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ABSTRACT 

 

Pigment dispersion syndrome (PDS) is an ocular condition predisposing to 

glaucomatous optic neuropathy in patients at a relatively young age. Concavity of the 

iris is considered to be important in the pathogenesis of PDS, however, it is also 

appears to be a feature of non-PDS eyes, particularly in young myopes. Much of the 

current understanding of anterior segment anatomy is derived from studies using 

ultrasound biomicroscopy, a relatively invasive imaging modality that involves direct 

ocular contact. Anterior-segment optical coherence tomography (AS-OCT) allows 

imaging of the anterior segment with the patient in the upright position without the 

need for contact with the ocular surface. AS-OCT may allow a more physiological 

assessment of anterior segment anatomy as well as being better suited to paediatric 

subjects. AS-OCT was used to conduct a case-control study of anterior segment 

anatomy in PDS subjects and age-, sex- and refraction- matched controls to determine 

which features of anterior segment anatomy best discriminated between the 2 groups. 

In addition AS-OCT was used to assess anterior segment anatomy, with particular 

emphasis on iris curvature, in a cohort of 10-12 year old school children and explore 

correlations with ocular biometry and parameters reflecting corneal biomechanical 

properties. Longitudinal data was collected through re-visiting the cohort 2 years later.  

 

Chromosomal susceptibility loci for PDS have been described, although no causative 

gene has been identified. Two approaches were used to identify novel disease 
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susceptibility loci: 1) linkage analysis was used in a 3-generation family segregating for 

PDS/pigmentary glaucoma, and, 2) DNA from a large cohort of unrelated PDS probands 

was collected and sent for genotyping with a view to conducting a pilot genome-wide 

association study. Finally a candidate gene, GPNMB, the human homologue of a 

causative gene in a mouse model of pigmentary glaucoma was sequenced in a panel of 

96 unrelated PDS/pigmentary glaucoma subjects. 
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1.1 Glaucoma  

 

1.1.1  Definition 

 

The term ‘glaucoma’ encompasses a heterogeneous number of conditions which have 

in common an optic neuropathy characterized by specific structural findings in the 

optic disc and specific functional deficits detected by automated visual field testing (1).  

Raised intraocular pressure (IOP) is an important risk factor but not a defining feature 

of the disease.  

 

1.1.2  Classification  

 

Glaucoma may be broadly classified as either open-angle, where the irido-corneal 

angle appears clinically normal, or closed-angle, where tissue (commonly peripheral 

iris) physically obstructs the drainage of aqueous humour into the trabecular 

meshwork (TM).  Differentiation between the 2 forms is significant with regard to 

management. Both open-angle and closed-angle glaucoma may be further divided into 

primary (no identifiable ocular comorbidity) and secondary causes. Secondary causes 

of open angle glaucoma (OAG) include pigment dispersion and pseudoexfoliation 

whilst secondary causes of closed angle glaucoma include rubeosis, plateau iris 

syndrome and uveitis (in the context of causing extensive adhesions between the 

peripheral iris and drainage angle (peripheral anterior synechiae). A proportion of 



 20 

patients with open angles will have glaucomatous optic neuropathy (GON) with IOP 

consistently less than the upper limit of the normal range (considered to be 21mmHg) 

and these patients are classified as having low- or normal-tension glaucoma. 

 

1.1.3  Epidemiology 

 

Glaucoma is the 2nd leading cause of blindness (defined as visual acuity of less than 

3/60, or a corresponding visual field loss to less than 10 degrees in the better eye with 

best possible correction) worldwide after cataracts (2). Quiqley et al. (3) estimated the 

combined prevalence of open and closed angle glaucoma to be 60 million with 8.4 

million bilaterally blind in 2010. Women were estimated to comprise 55% of OAG and 

70% of angle closure glaucoma (3). OAG is most prevalent in people of African descent 

whilst angle closure glaucoma is most prevalent in Chinese people (3). The projected 

numbers for 2020 are a combined prevalence of 79.6 million and 11.2 million 

bilaterally blind (3).  

 

1.1.4  Pathophysiology 

 

Raised IOP is the major risk factor for GON as evidenced by unilateral secondary 

glaucoma, experimentally induced glaucoma and observation of the effects of IOP 

lowering in glaucoma patients (4) whilst the Collaborative Normal Tension Study was 

the  first clinical trial to demonstrate that IOP lowering reduced the rate of glaucoma 
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progression (5). Raised IOP may cause compression of retinal nerve fibres against 

lamina cribrosa with interruption of axoplasmic flow (mechanical theory). An 

alternative theory is that raised IOP compromises blood supply to the optic nerve head 

(ischaemic theory). Disturbance in autoregulation of the blood supply to the optic 

nerve may also contribute with raised IOP leading to reduced perfusion or the 

occurrence of vasospasm even at normal levels of IOP (4). 

 

1.1.5  Clinical evaluation 

 

The National Institute for Health and Clinical Excellence (NICE) have issued guidance on 

diagnosis, monitoring and treatment of chronic open angle glaucoma and OHT (6). 

Initial evaluation should include IOP measurement using Goldmann applanation 

tonometry, central corneal thickness (CCT) measurement, peripheral anterior chamber 

configuration and depth assessments using gonioscopy, visual field measurement using 

standard automated perimetry, optic nerve assessment after pupil dilatation, using 

stereoscopic slit lamp biomicroscopy with fundus examination. Automated imaging 

technologies have been developed which allow assessment of the optic disc and nerve 

fibre layer. Scanning laser ophthalmoscopy and optical coherence tomography (OCT) 

have a role in baseline assessment and monitoring for progression of GON. 
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1.1.6  Management 

 

IOP is the major modifiable risk factor for development of GON and current treatment 

options aim to lower IOP to a ‘target pressure’, which a clinician determines would 

prevent the development of visual disability (or prevent its worsening) within the 

patient’s lifetime. Typically the target pressure is set lower if there is greater initial 

damage or multiple risk factors for progression. Treatment options include IOP 

lowering drops, laser treatment or surgery. Ocular perfusion pressure may also play a 

role in glaucoma pathogenesis (7) and clinicians may choose to modifying blood 

pressure in order to achieve a more favourable perfusion pressure. Finally, there has 

been considerable interest in the role of neuroprotective agents in protecting against 

optic nerve head damage although robust evidence supporting the use of such agents 

is presently  lacking; RCTs designed to measure the efficacy of neuroprotective agents 

would require long-term follow up in order to draw clinically meaningful conclusions 

(8) 

 

1.1.6.1  Topical therapy 

  

A typical first line treatment would be topical monotherapy with a prostaglandin 

analogue such as latanoprost, travoprost or bimatoprost which works by increasing 

uveo-scleral outflow. These drops may need to be switched to, or supplemented by, 

other classes of IOP lowering drops such as beta-blockers, carbonic anhydrase 
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inhibitors or alpha-2 adrenergic agonists. The predominant mechanism of action of 

these other agents is reduction of aqueous production. 

 

1.1.6.2  Laser trabeculoplasty 

 

If sufficient IOP lowering cannot be achieved with drops, then laser treatment may be 

offered.  

 

1.1.6.2.1 Argon laser trabeculoplasty 

 

Argon laser trabeculoplasty causes a thermal burn to the tissue causing tissue 

contraction and scar formation and this is thought to result in a mechanical stretching 

of the surrounding uveoscleral TM (9). A Cochrane review (10) of laser trabeculoplasty 

for OAG concluded that in newly diagnosed OAG participants, the risk of uncontrolled 

IOP at six months and two years of follow up is lower in patients treated with laser 

trabeculoplasty compared to those on medical treatment. The trials reviewed did not 

include newer classes of drops i.e. prostaglandin analogues, carbonic anhydrase 

inhibitors or alpha-2 agonists. For participants already on maximum medical therapy, 

the risk of uncontrolled IOP at six months was higher in patients treated by laser 

trabeculoplasty compared to surgery (trabeculectomy), however, the trials did not 

include trabeculectomy augmented by anti-metabolites and had these been included it 

is likely the difference between the modalities would have been even greater. The 
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American Academy of Ophthalmology published a review on laser trabeculoplasty (11) 

confirming the technique was effective at lowering IOP in patients with OAG.  

 

1.1.6.2.2 Selective laser trabeculoplasty 

 

There is considerable interest in selective laser trabeculoplasty (SLT), an alternative to 

argon, which uses a frequency-doubled short-pulsed (Q-switched) 

neodymium:yttrium–aluminium– garnet (YAG) laser.  It has been suggested that SLT 

works by stimulating macrophage recruitment and inducing changes in cytokines which 

stimulate extracellular matrix remodeling leasing to increased aqueous outflow (9). The 

laser in SLT is thought to be selectively taken up by the pigmented trabecular 

meshwork cells. The theoretical advantage of SLT over ALT is that there appears to be 

less coagulative and structural damage to the TM (12) and it may therefore be more 

suitable for repeat treatments. 

 

1.1.6.3  Surgery 

 

Surgery may be considered in patients at risk of sight loss despite treatment (6). 

Trabeculectomy lowers IOP by re-directing aqueous humour into the sub-conjunctival 

space, forming a bleb under the upper eyelid and creating an alternative pathway for 

aqueous humour outflow. Modern surgical techniques employ wound modulation with 

anti-metabolites (mitomycin C (MMC) or 5-fluorouracil (5-FU)) and placement of 
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releasable sutures which provide the option of increasing flow through the 

trabeculectomy in the post-operative period and reducing the risk of hypotony. Despite 

advances in surgical technique, excessive drainage can lead to hypotony, which may be 

associated with choroidal detachments and/or maculopathy, whilst excessive fibrosis 

can lead to bleb failure. There is a trend in some centres towards non-penetrating 

glaucoma surgery or procedures that enhance Schlemm’s canal. Whilst non-

penetrating techniques are accepted to have a better safety profile than 

trabeculectomy, post-operative IOP is not as low as that achieved by trabeculectomy 

(13-15) and the procedures have a longer learning curve (16). 

 

In cases where trabeculectomy has failed or in certain glaucoma subtypes there may be 

a preference instead to insert a glaucoma drainage device or ‘tube’ which serves to 

lower IOP by draining aqueous from the anterior chamber to the sub-conjunctival 

space. Data from a 5-year multi-centre randomised clinical trial (17), reported that 

trabeculectomy with MMC had a greater surgical failure rate than tube surgery 

although both procedures had similar rates of vision loss and late post-operative and 

serious complications. 

 
1.1.6.4  Management of angle closure 
 

The initial management of angle closure glaucoma involves making a hole in the 

peripheral iris, commonly with a YAG laser, in order to bypass ‘pupil block’, the 

anatomical configuration which causes the peripheral iris to bow forwards and close 
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the angle between the cornea and the iris. When iridotomy fails to open the drainage 

angle, laser iridoplasty may be considered as a treatment option and works by causing 

localised areas of shrinkage in the peripheral iris, causing it to be pulled away from the 

TM. Topical therapy may also be required as adjunctive treatment. Lens extraction with 

insertion of an intra-ocular lens (IOL) also causes widening of a closed/narrow drainage 

angle and is increasingly recognised to have a role in the management of angle closure 

glaucoma (18-20). 

 

1.2 Pigment dispersion syndrome 

 

Pigment dispersion syndrome (PDS) is an ocular condition predisposing to OHT. A 

proportion of patients with raised IOP will go on to develop a secondary OAG referred 

to as pigmentary glaucoma (PG). In 1949, Sugar and Barbour (21) reported 2 young, 

myopic men with Krukenberg spindles, iris transillumination defects and TM 

hyperpigmentation who developed raised IOP with mydriasis and decreased with 

pilocarpine, using the term ‘pigmentary glaucoma’ to describe the condition.  More 

patients were subsequently reported, and in 1966 Sugar reviewed 147 cases in the 

world literature(22), describing additional features including association with myopia, 

greater incidence in men than in women and a relatively young age of onset.  
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1.2.1  Clinical features 

 

PDS is characterised by the following triad: 

1. Krukenberg spindle. This is a central vertical band seen on the corneal 

endothelium and occurs as a result of aqueous convection currents depositing 

dispersed pigment on the endothelium. 

2. Mid-peripheral spoke-like iris transillumination defects, which can be seen by 

retro-illumination.  

3. Hyperpigmentation of the trabecular meshwork. This is usually a dense 

homogeneous band in a wide-open angle. With time pigment may regress 

initially from the superior trabecular meshwork, a phenomenon known as the 

pigment reversal sign (23). 

 

Other anterior segment features of the syndrome include: pigment particles on the 

anterior iris surface, anisocoria (larger pupil in eye with greater transillumination 

defect) (24), pigment at the insertion of lens zonular fibers into the posterior lens 

capsule (Zentmayer ring or Scheie stripe) (25), deeper anterior chamber depths than 

expected for age, sex and refractive error (26).   

 

Patients with PDS have been reported to have an increased prevalence of lattice 

degeneration reported to be 33% in a PDS cohort  and 20%  in a mixed PDS/PG cohort; 

these percentages are greater than expected for the degree for the degree of myopia 
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(27, 28). Prevalence of retinal detachment has been reported between 4-6.6% in PDS 

(28, 29) and 7.6% in PG (29) and these percentages are also greater than expected for 

the degree of myopia (29, 30). Greenstein et al. conducted electo-oculograms on 

patients with PDS and PG and reported significantly lower mean Arden ratios 

compared to control subjects and POAG/OHT patients, implicating the retinal pigment 

epithelium/photoreceptor complex in the pathology. Fundus autoflouresence imaging 

in the subjects with reduced Arden ratios would have been of interest in order to 

further investigate abnormalities of the posterior segment. 

 

1.2.2  Epidemiology 

 

PDS is more common in myopes (29, 31) with an approximately equal male to female 

ratio (23, 29) whilst PG is more common in men (29, 32, 33). Only one study has 

investigated the prevalence of PDS (34): a population glaucoma screening study of 654 

white subjects reported that 2.45% had evidence of PDS. 

 

1.2.3  Risk of conversion 

 

A study of 21 patients indicated that the probability of developing a significant IOP rise 

in PDS patients is 52% at 2 years (35) and 86% at 10 years (36). Several studies have 

investigated the risk of conversion from PDS to PG: Migliazzo et al.(33) conducted a 

retrospective study which included 37 PDS patients with OHT of whom 35 % eventually 

developed glaucomatous field defects (mean overall follow up period was 17 years). 



 29 

Farrar et al. (30) conducted a similar retrospective study which included 18 patients 

with PDS. With regard to the latter group, 7 out of 18 (39%) converted to PG during the 

follow up period although this may be an underestimate as only 4 out of 18 had follow 

up of more than 6 months. Both of these studies included patients on treatment and 

were based on patients attending a specialist glaucoma service and as such are likely to 

include a disproportionate number of patients with OHT as referral from primary care 

of patients with PDS tends to be on the basis of high IOP. It is likely that there are many 

cases of PDS without OHT that are never referred to an ophthalmologist or glaucoma 

subspecialist. There has only been one community-based study looking at risk of 

conversion (32). The authors of this study conducted a retrospective review of 113 

patients with newly diagnosed PDS over a 24-year period and determined the 

probability of converting to PG to be 10% at 5 years and 15% at 15 years. 

 

1.2.4  Economic cost of pigmentary glaucoma 

 

Detection, treatment and provision of state and family social care for patients with 

primary POAG and OHT was estimated to cost £944 per patient for the year 2010 (37). 

Per patient costs are likely to be similar for PG. There are no prevalence data on PG but 

the incidence in a predominantly Caucasian population has been estimated at 1.4 per 

100,000. Using UK Census data for the size of the Caucasian population together the 

above estimates suggest the cost of newly diagnosed PG is £715,917 per year. The 

mean age of diagnosis is 42 years (compared to around 70 years in POAG) so the 
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lifetime costs after the first year of diagnosis are considerably more than POAG, not to 

mention the costs in lost productivity through visual disability in a population largely of 

working age. 

 

1.2.5  Pathophysiology 

 

Campbell (38) was the first to propose that in PDS the posteriorly bowed iris led to 

frictional contact between packets of anterior zonular fibres and the posterior pigment 

epithelium resulting in pigment dispersion. The concept of the ‘reverse pupillary block’ 

mechanism was introduced by Karickhoff (39). Karickhoff proposed that abnormal 

irido-lenticular contact causes the iris to act like a flap valve permitting unidirectional 

flow of aqueous from the posterior to the anterior chamber, maintaining the posterior 

bowing. Dispersed pigment is deposited throughout the anterior segment including 

within the TM. In a proportion of patients pigment accumulation in the TM leads to 

impaired drainage of aqueous humour with a consequent increase in IOP.  

 

Iris concavity in PDS/PG appears to be enhanced by accommodation and this has been 

quantified on studies using ultrasound biomicroscopy (UBM) (40) and AS-OCT (41). The 

degree of accommodation-induced concavity is inversely correlated with age (42). 

Accommodation is associated with miosis and forward movement of the anterior pole 

of the lens (43) which increases the area of irido-lenticular contact and potentiates the 

flap-valve effect. Accommodation-induced iris concavity appears, however, to be a 
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relatively transient response with reversal of concavity within 3 minutes despite 

continued accommodative effort (44). 

 
1.2.5.1  Damage to outflow 
 

Richardson et al. (45) conducted light and electron microscopy of TM from PDS 

patients and noted pigment granules entering TM undergo phagocytosis by endothelial 

cells. It was hypothesised that phagocytosis-induced damage to the endothelial cells 

led to denudation of the trabecular beams with subsequent collapse and sclerosis of 

TM. Alvarado et al. (46) determined that the majority of resistance to aqueous outflow 

occurs at the terminations of the aqueous channels (cul-de-sacs) and have shown the 

area of these terminations to be markedly reduced in TM specimens from PG and 

POAG patients compared to those from non-glaucomatous normal subjects. 

 

1.2.6  Management  

 

1.2.6.1  Topical therapy 

 

Topical drugs can be used to manage raised IOP in OAG and the same classes of drug 

are also used to manage raised IOP secondary to pigment dispersion. Prostaglandin 

analogues, beta-blockers, carbonic anhydrase inhibitors and alpha-adrenergic agonists 

can all lower IOP. Pilocarpine, a parasympathomimetic acting on cholinergic receptors, 

reduces IOP by increasing outflow and has the additional advantage of reducing iris 
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concavity (41, 47). However in practice, high concentrations of pilocarpine are often 

poorly tolerated in young myopes on account of causing increased myopia and 

accommodative spasm. Furthermore, pigment dispersion subjects require a careful 

peripheral retinal examination prior to commencing miotic therapy as this class of 

drugs is associated with an increased risk of retinal detachment (48). 

  



 33 

1.2.6.2  Laser trabeculoplasty 

 

ALT appears to be effective early on in PG with a subsequent increase in IOP after 3 

months(49). Longer-term ALT success rates have been reported between 62-80 % at 8-

12 months (50, 51) with younger patients and those with glaucoma of a shorter 

duration having greater success rates. 

 

A study of 30 eyes with PG (52) reported success rates with SLT at 85% at 12 months 

but only 14% at 48 months. Criteria for classifying a treatment as failed were, however, 

quite stringent: <20% drop in IOP, subsequent change in medical treatment, 

performance of a further SLT treatment or the need for surgery. There are conflicting 

data on the safety of SLT in PDS/PG. In the above study (52), the authors reported 2 

cases showing mild inflammation following laser and a further 2 cases developing IOP 

spikes 2 hours post laser, which normalised the following day. Kouchecki et al. (53) 

reported a mean reduction in IOP of 19% at 18 months although 26% needed either 

further SLT or trabeculectomy and 22% developed significant IOP spikes. 

Harasymowycz et al. (54) noted significant IOP spikes following SLT in heavily 

pigmented in eyes of 4 patients (3 of whom had features of pigment dispersion); 3 of 

these eyes went on to require trabeculectomy. The authors suggested that eyes with 

heavily pigmented TM, previous ALT and being on multiple topical medications are 

potential risk factors for IOP spikes. 
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1.2.6.3  Role of laser peripheral iridotomy 

 

Laser peripheral iridotomy (LPI) is a widely established procedure for primary angle 

closure and angle closure glaucoma. It is generally regarded as a safe procedure 

although there is a small short-term risk of bleeding, raised IOP and inflammation; such 

adverse effects are generally transient and can usually be managed without resulting in 

significant long-term sequelae. Diplopia or ‘ghost images’, lens opacity and corneal 

injury are rare complications and malignant glaucoma, retinal burns and lens-induced 

uveitis are extremely rare complications. 

 

Performing LPI in PDS/PG patients provides a route by which aqueous humour can 

drain from the anterior to the posterior chamber, thereby overcoming reverse 

pupillary block and reducing or eliminating iris concavity. A reduction in iridolenticular 

contact and iris concavity following LPI have been reported in UBM studies (48-50). LPI 

may therefore reduce the amount of pigment dispersed and represents a one-off, 

relatively non-invasive intervention with the potential to reduce the risk of developing 

raised IOP and PG.  

 

Gandolfi et al. (27) investigated the effect of LPI in eyes with normal IOP at baseline. 

The authors reported results on 21 PDS subjects (age range 18-60 years) who 

underwent unilateral LPI in a randomly selected eye whilst the fellow untreated eye 

served as the control. At 2 years, 52% of untreated eyes showed an elevation of 

5mmHg or more compared with only 4.7% of treated eyes. LPI appeared less effective 
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in older patients. Scott et al. (55) conducted a prospective randomized control trial of 

116 patients with PDS and ocular hypertension. Eight eyes (15%) in the laser group and 

3 eyes (6%) in the control group converted to glaucoma in the study period (median 

follow up 3 years). Studies have also investigated the effect of LPI in PDS patients with 

raised pressure and PG: Reistad et al. (56) retrospectively analysed data contributed by 

members of the American Glaucoma Society on patients with bilateral PG receiving 

uni-ocular LPI. A greater decrease in IOP was observed in treated eyes compared with 

fellow eyes (among 46 patients observed for 2 years or more), however, linear model 

analysis indicated that the higher mean baseline IOP in the treated eyes accounted for 

the apparent treatment effect. Lagreze et al. (53) reported on IOP pre- and post-LPI in 

their cohort of 20 PDS (including some PG) eyes and found no significant difference at 

9 months when compared with untreated fellow eyes. There is little data, therefore, to 

support the efficacy of LPI in eyes that have already developed an IOP rise or GON. 

