Update θ from p(θ|H,Z, Y ) ∝ p(Y |H,Z, θ)p(θ) using standard HMC.

Step 3 Update Z from p(Z|H, θ, Y ) ∝ p(Y |H,Z, θ)p(Z) using advanced HMC.

Table 5.1: A Metropolis-within-Gibbs sampler for the fBm-driven diffusion model
in (5.2.1)-(5.2.2) using HMC updates.

We summarized the algorithm in Table 5.1. As said before, the implementation

of HMC requires calculating the gradient of the logarithm of the target distribu-

tion. Assuming that the gradients of the log-priors log p(θ) and log p(H) are easy

to calculate, the only challenging term is log p(Y |H,Z, θ). From the analytical

expression in (5.2.20) we have that:

log p(Y |H,Z, θ) = −
n∑
i=1

(Yti −Xti(Z,H, θ))
2

2ξ2
, (5.2.6)

where we have written Xti = Xti(Z,H, θ) to emphasize the dependence of the dif-

fusion path Xti on all the involved variables (Z,H, θ). To simplify the expressions,

we set:

Φ(Z,H, θ) = − log p(Y |H,Z, θ)− log p(H, θ)

=

∑N
i=1 (Yi −Xti(Z,H, θ))

2

2ξ2
− log p(H, θ) . (5.2.7)

So, the derivatives we would have to calculate are:

∇ZΦ(Z,H, θ) , ∂HΦ(Z,H, θ) , ∇θΦ(Z,H, θ) . (5.2.8)

We will show the details for the calculation of the derivatives in (5.2.8), but before

that, we present another algorithm which updates all parameters (Z,H, θ) jointly

10A-priori, the distribution of Z is simply the product of 2N standard Gaussians
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within an HMC scheme, as this more effective sampler requires the calculation of

the same quantities.

5.2.2 A Joint-Update HMC Sampler

The Gibbs sampler scheme sketched in Table 5.1 is not the only option available.

Indeed, we may also choose to update jointly (Z,H, θ) within an HMC sampler.

To simplify the expressions that follow we first set:

θ′ = (H, θ) .

The motivation here is that, even if a-priori Z,H, θ are independent11, a-posteriori

strong correlations could arise as the data impose a lot of restrictions on the

permitted joint values of Z,H, θ for the diffusions instances Xti(Z,H, θ) in order

to get close to the data points Yti . In the presence of such strong correlations a

joint update scheme could be more effective than the Gibbs sampler described in

Table 5.1, and indeed, this will be proven to be the case in the numerical examples

later on in this Chapter.

But first some algorithmic development is needed as the advanced HMC sam-

pler that jointly updates Z and θ′ cannot be derived directly from the advanced

HMC algorithm described in Section 2.2. This is because in that Section we de-

scribed only the update for the random element defined as a change of measure

from a Gaussian law (i.e. Z in the current context) with all other elements pre-

sumed fixed12.

Compared to the advanced HMC described earlier in Section 2.2, we now have

the extended locations and velocities:

v = (vz, vθ′) ∈ R2N+q

and:

x = (z, θ′) ∈ R2N+q

where 2N is the dimension of the Z vector and q the dimension of θ′. Same as

before we define the total energy function as:

H(x, v;M) = Φ(x) + 1
2
〈z, z〉+ 1

2
〈v,Mv〉, (5.2.9)

11For Z,H this was induced after using the Davies-Harte transform
12The approach we follow has also been presented in a parallel work in [35]
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for a user specified positive-definite mass matrix M and the term Φ(x) = Φ(z,H, θ)

as defined in (5.2.7). As before, 1
2
〈v,Mv〉 can be interpreted as the kinetic energy

and Φ(x) + 1
2
〈z, z〉 as the potential energy. We can now define the relevant distri-

bution on the joint (x, v)-space as follows:

Q(x, v;M) = exp
{
−H(x, v;M)

}
. (5.2.10)

The relevant Hamiltonian equations on R2N+q (as written for instance in (1.1.14))

are now expressed as follows:

dx

dt
= v , M

dv

dt
= −(z, 0)> −∇Φ(x) . (5.2.11)

A point of discussion is the choice of the user-defined matrix M . As per our

discussion for the advanced HMC sampler in Section 2.2: for the portion of M

that corresponds to the high-dimensional z-part of our space, the requirement to

construct an algorithm with mesh-free mixing time as N → ∞ leads to selecting

the inverse covariance of the Gaussian prior for z, i.e. simply the identity matrix

I2N . This motivates the following specification for the complete mass matrix M :

M =

 I2N 0

0 A

 , A = diag{ai : 1 ≤ i ≤ q} . (5.2.12)

Under this choice of M we can re-write the Hamiltonian equations in (5.2.11) as

follows:
dx

dt
= v ,

dv

dt
= −(z, 0)> −M−1∇Φ(x) . (5.2.13)

Note 5.2.3. Recall that a good choice for M is one that resembles the inverse

covariance of the target distribution. This intuition can guide the choice of the

diagonal matrix A. Indeed, in the numerical implementations later on we choose

the coefficients ai to be close to the inverse of the corresponding posterior marginal

variances, with the later estimated by preliminary runs of the algorithm.

As with the derivation of advanced HMC in Section 2.2, we split (5.2.13) into

a coupled system of equations:

dx

dt
= 0 ,

dv

dt
= −M−1∇Φ(x) ; (5.2.14)

dx

dt
= v ,

dv

dt
= −(z, 0)> . (5.2.15)

Both of these equations can be solved analytically, thus, we construct a numerical

scheme for the original dynamics in (5.2.13) by synthesising steps from the solu-
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tions operators of (5.2.14) and (5.2.15). Indeed, the solvers for (5.2.14) and (5.2.15)

are defined respectively as:

Ξt(x, v) =
(
x, v − tM−1∇Φ(x)

)
;

Ξ̃t(x, v) =
(

(cos(t)z + sin(t)vz, θ
′ + tvθ′), (− sin(t)z + cos(t)vz, vθ′)

)
. (5.2.16)

The leapfrog integrator we develop for the original dynamics (5.2.13) is obtained

by alternating these two operators as follows:

Ψh = Ξh/2 ◦ Ξ̃h ◦ Ξh/2 , (5.2.17)

for sufficiently small values of the step-size tuning parameter h. We can synthesize

a number of I = bT/hc applications of Ψh in (5.2.17) to traverse the Hamiltonian

dynamics up to some time horizon T > 0. We denote by ΨI
h the complete synthe-

sized operator. It is easy to verify that Ψh retains the volume preservation and

symmetricity properties of the standard leapfrog operator13, thus, the acceptance

probability for the developed HMC method is the same as for standard HMC.

