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Abstract—Desynchronization approaches in wireless sensor
networks converge to time-division multiple access (TDMA) of
the shared medium without requiring clock synchronization
amongst the wireless sensors, or indeed the presence of a
central (coordinator) node. All such methods are based on
the principle of reactive listening of periodic “fire” or “pulse”
broadcasts: each node updates the time of its fire message
broadcasts based on received fire messages from some of the
remaining nodes sharing the given spectrum. In this paper, we
present a novel framework to estimate the required iterations
for convergence to fair TDMA scheduling. Our estimates are
fundamentally different from previous conjectures or bounds
found in the literature as, for the first time, convergence to
TDMA is defined in a stochastic sense. Our analytic results
apply to the DESYNC algorithm and to pulse-coupled oscillator
algorithms with inhibitory coupling. The experimental evalu-
ation via iMote2 TinyOS nodes (based on the IEEE 802.15.4
standard) as well as via computer simulations demonstrates
that, for the vast majority of settings, our stochastic model
is within one standard deviation from the experimentally-
observed convergence iterations. The proposed estimates are
thus shown to characterize the desynchronization conver-
gence iterations significantly better than existing conjectures
or bounds. Therefore, they contribute towards the analytic
understanding of how a desynchronization-based system is
expected to evolve from random initial conditions to the
desynchronized steady state.

Index Terms—wireless sensor networks, desynchronization,
stochastic modeling, pulse coupled oscillators, TDMA.

I. INTRODUCTION

EFFICIENT usage of shared spectrum in distributed
(ad-hoc) networking architectures is important for high

data-rate communications [1]. This is particularly so for
wireless sensor networks (WSNs), where wasting packet
transmissions due to collisions in the medium access also
means wasting battery resources [1]–[8]. Desynchronization
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is a new WSN primitive leading to fair time-division mul-
tiple access (TDMA) scheduling that does not require the
presence of a coordinating node [3], [4], [6], [7], [9]–[13].
All desynchronization approaches are based on the principle
of reactive listening, where nodes periodically broadcast
short packets (so-called “beacon” or “fire” messages [4],
[6], [7], [9]–[12], [14]) and then update their next broadcast
time based on the reception of fire messages from some
of the remaining nodes. These methods make use of a
convergence interval, where nodes adjust their firing times,
and a steady-state (SState) period. In the SState period,
nodes have converged into fair TDMA scheduling and
fire messages are sent by each node in regular (periodic)
intervals of T seconds, followed by data packets.

Historically, biology-inspired synchronization and desyn-
chronization algorithms emerged from pioneering work in
pulsed-coupled oscillators (PCOs) [15] and integrate-and-
fire models [16]–[18]. Since the original formulation of
desynchronization within the context of WSNs [3], [4],
several authors extended properties of its basic reactive
listening primitive in a number of ways. Extensions towards
multihop or complex network topologies [19] have been
proposed via: (i) including neighboring information in fire
messages [20], (ii) low-complex graph theory methods
[21], [22], and (iii) broadcast/reception of only a limited
number of beacon messages to/from the immediate phase
neighbors [5], [23]–[25]. The effects of node mobility in
desynchronization were discussed in recent work [26]. Syn-
chronization and desynchronization methods with limited
listening or limited beacon broadcasts were also proposed
recently for increased energy efficiency in WSN designs
[19], [27]–[30]. Under the knowledge of the total number
of nodes, it was shown that maintaining one node with
fixed beaconing (i.e., an “anchored” node) [12] allows
for faster convergence to TDMA. Other works focused
on modifications to the basic desynchronization to allow
for TDMA with: low-complexity scheduling [31], unequal
slot sizes [3], [14], as well as scheduling under discrete
resources (non-continuous time) [10]. Finally, in our recent
work [32] we proposed a time-frequency extension of the
desynchronization process in order to achieve increased
bandwidth efficiency and allow for low-complex distributed
coordination across the multiple channels supported by the
IEEE 802.15.4 standard for WSN communications.

In all these works, the number of convergence itera-
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tions required until the steady state plays a crucial role
in latency, energy and bandwidth efficiency of WSN de-
ployments based on desynchronization. For example, the
required convergence iterations were a key issue in the
simulations and experiments of several desynchronization-
based systems [3], [4], [10], [12], [20]. Beyond single-
channel desychronization, convergence iterations comprise
a crucial parameter in the convergence delay of multichan-
nel desynchronization [32], which is an important factor
in the energy consumption of practical deployments [33].
Finally, deriving estimates for the convergence iterations
forms a crucial step in the analytic understanding of how
the system evolves from random initial conditions to the
desynchronized steady state [12].

A. Related Work
It is well known that deriving closed-form estimates

for the required convergence iterations to SState is hard
[2], [4], [9], [12] due to the non-deterministic aspects of
the desynchronization process, namely, the random initial
condition of the phase of each node and the random
perturbations in the firing order of nodes due to noise.
Therefore, existing works focus on order–of–convergence
[4] or lower bounds of convergence iterations of desynchro-
nization, proven or conjectured via experimentation [3], [9],
[10], [12]. Moreover, these works consider only the noise-
free case.

While order–of–convergence estimates provide a coarse
(asymptotic) characterization of the convergence, they do
not predict the expected number of iterations required for
desynchronization to converge to the SState. On the other
hand, the existing lower bounds on the desynchronization
convergence iterations are currently given without a char-
acterization on their tightness to real-world experiments or
simulations.

Instead, following a stochastic approach yields an an-
alytic understanding of the behavior of the convergence
of desychronization. Particularly, it leads to analytic esti-
mates for the desynchronization iterations that should be a
close match to experiments and simulations. Recent work
considered probabilistic approaches to analyze properties
of synchronization [2], [24], [28]. However, no previous
work proposes a framework for the analytic estimation
of the expected convergence iterations required to achieve
desynchronization. In addition, in all related work, the
models are applicable to synchronization, and the required
differences (i.e., different phase update, reachback response
and pre-emptive message staggering [2] and limiting the
node connectivity [24], [28]) do not permit a direct mapping
of their experimentally-derived convergence estimates to
desynchronization systems.

This gap in the analytic understanding of desynchro-
nization is in fact explicitly recognized in the related
literature [3], [10], [12], where it is stated that, although
desynchronization algorithms are shown to work properly
by various experiments and computer simulations, they
still lack theoretical proofs for the expected iterations until
convergence to SState.

