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Abstract

The premise that where crime has occurred previously, informs where crime is likely to
occur in the future has long been used for geographically targeting police and public
safety services. Hotspot analysis is the most applied technique that is based on this
premise — using crime data to identify areas of crime concentration, and in turn predict
where crime is likely to occur. However, the extent to which hotspot analysis can
accurately predict spatial patterns of crime has not been comprehensively examined. The
current research involves an examination of hotspot analysis techniques, measuring the
extent to which these techniques accurately predict spatial patterns of crime. The research
includes comparing the prediction performance of hotspot analysis techniques that are
commonly used in policing and public safety, such as kernel density estimation, to spatial
significance mapping techniques such as the Gi* statistic. The research also considers
how different retrospective periods of crime data influence the accuracy of the predictions
made by spatial analysis techniques, for different periods of the future. In addition to
considering the sole use of recorded crime data for informing spatial predictions of crime,
the research examines the use of geographically weighted regression for determining
variables that statistically correlate with crime, and how these variables can be used to
inform spatial crime prediction. The findings from the research result in introducing the
crime prediction framework for aiding spatial crime prediction. The crime prediction
framework illustrates the importance of aligning predictions for different periods of the
future to different police and prevention response activities, with each future time period
informed by different spatial analysis techniques and different retrospective crime data,
underpinned with different theoretical explanations for predicting where crime is likely

to occur.
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1. Introduction

Hotspot mapping is a popular analytical technique that is used for identifying
concentrations of crime. In practice, hotspot mapping is used as a basic form of crime
prediction — it uses data on past incidents to determine where crime may occur in the
future to inform where to target police and public safety resources. Yet, to date, very
little research has been conducted that statistically examines the ability to predict spatial
patterns of crime using hotspot mapping. Additionally, in recent years several new
predictive crime mapping techniques have been developed, with the creators of these
claiming they offer better predictions than hotspot mapping. However, as no accurate
statistical benchmark exists that allows any new technique to be compared to hotspot
mapping it is difficult to validate whether these new techniques are actually any better
than hotspot mapping. The aim of this PhD research is to establish this benchmark by
identifying how well hotspot mapping can produce accurate spatial predictions of crime.
That is, the primary question the research aims to answer is to what extent can hotspot
mapping be used to effectively predict where crime is likely to occur? It is argued that
with careful attention to the data that are used and hotspot analysis technique that is
applied, accurate spatial predictions of crime can be generated using hotspot maps. By
establishing a benchmark measure that documents the extent to which hotspot mapping
output can predict spatial patterns of crime, other spatial analysis techniques that are
designed for crime prediction can be more effectively compared. It is anticipated that a
comprehensive examination of hotspot analysis techniques will also identify ways in
which these techniques can be refined to improve their use for spatial crime prediction.

The thesis extends existing research in six main ways. First, the research examines the
spatial prediction performance of a number of popular hotspot mapping techniques. The
most commonly used techniques include thematic mapping of aggregations of crime to
administrative geographic units (e.g., police beats), and kernel density estimation that
produces a spatial surface representing the density distribution of crime. The main
distinction between hotspot mapping techniques is in the calculations performed to
determine hotspots. Each technique also requires the user to enter certain parameters as
inputs to these calculations. In addition, hotspot maps can be produced using different
periods of retrospective crime data. The influence that different techniques, input
parameters and the retrospective period of crime data that is used to create hotspot
mapping output is not known. To establish the extent to which hotspot mapping can

produce accurate spatial predictions of crime, the current research examines whether
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hotspot mapping techniques differ in their ability to predict where crime may occur in the
future, if these results are influenced by the input parameters used, and if different
retrospective periods of crime data identify different hotspots.

Second, the research examines whether an approach that uses statistical significance
mapping offers an improvement in the performance of predicting spatial patterns of crime
in comparison to the predictions produced from the commonly used hotspot mapping
techniques. At present, a weakness with the commonly used techniques is that there is
no agreed upon, objective method for determining the areas that are identified as hot.
This can result in different users identifying different hotspots based purely on their own
subjective selection. The research establishes if the existing commonly used hotspot
analysis techniques can be improved by using a statistical significance mapping approach
that removes the ambiguity in determining areas that are hot. The research also
establishes whether a statistical significance hotspot mapping approach results in

improvements in predicting where crime is likely to occur.

The thesis extends existing research in a third way by examining whether the spatial
predictions produced using hotspot mapping are relevant for only a short period into the
future or if the predictions are reliable for longer periods. Identifying hotspots of crime
using retrospective data assumes these hotspot patterns will persist into the future. That
is, it assumes hotspots are stable, changing little from the point they are identified to the
pattern that is predicted in the future. However, little consideration to date has been given
to whether predictions produced using hotspot mapping and other new prediction
techniques, are equally accurate for different periods of the future — for example, the
immediate future (i.e., the next day), the near future (i.e., the next week) and for other
periods beyond. The research examines the stability of hotspots and determines whether
the accuracy of the spatial predictions they generate is more relevant for certain time

periods than others.

Fourth, the research extends existing research by illustrating the importance in identifying
the theoretical reasoning that can justify any spatial prediction of crime. If spatial crime
prediction techniques are to be effectively used in practice, the predictions that are made
need to be supported with clear reasoning on why it is likely that crime will be committed
in the areas identified. This can be informed from existing theory on why crime tends to

happen at certain locations and from the empirical observations of patterns in offending
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behaviour, victimisation and the spatial-temporal attributes of crime. Establishing why
crime is likely to occur at certain locations can then inform the police tactics and
prevention programmes that aim to counter the anticipated offending behaviour and high
level of vulnerability in these areas. The current research draws together the principal
spatial theories of crime to create a foundation for helping explain why crime is predicted
to occur at certain locations. The drawing together of these theories will permit a critique
of the application of spatial analysis techniques for predicting where crime is likely to
occur. That s, if the prediction made by a spatial analytical technique cannot be explained
in clear theoretical terms, it may suggest the prediction is weak, and as a result it could
be difficult to identify the specific tactics and programmes to counter the predicted

activity.

Fifth, the research introduces several new theoretical perspectives on why hotspots exist
following new analytical observations that the current research makes in the spatial
patterns of crime. To date, environmental criminology research has made little use of
spatial regression techniques for helping explain relationships between crime and other
variables. In addition to a theoretical critique, a statistical means for explaining why
hotspots exist at certain locations could provide additional value to the existing theoretical
foundation. The research examines the use of spatial regression techniques for explaining
why hotspots exist and evaluates whether existing theory provides a sufficient enough
foundation for explaining the range of predictable spatial patterns of crime it is anticipated

that this research will uncover.

Finally, the research introduces a new template for measuring spatial crime prediction
performance. In order for mapping techniques to be compared for their predictive
accuracy, a standard set of measures are required that allow for direct comparisons to be
made between techniques. To date, some measures have emerged as research into spatial
crime prediction has gathered pace, but no focussed attention has been given to
developing a single measure or set of standard measures that can be applied in all cases.
This current research critiques the existing measures used for assessing spatial crime
prediction performance and introduces a standard measurement template that allows for

accurate and detailed comparisons between mapping outputs.
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1.1.  Thesis structure

The thesis comprises thirteen chapters, including the current one. Examined in the
following chapter is the progression from spatial theories of crime to crime hotspot
analysis and spatial crime prediction. The starting point involves describing the key
theoretical principles that explain the spatial distribution of crime and in turn inform the
theoretical foundation on the use of mapping techniques for predicting where crime is
likely to occur. The technical processes to hotspot analysis are then examined, including
a description of the commonly used hotspot analysis techniques and an introduction to
spatial significance mapping. In recent years, several new techniques have been
introduced that claim to provide direct spatial predictions of crime. These are reviewed
in the context of the earlier theoretical discussion to qualify the theoretical logic on which
each is based. The last section of this chapter introduces spatial regression analysis for
helping to identify variables that correlate with crime, and how this knowledge could

inform improvements in spatial crime prediction.

Chapter 3 describes in detail the separate research objectives and hypotheses. The

hypotheses are used to direct the structure and content of a series of empirical studies.

Eight hypotheses are posed:

1. Hotspots can be identified using retrospective data for a short period of time rather
than requiring retrospective data for longer periods of time

2. Common hotspot mapping techniques differ on how accurately they predict spatial
patterns of crime

3. The technical parameters used in hotspot analysis techniques have an influence on the
techniques’ spatial crime prediction performance

4. Spatial significance mapping methods provide an improved means of predicting
where crime is likely to occur in comparison to common hotspot mapping techniques,
and removes the ambiguity of defining areas that are hot

5. Areas that are identified as hotspots of crime are places where the concentration of
crime has been endured consistently for at least one year, and where the concentration
of crime is likely to continue to persist into the future

6. Recent incidents of crime provide an effective means of accurately predicting the
immediate future, but the accuracy in these predictions reduces for longer periods of

the future
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7. Geographically Weighted Regression (GWR) provides an effective means of
determining at the local level the reasons why hotspots exist, and that these
explanatory variables vary between hotspots

8. GWR analysis can be used for supporting long-term predictions of crime by
examining how a change in explanatory variables can influence a change in future

crime levels.

The description of the research methods is presented in two ways. Described in chapter
4 are the methodological approaches that are generic to the whole research. This includes
a description of the data and study areas, the software used, statistical measures for
prediction performance and the processes for applying the range of spatial analysis
techniques. The empirical section of the thesis is organised into a number of studies, each
forming its own chapter. The specific detail on the method used in each study is described
in each empirical study chapter in turn. Results are also presented in each empirical study
chapter rather than in a single results chapter.

The empirical studies constitute chapters 5 to 11. Each study informs the next, leading
to a comprehensive set of results, and a progression in the development of the arguments
that form from the research findings. Each empirical study chapter begins by setting out
the chapter’s aims and structure. Examined in chapter 5 is how hotspots can be
statistically determined in crime data. The empirical study described in chapter 5 also
begins the assessment of whether different retrospective periods of crime data may result
in different predictions. In chapter 6, the method and results are described of a detailed
metric examination of commonly used hotspot techniques to determine if different
techniques produce different spatial prediction results. The analysis also examines if
spatial prediction performance differs by crime type. Examined in chapter 7 is the
influence of input parameters on the spatial crime prediction performance of hotspot
mapping output. The focus here is towards examining the influence of the input
parameters for the techniques that were identified as consistently producing better spatial
predictions of crime from chapter 6. Chapter 8 reports on a detailed examination of the
Gi™* statistic — a mapping technique that identifies statistically significant concentrations
of crime. The output produced using the Gi* statistic is compared to the results generated
from the empirical studies reported on in chapters 6 and 7 to determine if the Gi* statistic
unambiguously identifies hotspots of crime and if these hotspot areas are more accurate

than the best predictions determined using common hotspot mapping techniques. The
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technique determined to consistently produce hotspot maps with the best predictions is

then used in the remaining three research studies.

Examined in chapter 9 is whether hotspots are temporally stable. That is, once hotspots
are identified in retrospective crime data, are these the areas where crime will continue to
persist at high levels in the future? In chapter 10, the temporal dimension of spatial crime
prediction is developed a stage further. Prospective mapping is one of the new techniques
specifically designed for predicting future incidents of crime. In chapter 10, prospective
mapping is examined for its ability to predict where crime is likely to occur for different
time frames of the future. These results are compared to the hotspot mapping technique
identified as the best performer from chapter 8. Chapter 11 is the final empirical study,
examining whether spatial regression modelling and the use of other data variables (such
as land use and demography) can determine why hotspots exist. The analysis in this final
research study also aims to identify if these explanatory variables can be used alongside

or as a replacement for retrospective crime data to improve spatial predictions of crime.

Chapter 12 brings together the results from the empirical studies and is where the
technical, methodological, practice, policy and theoretical implications of the current
research are discussed. Discussion includes identifying how the results contribute to the
existing research, presenting arguments that use the results to build on findings from
previous research, and suggesting areas for future research. Chapter 12 also includes a
summary of the main findings in relation to each hypothesis and the research conclusions.
Chapter 13 lists the research references.

1.2.  Dissemination of research findings

As this PhD research has developed there have been opportunities to discuss the spatial
analysis techniques that have been used, discuss certain methodological approaches that
have been applied, and share several of the preliminary results. There has also been the
opportunity to discuss theoretical, practice and policy implications of the research results.
These discussions have helped to test some of the technical processes and preliminary
findings with a number of practitioner audiences. Two journal papers have already been
published containing findings directly relating to this PhD research. The peer review of
publishing these papers has placed confidence in the methods used and in several results
that have been generated. It has also helped refine the direction of the research to ensure

it offers a valuable contribution to the field of geographical crime analysis.
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The following lists publications and presentations relating to this PhD research over the
period it was completed.

1.2.1. Publications
Chainey, S.P., Tompson, L., Uhlig, S. (2008), “The utility of hotspot mapping for
predicting spatial patterns of crime”, Security Journal 21:1-2.

e This paper has received 89 citations (Source: Google Scholar 23 May 2014)

Chainey, S.P. (2014), “Examining the influence of cell size and bandwidth size on kernel
density estimation crime hotspot maps for predicting spatial patterns of crime ”, Bulletin
of the Geographical Society of Liege 60:7-19

1.2.2. Conference presentations
The Crime Prediction Framework: a spatial temporal framework for targeting patrols,
crime prevention programmes and strategic policy. The International Symposium on

Environmental Criminology and Crime Analysis, Kerkrade, Netherlands, 2014

Predictive Policing: a spatial temporal framework for targeting patrols, crime prevention
programmes and strategic policy. International Association of Chiefs of Police, World

Innovation Conference, Amsterdam, 2014

Understanding hotspots.  Australian Crime Mapping and Analysis Conference,
Melbourne, 2012

Advanced hotspot analysis: spatial significance mapping using nearest neighbour analysis
and the Gi* statistic. International Crime and Intelligence Analysis Conference,
Manchester 2012

Identifying hotspots: a review of common techniques. 2" European GIS and Law

Enforcement Conference, Munich, 2011

Understanding hotspots using Geographically Weighted Regression. International Crime
Mapping Research Conference, Miami, 2011
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Understanding hotspots. International Association of Crime Analysts, Arlington, Texas,
2010

1.2.3. Training courses developed for the UCL Jill Dando Institute of Security and
Crime Science that further field tests some of the PhD findings

¢ Predictive mapping www.ucl.ac.uk/jdi/short-courses/Predictive-mapping

¢ Understanding hotspots www.ucl.ac.uk/jdi/short-courses/understanding-hotspots

e Advanced hotspot analysis www.ucl.ac.uk/jdi/short-courses/adv-hotspot
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2. From spatial theories of crime to analytical techniques that predict

spatial patterns of crime

2.1.  Chapter aims and structure

The starting point for examining whether any spatial analytical technique offers potential
for predicting where crime is likely to occur is to determine the theoretical basis on which
it may operate. A number of spatial theories of crime have been developed over the years.
This chapter brings these theories together to help explain why geographical patterns of
crime are not random and why crime can be predicted to take place at certain locations.
With this theoretical knowledge, it is proposed that through the careful selection of
appropriate spatial analytical techniques it is possible to accurately identify where these

predictable crime patterns will most likely occur.

In places throughout this chapter (and in other parts of the thesis), reference is made to
disease mapping and epidemiology. This on the basis that the study of crime patterns can
be compared to the study of disease patterns in two main ways. First, in a spatial unit
sense, incidents of disease are typically represented as geographic points within a GIS
and are, therefore, subjected to similar spatial analysis techniques that can be applied to
crime (Elliot et al., 2000). For example, the use of kernel density estimation for
identifying geographic clusters of incidents was applied to the analysis of disease before
it was applied to the analysis of crime (see Bithell, 1990). As the spatial unit for
representing crime is similar to that used for disease mapping, and the spatial analysis
techniques that are applied to these data are similar, lessons can be learned from studies
into disease mapping that would benefit geographical crime analysis. Secondly,
theoretical explanations for crime have usefully drawn from other disciplines, including
epidemiology, for helping to explain the spatial patterning of crime and the spatial
behaviour of offenders. For example, certain crime types such as burglary have displayed
patterns similar to those found in the study of disease contagion (see Johnson and Bowers,
2004a)

The following section begins by examining the theoretical principles that underpin the
geography of crime. These theoretical principles include macro geographic level
explanations for crime (i.e., at the neighbourhood level), meso geographic explanations
of crime (i.e., at the street level) and micro geographic explanations of crime (i.e., at
specific locations) (Brantingham and Brantingham, 1984). The aim in drawing together
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the principal spatial theories of crime is to create a foundation that will permit a continual
critique across the thesis of the spatial analysis techniques for predicting where crime is
likely to occur.

Hotspot analysis techniques are considered to be the most basic form of spatial crime
prediction. A review of the study of hotspots follows the section on the theoretical
principles of the geography of crime, with the aim to define clearly what is meant by a
hotspot and identify the practical role that hotspot analysis plays in helping to tackle crime
problems. An examination of a number of hotspot analysis techniques is then conducted,
presented with examples that illustrate how these techniques have been applied in
practice. The aim of this examination is to determine those hotspot analysis techniques
that are most commonly used and to highlight the technical distinctions between them.
At present, little is known about whether these commonly used hotspot mapping
techniques differ in their spatial prediction performance. Analysis of the spatial
prediction performance of these techniques is subject to one of the studies that is reported
on in this thesis. The chapter then introduces spatial significance mapping with the
purpose of illustrating the potential it has for improving the spatial predictions made by

the existing common hotspot analysis techniques.

In recent years, the concept of predictive policing has emerged, with several mapping
techniques being introduced to support these predictive objectives. These techniques are
reviewed in this chapter, drawing from the spatial theoretical principles of crime to
critique each technique. Itis argued that many of these new techniques are based on weak
theoretical foundations and their accuracy in predicting where crime will most likely
occur is questioned. Separate to these new prediction techniques is spatial regression.
Spatial regression analysis techniques offer a statistical means of identifying those
variables that may explain why spatial patterns of crime vary. These techniques are
introduced and reviewed to assess if they offer potential in helping to determine why
hotspots exist, and whether the results from this type of analysis can help inform

predictions of crime.

Following the review of theoretical principles and spatial analysis techniques, the final
section identifies that a gap currently exists in the use of standard measures for comparing

the prediction performance of mapping outputs.
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2.2.  The key spatial theories of crime

If spatial predictions of crime are to be made with confidence, the prediction must be
based on clear theoretical principles. If it is not clear why crime is likely to occur at a
location, it would suggest the prediction is weak. If the theoretical argument for the
spatial prediction is clear, this in turn will help identify the specific tactics and

programmes to counter the predicted activity.

A useful starting point for the spatial theoretical principles of crime is to recognise that
crime has an inherently geographical quality. When a crime occurs, it happens at a place
with a geographical location (Chainey and Ratcliffe, 2005). This can be further observed

in Brantingham and Brantingham’s (1981) description of the four dimensions to every

crime;

o the legal dimension (a law must be broken),

o the victim dimension (someone or something has to be targeted),
o the offender dimension (someone has to do the crime), and

o the spatial dimension (it has to happen somewhere).

