
Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

COMPRESSION-BASED DEPENDENCIES AMONG

RHYTHMIC MOTIFS IN A SCORE

Pierre Donat-Bouillud1, Samer Abdallah2, Nicolas Gold2

1ENS Rennes
2 Department of Computer Science, University College London

Correspondence should be addressed to: s.abdallah@ucl.ac.uk

Abstract: Music similarity has been widely studied through melodic
and harmonic matching, clustering, and using various metrics for
measuring distance. Such analyses offer the musicologist a view of
the ‘sameness’ of parts of a score. However, similarity alone does
not necessarily allow exploitation of that sameness in reasoning about
the music. In this paper, we present work in progress to investigate
rhythm similarity at various scales, beginning at the smallest (single
measures or groups of measures). We use normalised compression
distance and variations thereof to derive similarity-based dependencies
between parts of the music. Establishing such dependencies may allow
software engineering dependence analysis techniques to be applied to
music to, e.g. remove from focus aspects not relevant to a particular
enquiry (‘slicing’), determine the sensitivity of later parts of the music
on former parts (‘impact analysis’), and to find motivic processes and
developments within the musical form.
The analysis will thus draw on software engineering techniques, in-
formation theory, and data compression. Our results thus far show
that text-based compressors introduce significant non-linear artefacts
at small scales making similarity identification based on compressed
lengths difficult. Future work will involve progressively larger scale
music to determine the sensitivity of the results to the size of music
being analysed in order to guide musicologists wanting to adopt similar
approaches. We expect to find that at larger scales, the artefacts in
text compression become less significant and identifying the threshold
at which this happens is thus important. We discuss tree compression
as having the potential to capture musically-important relationships
lost by text compression and believe that this approach would be more
successful at small scales.

1. INTRODUCTION

One of the basic components of music analysis is the detection
of patterns, which can be imprinted on the music in a seemingly
limitless number of ways: patterns of duration, pitch, harmony,
timbral, patterns that repeat exactly, patterns that do not repeat but
develop in a systematic way, patterns that are translated, dilated,
reversed or otherwise transformed, patterns that are easy to spot,
patterns that are hard to spot, and so on. That this should be
so is perhaps not surprising, given that the full weight of human
intelligence and ingenuity can find expression in music. But what,
in this context, do we mean by ‘pattern’?
The information-theoretic concept of redundancy is a good can-
didate for a general definition ‘pattern’—it involves, essentially,
any regularity, any departure from complete unpredictability. In
algorithmic information theory [1], the presence of patterns implies
compressibility: the idea that an object is amenable to a description
which is shorter than the original object.
In this paper, we describe our preliminary and ongoing research
into the use of compression-based approximations to Kolmogorov
complexity—a measure of the amount of information in an object—
and how this can be used to define a general concept of similarity.
We restrict the analysis to purely rhythmic data (i.e., information
about note onset times and durations). We first present the theo-
retical underpinnings of algorithmic information theory and then
apply these to rhythmic data in §3. Our approach is similar to
that of Cilibrasi et al [2], but whereas they investigated similarity
measures between entire pieces, we examine similarity between
relatively short fragments. This places unusual demands on the
compression algorithms, as they are not designed for compressing
small objects. The paper concludes by identifying directions for

future work, discussing tree compression in particular as a potential
route to small-fragment compression.