The complete advanced HMC sampler that updates jointly the variables z and

θ′ is summarised in Table 5.2.

5.2.3 Calculation of Derivatives

We have identified the derivatives needed for our advanced HMC samplers in (5.2.8).

These can be found using the chain rule– with some caution so that computational

costs remain O(N logN). Recall that processes BH and X are in practice consid-

ered on the regular grid iδ for δ = `/N . Also, we take under careful consideration

the details for the numerical scheme for X described in steps (i)-(iii) in Section

5.1.3. Thus, we have to keep in mind the composition Z 7→ GN 7→ (F1, F2, . . . , FN)

defined therein. A direct application of the chain rule gives the following:

∇Z log p(Y |Z,H, θ) =

(
dGN

dZ

)>(
dF

dGN

)>
∇F log p(Y |F, θ) ;

∇θ log p(Y |Z,H, θ, x0) =

(
dF

dθ

)>
∇F log p(Y |F, θ) +∇θ log p(Y |F, θ) ;

∂H log p(Y |Z,H, θ) =

(
dGN

dH

)>(
dF

dGN

)>
∇F log p(Y |F, θ) . (5.2.18)

13As specified in Theorem 1.1.2 in Section 1.1.3
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Advanced Joint-Update HMC:

(i) Start with an initial value x(0) = (z(0), θ′(0)) with elements z(0) ∼ N(0, I2N)
and θ′(0) ∼ p(θ′), and set k = 0. Specify a mass-matrix M as in (5.2.12).

(ii) Given x(k), sample v(k) ∼ N(0,M−1) and propose:

x∗ = PxΨI
h(x

(k), v(k)) .

(iii) Consider:
a = 1 ∧ exp

{
−∆H(x(k), v(k))

}
for ∆H(x, v) = H(ΨI

h(x, v))−H(x, v).

(iv) Set x(k+1) = x∗ with probability a; otherwise set x(k+1) = x(k).

(v) Set k → k + 1 and go to (ii).

Table 5.2: Advanced joint updated HMC, with target distribution as specified
in (5.2.4), with ξ assumed fixed and known.

where we have set:

dGN

dF
= (∂G(i)/∂Fj)ij ∈ RN×N ;

dGN

dZ
= (∂G(i)/∂Zj)ij ∈ RN×(2N) ;

dF

dθ
= (∂Fi/∂θj)ij ∈ RN×p ;

dGN

dH
= (dG(i)/dH)i ∈ RN .

with p being the dimension of θ. We start from dGN/dF . Recall the Euler ap-

proximation of F in (5.1.22). We now set:

fi = −1− b′F (Fi−1, θ) δ , i = 2, 3, . . . , N,

and obtain immediately the following calculation:

dGN

dF
=



1 0 0 · · · 0 0

f2 1 0 · · · 0 0

0 f3 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · fN 1


.
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Then, from the details of the Davies and Harte algorithm in Section 5.1.1, we have:

dGN

dZ
= P1:N,1:(2N){ δHP

√
ΛHM} ,

where P1:N,1:(2N) denotes the projection of the (2N) × (2N)-dimensional input

matrix to its first N rows. The N rows of dF/dθ are obtained recursively via the

Euler scheme (5.1.22) starting from:

∇θF1 = ∇θbF (F0, θ) δ ,

and for i = 2, . . . , N :

∇θFi = ∇θFi−1 ·
(
1 + b′F (Fi−1, θ) δ

)
+∇θbF (Fi−1, θ) δ .

Making use again of the Davies and Harte method, we have that:

dGN

dH
= δH log(δ)P1:N{P

√
ΛHM Z}+ δHP1:N

{
P
dΛ

1/2
H

dH
MZ

}
.

Then, using the expression in (5.1.10) for the elements {λk}2N−1
k=0 of the diagonal

matrix ΛH , we get:

dλ
1/2
k

dH
= 1

2λ
1/2
k

2N−1∑
j=0

dc0,j

dH
exp

(
− 2πi jk

2N

)
. (5.2.19)

The remaining derivatives dc0,j/dH are easy to obtain via dγ(k)/dH where γ(·)
are the lagged autocovariances of fBm increments defined in (5.1.4) for δ = 1.

From there, we have that:

dγ(k)
dH

=


0 , k = 0 ; log(2)22H , k = 1 ;

(k + 1)2H log(k + 1) + (k − 1)2H log(k − 1)− 2 log(k)k2H , k ≥ 2 .

Notice that the calculation of dGN/dH requires O(N logN) operations using FFT.

It remains to calculate ∇F log p(Y |F, θ) and ∇θ log p(Y |F, θ). We recall here

that we have:

p(Y |F, θ) =
n∏
i=1

1√
2πξ2

e
−(Yti

−Xti (Fti ,θ))
2

2ξ2 . (5.2.20)

120



For 1 ≤ k ≤ n, and jk = btk/δc (and j0 ≡ 0), we clearly have for 1 ≤ j ≤ N :

{
∇F log p(Y |F, θ)

}
i

=
n∑
k=1

(Ytk−Xtk (Ftk ,θ))

ξ2
· ∂Xtk
∂Ftk
· I [ jk = i ] . (5.2.21)

A very similar calculation is carried out for the derivative ∇θ log p(Y |F, θ) which

we omit here for brevity.