B. Contribution

In this paper, we address this issue by embracing the
non-deterministic aspects of desynchronization and propos-
ing stochastic (instead of deterministic) estimates for the
convergence iterations. In order for our estimates to have
wide applicability, we focus on the two reactive listening
primitives that form the basis of desynchronization algo-
rithms with limited listening: (i) the DESYNC algorithm of
Degesys et al. [4], [9]; (ii) PCOs with inhibitory coupling
and limited listening proposed by Pagliari et al. [3]. In
particular, Degesys et al. [4], [9] reduce the listening
interval by considering only the temporally adjacent firing
events of each node’s firing and Pagliari et al. [3] limit
the listening interval by introducing an appropriate PCO-
dynamics function [1], [15]. This is of particular relevance
to WSNs, because reductions in the listening interval corre-
spond to substantial reductions in the energy consumption
of wireless sensors [5], [28], [33].

If the total number of nodes is known, PCOs with
inhibitory coupling and limited listening have been conjec-
tured to converge to SState faster than the DESYNC algo-
rithm [3]. Via the proposed stochastic modeling framework,
we propose analytic estimates for the number of iterations
until desynchronization is expected to have converged to
SState within a predetermined threshold. We validate our
results based on a real WSN deployment, as well as under
a simulation environment, and demonstrate the superiority
of the proposed stochastic estimates against the existing
convergence bounds in the literature [3], [4], [10], [12].

C. Paper Organization

We first review the considered reactive listening prim-
itives in Section II. The proposed stochastic estimates of
the convergence iterations to SState are derived in Section
III. Experimental results and comparisons are provided
in Section IV. Section V presents results when using the
proposed model within two WSN TDMA systems based on
desynchronization, while Section VI provides concluding
remarks.

II. DESYNCHRONIZATION PRIMITIVES

A. Notations and Symbolism

Italicized letters indicate scalars and boldface letters in-
dicate vectors. For vectors a and b, the circular convolution
[34] with period W is given by (0 ≤ n <W )

(a ∗ b)W [n] =
∞
∑

m=−∞
(a [m]

∞
∑
k=−∞

b [n −m − kW ])

Random variables (RVs) are represented by Greek upper-
case letters, e.g., Φ ∼ N (µΦ, σΦ) or ∆ ∼ U (µ∆, σ∆),
with N (⋅) and U(⋅) reserved to indicate the normal and
uniform probability density functions (PDFs), respectively,
with mean µΦ (and µ∆) and standard deviation σΦ (and
σ∆). The mathematical operators and key concepts used in
the paper are summarized in Table I.
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Table I
MATHEMATICAL OPERATORS AND KEY CONCEPTS.

Symbol Definition
∥v∥ vector norm-2
v [n] the nth element of vector v, n ⩾ 0

(a ∗ b)W [n] the nth sample of circular convolution of period
W

expr (mod1) modulo-1 of expression expr ∈ R
a← expr the value of variable a is updated via expression

expr ∈ R
⌊u⌋ the largest integer that is smaller or equal to u
⌈u⌉ the smallest integer that is larger or equal to u

Pr[expr] probability of occurrence of expression expr ∈ R

Key Concept Explanation

W total number of nodes in the desynchronization
process

T period of firing cycles (in seconds)

α phase coupling constant of desynchronization

bthres steady-state convergence threshold of
desynchronization

ϕ
(k)
own phase variable of “own” node (i.e., the node under

consideration) during its kth firing cycle

ϕ
(k)
−i , ϕ(k)+i phase variables of the ith firing prior to or after

“own” node’s firing in its kth firing cycle

B. Introduction to Desynchronization

Consider a WSN comprising W fully-meshed nodes, i.e.,
every WSN node can receive message broadcasts from all
other nodes. Each node in the WSN is an “oscillator”
that performs a task with a period of T seconds [4].
In the beginning, each node sets its internal timer to a
random initial value between [0, T ). Upon the completion
of its cycle, each node broadcasts a fire message and
immediately resets its internal timer to zero. In the steady
(desynchronized) state, each node fires every T seconds.
For each node, its firing cycle comprises the time duration
in-between two sequential fire message transmissions of its
own. For each node, the percentage of the way through its
kth firing cycle is denoted as the node’s own firing phase
[2]–[4], [14], [20], [31], [32], ϕ(k)own ∈ [0,1). In order to
achieve convergence to steady state, beyond its own phase,
each node counts the percentage of time t ∈ [0, T ) from
the moments it receives fire messages from other nodes and
updates its own phase according to the desynchronization
primitives detailed in the next two subsections. Each node
listens for fire message broadcasts within a certain interval
before (and possibly after) its own firing, which is termed
as the listening interval.

Following the schema of Degesys et al. [4], the fire
messages’ phase values can be imagined as beads moving
clockwise on a ring with period T = 1s (Fig. 1). When a
node’s own firing phase reaches unity, i.e., top of Fig. 1, the
node broadcasts a fire message and the node’s own firing
phase is reset to zero. The figure illustrates a node’s own
firing phase during its kth firing cycle and Fig. 1(a) shows
the phase of the received fire messages from the two nodes

that fired immediately before and after it, denoted by ϕ(k)−1

and ϕ(k)+1 , respectively1. Thus, superscripts always indicate
the firing cycle of “own” node in the WSN (i.e., of the
node under consideration) and subscripts indicate the order
relative to “own” node. The nodes corresponding to the
previous and next firings of “own” node are called phase
neighbors and the listening interval corresponding to the
kth firing of “own” node is illustrated in Fig. 1. For all
desynchronization algorithms under consideration [3], [4],
[9], [12], [20], [23], [26], [32]:

1) the notion of phase neighbors indicates temporal
adjacency of fire messages and is independent of the
nodes’ physical location;

2) it is immaterial which physical sensor node is linked
to which fire message, as desynchronization is solely
dependent on the received fire message phase.

Therefore, the analysis of this paper is presented from the
viewpoint of any single node in the WSN [20], [22], [25]
and does not need to discern the specific firing order of all
nodes in the network, which in fact may not be constant
during the desynchronization convergence process.

C. DESYNC

In this approach, each node updates its firing phase once
within each of its firing cycles, at the moment when the next
fire message is received. As shown in Fig. 1(a), each node
listens for the fire message preceding and following its own
fire message broadcast. Hence, the duration of each node’s
listening interval depends on the relative times inbetween
these two messages. It then performs its phase update
during its kth firing cycle based on the phases of these two
received messages, i.e., ϕ(k)−1 and ϕ

(k)
+1 . Specifically, each

node’s phase update moves its own firing phase towards
the middle of the listening interval2. The phase update of
DESYNC during the kth firing cycle is expressed by [4],
[9]

ϕ(k)own ← [(1 − α)ϕ(k)own +
α

2
(ϕ
(k)
−1 + ϕ

(k)
+1 ) (mod1)] , (1)

where α ∈ (0,1) denotes the phase-coupling constant that
controls the speed of the phase adaptation. Previous work
[4], [9] showed that the reactive listening primitive of (1)
disperses all fire message broadcasts at intervals of T

W
.