 

1.2.6.4  Trabeculectomy 

 

Filtering surgery is required in cases of PG where topical or laser therapy has been 

insufficient to control IOP. PG patients tend to be young and are therefore at risk of 

bleb failure from excessive post-operative scarring and the use of anti-metabolite 

adjuncts such as MMC is particularly useful to modulate the post-operative course. A 

large clinical study suggested that a greater percentage of PG patients require 

trabeculectomy compared to a randomly selected control group with chronic simple 
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glaucoma and that men with PG required surgery at a younger age compared to 

women with PG (29).  

 

1.2.7  Pigment dispersion as a heritable phenotype 

 

Becker(57) et al. originally proposed that PDS had a specific genetic pre-disposition 

when they noted an increased prevalence of HLA B13 or Bw17 in PDS subjects 

compared to those without PDS, although this finding was not replicated in a small 

subsequent study (58). Gramer et al. (59) report a family history of glaucoma in 39% of 

patients with PDS or PG, but such a family history was no more common in PG 

compared to PDS. There are several reports of families segregating for PDS/PG (60-62).  

 

1.2.7.1  Gene mapping in PDS/PG families 

 

Linkage analysis is the method of choice for gene mapping in large multigenerational 

families in which at least 4 individuals are affected. The approach identifies disease 

susceptibility loci by typing genetic markers across the genome in the most informative 

members of the family and studying which markers are linked with the disease of 

interest. Linkage analysis was used by Andersen et al. (63) who studied 4 families 

segregating for PDS/PG, all of whom had some degree of Irish ancestry, and reported 

significant linkage to the telomere of the long arm of human chromosome 7 (7q35-

q36), a locus subsequently designated as GPDS1 (glaucoma-related pigment dispersion 

syndrome 1, OMIM ID 600510). Based on this region, a homeobox gene involved in 
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forebrain development, a cholinergic receptor gene and a gene for nitric oxide 

synthetase were put forward as candidate genes. Mutations in nitric oxide synthetase 

could lead to the production of reactive nitrogen species, possible mediators of 

apoptotic cell death within iris tissue or cells of the RPE/photoreceptor complex. A 12 

cM region located within 18q21 was subsequently identified as a second locus through 

linkage analysis on 4 further pedigrees (64) although no causative genes have so far 

been identified from either locus. Subsequently, polymorphisms of the GPDS1 locus 

have been shown to be associated with normal tension glaucoma in a Japanese 

population (65). 

 

Ritch (23) highlighted that a causative gene would need to explain the increased 

prevalence of lattice degeneration and suggested the gene would affect development 

of the middle third of the eye early in the third trimester as this would be consistent 

with a condition that appears to affect the iris as well as the retina.  

 

1.2.7.2  DBA/2J mouse model 

 

John et al.(66) described pigment dispersion and iris atrophy in mice of the inbred 

strain DBA/2J. DBA denotes the parent strain, ‘2’ denotes the sub-strain and ‘J’ refers 

to the Jackson Laboratory where the strain was developed. IOP was increased in this 

strain by around 9 months of age with subsequent retinal ganglion cell death, optic 

nerve atrophy and optic nerve cupping. There are, however, important differences 

between the clinical findings in DBA/2J mice and PG in humans: in the mouse model 
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there is accumulation of macrophages laden with pigment in the angle and a tendency 

to develop both anterior and posterior synechiae leading to secondary angle closure 

rather than the OAG seen in human PG. In addition, the presence of iris atrophy and 

anterior synechiae suggest a degree of overlap with the irido-corneal endothelial (ICE) 

syndrome. The pigment dispersion in this strain was subsequently found to be caused 

by a premature stop codon mutation in a gene known as Gpnmb (67), occurring only in 

strains homozygous for this change whilst stromal atrophy was caused by the recessive 

allele of Tyrp1 (67).  

 

Schraermeyer et al. (68) used light and electron microscopy and 

immunohistochemistry to study the ocular pigment abnormalities in the DBA/2J strain. 

The authors reported migration of macrophages from the iris into the TM where they 

block aqueous outflow.  These macrophages are laden with immature melanosomes 

(melanin-containing granules within melanocytes) from the iris pigment epithelium and 

the authors commented that abnormal melanosomes were also present in the iris of 

some PDS patients.  

 

1.2.7.3  Myocilin and pigmentary glaucoma 

 

The published literature on the genetics of PDS has thus far failed to separate out 

distinct genetic contributions to PDS and the glaucomatous optic neuropathy (GON) 

that may ensue. Some investigators have suggested that PG may be a variant of POAG 
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(69) and it may be that there are separate genetic components independently 

conferring susceptibility to PDS, and raised IOP/GON. 

 

PDS and PG have been associated in several studies with mutations in the myocilin 

(MYOC) gene, one of the few genes whose causative role in glaucoma is well-

established. MYOC was originally discovered by Stone et al.(70) who reported 

mutations in in this gene causing juvenile open angle glaucoma (JOAG); the gene 

mapped to the GLC1A region which had been previously identified by Sheffield et 

al.(71) through linkage analysis of large pedigree segregating for autosomal dominant 

JOAG.  

 

MYOC encodes a 504-amino-acid glycoprotein, which contains an olfactomedin domain 

(residues 246–501), where the majority of the mutations documented have been 

identified, although the exact role of myocilin in the pathogenesis of OAG is unknown. 

Over 70 mutations in the MYOC gene have been implicated in POAG (72) and MYOC 

mutations are thought to be responsible for 2-4% of glaucoma worldwide (73). MYOC 

associated OAG is particularly associated with high IOP (74). Whilst MYOC mutations 

were initially associated with JOAG, the most common mutation, Gln368Stop, is 

associated with late-onset OAG (75, 76).   

 

A small number of mutations in MYOC have been reported in associated with PDS/PG. 

Vincent et al. (77) have reported Thr293Lys mutation in a 31 year old with PG. The 
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proband had a family history of late onset POAG but this remained unconfirmed as 

family members were not available for examination. Faucher et al.(78) reported a 40 

year with PG carrying the Ala445Val MYOC mutation and Alward et al. (79) reported a 

case of PG associated with Arg470Cys and a case of pigment dispersion (without 

glaucoma) carrying the Gln368Stop mutation. Conversely, Paglinauan et al. (80) have 

described 3 pigment dispersion pedigrees where linkage to the 1q21-q31 region (the 

locus subsequently found to contain MYOC) was excluded. 

 

1.3 Aims 

 

Whether to perform LPI in patients with PDS/PG remains an area of controversy and 

depends, to a large extent, on whether iris concavity is the key abnormality driving the 

pathogenesis of the condition. As LPI represents a relatively non-invasive, one-off 

intervention with the potential to prevent the development of glaucoma (and thereby 

avoid the necessity of lifelong drops and possible filtering surgery) in a relatively young 

patient population, establishing the role of iris concavity in pigment dispersion 

syndrome remains a goal of considerable importance. 

 

Establishing the genetic basis of PDS/PG is important for 2 main reasons: 1) it might 

allow screening of unaffected first degree relatives of patients, allowing those without 

genetic predisposition to be safely discharged to the care of their optometrist whilst 

focusing resources on those carrying high risk mutations in an effort to commence 
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treatment prior to the onset of significant visual loss, and, 2) understanding the 

molecular pathways underlying the pathogenesis could lead to the discovery of targets 

for novel therapies. 

 

Within this context, the work has 3 principal aims: 

1) To determine which anterior segment parameters, as quantified on AS-OCT, best 

distinguish PDS/PG eyes from age-, sex- and refraction-matched controls 

2) To determine the prevalence of iris concavity in early adolescence and explore 

associations with refractive error 

3) To identify disease susceptibility loci/genes for PDS/PG using 2 different 

approaches: linkage analysis in a pedigree segregating for PDS/PG and genome-

wide analysis in a cohort of unrelated PDS/PG probands using an appropriate 

genotypic control dataset 
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2.1 Introduction 

 

Iris concavity (IC) is considered to be the key anatomical abnormality in PDS and 

reversal of this concavity is the basis for offering patients laser peripheral iridotomy 

(LPI). 

 

2.1.1  Quantification of iris concavity and the role of accommodation  

 

The role of IC in PDS has been studied with ultrasound biomicroscopy (UBM). Carassa 

et al. (81) have described a method for IC quantification by measuring the maximum 

deflection of the posterior iris pigment epithelium from a line constructed between the 

innermost point of the posterior pigment epithelium in contact with the lens and its 

outermost point at the iris root. The authors reported IC in 27 of 50 PDS eyes and in 2 

out of 15 control subjects. Of the 23 eyes with PDS showing either a convex or planar 

configuration, 3 showed concavity on accommodation only.  Studies that have 

specifically investigated the role of accommodation in iris concavity in PDS/PG have 

yielded conflicting results. Adam et al. (42) studied the changes in iris profile in 92 

patients with PG and reported the accommodated state to be associated with 

significant posterior bowing. Balidis et al. (82) studied 49 eyes of 30 PDS/PG subjects 

and found the effect of accommodation on iris profile to be variable, reporting an 

increase in concavity in only 20% of subjects on accommodation. However, the mean 

age of the subjects in the latter study was 53 years, which was 11 years older than the 
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mean age of the study by Adam et al. which might account of the apparent difference 

in accommodation-induced concavity 

 

2.1.2  Iris concavity and blinking 

 

Liebmann et al. (83) have demonstrated, using UBM, how prevention of blinking alters 

iris configuration. After a period of up to 15 minutes of continuous scanning, during 

which time blinking was prevented, the authors reported anterior iris movement in 10 

out of 10 PDS eyes and 9 out 10 healthy controls. The mean change in iris position, 

from most concave to most convex was 0.32 mm for eyes with PDS and 0.09 mm for 

control eyes (P=0.0001). It is thought that when blinking is prevented, aqueous humour 

accumulates in the posterior chamber. Normal blinking produces transient vector 

forces on the cornea which promote aqueous flow from the posterior to the anterior 

chamber leading to a more concave (or less convex) configuration.  

 

2.1.3  Anterior segment biometry in PDS/PG compared to controls 

 

Investigators have reported greater anterior chamber depth in PDS/PG subjects 

compared with other forms of open angle glaucoma or glaucoma suspects (84) and a 

more posterior iris insertion (85) compared to matched controls. To identify the 

anatomical factors predictive of PDS, Mora et al. (86) conducted a study examining iris-

lens contact, iridocorneal angle and iris concavity as measured by UBM comparing 24 

PDS/PG subjects with 25 age-, sex- and refraction-matched controls. Receiver 
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operating characteristic (ROC) curves were constructed to assess the ability of UBM to 

discriminate between cases and controls. Irido-corneal angle in accommodation was 

found to be the most sensitive parameter, reaching a sensitivity and specificity of 0.875 

with a cut off of 53˚. Interestingly, IC in accommodation was the 2nd most sensitive 

parameter. 

 

2.1.4  Anterior segment optical coherence tomography in PDS/PG 

 

Whilst UBM has advanced our understanding of iris configuration in PDS, it does 

require physical contact with the globe with the patient in a supine position. 

Furthermore, the ultrasound probe in contact with the patient’s eye is likely to reduce 

the blink rate and this may lead to underestimates of the degree of iris concavity; this 

departure from the physiological state gives rise to the potential for artefactual results. 

Anterior segment optical coherence tomography (AS-OCT) is a non-contact imaging 

device that images the eye with the patient sitting upright and may better reflect true 

iris anatomy. Laemmer et al. (87) reported iris concavity in 18 out of 22 PDS subjects 

but also mild iris concavity in 1 out of 10 control patients using AS-OCT. Liu et al. (41) 

used AS-OCT to study iris contour in 20 PDS subjects and their data corroborated the 

conclusions of Adam et al. (42) in supporting the role of accommodation in inducing iris 

concavity. However, in contrast to the UBM studies, they reported that the iris 

concavity diminished when blinking was allowed; even a subsequent phase of forced 

blinking did not restore iris concavity. One disadvantage of AS-OCT, however, is its 
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inability to image structures posterior to the iris (88) meaning it is unable to reliably 

quantify areas of irido-lenticular contact. 

 

2.1.5  Repeatability of iris curvature measurements 

 

Balidis et al. (89) have investigated the repeatability of iris curvature measurements by 

UBM in PDS/PG and concluded that whilst there was good intra-observer agreement, 

the variability between observers was greater and suggested that when using their 

method of measuring iris concavity, measurements should preferably be taken by the 

same observer. 

 

Although AS-OCT is now becoming more commonly used to image iris anatomy in PDS 

(74, 87), there are no published data investigating the repeatability of this modality in 

assessing iris concavity. The first part of this chapter describes a study assessing 

between- and within-observer agreement in measuring iris curvature in AS-OCT images 

of patients with PDS/PG. 

 

2.1.6  Case-control study 

 

The majority of studies examining differences between PDS/PG subjects have used 

UBM to image the anterior segment (84-86). AS-OCT allows a more physiological 

record of anterior segment biometry to be obtained and in particular allows for 

assessment of features such as iris curvature, anterior chamber depth and relative iris 
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insertion, all of which are thought to be significantly different in PDS/PG subjects 

compared with matched controls. The second part of this chapter describes a case-

control study where AS-OCT biometric parameters of 50 PDS/PG subjects and 50 age-, 

sex- and refraction-matched controls were compared. The purpose of this study was to 

determine the relative importance of each parameter in distinguishing PDS/PG from 

myopic control subjects and to validate findings of previous UBM-based studies. 

Differences in iris curvature between cases and controls is of particular interest as the 

intervention of LPI is thought to work by reducing iris concavity and eliminating the 

anatomical predisposition to pigment dispersion. 

 

2.2 Methods 

 

Participants recruited into a genetic study into PDS/PG were enrolled between 

December 2008 and July 2011. Participants underwent detailed phenotyping 

comprising slit lamp biomicroscopy looking for the presence of Krukenberg spindle and 

iris transillumination defects and gonioscopy to document the presence and amount of 

trabecular meshwork hyperpigmentation. IOP was checked using Goldmann 

applanation tonometry and optic disc assessment was performed using indirect 

ophthalmoscopy. Automated perimetry was performed with the Humphrey Field 

Analyzer Mark II (or II-i) and the Swedish interactive threshold algorithm standard 24-2 

program. Refractive error was determined by spectacle focimetry or autorefraction if 

current spectacles were not available. Ethics Committee approval was obtained and 
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the study adhered to the tenets of the Declaration of Helsinki, a statement of ethical 

principles for medical research involving human subjects, including research on 

identifiable human material and data. 

As part of the phenotyping for this study participants underwent AS-OCT imaging and 

provided informed consent for the purposes of the imaging studies. Diagnostic criteria 

for PDS were a) at least 270° of confluent dark brown trabecular meshwork 

pigmentation plus either a Krukenberg spindle or mid-peripheral transillumination 

defects, or b) 180 dark brown trabecular meshwork pigmentation plus both 

Krukenberg spindle and mid-peripheral transillumination defects.  A diagnosis of PG 

was made if, in addition, there was a glaucomatous visual field defect on automated 

24-2 Humphrey perimetry with corresponding damage to the optic nerve head (cup-to-

disc ratio ≥ 0.07, focal narrowing of the neuroretinal rim, or both). Subjects with 

previous intra-ocular surgery , LPI or non-glaucomatous causes of field loss were 

excluded. 

 

2.2.1  Image acquisition 

 

Anterior segment imaging was performed using the Visante AS-OCT (Carl-Zeiss-

Meditec, Dublin, California, USA). Images were acquired using near and distance 

fixation targets in dim illumination with the room lights switched off and window blind 

pulled down prior to image acquisition. Fixation was monitored using the pupil-tracking 

screen and the appearance of a central interference flare was used to indicate good 
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centration. A scan of the temporal and nasal quadrants was taken using the ‘horizontal 

scan’ protocol; as the focimetry/autorefraction details had been entered during the 

registration process, this scan was deemed to represent distance fixation. 

 

The "POWER" tab, which controls the focus of the fixation target and is set by default 

to zero, was gradually reduced while asking the subject if he could still see a clear and 

sharp image. The value at which the subject reported a blurred image was noted e.g. -

3.00 dioptres. The subject was moved away and the power value determined above 

was exceeded e.g. -4.00 dioptres before placing the subject back onto the chin rest. 

The power value was then made gradually more positive, acquiring the image once the 

subject reported seeing a sharp image again. This second scan was deemed to 

represent near fixation. 

 

2.2.2  Line construction for iris concavity 

 

A line was drawn from the innermost to the outermost extremity of the posterior 

pigment epithelium (figure 2.1a). At the point of maximal iris deflection, a second line 

was constructed starting from, and perpendicular to, the first line. This line was 

extended to the posterior iris pigment epithelium and its length was taken as the iris 

deflection measurement (figure 2.1b). Blinking was allowed during image acquisition 

and the iris deflection measurement was taken in the same way regardless of whether 

the accommodation has been induced. 
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Figure 2.1a  Line joining inner and outer extremities  

 

 

Figure 2.1b  Measuring maximum deflection. In this example iris concavity was recorded as -0.35 
mm. 
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2.2.3  Between- and within-observer agreement study 

 

AS-OCT images from the first 50 consecutive PDS/PG patients were used for this study. 

The eye with the least flat iris profile was selected from each eye pair to maximize the 

chance of finding disagreement between and within observers. Iris curvature was 

quantified independently by 2 observers for both temporal and nasal quadrants using 

AS-OCT software as described in section 2.2.2. A small number of examples were 

discussed amongst the observers with the aim of achieving uniformity in identifying the 

scleral spur. These examples were not included in the analysis. Observer 1 repeated 

the measurements on the same set of images 1 week later. Nasal and temporal 

quadrants were analysed separately. Bland-Altman plots were constructed. Average 

agreement (bias) was estimated by the mean of the differences between or within 

observers and limits of agreement (LoA) were calculated as the bias +  (1.96 x standard 

deviation of the differences) (90). 

 

In addition to quantitative measurements, iris profiles were categorised as planar                   

(-1.0 ≤ deflection ≤ 1.0), convex (deflection > 1.0) or concave (deflection < -0.1). 

Agreement was assessed using a weighted Kappa statistic (). Statistical analyses were 

performed using MedCalc Version 11.2.1.0. 
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2.2.4   Anterior segment imaging case-control study 

 

2.2.4.1   Control subjects 

 

The ‘case’ group comprised 50 PDS/PG subjects recruited as part of the genetic study.  

A ‘control’ cohort was recruited from members of staff at Moorfields Eye Hospital and 

patients without PDS who were attending the Glaucoma Service for management of 

primary open angle glaucoma, ocular hypertension or who were glaucoma suspects. 

Control subjects underwent similar clinical examination and each subject was matched 

to a PDS/PG subject, based on: 1) sex, 2) age within 5 years and 3) spherical equivalent 

(SE) as judged by spectacle focimetry or autorefraction within 1 dioptre. Cases and 

controls were both predominantly of Caucasian ancestry which mimimised differences 

in ethnicity between the groups giving rise to bias. 

 

2.2.4.2   Additional AS-OCT analysis 

 

In addition to iris curvature, the following additional analysis was performed on the 

non-accommodative and accommodative images from both the case and control 

cohort using the device’s in-built software (Visante version 3.0). The scleral spur was 

identified by the operator and based on this landmark the software calculated the 

following parameters: anterior chamber depth (ACD), scleral-spur to scleral-spur 

distance, lens vault (LV, the perpendicular distance between the anterior pole of the 
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crystalline lens and a horizontal line joining the 2 scleral spurs (91)), angle opening 

distances at 500 and 750 microns from scleral spur (AOD500 and AOD750) (92) and 

trabecular-iris space area (TISA) at 500 and 750 microns from the scleral spur (TISA500 

and TISA750) (93). These measurements are illustrated in figure 2.2. 

 

The antero-posterior distance between the scleral spur and the iris root (abbreviated 

to ‘root-to-spur’ from this point forward) is an important metric as greater proximity of 

the iris root to the scleral spur implies the posterior iris pigment epithelium is 

anatomically closer to the lens zonules resulting in a greater likelihood of frictional 

contact. The root-to-spur distance was measured as follows (figure 2.3): the calliper 

tool was used to construct a straight line joining the nasal and temporal scleral spur.  

The posterior iris pigment epithelium is well defined on AS-OCT as a line of hyper-

reflectivity and the iris root insertion was defined as the point where this line 

terminates peripherally. A second line was then constructed starting at the iris root 

insertion running parallel with the first line. The root-to-spur distance was deemed to 

be the perpendicular distance between these 2 parallel lines.  