5.3 Validity of Joint-Update Advanced HMC Sam-

pler

As noted before, the advantage of an advanced HMC algorithm versus its standard

counterpart is its mesh-free mixing time i.e. as N increases and h remains fixed,

algorithmic convergence and mixing properties do not deteriorate (of course the

computing cost will increase as O(N logN)). Indeed, this is exactly what we have

proven in Section 2.2.1 for the version of advanced HMC presented there. We will

now make a very similar proof for the case of the Joint-Update advanced HMC

sampler presented in this Chapter, in Section 5.2.2. Same as with the proof in

Section 2.2.1 we follow closely the derivations of [5] and [35].

In this context, we adopt a scenario where the variable z corresponds to an

infinite-dimensional vector comprised a-priori of i.i.d. standard Gaussian random

variables. That is, we now have z ∈ R∞ and θ′ ∈ Rq. The target distribution, say,

Π = Π(Z, θ) corresponds to the posterior of Z, θ observations Y and assumed to

be defined on the following space:

H := R∞ × Rq ,

via the following change of measure:

dΠ

d{⊗∞i=1N(0, 1)× Lebq}
(Z, θ′ | Y ) ∝ e−Φ(Z,θ′), (5.3.1)

for the function Φ : H 7→ R defined in (5.2.7). We also need the infinite-

dimensional vector of partial derivatives ∇Φ : H 7→ H. Then, the velocity com-

ponent v = (vz, vθ′) will also lie in the same space, v ∈ H. The mass matrix M ,

which is specified in (5.2.12) for finite dimensions now has an infinite-dimensional

identity matrix I∞ at its upper-left block. We also consider the analogue of the

bivariate target Q(dx, dv) in (5.2.10) in infinite-dimensions corresponding, in x-

direction, to the posterior of x = (z, θ′) given the data Y . Notice that we also have
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that Ξh/2, Ξ̃h,Ψh : H×H 7→ H×H.
The main idea of the proof here (as also in the proof of Section 2.2.1) is that

the leapfrog mapping of the advanced algorithm Ψh projects (x0, v0) ∼ Q(dx, dv)

to a random variable (xh, vh) which has a distribution that is absolutely continuous

with respect to Q(dx, dv). This attribute implies the existence of a non-zero ac-

ceptance probability even in the current infinite-dimensional set-up corresponding

to N =∞. We can see this intuitively by looking at the specification of the indi-

vidual maps Ξh/2, Ξ̃h which are synthesized to provide Ψh in (5.2.17). For operator

Ξ̃h, the above prescribed attribute of preserving the absolute continuity properties

of Q(dx, dv) is apparent, since Ξ̃h simply performs a rotation on the (z, vz)-space

which is invariant for
∏∞

i=1 N(0, 1) ⊗
∏∞

i=1N(0, 1), therefore preserving the abso-

lute continuity properties of Q(dx, dv). Then for step Ξh/2 in (5.2.17), the gradient

∇zΦ(z, θ′) needs to be in the Cameron-Martin space of
∏∞

i=1N(0, 1) for the trans-

lation v 7→ v − h
2
M−1∇Φ(x) to preserve the absolute continuity properties of the

v-marginal Q(dv). This Cameron-Martin space is precisely the `2-space of squared

summable infinite sequences (see e.g. Chapter 2 of [25]).

For the sake of completeness, I will include here the full proof for the well-

posedness of the algorithm in infinite-dimensional as described also in the parallel

work in [35]. We begin by defining the reference measure on the joint (x, v)-space

as follows:

Q0 = Q0(dx, dv) =

(
∞∏
i=1

N(0, 1)⊗ Lebq

)
⊗

(
∞∏
i=1

N(0, 1)⊗Nq(0, A
−1)

)
,

so that the joint target distribution is expressed as:

Q(dx, dv) ∝ exp{−Φ(x)}Q0(dx, dv) .

Following closely the proof in Section 2.2.1, we consider the sequence of probability

measures:

Q(i) = Q ◦Ψ−ih , 1 ≤ i ≤ I, (5.3.2)

which corresponds precisely to the push-forward projection flow of the target

measure Q(dx, dv) under application of the leapfrog mappings. As in Proposi-

tion 2.2.1,we can obtain a recursive formula for the Radon-Nikodym derivatives
dQ(i)

dQ0
for i = 1, 2, . . . , I. Recall here that:

C = M−1 =

 I∞ 0

0 A

 , A = diag{ai : 1 ≤ i ≤ q} .
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We also set:

g(x) := −C1/2∇Φ(x), x ∈ H .

From the definition of Ψh we have the following recursion of probability measures:

Q(i) = Q(i−1) ◦ Ξ−1
h/2 ◦ Ξ̃−1

h ◦ Ξ−1
h/2.

Given the assumption ∇zΦ(z, θ) ∈ `2, we have that Q0◦Ξ−1
h/2 and Q0 are absolutely

continuos with respect to each other, with Radon-Nikodym derivative:

d{Q0 ◦ Ξ−1
h/2}

dQ0

(x, v) = exp{〈h
2
g(x), C−1/2v〉 − 1

2
|h

2
g(x)|2} =: G(x, v). (5.3.3)

The stated assumption on ∇zΦ(x) ensures that the inner products appearing in

the density will converge. The above result is simply an application of Proposition

1.4.1 in Section 1.4, which is a statement of Theorem 2.21 of [25]. Thus, we have:

dQ(i)

dQ0

(xi, vi) =
dQ(i)

d{Q0 ◦ Ξ−1
h/2}

d{Q0 ◦ Ξ−1
h/2}

dQ0

(xi, vi)

=
dQ(i)

d{Q0 ◦ Ξ−1
h/2}

(xi, vi)×G(xi, vi) . (5.3.4)

In the calculations that follow we make repeated use of the following standard

property for the Radon–Nikodym derivative: if M1, M2 are probability measures

on the measurable space (E, E), and F is a measurable mapping F : E 7→ E ′ for

some second measurable space (E ′, E)′, then we have that:

d{M1 ◦ F−1}
d{M1 ◦ F−1}

(x) =
dM1

dM2

(F−1(x)) .