Thus, after kSState firing cycles, the DESYNC algorithm leads
to fair TDMA scheduling, where all fire messages in the
network are periodic and the phase update of (1) leads to
convergence to SState, expressed by

∃kSState ∈ N⋆ s.t. ∀k ≥ kSState ∶ ∣ϕ(k)own − ϕ
(k)
−1 −

1

W
∣ ≤ bthres,

(2)

1In this section, we ignore the phase measurement noise and assume
each fire time can be determined precisely by all receiving nodes. This
noise is however taken into account in the modeling framework.

2Since (1) is applied at the moment when the next firing is received,
we have: ϕ(k)+1 = 0, as seen in Fig. 1(a); however, we include ϕ(k)+1 in (1)
to clarify that the operation of DESYNC depends on both the previous and
next firing phase.
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(a) DESYNC phase update (b) PCO-based phase update

Figure 1. The phase update of “own” node (node under consideration) during its kth firing cycle when: (a) the next fire message is received in
DESYNC, with the node’s listening interval defined as the time between the fire message preceding and following its own firing; (b) a fire message is
received in PCO-based desynchronization while the node’s own phase is within its listening interval (i.e., when 1 − 1

W
< ϕ

(k)
own < 1).

with bthres the preset convergence threshold, typically [3],
[4], [14], [20], [31], [32] bthres ∈ [0.001,0.020]. In a
practical WSN deployment [4], [24], [25], [32], [33], each
node would check that the condition of (2) holds for several
consecutive firing cycles beyond k = kSState (e.g., five
cycles) and would then declare that convergence has been
achieved.

In steady state, each node transmits data packets for
T ( 1

W
− bthres) seconds immediately following its fire mes-

sage broadcast (which limits the maximum number of
nodes supported under TDMA to less than ⌊ 1

bthres
⌋). The only

overhead stems from the fire message broadcasts, which are
very short packets (just two bytes in our implementation).

Assuming negligible propagation delay and error-free de-
tection of messages, it has been conjectured via simulations
[3], [4] that convergence requires iterations of the order

kDESYNC,[3][4] ∼ O (
1

α
W 2 ln

1

bthres
) . (3)

Even though the order estimate (3) gives a coarse charac-
terization for the convergence iterations, it cannot provide
the expected number of iterations until convergence to
SState is achieved. Moreover, real-world experimentation
with TelosB and iMote2 motes [4], [32] under fixed α and
bthres values show that the measured number of iterations
until convergence to SState is not proportional to W 2.

D. PCO-based Inhibitory Coupling

PCO-based desynchronization with inhibitory coupling
updates each node’s own firing phase according to the
received fire messages within a certain interval of its firing
cycle [3]. This is termed as the listening interval and
its positioning within the kth firing cycle of a node is
illustrated Fig. 1(b). As such: (i) the phase of the node’s
own firing changes after a fire message from a previous
phase-neighbor is received within the listening interval (i.e.,
unlike DESYNC, a varying number of phase updates may
occur within each firing cycle); (ii) knowledge of the total
number of nodes (W ) is required [3]. Hence, a phase update
during the kth firing cycle of PCO-based desynchronization

of a node [3] is performed at ϕ(k)own × T seconds after the
node’s last fire message broadcast, 1 − 1

W
< ϕ

(k)
own < 1:

ϕ(k)own ← [(1 − α)ϕ(k)own + α(1 −
1

W
) (mod1)] , (4)

where α ∈ (0,1) the phase-coupling constant controlling the
speed of the phase adaptation. All fire messages received
outside the listening interval (1 − 1

W
,1) are simply ignored.

After kSState firing cycles, (4) has been shown to converge
to dispersed fire message broadcasts received at intervals
of 1

W
×T seconds [3], i.e., (2) holds under convergence to

SState. Hence, like in the DESYNC case, once fair TDMA
is achieved, the only overhead stems from the short fire
message broadcasts.

Assuming negligible propagation delay, error-free detec-
tion of broadcast messages and that 1− 1

W
> α, it has been

shown [3] that the number of firing cycles for convergence
is lower bounded by

kPCO,[3] ≥

⎡
⎢
⎢
⎢
⎢
⎢
⎢

ln bthres − ln [2 + 2
αW (1−α)]

ln (1 − α) + lnW

⎤
⎥
⎥
⎥
⎥
⎥
⎥

. (5)

Nevertheless, the tightness of (5) has neither been proven
nor demonstrated via real-world experiments or simulation
results.

III. PROPOSED STOCHASTIC MODELING OF DESYNC
AND PCO-BASED DESYNCHRONIZATION WITH

INHIBITORY COUPLING

Assumption 1 (Fully-meshed Topology): We consider
fully-meshed networks where each node can directly receive
the fire message broadcasts from all other nodes.

When performing the first phase update of (1) and
(4), each node’s own firing phase, as well as the phases
of all received fire messages from its phase neighbors,
are modeled by independent random variables that are
uniformly distributed in [0,1). This is formally stated in
the following assumption.

Assumption 2 (Phase Model): For every node under
consideration (“own” node) and its phase neighbors, their
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firing phase during the first phase update is modeled by:
∀i ∈ {−1,own,+1} ∶ Φ

(1)
i ∼ P

Φ
(1)
i

, with3

P
Φ
(1)
i

= U (µ
Φ
(1)
i

, σΦ(0)) (mod1) . (6)

We define the mean times of successive phase updates to
be equidistant, which, for the DESYNC update of (1), is
expressed as

µ
Φ
(1)
−1

− µ
Φ
(1)
own

=
1

W
, µ

Φ
(1)
own
− µ

Φ
(1)
+1

=
1

W
(7)

and for the PCO update of (4) is stated by

µ
Φ
(1)
own

= 1 −
1

W
. (8)

In the beginning of the desynchronization process, all fire
message broadcasts are completely uncoordinated (ran-
dom), i.e., σΦ(1) =

1√
12

.
We remark that there is no loss of generality from the

assumption of equidistant means of (7) and (8) as the
modulo operator of (6) ensures that the PDFs wrap around
one such that for every node and ∀i ∈ {−1,own,+1} ∶ Φ

(1)
i

are always uniformly-distributed between [0,1) irrespective
of the assumed mean values. However, we opt for the use
of (7) and (8) as this facilitates the mathematical exposition
of the proposed estimates.

Our estimates of the convergence iterations for DESYNC
and PCO-based desynchronization assume that each phase
in (1) and (4) is contaminated by white noise due to the
varying propagation, mobility and node processing delays
of a WSN environment. This is captured in the following
assumption.

Assumption 3 (Measurement Noise Model): All phase
values in the update of (1) or (4) are contaminated by
additive noise, modeled by an independent, zero-mean,
uniformly-distributed, random variable, ∆ ∼ U (0, σ∆).