2. ALGORITHMIC INFORMATION THEORY

A central concept in algorithmic information theory (AIC) [3] is
that a computer program, when run, can produce an output which
is much ‘larger’, in the sense of numbers of symbols, or elements
in some data structure, than the original program. This suggests
that the amount of information in an object x is upper-bounded
by the amount of information in a program P that produces x as
output. The program can be thought of as a ‘compressed’ version
of the output, since it is able to reproduce the output exactly, given
a suitable interpreter of the language, which itself is a program of
a certain fixed size. If the program P can be further compressed
(for example, using a standard compression method such as Zip, or
BZ2), then the size of the compressed program, becomes an upper-
bound on the amount of information in the original object x.
In this way, the Kolmogorov complexity K(x) of an object x is
defined as the length of the shortest program that produces x as
output. For definiteness, we choose to represent x and any program
as a string binary digits, so that the length of the string gives the
amount of information in bits. The length of the shortest program
will depend on what programming language we use, but for any two
languages L1 and L2, if L2 is Turing complete, then an interpreter of
L1 can be written in L2, which will be of a fixed length independent
of x. Thus, if we are interested in comparing the complexities of
several objects with respect to a fixed language, then the choice of
that language will only affect their complexities up to an (unknown)
additive constant. Such additive constants appear often in AIC, and
mean that the theorems need to be interpreted with care in practical
applications. In this paper, we will simply use approximate equality
(≈) to represent such relations, and refer to reader to [1] for a more
detailed analysis.
An additional difficulty with applications of Kolmogorov complex-
ity is that there is no general purpose algorithm for finding the
shortest program for a given x, or indeed its length. The best that
can be done is to find some program that produces x and use its
length as an upper bound on K(x), but this does not guarantee that
a shorter program could not be found. In practice, the search for
a short description can be done by a compression program—the
compressed output can be thought of as a ‘program’ in a language
determined by the compression algorithm.
This approach of using a compression algorithm links AIT with
Shannon’s information theory [4] and probabilistic modelling: it is
known that optimal compression of a certain class of object requires
an understanding of the probabilistic structure of the relevant
domain; that is, a compressor designed to compress an arbitrary x
drawn from some domain X can do better on average by knowing
the probability that it will be asked to compress a particular x. In
this way, good compression is closely linked with good probabilistic
modelling. For example, knowing the relative frequencies of word
use in a language means that shorter codes can be used for more
frequently-occurring words.
When the probabilistic structure of a domain is unknown a priori,
(for example, as in a single piece of music), then good compression
depends on using an algorithm which learns about the patterns in the
object as it compresses: this is what general purpose compression
algorithms do. They are examples of ‘universal compressors’,
which means that given a sufficiently large object, they are able

mailto:s.abdallah@ucl.ac.uk

Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

to compress as well as is possible to. However, while this
asymptotic optimality is a desirable theoretical property, it does
not guarantee that any given universal compressor will perform
well for given finite object. This is in accord with the ‘no free
lunch’ theorems of machine learning [5], which state that no single
adaptive probabilistic model is guaranteed to fit all datasets better
than any other, and hence there is no single ‘best’ compression
algorithm.

2.1. Information distances
The algorithmic mutual information (AMI) is provides a measure
of the information shared between two objects and hence can form
the basis for a measure of similarity. It is defined for two objects x
and y as

I(x;y) = K(x)+K(y)−K(x,y). (1)

The joint Kolmogorov complexity K(x,y) is the length of the
shortest program that produces the two outputs x and y. The mutual
information, then, quantifies the idea that ‘knowing x helps you
compress y’, or vice-versa.
Alternative expressions for the AMI involve the conditional Kol-
mogorov complexity K(y|x), which is the length of the shortest
program that, taking x as input, produces y. In these terms, we can
also write

K(x,y)≈ K(x)+K(y|x)≈ K(y)+K(x|y) (2)

and hence

I(x;y)≈ K(x)−K(x|y)≈ K(y)−K(y|x). (3)

Though the AMI can reasonably be understood as a measure of
similarity, it cannot be interpreted as a distance (or metric) in the
mathematical sense. For, example, if x = y, then I(x;y) ≈ K(x)
(since K(x,x) is just K(x) plus a small constant to indicate that
x should be output twice instead of once), but if x and y become
‘larger’, then I(x;y) generally becomes larger too, even if x and y
are similar. [6] propose several ‘information distances’ which are
metrics, including

E1(x,y) = max{K(x|y),K(y|x)}. (4)

