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ABSTRACT

Bacillus subtilis strains BS49 and BS34A, both derived from a common ancestor, carry one or more copies of Tn916, an
extremely common mobile genetic element capable of transfer to and from a broad range of microorganisms. Here, we
report the complete genome sequence of BS49 and the draft genome sequence of BS34A, which have repeatedly been used
as donors to transfer Tn916, Tn916 derivatives or oriTTn916-containing plasmids to clinically important pathogens.
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The BS49 and BS34A strains were originally obtained through
introduction of Tn916 into Bacillus subtilis CU2189 (Christie
et al., 1987) either by direct transformation of pAM120 plas-
mid (GenBank U49939.1) (Gawron-Burke and Clewell 1984)
(PeterMullany, personal communication) or by conjugation from
Clostridium difficile strain FM12A (Roberts et al., 2003), respec-
tively. Tn916 from strain FM12A was originally transferred from
BS49 to C. difficile CD37 to give FM12A (Roberts et al., 2003;
Brouwer et al., 2012). The BS49 strain contains multiple copies
(our unpublished observations), whereas BS34A carries a single
copy of Tn916 (Roberts et al., 2003).

Tn916 (reviewed in references Roberts and Mullany (2009,
2011)) has been used as a vector to perform (random) mutagen-
esis of recipient bacteria (Kathariou et al., 1990; Lin and Johnson
1991; Whetzel et al., 2003; Cookson et al., 2011; Mullany
et al., 2012), to deliver cargo DNA (Rubens and Heggen 1988;
Haraldsen and Sonenshein 2003; Roberts et al., 2003; McBride
and Sonenshein 2011) or to mobilize plasmids containing the
Tn916 origin of transfer, oriTTn916 (Francis et al., 2013; Mackin
et al., 2013). BS49 and BS34A like their close relative B. subtilis
subsp. subtilis demonstrate high levels of competence for ge-
netic transformation. The genome sequences of strains BS49
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Table 1. Variants in BS34A compared to BS49. Illumina HiSeq reads of strain BS34A were assembled against the complete genome sequence of
strain BS49. Variants were called by Geneious R7 (http://www.geneious.com) using a minimal coverage of 25 and a frequency greater than 0.75.
Variants at the ends of the Tn916 elements and immediately flanking the insertion sites were ignored.

bp start bp end Nucleotide Codon change Amino acid Poly-morphism Location in BS49 Description
in BS49 in BS49 change change

786781 786782 +TA Insertion Intergenic region
of BS49 08160
and BS49 08170

Insertion restores
pseudogene
BS49 08161
(BS34A 08161)
corresponding to yetI
of strain 168.

1152310 1152311 (A)7 -> (A)8 Insertion BS49 11890 Frameshift results in
a fusion of
BS49 11890 with
BS49 11900/hcpE
(restores
pseudogene
BS49 11891)
(BS34A 11890/hcpE),
corresponding to
yisK of strain 168.

1706699 1706699 (A)8 -> (A)7 Deletion HslU
(BS49 18020)

Truncated after 5
amino acids in
BS34A (BS34A 17841
pseudogene).
Possible alternative
start codon
annotated
(BS34A 17840/hslU)

4188826 4188826 G -> A GCC -> GTC A -> V Transition WalK
(BS49 43870)

In PAS domain.
Strain 168 has an
alanine at this
position, like BS49.

4189142 4189142 A -> G TTC -> CTC F -> L Transition WalK
(BS49 43870)

Between TM and
HAMP domain.
Strain 168 has a
leucine at this
position, like BS34A.

and BS34A will therefore contribute to the study of Tn916 conju-
gation requirements, including the possible role of host factors,
thus facilitating the genetic manipulation of various bacterial
strains.

Genomic DNA was isolated as described before (He
et al., 2013) or using the Qiagen GenomicTip 500/G accord-
ing to the manufacturer’s instructions. Libraries of BS49 and
BS34A chromosomal DNA were prepared and sequenced using
the Illumina Hi-Seq platform as described (Pettit et al., 2014)
(EMBL ERS370048 and EMBL ERS370049). For single molecule
real-time sequencing of strain BS49, a SMRTbell DNA template
library with an insert size of ∼20 kb was prepared according
to the manufacturer’s specification. SMRT sequencing was
carried out on the Pacific Biosciences RSII machine according
to standard protocols (EMBL ERS550338). Sequencing reads
were corrected using the HGAP pipeline (Chin et al., 2013) and
de novo assembly was performed using Celera Assembler 8.1
(http://wgs-assembler.sourceforge.net). After manually curating
the sequence of the Tn916 elements to ensure their accuracy,
the chromosome was circularized using strain B. subtilis subsp.

subtilis strain 168 (Genbank NC˙000964.3) (Kunst et al., 1997) as a
reference and the start of the genomewas set at 409 bp upstream
of the dnaA gene. The single contig was verified by aligning the
Illumina reads using Geneious R7 (http://www.geneious.com)
to correct for errors in homopolymeric stretches as a result of
the consensus calling algorithm.