The assumption of uniform distribution for the measure-
ment noise, as well as the value of the standard deviation
σ∆ will be derived experimentally, as they incorporate the
effects of interference, wireless propagation and processing
delays that can only be inferred via measurements from a
real setup.

Due to the measurement noise and the interaction be-
tween fire message broadcasts, for each phase update of
each node’s firing phase, ϕ(k)own, during its kth firing cycle,
the PDF of Φ

(k)
own, P

Φ
(k)
own

, changes after applying (1) or (4).
Consequently, this changes the probability of convergence
to SState, as follows:

Pr [∣Φ(k)own − µΦ
(k)
own

∣ ≤ bthres] = ∫

bthres

−bthres

P
Φ
(k)
own

(u − µ
Φ
(k)
own

)du

= erf
⎛

⎝

bthres
√

2σ
Φ
(k)
own

⎞

⎠
, (9)

3The use of the modulo operator in (6) is imposed because, by
definition, we must ensure ϕi ∈ [0,1).

where erf (u) = 2√
π ∫

u
0 e−t

2

dt is the error function [35].
Notice that (9) holds under the assumption that P

Φ
(k)
own

converges to a normal distribution for both DESYNC and
PCO-based desynchronization, which, as the next two sub-
sections will show, turns out to be the case. We therefore
use a stochastic criterion for convergence based on the
confidence intervals of the normal distribution [35]. By
defining the confidence coefficient

cconf = Pr [∣Φ(k)own − µΦ
(k)
own

∣ ≤ bthres] , 0 < cconf < 1, (10)

and replacing in (9), we get

σ
Φ
(k)
own

=
bthres

√
2 × erf−1

(cconf)
, (11)

with erf−1
(u) the inverse error function that can be com-

puted by its Maclaurin series

erf−1
(u) =

1

2

√
π (u +

π

12
u3

+
7π2

480
u5

+ . . .) . (12)

Thus, (11) becomes the mechanism for defining the phase
update iteration leading to SState. Specifically, we deter-
mine the firing cycle kSState for which σ

Φ
(kSState)
own

is closest to
the right-hand side of (11). That is, we determine the firing
cycle leading to convergence to SState with probability
that closely matches cconf, which is our (predetermined)
confidence.

Definition 1 (Steady State): We define a desynchroniza-
tion primitive as being in steady state with cconf × 100%
confidence, at the kSStateth firing cycle, 0 < cconf < 1, where

kSState = arg min
∀k∈N

∣σ
Φ
(k)
own

−
bthres

√
2 × erf−1

(cconf)
∣ , (13)

with σ
Φ
(k)
own

the standard deviation of a node’s own firing
phase PDF at the application of the updates of (1) or (4)
during its kth firing cycle.

Since σ
Φ
(k)
own

is affected by measurement noise, in order
for the system to remain in the converged state indefi-
nitely, the threshold for the convergence, bthres, must be
set according to the (estimated) σ∆. Conversely, we can
treat the entire desynchronization process as a “black box”
system and estimate σ∆ by measuring the phase deviation
from the mean obtained when performing the update of
(1) or (4) during SState. This will be demonstrated in the
experimental section.

A. Modeling of DESYNC Convergence

Proposition 1. Under Assumptions 1–3, the expected
number of firing cycles for the DESYNC phase update of
(1) to converge according to Definition 1 is

kdesync = arg min
∀k∈N

∣σdesync,k −
bthres

√
2 × erf−1

(cconf)
∣ , (14)

with
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σdesync,k =

¿
Á
Á
ÁÀ∥v

(k)
W ∥

2
σ2

Φ(1)
+

k

∑
j=1

∥v
(j)
W ∥

2
σ2

∆, (15)

v = [α
2

1 − α α
2
] , (16)

and

v
(j)
W = (v ∗ . . . ∗ v)W

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j times

,

being the vector produced by j consecutive circular
convolutions of period W .

Proof: Consider any single node in the WSN. We
denote the initial phase random variables corresponding to
the node under consideration by the 1 ×W vector

Φ(1) = [. . . Φ
(1)
−1 Φ

(1)
own Φ

(1)
+1 . . .] . (17)

The corresponding additive measurement noise sources
[independent identically distributed (i.i.d.) random variables
from Assumption 3] are denoted by the 1 ×W vector

∆(1)
= [. . . ∆

(1)
−1 ∆

(1)
own ∆

(1)
+1 . . .] . (18)

Evidently, the number of elements before and after Φ
(1)
own

and ∆
(1)
own in (17) and (18) depends on how many fire

message broadcasts (firings) precede or follow the node’s
own firing during its initial firing cycle. The first phase
update of (1) is expressed stochastically as

Φ(1)own ← [(1 − α) (Φ(1)own +∆(1)own) (19)

+
α

2
(Φ
(1)
−1 +∆

(1)
−1 +Φ

(1)
+1 +∆

(1)
+1 ) (mod1)] .

Notice that (19) imposes that the statistics of Φ
(1)
−1 and Φ

(1)
+1

correspond to the initial firing cycle (Assumption 2). This
is because, during each phase update, we do not take into
account nodes’ phase updates that may have been carried
out during the first firing cycle. This corresponds to the
operational form of the DESYNC algorithm (i.e., “DESYNC
stale” of [4], [20]). It is straightforward to derive from (19)
that µ

Φ
(1)
own

remains unchanged after the first phase update,
while the standard deviation is modified to:

σdesync,1 = ∥v∥
√

(σ2
Φ(1)

+ σ2
∆(1)

). (20)

Furthermore, by writing (19) for all the phase elements of
Φ(1) given in (17), we reach

Φ(1) ← [[v∗ (Φ(1) +∆(1))]
W

(mod1)] . (21)

The circular convolution performs periodic extension of the
phase and noise vectors of (17) and (18), which corresponds
to the circular dependency between consecutive firing cy-
cles4.

4For the special cases of W ∈ {2,3,4} nodes, we set W = 5 in the
circular convolution of (16) to avoid erroneous overlapping within v(j)
due to the short period of the circular convolution.

Generalizing (21) to the kth firing cycle, we reach

Φ(k) = (v
(k)
W ∗Φ(1))

W
(22)

+
k

∑
j=1

(v
(j)
W ∗∆(j)

)
W

(mod1) ,

where ∆(j) is the i.i.d. measurement noise vector per
iteration. Therefore, we obtain: µ

Φ
(k)
own

= µ
Φ
(1)
own

and σdesync,k,

shown in (15). It can now be shown that Φ
(k)
own becomes

normally distributed after a few firing cycles (see Appendix
A), i.e.,

Φ(k)own ∼ N (µ
Φ
(1)
own
, σdesync,k) (mod1) . (23)

Hence, we reach (14) for convergence under Definition 1.