Vitanyi et al [7, 8] subsequently proposed the normalised infor-
mation distance (NID) which is approximately invariant with the
absolute size of the objects being compared and is defined as

dNID(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
. (5)

2.2. Compression and compression distance
Since the Kolmogorov complexity is not computable, we must,
for practical applications, find an approximation. In the absence
of more specific knowledge about the class of objects to be com-
pressed, a reasonable start is to use a general purpose compression
algorithm. These have the advantage that some have certain general
asymptotic optimality (so called universality) properties.
If we let C(x) be the length of the binary string produced by such a
compression program given and object x, also encoded as a binary
string, then the normalised compression distance (NCD) [9, 10] is

dNCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)}
, (6)

where xy is the binary string resulting from the concatenation
of the binary strings representing x and y. Note that this is
an approximation: it may not even be symmetric, since a given
compressor might yield C(xy) 6=C(yx).
In this work, we examined the behaviour of four well-known
compression programs when compressing small rhythmic patterns:
LZO is a block compression algorithm belonging to the LZ77
(Lempel-Ziv) family. Snappy also belongs to the LZ77 family,
and is optimised for speed of compression. Zlib is based on
the DEFLATE algorithm, which combines LZ77 with Huffman
encoding. BZ2 is based on the Burrow-Wheeler transform and
Huffman encoding.

0 20 40 60 80 100
0

50

100

150

input length

co
m

pr
es

se
d

le
ng

th

(a)

Zlib
Bz2

Snappy
Lzo
ideal

0 20 40 60 80

10

20

30

input length

co
m

pr
es

se
d

le
ng

th

(b)

Zlib
Bz2

Snappy
Lzo

Figure 1: Size of (a) random strings and (b) repeated characters
after being compressed by several algorithms: zlib, bz2, snappy,
and lzo. For a given input size and class, all algorithms process the
same string. As the strings in (a) are random, a perfect compressor
should not be able to compress the strings, yielding a line of slope 1
(green line). In (b), the ideal performance is not well defined unless
we specify a probability distribution over the length of the string.

2.3. Compression artefacts
Intuitively, one would expect that the size of a compressed object
would increase smoothly and monotonically with the size of the
original object, but for the compressors we examined, this be-
haviour is realised only approximately, with departures from this
ideal especially apparent for small objects, where overheads such as
coding dictionaries (the fragments of text or music observed during
compression) may dominate. Fig. 1 illustrates how the four general
purpose compressors perform on a string of independent identically
distributed pseudorandom symbols.

3. SIMILARITIES BETWEEN RHYTHMIC FRAGMENTS

3.1. Similarities between measures
As an initial experiment, we took music scores (in MusicXML
format), and represented short fragments of one or two measures
of a single monophonic part as a sequences of characters with
an arbitrary mapping of note durations to characters, e.g., a for a
minim, b for a crotchet, c for a quaver, etc.. The NCD between
these short sequences was then computed using each of the text
compression programs. We omit detailed results here due to lack of
space, but as the graphs of Fig. 1 suggest, the compression programs
do not perform well on such short fragments and the similarity
results did not appear to be meaningful.

3.2. Similarities between segments
To test the system on longer (but still short) segments of a few
measures, we investigated the possibility that the NCD might guide
the segmentation of a longer sequence into two parts, by finding

Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

50
measure

N
C

D
(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

32 65
measure

N
C

D

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

33
measure

N
C

D

(c)

Figure 2: NCD using (a) zlib compressor with two different
segments in the score; (b) bz2 compressor for a three-segment score.

