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ABSTRACT
The design of heating systems for dwellings using new technologies, or new
versions of old technologies, requires the ability to predict the temperatures in
a dwelling. The temperature behaviour can be modelled, typically by
differential equations which incorporate thermal driving forces and the thermal
inertia of a dwelling. The development and characterisation of these models is
usually based on fitting data accumulated over sufficient time to capture the
behaviour of the dwelling under different conditions (summer, winter, etc.).
Model fitting relies on assumptions about the behaviour of the system.
Optimisation can be used to examine these assumptions and gain insight
into this behaviour. This paper describes the application of a nature inspired
algorithm, known as the Plant Propagation Algorithm, a variant of a Variable
Neighbourhood Search algorithm, to the problem of modelling a dwelling
heated by an air source heat pump. The algorithm is evaluated using
different population evolution strategies and implemented using a simple
parallel computing paradigm on a multi-core desktop system. The results
are used to identify potential sources of missing data which could explain
the observed behaviour of the dwelling.
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1. INTRODUCTION

Model fitting is the problem of identifying the best values for a set of unknown
parameters in a model to achieve the best fif to a set of data. A wide range of
methods exists for model fitting but, at its core, model fitting is about
optimisation. Depending on the underlying model chosen to fit to the data, this
optimisation problem can be challenging for reasons of nonlinearity, convexity
and scale. Further, the quality of the model derived is dependent not only on the
optimisation method employed but also on the assumptions inherent in the
choice of model characteristics to fit. Optimisation can be a useful tool to fit a
model; however, it may also be used to identify the best model features.
Through interactive and iterative use of optimisation, insight into the behaviour
of the system being modelled can be gained. This insight can be used to further
improve the model by, for instance, the generation of more data, possibly from
different sources of measurement.

In the built environment, models are required to describe the thermal
behaviour of dwellings. In the case study presented below, a model is required
to determine the temperature of a room in a house. This temperature is affected
by direct space, heating and by thermal gains from and losses to the
environment. The dynamic nature of the temperature in a room leads to a
differential equation based model. Evaluating the fit of a differential equation
over a time domain is computationally expensive and the amount of data
required for a good representation may be large.

This paper describes the use of a Plant Propagation Algorithm [5] for fitting
a complex dynamic model to a typical 4 bedroom dwelling in the UK. The
implementation of the algorithm together with computational aspects of the
performance are discussed. The evolution of the model, from a standard model
used by practitioners in the built environment discipline to a model which
captures unknown sources and sinks of heat, is presented.

2. MODELLING A DWELLING
The dynamic model most frequently used [2] for predicting the temperature in
a given room, 7 () in a dwelling is

d

T () = W, (1)~ LAT(?) (1)

where AT(t) is the driving force,

def

AT(t) = T.(t) - T.(t) )

r
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T,(t) is the temperature in the outside environment. All temperatures are
in °C.

The unknown parameters in this model, which we wish to fit using data
collected, are C, the thermal capacity of the house in kWh °C~!, and L, the heat
loss due to the driving force (eq. 2),in kW°C!. Whp is the output of the heating
equipment in kW; for the case study below, this will be the output of an air
source heat pump. The model assumes that there are no other sources or sinks
of heat; we will come back to this assumption later below.

Fitting data to a model consists of identifying the values of the free
parameters which minimise some estimate of the error in the fit.
Mathematically, this problem can be described as:

min z = || T, =T, | A3)
c.L
subject to Eq. 1 and where Tr represents temperature data, ||-|| is an appropriate

norm and ¢ € [t,,¢ ] is the time period over which the dwelling’s behaviour is
simulated.

This is a dynamic nonlinear optimisation problem (DNLP) to minimise z by
manipulating C and L subject to the dynamic model for the behaviour of the
room temperature.

The solution obtained by solving the problem defined in Eq. 3 is shown
graphically in Figure 1. For this paper, we consider a time period of 1 day with
data available in 5 minute intervals. This problem was modelled in GAMS [3]
through a simple first order discretisation of the derivative term and solved
using the combination of BARON and CPLEX. Although the fit follows the
actual behaviour in a general sense, i.e. qualitatively, there are periods in the
day during which the fit is not good. This same behaviour is found when
analysing other days in the year. The quality of the solutions obtained motivates
us to consider the underlying model and whether it is a good representation of
how the dwelling behaves.

3. AN IMPROVED MODEL OF THE DWELLING
There are three assumptions inherent in the simple model (Eq. 1):
1. heat transfer is the result of a linear driving force,
2. this heat transfer takes place instantaneously upon a change in that driving
force, and
3. the data available for fitting the model are correct and comprehensive.
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Figure 1. Model simulation and data used to fit the model based on a 4 bedroom
dwelling on the 30th of November from midnight to midnight. 7', is the outside
temperature, T’ the room temperature and Whp the output of the heat pump system
used to provide space heating in the dwelling.