Proposition 1 shows how kdesync is affected by α as
well as by the initial conditions and the noise assumptions
expressed by σΦ(1) and σ∆ in Assumptions 2 and 3, respec-
tively. Interestingly, according to (14), the number of nodes,
W , does not appear to influence the convergence to the
steady state. This is in contrast to the conjecture of Degesys
et al. [3], [4] given by (3). Nevertheless, experimental
results given in the next section will demonstrate that real-
world WSNs, as well as simulation results, are in agreement
with Proposition 1.

B. Modeling of PCO-based Convergence

Proposition 2. Under Assumptions 1–3, the expected
number of firing cycles for the PCO-based phase update
of (4) to converge according to Definition 1 is

kPCO = arg min
∀k≥2

RRRRRRRRRRRR

k

∑
l=2

⎡
⎢
⎢
⎢
⎢
⎣

erf
⎛

⎝

⌊W
2
⌋ + 1

WσPCO,l
√

2

⎞

⎠
(24)

−
1

2
erf(

1

WσPCO,l
√

2
)] + 1 −

1

W
− lSSupd∣ ,

with

lSSupd = arg min
∀l∈N

∣σPCO,l −
bthres

√
2 × erf−1

(cconf)
∣ , (25)

and ∀l ∈ N,

σPCO,l =

¿
Á
ÁÀ(1 − α)2lσ2

Φ(1)
+

(α − 1)2

α(α − 2)
[(1 − α)2l − 1]σ2

∆.

(26)
Proof: We separate the proof into three parts, based

on the temporal evolution of the convergence process. We
present here the main part of the proof, which comprises
the analysis of the first firing cycle and the derivation of
the lth phase update of a node during its kth firing cycle
in PCO, while the remaining details to complete the proof
are given in Appendix B.

First firing cycle: Consider any single node in the WSN.
The expected number of phase updates it will perform
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within its first firing cycle is equal to the number of fire
message broadcasts (firings) expected to be heard by the
node within ϕ(1)own ∈ (1 − 1

W
,1), which is

W−1

∑
j=1

j (
W − 1
j

)(
1

W
)

j

(1 −
1

W
)

W−1−j
= 1 −

1

W
. (27)

This stems from the binomial theorem, since Assumption
2 mandates that the initial phase of each node is uniformly
distributed within [0,1). Via (4), a phase update during the
first firing cycle of a node can be expressed stochastically
as

Φ(1)own ← [(1 − α) (Φ(1)own +∆(1)own) + α(1 −
1

W
) (mod1)] ,

(28)
with ∆

(1)
own the random variable modeling the measurement

noise (Assumption 3) of the node’s own phase. From (8)
and (28) we obtain

µ
Φ
(1)
own

= 1 −
1

W
, (29)

i.e., the mean values of successive fire message updates
remain equidistant after the first firing cycle of a node. The
standard deviation of Φ

(1)
own after the update of (28) is

σPCO,1 = (1 − α)
√
σ2

Φ(1)
+ σ2

∆. (30)

Generalizing (28) to the lth phase update of the kth firing
cycle of a node, leads to

Φ(k)own = (1 − α)
l
Φ(1)own +

l

∑
j=1

(1 − α)
j

∆(l−j+1)
own (31)

+ α(1 −
1

W
)
l−1

∑
j=0

(1 − α)
j

(mod1),

with ∆
(l−j+1)
own i.i.d. random variables, each stemming from

Assumption 3. The mean of Φ
(k)
own is given by (29) and its

standard deviation is given by (26). Similarly to Proposition
1, it can be shown that Φ

(k)
own becomes a normally-distributed

random variable after a few phase updates (see Appendix
A). We can thus reach convergence under Definition 1
for l given by (25). However, given that in PCO-based
desynchronization the number of phase updates per firing
cycle is not fixed, i.e., in general, l ≠ k, in order to derive
the expected number of firing cycles until a node converges
to steady state, we need to derive the expected number of
phase updates after each firing cycle. We can then match
the number of phase updates expected to take place until
convergence to the corresponding number of firing cycles.
The details of this process and the proof of (24) are given
in Appendix B.

Proposition 2 shows that kPCO is affected by α, as well
as by the initial conditions and the noise assumptions,
expressed by σΦ(1) and σ∆ in Assumptions 2 and 3. The
total number of nodes, W , is also influencing the number
of iterations for convergence to the steady state. However,
as it will be shown by the next section (experiments), this
effect is negligible in practice. This is in contrast to the

lower bound derived by Pagliari et al. [3], given by (5).
However, the experimental results of the next section will
demonstrate that real-world WSNs, as well as simulation
results, are in agreement with Proposition 2.

IV. EXPERIMENTAL VALIDATION

For our experiments, we used iMote2 Crossbow sensors
with TinyOS1.x. All nodes use the IEEE 802.15.4 stan-
dard with the default 2.4GHz Chipcon CC2420 wireless
transceiver. We followed the TinyOS standard message
format but reduced it to two data bytes when sending fire
messages. Similar to prior work [4], we set the backoff time
to 1.2ms.

A. Standard Deviation of the Phase Measurement Noise

The test environment was a standard university labora-
tory room. Our approach for measuring σ∆ was carried
out as follows: (i) we implemented the DESYNC and PCO-
based desynchronization in TinyOS nesC code as described
in Section II; (ii) we set α = 0.95 to ensure maximum
coupling strength and T = 1s (this period value was used
in all our experiments) and (iii) we measured the oscillatory
behavior of each node’s phase after the WSN was left
operating for a prolonged interval of time (during which
nodes were occasionally moved within the test area) to
ensure convergence to SState. The statistics of the oscilla-
tory phase behavior, observed via this experiment, express
the cummulative effects of interference, mobility and clock
drift amongst nodes. This approach is easy to replicate
under any real-world WSN setup involving varying levels
of interference or node mobility [7], [12], [26].

For both algorithms, we found the standard deviation of
the oscillating phase amplitude around the SState value of
each node’s phase to be σ∆ = 0.34ms and the accumulated
phase statistics over all nodes were confirmed as marginally
white. This validates our noise assumption stated in As-
sumption 3. The derived value for σ∆ was used during the
experimental validation of Proposition 1 and Proposition
2. No other parameter tuning is needed for the proposed
model.