a boundary such that the segments on either side are maximally
dissimilar. The idea is that if the boundary is in the wrong place,
then the presence of a certain pattern or rhythmic process on either
side of the boundary with reduce the NCD between the two parts.
Only when the boundary is in the right place, where there is an
abrupt change in the nature of the rhythm, will the two parts have the
least in common and thus have the largest NCD. This is similar to
the idea of likelihood ratio testing for change-point detection. Thus,
a tentative boundary is introduced at every point in the sequence and
the NCD between the two segments x and y computed as a function
of the split-point. We also compute the constituent terms of the
NCD, C(x),C(y) and C(xy), as well as the estimated AMI I(x;y).
We expect the true boundary to be a local maximum of the NCD.
The idea was tested using artificially constructed rhythms; some
results are illustrated in Fig. 2. For each of these three scores, two
or three sections constructed by repeating a simple rhythmic phrase
a number of times were concatenated. The score of Fig. 2(a) is

�� �� ���� � ��� �
 50x

� �
 50x

��

Although there are some artefacts which do not correspond to
anything in the score, there is indeed a relatively pronounced local
maximum in the NCD at the correct boundary position. The score
for Fig. 2(b) consists of three sections:

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: Backward dependencies for the same piece as in Fig. 3,
using bz2. No threshold was used.

���� �� �� �� ��
 32x

�
 35x

� ������ �
 33x

��

This score does not fulfil the assumption that there are only two
segments, and does not have clear local maxima at the boundaries;
nonetheless, the structure is somewhat reflected in the NCD graph.
Finally, Fig. 2(c) was computed from a score with the same
rhythmic patterns as Fig. 2(a), but with the boundary at about two-
thirds of the way through:

�� �� ���� � ��� �
 33x

� �
 67x

��

3.3. Backward dependencies and slicing
Another possibility for using the NCD to aid clustering is to proceed
through the score sequentially, taking windows of one or two mea-
sures at a time, and comparing each window with all of the previous
windows to ascertain whether the current window is related to
one of the previous ones, or introduces a new piece of thematic
material. This could be seen as capturing a musical ‘dependency’ of
sorts, potentially opening the possibility to apply dependence-based
algorithms (e.g. static backward program slicing[12]: a technique
for removing unrelated lines of source code in a program based on
their relevance to a point of interest expressed by dependence) in
music analysis. We tested an algorithm which for each new segment
y, estimates the AMI I(x;y) ≈ C(x)−C(x|y) between y and each
previous segment x and introduces a backward link from y to x
for the x = argmaxx I(x;y) which maximises the AMI, but only if
I(x;y) is larger than a certain threshold. Fig. 3 shows the result of
this process for the opening of Mozart’s Horn duet No.4 (K.V. 487)
(part for Horn 1), using Zlib compression. Of the six links, four
are reasonable (if somewhat trivial due to the identity of the rhythm
in those segments). However, segment 10 is linked to segment 8,
though we would expect it to be linked to segment 1. Fig. 4 shows
the result of using bz2, with the linking threshold set to zero: here,
segment 10 is linked to 1, but segment 7 is, unexpectedly, linked
to segment 3. Determining why these unexpected links occur is the
subject of future work.

4. DISCUSSION AND CONCLUSIONS

The notion of similarity is, in general, very broad and ill-defined:
complex objects can be similar or dissimilar in many different
ways. Domain specific measures of similarity can focus on arbitrary
aspects of the objects being compared, and must be designed,
sometimes in a rather ad-hoc fashion, for each new domain. Al-
gorithmic information theory offers a more general answer to the
question of similarity, by appealing to the concept of universal
computation: if there is a pattern to be detected, then a universal
computer will be capable of expressing it, so that whatever the basis
of similarity between two objects, it should be detectable given
a sufficiently ‘universal’ compression program. However, such
‘universal’ compression holds only asymptotically: when it comes
to operating on real, finite data, the usefulness of compression
distance depends on finding good, domain specific compression
algorithms, which, Shannon’s information theory tells us, depends
on finding good probabilistic models of the data in question.

Proceedings of the 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany 2014

Figure 3: Backward dependencies for the Polonaise of Basset Horn Duets by Mozart, Horn 1 part (K.V. 487). All segments with the same
color are linked to the same previous segment. The threshold was set to 4.