Also, we notice here that Q0 ◦ Ξ̃h ≡ Q0 as the mapping Ξ̃h will rotate the infinite-

dimensional products of independent standard Gaussians for the z, vz components

of Q0, thus, will preserve their distribution. For the θ-component, Ξ̃h is just a linear

mapping (previous value plus a constant), thus, it will translate the Lebesque

measure and will also preserve it. With the above results in mind, we work as
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follows:

dQ(i)

d{Q0 ◦ Ξ−1
h/2}

(xi, vi) =
d{Q(i) ◦ Ξh/2}

dQ0

(Ξ−1
h/2(xi, vi))

=
d{Q(i) ◦ Ξh/2 ◦ Ξ̃h}

dQ0

(Ξ̃−1
h (Ξ−1

h/2(xi, vi)))

=
d{Q(i) ◦ Ξh/2 ◦ Ξ̃h ◦ Ξh/2}

d{Q0 ◦ Ξh/2}
(Ξ−1

h/2(Ξ̃−1
h (Ξ−1

h/2(xi, vi))))

=
dQ(i−1)

d{Q0 ◦ Ξh/2}
(xi−1, vi−1) .

Using now the chain rule and, again, (5.3.3) we get that:

dQ(i−1)

d{Q0 ◦ Ξh/2}
(xi−1, vi−1) =

dQ(i−1)

dQ0

(xi−1, vi−1)
dQ0

d{Q0 ◦ Ξh/2}
(xi−1, vi−1)

=
dQ(i−1)

dQ0

(xi−1, vi−1)
dQ0 ◦ Ξ−1

h/2

Q0

(Ξh/2(xi−1, vi−1))

≡ dQ(i−1)

dQ0

(xi−1, vi−1) ·G(xi−1, vi−1 + h
2
C1/2g(xi−1)) . (5.3.5)

Thus, bringing together (5.3.4) and (5.3.5), overall we have shown that:

dQ(i)

dQ0

(xi, vi) =
dQ(i−1)

dQ0

(xi−1, vi−1) ·G(xi, vi) ·G(xi−1, vi−1 + h
2
C1/2g(xi−1)) .

Applying the above recursion repeatedly will give that:

dQ(I)

dQ0

(xI , vI) =
dQ

dQ0

(x0, v0)×
I∏
i=1

G(xi, vi)G(xi−1, vi−1 + h
2
C1/2g(xi−1)) , (5.3.6)

now, using the fact that:

Ψh = Ξh/2 ◦ Ξ̃h ◦ Ξh/2, (5.3.7)

and some long but otherwise straightforward algebraic calculations, we find that:

log{G(xi, vi) ·G(xi−1, vi−1 + h
2
C1/2g(xi−1))} =

= 1
2
〈xi, Lxi〉+ 1

2
〈vi, Lvi〉 − 1

2
〈xi−1, Lxi−1〉 − 1

2
〈vi−1, Lvi−1〉 .

Therefore, using this last equation within (5.3.6) and taking advantage of the
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induced cancellations, we obtain that:

dQ(I)

dQ0

(xI , vI) = exp{∆H(x0, v0)− Φ(xI)} . (5.3.8)

So, we have proven that the leapfrog mappings preserve the absolute continuity

properties of Q(dx, dv) with the particular density for Q(I)(dx, dv) found in (5.3.8).

Using this expression for Q(I)(dx, dv) and following the exact steps in the proof

of Theorem 2.2.1, we can obtain that the Markov transitions on the x-coordinate

determined by the joint-update advanced HMC method preserve the target distri-

bution for x.

5.4 Results

In this Section we apply the algorithms that hitherto we have introduced in this

Chapter. In particular, we apply the joint-update scheme as summarised in Ta-

ble 5.2. The specific diffusion model that we will be using is the fractional Ornstein-

Uhlenbeck process:

dXt = κ(µ−Xt)dt+ σdBH
t ,

observed with error, so that:

Yti = Xti +N(0, ξ2) .

Our aim is to infer parameters θ = (κ, µ, σ, x0) and H, given observations Y . The

extra parameter x0 is the starting value of the diffusion process.

Note 5.4.1. The herewith suggested signal and data dynamics could be used to

model the Chicago Board Options Exchange Market Volatility Index (VIX), as

originally described in [12]. Since VIX data are computed by composing a series of

indexes, the quoted values could be modelled as observations from the underlying

stochastic volatility with some error. Additionally, fBm could be a good choice for

modelling the underlying volatility process as suggested for instance in work [20].

To test the algorithm, we first generate data Y with known parameters:

κ = 0.03; µ = −3; σ = 0.08;

H = 0.85; ξ = 1; X0 = 3 ,

for 500 observations, at regular intervals of step-size 1. We used a joint update

scheme combined with a data augmentation scheme where δ = 0.05 (making the
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total number of points generated per iteration 9980), we run it for 20, 000 MCMC

iterations.

Figure 5.4: Trace Plots for Joint-Update HMC over 20,000 iterations. The black
line shows the true parameters values.

Figure 5.4 shows HMC trace plots for all variables of interest, Figure 5.5

shows estimations of the marginal densities and bivariate traceplots for the MCMC

points. The output suggests that the algorithm is very effective at exploring the

posterior distribution in this case. The trace plots appear to have good mixing. To

understand better the algorithmic performance, we ran the algorithm again but

this time with parameter σ fixed. We can see from the trace plot in Figure 5.6,

that we now have a better mixing for parameter H. We show the related density

estimates in Figure 5.7.