Crimes also do not occur randomly. If crimes were a random occurrence that had an
equal chance of happening anywhere at any time, there would be little point in attempting

to observe patterns and predict where crime may occur in the future.

The main theoretical area that underpins the geography of crime is the practical subset of
mainstream criminology, environmental criminology. Environmental criminology
involves the study of criminal activity and victimisation and how factors of space
influence offenders and victims (Bottoms and Wiles, 2002). The next section in this
chapter begins by exploring how the importance of this spatial influence on people came
to be recognised, before examining the spatial dynamics of offenders and the interaction
of the offender and victim in space. The progression in theoretical development also
helps to illustrate the evolution from macro towards meso and micro level geographic
explanations of crime. It is argued that macro, meso and micro level theories are each of
value, particularly when there is the need to explain why crime is likely to occur at certain
locations in the immediate future and explain why crime may occur at certain places at

some further point into the future.
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Researchers have long known that there is variation in the spatial arrangement of crime.
Although there have been recorded spatial studies of crime for nearly 200 years, a number
of key research periods have punctuated the history. While these periods have overlapped
across time, for convenience they can be thought of as three distinct schools of thought —
the Cartographic School, the Chicago School and the GIS School. The theoretical
developments associated with the Cartographic and Chicago Schools provide a useful
foundation for macro explanations of why crime may occur at certain locations. In the
more modern era, the focus of the GIS School has been more towards meso and micro

level geographic explanations of crime.

2.2.1. The Cartographic School

One of the earliest maps of crime originates from France and was published in 1833 by
Andre-Michel Guerry, who showed, amongst other features, the distribution of violent
and property crime in the various départements of France (Guerry, 1833). These maps
indicated that not only was there spatial variation in crime but that the risk of property
crime and violent crime was often different in the same areas (Brantingham and
Brantingham, 1981). Analysing French data around the same time was Adolphe Quetelet,
who supplemented his maps with statistics showing spatial variations across France, as
well as between different social groups, including beggars and smugglers (Quetelet,
1842). These early pioneers are credited with founding what is termed the Cartographic
School (Chainey and Ratcliffe, 2005).

Throughout the 19" century, studies into the spatial arrangement of crime and criminals
continued, one of the most renowned being an examination of the infamous London
rookeries (Mayhew, 1862). These thieves’ quarters were areas of high offender
concentration, situated on the boundary of the City of London, where offenders were seen
to exploit any cross-border policing difficulties between the City of London Police and
the larger surrounding Metropolitan Police jurisdictional area. These early studies set the
foundation for illustrating that crime patterns were not random, and prompted discussions

on the factors that influenced the spatial distribution of crime.

2.2.2. The Chicago School
. The socio-cultural triggers of crime and models for urban development
In the twentieth century, more innovation followed with the research conducted by the

Chicago School. This group of researchers included Clifford Shaw and Henry McKay
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who drew on the spatial and temporal ideas of social ecology, forged by their
predecessors, notably Ernest Burgess (Burgess, 1916). Shaw and McKay mapped, by
hand, the residences of juvenile delinquents across Chicago (Shaw and McKay, 1942).
This pioneering mapping was used to explore the socio-cultural triggers of crime as
Chicago expanded during a period of great economic growth. They drew on Burgess’s
work by comparing socio-economic factors and physical factors in different zones across
the city.

Burgess introduced the zonal (or concentric) model in 1925. Burgess’s idealised model,
as shown in Figure 2.1, had concentric zones radiating outwards in bands from the city
centre, with each band representing a different stage of the city’s development. The
innermost zone (zone I), termed ‘the loop’, contained the central business district and had
little residential development. Adjoining this was the ‘zone in transition’ (zone II), an
area taken over by business and light manufacturing industries, and which also included
the factory zone. The third zone (‘zone of workingmen’s homes’) was occupied by
factory workers who had managed to escape the zone in transition, but who were still tied
to the city due to the need to work in the factories. Travel cost and time was a factor for
these workers, so they resided in zone III. The ‘residential zone’ (IV) comprised high-
class apartments or single-family suburban dwellings where the occupants accepted the
travel costs as a price for a higher quality of life. Beyond the city limits was the
‘commuters zone’ (zone V) where people lived in suburban areas or satellite towns with
a commute of up to an hour (Burgess, 1925). To demonstrate the model, Burgess charted
1920’s Chicago and overlaid his model onto this city’s expanding and vibrant cityscape

(Burgess, 1925: 55).
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Figure 2.1. The concentric (zonal) circle model (Source: Chainey and Ratcliffe, 2005)

From a criminological perspective, the zone in transition was the area of most interest.
Here mobility was greatest, the availability of stimulus peaked, and there was a
concentration of ‘juvenile delinquency, boys gangs, crime, poverty, wife desertion,
divorce, abandoned infants, [and] vice’ (Burgess, 1925: 59). Shaw and McKay (1942)
went on to map the concentric zones using different bandwidths for different cities (e.g.,
in Chicago the bandwidths were two miles, while in Philadelphia they were one and a
half miles). Their work spanned decades and formed the basis for much of American
criminological thought coming into the latter half of the twentieth century, especially in
establishing the longevity of delinquent areas discovered through longitudinal studies
(Brantingham and Brantingham, 1981). In a macro sense, these studies led to the
suggestion that crime concentrates in certain areas. The studies also suggested that these
high crime areas persisted for some time, influenced by demographic and social mobility,
and the availability and concentration of certain stimuli in these locations. From this, it
is argued in the current research that if the concentration of these stimuli and mobility
remain unchanged, crime will predictably continue to persist in these areas. In addition,
if the stimuli and mobility factors that create favourable conditions for crime to occur can
be identified, these may act as useful variables to predict where crime will likely occur.

The Burgess model worked well for American cities in the twentieth century, but was less
applicable outside North America. The development of American cities took place over
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a fairly short temporal period, whereas European urban development occurred over a
considerably longer time. Urban geographers have since developed models which help
to better explain the mosaic pattern of development in urban areas outside North America.
Knox (1994) describes an urban geography model of city expansion more fitting for a
wider range of urban developments. These stages of neighbourhood change start with
urbanisation before progressing to in filling, involving the population of vacant land
blocks by multi-family units and rental properties. A stage of downgrading then follows
when, as the housing stock ages, there is a slow decline of the area caused by degradation
of the properties and general deterioration. Following this is a thinning out phase,
characterised by a rapid population turnover and significant social and demographic
change. The final stage is one of rehabilitation or gentrification.

From a crime perspective, the initial urbanisation brings in many young families, and
while neighbourhoods may be harmonious for a few years, a suburb populated by a
homogenous group, all arriving at the same time, will see many of the children reach their
teenage (and highest crime-risk) years at the same time. Ten to fifteen years after the
urbanisation stage (and often during the in filling and downgrading stages) it is possible
that crime will therefore increase (Chainey and Ratcliffe, 2005). The in filling stage also
has the capacity to increase crime by reducing the social cohesion of an area, due to the
introduction of different socio-economic groups. This process continues to increase in
the downgrading and thinning out stages due to social and structural neglect accelerating
opportunities for property crime. These points offer further to the argument relevant in
the current research that if the specific theoretical conditions that give rise to crime can
be identified, determining where they geographically concentrate may offer value in
helping predict where crime is likely to occur. The rehabilitation or gentrification stages
may result in a reduction in crime, caused by the reintroduction of a more affluent

population that can afford upgraded security features on cars and homes (Knox, 1994).

I. Social disorganisation and collective efficacy

A theory that grew from the Chicago School was social disorganisation. Social
disorganisation theory posits the idea that increased levels of delinquency, especially
juvenile delinquency, exist because of the lack of a local social fabric where the structure
and culture of the community are strong enough to provide a concerted influence over
local residents (Shaw and McKay, 1942). For example, social disorganisation theory

suggests that if there is a high degree of cultural heterogeneity and a high turnover of
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residents, the community is unlikely to be able to agree to a common standard for
behaviour on the street, and that few residents are likely to know the young people on the
street who are causing trouble, or know their families. With no clear rules of acceptable
behaviour and few sanctions available to curb adolescent exuberance (you cannot tell a
child to stop misbehaving or you will tell his parents, if you and the child both know that

you do not know his parents), juvenile delinquency increases.

The practical testing of social organisation theory has had its challenges because it can be
difficult to construct variables that directly measure social disorganisation (Chainey and
Ratcliffe, 2005). For example, it is unlikely that a household survey that asked the
respondents to rate from one to ten the level of social disorganisation in their
neighbourhood would be very successful, because few people would have a clear notion
of what social disorganisation is. Additionally, even if social disorganisation could
directly or indirectly be measured (using proxy variables), operationalising a policing
impact on this issue in order to improve the crime situation would be quite a challenge.
This is because policing strategies are often limited when faced with these more systemic

causes of crime.

In response to the difficulties in measuring social disorganisation, some researchers have
tried to measure its reverse, social or collective efficacy. Collective efficacy can be
defined as the ‘social cohesion among neighbours combined with their willingness to
intervene on behalf of the common good’ (Sampson et al., 1997: 918). Collective efficacy
can be found in areas where neighbours cooperate on issues of mutual interest, share some
areas of agreement with the people who live around them, and are prepared to intervene
if local youths are behaving in a manner unacceptable to local norms. Such levels of
cooperation require enough implicit or explicit communication between neighbours in
order to define and agree the standard for local normative behaviour. It is, therefore,
argued that areas high in collective efficacy are well suited to resisting crime at the local
level by being able to influence local young people and exercise some control over a

group in their peak offending years.

Collective efficacy has been directly measured using community-based surveys which
have attempted to measure neighbourhood social and institutional processes. Collective
efficacy is related to the notion of ‘social capital’, a feature that some researchers have

operationalised as the number of interactions that take place with neighbours. Social
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capital is a measure of the skills and social position that a person possesses that provide
them with the power to effect a positive social change on their local environment.
Sampson and his colleagues have led the research in this area, actively seeking to measure
collective efficacy. Their survey of over 8,000 Chicagoans included asking the
respondents if they believed it was likely that neighbours could be counted on to intervene
if children were spray-painting a local building, or if a fight broke out (Sampson et al.,
1997). Their study also included census measures of race, poverty, and immigration,
home ownership and residential stability (among others) and concluded that collective
efficacy could be reliably measured and could act to control the level of violent crime.
Sampson has built on these studies by further illustrating the relationships between crime
and social conditions in Chicago (Sampson, 2012).

The review of macro-level (neighbourhood) spatial explanations for crime from the
Cartographic and Chicago Schools suggests that crime can be predicted if the factors that
create favourable conditions for crime to occur are identified. Although some difficulties
may exist in measuring some of the variables that have emerged from the thinking in the
Chicago School (and more latterly social disorganisation and collective efficacy), the
identification of these factors may assist in informing the options for directing strategic
policy that aim to achieve a long term, sustainable reduction in crime. The current
research aims to examine this by identifying suitable spatial analytical techniques that
determine the factors that create favourable conditions for crime to occur and whether, in

turn, the empirical findings from this research inform spatial predictions of crime.

2.2.3. The GIS School

During the 1990s and 2000s there was an explosion of interest in environmental
criminology, spatial crime analysis and the investigation of offender patterns using
geographic tools. The catalyst for this enthusiasm has been attributed to the development
of the ideas relating to defensible space, and the related principles associated with Crime
Prevention Through Environmental Design (CPTED) (Brantingham and Brantingham,
1981, Jeffrey, 1971; Newman, 1972). CPTED in particular has grown into a significant
discipline that addresses space management and architectural design, and urban planning
(Crowe, 2000).

Building on the framework of CPTED and defensible space a number of important

advances were made, most notably with:
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o the theoretical developments of routine activity from Cohen and Felson (1979);

o the work of Rengert in his examination of residential burglary behaviour (Rengert and
Wasilchick, 1985) and the spatial arrangement of drug markets (Rengert, 1996);

e the advances in crime pattern theory made by Brantingham and Brantingham (1981;
1984)

e the application of spatio-temporal analysis techniques to crime by LeBeau (1987,
1992); and

¢ the examination of crime across different spatial scales by Harries (1980).

These significant advancements helped to fortify the underlying theoretical principles of
environmental criminology. However, it was the development of affordable geographical
information systems (GIS) and the increasing technological developments within policing
(such as the digitisation and geocoding of crime records) that have allowed crime
researchers to exploit the wealth of data recorded by police agencies and map crime and
calls for servicel. The next section examines the theoretical developments of the new
environmental criminologists, a group referred to as the GIS School (Chainey and
Ratcliffe, 2005). These developments include the routine activity approach, the spatial
arrangement of attractive targets, the rational choice perspective, crime pattern theory,
the least effort principle, and the concepts of crime generators and attractors. These
theoretical approaches do not just consider the crime offence, but also consider offender
behaviour and the risk of victimisation. After all, if crime patterns are not random then
offenders cannot be acting in a random way. The non-random nature to offending then
suggests that the majority of offenders will act in a predictable manner, reacting in a
similar way to the same opportunities to commit crime across space. In turn, this suggests
that the patterns they individually or collectively create are predictable. Similarly, the
risk of being a victim is unlikely to be random, with this non-random nature suggesting
that certain individuals or groups of people will act in a predictable manner that makes
them more vulnerable to crime. This suggests the patterns they individually or

collectively create are also predictable.

1 Affordable GIS and the digitisation of records has led to similar developments in the application of
spatial analysis in many other disciplines, including epidemiology, demography, land use, transport, and
other emergency services such as fire and rescue.
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l. The routine activity approach

The routine activity approach originally started as a macro-level explanation of predatory
crime (Cohen and Felson, 1979), but has progressed over the years to provide a
worthwhile mechanism to examine criminal opportunity and crime prevention in a variety
of settings. The original work examined changing patterns of employment, and the new
criminal opportunities that are created when there are fewer people staying at home during
the day. The routine activity approach is based on the simple idea that the behaviour of
victims helps explain the occurrence of crime, and that for a crime to occur, three
components are necessary. There must be the presence of a likely offender, the presence
of asuitable target, and the absence of a capable guardian. The target does not necessarily
have to be a person, but instead could be buildings, cars, or other property and objects.
Similarly, a guardian may not just be a person, such as a police officer, security guard,
neighbour or even passer-by, but could also include closed circuit television surveillance
systems or a car alarm. The three components — offender, target and lack of a guardian —
must meet in time and space to provide the necessary chemistry for crime (Felson, 1998).
This meeting in time and space is not random but is dictated by the natural rhythm of

daily life — people going about their routine activities.

The routine activity approach does not just discuss offenders, targets and guardians, but
adds the important qualifiers. Not all offenders are likely offenders, as some will lack the
technical knowledge and skill to attack certain types of premises. Similarly, not all targets
are suitable targets, as they may be inaccessible (such as rooftop apartments) or too well
defended. Many objects and people can be guardians, however at different times they
may not be capable guardians. The routine activity approach can be summarised by the

following simple equation:

Likely offender + suitable target — capable guardian = crime opportunity Q)

The combination of these three components and their qualifiers then dictates that the risk
of crime changes over time with the movement of people throughout the daily routine
activities of their lives. In the context of the current research, as these meetings in space
and time are not random, where and when crime opportunities are most present can be

argued to be predictable.
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Since Cohen and Felson’s original work, Eck recast the concepts of the routine activity
approach into the crime triangle (Eck, 1995) (see Figure 2.2). The crime triangle
introduced ‘place’ as the third side of the triangle, with offenders and targets/victims
forming the other two sides. This recasting of the routine activity approach also led to
the expansion of the original concept of guardianship by introducing the general term of
controller. The concept of controllers is illustrated in Figure 2.2 by the positioning of
guardians in relation to victims and targets. Controllers were then added to the offender
and place sides of the crime triangle. For offenders, Felson (1995) introduced the concept
of handlers. A handler is a person, a third party, who can influence the behaviour of the
offender. For example, a parent may be a handler, as may a teacher or any other person
who knows or who could determine the name of the person, and whose respect the
offender might not wish to lose. For the place side of the crime triangle, the concept of
place managers was introduced (Eck, 1995). A place manager is someone who is able to

control a place even if they are not formally in charge of the area.

Figure 2.2. The crime triangle

In practice the crime triangle helps to focus analysis towards the causes of crime, from a
routine activity perspective, and the mechanisms that can influence those causes (Chainey
and Ratcliffe, 2005). The inclusion of controllers around the three sides of the crime
triangle then helps to illustrate that if criminal opportunity can be predicted and
theoretically explained, activities that involve one or more types of controllers could

counter and minimise the crime opportunity.
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The review of the routine activity approach, therefore, indicates that the crime
opportunities that emerge from the coming together of offenders, targets and guardians,
dictated by the rhythm of daily life, are predictable in space and time. Following this
predictable behaviour, the occurrence of crime could also be prevented: as Felson states
(1995: 55) ‘Crime opportunity is the least when targets are directly supervised by
guardians; offenders, by handlers; and places, by managers’. Therefore, if spatial analysis
techniques can observe geographical patterns in crime that can be explained in routine
activity terms, and are predicted to occur again because the chemistry of crime continues
to persist, the routine activity approach can also be used to help identify effective means

for removing these predictable criminal opportunities.

1. The spatial arrangement of attractive targets

Target suitability can change over space and time. While the routine activity approach

provides a general model with which to consider the likelihood of crime occurrence,

available targets can differ in their attractiveness to a criminal. Clarke’s (1999) CRAVED

summary of the basic characteristics of a suitable, or hot target provides a useful

framework for determining the types of property that are at more risk of being stolen:

e Concealable — things that can easily be concealed after being stolen are at more risk
of being stolen

e Removable — the easier a thing is to remove, the greater the chance it will be a hot
target

e Available — objects that are plentiful, visible and not secured are most at risk

e Valuable — the more valuable an item is deemed to be, the higher the risk of it being
a target for theft

e Enjoyable —the degree to which a product can be enjoyed marks its potential theft risk,
an indication of both its value to the offender and possibly its resale value on the
stolen goods market

e Disposable — many items are stolen so that they can be sold or traded to others,

therefore disposability is an important characteristic for stolen goods.

Ratcliffe (2002) showed how the ideas of CRAVED products and the routine activity
approach could help explain vehicle crime in Sydney, Australia. Ratcliffe’s analysis
identified that vehicle crime in the affluent suburbs near the beaches was highest during
the overnight periods and that expensive cars were the main targets. The targeting of

these cars fitted the CRAVED criteria, not only because the vehicles were valuable, but
41



also because few residents in these areas had private garages (making them easier to
remove). Vehicle crime was concentrated in the overnight period because the cars were
suitable targets and more available to thieves at night (the cars were being used by their
owners during the day, but were available on driveways or parked on the street at night),

and the night time hours provided for few capable guardians.