To generate the BS34A genome sequence, a consensus was
generated in Geneious R7 from a reference alignment against
the complete BS49 genome. A de novo assembly of the BS34A
Illumina sequence data was carried out using Velvet (Zerbino
and Birney 2008) to reconstruct the two empty target sites of
Tn916 from strain BS49 and to determine the location and con-
text of the single Tn916 element in strain BS34A. The element
was subsequently manually inserted into the consensus BS34A
sequence. This genome sequence should be considered an im-
proved high-quality draft (Chain et al., 2009).

Following the assembly, Prokka (Seemann 2014) was used to
generate annotations based on a database of trusted protein
sequences derived from the genome sequence of strain 168. To
identify modified bases, kinetic signals were processed for all
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genomic positions after aligning sequencing reads to the final
single chromosome sequence of strain BS49. The identification
of sequence motifs was performed using the SMRT Portal. The
GFF output of SMRT Portal (available as Supporting Informa-
tion) was converted into an Artemis-compatible TAB file using
an in-house script. Raw genome sequence and annotationswere
merged and the Tn916 elements were manually annotated in
Artemis (Rutherford et al., 2000).

Our analysis of the 4.251.652 bp BS49 genome (EMBL PR-
JEB7327) yielded 4248 predicted coding sequences, 30 rRNAs,
87 tRNAs, 1 tmRNA and 94 miscellaneous RNAs. We failed
to detect an over-represented motif associated with m4C
modifications (n = 2035), but found a GACGAG motif asso-
ciated with m6A modifications (1255/2446; modified residue
underlined).

The sequence of the 18 032 bp Tn916 elements (bps 1475100-
1493131 and 3254988-3273019) (Genbank KM516885) showed
that the elements in BS49 are identical to each other and highly
similar to the element described for Enterococcus faecalis DS16
(GenBank U09422.1). The three single nucleotide variations in
the Tn916 element of BS49 compared to the Enterococcus element
were [nomenclature from Genbank U09422.1]: (1) the deletion of
a guanine residue between ORF21 and ORF20 in the oriT region
but not affecting the nick site (TGGTGTGG), (2) the insertion of a
cytosine inORF15, resulting in a frameshift and amutant protein
of 725 amino acids and (3) a G > T conversion in ORF9 resulting
in a Q > K amino acid substitution.

For BS34A (EMBL PRJEB7328), we identified 4233 predicted
coding sequenceswithin the 4.233.615 bp genome sequence (the
numbers of RNAs was the same as for BS49). The variations of
the Tn916 element of BS34A (bps 1886552-1904 583) compared
to the E. faecalis element were the same as for BS49, suggesting
that they arose either within the pAM120 plasmid or during the
transformation that generated BS49.

We additionally verified the locations of Tn916 in the genome
assembly using conventional PCRs for both BS34A and BS49 (text
and Fig. S1, Supporting Information). The element was found
to be inserted between BS34A 19270 and BS34A 19450 (xynP),
BS49 15600/BS49 15780 (ykuC) and BS49 34490 (yufK)/BS49 34670
(yufL) in regions that are conserved in closely related B. subtilis
strains. As described for C. difficile (Mullany et al., 2012), the in-
sertion sites are characterized by stretches of A and T (Fig. S2A,
Supporting Information). Interestingly, a sequence flanking the
Tn916 element in BS34A shows homology to the ykyB-ykuC in-
sertion site from BS49, and a sequence flanking Tn916 at that
locus resembles the yufK-yufL insertion site (Fig. S2B, Support-
ing Information), suggesting that additional (chromosomal) se-
quence was carried over when Tn916 mobilized.

We compared the BS34A and BS49 genome sequences. Be-
sides the Tn916 insertion sites, we identified five variants,
including two non-conservative substitutions in the histidine
kinase WalK (Table 1).

A progressiveMAUVE alignment (Darling et al., 2010) of the
BS49 and 168 genome sequences showed a single large collinear
block with >98% pairwise identity, demonstrating that strains
BS49 and strain 168 are highly related. We then also aligned the
Illumina sequence reads from BS34A and BS49 to the genome
of strain 168 using Geneious R7. The resulting list of variants
confirms the variants identified above that distinguish the two
strains, and in addition shows other mutations that are in
common and are likely present in the ancestral strain CU2189
(Christie et al., 1987) (Table S1, Supporting Information). These
include frameshifts in ydcH, yesY, pksN and ywbD [168 nomen-
clature]. Additionally, there are point mutations in for instance

comP, sigI, sepF, ytpS/sftA and a G > A mutation in epsC that was
shown to result in partial restoration of biofilm formation in
strain 168 (McLoon et al., 2011). One or more of the mutations
may underlie the difference between the auxotrophy of CU2189
(metB5 hisA1 thr-5) and strain 168 (trpC2).

SUPPLEMENTARY DATA

Supplementary data is available at FEMSLE online.
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