 

2.2.4.3   Statistical analysis 

 

The means of the above parameters were compared between cases and controls using 

a paired Student t-test. Receiver operating characteristic (ROC) analysis was used to 

assess the ability of each of the measured parameters in distinguishing PDS/PG cases 
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from controls. Comparison of the areas under the ROC curves (AUC) was calculated 

according to DeLong et al. (94). Correlations between iris curvature and age were 

explored using Pearson’s correlation coefficient. A previously published cut-off(86) was 

tested in the present cohort. Analyses were performed using MedCalc Version 11.3.1.0 

and Prism version 6.0c for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com. A P-value < 0.05 was deemed significant. 
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Figure 2.2 Example AS-OCT screenshot illustrating semi-automated measurements. White arrow 
denotes scleral spur. Yellow and green arrows denote points 500 μm and 750 μm 
respectively anterior to scleral spur along corneal endothelium. 
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Figure 2.3 Determination of posterior displacement of iris root from scleral spur. A. Identification 
of scleral spur (long arrow) and iris root (short arrow). B. Construction of horizontal line 
joining scleral spurs and parallel line originating at iris root. C. Displacement deemed to 
be perpendicular distance between horizontal lines measured at iris root. In this 
example displacement is 0.67 mm in the temporal quadrant and 0.47 in the nasal 
quadrant. 
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2.3 Results 

 

2.3.1  Between- and within-observer agreement  

  

Images from one subject were of insufficient quality to confidently measure iris 

curvature and these were excluded from the analysis. Tables 2.1 and 2.2 show results 

of within- and between-observer agreement for classifying temporal quadrant images 

as convex, flat or concave. Results for nasal quadrant were similar (data not shown). 

 

 Observer 1(A) 

Concave Flat Convex 

Observer 1(B) concave 20 1 0 

flat 1 11 0 

convex 0 1 15 

Weighted kappa statistic = 0.96 

Table 2.1  Within-observer agreement for classifying temporal quadrant 

 

 Observer 1 

Concave Flat Convex 

Observer 2 concave 14 1 0 

flat 4 13 0 

convex 0 1 17 

Weighted kappa statistic = 0.89 

Table 2.2  Between-observer agreement for classifying temporal quadrant 
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Bland-Altman plots showing within- and between-observer agreement are shown in 

figures 2.4 and 2.5 respectively. Neither of these plots showed any relationship 

between the measurement difference and the magnitude of the measurement and it 

was therefore appropriate to calculate 95% limits of agreement (LoA) which are shown 

in table 2.3. 

 

Difference Bias (mm) 95% LoA (mm) 

Between-observer temporal quadrant -0.008 -0.056 to 0.040 

Between-observer nasal quadrant -0.009 -0.065 to 0.048 

Within-observer temporal quadrant 0.005 -0.057 to 0.067 

Within-observer nasal quadrant -0.003 -0.039 to 0.034 

Table 2.3 Bias and 95% limits of agreement (LoA) for between- and within-observer difference in 
estimate of iris concavity  

  



 60 

 

Figure 2.4 Bland-Altman plot to show within-observer agreement in the temporal quadrant 

 

 

Figure 2.5  Bland-Altman plot to show between-observer agreement in the temporal quadrant 
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2.3.2  Anterior segment imaging case-control study 

 

Fifty eyes of 50 patients were imaged from each of the case and control group. The 

accommodative scan was not available for 1 PDS case. The posterior pigment 

epithelium was poorly visible in 1 control patient and the scleral spur could not be 

identified in another control patient.  

 

The mean subject age was 41.9 years in both the case and the control group. The mean 

SE was -2.1 D in the case group and -2.25 D in the control group; this difference was 

not statistically significant (P = 0.36). There was no statistically significant difference in 

spur-to-spur distance between the 2 groups. The mean anterior lens movement on 

accommodation was 76.1 μm in the PDS group compared to 90.8 μm in the control 

group (P = 0.143, paired Student t-test). Statistically significant differences between 

cases and controls were seen for all other AS-OCT parameters (table 2.4), data not 

shown for AOD750 and TISA750 but differences between cases and controls were 

similar to AOD500 and TISA500 respectively). The area under the ROC curve for these 

parameters is shown in table 2.5 (data not shown for AOD750 and TISA750 but AUC 

was similar to AOD500 and TISA500 respectively).  
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Table 2.4  Summary of anterior segment optical coherence tomography parameters in cases and 
controls. NA = non-accommodating, A = accommodating, AC = anterior chamber, AOD 
= angle-opening distance; TISA = trabecular-iris space area. In the case group, N=50 for 
non-accommodative measurements and N=49 for accommodative measurements. In 
the control group, N=49 for both accommodative and non-accommodative 
measurements. 

  

Parameter Case (SD) Control (SD) Mean 
difference 

Test 
statistic t 

Two-tailed 
probability 

Mean AC depth NA 
/mm 

3.17(0.39) 2.94(0.51) -0.23 -2.95 0.0049 

Mean AC depth 
A/mm 

3.07(0.33) 2.89(0.30) -0.18 -3.09 0.0034 

Mean lens vault 
NA/ μm 

-5.0(308.1) 176.2(252.6) 181.2 3.53 0.0009 

Mean lens vault A/ 
μm 

77.96(244.17) 276.73(235.20) 198.8 4.320 0.0001 

Mean AOD500 
NA/mm 

0.831(0.440) 0.485(0.233) -0.346 -4.89 <0.0001 

Mean AOD500 
A/mm 

0.823(0.426) 0.494(0.238) -0.329 -4.756 <0.0001 

Mean TISA500 
NA/mm

2 
0.296(0.174) 0.170(0.091) -0.127 -4.613 <0.0001 

MeanTISA500 
A/mm

2
 

0.282(0.149) 0.494(0.238) -0.212 5.398 <0.0001 

Mean angle NA/° 54.5 (14.6) 41.3(13.3) -13.2 -4.500 <0.0001 

Mean angle A/ ° 53.1(16.4) 41.9(13.7) -11.3 -3.475 0.0011 

Mean spur-to-root 
distance NA/mm 

0.570(0.135) 0.481(0.164) -0.089 -2.788 0.0076 

Mean spur-to-root 
distance A/mm 

0.530(0.116) 0.416(0.164) -0.114 -3.987 0.0003 

Mean iris curvature 
NA/mm 

-0.029(0.223) 0.149(0.119) 0.177 5.185 <0.0001 

Mean iris curvature 
A/mm 

-0.070(0.236) 0.113(0.415) 0.183 2.573 0.0133 
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Parameter AUC 95% CI P value* Criterion Sensitivity 
(%) at 90% 
specificity 

AC depth NA/mm 0.613 0.511-0.709 0.0453 >2.68 28.0 

AC depth A/mm 0.649 0.546-0.742 0.0072 >3.09 26.5 

Lens vault NA/μm 0.675 0.574-0.765 0.0011 ≤30 30.0 

Lens vault A/ μm 0.742 0.645-0.825 0.0001 ≤100 22.5 

AOD500 NA/mm 0.762 0.666- 0.841 0.0001 >0.6 45.0 

AOD500 A/mm 0.743 0.645-0.826 0.0001 >0.637 32.7 

TISA500 NA/mm 0.756 0.660-0.837 0.0001 >0.201 45.0 

TISA500 A/mm 0.729 0.630-0.813 0.0001 >0.203 31.6 

Angle NA/° 0.760 0.664-0.840 0.0001 >50.1 46.0 

Angle A/° 0.724 0.625-0.809 0.0001 >49.3 30.6 

Spur-to-iris root 
distance NA/mm 

0.648 0.545-0.741 0.0085 >0.43 12.0 

Spur-to-iris root 
distance A/mm 

0.723 0.623-0.808 0.0001 >0.42 10.2 

Iris curvature 
NA/mm 

0.817 0.727-0.888 0.0001 ≤0.08 58.4 

Iris curvature 
A/mm 

0.700 0.599-0.789 0.0001 ≤0 30.6 

Table 2.5 Receiver Operating Characteristic analyses for anterior segment optical coherence 
tomography parameters in cases and controls. NA = non-accommodating, A = 
accommodating, AC = anterior chamber, AOD = angle-opening distance; TISA = trabecular-iris 
space area AUC = area under the curve. *Testing the hypothesis that AUC = 0.5 
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The best performing parameter at distinguishing between cases and controls was iris 

curvature in non-accommodating eyes. The area under the ROC curve was 0.82 (95% CI 

0.73-0.89, P = 0.0001) and this area was significantly greater than the areas under the 

curve for non-accommodating AC depth, accommodating AC depth and 

accommodating iris curvature (P =  0.001, 0.004 and 0.01 respectively). Comparison of 

the ROC curve for non-accommodating iris curvature with those for accommodating 

iris curvature and anterior chamber angle can be seen in figure 2.6 and comparison 

with LV and root-to-spur distance can be seen in figure 2.7. 
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Figure 2.6  Receiver operating characteristic curves for iris curvature and anterior chamber angle. 
NA = non-accommodating, A = accommodating. 

 
 
 
 
 
 

 
Figure 2.7  Receiver operating characteristic curves for iris curvature, lens vault and spur-to-root 

distance. NA = non-accommodating, A = accommodating. 
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AUC was in fact similar for all parameters and a correlation matrix was constructed to 

investigate the relationship between the AS-OCT parameters (tables 2.6 and 2.7). The 

angle-derived parameters (angle, AOD500/750 and TISA500/750) were all strongly 

correlated with each other (r = 0.89 - 0.99), LV and ACD were moderately correlated 

with angle-derived parameters (r = 0.36 – 0.60) whilst iris curvature was the most 

weakly correlated (r = 0.26 – 0.42). A scatter plot of age against accommodative iris 

curvature is shown in figure 2.8. Regression analysis was performed for iris curvature 

on age (table 2.8). Robust regression with outlier exclusion (95) revealed that age 

accounts for a significant amount of variation in accommodative iris curvature in both 

cohorts. The association remained significant but was weaker for non-accommodative 

iris curvature. A previously published cut-off to distinguish between PDS/PG and 

control eyes of 53˚angle width, derived from UBM measurements, (86) was tested in 

our cohort and correctly classified 27 out of 50 cases of PDS/PG (54% sensitivity) and 

38 out of 50 controls (76% specificity). 
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Figure 2.8 Scatterplot of accommodative iris curvature against age in PDS/PG cohort 
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Group Outlier 
exclusion 

r
2
 

 
P value 

PDS/PG NA no 0.25 0.002 

PDS/PG NA yes 0.16 0.003 

PDS/PG A no 0.29 <0.0001 

PDS/PG A yes 0.44 <0.0001 

Controls NA no 0.09 0.038 

Controls NA yes 0.10 0.026 

Controls A no 0.07 0.065 

Controls A yes 0.51 <0.0001 

Table 2.8 Results of robust regression of iris curvature on age with and without outlier exclusion. 
A = accommodating, NA = non-accommodating. PDS/PG = pigment dispersion 
syndrome/pigmentary glaucoma 
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 AC 
depth/

mm 

Lens vault 
/μm 

AOD500/ 
mm 

AOD750/ 
mm 

TISA500/ 
mm 

TISA750/ 
mm 

Angle/° 
Spur-to-iris root 
distance /mm 

Iris 
curvature 

AC depth/mm 1.0 -0.40 0.40 0.46 0.36 0.60 0.41 0.26 -0.37 

Lens vault /μm -0.40 1.0 -0.51 -0.51 -0.44 -0.54 -0.54 -0.25 0.25 

AOD500/mm 0.40 -0.51 1.0 0.95 0.96 0.99 0.96 0.70 -0.33 

AOD750/mm 0.46 -0.51 0.95 1.0 0.89 0.95 0.93 0.68 -0.38 

TISA500 /mm 0.36 -0.44 0.96 0.89 1.0 0.98 0.89 0.74 -0.26 

TISA750 0.60 -0.54 0.99 0.95 0.98 1.0 0.99 0.78 -0.42 

Angle/° 0.41 -0.54 0.96 0.93 0.89 0.99 1.0 0.68 -0.37 

Spur-to-iris root distance/mm 0.26 -0.25 0.70 0.68 0.74 0.78 0.68 1.0 -0.15 

Iris curvature/mm -0.37 0.25 -0.33 -0.38 -0.26 -0.42 -0.37 -0.15 1.0 

Table 2.6 Correlation matrix to show correlation between non-accommodating anterior segment optical coherence tomography parameters. All values 
represent Pearson correlation coefficient, apart from correlations between TISA750 and other parameters for which Spearman’s rank 
correlation is shown. ACD, anterior chamber depth; AOD, angle-opening distance; TISA, trabecular-iris space area. 

 
 

 AC 
depth/

mm 

Lens vault 
/μm 

AOD500/ 
mm 

AOD750/ 
mm 

TISA500/ 
mm 

TISA750/ 
mm 

Angle/° 
Spur-to-iris 

root distance 
/mm 

Iris 
curvature 

AC depth/mm 1.0 -0.16 0.25 0.23 0.26 0.63 0.22 0.1 -0.19 

Lens vault /μm -0.16 1.0 -0.58 -0.63 -0.53 -0.61 -0.66 -0.34 0.14 

AOD500/mm 0.25 -0.58 1.0 0.97 0.97 0.99 0.89 0.58 -0.38 

AOD750/mm 0.23 -0.63 0.97 1.0 0.94 0.97 0.89 0.58 -0.40 

TISA500 /mm 0.26 -0.53 0.97 0.94 1.0 0.99 0.86 0.59 -0.33 

TISA750 0.63 -0.61 0.99 0.97 0.99 1.0 0.96 0.65 -0.56 

Angle/° 0.22 -0.66 0.89 0.89 0.86 0.96 1.0 0.53 -0.31 

Spur-to-iris root distance/mm 0.1 -0.34 0.58 0.58 0.59 0.65 0.53 1.0 -0.11 

Iris curvature/mm -0.19 0.14 -0.38 -0.40 -0.33 -0.56 -0.31 -0.11 1.0 

Table 2.7 Correlation matrix to show correlation between accommodating anterior segment optical coherence tomography (AS-OCT) parameters. All 
values represent Pearson correlation coefficient, apart from correlations between TISA750 and other parameters for which Spearman’s rank 
correlation is shown. ACD, anterior chamber depth; AOD, angle-opening distance; TISA, trabecular-iris space area
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2.4 Discussion 
 
 
The results of the agreement study indicated that there was very good within- and 

between-observer agreement in classifying iris curvature as convex, flat or concave. 

Reassuringly there were no cases where an image was classified as showing a concave 

profile by one observer but convex by another; this is noteworthy because the iris 

curvature is not uniform throughout its length and a particular segment of the iris may 

appear convex whilst a different section appears flat or concave. Agreement with 

regard to quantification of iris curvature was deemed reasonable as 95% LoA between 

-0.06 and 0.04 mm represent a relatively narrow interval when considered in the 

context of the normal range of iris curvature measurements. The method described 

therefore appeared to be reliable in quantifying iris curvature from AS-OCT images. 

Establishing that there was satisfactory agreement using AS-OCT in the measurement 

of iris curvature was important prior to planning the case-control section of this study.  

The current study focused on agreement on iris curvature measurements on individual 

AS-OCT images. A limitation of the study was that variability of iris curvature over time 

for an individual patient was not addressed. Future work should ideally look at repeat 

AS-OCT images taken several hours and several days apart in order to determine to 

what extent iris curvature measurements may fluctuate over time. 

 

There is only one previously published study investigating between- and within-

observer agreement on measurements of iris curvature: Balidis et al. (89) used UBM to 

derive a metric known as the ‘R/D score’ to represent iris curvature; their method 
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relied on identifying the outermost point of iridolenticular contact, referred to as point 

A, constructing a line from this point to the peripheral end of the iris pigment 

epithelium and measuring the angle between this line and a line tangent to the lens 

also originating from point A, an angle known as the reference angle, R. The point of 

maximum iris displacement was then identified, either anteriorly or posteriorly, usually 

in the mid-peripheral iris and a 3rd line was then constructed through this point also 

originating from point A. The angle between this line and the line tangent to the lens 

was known as the displacement angle, D. The authors stated that in an eye with a flat 

iris configuration, the ratio R/D will equal 1 and that the greater the ratio, the greater 

the concavity of the iris. Although there was substantial agreement between two of the 

observers there was only moderate agreement with a 3rd observer. The authors 

concluded that assessments should preferably be made by the same observer when 

using this technique. One of the strengths of their method is that only the peripheral 

segment of the iris not in contact with lens is used for the assessment of curvature 

which produces a measurement of iris curvature less dependent on the relative 

position of the lens. Inspection of the AS-OCT images suggests that the central iris may, 

to some extent, be conforming to the anterior lens surface. It might be preferable to 

exclude the segment of iris in direct contact with the lens when measuring iris 

curvature, as is the case with Balidis’ method, to avoid the effect of relative lens 

position on iris curvature. It would not, however, be possible to apply this method to 

determine iris curvature on images from the present study as irido-lenticular contact is 

not well delineated on AS-OCT. Instead the method used was that described by Carassa 
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et al. (81) which assesses curvature along the whole length of the iris from the 

periphery to the pupil edge. 

 

Accommodation was stimulated by de-focusing an internal fixation target and relied 

upon the participant reporting blurring of the target, an approach which differed from 

the method used by Liu et al. (41) who held a -3.0 D and -6.0 D lens in front of the eye 

to stimulate accommodation.  However, using the internal fixation target allowed the 

subject to accommodate maximally thereby increasing the study’s ability to detect 

accommodation-induced changes. 

 

The method used for assessing iris root to scleral spur distance along the antero-

posterior axis had the advantage of better reflecting the proximity of the posterior iris 

pigment epithelium to the lens zonules and may therefore be a more relevant metric 

to the pathophysiology of pigment dispersion. The method used in the present study 

differed to that used by Sokol et al. (85) which directly measured the distance between 

the 2 landmarks and is usually an oblique measurement.  

 

This is the first report of AS-OCT parameters in PDS/PG and age-, sex- and refraction-

matched controls. All parameters studied were significantly different between groups 

and the parameter that best distinguished between groups was iris curvature in non-

accommodating eyes. Campbell (38) was the first to propose that in PDS the 

posteriorly bowed iris led to frictional contact between packets of anterior zonular 
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fibres and the posterior pigment epithelium resulting in pigment dispersion. The 

concept of the ‘reverse pupillary block’ mechanism was introduced by Karickoff (39). 

who proposed that excessive irido-lenticular contact causes the iris to act like a flap 

valve permitting unidirectional flow of aqueous from the posterior to the anterior 

chamber, maintaining the posterior bowing.  

 

More recently, Dorairaj et al. (44) studied the response of the iris to accommodation in 

eyes with narrow angles, PDS and controls (age and refraction matched to the PDS 

group) over time. The drop in curvature (i.e. change from a more convex to a more 

concave configuration) immediately after accommodation was greatest in the PDS 

group. Average curvature reduced from 60 ± 79 μm (mean + standard error of the 

mean (SEM) prior to accommodation to −3 ± 83 μm immediately after, although this 

change was not statistically significant. Continued imaging of the iris over the following 

3 minutes revealed that the concavity was not maintained and in fact reverted to a 

more convex configuration than was present at baseline (146 ± 94 μm). The curvature 

value at this point was significantly different to both baseline iris curvature and 

curvature immediately after accommodation. Furthermore, the subsequent reversal in 

iris curvature was faster in the PDS group than in the other 2 groups from which the 

authors inferred that the chronic posterior bowing of the iris in PDS is not the result of 

slow recovery from accommodation. In the present study the area under the ROC 

curve for baseline iris curvature was significantly greater than for accommodating iris 

curvature. Baseline iris curvature may therefore play a greater part in frictional irido-
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lenticular contact than accommodation-induced changes in curvature. Prospective 

studies investigating the natural history of PDS should carefully assess baseline 

curvature in order to explore correlation with subsequent severity of the clinical 

phenotype and the risk of developing PG. 

 

The present study found iris curvature best distinguished PDS/PG cases from controls. 

In contrast, the UBM-based study by Mora et al. reported irido-corneal angle in near 

vision to be the best performing parameter. AS-OCT imaging does not require contact 

or a supine subject position and it is possible the magnitude of concavity detected by 

UBM is reduced through prevention of blinking. A limitation of the study is that the 

observer was not blinded to whether the images were from cases or controls. If the 

study were to be repeated it would be important to blind the observer in order to 

eliminate this source of potential bias. 

 

Age was moderately associated with accommodative iris curvature in both cohorts. The 

slope in figure 2.8 can be seen to level off after the age of 50 years and this may reflect 

loss of accommodation seen in presbyopia  after this age. In retrospect, it would have 

been useful to record the amplitude of accommodation and plotted these data against 

age in order to compare the curve with that from figure 2.8. Accommodation is 

associated with anterior movement of the lens and pupillary constriction. The anterior 

lens movement was likely to account for some of the concavity detected in this study 

as the central iris is pushed anteriorly by the lens and conforms to its contour whilst 
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the peripheral iris remains fixed giving rise to a concave configuration overall. Anterior 

lens movement reduces with age and this may explain the reduction in concavity in 

older patients. A weaker association with age was also detected with non-

accommodative iris curvature. Increasing age is associated with pupillary miosis and it 

may be the case that a smaller pupil stretches the iris resulting in a flatter iris 

configuration. The reduction in concavity with age may mean that older patients with 

PDS/PG will be less likely to benefit from LPI, which aims to reverse iris concavity; this 

lack of benefit is compounded by the fact that the TM has had a longer time to become 

overloaded with pigment in older patients and there may be a greater degree of TM 

dysfunction. Gandolfi et al. (35) reported that in older, normotensive PDS patients, LPI 

was less effective at preventing a subsequent IOP rise.  However, Ritch argues for the 

existence of a ‘burn-out’ phase in older subjects (23) with PDS and this may mean there 

is less need for LPI in older patients. Whilst there appears to be a role for LPI in 

reducing/reversing iris concavity (81, 96), studies have not demonstrated that this 

necessarily translates into a reduction in the risk of PG (55, 56, 97). The data from this 

study suggest that excessive baseline iris concavity is a key feature in the 

pathophysiology of PDS. There is a need for further studies in PDS patients to clarify 

the role of LPI in reducing pigment dispersion and the subsequent risk of raised IOP 

and PG. 
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3.1 Introduction 

 

3.1.1  Iris concavity in PDS and non-PDS eyes 

 

The role of iris concavity in the pathogenesis of PDS has been discussed in section 

1.2.4. In brief, excessive irido-lenticular contact causes the iris to act like a flap valve, 

permitting unidirectional flow of aqueous from the posterior to the anterior chamber, 

potentiating a concave iris configuration (39). Iris concavity predisposes to frictional 

contact between packets of anterior zonular fibres and the posterior pigment 

epithelium resulted in pigment dispersion (38). The iris becomes more concave (or less 

convex) with accommodation but this may be a transient phenomenon, reverting back 

to the original configuration despite continued accommodative effort (44). 