The opportunity for crime and the spatial arrangement of targets using the routine
activities and CRAVED principles suggests that if patterns from recorded crime data
identify hot targets, it is likely these targets will continue to be high risk items for theft
unless one or more features of their CRAVED profile are addressed. As the distribution
of these attractive targets is not random, identifying where they are most prevalent would
assist in predicting where crime is likely to occur. The challenge, therefore, that the
current research aims to address is whether spatial analytical techniques can reveal where
these CRAVED targets geographically concentrate. In addition, because the reason for
their attractiveness to theft can be explained, the areas where these attractive targets are
most prevalent is where prevention initiatives that counter their CRAVED appeal could
be of most benefit. Thinking in terms of these theoretical principles again illustrates the
important role these principles play in qualifying spatial predictions of crime and helping
direct the analyst towards potential ways the predicted crime activity can be countered.

1. Rational choice

The rational choice perspective (Clarke and Felson, 1993; Cornish and Clarke, 1986)
provides a framework to consider offender decision-making when a crime opportunity is
presented. It can also be used to consider likely strategies that will influence the decision-
making of the offender. Most offenders are known to make some sort of decision to
commit a crime by weighing up some of the pros and cons (i.e., the rewards, against the
chance of being caught) (Bernasco, 2010; Clarke and Felson, 1993; Cornish and Clarke,
1986). This suggests committing a crime is a (fairly) rational decision, and that an
offender will commit an offence while trying to achieve some sort of desire or goal
(Kennedy, 2009). The goal may be to derive personal gain, as in burglary or theft, or
personal pleasure as in the crime of joyriding. For example, Rengert and Wasilchick
noted after their interviews with 31 burglars, ‘the decision to commit burglaries was a
purposeful, rational decision in almost every case’ (2000: 60). If the legitimate means of

obtaining the offender’s goal are not available, then a decision may be made when a
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criminal opportunity becomes available. The decision may not be one that is fully

calculated, as offenders may not weigh up all of the consequences.

It is argued that criminal decision-making is in two parts. There is a long-term, multi-
stage decision to become generally involved in criminal activity (criminal involvement
decision) and a shorter-term, more immediate decision (the criminal event decision) to
grasp an opportunity that is presented (Cornish and Clarke, 1986). Factors such as drink,
drugs, peer-pressure, or limited education do mean that not all offenders’ decisions are
purely rational, resulting in what has been termed limited rationality, also known as
bounded rationality (Newman, 1997). These terms are an acceptance from researchers
that some offences are committed with less-than-military planning behind them.
Although the effects of drugs and alcohol can limit the rationality of offenders, the
immediate decision-making of a burglar (for example) is primarily based on the
environmental cues from the prospective target that can change from place to place: can
the offender be seen breaking in, is there anyone home, and is there an easy way into the

house (Cromwell et al., 1999)?

On its own, the theoretical principles of rational choice do not necessarily determine the
spatial patterning of crime. The main exception to this is at the micro geographical level
where the criminal event decision may lead to an offender choosing, for example, a
specific house to burgle over a neighbouring property. However, armed with an
understanding of the influence of routine activities, the chemistry for crime, the spatial
arrangement of targets, and the decision-making of an offender, a model for the

interaction between offenders and victims can now be described — crime pattern theory.

V. Crime pattern theory

While the routine activity approach provides a model to predict if a crime has all of the
chemistry to occur, and the rational choice perspective enables us to determine some of
the thinking behind an offender’s ultimate decision to commit a crime, Crime pattern
theory can help explain where and when crime is likely to occur. Crime pattern theory
helps to bring together the two areas of offender spatial distribution and offence spatial
distribution by examining the ‘relationship of the offence to the offender’s habitual use
of space’ (Bottoms and Wiles, 2002: 638). Crime pattern theory (sometimes also referred
to as offender search theory) suggests that offenders are influenced by the daily activities

and routines of their lives, so that even if they are searching for a criminal opportunity,
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they will tend to steer towards areas that are known to them (Brantingham and
Brantingham, 1984). In an offender’s day-to-day activities they will be watching for
targets that have no guardians or place managers. Two important theoretical concepts
associated with crime pattern theory are the least effort principle and the distinctions
between how crime opportunities concentrate. These two theoretical concepts are
considered after an explanation of the other main theoretical principles that are associated
with crime pattern theory.

Like offenders, we all have various routine activities in our lives. Most of us have to go
to work, college or school, and we usually go there from home. We may also go to shops
and restaurants, bars and cinemas. These places from which we carry out the majority of
activities are termed nodes, and connecting these nodes are pathways (the routes we take
between our nodes). These repetitive activities around our nodes and the journeys along
the pathways create within us a ‘cognitive map’ (Brantingham and Brantingham, 1984:
358) of places, routes and associations. Over time, these cognitive maps become a general
list of well-known areas in which we feel comfortable. This environment consists of not
just the physical things, such as buildings and train stations, but also the social and
economic infrastructure through which we pass. Cities become an urban mosaic to us,
places where we have no knowledge, interspersed with well-known places. We also
become familiar with the routes between these known areas. These islands of knowledge,
and the routes that link them, become our ‘awareness space’ (Brantingham and

Brantingham, 1981: 35; Rengert and Wasilchick, 2000: 61).

Like us, offenders also have awareness spaces. They also move between places such as
work, school, shops and home, and for many offenders, the search for criminal
opportunities takes place around these areas. Opportunities are not spaced evenly
throughout the landscape, and some offenders will only be able to take advantage of some
offence opportunities. Also, some of the awareness areas will not be conducive to crime
due to the presence of guardians or place managers. Therefore, for each offender we can
generate a model of awareness space and criminal opportunity space (with the implicit
absence of guardianship), and where they intersect we will find the areas of crime
occurrence. Crime pattern theory is, therefore, strongly connected with the interactions

of criminals and their physical and social environments.
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The theoretical principles of crime pattern theory were modelled by Brantingham and
Brantingham (1984) and an adaptation of the principles by Chainey and Ratcliffe (2005)
can be seen in Figure 2.3. This shows that awareness space consists mainly of the places
that are routinely frequented and the routes between those places. We may be more
familiar with distant places that we frequent regularly than local places just around the
corner that we never visit; therefore, proximity does not always mean the same thing as

familiarity.

Work or
School

Entertainment and
Shopping

[JAwareness space
[CJOpportunities

-Areas ofcrime

Friends occurrence

Figure 2.3. Hypothetical model of the creation of criminal occurrence space where
offender awareness space and opportunities coincide (Source: Chainey and Ratcliffe,
2005)

The adaptation by Chainey and Ratcliffe (2005) of the original Brantinghams’ model
shown in Figure 2.3 includes the location of friends as an influential component on
offender awareness space. Although for most people work or school play a significant
part in daily life, this can be less so for offenders. Costello and Wiles (2001) found that
many offenders in Sheffield who could have been in the workforce had never had full
time employment, while Rengert and Wasilchick (2006) reported interviews with a
number of offenders who had quit legitimate employment in order to pursue a
professional criminal career. These examples focused on residential burglars only,
however, it is likely that the attractiveness of both lifestyle and income of a life of crime
are greater than poorly-paid legitimate employment for many burglars, drug dealers and
robbers (Chainey and Ratcliffe, 2005). Having a place of work is not a necessary requisite

of forming an awareness space. The Sheffield study found that as many offenders had
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never been employed, they were often transient and heavily influenced by the location of

friends and criminal peers (Costello and Wiles 2001).

Figure 2.3 also shows that some opportunities are outside the awareness space of the
offender, and are essentially unavailable, while those opportunities within the awareness
space may have variable attractiveness. For example, for a burglar, all homes within their
awareness space are theoretically potential targets, but some are more attractive than
others. The areas with a greater proportion of targets that are potentially safer to burgle
and more profitable will form part of the offender’s search space — shown in Figure 2.3
as the opportunities area. Within this search space, certain targets will be more attractive
than others, and the micro-search for a particular target occurs in the actual area targeted.
Where an offender is most likely to commit crime based on their awareness space and the
distribution of opportunities will, therefore, be in the area shown in Figure 2.3 as the areas

of crime occurrence.

It should be noted that crime pattern theory is a general explanation of the crime patterns
of offenders, and there will always be exceptions. Studies have found that a few offenders
do not commit crime within their own awareness space, often as a result of the influence
by other people who direct the offender to new opportunities (Rengert and Wasilchick,
2000), or by peers who introduce the offender to new areas (Wiles and Costello, 2000).
When this happens, the spatial pattern of offences can be very different. However, for

the majority of offenders, the tendency is to offend in their awareness spaces.

There are several other reasons why offenders might commit offences in familiar areas.
It is helpful to know the layout of an area so if a quick getaway is required, the offender
can avoid running straight up a dead-end street. Secondly, it has been suggested that
offenders value feeling comfortable in an area and not feeling as if they stand out. This
feeling of comfort has been suggested as a reason why offenders who live in poor
neighbourhoods do not often commit offences in affluent areas (Rengert, 1989).
However, if a more affluent area immediately neighbours a poor area where offenders
reside, the familiarity between the borders of the two may result in higher crime rates
(Hirschfield et al., 1995). In a similar vein to the poor-rich distinction is the white-black
neighbourhood distinctions found in the burglary patterns of offenders in the United

States. A number of studies have noted that black offenders avoid white suburbs and
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white offenders steer clear of black neighbourhoods, each group feeling that the avoided
areas were unsafe (Rengert and Wasilchick, 2000; Wright and Decker, 1994).

An important concept that is central to crime pattern theory is the general theoretical
principle of least effort (Zipf, 1949). In least effort terms, physical space can be likened
to a friction surface in that it requires effort to cross it. The further the distance to travel,
the greater the cost in time and possibly money, with people usually exerting the
minimum effort possible to complete their tasks. The least effort principle, therefore, has
an influence on the spatial behaviour of offenders by explaining why there are spatial
limits to the geographical coverage of an offender’s awareness space and why an offender
chooses a particular location to commit crime. For example, the least effort principle
explains why in Figure 2.3 there are boundaries to the extent of the offender’s awareness

space and their knowledge of criminal opportunities.

While increased distance to commit crime increases the effort, it also increases the risk,
and increases the possibility that the offender will stray into an unknown area. This helps
explain why an offender’s desire for spatial exploration to extend criminal opportunities
is rare (Rossmo, 2000). Offenders are often constrained by time and financial resources
and lack the freedom to explore other opportunities or to search further afield for fresh
prospects. The least effort principle can also be used to explain that if opportunities for
an offender to commit crime are equally available in two areas, yet one area is much
further away, the offender is more likely to choose the nearest offence opportunity in
order to minimise their effort in crime commission (Chainey and Ratcliffe, 2005). This
theoretical concept of minimising the distance travelled to commit crime is supported by
a wealth of empirical research that has shown that the majority of offender journeys to
crime tend to be short (Chainey and Ratcliffe, 2005; Rossmo, 2000). For example, Wiles
and Costello (2001) showed that offenders of burglaries to residential properties in
Sheffield on average travelled 1.9 miles from their home to their crimes. The least effort
principle is, therefore, a useful mechanism for thinking about the geographical extent of
an offender’s spatial behaviour and the crime patterns that may result. In spatial crime
prediction terms it can lead the analyst to hypothesising that the person who committed
an offence is likely to be local and familiar with the area, or in aggregate form, that the
many offences committed by individuals in the same area are most likely to involve

offenders who live close to or have a good degree of familiarity with this area.
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An offender’s choice of location to commit a crime and the patterns that result can
additionally be explained in terms of how opportunities to commit crime concentrate (i.e.,
how the opportunity space, shown in Figure 2.3, forms). The manner in which crime
opportunities concentrate can be explained in two main ways - crime generators and crime
attractors. A crime generator is a particular area where large numbers of people or other
targets are drawn for reasons unrelated to criminal motivation (Brantingham and
Brantingham, 1995). These places are crime generators because they provide times and
places where there are many opportunities for offenders. For example, busy train stations
and shopping areas may experience high levels of crime due principally to the large
number of place users and targets at these locations (Clarke and Eck, 2003). By
comparison, crime attractors are places which create criminal opportunities and in doing
so, attract motivated offenders (Brantingham and Brantingham, 1995). The lure of a
known criminal opportunity draws offenders to the area, enticing them with the
knowledge that the area has a reputation for a particular type, or types of illicit
opportunity. For example, areas close to schools provide an attractive location for street
robbers, looking to prey on lone school children on their walk home and robbing them of

their smartphone.

Crime generators and crime attractors, therefore, offer definitions to distinguish between
areas where crime is likely to concentrate. They are typically used in a meso and micro
geographic sense to explain that the high levels of crime are due to many targets being
available or specific opportunities exist. However, they do not necessarily explain in an
overarching theoretical sense the reasons why potential targets and opportunities can be
found at certain locations. Additionally, the focus of crime pattern theory is towards
explaining the criminal landscape from an offending viewpoint, rather than from a risk of
victimisation perspective. To some degree, the spatial arrangement of attractive targets
provides some explanation by considering where hot targets are concentrated, but again
this does not necessarily explain why there are so many targets in crime generator areas,
or why there are specific opportunities to target CRAVED items in crime attractor areas.
In addition, a hot target explanation is only suitable for theft offences and not for offences
against the person, such as assault. It is, therefore, suggested that a gap may exist in
existing environmental criminology theory for explaining why certain areas experience

high levels of crime.
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A complementary principle to the existing environmental criminology theory that the
current research considers is that of geographic areas exhibiting favourable conditions
where many suitable or specific victims or targets concentrate. It is argued that this
theoretical consideration of favourable conditions for victimisation could not only be used
to help explain high levels of crime in meso (street level) and micro (specific locations)
geographic settings, but also at the macro (neighbourhood) geographic level. The current
research examines this possible theoretical gap further, and identifies whether an
expansion to existing environmental criminology theory is required that may help explain
why certain places possess favourable conditions for high levels of crime. In the first
instance this requires a detailed examination of crime patterns to identify if existing theory
Is sufficient for explaining the spatial patterns of crime and explaining where crime is

predicted to occur in the future.

Crime pattern theory provides a model to help explain why an offender chooses a
particular location to commit a crime. It illustrates that this decision-making is informed
by the offender’s awareness of the area and the familiarity of opportunities, and is often
influenced by their previous experience of crime commission. Crime pattern theory,
therefore, provides a further theoretical explanation for why spatial patterns of crime are
not random and can be predicted. While its theoretical focus is on explaining the
geographical patterning of crime committed by individual offenders, the aggregation of
many offenders being attracted to similar targets that are spatially concentrated means the
theory can also help explain these aggregate geographical patterns of crime. The
challenge for the current research is to ensure that spatial analysis techniques can
accurately identify these aggregate geographical patterns. Crime pattern theory can then
be used as a potential source for explaining why crime occurs in these locations and why

crime is likely to continue to occur in these locations.

2.2.4. Initial conclusions and gaps in the existing research: the contribution of
spatial theories of crime for spatial crime prediction

Crime pattern theory and the least effort principle provide a framework for helping to

understand the criminal spatial landscape. The awareness spaces referred to in crime

pattern theory are made up of different structures which provide a changing pattern of

opportunities to commit offences depending on the environmental backcloth — the social,

psychological, economic, physical and temporal mosaic of the offender passing through

the landscape. These different structures change across space and affect the type of
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criminal opportunities that are available to the motivated offender. The motivations of
the offender are, though, bounded by the rationality in their decision-making. Offenders
prefer to commit offences in areas where they are comfortable, and by their preference to
minimise effort. The theoretical explanations for the criminal spatial landscape,
therefore, provide the source for helping to interpret the spatial patterns observed in crime
data and predict why crime may occur in certain locations. The spatial theories of crime
from the GIS School do, though, mostly refer to explaining the actions of individuals.
However, the aggregation of this theorised individual behaviour can be used to inform
the predictable criminal spatial behaviour of many offenders. Additionally, while the
explanations for the non-random nature to the geographic distribution of crime that have
developed from the Cartographic and Chicago Schools do not explain the individual
actions of offenders and the characteristics of suitable targets, there is potential that these
macro-level explanations can contribute to informing spatial crime prediction at the

neighbourhood level.

Concepts such as the routine activity approach, rational choice, crime pattern theory, the
least effort principle, crime attractors and crime generators are valuable in helping to
conceptualise the underlying criminal landscape and the spatial decision-making
processes of offenders. However, a theoretical gap may currently exist in environmental
criminology for explaining why certain places experience favourable conditions for high
levels of victimisation. This includes explaining these favourable conditions at the micro,
meso and macro geographic levels. The current research examines whether this
theoretical gap exists in environmental criminology and critiques how the contribution of
a theoretical principle for explaining why places experience favourable conditions for

crime can inform spatial crime prediction.

The inherent spatial quality to crime, and the knowledge that crime tends to occur at
predictable locations rather than being randomly distributed, now directs the research
attention towards identifying analytical techniques that can identify and help interpret
these spatial patterns. These analytical techniques include hotspot analysis, new
predictive mapping techniques such as prospective mapping, and spatial regression. The
current research examines these spatial analysis techniques, qualifies their application and
whether they provide an accurate means of predicting where crime is likely to occur. The
following section reviews each technique and illustrates how, to date, they have been
applied in policing and public safety.
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2.3.  Crime hotspots

This section defines what a crime hotspot is, describes the role of hotspot analysis in
policing and public safety, and introduces the commonly used hotspot analysis
techniques. The section also examines whether these hotspot analysis techniques have
been subject to appropriate examination of how accurate they are for predicting spatial

patterns of crime.

2.3.1. The definition of a hotspot

A hotspot is defined as an area of high concentration of crime relative to the distribution
of crime across the entire study area (Chainey and Ratcliffe, 2005; Home Office, 2005;
Sherman, 2009). In these terms, hotspots can exist at different geographic scales of
interest, whether it is at the city level for examining localities where crime is highest, or
at a local residential housing estate level, identifying particular streets or clusters of
buildings where crime is seen to highly concentrate.

2.3.2. The role of hotspot analysis for helping to tackle crime problems

The mapping of hotspots of crime has become common practice in police agencies across
the world and has been applied to many forms of crime. For example, hotspot mapping
has been used in the analysis of residential burglary, street robbery and vehicle crime in
London (Eck et al., 2005), gang-related murders in Belo Horizonte, Brazil (Beato, 2008),
violent crime in Philadelphia (Ratcliffe et al., 2011), and street assaults in Melbourne,
Australia (Mashford, 2008).