Additionally, we repeated the same experiment with H < 0.5 using the follow-

ing parameter values:

κ = 0.03; µ = −3; σ = 0.08;

H = 0.35; ξ = 1; X0 = 3 ,

for 500 observations, at regular intervals of step-size 1. We can see in Figure 5.8

and Figure 5.9 shows that there is some relatively bad mixing for variables H and

σ. Fixing σ again leads to better results as you can see in Figures 5.10 and 5.11.
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Figure 5.5: Distributions of simulated values. The green dots show the true
parameter values.

Figure 5.6: Trace Plots for Joint-Update HMC sampler with 20,000 iterations
with σ fixed. The solid black lines show the true parameter values.
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Figure 5.7: Distributions of simulated values with σ fixed. The green dots show
the true parameter values.

Figure 5.8: Traceplot of simulated values where line represents theoretical true
values for H = 0.35.
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Figure 5.9: Distributions of simulated values where dot represents theoretical
true values for H = 0.35.

Figure 5.10: Traceplot of simulated values where line represents theoretical true
values for H = 0.35 and fixed σ.
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Figure 5.11: Distributions of simulated values where dot represents theoretical
true values for H = 0.35 and fixed σ.

In general, the Joint-Update HMC sampler appears to be very effective when

σ is fixed. When σ varies, a deeper exploration of the method will be useful to

improve algorithmic performance.

5.5 Summary

In this Chapter we implemented a novel joint scheme update to sample from a

path observed with error, where the path itself was driven by an fBm instead

of a Wiener process. We defined fBm as a generalisation of Brownian motion

allowing for dependence between innovations, this is done using the additional

Hurst parameter H, such that:

• if 0 < H < 1
2
, then the increments are negatively correlated;

• if H = 1
2

then the increments are independent, and BH is simply a Wiener

process;

• if 1
2
< H < 1 then the increments are positively correlated (i.e. γδ(j) > 0).

fBm is a building block for useful non-Markovian models in many real world ap-

plications where Wiener’s no memory property may prove unrealistic for many
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practical applications. Due to its long-range dependence, using blocking strate-

gies within MCMC algorithms adds another level of complexity since, unlike, the

Markovian SDE case, blocks are correlated with each other. Thus, blocking may

prove computationally intensive when using fBm. HMC superior scaling with re-

spect to the path lengths versus MALA and RWM proved useful.

In previous chapters, we had defined our Advanced Algorithms to work for

target distributions that can be defined as changes of measures w.r.t. a Gaussian

measure. Here, we are inferring parameters from a SDE that is being driven by

fBm where it is not immediately obvious that it can be defined w.r.t a Gaussian

measure. We achieved this by a well-planned use of the Davies-Harte algorithm to

provide the mapping between fBm and uncorrelated white noise that we used to

decouple the a-priori involved model parameters from the high-dimensional latent

variables. We examined other methods for simulating fBm but concluded that

Davies-Harte algorithm provided a convenient mapping between Gaussian white

noise and fBm.

Finally, we provided an example where all this properties came together by

implementing a join-update algorithm to sample parameters from a path observed

with error. The implemented algorithm worked well in most cases, but there were

some issues with more complex models, specifically when it had to sample both

the diffusion coefficient and the Hurst coefficient. This shows that there might be

some issues with high correlation between those parameters but we leave it to the

reader as a topic for further research.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

The advanced MCMC algorithms defined in this thesis are relevant for target dis-

tributions defined as change of measures from Gaussian laws. This provides us with

a lot of flexibility to apply these methods to a wider range of problems; including

models driven by Stochastic Differential Equations (SDEs). In our thesis we fo-

cused on developing and testing MCMC algorithms for simulation and inference

in a variety of SDE-driven models because SDEs are useful for modelling a wide

variety of problems1. The continuous-time high-frequency nature of SDE sample

paths means that traditional MCMC methods can often be unsuitable for the task

at hand. The advanced MCMC algorithms shown in this thesis are well-defined

on the infinite-dimensional path-space, thus, have superior properties in terms of

computationally complexity when compared with standard MCMC methods. In

this thesis we presented a number of proofs and results on the well-definition,

suitability and computational efficiency of these algorithms.

More specifically, the advanced algorithms were well-defined for target distri-

butions Π on general (separable) Hilbert spaces H that were defined as a change

of measure with respect to a Gaussian one Π0 = N(0, C), i.e.:

dΠ

dΠ0

(x) = exp{−Φ(x)}, (6.1.1)

where Φ(x) is a function defined on H. As a result of the well-definition, ad-

vanced algorithms have mesh-free mixing properties, that is: their convergence

time does not deteriorate when the dimension of the path increases (when dis-

cretized for computer purposes). Importantly, using advanced methods, SDEs

are often discretized when using computational methods to sample from them, so

1See e.g. [65, 53] for example applications, sampling methods and mathematical properties
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being mesh-free means that as the discretization becomes finer the mixing time

remains unchanged. Our methods were built on earlier research by [7, 8, 78] which

made a significant contribution on the development of several advanced MCMC

algorithms. We expanded these contributions in several directions in this thesis.

Our contributions were in four main areas:

• First, we presented a new proof for the well-posedness of advanced Hybrid

Monte Carlo (HMC), which is simpler and more direct when compared to the

one in [7]. This allowed us to verify the validity of the required assumptions

for well-posedness in several practical applications.

• Second, by comparing analytically and with numerical examples the compu-

tational costs of different advanced MCMC algorithms, we showed the very

interesting result that both advanced Random Walk Metropolis (RWM) and

Metropolis-adjusted Langevin Algorithm (MALA) have similar complexity

when applied to ‘long’ diffusion paths, whereas HMC is more efficient than

both of them. Thus, a well planned use of the derivative can have a big

impact on the effectiveness of the selected computational method2.

• Third, we demonstrated that the Golightly-Wilkinson transformation can

be applied to a wider range of applications than the Lamperti when using

HMC algorithms to sample from complex target distributions such as SDEs

with general diffusion coefficients. We explored a range of uses for HMC.