Physiological iris concavity has also been observed in normal subjects in the resting 

state (81) and following exercise (98) but its prevalence during eye growth in normal 

subjects is not well known. The tendency to iris concavity is more pronounced in 

myopic eyes (98) but its relationship with other ocular biometric parameters has not 

been studied to date.   

 

3.1.2 Myopia in school age children 

 

The incidence of myopia is increasing and several large studies from the USA and the 

Far East have provided data in school age children. The Singapore Cohort study Of the 
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Risk factors for Myopia (SCORM) (99) found that 34% of 7-9 year olds were myopic at 

baseline, whilst a large US study reported that only 10% of a slightly older cohort 

(mean age 10 years) were myopic (100). There are relatively little contemporary data 

on the UK prevalence/incidence of myopia in young people. Williams et al. (101) 

reported a prevalence of spherical equivalent (SE) < -1.5 diopters of 1.5% in 7 year olds 

from auto-refraction data in a cohort of children in the Avon area, South West England; 

this figure increased to 3.6% when the same cohort was re-examined 3 years later.  

 

Axial length (AL) is an easily measurable quantitative trait considered to be a 

component of refractive error (102).  A study in Japanese 7-13 year old myopes 

demonstrated the ability of the IOLMaster (Carl Zeiss Meditec, Dublin, CA) to provide 

highly repeatable AL measurements in this age group (103).  

 

3.1.3 Corneal biomechanical parameters and axial length 

 

There is some evidence that corneal biomechanical properties may be related to axial 

biometry. Corneal hysteresis (CH) is a parameter considered to represent the 

dampening or viscoelastic properties of the cornea (104). Song et al. (105) studied 

1153 secondary school children in rural China and found CH to be lower in eyes with 

longer AL. However, a cross sectional study of 271 Singaporean children (106), 

reporting on CH and the ‘corneal resistance factor’ (CRF), did not show any association 

with refractive error or axial length.  
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3.1.4  Additional data collection 
 

The present study provided the opportunity to collect non-ocular data which had 

potential relevance to the development of myopia. 

 

Birth weight has been associated with refractive error (107) and AL (108). There is 

evidence that control of eye growth differs between men and women (109). By 

collecting data on digit ratio, a putative marker for pre-natal androgen exposure (110-

112), whether eye growth differs between boys with greater or lesser exposure to 

maternal levels of androgens was investigated. Bio-impedance analysis measures body 

composition, in particular the percentage of body fat. Height, weight, percentage body 

fat and waist circumference provide an indication of general metabolic status and may 

reflect long-term insulin levels. Epidemiological evidence implicates a role for chronic 

hyperinsulinaemia in juvenile-onset myopia (113). The above easily measured 

parameters were therefore investigated in this cohort. 

 

3.1.5 Aims 

 

Prior to the advent of AS-OCT, imaging of the anterior segment in paediatric patients 

had been difficult owing to the relative invasive nature of UBM and as a result there 

are no normative data on iris curvature in paediatric populations.  
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The primary aims of the study were: 

 

1. To estimate the prevalence of iris concavity in 10-12 year old UK school boys at 

baseline and during accommodation 

2. To explore relationships between iris curvature and axial length/refractive error 

and between corneal biomechanical parameters and anterior segment/axial 

biometric measurements 

3. To investigate changes in anterior segment/axial biometric and corneal 

biomechanical parameters over a 2-year period 

 

The secondary aim of the study was to explore the influence of the following non-

ocular parameters: birth weight, digit ratio, height, weight, waist circumference and 

bio-impedance on ocular biometric parameters. 

 

3.2 Methods 

 

3.2.1  Eligibility and recruitment 

 

All students in 2 consecutive year groups at City of London School, an independent 

boys’ school, were considered eligible for enrolment. The 10-12 year old age group was 

selected as participants were sufficiently mature to be fully co-operative with data 

collection. The study was approved by the Moorfields and Whittington Research Ethics 
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Committee and adhered to the tenets of the Declaration of Helsinki.  

Following logistic arrangements with the school and an introductory lecture to the 

students, information sheets and consent forms were sent to all of the students and 

their parents.  

 

One hundred and forty boys were invited to take part in the baseline study (December 

2009). One eye of each participant was pre-selected at random using a web-based 

research randomization tool (114) and this eye was designated as the study eye. 

Participants from the baseline study were invited to take part in a follow up study 2 

years later. The methodology was identical for the follow up study with the additional 

collection of non-ocular data. 

 

3.2.2  Examination and imaging 

 

3.2.2.1  Visual Acuity 

 

Distance visual acuity was measured in each eye at 4 metres with their current 

spectacles if available (LogMAR Acuity Charts; Keeler, Ltd., Windsor,UK). Pinhole visual 

acuity was also measured if the initial visual acuity was logMAR 0.2 (Snellen equivalent 

6/9.5) or worse. 
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3.2.2.2  Assessment of Ocular Refraction 

 

Non-cycloplegic ocular refraction was measured using an autorefractor (Nvision-K5001; 

Shin-Nippon Commerce Inc., Tokyo, Japan). Manual focimetry was performed where 

spectacles were worn. 

 

3.2.2.3  Ocular Biometry 

 

The AL of the study eye was measured using laser interferometry (IOLMaster, Carl Zeiss 

Meditec Ltd, Welwyn Garden City, UK). The subject was asked to focus on the internal 

fixation target and the reflection of the alignment light was centred within the cross 

hairs on screen. A minimum of 5 measurements were taken and checked for 

consistency, paying attention to any software notifications indicating measurements 

required evaluation. Only measurements within 0.1 mm of each other were included in 

calculating mean AL. Readings with a signal-to-noise ratio < 2.0 were excluded. 

 

3.2.2.4  Corneal biomechanical properties 

 

The Ocular Response Analyzer (ORA, Reichert Inc, Depew, New York, USA) measures 

the corneal response to indentation by a rapid air pulse and derives values for CH and 

CRF (104, 115). The ORA device also uses corneal biomechanical data to generate 

corneal-compensated IOP (ccIOP), a measure of IOP that is less affected by corneal 
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properties (116). The ORA device was used to obtain at least 3 good quality 

measurements as determined by visual inspection of the waveform looking for sharp, 

well-defined raw signal peaks. ORA software generates a waveform score reflecting 

measurement quality. Only measurements with a waveform score ≥ 4 were included in 

the analysis.  

 

3.2.2.5  Anterior Segment Optical Coherence Tomography 

 

Images of the anterior segment were obtained using the Visante AS-OCT (Carl-Zeiss-

Meditec, Dublin, California, USA). The device uses an internal fixation device with the 

apparent viewing distance set to infinity by the instrument optics when the subject’s 

refraction is entered. The operator can stimulate accommodation by adjusting the 

focus of the internal fixation target. AS-OCT imaging of the horizontal and nasal 

quadrant was performed at near and distance fixation under dim illumination as 

described in section 2.2.1. 

 

3.2.2.5.1 Image processing 

 

The AS-OCT images were analysed using the device’s Visante 3.0 software by one 

investigator (AS); both accommodative and non-accommodative images were 

analysed. The following parameters were measured as described in section 2.2.4.2: 

central corneal thickness (CCT), anterior chamber depth (ACD), lens vault (LV), angle 
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opening distances at 500 and 750 microns from scleral spur (AOD500 and AOD750) and 

trabecular-iris space area at 500 and 750 microns from the scleral spur (TISA500 and 

TISA750).  

 

Between-observer agreement of semi-automated anterior segment parameters was 

assessed by randomly selecting 20 subjects for assessment by an experienced 

investigator (Miss Sancy Low).  

 

3.2.2.6  Non-ocular data collection (follow up study only) 

 

Waist circumference was measured at the mid-point between the lower border of the 

rib cage and the iliac crest using a soft non-stretchable tape to the nearest 0.1 cm . 

Standing height was measured using a stadiometer also to the nearest 0.1 cm. Weight 

and percentage body fat (derived from bio-impedance) were determined using the 

Tanita BC543 Body Composition Analyser (Tanita Corp., Tokyo, Japan).  The subject was 

instructed to stand on the device after removing shoes and socks. Age and height were 

entered when prompted. Weight and percentage body fat were returned on a digital 

display. 

 

Hand scans were taken using an Epson Perfection 1650 scanner. Right hand digit ratio 

was measured using Image J version 1.45s to measure the lengths of the index and ring 

fingers from the middle of the basal crease to the tip of the finger in pixels. Digit ratio 
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was obtained by dividing the length of the right hand index finger by the length of the 

right hand ring finger.  

 

3.2.2.7  Statistical analysis 

 

To determine which variables were predictive of iris curvature, multiple regression 

analysis was performed using 6 variables (spur-to-spur distance, ACD, LV, mean scleral 

spur angle, SE, and AL). Linear regression analysis was used to investigate the 

relationship between AL/spur-to-spur distance and CH/CRF (dependent variable). 

Bland-Altman plots were constructed to assess between-observer agreement of AS-

OCT parameters; the difference between observers and the magnitude of the 

parameter being measured was assessed for trend by linear regression analysis. 95 % 

limits of agreement (LoA) were calculated as appropriate. The relationship between 

ocular and non-ocular parameters was explored. Paired student t-test was used to 

compare measurements between the 2 time-points. Analyses were performed using 

Prism version 6.0c for Mac OS X, GraphPad Software, La Jolla California USA, 

www.graphpad.com and MedCalc for Windows, version 12.2.1.0 (MedCalc Software, 

Mariakerke, Belgium). 
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3.3 Results 

 

3.3.1  Baseline study (December 2009) 

 

One hundred and forty boys were invited to take part of whom 103 (73.6%) returned 

registration forms indicating a willingness to participate and 96  (68.6%) attended on 

the day. Mean (SD) age was 11.51 (0.5) years. Data on racial ancestry was not formally 

collected, although the approximate proportions were as follows: 79% Caucasian, 8% 

Indian, 5% Chinese, 5% mixed and 2% Japanese. Seven participants exited the testing 

circuit early in error and did not attend the AS-OCT station. The Visante image in 

accommodation from one participant showed marked ghosting and was excluded from 

the analysis. Seventy-nine subjects had at least 1 set of adequate quality ORA 

measurements.  

 

Summary data for age, AL, SE, CH, CRF and IOPcc are shown in table 3.1. All parameters 

were distributed normally as determined by the Kolmogorov-Smirnov test except for 

SE. AS-OCT measurements at distance fixation and accommodation are shown in table 

3.2. Figure 3.1 shows an example of an increase in iris concavity seen on 

accommodation. 
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Parameter Mean SD 

Spherical equivalent (dioptres) -0.33 1.7 

Axial length (mm) 23.80 0.95 

Corneal hysteresis (mmHg) 11.8 1.7 

Corneal resistance factor (mmHg) 11.9 1.8 

Corneal-compensated IOP (mmHg) 15.5 4.3 

Table 3.1  Baseline ocular characteristics of 2009 schoolboy cohort  

 

 

 

 

 

 

 

 

 

Figure 3.1 Example AS-OCT image showing a slightly concave iris curvature on distance fixation 
(upper image) with a marked increase in iris concavity in the same eye on near fixation 
(lower picture) 
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Parameter 
 

Non-accommodating  
(n=89) 

Accommodating  
(n=88) 

P* 

 Mean SD Mean SD  
Iris curvature (mm) -0.002 0.12 -0.21 0.18 <0.0001 
CCT (μm) 531.8 34.0 530.7 36.4 0.52 
ACD (mm) 3.34 0.27 3.11 0.31 <0.0001 
Lens vault (μm) -171.5 190.9 46.9 259.0 <0.0001 
Temporal AOD 500(μm) 851.0 312.1 933.0 331.6 0.0034 
Temporal TISA 500(mm

2
) 0.303 0.117 0.321 0.124 0.24 

Temporal scleral spur angle (˚) 56.9 10.4 59.5 9.3 0.0023 

Nasal AOD 500(μm) 806.6 295.4 895.7 334.3 0.0008 
Nasal TISA 500(mm

2
) 0.275 0.099 0.294 0.108 0.03 

Nasal scleral spur angle (˚) 56.3 9.8 58.8 9.9 0.0043 

Spur to spur distance (mm) 11.99 0.47 11.96 0.48 0.69 

Table 3.2  Summary for AS-OCT parameters in 2009 schoolboy cohort. *Paired t-test. CCT, central 
corneal thickness; ACD, anterior chamber depth; AOD, angle-opening distance; TISA, 

trabecular-iris space area 

 
 

The prevalence of iris concavity in the non-accommodative state was 24% and on 

accommodation this increased to 65%. Although not formally recorded, the 

accommodative amplitude as measured by the AS-OCT was approximately 10 D for this 

chort. Multiple regression analysis revealed the only variable significantly associated 

with non-accommodating iris curvature was lens vault (R2 = 0.23, P = 0.028). A 

scatterplot of lens vault against non-accommodating iris curvature is shown in figure 

3.2. Variables significantly associated with accommodating iris curvature were ACD (t = 

2.68, P = 0.009), lens vault (t = -2.01, P = 0.047) and scleral spur angle (t = -5.1, P < 

0.0001). For these 3 variables acting jointly, R2 = 0.33.  
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Figure 3.2  Scatterplot of lens vault against non-accommodating iris curvature in 2009 schoolboy 
cohort. Regression equation: y = 0.0003x + 0.04. 
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CH and CRF were both associated with spur-to-spur distance in the non-

accommodating state (R2 = 0.07 for both, P = 0.025 and 0.027 respectively). CH (but not 

CRF) was associated with spur-to-spur distance in accommodation (R2 = 0.11, P= 

0.005). No significant association was found between CH/CRF and AL. Spur-to-spur 

distance and axial length were significantly correlated (r = 0.29, P = 0.007). 

 

There were statistically significant differences between near and distance 

measurements for all angle metrics except temporal TISA500 (P = 0.09). Mean anterior 

lens surface movement on accommodation was 0.23 mm (SD 0.17mm).  

 

In the Bland Altman plots, the measurement difference between observers was 

unrelated to the magnitude of the measurement for all parameters. 95 % limits of 

agreement (LoA) together with the range of values in this cohort are shown in table 

3.3. The criterion for minimum acceptable LoA is a clinical decision, judged against the 

range of values of the parameter being measured (90). CCT, ACD and spur-to-spur 

distance demonstrated reasonably good agreement whereas LV, scleral spur angle and 

all AOD and TISA measurements demonstrated moderate agreement when considering 

the range of values for these parameters. Interestingly, ACD and spur-to-spur distance 

were both operator-determined but showed better agreement than the angle metrics 

that were software-determined.  
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Parameter Range Mean difference 95 % Limits of 
agreement 

CCT (μm) 440 to 650 -1.8 -18.3 to +14.8 

ACD (mm) 2.44 to 4.00 0.01 -0.08 to +0.09 

Lens vault (μm) -560 to 770 41.5 -93.3 to +176.3 

Temporal AOD 500 (μm) 0 to 2016 -120 -380 to +150 

Temporal AOD 750 (μm) 0 to 2245 -120 -390 to +160 

Temporal TISA 500 (mm
2
) 0 to 0.837 -0.04 -0.13 to +0.05 

Temporal TISA 750 (mm
2
) 0 to 1.357 -0.07 -0.21 to +0.08 

Temporal scleral spur angle (˚) 20.9 to 79.3 -3.9 -12.6 to +4.9 

Spur-to-spur distance (mm) 10.29 to 13.10 0.07 -0.1 to +0.24 

Nasal AOD 500 (μm) 0 to 1698 -80 -370 to +210 

Nasal AOD 750 (μm) 0 to 2170  -80 -420 to +250 

Nasal TISA 500 (mm
2
) 0 to 0.568 -0.02 -0.13 to +0.08 

Nasal TISA 750 (mm
2
) 0 to 1.063 -0.05 -0.22 to +0.13 

Nasal scleral spur angle (˚) 29.1 to 76.6 -2.7 -11.6 to +6.2 

Table 3.3 Between-observer agreement on AS-OCT parameters on 40 images (accommodative 
and non-accommodative scans) from 20 randomly selected subjects from 2009 
schoolboy cohort 

 

Fourteen participants had an uncorrected refractive error (defined as visual acuity of 

LogMAR 0.2 or worse which improved with pin-hole) and letters were written to the 

parents of these participants advising them of the need for an optometric assessment. 

One participant was subsequently diagnosed as having keratoconus. Ten participants 

had ORA IOPcc values of greater than 21 mmHg and were offered appointments in a 

Paediatric Ophthalmology clinic and of these, 1 participant was noted to have 

significant angle recession secondary to a prior ocular injury.  

 

3.3.2  Follow up study (December 2011) 

 

Out of 96 pupils invited to take part, 62 (64.6%) agreed and took part. Near and 

distance scans from 1 student and the near scan from another were excluded due to 
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poor image quality. Iris curvature measurements were not possible in an additional 3 

accommodative scans and 2 non-accommodative scans, due to difficulty identifying the 

posterior iris pigment epithelium. ORA measurements from 4 subjects were excluded, 

as waveform scores were consistently less than 4. Summary data are shown in table 

3.4. All parameters were normally distributed based on the Kolmogorov-Smirnov test, 

except for iris curvature in distance fixation, which showed a longer tail at lower values 

of iris curvature. There was no significant difference in refractive error between those 

who participated 2 years later and those who did not (mean SE -0.44 D and -0.37D 

respectively, P = 0.86). 

 

Table 3.4  Ocular and non-ocular characteristics of 2011 schoolboy cohort 

 

 

For the purposes of this study, iris concavity was defined as iris curvature <-0.1mm. 

The prevalence of iris concavity was 19/59 (32%) at distance fixation and 49/58 (84%) 

at near fixation. The distributions of non-accommodative and accommodative iris 

curvature are shown in figures 3.3 and 3.4 respectively.  

Parameter N Mean SD 

Axial length (mm) 62 24.01 1.04 
Spherical equivalent (dioptres) 62 -1.09 1.91 
Iris curvature A (mm) 57 -0.25 0.17 
Iris curvature NA (mm) 59 -0.02 0.14 
Spur-to-spur distance A (mm) 60 12.1 0.48 
Spur-to-spur distance NA (mm) 61 12.1 0.47 
Mean digit ratio 62 0.95 0.033 
Height (cm) 62 164.45 8.58 
Corneal hysteresis (mmHg) 59 11.4 1.64 
Corneal resistance factor (mmHg) 59 11.5 1.98 
Weight (kg) 62 53.7 11.38 
Waist circumference (cm) 62 72.3 7.93 
Percentage body fat 62 16.2 6.24 
Birth weight (kg) 61 3.34 0.78 
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Figure 3.3  Histogram to show distribution of non-accommodating iris curvature in 2009 and 2011 

 

 

 

Figure 3.4 Histogram to show distribution of accommodating iris curvature in 2009 and 2011 
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Variables significantly associated with non-accommodating iris curvature were ACD (t = 

2.25, P = 0.029) and mean scleral spur angle (t = -4,11, P = 0.0001). For both variables 

acting jointly, R2-adjusted= 0.59. Variables significantly associated with accommodating 

iris curvature were ACD (t = 2.34, P = 0.02), lens vault (t = -2.01, P = 0.047) and scleral 

spur angle (t = -7.30, P < 0.0001). For both variables acting jointly, R2-adjusted= 0.62. 

 

Significant association was found between CH and non-accommodating spur-to-spur 

distance (R2 = 0.07, P = 0.047) as well as CH and accommodating spur-to-spur distance 

(R2 = 0.13, P = 0.0067) (figure 3.5).  

 

 
Figure 3.5 Scatterplot of corneal hysteresis against spur-to-spur distance on accommodation for 

2011 schoolboy cohort. Regression line:  y = -0.11x + 13.3 
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There was a mean increase in AL of 0.22mm (paired t-test, P < 0.0001) and mean 

decrease in SE of 0.70 D compared to 2009 (paired t-test, P < 0.0001). Mean iris 

curvature at distance fixation reduced from -0.002 mm in 2009 to -0.02 in 2011 (P = 

0.40) and at near fixation reduced from -0.21 in 2009 to -0.25 in 2011 (P = 0.19). A 

comparison of parameters between baseline and follow up is shown in table 3.5. 

 

Parameter 2009 2011 Difference P 

Axial length (mm) 23.79 24.01 0.22 <0.0001 
Spherical equivalent (dioptres) -0.39 -1.09 -0.7 <0.0001 
Corneal hysteresis (mmHg) 11.6 11.4 -0.2 0.35 
Corneal resistance factor (mmHg) 11.7 11.5 -0.2 0.25 
Iris curvature NA (mm) -0.016 -0.019 -0.003 0.77 
Iris curvature A (mm) -0.198 -0.246 -0.048 0.11 
Anterior chamber depth NA (mm) 3.37 3.39 0.02 0.17 
Anterior chamber depth A (mm) 3.14 3.15 0.01 0.61 

Scleral spur angle NA (˚) 58.4 56.6 -1.8 0.02 

Scleral spur angle A (˚) 60.4 58.4 -2 0.11 

Lens vault NA (μm) -165.6 -179.2 -13.6 0.52 
Lens vault A (μm) 64.3 58 -6.3 0.8 
Spur-to-spur distance NA (mm) 12.06 12.13 0.07 0.13 
Spur-to-spur distance A (mm) 12.05 12.12 0.07 0.08 

Table 3.5  Comparison of ocular biometric parameters between 2009 and 2011 schoolboy 

cohorts. *Paired t-test. ACD= anterior chamber depth, AOD= angle-opening distance, 

TISA= trabecular-iris space area. Values shown for scleral spur angle represent 

temporal quadrant. Values for nasal angle were similar. 