The primary purpose of hotspot analysis is to visually identify where crime tends to be
highest, and from this aid decision-making on where to target and deploy resources to
tackle the crime problem. The ability to be able to identify where crime concentrates, and
direct law enforcement and crime prevention activity to these areas, is used routinely in
policing and public safety for helping to address crime problems. Examples include the
following:

e Hotspot analysis is routinely used in policing to support the operational briefing of
police patrols (Goldsmith et al., 2000; Harries, 1999; Home Office, 2005; LaVigne
and Wartell, 1998, 1999; Osborne and Wernicke, 2003). Hough and Tilley (1998)
illustrate an example of hotspot maps that were used in police patrol briefings by the

Metropolitan Police in the London Borough of Brent. These hotspot maps identified
51



recent events (i.e., in the last four days) against a backdrop (hotspot map) of the
distribution of crime over the last month.

A more focused use of hotspot analysis for informing the targeting of police patrols
is hotspot policing. This involves the dedicated targeting of police patrols to high
crime locations (Sherman et al., 1989; Weisburd and Braga, 2006) where the patrols
typically remain stationary for 15 to 20 minutes (and returning each hour for the
duration when crime is determined to be high). This patrolling approach aims to
create a visible police presence that emphasises a higher certainty of detection if an
offender decides to attempt an act of crime (Kennedy, 2009). In the first documented
example of hotspot policing in Minneapolis, USA, doubling the number of patrols at
hotspots reduced crime by 6-13%, and disorder by 50% (Braga, 2007). In a more
recent study of hotspot policing tactics in Philadelphia, targeted patrols reduced
violent crime by 23% (Ratcliffe et al., 2011).

The use of intelligence products has become a key component in modern policing
(Chainey, 2012; Chainey and Chapman, 2013). The production of intelligence,
requiring the gathering of information and its interpretation, is fundamental to the
intelligence-led policing approach, with its use at the core of informing police
business and decision-making (Ratcliffe, 2008). Intelligence products include tactical
assessments for informing the regular briefing, tasking and coordination of front line
resources; problem profiles that aim to help better understand particular crime
problems; and strategic intelligence assessments that identify the key issues and
threats in a police command area to determine the strategic priorities that require
specific attention. Hotspot analysis is a common feature within these products,
informing operational tactics, helping to identify persistent problem areas and support
a strategic targeted approach for crime reduction (Chainey and Ratcliffe, 2005; Clarke
and Eck, 2003; Home Office, 2005). An example of hotspot analysis that was used
to assist the strategic targeting of crime reduction initiatives was illustrated by
Chainey and Chapman (2013) for Newcastle-upon-Tyne. This example showed how
hotspot analysis of youth-related anti-social behaviour assisted in identifying where
to focus strategic interventions for tackling this issue in certain persistently
problematic areas.

Hotspot analysis has also been a common feature in Compstat-style performance
meetings (Chainey and Ratcliffe, 2005; Harries, 1999; McDonald, 2002; Schick,
2004; Walsh, 2001). Compstat is a policing management meeting process, with

meetings held regularly (from every week to every month depending on adoption by
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police agency) to inform on recent events and trends, determine future activity, and
build in a process of accountability to these activities. The use of hotspot analysis is
a regular feature in these meetings for helping to review performance and determine
future actions. Figure 2.4 shows an example of the use of hotspot mapping by Thames
Valley Police in their Compstat meeting. The meeting is chaired by the Chief
Constable and is attended by his deputies and police commanders who are each
responsible for policing and crime reduction in one of Thames Valley’s ten command

areas (Home Office, 2005).

Hotspot analysis has therefore become a regular application in policing and public safety,
helping determine where crime may happen next by using data from the past to inform
future actions. In this sense, it acts as a basic technique for predicting where crime may
occur, using the premise that retrospective patterns of crime are a useful indicator of
future patterns. Similar applications of hotspot analysis have been used in epidemiology,
using data on where incidents of disease have occurred in order to target (and hence
predict) where other incidents of disease are likely to occur in the future (e.g., Atkinson
and Molesworth, 2000).
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Figure 2.4. Hotspot analysis used in Thames Valley Police’s Compstat meeting

53



2.3.3. Common approaches to crime hotspot analysis

There are many mapping techniques that can be used for identifying patterns of crime.
These techniques could be as straightforward as representing each crime event as a point
and observing the geographic distribution of these points; utilising functions within a GIS
for thematically shading administrative areas (e.g., Census zones or police beats); or
representing the distribution of crime as a continuous surface that relates to the volumetric
densities of the geographic distribution of crime.

Identifying hotspots using point mapping has become outdated since the proliferation of
GIS software and the increasing sophistication of mapping techniques. There are four
techniques for hotspot mapping that have been regularly used since the widespread
adoption of desktop mapping software tools and GIS (Chainey and Ratcliffe, 2005).
These are the following:

e Spatial ellipses

e Thematic mapping of administrative areas

e Thematic mapping of grids, and

e Kernel density estimation

In the next section, each of these four commonly used hotspot mapping techniques are
reviewed to illustrate their application and examine whether they have been subject to

research that has measured their accuracy for predicting spatial patterns of crime.

. Spatial ellipses

One of the earliest crime mapping software applications that became widely available to
practitioners for hotspot analysis was Spatial and Temporal Analysis of Crime (STAC)
(Ilinois Criminal Justice Information Authority, 1996). STAC is not a GIS, but instead
acts as an aid to researchers who already have a GIS or desktop mapping capability.
STAC is a spatial tool to find and examine hotspot areas within the study area. STAC
works by first finding the densest concentration of points on the map (hot clusters), and
then fitting a standard deviational ellipse to each one. The ellipses themselves indicate

through their size and alignment the nature of the underlying crime clusters.

Examples demonstrating the use of STAC include Martin et al. (1998) in their study of
crime patterns in Detroit; Bowers and Hirschfield (1999) who explored links between

crime and disadvantage in North West England; Block and Block (2000) who analysed
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hotspots around rapid transit stations in Chicago; and Langworthy and Jefferis (2000)
who examined the influence of the school holiday period on the spatial distribution of
crime hotspots in the Bronx, New York. Baltimore County Police Department has also

used STAC extensively to analyse a range of crime types (Block and Perry, 1993).

Reported benefits of using STAC include that it derives hotspots without relying on
defined boundaries such as census units or police administrative boundaries; that it
requires few parameters; and that it is compatible with most GIS applications (Martin et
al., 1998). However, STAC has attracted criticism for several reasons. Firstly, it is
preferable for the user to be well versed in the routines at work within the software. For
the novice, there is little counsel on appropriate parameter values and this leads to the
introduction of ambiguity and increasing variability in the results (Eck et al., 2005).
Secondly, crime hotspots do not naturally form into convenient ellipses, and thus STAC
hotspots do not represent the actual spatial distribution of crime and can often mislead
(Eck et al., 2005; Ratcliffe and McCullagh, 2001). Finally, the visualisation of the STAC-
produced results negates any comparison with events that do not fall into the spatial
ellipses (Eck et al., 2005). An example of STAC-produced spatial ellipses is shown in
Figure 2.5b. To date, the STAC technique of representing hotspots as spatial ellipses has
not undergone any analysis that determines how accurate it is for predicting spatial

patterns of crime?.

1. Thematic mapping of geographic boundary areas

A widely used approach for representing spatial distributions of crime events is
geographic boundary thematic mapping, or choropleth mapping (Home Office, 2001).
Boundary areas that are used for this type of thematic mapping are usually arbitrarily
defined for administrative or political use. For example, geographic boundary areas can
be police beats, census output areas, wards or districts. Offences as points on a map can
be aggregated to these geographic unit areas and then shaded in accordance with the
number of crimes that fall within them. Williamson et al. (2001) assert that maps created
in this way are quick to produce and require little technical expertise to interpret.
Furthermore, this technique enables the user to quickly determine which areas have a high

2 Results from the current research that examine STAC and other commonly used hotspot mapping
techniques have already been published in the Security Journal: Chainey, S.P., Tompson, L., and Uhlig, S.
(2008), “The utility of hotspot mapping for predicting spatial patterns of crime”, Security Journal 21:1-2..
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incidence of crime, and allows further diagnosis of the problem by zeroing in on these
areas. In addition, census areas can easily be linked with other data sources, such as

population, to calculate a crime rate, so increasing the hotspot map’s versatility for

analysis.
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Figure 2.5. Common hotspot mapping techniques. (a) Point mapping, (b) standard
deviational spatial ellipses, (c) thematic mapping of administrative geographic areas, (d)

grid thematic mapping, and (e) kernel density estimation
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Due to the varying size and shape of most geographical boundaries, thematic shading can
beguile the map reader into identifying the existence of the highest crime concentrations
(Eck et al., 2005). Hence, thematic mapping of geographic boundary areas can fail to
reveal patterns across and within the geographical division of the boundary areas
(Chainey and Ratcliffe, 2005). Also, as with all mapping reliant on defined geographical
boundaries, the problem of the Modifiable Areal Unit Problem (MAUP - Openshaw,
1984) produces further complications. This is where changes in the boundaries

themselves can directly affect the patterns shown on the map.

Thematic mapping of boundary areas continues to see widespread application, such as
comparing the different volumes of unique and repeat burglaries across a study area’s
census zones (Ratcliffe and McCullagh, 2001), comparing vehicle theft in relation to land
use in Overland Park, Kansas (Harries, 1999), and analysing and presenting crime
patterns across partnership administrative zones (Chainey, 2001; Home Office, 2005).
An example of a thematic map, generated for census output areas, is shown in Figure
2.5c. To date, the thematic mapping of administrative boundary areas technique for
identifying hotspots has not undergone any analysis that determines how accurate it is for

predicting spatial patterns of crime.

Il. Grid thematic mapping

In order to address the problems associated with different sizes and shapes of
geographical regions, uniform grids (or quadrats) can be drawn in a GIS as a layer over
the study area and thematically shaded. Therefore, all areas used for thematic shading
are of consistent dimensions and are comparable, assisting the quick and easy
identification of hotspots. Bowers et al. (2001) used this method as a component of a
GIS-based database application set up to identify vulnerable residences where target
hardening was then implemented. LeBeau (2001) also found this technique useful when
mapping the volume of emergency calls and violent offences per square mile in North

Carolina.

The grid thematic mapping approach does have some limitations. The use of grids still
restricts how the hotspots can be displayed. Spatial detail within and across each quadrat
is correspondingly lost because the crime events have to conform to one specific quadrat,
and this can then lead to inaccurate interpretation by the map user. Additionally, many

comments have been made about the blocky appearance of this technique (Chainey and
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Ratcliffe, 2005; Eck et al., 2005; Home Office, 2001), which is affected by grid cell size.
The solution, reducing the size of each cell, can destroy the visual interpretation of the
thematic map by making it look specklely and can fail to provide any useful information
about where crime clusters (Chainey and Ratcliffe, 2005). Finally, grid thematic mapping
suffers from the same MAUP problems outlined above (Bailey and Gatrell, 1995). An
example of a grid thematic map is shown in Figure 2.5d. To date, the thematic mapping
of grid cells technique for identifying hotspots has not undergone any analysis that

determines how accurate it is for predicting spatial patterns of crime.

V. Kernel density estimation

Kernel density estimation (KDE) is regarded as the most suitable of the common hotspot
mapping techniques for visualising crime data (Chainey and Ratcliffe, 2005; Chainey et
al., 2002; Eck et al., 2005; McGuire and Williamson, 1999; Williamson et al., 1999;
Williamson et al., 2001;). KDE is an increasingly popular method due to its growing
availability in many GIS software?, its perceived good accuracy of hotspot identification,
and the aesthetic look of the resulting map in comparison to other techniques (Chainey
and Ratcliffe, 2005; Eck et al., 2005; Jefferis, 1999). Point data (i.e., recorded crime
offences) are aggregated within a user-specified search radius and a continuous surface
that represents the density of the points across the study area is calculated. A smooth
surface map is produced, showing the variation of crime density across the study area,
with no need to conform to geometric shapes such as ellipses or other geographic units.
There is flexibility when setting parameters such as the grid cell size and bandwidth size
(search radius); however despite many useful recommendations (see Chainey and
Ratcliffe, 2005; Eck et al., 2005, Ratcliffe and McCullagh, 1999), there is no universal
doctrine on how to set these parameters and in what circumstances. Examples of the use
of KDE are now widespread, with popular crime mapping texts showing many examples
of its use (see Chainey and Ratcliffe, 2005; Eck et al., 2005; Goldsmith, et al; 2000,
Harries, 1999).

KDE is not without its faults. Eck et al. (2005) highlight that the choice of thematic range
to use still presents itself as a problem as agencies fail to question the validity or statistical

3 Kernel density estimation is available in Maplnfo via the add-ons Hotspot Detective and Hotspot Gridder,
and in ArcGIS via the ESRI extensions Crime Analyst, Spatial Analysis and the free extension Hawth’s
Tools. KDE is also available in free spatial analysis tools such as GeoDa.
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robustness of the produced map, instead being caught in its visual lure. This largely
affects how hotspots are identified and increases the variation of maps fashioned from the
same data. There are also concerns that small amounts of data can misinform the map
reader (Home Office, 2001). Nevertheless, the KDE technique has been in vogue for
several years, not only because it is visually appealing but also because it can be applied
by using a series of easy to follow systematic guiding principles (Chainey and Ratcliffe,
2005; Chainey et al., 2002; Eck et al., 2005; Williamson et al., 1999). An example of a

KDE crime hotspot map is shown in Figure 2.5e.

Similar to spatial ellipses, thematic mapping of administrative areas and the thematic
mapping of grid cells, the KDE technique for mapping hotspots has not been subject to
any detailed research that measures its performance in predicting spatial patterns of crime.
Johnson et al. (2008b) did, however, compare the spatial prediction performance of KDE
to a prospective mapping approach (the prospective mapping approach is discussed in
section 2.5.4) but did not consider how the cell size or bandwidth size, and the
retrospective period of crime data used to create KDE mapping outputs influenced their

results.

2.3.4. Initial conclusions and gaps in the existing research: the accuracy of hotspot
mapping techniques for predicting spatial patterns of crime
Theoretical principles indicate that crime concentrates at certain places, with the review
in this chapter of spatial analytical techniques for identifying these hotspots of crime
illustrating examples of these non-random spatial patterns. The application of hotspot
mapping has been used to support a range of practices in policing and crime prevention —
from supporting the targeting of police patrols, to being a stage in the analytical process
of developing intelligence products that can help determine a range of responses for these
areas. These examples illustrate that hotspot analysis forms a basic method of crime
prediction — using data on retrospective crime events to determine where crime may take
place in the future. However, to date, very little research has been conducted that
measures how accurate these hotspot mapping techniques are for predicting spatial
patterns of crime. In addition, each technique requires the analyst to enter certain input
parameters that have an influence on the mapping output that is generated. The current
research aims to fill this gap by completing a comprehensive examination of these
common hotspot mapping techniques to determine how accurate they are in predicting

spatial patterns of crime.
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2.4.  Spatial significance mapping

Maps generated using KDE and the other common hotspot mapping methods are useful
for showing where crime concentrates but may fail to unambiguously determine what is
hot (in hotspot analysis terms) from what is not hot. That is, they may fail in separating
the significant spatial concentrations of crime from those spatial distributions of less
interest or from random variation. This weakness in failing to specifically determine the
areas that are hot on a hotspot map has led in recent years to practitioner interest in the
use of techniques that provide a more robust statistical assessment of the spatial
distribution of crime by determining if the patterns observed are statistically significant.
These spatial analysis techniques include local indicators of spatial association, often
referred to as LISA statistics. The process of testing whether the spatial concentration of
crime is unusual (i.e., is statistically significant) offers promise for building upon the
current commonly used hotspot analysis techniques by statistically determining the
hotspots and improving the prediction of where crime is likely to occur.

LISA statistics include Local Moran’s I, Local Geary’s C and the Gi* statistic. These
techniques identify the association between a single point and its neighbours up to a
specified distance from the point (Anselin, 1995). These statistics, therefore, provide an
indication of the extent to which the value of an observation is similar or different to its
neighbouring observations. Each technique requires data to be aggregated to some form
of geographic unit (e.g., census output areas or grids) and a spatial neighbourhood for
each of these geographic units to be defined. This could be units that are adjacent, units
within a specified radius, or all other geographic units that are negatively weighted by the
distance from the observation zone. Each of these statistics can be used to assess the local

association in crime data, but they do so in different ways.

The following section reviews the use of Local Moran’s I, Local Geary’s C and the Gi*
statistic to crime data and examines if each have been subject to research that identifies
how they could improve on the common hotspot analysis techniques for predicting spatial

patterns of crime.

2.4.1. Local Moran’s I and Local Geary’s C
Local Moran’s I and Local Geary’s C are variants of their global spatial autocorrelation

equivalents. The global Moran’s I statistic compares the similarity in values between
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each location and its near neighbours (Eck et al., 2005; Levine, 2010; O’Sullivan and
Unwin, 2003). Where values in a geographic unit are high and are surrounded by other
geographic units with similarly high values, positive spatial autocorrelation exists. If,
however, areas with low values are surrounded by high crime areas and high crime areas
are surrounded by spatial units with little crime, the series would display negative spatial
autocorrelation. Geary’s C statistic is a measure of the deviations in intensity values of
each point with one another. Similar to Moran’s I, the results from a Geary’s C test
determine if there is evidence of positive spatial autocorrelation or negative spatial
autocorrelation. The local variants of Moran’s I and Geary’s C effectively apply each
measure to each local spatial unit in comparison to its neighbours. The local variants can
be used to determine for each observation the extent to which there is spatial association
(i.e., clustering of similar values around that observation). Both Local Moran’s I and
Local Geary’s C provide a means for testing the significance of the observed
concentration. Although an exact test of significance is not possible, high positive or high
negative standardized scores of | and C are taken as indicators of similarity or
dissimilarity (Levine, 2010).
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Figure 2.6. Local Moran’s I significant spatial clusters in robbery frequency change from

2005 to 2006 by police sector in Philadelphia (Source: Ratcliffe, 2010)

The use of Local Moran’s I for crime analysis has been demonstrated by Ratcliffe (2010)
to analyse the spatial dispersion of robbery in Philadelphia (see Figure 2.6). This
application showed those areas where the emerging pattern of robberies was similar
between neighbourhoods, both in terms of where robberies had increased (high areas
surrounded by high areas) and where they had reduced (low areas surrounded by low
areas). Apart from this example, Local Moran’s I and Local Geary’s C have not been
applied to identifying hotspots of crime. In addition, although Ratcliffe’s example
showed where robberies in Philadelphia had recently emerged, it did not go further by
investigating whether these areas were where robberies were predicted to occur in the
future. This suggests there would be value in examining further whether Local Moran’s
I and Local Geary’s C are accurate in identifying hotspots of crime and predicting where
crime may occur. The current research examines the technical application of each test in

a subsequent chapter of this thesis.