One of them by using HMC to sample from more complex target distribu-

tions, such as SDEs with general diffusion coefficients (as opposed to those

with constant diffusion coefficients). This direction required a path tranform

known as the Golightly-Wilkinson transformation, which effectively maps a

Weiner-like process to an SDE with a general diffusion coefficient. Previous

transformations, like the Lamperti, require the diffusion process to be re-

ducible (see e.g. [2]), while the Golightly-Wilkinson applies in a much wider

range of applications. We also used this transformation for prior decoupling

when we employed HMC within a joint update algorithm.

• Four, we implemented a novel joint scheme update to sample from a path

observed with error, where the path itself was driven by an fBm instead of a

Wiener process. Here HMC’s scaling properties proved desirable, since, the

2Our analytic results have been motivated by calculations in the PhD thesis [83], where
interest lies in identifying algorithmic complexity with respect to the amount of ‘non-linearity’
in the drift for both advanced RWM and advanced MALA

134



non-Markovian properties of fBm made techniques like blocking unavailable.

We achieved this by a well-planned use of the Davies-Harte algorithm to pro-

vide the mapping between fBm and uncorrelated white noise that we used to

decouple the a-priori involved model parameters from the high-dimensional

latent variables. A fBm is a generalization of Brownian motion allowing

for dependence between innovations. It is a building block for useful non-

Markovian models in many real world applications, this is because the no

memory property of a Wiener process may prove unrealistic for many practi-

cal applications. Due to its long-range dependence, using blocking strategies

within MCMC algorithms adds another level of complexity since, unlike, the

Markovian SDE case, blocks are correlated with each other. Thus, blocking

may prove computationally intensive when using fBm, and this was a setup

where the HMC superior scaling with respect to the path lengths versus

MALA and RWM proved useful.

Several algorithms have been developed to sample a fBm path, and some

of them are based on the Cholesky decomposition of the related covariance

matrix. In this thesis we focused on the Davies-Harte method. This method

makes a clever use of a Fast Fourier Transform (FFT) to achieve an efficiency3

of O(N logN) when simulating fBm, which is an important improvement

over other algorithms. The Davies-Harte method provided a mapping be-

tween a fBm path and a vector of uncorrelated white noise, therefore, in the

context of a joint-update algorithm, it was also used to decouple the a-priori

involved model parameters from the high-dimensional latent variables.

Finally, we provided an example where all these properties came together

to produce an effective sampling algorithm in the non-Markovian setup. We

implemented a joint-update algorithm to sample parameters from a path

observed with error, where the path itself was driven by a fBm instead of

a Wiener process. Because of this, blocking is computationally intensive

and consequently the advanced HMC proved more effective than RWM or

MALA. Additionally, we used a modified version of the Golightly-Wilkinson

transformation alongside the Davies-Harte algorithm to decouple the param-

eters from the latent variables a-priori. After completing the algorithm we

showed numerically that it worked very effectively in the comparisons we

continued to perform.

3N is the number of discretized times considered along the path
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6.2 Further Work

In this thesis we have focused on MALA and, mainly, HMC algorithms. We

have discussed advanced versions adapted to be effective on diffusion pathspaces

or general settings where the target distributions are change of measure from

Gaussian, and we have illustrated their superiority versus corresponding standard

MCMC algorithms. We have also applied the method empirically in a number

of diffusion models. But, still, there are many directions for further algorithmic

advancements that future research could investigate, in this chapter we indicate

some of the paths that further work could take.

HMC seems to be particularly effective at providing big steps in complex high-

dimensional state spaces, thus, providing very good mixing, but such efficiency

comes at a cost. One issue is that the algorithm involves important user-specified

parameters, namely the time horizon for the Hamiltonian dynamics T , the step-

size h and the mass matrix M . This has an effect on computational power. Some

recent algorithms in the literature that try to address this issue: One that has

attracted a lot of interest is the No U-turn Sampler (NUTS) in [50], which I will

discuss in the sequel. Another issue is that HMC requires the specification of the

mass matrix, denoted M in the previous chapters. Indeed, the choice of mass

matrix M for standard HMC is an area of study all onto itself. We will discuss one

fairly recent field of research on this matter involving Riemannian-manifold HMC

methods [42]. In the case of fractional Brownian motion models we have observed

that many times it is not reasonable to assume a constant Hurst parameter over

long periods of time, so there is plenty of room for research in this issue alone.

In the sequel, we highlight a number of research directions that could be consid-

ered in the near future, they are related to the above discussion, and are relevant

to the subject of this thesis.

6.2.1 Non-Constant Hurst Parameter

In Chapter 5 we developed a joint update scheme to infer the parameters of a

fBm-driven diffusion model using VIX data, we assumed a modelling structure

with unknown but fixed Hurst parameter H. Yet, one can reasonably expect

that the Hurst parameter H will not be constant over a long enough time period

of observations. Thus, one can try to develop a more realistic model allowing

for changes in the value of H. One alternative can be to adopt a time-varying

framework using an autoregressive model. That is, we can construct, for instance,
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the following model:

Yti = Xti +N(0, ξ2) ,

for iid Gaussian errors with variance ξ2 > 0 and a fractional Ornstein-Uhlenbeck

volatility process:

dXt = κ(µ−Xt)dt+ σdBHt
t . (6.2.1)

for appropriate parameters (κ, µ, σ). The Hurst parameter could be modelled to

change with time, say for instance, on a monthly basis so that (with a slight abuse

of notation):

Hm = µH + ϕ(Hm−1 − µH) + εm, εt ∼ N(0, τ 2) ,

for parameters ϕ ∈ (−1, 1) and µH ∈ (0, 1), τ 2 > 0. In between months (continuing

with this example) the value of the Hurst parameter can be assumed to be fixed.

To complete the model, we need to specify the joint distribution structure of the

segments of the SDE (6.2.1) over the different months. The obvious choice is to

assume independency over the paths of the fractional Brownian motion with the

different Hurst parameters. In this example we have decided to define H as an

AR(1) model for illustration purposes, but other relevant time series models could

have been chosen.