B. Measurement and Simulation Setup

In both DESYNC and PCO-based desynchronization,
once all nodes were activated to transmit and receive on a
single channel, a special “mix message” was broadcast by
one of the nodes (chosen randomly) in order to trigger all
nodes to set their initial fire message phase to a random
interval within T = 1s from its reception. This creates
the initial conditions of Assumption 2. The nodes will
then desynchronize their transmission of fire messages and
converge to fair TDMA scheduling. We present results
under two convergence thresholds, i.e., bthres = 0.001 and
bthres = 0.020, with coupling constants α ∈ {0.05, . . . ,0.95}
and number of nodes W ∈ {4,8,16}. We use cconf = 0.9999
to detect convergence under Definition 1 with near cer-
tainty. Finally, we have experimented with various settings
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for the firing period and all such experiments led to very
similar results for the convergence iterations to the SState.
Thus, all reported experiments use firing period of T = 1s,
which complies with previous work [3], [4], [10], [12], [20].

Under this setup, each node detects convergence to
SState by checking if (2) is valid for its last ten firing cycles.
After achieving SState and remaining in this state for 50
firing cycles, a node broadcasts another mix message, in
order to repeat the process. Each node reported the number
of its firing cycles until convergence was detected (minus
nine cycles) via a special “report” message to a base station
listening passively to all messages for monitoring purposes.
This facilitated the automated collection of 50 such results
per number of nodes, threshold and coupling constant.

In order to cross-validate our theoretical and experimen-
tal results with simulations, we used the Matlab code of
Degesys et al. [4] for DESYNC and added to it Matlab code
for PCO with inhibitory coupling. In order to simulate the
noise conditions observed in our experimental setup, we
deliberately apply zero-mean additive noise in each phase
update with σ∆ = 0.34ms and set each node to misfire with
probability 0.4%. Despite the fact that the simulation cannot
capture the complex behavior of the real system in full
detail, it allows for numerous desynchronization processes
to be simulated (300 Matlab runs per triplet {W,α, bthres}

for each algorithm).

C. DESYNC Results

The results for this desynchronization mechanism are
reported in Fig. 2. All measurements around a value of α
correspond to results with that value of α; they have been
plotted slightly separately solely for ease of illustration.
For comparison purposes, we have also included the order–
of–convergence conjecture of (3) [3] [4] in our results, by
scaling the order estimate to fit within the range of the
obtained experiments and simulations.

The results of Fig. 2 show that the WSN tends to
converge to steady state faster when α decreases (until
α = 0.25), since the presence of measurement noise causes
higher-amplitude perturbations for strong coupling, i.e.,
for high values of α. However, for very small values of
α, the convergence iterations increase dramatically due
to weakened coupling between phase-neighboring nodes.
Moreover, by comparing the convergence results for low
and high convergence threshold bthres, one can observe
that the use of small convergence threshold increases the
required convergence iterations to SState.

The proposed model predicts these trends in the con-
vergence iterations accurately. Specifically, the estimate
of Proposition 1 is within one standard deviation of the
experimental and simulation results for the vast majority
of cases. The Pearson correlation coefficients for the pro-
posed model curves against the mean experimental values
(averaged over W ∈ {4, 8, 16}) were found to be 0.9893
and 0.9931 for bthres = 0.001 and bthres = 0.020, respectively.
The corresponding Pearson correlation coefficients for the
conjecture of (3) from [3], [4] were 0.8639 and 0.9464.

These results underline the superior estimation accuracy of
our approach. Finally, the experimental results of Fig. 2
show no statistical dependence on W , which agrees with
Proposition 1.

D. Results with PCO-based Desynchronization

The results are reported in Fig. 3 for both small and
large convergence thresholds. Since (5) provided negative
estimates for most values of α, we added an offset to the
results of the bound to bring as many as possible to the
non-negative region and present only the non-negative ones.
Evidently, the bound of (5) does not match the observed
behavior. We remark however that this is to be expected,
as the bound of (5) is derived under the assumption that
each firing is influenced only by the firing of one phase-
neighboring node [3].

Fig. 3 shows that, in PCO, the convergence iterations
decrease monotonically with α. The proposed model pre-
dicts this trend correctly and, remains within one standard
deviation from the majority of the experimental and simula-
tion results. The model results do not change5 for different
values of W , which agrees with the overall experimentally-
observed behavior of the system. Finally, by comparing the
convergence results for low and high convergence thresh-
old, we note that the use of small convergence threshold
increases the required convergence iterations to SState.
The proposed model predicts this behavior correctly and
agrees with the experimental trends reported. The Pearson
correlation coefficients for the model curves against the
mean experimental values were 0.9739 for bthres = 0.001
and 0.9989 for bthres = 0.020.

E. Discussion

By cross referencing between Fig. 2 and Fig. 3 we
can compare the convergence iterations of both algorithms
under different settings. Under appropriate choice for the
coupling coefficient, α, the required firing cycles for con-
vergence with PCO-based desynchronization is comparable
to those of DESYNC. In addition, we can make the follow-
ing observations.

● Accuracy of previous analytic work on estimation of
convergence iterations: Previous estimates or bounds
must be scaled to fit the range of the experimental
values, as they are either order–of–convergence esti-
mates [i.e., (3)], or overly optimistic bounds [i.e., (5)].
Moreover, as illustrated in Fig. 2 and Fig. 3, when
varying the coupling parameter α, previous estimates
do not accurately match the behavior observed in the
experimentally-obtained convergence iterations.

● Impact of measurement noise: Contrary to the pro-
posed model, these previous estimates do not take into
account the measurement noise conditions. Indepen-
dently from this work, and following different analysis
and modeling approaches, recent work in synchroniza-
tion [29], [30] and desynchronization [10] has shown

5i.e. Proposition 2 leads to the same results for the convergence
iterations under different values of W
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Figure 2. Required firing cycles for convergence to SState for the DESYNC algorithm for various values of α. The vertical error bars correspond to
one standard deviation from the experimental (or simulation) mean values, which are indicated by marks.

that noise in the desynchronization phase update (e.g.,
by quantization) and drops (or collisions) of beacon
messages can affect the convergence iterations and
can lead to convergence iterations that deviate from
the estimates obtained based on the ideal (noise-free)
model assumed by earlier work.

● Generalization to non-uniformly distributed initial fir-
ings: In Propositions 1 and 2, every node’s initial phase
random variable was assumed to be i.i.d. uniform via
Assumption 2. However, Propositions 1 and 2 hold
for any i.i.d. random variable Φ(1) that satisfies the
three conditions for the generalized form of the central
limit theorem to be applicable [35, pp. 219-220] (see
Appendix A).