2.4.2. Gi* statistic

The Gi* (pronounced G-i-star) statistic is a measure that compares local averages to
global averages in order to identify those areas that are significantly different in
comparison to what is generally observed across the whole study area (Ord and Getis,
1995). Using data that have been aggregated into geographic units (e.g., grid cells or
census areas), the sum of values for the unit of interest and its neighbours within a user
defined radius is compared to all the values in the geographic units for the entire study
area. If local spatial association exists, it will be exhibited by a spatial clustering of high
or low values. When there is a clustering of high values, the Gi* values will be positive.
Low values will yield a negative Gi* value (Anselin, 1995; Chainey and Ratcliffe, 2005;
Getis and Ord, 1996; Ord and Getis, 1995). The output generated from the Gi* statistic
comprises standardised Z scores which can be used to determine whether the Gi* value

for each cell of interest is statistically significant.

The use of the Gi* statistic was demonstrated by Eck et al. (2005) in their study
identifying hotspots of robbery in the London Borough of Hackney (see Figure 2.7). This
example showed that the Gi* mapping output identified very similar areas to a KDE

hotspot analysis of the same robbery data, but showed potential in the use of the Gi*
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statistic for defining hotspot areas in spatial significance terms. Eck et al.’s (2005)
research on the Gi* statistic did not go further by investigating whether the robbery
hotspots that were identified were where robberies also occurred in the future. This
suggests there would be value in examining further whether the Gi* statistic is accurate
in identifying hotspots of crime and predicting where crime may occur. The current
research examines the technical application of the Gi* statistic in subsequent sections of
this thesis.

I Greater than 5 mean
B 4 mean to 5 mean
[ 3 mean to 4 mean
[] 2 mean to 3 mean
[ Mean to 2 mean

[ 0to mean

Figure 2.7. A comparison between KDE hotspots (shown on the left) and Gi* hotspots
(shown in grey overlaid on the KDE hotspot output on the right) of robbery in the London
Borough of Hackney (Source: Eck et al., 2005)

2.4.3. Initial conclusions and gaps in the existing research: the use of spatial
significance mapping for predicting spatial patterns of crime

Local Moran’s I, Local Geary’s C and the Gi* statistic offer the potential to identify more

robustly (in a statistical sense) where hotspots occur, to define the spatial extent of hot

areas, and in turn to predict where crime may occur in the future. That is, Local Moran’s

I, Local Geary’s C and the Gi* statistic may be better than many of the commonly used

hotspot mapping methods used in policing and public safety for determining where to
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target resources. The current research examines Local Moran’s I, Local Geary’s C and
the Gi* statistic to determine whether they offer improvements to common hotspot
mapping techniques for identifying hotspots and predicting where crime may occur in the

future.

2.5.  New developments in risk and predictive mapping

In recent years, a number of new predictive crime mapping techniques (also referred to
as predictive policing techniques) have been introduced. These include software products
developed by IBM (IBM, 2010a) and PredPol (PredPol, 2013a), prospective mapping
developed by Johnson and Bowers at University College London (Bowers et al., 2004;
Johnson and Bowers, 2004a), and Risk Terrain Modelling (RTM) developed by
researchers at Rutgers University in the USA (Kennedy et al., 2011). The typical
marketing message that supports these predictive mapping techniques is that they identify
where crime is most likely to occur in the future, and criticise hotspot analysis as only
looking back at the past. However, these new techniques have been subject to very little
critical assessment that examines how accurate they are in predicting spatial patterns of
crime. The current research does not aim to assess metrically the prediction performance
of all the new predictive mapping techniques, but by conducting an analysis of the
prediction performance of hotspot mapping techniques it will establish a benchmark
against which new predictive mapping techniques can be compared. In the current
research, only a short review of RTM is included in the section that follows because its
application did not emerge until the latter stages of this PhD and, to date, there is little
published research available on how it can be practically applied to support spatial crime
prediction. A detailed metric examination of the spatial prediction accuracy of RTM is

though a recommended area for future research.

A short review of the main predictive software solutions follow to help illustrate and
critique the foundations on which they are based. The use of repeat and near repeat
patterns of crime for predicting where crime is likely to occur receives more detailed
treatment. This detailed treatment is because the analysis of repeats and near repeats does
not require expensive software solutions, theoretical developments explain the patterns
of repeats and near repeats, and patterns of repeats and near repeats have been shown to
be good predictors of crime (Bowers et al., 2004; Chainey, 2012b; Haberman and
Ratcliffe, 2012; Johnson et al., 2008b).
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2.5.1. IBM predictive analytics

IBM’s predictive analytics software analyses multiple data sources to monitor, measure
and predict when and where crime is most likely to occur. The software is based on
combining IBM’s SPSS Statistics software with ESRI ArcGIS. It primarily uses recorded
crime data and calls for service data, but can also include any other recorded information
that the user has the desire to include in the model. The first stage in adopting this IBM
solution is for data to be passed through the IBM SPSS Modeler software that uses
‘sophisticated statistical, data exploration and machine-learning techniques ... to help
agencies uncover hidden patterns and trends’ (IBM, 2010a: 1) and determine the best
model that fits the data. The model is then used with IBM SPSS Statistics and ArcGIS to
produce ‘crime forecast maps ... that show the likely crime rate in different areas’ (IBM,
2010a: 3). IBM claim their software has helped reduce crime in Memphis, Tennessee, by
more than 30%, and by 35% in Lancaster, Los Angeles. The Lancaster IBM application
cost $46,000 in the first year, $6,000 for each subsequent year, plus an additional $24,000
in training and consultancy (IBM, 2010b). Other than IBMs promotional material about
their software and its apparent impact, little else has been published on the data it uses,
the modelling techniques it applies, and the outputs it generates. No independent
evaluation of the software’s prediction accuracy has been conducted, nor are there any

results that illustrate its prediction accuracy in comparison to other mapping techniques.

2.5.2. PredPol

Perhaps the most aggressively marketed predictive mapping tool is PredPol. The PredPol
tool was developed over the course of six years by a team of mathematicians and social
scientists at the University of California, Los Angeles, Santa Clara University, and
University of California, Irvine in collaboration with crime analysts and police officers at
the Los Angeles and Santa Cruz Police Departments. The principle aim of PredPol is to
‘place officers at the right time and location to give them the best chance of preventing
crime’ (PredPol, 2013a). Based on models for predicting aftershocks from earthquakes,
the predictions the PredPol software generates use a combination of historical patterns of
crime with more recent information on crime incidents. The inclusion of recent incidents
in the PredPol prediction procedure is based on the empirical finding that earthquake
aftershocks often occur close in space and time to previous earthquake events (PredPol,
2013b). This concept is similar to that of repeat and near repeat victimisation that is
discussed in the following section (section 2.5.3). ‘In contrast to technology that simply

maps past crime data, PredPol applies advanced mathematics and adaptive computer
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learning. It has resulted in predictions twice as accurate as those made through existing

best practices by building on the knowledge and experience that already exists.” (PredPol,
2013b).

PredPol predicts where crimes are likely to occur in prediction boxes that are 500 feet by
500 feet in size. Officers are briefed before they go out on patrol about the highest-
probability hotspots for that day and are told to devote extra attention to those areas. The
cost for PredPol is not clear, however, the author has learned that for a medium sized UK

police force the cost of the PredPol solution would be approximately £200,000.

Since implementing PredPol in Santa Clara, there has been a decrease in crime, including
a reduction in burglaries of 27%. In the Los Angeles’ Foothill Division, crime reduced
by 13% in the four months following the rollout of PredPol compared to an increase of
0.4% in the rest of the city where PredPol had not been implemented (PredPol, 2013c).
These assessments of changes in crime have been conducted by the police departments
and PredPol developers themselves rather than being subject to independent scrutiny.
Similarly, the claim that PredPol predictions are twice as accurate as other forms of
hotspot analysis has been subject to some criticism by the International Association of
Crime Analysts (IACA, 2013), which has stated these claims as being over exaggerated,
non-representative of the hotspot mapping output generated by police analysts, and

misleading.

2.5.3. Risk Terrain Modelling

Another developing area in predicting where crime is likely to happen in the future has
been with Risk Terrain Modelling (RTM) (Kennedy et al., 2011). This approach uses a
number of variables to generate a composite risk map as an aid to hotspot analysis.
However, this method leaves it to researchers to choose variables they believe are suitable
for determining crime risk, rather than being directed by a statistical procedure. In
addition, the RTM approach assumes that each variable selected by the researcher has
equal weight across space, rather than recognising that the explanatory (and causal)
influence that each variable has is likely to vary across space. To date, despite its growing
popularity, RTM has not been subject to any metric examination of how it performs in

predicting where crime is likely to occur in comparison to hotspot analysis techniques.

2.5.4. Predicting crime using the patterning of repeat and near repeat victimisation
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Perhaps the most utilised concept that has aimed to improve the spatial predictions of
crime is repeat victimisation and near repeat victimisation. Repeat victimisation is the
concept of a person or building being subject to victimisation a number of times.
Research into repeat victimisation has shown that, overall, risk doubles following a
victimisation, and that repeats occur swiftly after the initial incident (Farrell and Pease,
1993; Polivi et al., 1991). Interviews with offenders have also supported evident patterns
of repeat victimisation, with Ericsson (1995), for example, finding that 76% of offenders

interviewed returned to a number of houses to burgle them 2-5 times.

Near repeat victimisation is the observed finding that targets near to a recent incident are
also at a heightened risk of being victimised. While this concept was initially developed
from analysis of residential burglary (Johnson and Bowers, 2004a), near repeat patterns
have also been found for vehicle crime, violent crime, pedal cycle theft and shootings
(Haberman and Ratcliffe, 2012). The level of risk to neighbouring targets is lower than
the risk of victimisation to the recent victimised target, and decays with distance from this
original target. Similar to repeat victimisation, this heightened risk to neighbouring

targets decays over time.

The reasons why repeats and near repeats occur cannot be simply explained using just the
spatial theoretical principles for crime that have been previously described in this thesis.
Subsequent to the key spatial theories for crime has been the development of the boost
account, flag account and optimal foraging theories for explaining why offenders commit
crime repeatedly at the same locations, and at locations nearby. The boost account refers
to an offender deciding to return to the same location or nearby locations, boosted by the
success of previous crime commission. Optimal foraging theory provides an explanation
for why the boost account occurs by suggesting that offenders commit offences in spates,
seeking to benefit from the rich supply of targets in an area, but moving on once the
supply of targets have been exhausted or there is risk of capture. The flag account
suggests there is some enduring quality about the target that highlights its high level of

vulnerability to would-be offenders. Each theory will now be explained in more detail.

Repeats and near repeats are primarily believed to relate to the boost account theory
(Bowers and Johnson, 2004; Pease, 1998). This theory states that future victimisation is
boosted by the initial incident. That is, the offender got away with it, so why not do it

again? This is best explained by considering residential burglary where the offender is
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boosted in his decision-making to target the same property because he now knows how

to get in, the layout of the property and what he left behind previously. This boost theory

also applies to neighbouring properties in that the chances of a neighbouring property

being burgled are boosted by the initial burglary due to the following reasons:

e the neighbouring properties are more likely to be similar in design (in comparison to
properties further away),

e the offender is already familiar with the area (having chosen to burgle here
previously),

¢ the means of breaking in and the layout of the property are likely to be similar (so he
knows his way around), and

¢ the neighbours are likely to have possessions worth stealing, similar to those stolen in

the initial burglary.

Optimal foraging theory provides a means of explaining why the boost account occurs
(Johnson and Bowers, 2004b; Johnson et al., 2009). This approach likens offenders to
foraging animals. As a forager, an animal makes a trade-off between the energy value of
the food that is immediately available and the effort that will be expended in reaching a
better food source. The better food has to be good enough to offset the energy required
to travel and attain it. The quality of the food in over-grazed areas diminishes until it re-
grows. This is akin to a repeatedly burgled property and the burglary of properties nearby,
where the value of the items taken from these properties declines until these items have
been replaced. Once an area has been grazed out (i.e., skimmed of the best theft

opportunities), the forager moves on.

The flag account theory provides an additional explanation for why repeats and near
repeats occur (Pease, 1998). The flag account suggests there is some enduring
characteristic about the property that flags it as being vulnerable. For example, in terms
of burglary, it could be a property at the end of a terrace, which has an alley running along
the back, and appears to have poor door and window security — all of which are signals
that identify an easy target to a would be offender. In practice, it is likely that both boost
and flag theories are at play in explaining why repeats and near repeats occur. For
instance, the flag characteristics of a property may initially attract an offender because it
is seen as an easier target, with the risk of future burglary being boosted following an
initial incident. A distinction between the boost and flag accounts is though concerned

with who is likely to commit the repeats or near repeats. In terms of the boost account,
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any repeats or near repeats will be committed by the offender who committed the initial
offence (Bowers and Johnson, 2004). In terms of the flag account, any repeats or near
repeats are likely to be committed by other offenders who have each identified the
vulnerable characteristics of the target, or a returning offender, but after the initial boost
period has diminished (i.e., an offender returns to commit another offence at the same

house some months or years after an initial incident) (Bowers and Johnson, 2004).

The boost and flag principles, and foraging behaviour are consistent with the findings
from interviews conducted with offenders. For example, as one offender reported in
Ashton et al. (1998: 276), ‘once you’ve been in a place it’s easier to burgle because you
are familiar with the layout, and you can get out much quicker’. The empirical findings
from research into repeats and near repeats, and the theoretical principles that underpin
these patterns, has led some commentators to suggest that recent incidents, particularly
those where other incidents have previously occurred, provide the best variable for
predicting where crime is likely to take place in the future (Bowers et al., 2004).

These principles of repeats and near repeats have been programmed into both software
and operational policing activities. For example, the Vigilance Modeller* is based on an
algorithm that incorporates the patterning principles of repeats and near repeats to
generate mapping output that identifies places at the highest risk of crime over the next
seven days. This knowledge of repeat and near repeat patterns has also begun to be
embedded into how police conduct patrols. For example, in Trafford, Greater Manchester
Police conducted an analysis of burglary to domestic properties and identified patterns of
repeats and near repeats. From this, a series of operational tactics were designed to
respond with crime prevention advice to properties that had been burgled within the last
24 hours. In addition, visits were also made to neighbouring properties to raise awareness
about the recent burglary, reassure residents, and ask them to conduct their own practical
crime prevention to minimise their risk of burglary and to immediately report any
suspicious activity. Targeting uniformed police patrols to areas that had recently been
burgled was also considered to act as a deterrent to future offending to any returning
forager. The result was a 42% reduction in burglaries in those areas that were targeted
(Chainey, 2012b; Fielding and Jones, 2012).

4 The Vigilance Modeller is an online tool for generating risk areas, developed by the Home Office in
partnership with Lincolnshire Community Safety Partnership, Astun Technology and UCL.

69



The results from analysing patterns of repeat and near repeat victimisation and designing
tactics to counter these in Greater Manchester show promise that this approach can predict
spatial patterns of crime. A set of experiments that has further illustrated the potential
predictive power of repeat and near repeat patterns was conducted by Johnson et al.
(2008b) that used a prospective mapping tool (that incorporates the same mathematical
algorithm as the Vigilance Modeller) to predict where crime was likely to occur in the
future. These experiments compared this prospective mapping approach to KDE and
found the former technique generated the better predictions. However, these experiments
were only conducted using residential burglary data, did not examine whether the KDE
parameter settings (i.e., cell size and bandwidth size) influenced the outcome of the
results, and only made an assessment based on the prediction of crime in the week that

followed.

While there is sound empirical evidence for the patterns of repeats and near repeats, very
little research has been conducted that metrically assesses whether the spatial patterns it
predicts are relevant for all temporal periods of the future. For example, Johnson and
Bowers (2004b) showed that burglary patterns tend to be slippery, in that while recent
events offer an effective means of predicting where crimes are likely in the immediate
future (i.e., over the next few days), the spatial distribution of events beyond this
immediate future tends not to match as accurately as those from the recent past. However,
following from the many other longitudinal studies of the spatial distribution of crime,
these studies have shown the persistent longevity of crime at certain places (Brantingham
and Brantingham 1981; Groff et al., 2008; Shaw and McKay, 1942; Weisburd et al.,
2004).

In practice, the findings relating to both the slippery nature of short-term spatial patterns
of crime, and the stability of crime concentration over longer periods suggest that a
predictive mapping approach based on the principles of repeats and near repeats can
support the daily tasking of police resources, but can overlook some of the necessary
strategic focus that crime prevention targeted on persistently problematic areas also
requires. From this it is argued that one single method for predicting spatial patterns of
crime is unlikely to be accurate for predicting where crime will occur for different periods
of the future. While recent incidents may be accurate for the purpose of predicting where

other individual incidents of crime are likely to occur in the immediate future (i.e., the
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next few days), the locations where multiple incidents of crime are likely to concentrate

beyond this immediate future could be in different areas.

The accurate prediction of spatial patterns of crime may, therefore, require a range of
spatial analysis methods, with each suited for different prediction time periods. If a range
of spatial analysis methods are required for predicting spatial patterns of crime, each must
also be underpinned with appropriate theory that explains why this spatial patterning is
likely to occur. In this sense, boost and foraging principles appear to offer the theoretical
basis for explaining where incidents are likely to occur in the immediate future and the
observed slippery nature to some of this spatial patterning as the forager moves on to
another area. The flag account theory then provides some of the theoretical justification
to explain why hotspots of crime tend to be stable (i.e., there is some intrinsic desirability
about the targets in an area that explains why they persistently experience crime).
However, similar to how foraging explains the boost account and the slippery nature to
spatial patterns of crime over short time periods, there appears to be a gap in the existing
environmental criminology literature that provides a supporting explanation to the flag
account and the stability of crime concentration over longer periods. As introduced in
section 2.2.3, crime is likely to concentrate in areas where there are favourable conditions
for crime to occur. While the theoretical concepts of crime generators and crime attractors
(Brantingham and Brantingham, 1995) provide some explanation for crime
concentration, the inclusion of a new theoretical principle relating to favourable
conditions may be of value for helping to explain the flag account and the stability of
crime concentration over longer periods. A new theoretical principle relating to
favourable conditions for crime to occur is considered further in the discussion chapter
(chapter 12). In the first instance a detailed examination of crime patterns is required to
identify if existing theory is sufficient for explaining the spatial patterns of crime and

explaining where crime is predicted to occur in the future.

2.5.5. Initial conclusions and gaps in the existing research: developments in risk
and predictive mapping

Since 2009 a number of new techniques have emerged that are designed more specifically

for predicting where crime may occur. These include commercial software solutions such

as PredPol and IBM’s Predictive Analytics, and tools developed from academic research

such as prospective mapping and Risk Terrain Modelling. All of these methods aim to

advance hotspot analysis, yet to date, none of them have been tested with much rigour to
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identify if and how they improve on the predictive ability of hotspot analysis. The
approach the commercial software solutions take is that more variables than just
retrospective crime data should be used to predict crime, and that these data need to
undergo sophisticated data mining and computer algorithmic processes to generate
predictions that will be more reliable and accurate. To apply this higher level of
processing and sophistication comes at a fairly high financial cost. In addition, (in some
cases) there appears to be a lack of theoretical grounding on which these commercial
software solutions are based, with the companies producing the software failing to
specifically describe the environmental criminology theoretical principles on which they

are based.