The aim of the work presented in this paper is to explore these assumptions
through the use of optimisation. We start by relaxing the first two assumptions
and we will return to the third assumption after further analysis.

A nonlinear driving force could, in principle, take any form. For simplicity,
and for an initial investigation, we will assume that a polynomial may provide a
suitable relaxation of the assumption and that a cubic polynomial will be
sufficient to capture nonlinearity in the behaviour. A cubic equation will have
four parameters, the coefficients of the Oth through 3rd power terms. By
asymptotic analysis, we can make the following conclusions:

1. The constant term should be identically 0 as we expect no driving force

when there is no difference in temperature (i.e. when AT = 0).

2. The coefficient on the quadratic term should also be 0 as we expect the
temperature in the room to be driven up when the temperature difference
is negative and the temperature in the room to go down when the
difference is positive.

With these choices, the driving force component of Eq. 1 would be
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LAT(t) = aAT(t)+ AT (t) 4)

= AT(1) - (o + 7 AT() 5)

We write Eq. 5 in this form to show the link with the original term in Eq. 1:
« is equivalent to L when v = 0.

The second assumption, that heat transfer takes place instantaneously, is
relaxed by adding time delays to the heat source and driving force terms
separately: the current (at time ¢) rate of change in the temperature is due to the
heat input from the heat source (i.e. the heat pump) some time before, £ — \,,
and also to the driving force from the environment due to the difference in
temperatures at some earlier time,  — A,.

Taking both relaxations into account, we end up with a more general
model:

d
CaTr(t)*Whp(t_xz) (6)

SAT(E-N)-(a +AATHE-N))

There are now 5 variables which must be adjusted to fit the data: {C, A, A,,
«, 7}. The new model extends the previous model: if A, A, and + are 0, we end
up with the same L = «. In other words, Eq. 6 is a generalisation of Eq. 1.

The introduction of time delays converts the ordinary differential equation
into a delay differential equation which requires special attention to solve. In
particular, a simple discretisation is no longer suitable. Further, the addition of
extra optimisation variables has made the problem larger and the behaviour
more complex. Figure 2 shows the behaviour of the objective function (Eq. 3)
using the generalised model (Eq. 6). The objective function is seen to be non-
convex (recall, the goal is minimisation) and noisy, it may also be multi-modal
but this cannot be determined from a single hyper-line. The noise is a result of
the numerical solution of the delay differential equation and the sensitivity of
this solution to the parameter values.

To cater for the extra complexity, an evolutionary optimisation known as the
Plant Propagation Algorithm [5] has been used and is briefly described in the
next section.
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Figure 2. Plot of objective function value along a hyperline connecting two arbitrary
points in the 5 dimensional search space.

4, THE PLANT PROPAGATION ALGORITHM
The Plant Propagation Algorithm (PPA) is a Nature-inspired algorithm for
optimisation and search. It emulates the way plants, in particular the strawberry
plant, propagate. A basic PPA, called Strawberry, has been described and tested
on single objective as well as multi-objective continuous optimization problems
in [5]. Although the problems were of low dimension, the results demonstrated
robustness with respect to parameter values, making it simple to apply, and high
probability of finding good solutions. This algorithm, shown in Algorithm 1, is
an example of a Variable Neighbourhood Search (VNS) algorithm.
Algorithm 1 The Pseudo-code of PPA, [5]
Initialization:
* Generate a population P = {X, i = 1, ...,np};
e Set g, the generation counter to 1: g « 1;
Main Algorithmic Body of the PPA:
l:for g=1:9  do
2: Compute fitness N, = f (X,), VX, € P;
3: Sort P in ascending order of N;
4: Create new population ®;
S5:fori=1,..., n,do
6: Select X, from P;
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7. 7, < set of runners where both the size of the set and the
distance for each runner (individually) are functions of the
fitness N,. See Eq. 7 and 8;
8: ® « @ Ur, {append to population};
9: end for
10: P «+ new population (see text);

11: end for

12: Return: P, the population of solutions.

Selection can be done any number of ways, from simply selecting the n, best
solutions in P through to purely random selection. For the case study below we
are using size 2 tournament selection, selecting from the whole population. This
provides some evolutionary pressure towards the most fit solutions while still
allowing all solutions to participate in propagation.

The number of runners, n,_; for the solution ¢ is determined by

n.,= {Niplnr,maxl (7

for some random number p, € [0,1] and the distance for each runner is
61',1:(1_]\71),,2—0.5 Vi=1,...,n, Q)

where p, € [0,1] is another random number and 7, is the dimension of the
problem (number of optimisation variables). The distance ¢ is then used to
modify the given point X, towards the boundary of the domain. The number of
runners is proportional to the fitness whereas the distance to propagate is
inversely proportional, as motivated by the biological analogy.