● Utilized desynchronization algorithm and the network
topology: While we focused on the initial desyn-
chronization proposals with limited listening, recent

work has extended these initial paradigms towards
other frameworks, where nodes adjust their own firing
phase based on larger listening intervals and/or via
the usage of anchored (i.e., non-adjusting) nodes [10]–
[12], [21], [23], [25], [26]. While we do not investigate
the applicability of our modeling approach to all
such frameworks, our analysis includes the coupling
parameter α and adjusts according to the node firings
received within the predetermined listening interval. It
is also worth noting that Propositions 1 and 2 cover the
important scenario of a fully-meshed (all-to-all) WSN.
Desynchronization extensions to multihop scenarios
have been investigated by several works [20]–[22].
Given that there is a large variation in the topologies
to consider and that it has been shown that the steady-
state difference between the phases of consecutive
firings, as well as the average number of convergence
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(e) PCO, W = 16, bthres = 0.001
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Figure 3. Required firing cycles for convergence to SState for the PCO-based algorithm for various values of α. The vertical error bars correspond
to one standard deviation from the experimental (or simulation) mean values, which are indicated by marks.

iterations, varies depending on the network topology
under consideration [21], [22], [25], [30] (due to
the “selective” listening of beacons stemming solely
from non-hidden nodes), we do not investigate the
validity of our analysis to such cases. However, we
remark that this could be attempted following the same
approach as for Propositions 1 and 2, if the topology
specification is known a-priori.

● Consideration of phase updates performed during
each node’s firing cycle: As mentioned in the proof
of Proposition 1, to calculate Φ

(k)
own and its moments

for DESYNC and PCO-based convergence, our analysis
does not take into account the variability in the neigh-
boring nodes’ phase updates6. This is in agreement

6e.g., updates that may have been carried out during the kth firing cycle
of the node under consideration, or variability due to misfiring or other
non-idealities not captured by our noise assumption (Assumption 2)

with the way DESYNC is applied in practice and
constitutes a simplification for PCO-based desynchro-
nization [3], [4]. Given that our stochastic modeling
framework is in good agreement with the average
experimental and simulation results without requiring
experimental tuning (besides knowledge of the stan-
dard deviation of the phase measurement noise), our
approach forms an important step towards considering
stochastic models for the convergence of desynchro-
nization systems.

V. APPLICATION EXAMPLES

The proposed stochastic estimation framework can ben-
efit desynchronization-based TDMA protocols in WSNs by
analytically estimating the impact of the phase-coupling
constant α, convergence threshold bthres and firing cycle
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period T on such deployments [3], [4], [32]. We present
two such examples.

A. Maximizing the Bandwidth Per Node

In the first case, we consider a WSN that initially
comprises W nodes, where nodes are expected to join
or leave the network every Tswap seconds. This scenario
usually occurs when mobile nodes periodically enter and
exit the coverage area of the network, or some nodes
switch on and off periodically to conserve energy. In fair
TDMA scheduling, the bandwidth per node is BWSN

W
bps,

where BWSN is the maximum application-layer bandwidth7

in IEEE 802.15.4. In practice, the fluctuating number of
nodes in the WSN will result in bandwidth loss as, each
time nodes join or leave, the system needs to converge to
SState before transmission resumes with equal slot size [4],
[32], [33]. Using the proposed framework, we can derive
an estimate of the expected bandwidth per node under such
conditions. Specifically, if the PCO or DESYNC firing-cycle
period is T seconds and the node joining or exiting occurs
(on average) every Tswap seconds, the expected bandwidth
per node can be estimated as

Bswap = (1 −
kmethodT

Tswap
)
BWSN

W
, method ∈ {desync, PCO} ,

(32)
with kmethod the expected firing cycles until convergence to
SState, given by Proposition 1 or Proposition 2. The factor
kmethodT
Tswap

in (32) expresses the normalized loss of bandwidth
per node due to convergence to TDMA under DESYNC and
PCO every time nodes join or leave the network.

Using the experimental setup of Section IV, we present
an example of the calculation of (32) for a WSN comprising
W = 10 nodes with T = 1s and 1 ∼ 3 nodes entering or exit-
ing the network every Tswap seconds, with Tswap ∈ [70,130]
to incorporate up to 30% variability around the mean value
of 100s. The maximum application-layer bandwidth was
measured to be BWSN = 86kbps. Table II and Table III
present the results when using the value of α that was
estimated to provide the minimum kmethod under Propo-
sitions 1 and 2 against the result when using values for
α suggested from previous work. It is evident that, for
all cases, the proposed model provides the setting for α
that minimizes the convergence iterations and leads to the
maximum achievable bandwidth per node. This is despite
the fact that the model assumes uniformly-distributed initial
fire times, while in the application results the values of most
nodes may be (approximately) equidistant at the moment
1 ∼ 3 nodes enter or exit the network. The impact on the
achieved bandwidth per node is much more pronounced in
the case of DESYNC, where previous work used α = 0.95
instead of the best option, which is α = 0.25. The results
in Table II and Table III, show that selecting α through
the proposed model brings gains of up to 13% in the

7Following the approach of Degesys [4], we estimate BWSN by using
a single transmitter and receiver to measure the achieved delivery rate at
the application layer.

bandwidth per node compared with the standard settings
used in existing works [3], [4].

B. Estimating the Required Firing Cycle Period

In the second application example, we focus on the
case of a WSN using DESYNC or PCO and requiring
convergence to steady state to be achieved within TSState
seconds on average. The desired value of TSState depends
on the application context, e.g., a predefined value TSState in
order to limit the delay and buffering requirements between
the data acquisition and transmission when the WSN is
activated [13], [32], [33].

Based on Proposition 1 and Proposition 2, and under
given settings for bthres and α, we can match the period
of firing cycles (T ) to the desired convergence time by:
kmethodT = TSState. By solving the last equation for T we
derive the firing cycle period that meets the convergence
time expectation under kmethod given by Proposition 1 and
Proposition 2 for each setting of bthres and α.

We have experimented with various parameters of
DESYNC or PCO and the obtained theoretical and experi-
mental results are reported in Table IV using the average
obtained from multiple runs with W ∈ {4,8,16}. With the
exception of two cases (DESYNC at: α = 0.25, bthres = 0.001
and PCO at: α = 0.95, bthres = 0.001), the theoretical
prediction is within a 25% margin of the experimentally
observed convergence time.

VI. CONCLUSIONS

A novel stochastic estimation framework for the conver-
gence iterations to fair TDMA scheduling is proposed for
the two desynchronization primitives with limited listen-
ing, namely, DESYNC and pulse-coupled oscillators with
inhibitory coupling. Our stochastic estimates establish the
expected firing cycles until each node’s firing converges
to the steady state with very high confidence. For both
algorithms, our analytic expressions are validated based on
simulations and experiments with a fully-meshed network
of wireless sensors. The results show that our estimates are
more accurate than previous order-of-convergence estimates
and lower bounds. Our model incorporates the influence of
system parameters (i.e., total number of nodes, coupling
coefficient, convergence threshold and phase measurement
noise) on the expected convergence iterations. Therefore, it
can be used to estimate the best operational parameters (and
the associated delay) to establish fair TDMA scheduling un-
der several desynchronization-based WSN protocols. More
broadly, the analysis of this paper contributes towards the
analytic understanding of how a desynchronization system
is expected to evolve from random initial conditions to the
desynchronized steady state.