In comparison, the use of repeat and near repeat patterns provide a sound theoretical basis
for determining where an offender may offend next, and hence quite logically can support
a crime prediction approach. However, the periods into the future for which predictions
are made using repeat and near repeat patterning principles needs further investigation to
determine whether these predictions are just as accurate for the immediate future as they
are for predicting where crime is likely to concentrate in the next few weeks and beyond.
To date, no suggestion has been made by other researchers or commercial companies
about the importance of using different spatial analysis techniques for predicting different
time periods of the future. This current research has introduced this potential issue by
suggesting there may be value in using different spatial analysis techniques for predicting
spatial patterns of crime for different periods of the future, but with the requisite that each
is also supported with theory that underpins why these crime patterns are likely to occur.
The current research aims to help fill this gap by comparing the accuracy of the spatial
predictions made using prospective mapping for different periods of the future. These
prospective mapping predictions will be compared with those generated using the
benchmark analysis results from the examination of hotspot mapping techniques.

Risk Terrain Modelling is an interesting addition to the recent developments in predictive
analysis techniques, again developed in the notion that variables other than retrospective
patterns of crime should be used for determining where crime is likely to occur in the
future. However, to date there has been very little research that shows that the addition
of these extra variables results in improving the predictions over and above the predictions
that can be made from using retrospective crime data alone. In addition, the selection of

additional non-crime variables for RTM is typically not subject to an analysis of the
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influence they have on crime levels, and fails to recognise the influence that each variable

has on crime is likely to vary spatially.

2.6. Exploring geographical relationships as a means to improve hotspot analysis
and crime prediction
While hotspot analysis is useful for identifying where high levels of crime concentrate, it
offers little for helping to explain why crime concentrates at these locations. Most
practitioners recognise that hotspot analysis is one of the techniques that can be used at
the start of a process for examining why a crime problem exists. This diagnostic approach
Is very much a key principle to the problem-oriented policing method (Goldstein, 1979,
1990) where the focus is to deal with the underlying causes of problems. Understanding
these causes requires knowledge of appropriate theory, accurate data and an iterative
interchange between analysis and theory to help make judgements on why the crime
problem may exist (Clarke and Goldstein, 2003; Townsley et al., 2011). However, to
date, little use has been made in crime analysis of spatial regression techniques to
statistically inform the reasons for spatial variations in crime. Spatial regression analysis
is the process of identifying variables that explain the spatial variation in the phenomenon
under study. Itis argued that if spatial regression can be used to help identify the variables
that explain why hotspots are present, these explanatory variables could then be used
alongside or as a replacement for retrospective data on crime to predict where crime is
likely to occur. The current research examines the use of spatial regression techniques
for improving hotspot analysis. In particular, attention is focused on geographically
weighted regression (GWR) because the GWR approach addresses many of the statistical
challenges associated with spatial regression and because the software used is freely
available to many practitioners. A starting point for explaining spatial regression is to
review the use of Ordinary Least Squares regression as a means for exploring possible

causal factors.

2.6.1. Regression analysis

Regression analysis involves testing the relationship between one phenomenon (e.g., a
crime problem) and factors that are considered to cause the phenomenon. The result of
the regression analysis determines which factors can be used to explain the phenomenon
and the strength in the relationship, and identifies if there are other factors that were not
included in the model that need to also be examined for their causal influence. All

regression models seek to examine the relationship between a dependent variable and
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explanatory variables to determine the presence, direction and strength of any
relationships. The most basic regression model is Ordinary Least Squares (OLS). OLS
assumes that these relationships are consistent geographically. That is, the reasons that
explain the presence of a phenomenon in one location are exactly the same as those in
another. For example, if hotspots of burglary are present in two locations, an OLS
regression would assume that the reasons for these hotspots are exactly the same,
influenced equally by the factors that are causing burglary. In reality, this is unlikely to

be the case.

In addition, OLS regression assumes there to be zero or negligible errors in the
explanatory variable and that the error terms are independent of one another. When
dealing with spatial data, assumption that error terms are independent of each other is
often violated due to spatial autocorrelations in data; that is, nearby observations are
similar to each other. This can lead to a biased estimation of the standard errors of the
model’s variables, and consequently result in misleading significance results (Anselin and
Griffith, 1988; Fox et al., 2001).

2.6.2. Spatial regression analysis

Analysis techniques for spatial regression examine the spatial relationship between
variables. If the spatial relationships between these variables are significant, the spatial
autocorrelation between these variables needs to be taken into account. If not, this can
lead to statistical problems with the spatial regression model, including unreliable
significance results and bias in the estimation of the standard errors of the model’s

variables.

A number of approaches are used for capturing spatial effects in regression analysis.
These include incorporating spatial effects through an error term in the regression analysis
(spatial error models), or where the spatial effects are incorporated by including a
spatially lagged variable as an additional predictor (spatial lag models). The spatial lag
model adds to the standard OLS regression model equation by considering the impact of
the dependent variable in neighbouring areas through the inclusion of a weighted mean
value of the local dependent variable (Anselin, 1988a; Anselin, 1988b). By doing so, the
spatial lag model implies the level of crime, for example, in one area is influenced by the
level of crime in another (Chainey and Ratcliffe, 2005). A spatial error model provides

an indication that the relationship between the dependent and explanatory variable is
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influenced by unmeasured variables (Messner and Anselin, 2004). For example, a spatial
error model suggests that the amount of variance in the level of crime (the dependent
variable) that is not predicted by the explanatory variables is due to spatially

autocorrelated missing variables (Chainey and Ratcliffe, 2005).

Other spatial regression approaches that have been developed and tested to address the
violation of the OLS assumption of the independence of observations when treated with
spatial data include: spatial dependency models (Can, 1990 and Dubin, 1992; 1998); the
generalised linear model (Littell et al., 1996; Schabenberger and Pierce, 2002) and its
non-parametric extension, the generalised additive model (Guisan et al., 2002; Hastie and
Tibshirani, 1990); artificial neural networks (Fischer, 1997; Shin and Goel, 2000); and
Bayesian spatial regression (LaSage, 1997; Wheeler and Calder, 2007). Each of the
models has been applied to a wide range of spatial applications including forestry (Austin
and Meyers, 1996; Foody, 2003; Haiganoush et al., 1997; Wang et al., 2005; Zhang et al.,
2004; Zhang and Shi, 2004; Zhang et al., 2009), house and land prices (Gao et al., 2006),
child poverty (Voss et al., 2006), epidemiology (Mohebbi et al., 2011), demography
(Loftin and Ward, 1983) and crime (Cahill and Mulligan, 2007; Wheeler and Waller,
2009; Waller et al., 2007).

Geographically Weighted Regression (Fotheringham et al., 2002) is an alternative
approach to addressing the limitations of OLS regression when applied to spatial data.
GWR is a local version of spatial regression that actively seeks to measure the variation
in relationships between variables by performing localised regression equations all over
the study area (Chainey and Ratcliffe, 2005). The current research focuses on the use of
GWR rather than a broad range of spatial regression techniques because in a number of
tests GWR has outperformed several of the others mentioned in its modelling
performance (Waller et al., 2007; Wang et al., 2005; Zhang et al., 2005) and because it is
more accessible in software to practitioners than many of the other spatial regression
techniques®. However, it is recognised that GWR is not without its critics, including some
commentators who question its use for determining inference (Griffith, 2008; Wheeler
and Tiefelsdorf, 2005; Wheeler and Walker, 2009).

SGWR is available in ESRI’s ArcGIS, and as a free download as a standalone application from the
University of St Andrews
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The process of applying GWR (as well as many other spatial regression models) involves
the calculation of statistical diagnostic tests to help determine if the model is suitable.
These tests include the calculation of measures to determine model performance, model
significance, and model bias. For instance, these tests help to determine which
explanatory variables contribute to the model, the statistical significance of the model,
the degree of stationarity (i.e., whether the explanatory variables in the model have a
consistent relationship with the dependent variable), if the residuals are normally
distributed (i.e., exploring the presence of bias in the model by identifying whether the
model performs well for low values but does not perform well for high values), and if the
residuals are spatially clustered. If the residuals are spatially clustered, it suggests that a
key explanatory variable is missing from the model.

GWR and other spatial regression models generate a number of outputs that can be
mapped. These include the parameter estimates (i.e., the coefficient describing the
relationship between the explanatory variable and the dependent variable for each
observation on the map), t-values (indicating the statistical significance of the parameter
estimates), and residuals (the level of error or unexplained component of the relationship
between the explanatory variable and the dependent variable in the model). An example
of GWR applied to crime data is shown in Figure 2.8. This figure identifies local spatial
trends and processes between religious institutions, social disorganisation variables and
their combined effect on the local homicide rates for the city of Philadelphia. The
mapping of independent variable t-values revealed trends across the city that pointed to
the presence of non-stationary spatial processes, something the global tests could not
detect or depict. Global tests indicated that the density of religious institutions did not
have a significant effect on homicide across the entire city. However, a spatial analysis
that was sensitive to the possibility that some variables were more influential in various
parts of the city suggested that religious institutions had a significant influence on
homicide rates in neighbourhoods in North and North West Philadelphia (Chainey and
Ratcliffe, 2005).
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City of Philadelphia, Pennsylvania
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Figure 2.8. GWR generated t-values of the spatial distribution of religious institutions and
their relationship with he incidence of homicide across the city of Philadelphia. This
example suggested that the influence of religious institutions was stronger in some parts
(the darker shaded areas) than others (Source: Chainey and Ratcliffe, 2005).

The additional challenge that crime data presents is that they typically follow a Poisson
distribution (that is, many areas have a low count of crime, and few have a high count)
and require different, specific treatment in regression models (most examples of spatial
regression are based on using variables that follow a Gaussian distribution). While
Poisson-based GWR models have been developed (with examples of its use including
disease mapping — see Nakaya et al., 2005), to date very little research has been conducted
that identifies the specific type of treatment, if any, that is required for the spatial
regression analysis of crime data. The current research examines the application of GWR
using crime data and determines if the GWR modelling process results in identifying
variables that explain why hotspots exist. In turn, these results from an examination of
GWR could identify how hotspot analysis could be improved by using variables that are
statistically correlated with crime, alongside or in replacement of retrospective crime data

for predicting where crime is likely to occur.
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2.6.3. Initial conclusions and gaps in the existing research: identifying geographical
relationships as a means to improve hotspot analysis and crime prediction
GWR provides the potential to explore the spatially varying relationships between levels
of crime and what causes this variation in crime. In turn, this could help identify why
hotspots exist and if there are differences in what is causing these high concentrations of
crime. Armed with this information, potential then exists to associate these explanatory
variables with the theoretical concepts on what causes crime to concentrate (e.g., crime
attractors, routine activities and crime pattern theory) and construct these into a hotspot
modelling process alongside retrospective data on crime, or in replacement of this
retrospective information. This hotspot modelling approach that uses a combination of
explanatory variables and crime data may lead to improvements in spatial crime
prediction. In addition, GWR parameter estimates may potentially be used to inform how
crime levels may change based on the change in one or a number of related variables.
That is, offering strategic forecasts on how crime would be expected to change if a
particular policy direction was chosen (e.g., the regeneration of what is currently a high

crime housing estate).

2.7.  Summary: from spatial theories of crime to analytical techniques that predict
spatial patterns of crime
Examined in this chapter was the theoretical basis for explaining why spatial patterns of
crime can be predicted. A number of spatial theories of crime exist, providing macro,
meso and micro geographic explanations for crime. In the macro neighbourhood sense
these include explaining how specific socio-economic conditions are likely to exist in
certain places that lead to higher levels of crime and the factors that may attract many
suitable or specific targets to concentrate in certain places. In a more meso and micro
level sense, theoretical principles such as routine activities, rational choice, crime pattern
theory, and least effort are valuable in helping to conceptualise the underlying criminal
landscape and the spatial decision-making processes of offenders. The boost account,
flag account and optimal foraging behavioural concepts add to these meso and micro
explanations by explaining further the likely behaviour of offenders in their crime
commission decision-making. Collectively, these theories explain why geographical
patterns of crime are not random and why crime can be predicted to take place at certain
locations. The review of these theories may have also identified a gap in existing

environmental criminology theory that explains why certain places experience favourable
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conditions for high levels of victimisation. This PhD research investigates this potential
gap further and identifies whether an expansion to existing environmental criminology
theory is required that may help explain why certain places possess favourable conditions
for victimisation. In the first instance, this requires a detailed examination of crime
patterns to identify if existing theory is sufficient for explaining the spatial patterns of

crime and why crime may occur in certain places in the future.

Hotspot mapping is a popular method used by police and public safety agencies to
determine where to target resources. Hotspot mapping has also been used in many other
study disciplines, in particular disease mapping. However, to date, the accuracy of
hotspot mapping for predicting where crime is likely to occur has not been rigorously
examined. A number of hotspot mapping techniques exist, including the thematic
mapping of administrative areas and kernel density estimation, but the actual prediction
accuracy of these techniques has yet to be fully evaluated. The research will examine
these techniques by determining if they differ in the spatial predictions they produce, and
if their mapping output is influenced by differences in their input parameters. The review
of hotspot mapping techniques in this chapter has also identified the potential of spatial
significance mapping for producing better spatial predictions of crime than those
generated using commonly used hotspot analysis techniques, particularly in terms of

defining hotspots in less ambiguous terms.

As recent developments in predictive policing have emerged, several new mapping
techniques have been introduced. The review of these techniques in this chapter has
resulted in questioning the IBM and PredPol software solutions for their theoretical
foundations and the claims they are better than hotspot mapping. Risk Terrain Modelling
is a new technique of interest but is subject for further research beyond the scope of this
PhD. Prospective mapping, modelled on the theoretical principles of the boost account
and optimal foraging theory is, though, of specific interest and will be subject to analysis
that compares the output this technique generates in relation to hotspot mapping output.
In particular, this will include examining if the spatial crime predictions produced using
prospective mapping are accurate for multiple periods of the future — the immediate, near

and more distant future.

Spatial regression analysis techniques offer a statistical means of identifying those

variables that may explain why spatial patterns of crime vary. Geographically weighted
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regression is a particular technique of interest due its availability to practitioners and
researchers, and its favourable reviews in comparison to other spatial regression
techniques for addressing many of the challenges in analysing spatial relationships
between data variables. The current research will examine GWR to determine if it can
be used for statistically explaining why hotspots exist, and whether the results from this

type of analysis can help inform predictions of crime.

To date, because no detailed examination of the spatial crime prediction performance of
mapping techniques has been conducted, it is likely that sufficient measures for
calculating the prediction differences between mapping outputs have not been developed.
This research will review the literature further to identify methods that have either been
used previously in spatial crime analysis studies for comparing differences between
mapping output, or have been used in other fields of science that are appropriate for
measuring the prediction performance of crime mapping output. If required, this research
will develop new measures for calculating spatial crime prediction performance, or adapt

those from other disciplines to make them suitable for these measurement requirements.
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3. Objectives, research questions and hypotheses

3.1.  Principal research question and objectives

The primary question this research aims to answer is: to what extent can hotspot mapping
be used to effectively predict where crime is likely to occur? To answer this question
requires identifying hotspot analysis techniques that accurately predict where crime
occurs, and for the spatial predictions the techniques generate to be explained in clear
theoretical terms. If the spatial predictions are accurate and the theoretical reasons for
the predictions are clear, this in turn helps identify where policing and public safety
activity should be targeted and the specific police tactics and crime prevention

programmes to counter the predicted activity.

A number of spatial theories of crime exist, providing macro, meso and micro geographic
explanations for crime. Collectively, these theories help to explain why geographical
patterns of crime are not random and why crime can be predicted to take place at certain
locations. Several common hotspot mapping techniques exist, but the actual prediction
accuracy of these techniques has yet to be evaluated in detail. Each of these techniques
is also influenced by several input parameters, such as the data they use and technical
parameters that influence the calculations for determining where hotspots exist. The
influence of these input parameters on the mapping outputs they generate has also yet to
be evaluated. Potential exists in spatial significance mapping techniques for producing
accurate predictions of crime, but these have also not been evaluated for their spatial
crime prediction performance. A detailed examination of the commonly used hotspot
mapping and spatial significance mapping techniques is therefore required in order to
establish a benchmark analysis against which new predictive mapping techniques could

be compared.

One of the new predictive mapping techniques is prospective mapping. Tests that have
compared prospective mapping to common hotspot analysis techniques such as KDE
have suggested that the prospective mapping approach is more accurate in making spatial
predictions of crime. However, these tests only involved examining where crime was
likely to occur in the next seven days, rather than examining where crime will occur for
any longer periods into the future. In addition, previous research has shown that high
levels of crime endure in places for long periods. This, therefore, suggests that
prospective mapping (that uses very recent incidents) may be accurate in predicting where

crimes occur in the immediate future (i.e., within the next few days), but may not be as
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accurate for predicting where crime is likely to persist for longer periods into the future.
Instead, it is argued that where crime has previously persisted at high levels for some time
(i.e., hotspots) is more likely to be where high levels of crime will occur for longer periods
into the future. To determine if differences exist in the ability to predict spatial patterns
of crime for different temporal periods requires a detailed examination of the temporal
stability of hotspots and whether the prediction accuracy of prospective mapping is
consistently better than hotspot analysis techniques for multiple periods of the future —

the immediate, near and other time frames beyond.

Additional to the new prediction techniques is spatial regression analysis. Spatial
regression analysis techniques, such as GWR, offer a statistical means of identifying those
variables that may explain why spatial patterns of crime vary. However, techniques such
as GWR have yet to be examined as to whether they can be used for statistically
explaining why hotspots exist, and whether this type of analysis can help improve

predictions of crime.

The gaps in the existing research into spatial crime prediction and the arguments that have
been set forward for establishing the extent to which hotspot mapping can produce
accurate spatial predictions of crime suggest the following key questions:

e Does the spatial crime prediction accuracy of common hotspot mapping techniques
vary?

e Can these common hotspot mapping techniques be improved through attention to the
influence that technical input parameters have on mapping output?

e Can the prediction accuracy of hotspot analysis be improved using statistical
significance mapping techniques?

e Are hotspots of crime stable over time?

e What influence does the retrospective period of crime data that is used for producing
mapping output have on spatial crime predictions? And are the accuracy of these
predictions consistent for multiple periods of the future — the immediate, near and
other time frames beyond.

e Does the use of techniques that explore spatially varying relationships help identify
why hotspots exist?

e Can the analysis of spatially varying relationships be used for supporting long-term
crime predictions by examining how a change in explanatory variables can influence

a change in future crime levels?
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The following section addresses these research questions in turn. Each research question
is reframed as a hypothesis, with these hypotheses directing the empirical studies that

then follow.