 

 

Angle-opening distance (AOD), trabecular-iris space area (TISA), LV and scleral spur 

angle all show significant increases on accommodation (table 3.6), a finding that was 

also noted in the 2009 cohort.  
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 Non-accommodating 
(n=61) 

Accommodating 
(n=60) 

P* 

 Mean SD Mean SD  

Iris curvature (mm) -0.02 0.14 -0.25 0.17 <0.0001 

CCT (μm) 531.7 30.1 528.5 32.1 0.07 

ACD (mm) 3.38 0.28 3.14 0.31 <0.0001 

Lens vault (μm) -176.2 217.6 59.3 223.4 <0.0001 

Temporal AOD 500(μm) 822.4 318.4 907.8 379.0 0.0016 

Temporal AOD 750(μm) 1084.5 366.8 1185.5 398.7 0.0006 

Temporal TISA 500(mm
2
) 0.295 0.122 0.315 0.136 0.036 

Temporal TISA 750(mm
2
) 0.536 0.210 0.580 0.237 0.006 

Temporal scleral spur angle (˚) 55.8 10.5 57.6 11.5 0.03 

Nasal AOD 500(μm) 794.3 312.2 946.1 330.0 <0.0001 

Nasal AOD 750(μm) 1069.1 362.6 1233.3 392.1 <0.0001 

Nasal TISA 500(mm
2
) 0.277 0.112 0.312 0.115 0.0014 

Nasal TISA 750(mm
2
) 0.512 0.199 0.591 0.203 <0.0001 

Nasal scleral spur angle (˚) 55.5 11.0 60.4 9.4 <0.0001 

Spur to spur distance (mm) 12.17 0.48 12.10 0.48 0.78 

Table 3.6  Summary data for AS-OCT parameters in 2011 schoolboy cohort. *Paired t-test. CCT= 
central corneal thickness, ACD= anterior chamber depth, AOD= angle-opening distance, 
TISA= trabecular-iris space area 

 

No significant association was found between any ocular and non-ocular 

measurements. There was no statistically significant difference between CH/CRF values 

in 2009 and 2011.  No significant association was detected between baseline CH, 

baseline CRF or non-ocular measurements and change in AL, SE and spur-to-spur 

distance. 

 

3.4 Discussion 

 

Iris concavity in PDS leads to increased frictional contact between the posterior iris 

surface and the lens zonules, thereby predisposing to PG. Iris concavity in the absence 

of PDS has been described (81, 87) but its prevalence has not been reported. As PG is a 

condition that often affects young males, this study was designed to look at the 
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prevalence of iris concavity in a cohort of males before the age at which PDS is typically 

identified.  

 

Iris concavity was significantly more prevalent during accommodation than with 

distance fixation. The most widely accepted theory of accommodation is that put 

forward by Helmholtz (117) which states that contraction of the ciliary muscle relaxes 

the tension in the lens zonules which allows the lens to revert to a thicker and more 

convex form. Drexler et al. (43) studied changes in lens position in 10 healthy eyes in 

subjects whose mean age was 30 years and whose refractive error ranged from 

emmetropia to -5 dioptres using partial coherence interferometry. During 

accommodation the mean forward movement + standard deviation (SD) of the anterior 

pole of the lens was 185 + 89 µm whilst the backwards movement of the posterior pole 

was 69 + 39 µm. The mean forward movement of the anterior pole in the present study 

was 230 µm and it is likely the greater value in the present study reflects the larger 

accommodative amplitude (approximately 10 D) found in the school-age cohort. 

Sheppard et al. (118) demonstrated a decrease in anterior and posterior radius of 

curvature during accommodation in 15 young (19-29 years) emmetropes using 

magnetic resonance imaging as well as an increase in lens thickness and decrease in AC 

depth.  Visual inspection of the images from our cohort suggests that the central iris 

may be conforming to the curvature of the lens as it moves anteriorly (figure 3.1). The 

most important determinant of iris concavity in accommodation was a smaller ACD. 

This would also support the hypothesis of anterior lens movement causing increased 
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iris concavity.  However, if miosis and forward movement of the anterior lens pole are 

the only conformational change, this would cause a reduction in the anterior chamber 

angle, AOD and TISA on accommodation, rather than the increase observed (table 3.2). 

As there appeared to be accommodation-induced changes in the peripheral iris, it is 

unlikely that the changes seen in iris curvature could be explained solely by anterior 

lens movement acting on the central iris. Accommodation-induced change in lens 

position and miosis are likely to increase the area of contact between the iris and lens 

and this may result in a reverse pupillary block effect, similar to that seen in PDS, 

permitting mainly unidirectional flow from the posterior to the anterior chamber. The 

consequent increase in pressure in the anterior chamber relative to the posterior 

chamber may result in posterior displacement of the peripheral iris and this represents 

a possible explanation for the increase in angle parameters seen on accommodation. It 

should be mentioned that accommodation-induced miosis  may confound the 

assessment of iris configuration; future studies should address this by varying the 

ambient light intensity in order to achieve equal pupil sizes in the accommodative and 

non-accommodative states. 

 

24% of eyes exhibited iris concavity in the non-accommodative state. As the prevalence 

of PDS in a white population is reportedly 2.5% (34), the vast majority of these eyes are 

unlikely to develop PDS. It may be that iris concavity and the associated irido-lenticular 

contact must persist into adulthood for the development of PDS or other features need 
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to be present to induce pigment dispersion, such as factors intrinsic to the iris of PDS 

patients causing susceptibility to zonular abrasion or pigment shedding.  

 

Good between- and within-observer agreement of the iris concavity measurements 

used in this study has previously been shown in a cohort of adult PDS patients (119). 

Between-observer agreement was investigated for the semi-automated AS-OCT 

parameters. Liu et al.(120) reported that scleral spur identification was more difficult in 

eyes with narrow angles. In general, scleral spur visibility was good in the vast majority 

of images in the present study; this was supported by better agreement for scleral spur 

angle and spur-to-spur distance whereas agreement for the automated readings for 

AOD and TISA were less good. Agreement for AOD and TISA may have been poorer as 

calculation of these parameters is dependent on the software correctly detecting the  

iris and corneal endothelial surfaces.  

 

CH, CRF and IOP measured by the ORA have previously been described (104). Kirwan et 

al. (121) reported non-contact tonometry with the ORA to be an accurate method of 

determining IOP and found children cooperated better with this technique than with 

Goldmann applanation tonometry. Lower CH has been associated with longer AL in 

Chinese school children (105, 122) although Lim et al.(106) did not find any association 

with AL or refractive error in their study of 271 Singaporean (68.6% Chinese) children. 

Chang et al.(123) studied 126 eyes of 63 Taiwanese (predominantly Han Chinese) 

children and found that the difference in CH between the two eyes of each patient 
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correlated significantly with the difference in the AL between the two eyes. There was 

no relationship between ORA measurements and AL in the present study. The fact that 

CH and spur-to-spur distance were consistently associated at both time points in a 

relatively small sample is noteworthy and suggests that corneal biomechanical 

properties, as measured by the ORA, are associated with anterior segment geometry. 

No association was detected between CH/CRF and AL, although no AL and spur-to-spur 

distance were significantly correlated, raising the possibility that an underlying 

association between CH/CRF and AL may still exist despite not reaching statistical 

significance in the present study. No association was detected between baseline 

CH/CRF and changes in AL or spur-to-spur distance over the 2-year interval. Thus, the 

study did not find evidence that baseline corneal biomechanical parameters predict 

ocular growth, although the study was not powered to answer this question. 

 

The prevalence of iris concavity in this cohort was greater in 2011 (32% at distance 

fixation and 84% at near fixation) compared to 2009 (24% and 65% respectively), 

although there was no statistically significant difference in iris curvature measurements 

over the 2-year period for boys with data available from both visits. The higher 

prevalence might have reflected a selection bias, whereby myopes may have been 

more interested (either through parental encouragement or independently) in taking 

part in the second visit compared to non-myopes. However, analyzing the 2009 cohort 

revealed no significant difference in refractive error between those who participated 2 

years later and those who did not and so such selection bias appears unlikely. Figures 
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3.2 and 3.3 demonstrate a similar distribution of iris curvature in 2009 and 2011, 

supporting the view that selection bias was unlikely. Significant association was found 

between iris curvature and ACD in both accommodative and non-accommodative 

states, indicating that relative lens position may be an important determinant of iris 

curvature. However, there was no significant increase in ACD between 2009 and 2011 

suggesting that increased ACD did not account for the observed increase in concavity. 

A possible explanation is that an increase in iris size between iris root and pupil margin 

creates ‘redundant’ iris tissue which positions posteriorly in a concave configuration.  

 

The study presented an opportunity to collect additional data that were potentially 

relevant to ocular growth. Rahi et al. (107) found that myopia was positively associated 

with low birth weight for gestational age, whilst Saw et al. (108) reported that across 

the normal birth weight range, longer AL was associated with greater birth weight. 

However, Dirani et al.(124) analysed data from 1,224 twins from  the Genes in Myopia 

twin study and found no significant association between birth weight and myopia. 

 

The digit ratio is the ratio of the lengths of different digits or fingers typically measured 

from the bottom crease, where the finger joins the hand, to the tip of the finger. It has 

been suggested that the ratio of two digits (D) in particular, the 2nd (index finger; 2D) 

and 4th (ring finger; 4D), is affected by exposure to androgens e.g. testosterone while 

in the uterus and that this 2D:4D ratio can be considered a putative marker for 

prenatal androgen exposure, with lower 2D:4D ratios pointing to higher androgen 
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exposure (110-112). Interestingly, the differences are more pronounced in the right 

hand (125-127). There is evidence that control of eye growth differs between men and 

women (109) and by collecting data on digit ratio we aimed to explore whether eye 

growth differs between boys with greater or lesser exposure to maternal levels of 

androgens. Including a cohort of girls would have been of interest as this would have 

resulted in a greater range of values for exposure to maternal androgens but it was 

decided to use the limited resources to obtain a reasonable sized cohort of boys rather 

than a small cohort of boys and girls. 

 

Birth weight and digit ratio are both markers of intra-uterine experience and Barker’s 

theory (128) suggests that intrauterine experiences have a lifelong impact on health. 

Bio-impedance monitors have been developed that can distinguish between lean and 

fat tissue based on differences in their conductance and impedance characteristics; 

furthermore, they are simple to use, cost-effective, portable and non-invasive. 

Excellent correlation has been shown between bio-impedance and fat-free mass as 

measured by hydrodensitometry (129) and its use has been validated in children (130, 

131). Height, weight, percentage body fat and waist circumference provide an 

indication of general metabolic status and may reflect long-term insulin levels. 

Epidemiological evidence implicates a role for chronic hyperinsulinaemia, secondary to 

the refined sugars and starch in western diets, in juvenile-onset myopia because of its 

interaction with hormonal regulation of vitreal chamber growth (113). 
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No significant correlation was demonstrated between any of the above non-ocular 

parameters and AL, SE, CH, CRF (nor change in these parameters over the 2 years). The 

study was not powered to detect such associations, so this part of the study was 

considered exploratory, given the clinical importance of identifying risk factors for 

myopia. 

 

The school at which this study was conducted has a strong focus on academic 

achievement. Participants in the present study may not be representative of the wider 

cross-section of this age group and a limitation of the present study is that the findings 

may not be widely generalizable. Another limitation is the relatively small sample size. 

 

Iris concavity appears to be a frequent finding in this cohort at both time points. It is 

likely that the prevalence of iris concavity will fall as the cohort approaches adulthood 

on the basis that iris concavity in adults appears to be uncommon (81). Iris curvature 

was associated with LV, ACD scleral spur angle. It remains unclear whether there may 

be anatomical differences between the type of iris concavity found in our cohort and 

that found in PDS and this remains an area for further study. The data support the 

hypothesis that physiological iris concavity, which is more prominent during 

accommodation, may be related to a reverse pupil block mechanism. The anterior 

movement of the central iris alone did not explain the wider angle metrics and 

observed changes in iris curvature. The data also suggests there may be significant 
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associations between corneal biomechanical parameters and ocular size (determined 

by spur-to-spur distance but not AL in this dataset).  
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4.1 Introduction 

 

Evidence for a genetic basis to PDS comes from the existence of families with multiple 

affected members (63,64). A genetic abnormality affecting the middle third of the eye 

during the third trimester has been proposed in order to explain the association with 

lattice degeneration, retinal tears and retinal detachment (23). Linkage analysis is a 

powerful tool for gene mapping in multigenerational families with clear Mendelian 

inheritance; this approach has been used in families with PDS demonstrating an 

autosomal dominant pattern of inheritance (63, 64). Data from screening first degree 

relatives of patients attending the PDS clinic at Moorfields Eye Hospital suggest that 

the majority of patients with PDS are not from autosomal dominant pedigrees and it 

may be that these cases represent either recessive inheritance or sporadic mutations. 

Identification of genes for PDS may provide information about molecular mechanisms 

underlying the pathogenesis and may uncover targets for novel therapeutic 

interventions. This chapter describes the results of linkage analysis in a pedigree 

segregating for PDS/PG showing an autosomal dominant mode of inheritance. 
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4.1.1  Concepts underlying linkage analysis 

 

4.1.1.1  Genetic markers and recombination fraction 

 

 Gene mapping in linkage studies is achieved by determining which genetic markers 

(whose chromosomal locations are already known) segregate with the disease of 

interest. The chromosomal region defined by these markers is likely to contain the 

disease susceptibility locus/gene. Recombination of homologous chromosomes occurs 

as a normal part of meiotic cell division. During prophase of meiosis I, pairs of 

homologous chromosomes exchange segments between individual chromatids, the 

point of crossover being known as a chiasma. If the gene of interest (location unknown) 

and a particular genetic marker (location known) are close together on a chromosome, 

the interval between these two loci is less likely to undergo recombination compared 

to a larger interval where the gene and marker are further apart. A central concept to 

linkage analysis is that of the ‘recombination fraction’ (denoted by ): for an individual 

heterozygous for 2 loci A and B, If alleles A1 and B1 are inherited from the mother and 

alleles A2 and B2 are inherited from the father, the individuals gametes may be 

recombinant i.e. A1 B2 or A2 B1 or non-recombinants i.e. A1 B1 or A2 B2. The 

recombination fraction is the proportion of gametes that are recombinant. 

Recombination is unlikely to separate 2 loci that are close together and the 

recombination fraction is therefore a measure of the distance between 2 loci. The 

recombination fraction ranges from =0 for loci immediately adjacent to one another 
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to 0.5 for widely separated loci (or loci on different chromosomes). Genetic distances 

are measured in centimorgans (cM) where 1cM is approximately equal to a 

recombination fraction of 1%. This relationship is less true over larger distances 

because of the existence of multiple crossovers (132). A mathematical relationship 

between recombination fraction and genetic map distance is given by a mapping 

function. A widely used mapping function is Kosambi’s function: 

w=1/4 ln [(1+2)/(1-2)] 

where w= map distance and  = recombination fraction 

Using Kosambi’s function, a recombination fraction of 0.27 translates into a genetic 

distance of 30cM (133).  

 

4.1.1.2  Haplotype blocks 

 

The majority of recombination occurs over short discrete regions of the chromosome 

known as recombination hotspots whilst the intervening regions form relatively stable 

‘haplotype blocks’ with low crossover rates.  Sets of alleles close together in a 

chromosomal region tend to be inherited together in these haplotype blocks and can 

be tracked through pedigrees providing a useful way of confirming that a particular 

chromosomal locus segregates with the disease (132). 
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4.1.1.3  Single nucleotide polymorphisms 

 

Single nucleotide polymorphisms (SNPs) are the most common type of genetic 

variation amongst individuals. An SNP represents a variation in a single nucleotide and 

occurs, on average, every 300 nucleotides. There are approximately 10 million SNPs 

spread over the human genome. They normally have only 2 alleles but due to their 

dense distribution across the genome and the ability of microarrays to assay over 

500,000 SNPs at a time they are presently the genetic marker of choice. 

 

4.1.1.4  Calculating the logarithm of the odds (LOD score) 

 

Once a pedigree has been collected and genotyped (i.e. their SNPs assayed), the first 

step in determining whether there is significant linkage to any SNPs is to work out the 

recombination fraction. For an affected individual whose children (considered to be his 

meiosis) need to be scored as recombinant or non-recombinant, this can only be done 

if a number of conditions are met: a) the individual is heterozygous at the marker in 

question, b) the individual’s parents’ affected status and genotype is known, and c) it 

can be determined which alleles were inherited from each of the individual’s parents. 

In a large number of cases, these conditions will not be met and computer software 

has been developed to deal with the inherent uncertainty in working out the 

recombination fraction. The probability that a marker is linked to the disease of 
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interest is given by the ratio of the overall likelihood given linkage: overall likelihood 

given no linkage. This is known as the likelihood ratio and is equal to: 

 

 (1-)m x 


n 

    0.5n+m  
 

where  is the recombination fraction, n is the number of recombinants and m the 

number of non-recombinants. The logarithm of this ratio is termed the LOD (logarithm 

of the odds) score, symbolised by Z. LOD scores are calculated over a range of  values 

with the most likely value of  being that with the highest LOD score (132).  

 

4.1.1.5  Threshold for significant linkage  

 

For a single test, the threshold for statistical significance is Z=3. As log101000=3, Z=3 

corresponds to a 1000:1 odds. Using Bayesian statistics with a 1 in 50 prior probability 

of linkage, 1000:1 odds corresponds to a joint probability (prior x conditional) of 1 in 20 

which equates to the conventional p = 0.05 test for statistical significance (134). In 

gene mapping studies, pedigrees are genotyped over thousands of markers, with a test 

for linkage being conducted at each marker. As this is an extreme case of multiple 

testing, it could be argued that a Bonferroni correction should be applied. However, 

this results in an overly stringent LOD score threshold as linkage data are not 

independent (if one location is excluded, the pre-test probability that another location 

is linked increases) (132). Empirical LOD score thresholds have been proposed: a LOD 
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score of 1 at the initial screening stage would be considered ‘interesting’, a LOD score 

of 2 would be considered ‘very interesting’ and LOD score of 3 would be indicative of 

‘provisional linkage’, awaiting confirmation from an independent dataset in order to be 

considered highly significant (135).  

 

4.1.2  Examples of glaucoma genes identified through linkage analysis 

 

Linkage analysis has been used to identify several loci in primary open angle glaucoma 

(POAG); myocilin and optineurin are both well-established glaucoma-causing genes 

identified through this approach.  

 

4.1.2.1  Myocilin 

 

A disease susceptibility locus for juvenile open-angle glaucoma, known as GLC1A, was 

originally mapped to 1q21-q31 by genetic linkage analysis of a 37-member pedigree 

segregating for JOAG in an autosomal dominant pattern (71). Mutation screening of 

candidate genes within this region identified 13 glaucoma patients with mutations in 

the TIGR (TM-induced glucocorticoid response protein) gene, subsequently renamed 

myocilin (MYOC) (70). 
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4.1.2.2  Optineurin 

 

Sarafarazi et al.(136) mapped a locus for normal tension glaucoma, GLC1E, to 10p15-

p14 through linkage analysis of a large British family demonstrating autosomal 

dominant inheritance. Subsequent work identified a missense mutation [Glu50  Lys 

(E50K)] in the optineurin (OPTN) gene located within this region. Sequence alterations 

in this gene were identified in 16.7% of 54 families with hereditary POAG (137). 

 

4.1.3  Linkage analysis in modern glaucoma gene mapping  

 

A novel POAG locus was more recently identified by Porter et al. (138). Linkage analysis 

was used to investigate a large 4-generation family with an autosomal dominant mode 

of inheritance. Ten affected members and 1 unaffected family member were 

genotyped and a significant LOD score of 3.1 centred at 4q35.1-q35.2 was found. 

Mutation analysis of 3 candidate genes LRP2BP, CYP4V2 and UFSP2 did not identify any 

mutations. 

4.1.4  Linkage analysis to map PDS susceptibility loci 

 

To date there have been 2 published loci, 7q31-36 and 18q21, identified through 

linkage analysis in autosomal dominant PDS pedigrees. The study presented here 

describes a linkage analysis on a British family with autosomal dominant PDS/PG with 

the aim of discovering novel PDS susceptibility loci. 
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4.2 Methods 

 

Ethical approval for the study was obtained from the Moorfields and Whittington 

Research Ethics Committee. The study was carried out according to the principles set 

out in the Declaration of Helsinki. Members of a 3-generation family with PDS/PG were 

enrolled into the study following informed consent. Family members were reviewed at 

Moorfields Eye Hospital (London, UK), Moorfields Eye Hospital Outreach Clinic at 

Northwick Park Hospital, Harrow (Greater London, UK) and Lincoln County Hospital 

(Lincolnshire, UK). 

 

4.2.1  Phenotyping 

 

A total of 15 family members were enrolled into the study. DNA from 2 members of 

generation II (subjects II:3 and II:4, figure 4.1) had previously been taken with informed 

consent although the clinical notes were no longer available. The proband stated that 

subject II:3 (proband’s father) had significant visual loss from glaucoma whilst subject 

II:4 (proband’s mother) had no known ophthalmic problems. All living members 

enrolled into the study were examined by a single ophthalmologist (AS). Where they 

existed, previous ophthalmic medical notes were reviewed. Participants were asked 

about their ophthalmic and medical history, including their medications and allergies. 