To perform Bayesian inference for this model we need to appropriately adjust

the MCMC framework we described in Chapter 5. It seems that using the Davies

and Harte sampling method in this context will be inappropriate, as using a stream

of iid standard Gaussians {Zi}2N
i=1 to cover the complete time period under con-

sideration, by using sub-blocks of the Z’s for each of the different sub-periods of

constant H, it would produce discontinuities in the conditional likelihood func-

tion p(Y |Z, θ) with θ denoting all model parameters. If such is the case, maybe

a sequential-in-time generation of the fBm will be more appropriate, using, for

instance, the Hosking method in [51], which, however, will be of cost O(N2). In

general, this direction is very interesting and is left for future research.

6.2.2 No U-Turn Sampler

The motivation for NUTS stems from the need to specify effectively the time

horizon parameter T within HMC. Setting a small time horizon T risks inducing

random walk behaviour, whereas setting a too large time horizon T risks having

the Hamiltonian trajectory turning back towards its starting point, thus, wasting

computational power. In Figure 6.1 we illustrate graphically the effect of choice of

137



T , with the green arrows representing the ‘desired’ Hamiltonian trajectory, while

the red arrows are the unwanted leapfrog steps where the trajectory performs a

U-turn and goes back to its starting position.

Figure 6.1: An example of too many Leapfrog steps.

We don’t plan to cover the No U-Turn Sampler (NUTS) in full detail here,

instead we encourage the reader to seek the source material [50]. Also, we rec-

ommend the incredibly detailed open-source package STAN in [77] accompanying

the method and that provides a lot of details on the implementation of this algo-

rithm. Nevertheless, we now provide a brief intuition on the main aspects of the

algorithm.

NUTS, originally introduced in [50], aims to improve upon standard HMC

by automatically selecting (on-the-fly) a varying time horizon T . The basic idea

about when to stop the leapfrog steps is very simple. We want to continue applying

leapfrog steps as long as the current location, say x′, is getting further away from

the starting location x. Correspondingly, we want to terminate the algorithm when

this distance starts decreasing. To decide this, the algorithm uses the dot product

of the current velocity vector v′ against the vector of the difference between the

initial position and current location (x′ − x). This is because this inner product

corresponds precisely to the rate of change of the the squared distance, that is:

d

dt

(x′ − x) · (x′ − x)

2
= (x′ − x) · d

dt
(x′ − x) = (x′ − x) · v′ . (6.2.2)
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When this measure becomes negative the square distance starts decreasing, sig-

nalling the point where the Hamiltonian trajectory should be terminated.

It is certainly tempting to simply run a standard HMC, and then for each step

keep track of (x′ − x) · ρ′ over a number of leapfrog steps which are stopped when

the inner product becomes negative. Then accept/reject the proposed location via

the standard HMC acceptance probability. This may ensure that the trajectory

will avoid a U-turn, however such algorithm will typically not have the desired

invariant distribution and will give wrong samplers.

The main contribution of [50] is precisely that the authors have developed an

algorithm that ensures that the leapfrog integration of the Hamiltonian dynamics

stops when starting a U-turn, while at the same time making sure that the target

distribution is the invariant distribution of the induced dynamics. Without going

into full details, we briefly mention here that NUTS uses the leapfrog integration to

trace out a path forward or backwards in fictitious time, first running forwards or

backwards 1 step, then forwards or backwards 2 steps, then forwards or backwards

4 steps, and so on. This doubling process implicitly produces a balanced binary

tree where every leaf node is a position and velocity state (x, v). This doubling

process is stopped when the sub-trajectory from the leftmost to the rightmost

nodes of any balanced subtree of the overall binary tree starts to double back onto

itself. At this point NUTS stops the simulation and samples from among the set

of points computed during the simulation4.

NUTS algorithm provides a very interesting contribution to the HMC machin-

ery. Since the Hamiltonian trajectories are stopped before they can double-back,

there is a good argument that the induced method could run at least as efficiently

as a finely tuned standard HMC. This is certainly confirmed in the numerical

study shown in Section 4.4 of [50], where at its worst NUTS performed as well as

HMC and at its best, performed three times better. We want to emphasize, that

besides the improved mixing, an important aspect of NUTS is that it allows for

the specification of the time horizon parameter on-the-fly.

At the moment NUTS has been setup with the framework of a standard HMC

algorithm. For the purposes of this thesis, it would certainly be of interest to

develop a NUTS version for the advanced HMC, so that the method also becomes

effective for high-dimensional target distributions defined as change of measure

from Gaussian laws. Indeed, it would be interesting to bring some of the improve-

ments that NUTS can deliver within the context of sampling diffusion sample

4A pseudocode detailing further the algorithm can be found in Section 3 of [50]
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paths. It is unclear if one would experience the same increase of efficiency as seen

in [50], so a numerical study would be needed. We leave this direction open for

future research.

6.2.3 Riemannian Manifold MCMC

We now look at the issue of the specification of the mass matrix M within the

HMC algorithm. In the derivation of advanced HMC we chose a mass matrix

M = Σ−1, with Σ being the covariance operator of the reference Gaussian mea-

sure. This selection is effective at delivering a method with mesh-free mixing

time, however, it is blind to the data and does not adjust to the actual covari-

ance structure of the posterior distribution. Recent methodological developments

for standard HMC have looked at challenging target distributions with complex

local-correlation structures. Such developments exploit mathematical theory on

Riemannian manifolds and are based on Hamiltonian dynamics with non-constant

mass matrix. This methodology introduced in [42] shows to be effective for target

distributions as prescribed above. One apparent direction of research here is to

combine the strengths of an advanced with a manifold HMC, with the aim of con-

structing manifold-based algorithms which promise to be robust when addressing

high-dimensional target distributions defined as change of measure from Gaussian

laws.