3.2.  Testing for the presence of crime hotspots
Hypothesis 1: Hotspots can be identified using retrospective data for a short period of

time rather than requiring retrospective data for longer periods of time

A preliminary stage to hotspot analysis involves determining if there is evidence that
hotspots exist in the data under examination. This also requires an assessment of the
volume of data that are required for statistical evidence of hotspots to be present. The
first part of the research will therefore test the position in retrospective crime data when

hotspot patterns first appear.

3.3. A metric assessment of the prediction performance of common hotspot
analysis techniques

Hypothesis 2: Common hotspot mapping techniques (i.e., spatial ellipses, thematic

mapping of administrative areas, thematic mapping of grids, and kernel density

estimation) differ on how accurately they predict spatial patterns of crime

To date, a metric comparison of the prediction performance of the commonly used hotspot
mapping techniques has not been completed. This stage of the research will involve a
series of experiments that compares the spatial crime prediction performance of spatial
ellipses, thematic mapping of geographic units, thematic mapping of grid cells and kernel

density estimation.

3.4. A metric comparison of the influence that technical parameters used in
hotspot analysis can have on spatial crime prediction performance
Hypothesis 3: The technical parameters used in hotspot analysis techniques have an

influence on the techniques’ spatial crime prediction performance.

As a result of testing hypothesis 2 and determining which of the common hotspot analysis
techniques consistently performs well at spatial crime prediction, the technical parameters

of this technique will be examined to see if they influence the technique’s prediction
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performance. For example, if kernel density estimation is determined to be the best of
the common hotspot mapping techniques, the influence of cell size and bandwidth size
on the prediction performance of the mapping output will be tested.

3.5.  Improving hotspot analysis using spatial significance mapping
Hypothesis 4: Spatial significance mapping methods provide an improved means of
predicting where crime is likely to occur in comparison to common hotspot mapping

techniques, and removes the ambiguity of defining areas that are hot.

Common hotspot analysis techniques such as grid thematic mapping and kernel density
estimation require the analyst to determine from the spatially mapped values the crime
intensity level that represents hot. This means the selection of hotspots is subjective and
can lead to variation between analysts in the areas that are determined to be hotspots.
Spatial significance mapping offers potential in removing this ambiguity in defining
hotspots by using the principles of statistical significance testing. By determining, in a
statistical sense, the areas that are hotspots, it is also possible that these identified areas

offer a more accurate means of determining where crime is likely to occur in the future.

3.6.  Examining the temporal stability of hotspots
Hypothesis 5: Areas that are identified as hotspots of crime are places where the
concentration of crime has been endured consistently for at least one year, and where the

concentration of crime is likely to continue to persist into the future.

Policing and crime prevention resources that are designed to tackle hotspots assume these
hotspots have been endured for some time and are likely to continue to be the areas where
high levels of crime will persist in the future. This is based on the findings from many
longitudinal studies of crime and places. However, other research has suggested that
hotspots tend to move around. The research on the slippery nature to hotspots was,
though, based on findings referring to how crime changes on a daily and weekly basis,
rather than how crime changes over longer periods (weeks and months). Hotspot analysis
is more naturally suited to identifying areas where the concentration of crime is based on
a longer temporal retrospective period than just the previous few days. If hotspots are
found to possess stable, enduring levels of high crime, it suggests that in practice they

provide an effective means for targeting crime prevention resources to the places where
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high levels of crime are likely to persist (unless action is carried out to address the crime

problems in these areas).

3.7.  Examining the influence that recent incidents of crime have on predicting
different future periods of crime

Hypothesis 6: Recent incidents of crime provide an effective means of accurately

predicting the immediate future, but the accuracy in these predictions reduces for longer

periods of the future.

Empirical findings into the patterns of repeat and near repeat victimisation have shown
previous incidents to be very good predictors of where crime is likely to occur in the
future. However, these predictions may have a short temporal horizon, in that they are
good at predicting the immediate future (i.e., where crime may occur in the next few days)
but are weaker at predicting where crime is likely to concentrate and persist in the longer
future (i.e., the next few weeks and months). If predictions of where crime hotspots are
likely to exist in the future are better informed from hotspot analysis rather than from the
prediction principles of repeat and near repeat victimisation, it may suggest that a multi-

method approach to crime prediction should be considered.

3.8. Examining the use of geographically weighted regression for helping to
identify why hotspots exist, and for informing spatial predictions of crime
Hypothesis 7: GWR provides an effective means of determining at the local level the
reasons why hotspots exist, and why these explanatory variables vary between hotspots.
Hypothesis 8: GWR analysis can be effectively used for supporting long-term predictions
of crime by examining how a change in explanatory variables can influence a change in

future crime levels.

Hotspot analysis and other mapping methods identify where crime is likely to take place
in the future, but do not determine why crime concentrates in these areas. GWR provides
an analytical framework for helping to determine the variables that explain why crime
concentrates in certain locations, and if these explanations vary spatially. For example,
the reasons for the presence of one hotspot in a study area may be different for the reasons
for another hotspot in the same study area. If GWR provides an effective analytical
framework for identifying these explanatory variables, this provides promise for

improving prediction mapping techniques through the inclusion of these variables
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alongside, or in replacement of, retrospective patterns of crime. In addition, if the
inference between explanatory variables and levels of crime can be effectively deduced
using GWR, this could provide a means for supporting longer-term predictions by
determining how the change in one variable would influence future changes in crime.
That is, the results from a GWR analysis can be used to predict how crime would likely

change based on the change in a variable that is related to the cause of crime.
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4, Method

4.1.  Introduction

This PhD research is conducted as a progressive sequence of studies. Findings from each
study feed into the next study. This means that rather than providing a description of the
full research method in a single section, it was more appropriate to describe the method
used for each research part in turn, but begin here by describing the methodological

framework that was generic across the entire research.

This chapter includes a description of the data and software used, statistical approaches

for measuring the prediction performance of mapping output, and the processes for

applying the range of spatial analysis techniques. Subsequent chapters on each empirical

study begin by describing the methodological details relevant to that study. The research

was conducted as seven studies, with each study relating to at least one of the research

hypotheses posed in chapter 3:

e Study 1: Testing for the presence of hotspots

e Study 2: A metric assessment of the prediction performance of common hotspot
analysis techniques

e Study 3: A metric comparison of the influence that technical parameters used in
hotspot analysis can have on spatial crime prediction performance

e Study 4: Improving hotspot analysis using spatial significance mapping

e Study 5: Examining the temporal stability of hotspots

e Study 6: Examining the influence that recent incidents of crime have on predicting
different future periods of crime

e Study 7: Examining the use of geographically weighted regression for helping to

identify why hotspots exist, and for informing spatial predictions of crime

4.2.  Software

A key methodological consideration for this research involved examining in detail the
features and parameter requirements of each technique in order for processes to be
repeated by practitioners. This meant the choice of software was oriented towards GIS
products commonly used and freeware spatial statistical tools that were easy for

practitioners to access to help promote replication.
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ESRI ArcGIS version 10.1 and Pitney Bowes MapInfo Professional version 10.5 were
used in this research. Both products were used in order to test the feasibility of the
research that was conducted, and to harness the respective strengths of each to facilitate
the analytical experiments and the production of visual outputs. In addition to ArcGIS
and Maplnfo, the extensions ESRI Crime Analyst (ESRI(UK), 2013) and Hotspot
Detective for MapInfo (Ratcliffe, 2004) were used for hotspot analysis in studies 2 and 3
of the research. CrimeStat version 3 (Levine, 2010), a freeware software product
developed by the United States National Institute of Justice, was used for producing
spatial ellipses in study 2. Study 6 of the research used the online Vigilance Modeller
tool (Astun Technology, 2013) for producing prospective mapping output for import into
ArcGIS. ArcGIS GWR and GWR version 4 were used for modelling in study 7°.

Listed below are the research parts and the main functions that were used from each of

the GIS and spatial analysis software products.

e Data preparation including geocoding accuracy tests: Mapinfo SQL for selecting
crime type data sets from an all crime data set for each study area, Maplinfo for
running geocoding tests on the sample recorded crime data, and MapInfo Universal
Translator for the conversion of crime data from MaplInfo format to ArcGIS shapefile
format

e Study 1: Testing for the presence of hotspots: ArcGIS nearest neighbour index
function

e Study 2: A metric assessment of the prediction performance of common hotspot
analysis techniques: CrimeStat (generation of spatial ellipses) and MapInfo (thematic
mapping of Census Output Areas, thematic mapping of grid cells) and Hotspot
Detective for Maplinfo (kernel density estimation)

e Study 3: A metric comparison of the influence that technical parameters used in
hotspot analysis can have on spatial crime prediction performance: ArcGIS Crime
Analyst extension (kernel density estimation), ArcGIS raster to point conversion,
ArcGIS point to Theissen polygon conversion and ArcGIS SQL (Structured Query
Language) for determining cumulative counts of the area searched relative to the
number of offences committed in the prediction period for the calculation of

prediction measures

® R code for GWR has also been developed (see: http://www.st-andrews.ac.uk/geoinformatics/gwr/gwr-
software/), from which the results can be displayed and analysed in the researcher’s preferred GIS.
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e Study 4: Improving hotspot analysis using spatial significance mapping: ArcGIS
Getis-Ord Gi* statistic and ArcGIS SQL for determining cumulative counts of the
area searched relative to the number of offences committed in the prediction period
for the calculation of prediction measures

e Study 5: Examining the temporal stability of hotspots: MaplInfo for using imported
ArcGIS Getis-Ord Gi* hotspots and Mapinfo SQL for calculating values for
measuring temporal stability

e Study 6: Examining the influence that recent incidents of crime have on predicting
different future periods of crime: Vigilance Modeller for generating prospective
mapping outputs, ArcGIS for mapping Vigilance Modeller output and calculating the
volume of crime in prospective mapping risk areas

e Study 7: Examining the use of geographically weighted regression for helping to
identify why hotspots exist, and for informing spatial predictions of crime: ArcGIS
GWR for running OLS and Gaussian Models, GWR version 4 for running Poisson

Models, ArcGIS for displaying GWR mapping outputs.

4.3.  Study areas and crime data

4.3.1. Study areas

The research used data from two areas — Newcastle-upon-Tyne, and the combined
boroughs of Camden and Islington in London. These two areas were selected due to good
contacts with the police in both areas (in order to arrange the supply of crime data) and
because the two areas are quite different in their geography - while both are city areas,
the landscape of Camden and Islington is dominated by its urban geography, while
Newcastle has a vibrant city centre, but with suburbs to the East, North and West, and
which extend towards rural parts of Northumberland County. Crime levels between the
two areas also differ, with on average 64,000 recorded offences per year in Camden and
Islington and 24,000 per year in Newcastle. These contrasts between the study areas
provided the opportunity for the empirical studies to examine how different levels of
crime, and consequently different levels of the spatial concentration of crime, influenced

the results. Further information on each of the study areas now follows.

The London Metropolitan Police provided recorded crime data for the period of the 1%
January 2009 to 31° December 2010 for the London Borough of Camden and the London
Borough of Islington. The Camden/Islington study area is located in Central/North

London. This area encompasses a wide range of urban geography, including three
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mainline train stations (Euston, Kings Cross and St. Pancras), a Premier League football
stadium (Arsenal FC), popular shopping areas such as Tottenham Court Road, Holborn,
Angel and Camden Market and large open parks such as Hampstead Heath and Regents
Park. The area contains a synthesis of different land uses (commercial, retail and
residential), and a resident population that reflects London’s cosmopolitan diversity. The
area experiences a high influx of visitors who commute to the area for work, education
(UCL is based in the Bloomsbury area of the London Borough of Camden), for shopping,
tourism, or visit the area for its theatres, cinemas, restaurants, bars, music and other
attractions. Figure 4.1 shows a map of the study area with some supporting general

statistics about the area from the 2011 Census of England and Wales.
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Figure 4.1. The Camden/Islington study area in Central/North London

Northumbria Police provided recorded crime data for the period 1% October 2009 to 30"
September 2010 for the district of Newcastle-upon-Tyne in the North-East of England.
Newcastle is one of England’s largest ten cities and therefore includes many of the urban
geographical features and amenities that one would expect in a typical city. This includes
a vibrant shopping and entertainment area in the centre of the city, a large number of
economic and commerce functions, a mainline train station, a metro system, a Premier
League football stadium (Newcastle FC), and two large universities. The district also

includes rural areas towards the north (see Figure 4.2). The district population was
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292,400 and the number of households 123,242 at the time of the 2011 Census of England

and Wales.
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Figure 4.2. The Newcastle-upon-Tyne study area in North East England

4.3.2. Crime classifications, definitions and crime volume in the two study areas
The recorded crime data from both areas were for burglary to a dwelling (hereafter
referred to as burglary dwelling), theft from the person, theft from vehicles and theft of
vehicles. Northumbria Police were also able to provide data on assaults with injury for
Newcastle. The Metropolitan Police were not able to provide data on assaults with injury
due to issues they had experienced in the recording of these data for the period that crime
data was made available. The following provides definitions of each offence:

e Burglary dwelling is defined as the breaking and entering into a residential dwelling
and stealing property. It includes aggravated burglary and distraction burglary (e.g.,
entry gained by the offender posing as a utility engineer).

e Theft from the person involves theft without the use or threat of force such as when
the goods stolen were being worn by the victim, or the goods stolen were physically

attached in some way to the victim, or carried by the victim, or the goods stolen were
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contained in an article of clothing being worn by the victim. For example, if a person
was walking along a street holding their mobile phone, and the phone was snatched
out of their hand, this would be recorded as a theft from the person.

Theft from vehicles is defined as removing and stealing property from within and on
the vehicle. This includes the theft of items attached in some way to the interior of
the vehicle such as a radio/CD player, the theft of loose items within the vehicle such
as a bag, electronic items (e.g., mobile phone, satellite navigation system), or money,
the theft of items from the exterior of the vehicle such as a licence plate, exhaust
system, wing mirror and badges, and the theft of petrol from siphoning from the petrol
tank.

Theft of vehicles is defined as taking without having the consent of the owner or other
lawful authority, a vehicle for the offender’s use or use by another, or knowing that
any vehicle has been taken without such authority, drives it or allows himself to be
carried in or on it. For example, a car is stolen from a car park, with the offender’s
intent for personal use, selling the vehicle, giving to another person or breaking the
vehicle into parts for sale or use. Theft of a vehicle does not include the break-in to
a house where the vehicle keys are taken and the vehicle in stolen. This is recorded
as a burglary dwelling.

Assault with injury involves the malicious wounding or inflicting of grievous bodily
harm, assault occasioning actual bodily harm, a driver injuring persons through
furious driving, assault with intent to resist apprehension, or owner or person in charge
allowing a dog to be dangerously out of control in a public or non-public place and
injuring a person. Over 90% of assaults with injuries are assaults occasioning actual

bodily harm.

These crime types were chosen because they are groupings that are regularly analysed by

police and public safety practitioners, and they are crime types of high volume that are of

particular concern to the public and consume a great deal of police resources; therefore,

the implications of the research would be accessible, of particular interest, and could be

more readily translated into policing and public safety practice. Table 4.1 lists the number

of offences for each crime type in the two study areas for the time period that data were

provided. The differences in the periods for which crime data were provided were due to

limitations imposed by the two police forces. However, it was judged that these would

not affect any of the studies because both sets of crime data were sufficient for the

analytical experiments that were to be conducted.
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Table 4.1. Number of offences by crime type for Camden and Islington (1 January 2008
to 31 December 2010) and Newcastle (1 October 2009 to 30 September 2010).

Crime type Camden and Islington Newcastle
(1 Jan 2009 - 31 Dec (1 Oct 2009 - 30 Sept
2010) 2010)
Burglary dwelling 11971 1304
Theft from the person 10,160 781
Theft from vehicle 22,328 1740
Theft of vehicle 8,385 196
Assault with injury - 1838

4.3.3. Geocoding and geocoding accuracy

Geocoding is the process of assigning geographic coordinates to a record using the
recorded address or some other geographic or location description. The geographic
coordinates are most typically derived from a gazetteer - a look-up table that lists
addressable and non-addressable locations and references these by their relevant
geographic coordinates. These coordinates are usually precise to one metre. For
example, geocoding a crime record for a burglary dwelling would involve using the
recorded details on the house number, street name and locality to determine the dwelling’s
geographic coordinates by matching this address to its gazetteer entry. The geocoding
process then attaches these geographic coordinates to the crime record. For a theft from
the person that has occurred in a public place such as a café, the address details of the
café, such as its name and street name, would also be recorded in the gazetteer and used
in the geocoding matching process. In many cases the offence cannot be attached to an
addressable property, such as an offence in a car park. Car parks are also included in the
gazetteer, but usually a central geographic coordinate to the car park rather than the exact
car parking space is used in the geocoding process. In some situations the address details
entered on the crime record may not be complete. For example, it may be recorded that
an assault occurred on the street. In such cases the name of a venue, shop, place of interest
or street junction is also recorded to assist in locating as precisely as possible where the
offence took place. These location details are then used in the geocoding process to
determine as precisely as possible the geographic coordinates relevant to the location of

this offence. In those cases where only the street name is recorded in the crime record,
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the offence is positioned to some central location, but reviewed to ensure that a large

number of offences are not subject to this type of geographic placement.

The two sets of geocoded crime data were validated using a method for geocoding
accuracy analysis as reported in Chainey and Ratcliffe (2005, 61-63). This geocoding
accuracy approach tests a sample of 10% of the offence records and analyses whether the
geographic placement of the offences on a detailed Ordnance Survey MasterMap
displayed within a GIS matches with the address information on the crime record. For
example, the researcher may test whether a burglary recorded at 5 Acacia Avenue has
been correctly geocoded and is geographically positioned on the OS MasterMap to this
address. Analysis of both sets of recorded crime data revealed them to be more than 95%
accurate to the street address level and fit for purpose for this research. Three-hundred-
and twenty-four of the crime records for Camden and Islington were not geocoded
because of incomplete or inaccurate address information on the crime record. This
represented less than 1% of records for each of the four Camden and Islington crime
categories. Seventy-eight crime records for Newcastle could not be geocoded for similar
reasons. Again, for no crime type was more than 1% of its original total affected. The
records that were not geocoded were deleted from the crime data from both study areas.
Table 4.1 lists only the number of offences that were successfully geocoded.