Detailed ophthalmic examination was performed on all subjects with particular 

emphasis on looking for the clinical signs of PDS/PG, including hyperpigmentation of 
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the drainage angle by performing gonioscopy with an Ocular Magna View Gonio Lens 

(Ocular Instruments Inc., Washington, USA). Applanation tonometry was performed 

with a Goldmann applanation tonometer using TonosafeTM disposable prisms. Dilated 

stereoscopic optic disc examination was performed in subjects with open angles. Visual 

fields were recorded using Humphrey 24-2 automated perimetry (Carl Zeiss Meditec, 

Dublin, CA). Glaucomatous optic neuropathy (GON) was defined as reproducible 

glaucomatous visual field (VF) defects with corresponding damage to the optic nerve 

head (cup disc ratio > or = 0.7 and/or focal narrowing of the neural rim) and the 

absence of retinal or neurological condition that may account for the VF loss. 

 

A glaucomatous VF was defined as a reproducible defect (in at least 2 consecutive 

reliable post-screening VFs) of two or more contiguous points with P < 0.01 loss or 

greater, or three or more contiguous points with P < 0.05 loss or greater, or a 10-dB 

difference across the nasal horizontal midline at two or more adjacent points in the 

total deviation plot (definition used in the UK Glaucoma Treatment Study (139)). 

 

4.2.2  Genotyping 

 

Participants’ DNA was extracted using the NucleonTM BACC2 DNA Extraction Kit (Tepnel 

Life Sciences, Manchester, UK) by Miss Beverley Scott, BMRC technician. DNA was 

prepared according to the protocol set out in Appendix 1. Prepared DNA was sent to 

the Wolfson Institute for Biomedical Research (WIBR) for hybridisation, 
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washing/staining and scanning. Genotyping was performed on an Affymetrix 50K 

Genechip. 

 

4.2.3  Analysis of genotypic data 

 

Genotype data from 15 individuals from this family were generated using the 50K Array 

Xba 240 Assay Kit from the GeneChip Human Mapping 100k Set (Affymetrix, High 

Wycombe, UK). Initial checks of the results were performed with GeneChip Command 

Console Viewer (v1.1.0.845). Genotyping Console (v3.0.2) was used to assign individual 

genotypes. Alohomora version 0.30 (Max Delbrück Center for Molecular Medicine, 

Berlin, Germany) was used to prepare the raw genotype data for total linkage analysis.  

PedCheck (version 1.1, Jeff O’Connell; University of Pittsburgh, Pittsburgh, PA, USA) 

was used to detect and remove Mendelian errors from the data. Genehunter (version 

2.1_r5 beta) was used to perform the subsequent parametric linkage analysis. The 

genetic model was specified as dominant and fully penetrant with a disease allele 

frequency of 0.0001. Merlin (80) was used to generate LOD scores. 

Regions showing promising LOD scores were refined using markers from Marshfield 

genetic maps (http://research.marshfieldclinic.org), the GDB Human genome database 

and Ensemble database (http://www.ensembl.org). Phenotype and genotype data 

were stored using Progeny software version 7.6.04 (Progeny Software, Florida, USA). 
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4.2.4  Candidate gene sequencing 

 

Candidate genes were selected from the regions identified by linkage analysis based on 

biological plausibility. Direct sequencing of the exonic regions of SERTAD4, TGFβ and 

ENTACTIN was performed in subjects III:9 (affected) and III:1 (unaffected). PCR primers 

were chosen to include the exonic sequence as well as a short section of adjacent 

intronic sequence. Amplicons were purified prior to sequencing using a purification kit 

(Qiagen Genclean Kit, Qiagen, Crawley, UK). Sequencing was performed using Big Dye 

3.1 terminator chemistry (Applied Biosystems, Warrington, UK) and run on an ABI 3730 

DNA sequencer (Applied Biosystems). Analysis of sequencing data was performed on 

Sequencher Version 4.1.4 (140). 

 

4.3  Results 

 

4.3.1  Clinical findings 

 

A clinical diagnosis of PDS or PG was made in 7 members of a 3-generation family of  

British ancestry with an autosomal dominant inheritance pattern (figure 4.1). There 

were no living members from generation I or II. Nine members from generation III and 

6 members from generation IV agreed to clinical phenotyping for the purposes of the 

study. Four members of generation III met the diagnostic criteria for pigment 

dispersion (III:2, III:5, III:7 and III:9). Three of these 4 subjects had GON (vertical cup to 
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disc ratio of 0.9 and previous trabeculectomy in at least one eye in 2 subjects and in 

the 3rd subject a vertical cup to disc ratio of 0.3 right eye and 0.6 left eye with previous 

trabeculectomy). The 4th pigment dispersion subject was classified as a glaucoma 

suspect on the basis of disc asymmetry (vertical cup to disc ratio 0.6 right eye, 0.4 left 

eye) in the absence of a significant visual field defect. Subjects 4 and 8 from generation 

III had glaucomatous optic neuropathy requiring trabeculectomy in at least one eye 

although clinical features at the time of examination were insufficient to meet 

diagnostic criteria for pigment dispersion. Subject III:1 had occludable angles without 

glaucomatous optic neuropathy and was referred to her local eye clinic with a 

recommendation for urgent YAG laser peripheral iridotomies. No subjects from 

generation IV met diagnostic criteria for pigment dispersion nor had definite 

glaucomatous optic neuropathy. Clinical characteristics of generations III and IV are 

presented in tables 4.1 and 4.2 respectively.
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Figure 4.1  Autosomal dominant pigment dispersion pedigree. *Family members who attended for phenotyping. Individual deemed to have definite 
pigment dispersion syndrome.  Individual deemed to have definite glaucomatous optic neuropathy 
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4.3.1.1  Assignment of affected/unaffected status 

 

Whilst 4 subjects  (III:2, III:5 and III:7) had clear evidence of pigment dispersion, the 

existence of 2 additional subjects (III:4 and III:8) with clear GON without features of 

pigment dispersion raises uncertainties in determining their affectation status. Subjects 

III:4 and III:8 were aged 60 and 73 at the time that they were examined. There is 

evidence of a regression phase in some patients with pigment dispersion such that the 

clinical signs may fade with increasing age (23, 38) sometimes to the extent that 

patients may be misdiagnosed as having POAG or low-tension glaucoma (141). Whilst it 

was possible that pigment dispersion and POAG were segregating as 2 separate 

conditions in this pedigree, it was considered more likely that the 2 subjects in 

question had pigment dispersion giving rise to glaucomatous optic neuropathy but that 

the signs had faded by the time that they were examined: an age-related  

reversal of iris trans-illumination defects has been documented as has an age-related 

reduction in degree of TM pigmentation (33, 38). The assumption was therefore made 

in the analysis that these 2 subjects would both be classified as ‘affected’; this 

assumption extended to subject II:3 who had provided a blood sample for DNA analysis 

several years earlier to previous investigators but in whom no record of clinical 

examination could be found. The subject’s daughter stated that he had significant 

visual problems that she attributed to glaucoma. For the purposes of the analysis, 

therefore, he was also classified as ‘affected’. 
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Family 
member 
(age at 

presentation,
y) 

SE 
(D) 

 

AL 
(mm) 

Angle 
width 

(°) 

KS 
 
 RE         LE 

TID 
 

    RE       LE 

TMP 
 

RE       LE 

Max. IOP 
(mmHg) 

CCT 
(μm) 

MD (dB) CD ratio Comments 

III.1 (65)   5 RE 
5 LE 

0 0 0 0 0 0 18 BE   0.35 0.4 Occludable angles 

III.2 (71)   35 RE 
35 LE 

+ + + + ++ ++ 16 RE 
26 LE 

 -9.88RE 
-9.43LE 

0.9 0.7 Right trab 

III.3(62)  24.00 
RE 

23.97 
LE 

35 RE 
35 LE 

0 0 +/- +/- + + 20 BE  -1.1RE 
-1.71LE 

0.5 0.3 Right disc unchanged 
since 1999 

III.4(72) -0.88 RE 
-0.33 LE 

24.94 
LE 

 0 0 0 0 0 0 3 RE 
18LE 

 -30.29RE 
-25.52LE 

0.9 0.9 Bilateral trab, right RD, 
right chronic iritis 

III.5(80)   35 RE 
35 LE 

0 ++ 0 + ++ ++ 21 RE 
17 LE 

553 RE 
568 LE 

-4.04 RE 
-27.5 LE 

0.6 0.9 Left trab 

III.7(52) -2.38 RE 
-2.00 LE 

24.23 
RE 

24.37 
LE 

35 RE 
35 LE 

+ ++ 0 + + ++ 23 RE 
20 LE 

541 RE 
538 LE 

1.04 RE 
0.43 LE 

0.6 0.4 Right disc suspicious 

III.8 (61) -2.25 RE 24.91 
RE 

35 RE 
35 LE 

0 - 0 - + - 21 RE 490 RE - 0.9 - Left eye enucleation 
following cactus injury 

III.9 (56) -1.88 RE 
-3.13 LE 

25.70 
RE 

27.10 
LE 

40 RE 
40 LE 

+++ ++ ++ ++ +++ ++
+ 

32 RE 
27 LE 

542 RE 
539 LE 

-5.5 RE 
-5.2 LE 

0.3 0.6 Right trab 2003. Equal 
disc size. 

III.11 (67) 1.38 RE 
1.38 LE 

- 
- 

25 RE 
25 LE 

0 0 0 0 + ++ 16 RE 
18 LE 

 1.56 RE 
1.36 LE 

0.4 0.3 Disc height 1.3 RE, 1.1 LE 

Table 4.1 Clinical characteristics of generation III of PDS/PG family. SE = spherical equivalent, D = diopters, RE = right eye, LE = left eye,                                   
trab  = trabeculectomy,    RD = retinal detachment 
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Family member 
(age at 

presentation,y) 

SE 
(D) 

 

AL (mm) Angle 
width 

(°) 

KS 
 
  RE         
LE 

TID 
 

 RE      
LE 

TMP 
 

RE         LE 

Max. 
IOP 

(mmHg
) 

CCT 
(μm) 

MD (dB) CD ratio 
 

RE        LE 

Comments 

IV.1(27)          19RE 
17LE 

560BE     

IV.3(25) -1.75 RE 
-1.75 LE 

24.91 RE 
24.94 LE 

35 RE 
35 LE 

+/
- 

+/- 0 0 + +  498 RE 
517 LE 

0.27 RE 
-0.1 LE 

   

IV.4(23) -0.375 RE 
-0.375 LE 

23.83 RE 
24.00 LE 

35 RE 
35 LE 

0 0 0 0 + + 14 BE 535 RE 
546 LE 

-2.39 RE 
-2.36 LE 

0.3 0.3 Left Adie’s pupil 

IV.5(24) -1.0 RE 
-0.375 LE 

23.02 RE 
23.03 LE 

- 
- 

0 0 0 0 - - - - - 0.3 0.3 Mild learning difficulties. 
Limited phenotyping 
possible 

IV.6(37) 0 RE 
0 LE 

- 
- 

35 RE 
35 LE 

0 0 0 0 +/- +/- 16 RE 
17LE 

581 RE 
580 LE 

- 0.3 0.3  

IV.7(27) 0 RE 
0 LE 

- 
- 

- 
- 

0 0 0 0 0 0 12 RE 
16 LE 

582 RE 
584 LE 

0.22 RE 
0.39 LE 

0.3 0.4 Disc height 1.3mm RE, 
1.1mm LE 

Table 4.2 Clinical characteristics of generation IV of PDS/PG family. SE = spherical equivalent, D = diopters, RE = right eye, LE = left eye 



4.3.2  Testing known PDS disease susceptibility loci 

 

Microsatellite markers were used to investigate 7q31-36 and 18q21 in III:9 (affected) 

and III:1 (unaffected) and both of these loci were excluded. 

 

4.3.3  Linkage analysis 

 

Haplotype analysis was performed by Dr N Waseem, Senior Post-doctoral fellow, 

Department of Genetics, UCL Institute of Ophthalmology. 

 

4.3.3.1  LOD scores and haplotype analysis 

 

Three chromosomal locations demonstrated promising LOD scores and were 

considered worthy of further investigation.  

1) A 20.0-Mb region with a maximum parametric LOD score of 2.12 was 

identified on chromosome 1q41-42.2 (figure 4.2). The maximum non-

parametric LOD score was 4.57. Haplotype analysis showed all affected 

family members sharing a common haplotype between D1S2703 and 

D1S2800 (figure 4.5). 

2) A 23.0-Mb region with a maximum parametric LOD score of 1.96 was 

identified on chromosome 10q25.1-q26.3 (figure 4.3). The maximum non-

parametric LOD score was 5.29. Haplotype analysis showed all affected 
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family members sharing a common haplotype between D10S597 and 

D10S1651 (figure 4.6). 

3) An 11-Mb region with a maximum parametric LOD score of 1.97 was 

identified on chromosome 22q13.1-q13.31 (figure 4.4). The maximum non-

parametric LOD score was 3.07. Haplotype analysis showed all affected 

family members sharing a common haplotype between D22S423 and 

D22S1149 (figure 4.7).  
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Figure 4.2  Parametric genome-wide LOD scores for chromosome 1. Physical chromosome position 
shown on x-axis and LOD score shown on y-axis 

 

 

Figure 4.3 Parametric genome-wide LOD scores for chromosome 10. Physical chromosome 
position shown on x-axis and LOD score shown on y-axis 
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Figure 4.4 Parametric genome-wide LOD scores for chromosome 22. Physical chromosome 
position shown on x-axis and LOD score shown on y-axis 
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Figure 4.5  Haplotype analysis for region of interest on chromosome 1 
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Figure 4.6  Haplotype analysis for region of interest on chromosome 10 
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Figure 4.7  Haplotype analysis for region of interest on chromosome 22 
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4.3.4  Sequencing candidate genes 

 

The following candidate genes from the region of interest on chromosome 1 were 

considered the best candidate genes based on biological plausibility: SERTAD 4, TGFβ2 

and ENTACTIN 1. SERTAD 4 is the human homologue of the murine Cdca4 expressed in 

the optic eminence of mouse embryos. TGF signalling has a role in the normal 

development of cornea, lens and retina in transgenic mice. ENTACTIN codes for a 

basement membrane protein, aberrations in which could render iris tissue more 

fragile. Sequencing of the coding regions in individuals III:9 (affected) and III:1 

(unaffected) revealed no missense or nonsense sequence changes that could have 

resulted in potentially pathogenic mutations. 

 

4.4 Discussion 

 

This chapter has described the phenotypic features of 2 generations of a family with 

what appeared to be an autosomal dominant form of PDS/PG. Linkage to known PDS 

loci were excluded and genome-wide linkage analysis was performed which 

demonstrated 3 chromosomal regions of interest each with parametric LOD scores 

close to 2.  

 

The family was identified after screening 297 PDS probands and their relatives in an 

effort to find families that might be suitable for linkage analysis. The family in the 

present study was the largest of those identified and was considered to be the most 
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suitable for linkage analysis. A number of assumptions were made in the analysis: it 

was assumed that individuals II:3 and II:4 (figure 4.1) were affected and unaffected 

respectively (based on the probands recollection of her parents’ ocular morbidity) and 

that GON seen in subjects III:4 and III:8 (figure 4.1) was secondary to pigment 

dispersion.  It was also assumed that the gene was fully penetrant. In fact, there may 

be other disease modifying genetic or environmental factors that affect whether the 

PDS phenotype is manifest. For example, as PDS has a predilection for myopic eyes it 

might be that emmetropic or hyperopic individuals with the PDS-causing genotype do 

not manifest the phenotype because their refractive state in some way is protective. 

Non-myopic eyes might not exhibit the iris concavity required for frictional contact 

with lens zonules thereby preventing pigment dispersion. Subject IV(4) was noted to 

have Adie’s pupil and may develop a miosed pupil in the long term; in theory, this may 

offer some protection against pigment dispersion as the miosed pupil is ‘on stretch’ 

and therefore less prone to iris concavity. 

 

No individuals in generation IV showed any of the 3 cardinal signs of PDS. As all were 

below 25 years of age, it was not possible to classify them confidently as unaffected 

and this generation was therefore excluded from the linkage analysis. Nevertheless, 

this family still represents a valuable resource for the identification of a disease 

susceptibility locus and it would be feasible to re-visit members of generation IV in 5 

years time when it is likely that some members of the generation may be exhibiting the 

clinical features. Entering genotypic data from affected members of generation IV may 

narrow the region of interest and/or increase the LOD score. 
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Of the 3 regions identified, the region on chromosome 1 was considered to show the 

strongest evidence for linkage.  As laboratory time and resources were limited, efforts 

to screen candidate genes were therefore focussed on this region. SERTAD 4, TGF2 

and ENTACTIN were considered the best candidate genes based on their known 

functions and expression patterns. 

 

SERTAD4 was identified as a result of work by Bennetts et al .(142) who isolated the 

murine Cdca4 gene  (cell division cycle associated 4) whilst conducting a genomic 

expression-based screen for genes involved in mammalian craniofacial development. 

Expression was demonstrated, amongst other regions, in sectioned mouse embryos in 

the optic eminence at day 13.5. The predicted CDCA4 protein contains a novel SERTA 

(SEI-1, RBT1 ((Replication Protein A Binding Trans-activator 1)and TARA (mammalian 

counterpart of Drosophila tara gene, a gene related to Cdca4) motif. High conservation 

between CDCA4 and previously characterised SERTA domain proteins, indicates a 

potential role for CDCA4 in cell cycle regulation and control of gene expression. 

Sequence homology searches identified a further evolutionarily conserved 

uncharacterised human member of the SERTA domain family; this sequence has been 

annotated as a predicted 356 amino acid peptide sequence and named SERTAD4.  

 

Ittner et al.(143) investigated the effect of neural crest cell specific inactivation of TGF 

signalling in transgenic mice; this was achieved by deletion of exon 4 of the TGF 

receptor type 2 (RT2), which leads to loss of TGFr2 protein expression in neural crest 
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stem cells. The cornea in TGF (RT2)-knockout embryos lacked an endothelial layer and 

the cornea and lens failed to separate whilst the retina showed diffuse patterning as 

opposed to clear structuring into anterior and posterior layers seen in controls. PDS 

eyes are likely to have some retinal involvement as the prevalence of lattice 

degeneration in these eyes has been reported to be 20-33% (27, 28). Normal formation 

of the TM and the ciliary body, indicated by a wrinkle in the iris primordium in control 

eyes, was not seen in TGFβr2-mutant eyes. The changes in the eyes of TGFβr2-mutant 

embryos were similar to those seen in human Axenfeld-Rieger’s anomaly, a condition 

characterised by posterior embryotoxon, iris stromal hypoplasia, corectopia, 

pseudopolycoria and ectropion uveae.  Iwao et al.(144) also described a similar 

transgenic mouse strain: heparan sulphate is required for TGFβ signalling which the 

authors were able to impair by disrupting the gene encoding exostosin 1, an enzyme 

required for heparan sulphate synthesis. The resulting phenotype displayed irido-

corneal angle dysgenesis and raised IOP. Finally, David et al.(145) reported a family 

with a balanced translocation t(1;7) (q41;p21) associated with Peter’s anomaly, a 

condition characterised by  iridocorneal adhesions or keratolenticular apposition; the 

authors reporting this family considered TGFβ2, located 500kb proximal to the 

breakpoint on chromosome 1, to be the main candidate gene.  

 

Entactin is an integral and ubiquitous component of the basement membrane and 

could serve as a bridge between laminin and type IV collagen. Evidence for this comes 

from work on human choriocarcinoma cells which synthesize laminin and type IV 

collagen but not entactin. Chung and Durkin (146) observed that transfection of 
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entactin into these cells stimulated incorporation of laminin and type IV collagen along 

with entactin into the extracellular matrix and into structures resembling focal 

contacts. ENTACTIN was considered a candidate gene on the basis that the absence of 

a basement membrane component might cause fragility of the posterior iris pigment 

epithelium making it prone to dispersing pigment. 

 

The regions identified though the linkage analysis were relatively broad, in the range of 

10-20-Mb, compared to a 1.9-Mb region identified by linkage analysis in a family with 

autosomal dominant POAG (138). The region of interest on chromosome 1, for 

example, contains hundreds of genes and it may not be justified to spend the 

considerable time and resources on screening the remaining genes within the region 

given the LOD score was considerably less than 3. Sanger sequencing, also known as 

the chain-termination method, was the standard method for gene sequencing used 

worldwide up until the end of the 20th century. The subsequent period has seen the 

development of next generation sequencing (NGS), a technology that is capable of 

massive parallel sequencing, during which millions of DNA segments are sequenced 

simultaneously with the result that an entire genome can be sequenced in less than 24 

hours. NGS involves fragmenting the DNA sample and attaching short adapter 

sequences onto the ends prior to amplifying. The fragments are then washed and 

nucleotides added in a pre-determined order. The addition of each nucleotide is 

recorded as the DNA segment is extended (147). Different platforms use different 

methods to record the sequence. The Illumina MiSeq platform works by detecting 

fluorescence emitted by pre-labelled nucleotides as the DNA fragment is extended 
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(148). Whilst linkage analysis has identified potential chromosomal regions of interest 

in this family, identification of the causative sequence change is difficult because the 

region identified is relatively wide. It is feasible to combine the linkage analysis 

described in this chapter with NGS technology in an effort to identify the responsible 

sequence variant. For example, Sobreira et al. (149) combined linkage information for 

metachondromatosis, a skeletal disorder affecting bone growth, leading to multiple 

enchondromas and osteochondromas with whole-genome DNA sequence in a single 

proband to identify a frameshift in PTPN11 that alters the reading frame and co-

segregates with the disease. Confirmation of this result was provided when a different 

mutation in the same gene was found to segregate with the disease in a different 

family.  