APPENDIX A

We show that Φ
(k)
own of (22) and (31), i.e., the RV model-

ing each node’s own phase during its kth firing cycle under
DESYNC and PCO (respectively), is normally distributed
after a few phase updates.
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Table II
DESYNC: AVERAGE BANDWIDTH PER NODE, BSWAP (IN KBPS), UNDER DIFFERENT CONVERGENCE THRESHOLDS AND DIFFERENT VALUES FOR

THE PHASE-COUPLING CONSTANT α.

DESYNC bthres = 0.001 (1ms) bthres = 0.020 (20ms)
Phase-coupling constant Measurement Theoretical via (32) and Prop. 1 Measurement Theoretical via (32) and Prop. 1

α = 0.95 [4] 6.55 7.14 7.72 7.91
α = 0.25 (from Fig. 2) 7.41 8.00 8.17 8.26

Average bandwidth gain per node (%) 13.13 12.04 5.83 4.42

Table III
PCO: AVERAGE BANDWIDTH PER NODE, BSWAP (IN KBPS), UNDER DIFFERENT CONVERGENCE THRESHOLDS AND DIFFERENT VALUES FOR THE

PHASE-COUPLING CONSTANTα.

PCO bthres = 0.001 (1ms) bthres = 0.020 (20ms)
Phase-coupling constant Measurement Theoretical via (32) and Prop. 2 Measurement Theoretical via (32) and Prop. 2

α = 0.75 [3] 6.90 8.17 7.65 8.34
α = 0.95 (from Fig. 3) 7.54 8.26 8.13 8.34

Average bandwidth gain per node (%) 9.28 1.10 6.27 0.00

Table IV
DESYNC AND PCO FOR DESIRED CONVERGENCE TIME OF 10S. THE CORRESPONDING FIRING CYCLE PERIOD, T , IS GIVEN IN PARENTHESES (IN

SECONDS) IN THE “THEORETICAL” COLUMNS.

Method DESYNC PCO
Experimental TSState Theoretical TSState Experimental TSState Theoretical TSState

α = 0.25, bthres = 0.001 14.01 10.00 (1.43) 7.80 10.00 (0.50)
α = 0.95, bthres = 0.001 12.15 10.00 (0.59) 18.75 10.00 (2.50)
α = 0.25, bthres = 0.020 11.75 10.00 (2.50) 10.83 10.00 (0.91)
α = 0.95, bthres = 0.020 10.38 10.00 (1.25) 12.65 10.00 (3.33)

Once (22) and (31) are reached, we can make the
following observations:

● Φ
(k)
own is a linear mixture of independent random vari-

ables, i.e.: (i) i.i.d. noise and phase vectors ∆ and
Φ(1) in DESYNC; (ii) Φ

(1)
own and ∀l, j ∶ ∆

(l−j+1)
own in

PCO;
● for DESYNC: ∀k ∈ N∗, we can pick ε = (1−α)kσΦ(1)

and, from (15), σ(k)desync > ε ;
● for PCO: ∀l ∈ N∗ ∶ σPCO,l > (1 − α)lσΦ(1) ;
● all initial PDFs have finite support (they are all variants

of the uniform distribution); hence, densities P
Φ
(k)
own

will
have finite support since they are linear mixtures of
PDFs with finite support.

These observations satisfy the three conditions for the gen-
eralized form of the central limit theorem to be applicable
[35, pp. 219-220], and thus Φ

(k)
own becomes a normally-

distributed random variable after a few phase updates.
Papoulis [35, pp. 219-220] suggests that the normal PDF is
accurately approximated with just 5 linear combinations of
PDFs satisfying the above criteria, meaning that five phase
updates will suffice for the normal distribution to be an
accurate approximation of the firing phase of each node.

APPENDIX B

We present the analysis that matches the expected
number of phase updates until convergence to the expected
number of firing cycles and concludes the proof of (24).

Subsequent firing cycles, effect of phase-neighboring
firings: A pictorial illustration of the PDF of the lth phase
update of a node (performed during its kth firing cycle, with
k, l ≥ 2) is given in Fig. 4 in conjunction with its listening
interval and the PDFs of the two previous firings and the
next firing. Since all phase RVs are normally distributed
after a few phase updates, it is straightforward to infer
from Fig. 4 that the probability for the previous firing
(represented by RV Φ

(k)
−1 ) to occur within the listening

interval is

1

2
erf(

1

WσPCO,l
√

2
) .

Moreover, the probability that Φ
(k)
−2 will occur within the

node’s listening interval is

1

2
[erf(

2

WσPCO,l
√

2
) − erf(

1

WσPCO,l
√

2
)] .

This is also the probability that Φ
(k)
+1 will occur within the

node’s listening interval.
Subsequent firing cycles and the effect of all firings

within a window of W firing events: We can now
generalize the previous calculation to the probability of
occurrence of the ⌊W

2
⌋ previous and next firings within the

node’s listening interval. Beyond the previous firing, for the
jth firing after the node’s own firing or the (j + 1)th firing
before the node’s own firing (1 ≤ j ≤ ⌊W

2
⌋), this probability

is
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Figure 4. A pictorial illustration of the PDFs of the phase RVs {. . . ,Φ
(k)
−2 ,Φ

(k)
−1 ,Φ

(k)
own,Φ

(k)
+1 , . . .} of the kth firing cycle of “own” node, during

“own” node’s lth phase update, performed via (4).

1

2
[erf(

j + 1

WσPCO,l
√

2
) − erf(

j

WσPCO,l
√

2
)] .

Hence, summing up the probabilities of firings occurring
within the node’s listening interval for all ⌊W

2
⌋ firings

before and after the current one, the expected number of
phase updates is given by the expression in the summation
term of (24), where we used the identity (∀b ∈ N∗,∀c ≠ 0):

b

∑
j=1

[erf(
j + 1

c
) − erf(

j

c
)] +

1

2
erf(

1

c
) (33)

= erf(
b + 1

c
) −

1

2
erf(

1

c
) .

The expected number of phase updates within k firing
cycles of a node is

k

∑
l=2

⎡
⎢
⎢
⎢
⎢
⎣

erf
⎛

⎝

⌊W
2
⌋ + 1

WσPCO,l
√

2

⎞

⎠
−

1

2
erf(

1

WσPCO,l
√

2
)

⎤
⎥
⎥
⎥
⎥
⎦

+ 1 −
1

W
.

As a result, for lSSupd phase updates leading to convergence
under Definition 1 [shown by (25)], the corresponding
number of firing cycles is given by (24).
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