In our experiments, it appeared that general purpose text compres-
sion algorithms are not suitable for short fragments of symbolic
music data.
Tree compression offers the potential to solve this problem (at
least partly) for data which are amenable to tree representation.
Since rhythmical groupings can be constructed as trees representing
duration (with the root of each subtree representing the combined
duration of its children), using the tree directly as the object to
be compressed (rather than collapsing to a string representation
where the compressor does not understand the hierarchical nature
of the represented data) offers the potential to achieve better
compression. Tree shapes can be encoded in the compression
dictionary regardless of the scale of rhythm that they represent,
creating a more efficient (and thus smaller) dictionary. We are
implementing the tree compression algorithm of Chen and al. [13]
with a view to repeating the experiments described above and
comparing the results to the text compressors on small-scale data.
Other future work would include the application of slicing and
other dependence-based algorithms to the dependence graph
created by the similarity measures described here, and exploring
how these could be used in a music-analytic context.

Acknowledgements This work was partially supported by
the EPSRC CREST Platform grant [grant number EP/G060525/2]
and the AHRC Digital Music Lab project [grant number
AH/L01016X/1] and was undertaken while Pierre Donat-Bouillud
was a visitor at UCL. Source code and data are available on request
from Samer Abdallah.

REFERENCES

[1] M. Li and P. M. B. Vitányi: An introduction to Kolmogorov
complexity and its applications. Springer, 2009.

[2] R. Cilibrasi, P. Vitányi, and R. De Wolf: Algorithmic
clustering of music based on string compression. In Computer
Music Journal, volume 28(4):49–67, 2004.

[3] P. Grünwald and P. Vitányi: Kolmogorov Complexity and
Information Theory. With an Interpretation in Terms of
Questions and Answers. In Journal of Logic, Language and
Information, volume 12(4):497–529, 2003.

[4] C. E. Shannon: A Mathematical Theory of Communication. In
The Bell System Technical Journal, volume 27:379–423,623–
656, 1948.

[5] D. H. Wolpert and W. G. Macready: No free lunch theorems
for optimization. In Evolutionary Computation, IEEE
Transactions on, volume 1(1):67–82, 1997.

[6] C. H. Bennett, P. Gács, M. Li, P. M. Vitányi, and W. H.
Zurek: Information distance. In Information Theory, IEEE
Transactions on, volume 44(4):1407–1423, 1998.

[7] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi: The
similarity metric. In Information Theory, IEEE Transactions
on, volume 50(12):3250–3264, 2004.

[8] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and
H. Zhang: An information-based sequence distance and its
application to whole mitochondrial genome phylogeny. In
Bioinformatics, volume 17(2):149–154, 2001.

[9] Z. Dawy, J. Hagenauer, P. Hanus, and J. C. Mueller: Mutual
information based distance measures for classification and
content recognition with applications to genetics. In ICC,
pages 820–824. 2005.

[10] M. Li, X. Chen, X. Li, B. Ma, and P. M. Vitányi: The
similarity metric. In Information Theory, IEEE Transactions
on, volume 50(12):3250–3264, 2004.

[11] R. Sibson: SLINK: An optimally efficient algorithm for
the single-link cluster method. In The Computer Journal,
volume 16(1):30–34, 1973.

[12] M. Weiser: Programmers Use Slices when Debugging. In
Commun. ACM, volume 25(7):446–452, 1982.

[13] S. Chen and J. Reif: Efficient lossless compression of trees
and graphs. In Data Compression Conference, 1996. DCC
’96. Proceedings, pages 428–. 1996.

	Introduction
	Algorithmic information theory
	Information distances
	Compression and compression distance
	Compression artefacts

	Similarities between rhythmic fragments
	Similarities between measures
	Similarities between segments
	Backward dependencies and slicing

	Discussion and conclusions