 

Another application of NGS technology is whole-exome sequencing. Whilst it is 

possible to sequence the entire genome on NGS platforms, disease causing mutations 

are much more likely to be found in the coding regions (exons) of the genome and it is 

therefore more efficient to focus resources on these regions, which comprise around 

1% of the total genome. Whole-exome sequencing may be useful in some of the 

smaller families that have been enrolled, with a view to identifying sequence variants 

that segregate with the disease; these smaller families would also be useful to validate 

any putative mutations that may be found in the family described in this chapter. 
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5.1 Introduction 

 

Patients with PDS/PG and their first-degree relatives were enrolled in an effort to find 

families suitable for linkage analysis (chapter 4). All participants had been carefully 

phenotyped and had provided blood samples for genetic studies into PDS/PG. Whilst 

most of these families were ultimately unsuitable for linkage analysis due to 

insufficient affected members, the project resulted in a DNA biobank for 130 PDS/PG 

probands. The DNA biobank was used in 2 ways: 1) a panel of 100 unrelated samples 

were used for a genome-wide association study (section 5.1.1), and, 2) a panel of 96 

unrelated samples was screened for mutations in GPNMB, the human homologue of 

the gene which causes a pigment dispersion phenotype in the DBA/2J mouse strain 

(section 5.1.2). 

 

5.1.1  Genome-wide association study 

 

5.1.1.1  Rationale  

 

Whilst linkage analysis has had some success in identifying chromosomal loci for PDS 

(63, 64), this approach has relied upon the assumption that PDS is a monogenic 

Mendelian condition, at least within the pedigrees that have been investigated. The 

following features of PDS, however, are more in keeping with a ‘complex’ (150) rather 

than a Mendelian genetic model: phenotypic heterogeneity, likely polygenic 

inheritance (as evidence by the existence of at least 2 genetic loci), phenocopies 
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(pigment dispersion as a result of surgery, trauma) and possible incomplete penetrance 

(subject III:3, table 4.1). Genetic factors in complex disease are likely to be relatively 

weak and/or heterogeneous compared to genes responsible for Mendelian disorders 

and, as such, linkage analysis is not as powerful a technique in the former compared to 

the latter. An alternative approach is to use association analysis, a method of 

investigating association across a population between a disease and a genetic marker.  

Weak effects are more readily detected by association rather than linkage (151).  

Lander put forward the hypothesis that common SNPs (minor allele frequency of at 

least 5%) are likely to account for at least some of the genetic contribution to common 

diseases (152). Genome-wide association studies (GWAS) typically type thousands or 

millions of SNPs across the whole genome across a cohort of cases and controls. 

Association analysis is conducted by determining the prevalence of each allele in cases 

and controls and then testing for statistically significant differences. 

 

5.1.1.2  Association analysis is based on linkage disequilibrium 

 

SNP variants that are situated close together on a chromosome tend to be inherited 

together, more so than would be predicted by their individual allele frequencies, in 

groups known as haplotype blocks; this non-random association of alleles is referred to 

as linkage disequilibrium (LD). Whilst GWAS can identify genetic regions that harbour 

risk-conferring SNPs, they will rarely identify the functional variant, which usually 

requires further genotyping of the region of interest as well as functional studies (153). 
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There have been two key developments which have made GWA studies feasible: 1) The 

International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/) (154) typed several 

million SNPs in four human populations and provided detailed data on LD across the 

genome. Sets of 500,000 SNPs can act as ‘tags’ or proxys for approximately 80% of 

common SNPs (155). Interrogating these ‘tag’ SNPs on commercially available 

genotyping platforms allows efficient capture of variation across the whole genome.  

 

5.1.1.3  Examples of successful GWAS in ophthalmology 

 

5.1.1.3.1 Complement factor H in age-related macula degeneration 

 

The first successful application of the GWAS approach in ophthalmology was the 

discovery of the role of complement factor H gene in age-related macula degeneration 

(AMD) (156); this study reported results of a genome-wide scan of 96 cases and 50 

controls and identified association with the Y402H polymorphism at rs1061170 where 

a tyrosine is substituted by a histidine. The Y402H change has been replicated in other 

independent studies and has been associated with both early and late AMD, as well as 

dry (geographic atrophy) and wet (choroidal neovascular membrane) forms of the 

disease (reviewed in (157)). 
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5.1.1.3.2 E2-2 protein in Fuchs’s corneal dystrophy 

 

Baratz et al. (158) conducted a GWA study investigating Fuchs’ endothelial dystrophy 

(FED), a condition in which patients develop visual loss as a result of bilateral corneal 

endothelial failure. The GWA study included 130 FED subjects in the discovery cohort 

and an additional 150 subjects in a replication cohort; the strongest association was 

found at rs613872 in intron 3 of the transcription factor 4 (TCF4) gene (P = 1.01 x 10-12 

in the discovery cohort and 1.79 x 10-13 in the replication cohort), located on 

chromosome 18. TCF4 codes for the E2-2 protein, a member of a family of transcription 

factors involved in cellular growth and differentiation. 

 

5.1.1.4  Examples of successful GWAS in glaucoma 

 

5.1.1.4.1 LOXL1 in pseudoexfoliative glaucoma 

 

This study enrolled 195 glaucoma patients and 14474 controls and identified 2 coding 

variants at the LOXL1 loci rs1048661 and rs3825942 (159). Sub-group analysis 

determined that the signal was driven entirely by 75 patients with pseudoexfoliative 

glaucoma. These associations have subsequently been replicated in multiple studies 

across different populations (160). The G allele of rs3825942 has been consistently 

reported as the risk allele in multiple populations, however, a study of the LOXL1 

coding region in XFG subjects from South Africa found a strong association with the 
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opposite (A) allele (161). Williams et al. concluded that other, as yet unknown, causal 

variants of LOXL1 contribute to the genetic risk of XFG. 

 

No significant differences have been found in the risk of LOXL1 polymorphisms of 

developing PEX syndrome versus PEX glaucoma, which would implicate separate 

genetic or environmental factors in determining risk of raised IOP/GON (160). The 

present study has made a similar assumption regarding the genetic risk of raised 

IOP/PG in PDS and as such has classified all PDS subjects as ‘cases’ regardless of the 

presence or absence of PG.  

 

5.1.1.4.2 CAV1 and 2, TMCO1 and CDKN2B-AS1 in POAG  

 

The caveolin locus for POAG was discovered through a GWAS of 1,263 cases and 

34,877 controls from Iceland (162). A common sequence variant was identified at 7q31 

(rs4236601[A], odds ratio (OR) = 1.36, P = 5.0 × 10−10). The association with the 

caveolin locus was replicated in independent samples from Sweden, UK, Australia, 

Hong Kong and China and also in a further independent American cohort (163). The 

associated SNPs reside in a haplotype block which harbour the CAV1 and CAV2 genes 

which encode proteins involved in caveolae, small invaginations of the cell membrane 

involved in cell signalling and endocytosis. 

 

An Australian GWAS enrolling 615 subjects with advanced POAG and 3946 controls 

reported significant and replicated association at 2 loci: rs4656461 at 1q24 (OR = 1.68, 
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P = 6.1 x 10-10) and rs4977756 at 9p21 (OR = 1.50, P = 4.7 x 10-9); these loci implicate 

the TMCO1 gene and a long non-coding RNA called CDKN2B-AS1 respectively (164). 

 

5.1.1.5  Study design considerations 

 

Subjects for both the case and control group should ideally be from the same ancestry 

because SNP frequencies will vary across populations (165). Robust quality control of 

the genotypic data is required to detect problems with the SNP assay or DNA quality as 

well as to detect previously unknown relatedness amongst subjects and differences in 

ancestry between cases and controls. An appropriately matched control population 

must be selected. In the case of PDS, the control group should be matched for myopia, 

in order to avoid erroneously identifying SNPs for myopia rather than PDS. 

 

Correction must be made for multiple testing. GWAS typically test for association 

across at least 500,000 SNPs. Using a P-value of 0.05 in this context would result in 

25,000 SNPs being erroneously taken forward for replication studies as a result of false-

positive association. A more appropriate P-value can be obtained by dividing the 

threshold P-value by the number of tests (Bonferroni correction) although this value is 

overly stringent when the number of tests is large (132). 

 

Finally, any associations detected in the ‘discovery cohort’ would require replication in 

an independent cohort. 
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5.1.2  Screening for GPNMB sequence variants 

 

The DBA/2J mouse strain represents a mouse model for PG. The phenotype is 

attributed to mutations in Gpnmb and Tyrp1, which have been shown to cause iris 

pigment dispersion (IPD) and iris stromal atrophy (ISA) respectively (66, 166).  

 

The features of IPD are similar to PDS in man and comprise deterioration of the 

posterior iris pigment epithelium, slit-like iris transillumination defects and pronounced 

pigment dispersion. IPD is caused by a premature stop codon mutation in Gpnmb 

(R150X) (67). Transcription of Gpnmb is regulated by microphthalmia transcription 

factor (MITF). A MITF-binding site has been identified in the in the Gpnmb promoter 

and is conserved in different mammalian species (167). Bachner et al. (168) 

investigated Gpnmb mRNA in murine embryonic development. High levels were 

initially detected in the outer retina whereas in subsequent stages in development 

mRNA expression is restricted to the retinal pigment epithelium and iris. Bachner et 

al.concluded that Gpnmb was important in melanin biosynthesis and in retinal pigment 

epithelium and iris development; this is significant because human PDS involves retinal 

(28) as well as iris pathology. 

 

ISA is associated with a loss of iris stromal complexity and build up of iris stromal 

pigment and cellular debris in the drainage angle. ISA is caused by the recessive Tyrp1b 

mutant allele encoding a mutant protein containing two amino-acid substitutions. Mice 
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homozygous for mutations causing IPD and ISA have a more severe phenotype with an 

earlier age of onset and more aggressive GON than either mutation on its own (166).  

 

The relationship between levels of ocular pigmentation and the development of the 

ISA and IPD phenotypes is demonstrated in DBA/2J-pe mice, a strain bearing the pearl 

(pe) mutation in which the homozygous genotype causes hypopigmentation of coats 

and eyes. Despite homozygosity for GpnmbR150X and Tyrp1b, DBA/2J-pe mice 

homozygous for the pe mutations did not show the IPD or ISA phenotypes and also 

prevented the development of GON (67). Thus IPD and ISA phenotypes appear to be 

dependent upon the level of pigment production occurring in the adult eye.  

 

Mutations in human TYRP1 mutations cause OCA3 (169), a form of oculocutaneous 

albinism, with no reported increased risk of PG. Tyrosinase is an enzyme that catalyses 

the initial step in pigment production and TYRP1 forms part of a complex required for 

stabilsation of this enzyme. Mutant TYRP1 may fail to stabilize tyrosinase resulting in 

reduced pigment production and OCA3 may therefore be ‘self-rescuing’ with regard to 

the development of PG. Lynch et al. (170) sequenced the TYRP1 gene in probands from 

families segregating for PDS/PG. Lynch et al. identified 3 novel synonymous SNPs in 2 

PDS/PG subjects but report that these SNPs did not define a haplotype that segregated 

with the disease. No variants causing changes in the amino acid sequence were 

identified. 
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GPNMB codes for a highly glycosylated type I transmembrane protein and shows 

significant structural homology to the melanosomal structural protein, Pmel17 (171). 

The gene was first cloned when it was noted to show preferential expression levels in 

low-metastatic melanoma cell lines (172). Anderson et al. (67) sequenced the GPNMB 

coding region from 8 affected individuals in 4 families with autosomal dominant PDS 

and detected no mutations.  

 

As laboratory time was limited it was decided to sequence GPNMB in the panel of 

PDS/PG patients in preference to TYRP1. The IPD phenotype in DBA/2J mouse strain 

more closely resembled human pigment dispersion than the ISA phenotype and 

Gpnmb mRNA expression had been demonstrated in the retinal pigment epithelium as 

well as the iris of embryonic mice. For these reasons GPNMB was considered the better 

candidate gene for human pigment dispersion. 

 

5.2  Methods 

 

5.2.1  Genome-wide association study 

 

5.2.1.1  Case and control cohorts 

 

Patients with PDS or PG had been recruited from Moorfields Eye Hospital from 

December 2008 and July 2011. Patients were invited to attend for phenotyping and to 

provide a blood sample for DNA extraction. All participants had been phenotyped by 
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one investigator (AS) and had consented for their blood samples to be used for the 

purposes of genetic investigation into PDS. Diagnostic criteria for PDS have been stated 

in section 2.1. One hundred unrelated probands were selected to form the ‘case’ 

cohort. Patients with clear non-Caucasian ancestry were excluded from selection. The 

study was approved by the South East London Research Ethics Committee.  

 

The UK Twins Registry have a large cohort of patients with ophthalmic phenotypic data 

including refractive error, half of whom had been genotyped on the Illumina 317k 

platform, and half on the Illumina 610 Quad chip (550k plus 60k CNV SNPs). Agreement 

was obtained from the UK Twins Registry for access to genotypic data from a myopic 

cohort to serve as the control dataset.  

 

5.2.1.2  Sample size 

 

The OR of AMD prevalence in first-degree relatives of AMD probands has been 

estimated at 2.4-19.8 (173, 174); these estimates represent age- and sex- adjusted OR 

determined by comparing the prevalence of AMD in first-degree relatives of AMD 

probands with first-degree relatives of normal controls. There are no published data on 

the prevalence of PDS in first-degree relatives of probands. During efforts to identify 

PDS families suitable for linkage analysis, the prevalence of PDS in first-degree relatives 

of PDS probands was found to be approximately 20%. Although no similar study was 

conducted in relatives of control subjects, a crude estimate for this value is that of the 

published prevalence of 2.5% found during a screening study of New York office 
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workers (34). Using these values, the corresponding OR of PDS prevalence in first 

degree relatives can be estimated to be 20/2.5=8. This approximation falls in the 

middle of the range for the OR for AMD quoted above, suggesting that a similar 

proposed sample size may be sufficient. Because the clinical signs of PDS fade with age, 

there is a risk that parents of probands may have been misclassified as unaffected 

whereas had they been examined in their 30s or 40s, may have been found to be 

affected. The prevalence figure of PDS in first-degree relatives might therefore be an 

underestimate and if this were the case, the OR would be even higher.  

 

5.2.1.3  DNA extraction and genotyping 

 

DNA was extraction from frozen samples was performed by Miss Beverley Scott, BMRC 

Technician, Department of Genetics, UCL Institute of Ophthalmology. Extracted DNA 

was assessed for protein contamination using a spectrophotometer (Nanodrop ND-

1000; Thermo Fisher Scientific Inc., Wilmington, USA). Samples with 260/230 values < 

1.8 were deemed to be contaminated and underwent ethanol precipitation. All 

samples were electrophoresed on a 1% agarose gel to ensure they were within the 10-

15 kbp range. Samples were frozen and shipped to a commercial service (Aros Applied 

Biotechnology, Denmark) for genotyping on the Illumina 660w Quad beadchip. 
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5.2.1.4  Quality control 

 

Quality control (QC) was performed by Miss Cristina Venturini and Dr Pirro Hysi, King’s 

College London, using Plink (175, 176) and ‘R’ (177). Genotype calling was performed 

on Illumina GenomeStudio software version 2011.1 (Illumina, San Diego, USA). QC was 

conducted according to a protocol published by Anderson et al. (178). 

 

5.2.2  Screening for GPNMB sequence variants 

 

Ninety-six unrelated patients were selected from the PDS probands who were 

originally enrolled when families suitable for linkage analysis were being sought.  DNA 

was extracted from peripheral blood lymphocytes. All 11 exons of GPNMB (including 

the promotor region) were amplified and sequenced on a 3730 DNA Analyser. Results 

were analysed using Sequence Analysis 5.2 and Sequencher 4.1.4. Potentially 

significant changes were screened for in a panel of normal DNAs. Variants resulting in 

amino acid changes were submitted to the following 3 web-based applications to 

estimate their functional significance: SIFT (179), PolyPhen-2 (180)  and PMut (181, 

182). 
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5.3 Results 

 

5.3.1  Genome-wide association study 

 

5.3.1.1  Genotyping 

 

A pilot batch of 8 samples was initially genotyped to check call rates (table 5.1). 

 

0.9621 
0.9931 
0.9959 
0.9962 
0.9971 
0.9973 
0.9974 
0.9977 

 

Table 5.1 Illumina 660w Quad beadchip genotyping call rates for 8 ‘pilot’ samples from PDS 
cohort 

 

On the basis of the above result the remaining 92 samples were genotyped (table 5.2).  
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Table 5.2 Illumina 660w Quad beadchip genotyping call rates for remaining samples from PDS 
cohort 
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5.3.1.2  Quality control 

 

5.3.1.2.1 Per-individual and per-marker missing genotypes 

 

The proportion of missing individuals and SNPs with missing genotypes is shown in 

figures 5.1 and 5.2 respectively. 

 

 

 

 

 

 

 

Figure 5.1  
 
Proportion (shown on the x-axis) of 
individuals with missing genotypes  

Figure 5.2 
 
Proportion of SNPs (shown on the 
x-axis) with missing genotypes 
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5.3.1.2.2 Sex check 

 

Homozygosity rates across all X-chromosome SNPs are shown figure 5.3. The data 

show 2 clusters: one around zero for females and another around 1 for males.  

 

 

Figure 5.3  X-chromosome homozygosity (on the x-axis) for PDS cohort. Red arrows indicate 
clusters away from expected values. 
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5.3.1.2.3  Racial /ethnic ancestry 

 

Reference population data from HapMap III (183) was used to find racial outliers. 

Figures 5.4 and 5.5 show the location of the PDS subjects in comparison with HapMap 

III populations. 
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Figure 5.4a 

 

 

Figure 5.4b 

 

Figure 5.4 Clustering of PDS subjects (blue circles) in comparison with HapMap III populations. The 
majority of the PDS samples can be seen to cluster with individuals of known Northern 
and Western European ancestry, confirming that the PDS cohort is mostly genetically 
homogeneous. One individual can be seen to cluster with indivuduals of Mexican and 
Gujurati Indian ancestry and would need to be exlcuded from the genome-wide analysis. 
The 3-dimensional data is represented by two 2-dimensional graphs. ASW African 
ancestry in Southwest USA; CEU Utah residents with Northern and Western European 
ancestry from the Centre d'Etude du Polymorphisme Humain collection; CHB Han 
Chinese in Beijing, China; CHD Chinese in Metropolitan Denver, Colorado; GIH Gujarati 
Indians in Houston, Texas; JPT Japanese in Tokyo, Japan; LWK Luhya in Webuye, Kenya; 
MXL Mexican ancestry in Los Angeles, California; MKK Maasai in Kinyawa, Kenya; TSI 
Toscani in Italia; YRI Yoruba in Ibadan, Nigeria 
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5.3.1.2.4  Principal component analysis 

 

Figures 5.5 and 5.6 show plots of principal components 1, 2 and 3. Plots for principal 

components 4 were similar (data not shown). 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.5 

Plot of principal components 1 and 2 for 
genotypic data from PDS cohort. Outliers 
marked in red. 

 

Figure 5.6 

Plot of principal components 1 and 3 for 
genotypic data from PDS cohort. Outliers 
marked in red. 
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5.3.1.2.5 Hardy-Weinberg Equilibrium  

 

 A p-value for departure from Hardy-Weinberg Equilibrium (HWE) for each SNP was 

computed. The quantile-quantile plot is shown in figure 5.7. There is a departure from 

HWE after an expected chi-squared of approximately 7. 

 

 

Figure 5.7  Quantile-quantile plot showing the observed HWE Log p-values compared to the Log p-
values expected from a theoretical uniform distribution of the HWE probabilities 

 

  



 159 

5.3.1.2.6 Heterozygosity 

 

Individual heterozygosity was determined by calculating the ratio between the 

observed and expected number of heterozygotes. These data are illustrated in figure 

5.8.  

 

 

 

 

Figure 5.8  Plot of observed to expected heterozygosity ratio (red arrow indicates the small peak 
at a ratio of 0.75) 
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5.3.1.2.7 Relatedness 

 

Figure 5.9 depicts the frequency of different values of PI_HAT, a measured of 

estimated relatedness between any two samples. There is an apparent excess of 

sample pairs sharing approximately 20% of their DNA and also a smaller portion of 

sample pairs sharing between 60 and 85% of their DNA. 

 

  

 

 

 

 

 

Figure 5.9 Estimated relatedness (PI-HAT) between any 2 samples in the PDS cohort 

  

  



 161 

5.3.2  Screening for GPNMB sequence variants 

 

One patient was found to have a missense change in exon 6 of GPNMB (figure 5.10). 

This protein change, proline to leucine at codon 325, was not present in 182 Caucasian 

control samples and deemed to be ‘tolerated’, ‘possibly damaging’ and ‘pathological’ 

according to SIFT, PolyPhen-2 and pMut respectively. Two patients were found to have 

a c.-179insT in exon 1 proximal to the TATA-like element regulatory region (figure 

5.11). The c.-179insT change was present in 1 out of 183 Caucasian control samples. 

 

 

Figure 5.10  Missesense change in exon 6 of GPNMB. Upper electropherogram shows region of 
exon 6 in patient with normal sequence. Lower electropherogram from patient 
showing c.C325T missense change in the same region 
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Figure 5.11  Nucleotide insertion in exon 1 of GPNMB. Upper chromatogram showing region from 
exon 1 in a patient with normal sequence. Middle and lower chromatograms revealing 
insertion upstream of the TATA-like regulatory region seen in 2 patients. Sequence 
annotations adapted from Ripoll et al. (167). 
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The patient demonstrating the c.C325T change was a 26 year old white male with a 

maximum IOP of 32 mmHg right eye and 28 mmHg left eye with no evidence of GON.  

 

Two patients demonstrated the c.-179insT change. The first was a 46 year old Somalian 

male with maximum IOP of 32 mmHg right eye and 35 mmHg left eye and evidence of 

bilateral GON. The second was a 55 year old white female with maximum IOP of 22 

mmHg right eye and 23 mmHg left eye with no evidence of GON. All 3 patients were 

phenotypically similar to the rest of the cohort. 