A first preliminary attempt in such research direction has already been made in

the recent work of [4]. Indeed, the method in [4] looks at the Manifold Metropolis-

adjusted Langevin algorithm (MMALA), originally introduced in [42], and suggests

an advanced version of it which is robust in high-dimensions (labeled∞-MMALA).

We will cover here the basics of MMALA and∞-MMALA very briefly, for a more

detail explanation the reader is advised to consult the source material in [42] and [4]

respectively.

Same as with our standard setup for high-dimensional target distributions, we

wish to simulate a distribution defined on a Hilbert space H as follows:

Π(x) ∝ exp{l(x)} = exp
{
− Φ(x)− 1

2
〈x− µ, L(x− µ)〉

}
, (6.2.3)

for a prior mean µ ∈ H, a mapping Φ : H 7→ R, with L = Σ−1 being the inverse of

the covariance matrix of the reference Gaussian measure. Similarly to MALA, its

manifold version MMALA uses the dynamics of the Langevin SDE but this time as

defined on the manifold space generated by an appropriately chosen metric tensor

G(x). In particular, the analytical expression for the SDE on the manifold is as
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follows:

dx = 1
2
∇̃l(x) dt+ db̃ , (6.2.4)

with ∇̃ = G−1(x)∇ corresponding to the analogue of differentiation along the

manifold and db̃ denoting infinitesimal increments of a Brownian motion on the

manifold. We assume here that the state-space is x ∈ RN so that G(x)−1 is a

symmetric positive-definite matrix in RN×N . Making use of the detailed expression

for a Brownian motion on a manifold specified by the tensor G(x), the work in

[42] shows that the manifold dynamics in (6.2.4) can be equivalently be expressed

in terms of the following standard SDE on the Euclidean space RN :

dx = G(x)−1
{

1
2
∇l(x) + 1

2
∇ log |G(x)|+∇

}
dt+G(x)−1/2db , (6.2.5)

where db now represents increments of standard Brownian motion and |G(x)| is the

determinant of G(x). One now needs to discretize the continuous-time Langevin

SDE to come up with a proposal for the MCMC algorithm. MMALA considers

a standard Euler scheme. Also, it is suggested in [42] that one can keep only

the term 1
2
G(x)−1l(x) from the drift function in (6.2.5) and still end up with a

powerful method, thus avoiding the expensive computation of the remaining drift

terms. To develop the advanced algorithm∞-MMALA, when discretizing the SDE

(6.2.5) we take a semi-implicit approach similar to the one for advanced MALA in

Section 2.1, that is, we have (using also a single drift term as explained above):

x′ − x = 1
2
G(x)−1

{
−G(x)x

′+x
2

+G(x)x+∇l(x)
}
h (6.2.6)

+
√
hN(0, G(x)−1) ,

for a step-size h > 0, which can be equivalently written as:

x′ = 1−h/4
1+h/4

x+ h/2
1+h/4

S(x) +
√
h

1+h/4
N(0, G(x)−1) (6.2.7)

where we have set:

S(x) = −G(x)−1{∇Φ(x)− (G(x)− L)x− Lµ} . (6.2.8)

We stop here, momentarily only, for the development of ∞-MMALA, and dis-

cuss briefly the choice of G(x). An interesting thing to notice is that the choice

G(x) = L yields exactly ∞-MALA, thus ∞-MMALA can be thought of as a gen-

eralization of the advanced MALA algorithm described in the main part of this

thesis, now allowing for a non-constant mass matrix. An often effective approach,
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which was suggested in [42], is to use the expected Fisher information as the metric

tensor:

−EY |x∇2l(x) = EY |x∇2
xΦ(x;Y ) + L (6.2.9)

= EY |x
[
∇xΦ(x;Y ){∇xΦ(x;Y )}>

]
+ L ,

where we write Φ(x;Y ) = Φ(x) to emphasise the dependence of Φ on some data

Y when given a particular model. In the context of high-dimensional x ∈ RN

this choice of geometric tensor can sometimes lead to large computational costs

as a function of N , thus, it is important to keep in mind that one should try

to effectively balance improving algorithmic mixing with increased computational

costs.

We can now return to (6.2.7) and complete the discussion for ∞-MMALA.

We have yet to illustrate that proposal (6.2.7) will have a positive acceptance

probability even in infinite-dimensions. The work in [4] is focused exactly on this

point. The proof provided there follows a very similar logic used to prove the well-

posedness of ∞-MALA in [8] and also shown in Chapter 2 of this thesis, building

upon the generalised definition of the Metropolis-Hasting ratio in [81]. Briefly, we

define the bivariate probability measure on H×H:

µ(dx, dx′) = Π(dx)Q(x, dx′) ,

withQ(x, ·) denoting the transition probability law rising via the dynamics in (6.2.7),

and the corresponding symmetric measure µ>(dx, dx′) = µ(dx′, dx). Following [81],

if µ ' µT (with ‘'’ denoting absolute continuity between probability measures)

then the acceptance probability is well-defined and equal to:

1 ∧ dµ
>

dµ
(x, x′) . (6.2.10)

So, it remains to specify the conditions under which µ ' µ> and find the precise

Radon-Nikodym derivative (dµ>/dµ)(x, x′). The analytical derivations are shown

in [4].

The development of the ∞-MMALA algorithm marks a stepping stone toward

the development of other high-dimensional robust manifold methods. The next

logical step would be to adapt the more complicated Riemann Manifold Hybrid

Monte Carlo (RMHMC) so that it is robust in increasing dimensions, which would

be referred to as∞-RMHMC or Advanced RMHMC. This has not been done in the

literature yet, mainly due to the relative complexity of the acceptance probability
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in high-dimensions. It is also unclear if the increase in computational costs related

with manifold methods will yield sufficient improvement in mixing times. Addi-

tionally, there is plenty of room for experimentation with combinations of various

algorithms. It would be interesting, for instance, to see if high-dimensional mani-

fold methods can be used with algorithms like NUTS, and if substantial increases

in efficiency can be achieved in such direction.
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