There are four possible approaches to updating the population from one
generation to the next. The new population can be:

1. Solely the new solutions found by propagation;

2. The new solutions together with those selected for propagation;

3. The new solutions with an elite set; or,

4. The new solutions, an elite set and the solutions chosen for propagation.

All approaches are considered in the case study below to see how they
compare. Each can be argued as appropriate from a biological perspective.

Besides its simplicity and robustness, another attractive feature of this
method is its inherently parallelisable nature. Our optimisation problem falls
into the category of optimisation problems with computationally expensive,
objective functions. Each evaluation of a point in the search space requires the
solution of the delay differential equation over the time domain. Depending on
the time period selected, a single evaluation can take many seconds through to
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hours. An effective search therefore will require significant computation and
parallel computing is one solution to this requirement.

5. IMPLEMENTATION

The algorithm presented above has been implemented in Octave 3.2 with the
capability to make use of multiple processing cores if available. The evaluation
of the objective function, z, as shown in Eq. 3, is done as follows:

1. Assign the point X to the individual parameters used by the model: A, A,,
a, vand C.

2. Simulate the dwelling’s behaviour over the design time domain by solving
the model (Eq. 6) using the Isode method [4]. This solution is executed in
small time steps to generate the data required for providing access to data
sufficiently fine for the delay element.

3. From the full simulation data, the values at the time points present in the
original data set are extracted.

4. The difference between the simulated data values and the collected data
values are calculated using a suitable norm. We have used a 2-norm for the
results presented below.

The Isode method is robust and the differential equation is stable under most
circumstances. As a result, the objective function is feasible in all cases we have
considered.

Using this procedure to evaluate z, the Plant Propagation Algorithm
described above is implemented as follows to allow for parallel execution.

l:forg=1:g  do

2: N « fitness (P)

3: V «+ new solutions based on selection and runner generation, as described
in Algorithm 1

4: evaluate, in parallel, z for each point in V

5: P < new population based on existing population and new points, subject
to evolution strategy option chosen

6: end for

The parallel evaluation of the new points is done with the parcellfun function
in Octave. This evaluates a given expression on a number of cores
simultaneously and is suitable for the parallel evaluation of computation that
requires no inter-core communication while being evaluated. This is ideal for
our case where the main computational effort is the solution of the delay
differential equation.

Thttp://www.octave .org/



Journal of Algorithms & Gomputational Technology Vol. 9 No. 1 21

Table 1. Statistical summary for the different population evolution strategies with 10 runs
for each strategy.

Strategy Zinin Zave o Znax Moo

1 7.59 9.12 1.44 12.28 57

2 6.21 7.64 1.08 9.15 116

3 6.29 7.28 1.10 943 126

4 546 6.73 0.94 8.52 157
6. MODEL FIT

The Strawberry algorithm has been run on an 8 core Intel i7 2.4GHz system
with 8 GB of RAM and operating under Linux. Using data from the Energy
Saving Trust?, a 63m? four bedroom house was selected. A single day,
30 November, was chosen as a good representative of the range of behaviour
we wish to capture in the model, including heat pump operation and changing
environment temperature. This example was used above; see Figure 1.

Table 1 shows the statistical analysis of 10 runs for each population evolution
strategy. z is the objective function value with z . and z_  being the best and
worst solution found over the 10 runs for each evolution strategy. The values
for z, , and Ny, AT averages over the 10 runs and o is the standard deviation of
z over the 10 runs. Two stopping criteria were implemented: a maximum
number of generations, g .= 1000, and stopping if no improvement in the
best found solution is made in 50 generations. The Moen values are the last
generation in each run for which the best solution improved.

We see that, statistically and in an absolute sense, the best strategy is
the fourth. This strategy uses both an elite set, of size 1, and the members of the
population selected for propagation in the creation of the new population.
The number of generations for convergence is also the largest for this strategy.
This indicates that the strategy is performing a more thorough search of the
domain. The fourth strategy is able to avoid getting stuck in a particular part of
the search domain for longer.

We can use the solutions obtained to gain some insight into the solution
space for this case study. The parallel coordinate plot shown in Figure 3 shows
the five optimisation variables along with the objective function value for the
10 individual points found by the fourth strategy. All the values have been
normalised based on the domain for the search for the optimisation variables
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Figure 3. Parallel coordinate system plot of the better solutions obtained in the 40 runs.
Each poly-line represents a different solution. The variables and the objective function
value have been normalised. For the variables, the full domain is included, from lower

bound to upper bound: a € [-0.1,0.1], v € [-0.1,0.1], A, € [0, 5], A, € [0,1] and C

€ [1,10]. For the objective function value, the range is [5,10].

and for the range [5,10] for the objective function value. We see some evidence
of clustering, most prominently for 7 but also to some degree for \,, the time
delay for the operation of the heat pump to affect the room temperature.