  

5.4  Discussion 

 

5.4.1  Genome-wide association study 

 

5.4.1.1  Quality control 

 

5.4.1.1.1 Per-individual and per-marker missing genotypes 

 

Genotypes are determined from probe intensity data by a genotype-calling algorithm 

within Illumina’s proprietary software. The proportion of missing data was investigated 

for both individuals and SNPs. The QC protocol (178) recommends conducting QC on a 

‘per-individual’ basis before doing so on a ‘per-marker’ basis to maximize the number 

of markers remaining in the study; this approach prevents markers from being 

erroneously removed because of a subset of poorly genotyped individuals, but 
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individuals may be falsely removed on the basis of a poorly genotyped subset of 

markers. When testing 550,000 markers, a 1% failure rate equates to 5,500 markers 

with the associated risk that a disease-associated SNP could be overlooked. For this 

reason, in a study with a large number of subjects it may be preferable to remove a 

few individuals rather than a small percentage of markers. 

 

The results are shown in figures 5.1 and 5.2. Figure 5.1 shows that all individuals are 

missing at least 15% of their genotype information. The Illumina 660W-Quad Beadchip 

contains a total of 95,865 non-polymorphic probes used to fill in regions under-

represented by SNPs. The percentage of missing genotypes seen in all individuals 

would correlate with the proportion of non-polymorphic probes. The total number of 

SNPs with missing genotypes was 31,371 and this represents 5.6% of all RS SNPs on the 

chip; this would appear to correlate with the 31,348 non-polymorphic probes on the 

chip assigned RS numbers. 

 

5.4.1.1.2 Sex check 

 

Males cannot be heterozygous for any markers that are on the X chromosome (that is 

not in the pseudo-autosomal region of the Y chromosome). The expected X-

chromosome male homozygosity rate is therefore 1 and that for females is < 0.2 (178). 

The X-chromosome homozygosity plot (figure 5.3) identifies a few individuals with 

atypical homozygosity ratios. The peak to the right may represent contamination or a 
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sex chromosome aberration and these individuals would need to be excluded prior to 

further analysis. 

 

5.4.1.1.3 Racial/ethnic ancestry 

 

The majority of samples cluster with HapMap III European-ancestry subjects, but there 

are clearly outliers who cluster with, for example, ethnic Indian subjects or who do not 

fall inside of any of the clusters, suggesting admixed individuals. Outliers would need to 

be excluded prior to further analysis. 

 

5.4.1.1.4 Principal component analysis 

 

GWA studies may be confounded by population stratification, whereby apparent 

differences in allele frequencies can arise as a result of divergent ancestry rather than 

the disease under study (184). Despite efforts to select cases and controls from the 

same genetically homogenous population, subtle genetic substructure may exist within 

that population and differences in this substructure between case and control cohorts 

may give rise to confounding. In the present study this was especially important 

because: 1) the PDS probands were ascertained retrospectively and formal ancestry 

history had not been taken, and 2) the PDS probands and myopic control group were 

recruited from centres in London and may therefore have had greater genetic 

heterogeneity than a similar group recruited from another part of the UK whose 

population had been more geographically stable.  
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Potential stratification was investigated by principal component analysis (PCA) (185, 

186), a statistical technique used to produce several uncorrelated variables (or 

principal components) from a dataset containing potentially correlated variables. The 

computation is such that the first principal component accounts for the maximum 

amount of variation the data in a single component; this is followed by the second 

component and so on. In the context of GWAS, the SNPs are the potentially correlated 

variables. Genotypic data from populations of known ancestry e.g. HapMap 

populations, is used to build the PCA model, which can then be applied to a GWAS 

cohort to predict principal component scores for these samples. Ten subjects in total 

did not cluster well with the rest of the group and would need to have been removed 

prior to further analysis. 

 

5.4.1.1.5 Hardy-Weinberg Equilibrium 

 

At a locus where the only alleles are ‘a’ or ‘A’, with frequencies of p and q respectively, 

the Hardy-Weinberg theorem predicts genotype frequencies of AA, Aa and aa to be p2, 

2pq and q2. SNPs demonstrating this distribution are said to be in Hardy-Weinberg 

equilibrium. Figure 5.7 shows the expected distribution of association test statistics (X-

axis) across the million SNPs compared to the observed values (Y-axis). The departure 

from the X=Y line implies a bias as the large number of SNPs represented by this 

departure could not all truly be associated with PDS. As only individuals of clear 
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European ancestry were included in this analysis this raises questions about sample 

handling or DNA quality. 

 

5.4.1.1.6 Heterozygosity 

 

Figure 5.8 illustrates the ratio of observed to expected heterozygosity. There was a 

peak at 0.75, representing individuals with a low ratio, which may be indicative of 

inbreeding (178), although this would seem unlikely given the wide catchment area of 

the clinic from which these patients were recruited. 

 

5.4.1.1.7 Relatedness 

 

Duplicate or related individuals can be identified by calculating pairwise identity-by-

state (IBS), a metric reflecting the proportion of loci at which a pair of individuals share 

the same alleles.  Only independent SNPs are used in calculating IBS and this is 

achieved by excluding extended regions of linkage disequilibrium (LD) from the data 

set (187) and editing remaining regions so that only uncorrelated SNP pairs are 

included. Identity by descent (IBD), the proportion of alleles shared in common due to 

recent shared ancestry, can be estimated from the IBS data. (175, 176). PLINK 

calculates PI-HAT, a measure of relatedness derived from IBD. The expectation for an 

outbred, contamination-free population would be to have most PI-HAT values around 

0. Peaks around 0.5 suggests two individuals are 1st degree relatives although this 

would be extremely unlikely as subjects were selected partly on the basis of being 
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unrelated to each other. Figure 5.9 shows an apparent excess of sample pairs sharing 

approximately 20% of their DNA and also a smaller portion of sample pairs sharing 

between 60 and 85% of their DNA; this degree of relatedness is uncharacteristic of 

contamination-free outbred populations. 

 

5.4.1.2  Conclusion 

 

The QC issues described above could be explained by low DNA quality and/or DNA 

contamination. DNA contamination could have arisen during pipetting of reagents: the 

laboratory work involves handling samples in 96-well plates using ‘multi-pipettes’ to 

add reagents to rows of samples at a time. Twenty-four individuals would need to be 

removed based on the QC analysis and it was felt that further analysis was precluded. 

Future efforts at conducting a GWA study into pigment dispersion syndrome would 

benefit from lessons learned from the present study: for any additional patients to be 

recruited, enquiry into ethnic ancestry should be made in order to exclude individuals 

known to be racially admixed. A 25% increase in sample size should be aimed for in 

order to allow for individuals being removed due to poor call rates and racial 

admixture. Meticulous laboratory technique should be adhered due to minimise the 

risk of sample contamination. Consideration should be given to involving other centres, 

ensuring uniform phenotyping across sites, in order to achieve the required sample size 

for the discovery and validation cohort. 
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5.4.2  Screening for GPNMB sequence variants 

 

One patient was found to have a missense change in exon 6 of GPNMB and this was 

not found to be present in 182 Caucasian control samples. This change was predicted 

to be ‘tolerated’, ‘possibly damaging’ and ‘pathological’ according to SIFT, PolyPhen-2 

and pMut respectively. The sequence is evolutionarily conserved in mice and macaques 

but not in chickens. The subject in whom the c.C325T mutation was identified did not 

have any family members who were available for phenotyping and genotyping; this 

change would need to be found in other affected relatives whilst also being absent in 

unaffected relatives in order to be considered significant. 

 

Two patients were found to have a c.-179insT in exon 1 between an M-box element 

and  a regulatory TATA-like element. The M-box element is the binding site for 

microphthalmia transcription factor, a factor that has been shown to regulate Gpnmb 

expression in murine osteoclasts (167). The M-box element is the most evolutionarily 

conserved element in the GPNMB promotor, being conserved between at least 11 

different species (167).  The variant was close to, but did not fall within, any of the 

recognised regulatory elements and this finding, together with the detection of the 

change in 1 of the control samples, makes the c.-179insT change less likely to be 

significant. 

 

Whilst mutations in GPNMB are not present in the vast majority of PDS/PG subjects, 

the detection of one non-synonymous variant indicated that the biochemical pathway 
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involving GPNMB may be relevant to the molecular basis of PDS/PG. Lu et al. (188) 

analysed gene expression in mouse strains based on the presence or absence of the 

R150X Gpnmb mutation and reported that the mutation radically alters the set of 

genes with which Gpnmb expression is correlated and have described different co-

expression networks of genes associated with the mutant and wild-type transcripts. 

Human homologues of genes in both of these networks would be candidate genes for 

PDS/PG in man. 

  



 171 

6 SUMMARY 

 

AS-OCT provides a means to image iris curvature in a relatively physiological way and 

offers certain advantages over UBM. The results of the agreement study described in 

chapter 2 validated its use in the measurement of iris concavity. The main 

disadvantage of AS-OCT, however, is the inability to clearly identify areas of irido-

lenticular contact, an important parameter to consider when investigating the 

pathophysiology of pigment dispersion and the effect of LPI. The results of the case-

control study indicated that non-accommodative iris concavity is the parameter that 

best distinguishes cases from controls and this corroborates published data indicating 

that the increase in iris concavity seen with accommodation is relatively transient and 

that the iris reverts to a more convex configuration despite accommodative effort 

being maintained.  

 

LPI in PDS patients is a controversial intervention and robust evidence supporting its 

use is currently lacking. Ideally a longitudinal, prospective randomized control trial is 

needed to compare the effect of LPI on the risk of developing subsequent PG. Iris 

curvature assessments would form an important part of such a study as it would be 

useful to record any change in iris curvature pre- and post-LPI; whilst changes have 

been demonstrated in a cross-sectional study using UBM (81), longitudinal studies have 

not attempted to correlate imaging changes with the risk of developing raised IOP (35) 

or PG (55). 
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Although the results of the present study suggest good agreement with respect to 

measurements on individual AS-OCT images, whether curvature measurements taken 

on the same patient several hours or several days apart are repeatable has not been 

established. Future work should therefore assess the repeatability of these 

measurements over different time points. Fundus autofluorescence imaging represents 

an important tool to further investigate posterior segment changes in PDS/PG. 

 

Age was significantly associated with iris curvature in both PDS/PG subjects and 

controls; this association was detected for non-accommodative as well as 

accommodative iris curvature and was stronger for the latter. The mechanism for the 

increased concavity on accommodation is not entirely clear; it is unlikely to be purely 

due to anterior lens movement as it is recognised that increased concavity is short-

lived despite continued accommodation. The slope of the curve for age against 

accommodative iris curvature levels off after 50 years of age and this may well 

correspond to the reduction in accommodative amplitude associated with presbyopia. 

 

Whilst iris concavity is a frequent finding in PDS, it can also occur in normal subjects 

and appears to be more common in younger, more myopic individuals. Chapter 3 

described a study conducted primarily to investigate the prevalence of iris concavity in 

a cohort of 10-12 year old boys. Relationships between iris curvature and corneal 

biomechanical properties and anterior segment biometry were explored and the 

cohort was revisited 2 years later using an identical data collection protocol. In 

addition, reported birth weight and measures of height, weight, waist circumference, 
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digit ratio and percentage body fat were taken in order to explore relationships with 

myopia. Iris concavity was a common finding in this cohort at baseline and increased in 

prevalence at the 2-year follow up visit. At both time points iris curvature was related 

to lens vault, anterior chamber depth and scleral spur angle.  Significant association 

was detected between corneal hysteresis, a parameter thought to represent corneal 

biomechanical properties, and spur-to-spur distance as measured on horizontal AS-OCT 

imaging. Screening children of PDS/PG patients for iris concavity on AS-OCT is unlikely 

to be a useful predictor for development of PDS/PG in adulthood.   

 

Chapter 4 described the results of linkage analysis conducted on a multigenerational 

family segregating for autosomal dominant PDS/PG. Linkage to the 2 known PDS/PG 

loci was excluded. Three chromosomal regions of interest were identified and coding 

regions of candidate genes in in the region identified on chromosome 1 were 

sequenced in one affected and one unaffected member of the pedigree. No 

pathological sequence variants were identified. Assumptions were made regarding the 

presumptive affected/unaffected status for deceased individuals that previously 

provided blood samples for genetic studies into PDS/PG as well as the likely aetiology 

of GON in older members of the family who did not at the time of examination meet 

diagnostic criteria for pigment dispersion. In addition, the genetic model underlying the 

linkage analysis made assumptions e.g. that the disease causing allele is fully 

penetrant, which cannot, prior to identifying a causative mutation, be verified. Whilst 

there is the possibility that the regions identified may represent false positives, the 

development of next generation sequencing, a technology that permits rapid, high 
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throughput sequencing provides an opportunity for the relatively wide regions of 

interest to be investigated for putative disease causing variants. In the course of 

searching for additional families that were suitable for linkage analysis, several smaller 

families have been recruited with between 1 and 3 affected members and these 

represents a valuable resource which could be screened for the purpose of attempting 

to validate any pathological sequence variants that might be identified in the future. 

 

Whilst linkage analysis has been shown to be a powerful technique to identify rare 

variants with a large effect size, population based association studies are more 

appropriate for identifying more common alleles with a smaller effect size. High-

density oligonucleotide microarrays have enabled the investigation of genome-wide 

association in more detail with smaller sample sizes than was previously possible. The 

first part of chapter 5 described efforts to conduct a pilot GWAS involving pigment 

dispersion samples from PDS/PG patients to identify associated genomic regions. DNA 

was extracted from these samples and sent to a commercial genotyping service. 

Genetic epidemiologists conducted the following quality control checks on the raw SNP 

calls according to a published protocol: missing SNP calls, gender checks, racial/ethnic 

ancestry checks, departure from Hardy-Weinberg equilibrium, heterozygosity and 

relatedness. Unfortunately the analysis identified significant problems with the 

genotypic data which implicated low quality DNA or sample contamination and this 

precluded taking the data forward to the association stage. Residual DNA from a 

number of subjects is still available and, providing the above issues could be addressed 
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and additional patients recruited to achieve the required sample size, it would still be 

possible to proceed with a genome-wide association study. 

 

Murine Gpnmb codes for a transmembrane glycoprotein protein and a mutation in this 

gene giving rise to a premature stop codon causes the iris pigment dispersion 

phenotype in DBA/2J mice. The human homologue, located at chromosome 7p15, was 

considered an excellent candidate for pigment dispersion in man. The second part of 

chapter 5 reported on the sequencing of the promotor and coding regions of this gene 

in a panel of unrelated PDS/PG subjects. One patient was found to have a missense 

change in exon 6, not found to be present in a panel of 182 Caucasian control samples. 

Whilst this change gives rise to a change in the amino acid sequence, analyses on the 

significance of this change gave conflicting results. Two patients were found to have a 

c.-179insT in exon 1 proximal to the TATA-like element regulatory region; the 

identification of this change in 1 of the control samples suggests that it may not be 

significant. No other variants in GPNMB were detected in the remaining 93 samples. 

 

There are a number of directions for future work building on the work described in the 

thesis. The key next studies would be: 

 

1. Exploring the repeatability of iris curvature measurements with AS-OCT over 

multiple time points. This would be a key study in validating AS-OCT as a tool for 

quantifying iris curvature. 
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2. A prospective longitudinal RCT investigating the effect of LPI on the risk of 

developing raised IOP, using the fellow eye as a control eye. The results of the 

Gandolfi study (35) would be used in the power calculation to determine an 

appropriate sample size. PDS subjects without OHT or GON would need to be 

actively recruited from the community in an effort to minimise ascertainment 

bias that would arise from recruiting from a hospital-based glaucoma clinic. 

Following the untreated eye would provide valuable data on the natural history 

of PDS. 

 

3. Analysis of the PDS pedigree described in Chapter 4 using exome sequencing, 

a technology that would provide sequencing data for coding regions across the 

whole genome for all family members. The results of the linkage analysis 

would be used to focus on those regions already found to have promising LOD 

scores in order to narrow down search for variants segregating with affected 

family members. 

 

4. Further recruitment of PDS subjects for the GWA study. Rigorous testing of 

extracted DNA would need to be performed with meticulous attention to 

laboratory technique in order to minimise the risk of DNA contamination.  
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7 APPENDIX 

 

7.1  Protocol for DNA preparation prior to genotyping on Affymetrix 50K 

Genechip 

 

7.2 Protocol for ethanol precipitation for extracted DNA samples not 

meeting QC criteria on spectrophotometry 
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Appendix 1 Protocol for DNA preparation prior to genotyping on Affymetrix 50K 

Genechip 

 

DNA was prepared according to the following protocol prior to sending samples to the 

Wolfson Institute for Biomedical Research (WIBR) for hybridisation, washing/staining 

and scanning. The volumes of reagent indicated are per sample of DNA unless 

otherwise stated. 

 

Digestion 

The following digestion master mix was prepared in a DNA/amplicon free hood.  

Nuclease-free H20 12.3 µl 

NE Buffer 2(10X) 2 µl 

BSA  (10X (1mg/ml) 0.2µl 

XbaI (20U/ul)  0.5 µl 

Total   15 µl 

 

15 µl of master mix was added to 5 µl of the previously diluted DNA. 

The samples were run in a thermal cycler at 37˚C for 2 hours then 70˚C for 20 mins. 

 

Ligation 

The following master mix was prepared on ice: 

Adaptor Xba (5M) 1.25 l 

T4 DNA ligase buffer (10x) 2.5 l 

T4 LIGASE (400U/l) 0.625 l 

H2O 0.625 l 

Total 5 l 
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5 l of the ligase mix was added to 20 l of digested DNA.  

The samples were run in a thermal cycler at 16˚C for 2 hours then 70˚C for 20 mins. 

75 l nuclease-free H20 was added to the 25 l ligated solution. 

 

Polymerase chain reaction (PCR) 

The following master mix was prepared on ice: 

H2O 132 l 

Pfx buffer 30 l 

PCR enhancer 30 l 

MgSO4 (50mM) 6 l 

dNTP (2.5mM) 36 l 

PCR Primer (10M) 30 l 

Pfx Polymerase  6 l 

Total 270 μl 

 

The total volume per sample of 270 μl was aliquoted into 3 tubes of 90 μl each. 10 μl of 

diluted ligated DNA was mixed with 90 μl of PCR master mix. Three batches per DNA 

sample were prepared. The samples were run in a thermal cycler as follows: 

Initial denaturation 94˚C for 3 min 1 cycle 

Denaturation 
Annealing 
Extension 

94˚C for 30 s 
60˚C for 45 s 
68˚C for 1 min 

 
30 cycles 

Final extension 68˚C for 7 min 1 cycle 

 

4 μl of each PCR product was mixed with 1 μl loading dye on 2% tris-acetate-EDTA gel 

at 120V for 1 hour. 
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Purification, quantification and normalization 

The three PCR reactions for each sample were consolidated into one well of a MinElute 

plate. A vacuum of 800 mmHg was applied until the wells were completely dry. PCR 

products were washed by adding 50 μl nuclease-free water and maintaining the 

vacuum until the wells were completely empty. This step was repeated 2 additional 

times for a total of 3 water washes. The vacuum source was then switched off and the 

MinElute plate was removed from the vacuum manifold.  40 μl EB buffer was added to 

each well. A plastic plate sealer was applied and the plate was shaken for 5 minutes at 

moderate speed. The re-suspended samples were then pipetted into a clean plate. 2 l 

of sample was quantified on a Nanodrop spectrophotometer. Samples were 

normalized to 40 g/45 l using EB. 

 

Fragmentation 

45 L purified PCR product was mixed with 5 l 10x Fragmentation Buffer (FB), 

vortexed for 2 seconds and placed back on ice. This mixture constitutes the 

Fragmentation PCR Mix (FPM). 

Fragmentation reagent was diluted as follows:  

REAGENTS 3U/L 

FR (DNase I) 2 L 

FB X10 15 L 

H2O 133 L 

 

This was vortexed for 2 seconds and placed back on ice. 5 l diluted FR was mixed with 

50 l FPM, vortexed for 2 seconds and placed back on ice. The samples were run on a 
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thermal cycler as at 37˚C for 30mins and then 95˚C for 15 mins. 4 L of product was 

run on a 4% tris-acetete-EDTA agarose gel at 120V. 

 

Labelling 

Labelling master mix (LMM) was prepared on ice as follows: 

5x TdT Buffer 14 l 

GeneChip DNA Labeling Reagent (7.5mM) 2 l 

TdT (30U/L) 3.5 l 

TOTAL 19.5 l 

 

The mixture was vortexed for 2 seconds and placed back on ice. 19.5 L LMM was 

added to 50.5 l of fragmented sample on ice, vortexed for 2 seconds and placed back 

on ice. The samples were then run on a thermal cycler at 37˚C for 2hours and then 

95˚C for 15 mins. Samples were then stored at -20˚C. 
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Appendix 2 Protocol for ethanol precipitation for extracted DNA samples not 

meeting QC criteria on spectrophotometry 

 

50 µl of DNA was mixed with 5 µl of 3M sodium acetate and 125 µl 100 % ethanol.  

This was briefly vortexed and spun for 20 minutes in a centrifuge at 12000 rpm at 4°C. 

The supernatant was carefully aspirated and discarded taking care not to aspirate the 

DNA pellet at the base of the tube. 

 

1 mL of cold 70% ethanol was added. This was spun for 10 minutes at 12000 rpm at 4°C 

and the supernatant was carefully aspirated and discarded as above. The DNA pellet 

was left to air dry for 10 minutes at room temperature and dissolved in 40 µl Elution 

Buffer (EB) (10 mM Tris-HCl pH 7.5). The optical density of the eluted DNA was 

measured using a NanoDrop spectrophotometer. The ratio of absorbance at 260 nm 

and 280 nm of approximately 1.8 was considered acceptable and a ratio of absorbance 

at 260 nm and 230 nm between 1.8 and 2.2 was considered acceptable. DNA was 

diluted to a concentration of 50 ng/µl. 
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