7. MISSING DATA
If the solutions identified above were plotted, the result would be visually
similar to Figure 1, with the difference in the behaviour of the fit only
marginally discernible by superimposing the two plots. In other words,
although the fit is improved, as measured numerically by the objective function,
qualitatively the behaviour is no different. The two assumptions that have been
relaxed do have an impact but it is minimal. We therefore now consider the third
assumption, that the data available is not comprehensive, and use optimisation
to explore this assumption.

The model described above, whether with or without time delays, assumes
that the only inputs and outputs of heat are the heat pump and the external
environment in the form of the driving force. However, many other possible
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sources and sinks of heat are possible in a dwelling including, for instance,
incident solar radiation, cooking and other activities, and human occupancy
itself (humans radiate on the order of 100 W or more, depending on the activity
[1]). Also, even just opening windows and doors could have a significant effect
on the temperature within a house. The models above do not include any terms
for these possible sources or sinks of heat.

As the data available also do not include any of these alternative sources or
sinks, it is not possible to model these directly. However, it is possible to use
the last model above (Eq. 6) as the basis for analysis to help identify when other
sources and sinks of heat may be having an impact on the temperatures in the
house. To investigate these, a slack heat source, W, (), and a slack heat sink,
W_(t), are added to the model:

C—=T () =W, (t-X) 9
—AT(E=N)-(a+ AT (= )))

+ ‘/Vso(t) o Wsi ®)

This model is more complex, in scale, than the previous versions. The
optimisation procedure must now determine values for continuous functions
W_ (1) and W_(?) together with the parameters already described. The addition
of slack variables, without constraints, means that the data can be fit exactly.
However, this is not necessarily desirable as it means that any noise in the data
is also taken into account in the fit. To avoid fitting noise, we introduce a

penalty into the objective function and the optimisation problem now becomes

minz=[|T, — T, || +p (W] + W ) p>0 (10)

subject to the model in Eq. 9.

Solving this extended model directly is computationally difficult and
expensive. Instead, we have reformulated this model as a linear programme
(LP) through the explicit discretisation of the time domain using a 5 minute
time step to match the granularity availablein the data sets. The problem
becomes one of finding the discrete set of values W and W, at the discrete
time values in the data set. The results from the visualisation (cf. Figure 3) were
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Figure 4. Model fit using expanded model which caters for unknown sources and sinks
of heat [6]. Upward spikes with triangles denote possibly unknown sources of heat and
downward spikes with circles possible unknown sinks of heat.

used to fix the \ variables for subsequent analysis to remove the difficulties
associated with the solution of delay differential equations. Specifically, a delay
of A\, = 2 hours for external temperature effects and a delay of 15 minutes
(A, = 0.25) for the impact of the heat pump were used [6]. These values are
reasonable, from an engineering standpoint, and correspond to one of the best
solutions obtained. Other values could be used, of course.

Although large, the resulting LP problem is tractable and can be solved in a
few seconds. We have implemented this model in GAMS [3]. The resulting
model’s behaviour is illustrated in Figure 4 with a penalty value p = 5. This
figure shows the missing sources and sinks of heat identified by the slack
variables. Possible heat sources are indicated by spikes upwards from O with a
triangle and possible heat sinks (or losses) by spikes downwards with circles.
Heat sources are identified in the early morning hours (6-10am) and heat losses
both in the early afternoon and mid-evening.

We can now conjecture on the possible reasons for the identified missing
sources and sinks of heat. For instance, the early morning heat sources could be
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due to cooking and showering or bath activities by the occupants. The afternoon
losses could be due to people entering and leaving the house. Finally, the evening
losses could be due to the not atypical process of cooling down the house by
opening windows even though the primary heating source is turned on.

8. CONCLUSIONS

This paper has demonstrated the use of optimisation as a means of gaining insight
into the behaviour of a complex system. The example used is a dwelling with an
air source heat pump, modelled to predict the temperature in a room. A series of
steps, using optimisation at each step, has enabled us to evolve a model from its
simplest form, commonly used in the built environment literature, through to one
that allows us to postulate possible missing sources and sinks of heat.

Due to the complex objective function behaviour, including noise and multi-
modality, a nature inspired plant propagation algorithm has been used for model
fitting when time delays in heat transfer were being investigated. The
Strawberry method [5] has been used to solve this problem. Possible alternative
population evolution strategies for this method have been explored, including
the use of elitism.

The final results show a fit that highlights times during the day where
possible missing sources and sinks of heat may be present. We can only
speculate as to the providence of these sources and sinks but they do allow us
to suggest the collection of further data. For instance: sensors on doors and
windows could be placed at little cost; solar data from the meteorological
sources could be incorporated; data on appliance use (cookers, television sets,
computers) could be collected. With these data, more detailed and accurate
predictive models would be possible.
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