4.3.4. Temporal input periods, measurement date and temporal output periods

A suitable date had to be chosen from each crime dataset as the day on which retrospective
data were selected to generate hotspot maps against which future events could be
compared (this date is referred to as the measurement date). In the first instance, for
simplicity, the mid-point in the Camden/Islington data (the 1% January 2010) and the mid-
point in the Newcastle data (1°* April 2010) were chosen in order to maximise the use of
12 months of retrospective data for generating hotspot maps in Camden/Islington and 6
months of retrospective data for Newcastle. This also meant that 12 months of data for
Camden/Islington and six months of data for Newcastle after each measurement date
could be used for measuring the accuracy of the different mapping techniques for
predicting future events. The 1% of January (New Year’s Day), however, is a day when
the normal routines of people’s day-to-day lives could be quite different to most other
days in the year. The three-week period before the 1% of January could also be considered
as unusual as it is the period before and during Christmas, when again the routine

activities of peoples’ lives could be quite different to other dates in the year. For this
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purpose another more normal measurement date was selected for the Camden/Islington
dataset. The second measurement date chosen was the 11" March 2010: this date, being
a Thursday, was during school term time and was considered as a date on which most
people would go about their routine activities in a manner that was similar to many other
dates in the year. Choosing an alternative measurement date of the 11" March 2010
meant that the results generated for this measurement date and the results generated using

a measurement date of the 1% January 2010 could be compared.

Table 4.2. The temporal periods of input data used in the research studies for (a) a
measurement date in Camden/Islington of the 1% January 2010, (b) a measurement date
in Camden/Islington of the 11" March 20107, and (c) a measurement date in Newcastle
of the 1%t April 2010

(a)
Input data time periods used in experiments for a Camden/Islington
measurement date of 01/01/10
12 months 6 months 3 months 2 months 1 month 2 weeks 1 week 3 days 2 days 1 day
01Jan09- 01Julog - 010ct09- | O01Nov09- | 01Dec09- 18Dec09- 25Dec09- | 29Dec09- | 30Dec09- 31 Deco9
31Dec09 31Dec09 31Dec09 31Dec09 31Dec09 31Dec09 31Dec09 31Dec09 31Dec09 eC
(b)
Input data time periods used in experiments for a Camden/Islington
measurement date of 11/03/10
12 months 6 months 3 months 2 months 1 month 2 weeks 1 week 3 days 2 days 1 day
13Mar02- 13Sep03- 13Dec02- 13Jan03 - 13Feb03- 27Feb03- 06Mar03- 10Mar03- 11Mar03- 12 Mar03
12Mar03 12Mar03 12Mar03 12Mar03 12Mar03 12Mar03 12Mar03 12Mar03 12Mar03 ar
(©)
Input data time periods used in experiments for a Newcastle measurement date of
01/04/10
6 months 3 months 2 months 1 month 2 weeks 1 week 3 days 2 days 1 day
010ct09 - 01Jan10- 01Feb10- 01Marl10- 18Mar10- 25Marl0- 29Marl10- 30Marl10- 31Marto
ar
31Marl0 31Marl10 31Marl10 31Marl10 31Marl10 31Marl10 31Marl10 31Marl10

Each study areas’ retrospective crime data were arranged into a number of time periods
used as input data to generate hotspot maps. This meant that rather than using just one
retrospective time period for the research (e.g., the three months prior to the measurement
date), the use of a number of retrospective time periods could be considered together in

” Note that the maximum time range of output data for analysis in Camden and Islington based on the 11%
March 2010 measurement date was nine and a half months and not twelve months.
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order to provide a more reliable basis on which to draw findings. The input data were
organised into the time periods shown in Table 4.2. In most cases, these input data periods
were used for each research study. However, for certain experiments, only some of the
data input periods were used or different ones were used due to the requirements of certain
experiments. Confirmation on the input data that were used for each set of experiments

Is provided in the method sections for each research study.

Table 4.3. The temporal periods of output data used in the research experiments for (a) a
measurement date in Camden/Islington of the 1% January 2010, (b) a measurement date
in Camden/Islington of the 11" March 20108, and (c) a measurement date in Newcastle
of the 1% April 2010.

(a)
2010 time periods used in experiments for a Camden and Islington
measurement date of 01/01/10
1 day 2 days 3 days 1 week 2 weeks 1 month 2 months 3 months 6 months 12 months
01Jan10 01Jan10 - 01Jan10 - 01Jan10 - 01Jan10- 01Jan10 - 01Jan10 - 01Jan10 - 01Jan10 - 01Jan10 -
o 02Jan10 03Jan10 07Jan10 14Jan10 31Jan10 29Feb10 31Marl0 30Jun10 31Decl10
(b)
2010 time periods used in experiments for a Camden and Islington measurement
date of 11/03/10
1 day 2 days 3 days 1 week 2 weeks 1 month 2 months 3 months 6 months All of 2010
11Marto 11Marl0 - 11Mar10 - 11Marl0 - 11Marl0 - 11Marl0 - 11Marl0 - 11Marl0- 11Mar10 - 11Marl0 -
a 12Mar10 13Mar10 17Mar10 24Mar10 10Apr10 10May10 10Jun10 10Sep10 31Dec10
()
2010 time periods used in experiments for a Newcastle measurement date of
01/04/10
1 day 2 days 3 days 1 week 2 weeks 1 month 2 months 3 months 6 months
0LADr10 01Apri0— | 01Aprl0— | O1Aprl0— | O01Aprl0- | 01Aprl0 - 01Apri10- 01Apr10- 01Apr10-
r
P 02Apr10 03Apr10 07Apr10 14Mar10 30Apr10 30May10 31Junl0 30Sep10

If hotspot maps are generated to help determine where crimes may occur in the future,
the definition of the future also needs consideration. For the purposes of this research,
the analysis was limited to predicting crime patterns for up to a year from the
measurement date for Camden/Islington and up to 6 months from the measurement date

for Newcastle. For example, using the data from London meant that twelve months of

8 Note that the maximum time range of output data for analysis in Camden and Islington based on the 11%"
March 2010 measurement date was nine and a half months and not twelve months.

96




crime data could be used when the measurement date was the 1% January 2010, and nine
and a half months when the measurement date was the 11" March 2010. It was
anticipated that the different time frames would not have implications on the empirical
studies that were to be conducted because at least six months of data were considered to

be sufficient for measuring differences in prediction levels.

In following a similar argument to the temporal arrangement of input data, data after the
measurement date (referred to from this point as output data) were organised into
temporal periods. This meant that rather than using just one output data period for the
research (e.g., the three months after the measurement date), the use of a number of output
data time periods would allow for comparisons in the results. While most experiments
used the same output data periods, the requirements of some experiments resulted in
certain other temporal output periods being used. Table 4.3 lists the output periods that
were used in most experiments. Hotspot maps could then be generated for each period
of input data and measured for their ability to predict spatial patterns of crime, when the
prediction period was the next day, the next two days, the next week, and to the next 12
months. If the output periods used were different to those listed in Table 4.3, the details
on the output periods used for a particular empirical study is described in that study’s

method section.

4.3.5. The possible impact of changes in crime patterns from police and crime
prevention activity

During the data time periods that were used in the experiments there could have been

police operations and crime reduction initiatives in both study areas that had an impact

on crime. For the purposes of this research, the focus was on comparing analytical

techniques against the same data. This would mean that any changes in crime patterns

would be similarly applied to each of the techniques and would not affect the ability of

making comparisons and drawing conclusions on the analyses that were conducted.

4.3.6. Summary of study area and crime data

Crime data for Camden/Islington and Newcastle covering the period of 2009 to 2010
provided an adequate data resource for the research studies that were proposed. The crime
data were categorised into burglary dwelling, theft from the person, theft from vehicles,
and theft of vehicles to offer a range of crime scenarios for the research. Assault with

injury data were also provided for Newcastle, offering a valuable addition by permitting
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the comparison of violent crime against these other theft offences. The geography of the
two study areas also provided an interesting contrast — both are city areas, however the
landscape of Camden and Islington is dominated by its urban geography, while Newcastle
has a vibrant city centre, with suburbs to the East, North and West, and rural areas that
extend towards parts of Northumberland County. Crime levels between the two areas are
also quite contrasting, with on average 6,000 burglary dwelling offences per year in
Camden/Islington and 1,300 per year in Newcastle. The contrast between the two study
areas provided the opportunity for the experiments to examine how different levels of

crime and the spatial distribution of crime influenced the results.

The crime data were geocoded to a level that was fit for the purpose of the experiments
proposed, and measurement dates were selected to maximise the full use of the crime data
that was provided, but also to explore if results were consistent for different dates.
Consideration towards the range of input and output data temporal periods provided a
structure for testing the prediction performance of hotspot analysis techniques under
different data conditions. The testing of data for different time periods also made any

results less susceptible to the dangers of interpreting anomalies as representative results.

4.4. Measuring the prediction performance of mapping output

To date, no standard method has been proposed for determining how to measure the
prediction performance of mapping output. In the next section, a number of methods that
have been used for measuring prediction performance are described, new ones are
introduced, and a framework of prediction performance metrics are proposed that can set

the standard for how the prediction accuracy of mapping outputs can be measured.

4.4.1. Hit rate and search efficiency rate

One obvious measure for determining the effectiveness of mapping techniques for
predicting where crime may occur would be a hit rate. Hit rate is the percentage of new
crimes that occur within the areas where crimes are predicted to occur. While useful and
easy to understand, this measure does not take into account the size of the areas where
crimes are predicted to occur. For example, a hit rate could be 100%, but the area where
crimes are predicted to occur could cover the entire study area — a result of little use to
practitioners who have the need to identify where to target resources. As an alternative
to the hit rate, Bowers et al. (2004) proposed the search efficiency rate. The search

efficiency rate is the number of events per square kilometre in the areas where crimes are
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predicted to occur. This measure works well when considering just a single study area,
but does not easily allow for comparisons between study areas of different sizes because
the size of the entire study area should be considered in relation to the size of the areas
where crimes are predicted to occur. For example, hotspots have been identified in a
study area that is 10kmz2 in area. From this, a search efficiency rate of 20 crimes per km?
is calculated. A study area that is 50km? in size may have experienced the same volume
of crime as the smaller study area and also have a search efficiency rate of 20 crimes per
km2, Yet in the larger study area there is more area where no crime has been predicted to
occur (i.e., the areas between the hotspots), meaning that the areas where crime has been
predicted to occur covers a smaller relative area than the predicted areas determined in
the smaller study area. As a result, the hotspots identified for the larger study area provide
a more useful basis from which to target resources, but with this greater utility not being

captured in the search efficiency rate.

4.4.2. The prediction accuracy index

The current research introduces the prediction accuracy index (PAI)® devised by the
author with colleagues as a measure of mapping output prediction performance. This
index has been devised to consider the hit rate against the areas where crimes are predicted
to occur with respect to the size of the study area. The PAI is calculated by dividing the
hit rate percentage (the percentage of crime events that were committed in the areas where
crimes were predicted to occur, i.e., the crime hotspots) by the area percentage (the
proportion of the area where crime is predicted to occur i.e., the area of the hotspots, in
relation to the whole study area: see Equation 2).

n
2 1*100 _
N j = _ HiRat - predjction Accuracy Index (2)

a AreaPercentage
(Aj *100

In this formula, n refers to the number of crimes in areas where crimes are predicted to
occur (i.e., the number of future crimes in the hotspots), N is the number of future crimes

in the study area, a refers to the area (e.g., km?) of areas where crimes are predicted to

% Since the commencement of this PhD research a paper by the author that introduces and uses the PAI has
been published: Chainey, S.P., Tompson, L., Uhlig, S. (2008a), “The utility of hotspot mapping for
predicting spatial patterns of crime”, Security Journal 21:1-2.
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occur (i.e., the area of the hotspots), and A is the area (e.g., km?) of the study area. Future
crimes means the crimes that were committed during the output period for which the
mapping techniques are measured.

Finding 100% of future events in 100% of the area would give a PAI value of 1. If the
hit rate and the area percentage fall by an equal measure, the value would also be
computed as 1. Finding 25% of future crime events in 50% of the study area would return
a PAI value of 0.5; and finding 80% of future crime events in 40% of the area would
return a PAI value of 2. Thus, the greater the number of new crime events in a hotspot

area that is smaller in areal size to the whole study area, the higher the PAI value.

The PALI is easy to calculate and considers the number of future crimes that fall into the
areas determined as hotspots against both the size of the hotspots and the size of the study
area. The PAI is also a measure that is applicable to any study area, to any crime point
data, and to any analysis technique that aims to predict spatial patterns of crime. Many
practitioners still, though, find great use in the hit rate as a measure to predict how many
crimes they may be able to impact upon by targeting resources to just the hotspot areas.
As the hit rate is calculated as part of the PAI, the hit rate can be considered alongside a
PAI calculation. The use of the PAI has subsequently been discussed further by Pezzuchi
(2008), Levine (2008) and Chainey et al. (2008b; 2008c), with researchers concluding it
to be a useful measure for comparing multiple hotspot mapping outputs. These
discussions have included illustrating how chance expectation can be minimised by using
the mean PAI results from a large number of experiments across different temporal input
and temporal output data periods, and by observing the variation in the standard deviation

of the PAI generated from these many experiments.

4.4.3. Accuracy concentration curves

Since the PAI was introduced, other approaches for measuring the predictive performance
of mapping output have been developed. Perhaps the most rigorous of these is described
by Johnson et al. (2008b; 2012). The problem with a single measure such as the PAI is
that it only offers a comparison between one hit rate and one defined hotspot area, and no
comparison against chance expectation or across the full range of prediction from 1% of
all offences to the prediction of 100% offences. Johnson et al. (2008b; 2012) proposed
the use of an accuracy concentration curve. An accuracy concentration curve is generated

by plotting the percentage of crimes that have been accurately predicted against the
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incremental risk ordered percentage of the study area. This accuracy concentration curve
process involves plotting the number of future crimes in 1% of the study area (the 1% of
the study area containing the highest hotspot values); plotting the number of future crimes
in the areas containing the top 2% of hotspot values in the study area; plotting the number
of future crimes in the areas containing the top 3% of hotspot values in the study area;
and so on, until the number of future crimes in the areas containing 100% of the study
area are plotted. The plots of these individual readings are then connected with a line that
represents the accuracy concentration curve for these data. In practice, the process may
also involve determining readings for the incremental proportion of future crimes rather
than for just single percentage increments of the study area. This is because readings for
the proportion of future crimes may be high in comparison to the proportion of the study
area. For example, 10% of future crimes may fall within 1% of the study area, therefore,
it would also be useful to determine and plot the proportion of the study area relating to
1%, 2%, 3% and so on, to 10% of future crimes. Incremental readings for the proportion
of future crimes, where this proportion is high in comparison to very small proportions of
the study area, are of particular interest in the measurement of the spatial prediction
performance of mapping output. These measurements for very small proportions of the
study area are useful because they would indicate the proportion of crime that is predicted,
and could be prevented by targeting policing and public safety activity towards these very

small areas.

Generating accuracy concentration curves means that mapping output for different crime
types and under different conditions (e.g., the use of different temporal input and output
periods) can be compared across the complete range of predicted offences against the size
of the area that would need to be searched before the full range of predicted offences were
identified. Of most interest in comparing these curves is how vertical the curve is,
particularly for small proportions of the study area size - the more vertical the observed
curve, the better the prediction performance of the mapping output from the technique
being tested. Figure 4.3 shows an example of an accuracy concentration curve for kernel
density estimation from Johnson et al.’s (2008b) study. The accuracy concentration curve
shows the proportion of the study area that needed to be searched to identify the
proportion of offences represented on the y axis. Johnson et al. (2008b) also generated
upper and lower threshold curves against chance expectation from 99 runs of a Monte
Carlo simulation. The lower threshold was based on the mean expected accuracy and the

upper threshold determined the 95" percentile against chance expectation.
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Figure 4.3. An accuracy concentration curve for KDE hotspot analysis, compared to
chance expectation. The mean threshold indicates the observation to be no better than
chance. The upper threshold indicates whether the observed results were greater than 95%
significant. The more vertical the observed curve, the better the prediction (Source:
Johnson et al., 2008b).

4.4.4. Areaunder the curve

Since the 1970s, the medical profession has made use of the area under the curve
approach to help determine the accuracy of medical trials and for clinical predictions.
The area under the curve approach has also been used in other fields of science and
engineering, including psychology to predict behaviour, such as the chances of a person
offending (Dolan, 2000; Mossman, 1992). The approach (originally referred to as the
area under the ROC curve) was initially developed from signal detection theory during
World War 1l for measuring the ability of radar receiver operators to detect whether a blip
on a radar image was an enemy target, a friendly ship, or noise. The radar receiver
operator’s ability to do so was called the receiver operating characteristics (ROC). A
ROC curve chart is created by plotting the fraction of true positives out of the total actual
positives against the fraction of false positives out of the total actual negatives. The true
positive rate is also known as sensitivity, and the false positive rate is one minus the

specificity or true negative rate (Hanley and McNeil, 1982).
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Figure 4.4 shows three ROC curves representing results that relate to the trial of a medical
drug: (A) perfect impact of the trial drug i.e., everyone got better, (B) good impact of the
trial drug i.e., lots of people got better, and (C) no impact of the trial drug i.e., no better
than chance expectation. The effectiveness of the trial drug relates to how well it
separates the group of patients being tested into those with or without the disease in

question.

Sensitivity

0.0 0.2 04 0.6 0.8 1.0

1-Specificity
Figure 4.4. An example of three ROC curves, with A representing a perfect impact of trial
drug or perfect prediction, B good results and C a result that is no better than chance

expectation (Source: Zou et al., 2007).

The accuracy of the medical trial is measured by the area under the ROC curve. An area
of 1 represents a perfect test and an area of 0.5 represents a worthless test. A rough guide
that has been developed for classifying the accuracy of a diagnostic test utilises the
following point system:

e 0.90-1 = excellent (A)

e 0.80-0.90 = good (B)

o 0.70-0.80 = fair (C)

e 0.60-0.70 = poor (D)

e 0.50-0.60 = fail (F)
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An example of the use of the area under the curve approach is shown in Wigton at al.’s
(1986) clinical study into predicting strep throat. In this study they found the presence of
fever and two other medical conditions, and the absence of a cough, all predicted strep.
Figure 4.5 shows a comparison between the findings from two study areas, showing that
prediction rules performed more accurately for patients from Virginia (the area under the

curve = 0.78) compared to Nebraska (the area under the curve = 0.73).
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Figure 4.5. A comparison of ROC curves for two areas (Virginia and Nevada) from a
medical trial that tested the variables that predicted strep throat (Source: Wigton at al.,
1986).

There are a number of methods that can be used for measuring the area under the curve.
The two most common are a non-parametric method that is based on constructing
trapezoids under the curve as an approximation of the area, and a parametric method using

a maximum likelihood estimator to fit a smooth curve to the data points.

A weakness in the predictive crime mapping research to date is the absence of a universal
measure that is easy to compute and that allows for easy direct comparisons between the
predictive accuracy of mapping output that is generated from different spatial analysis
techniques. This current thesis introduces the application of the area under the curve
approach to accuracy concentration curves for measuring the predictive accuracy of

hotspot analysis output (and any predictive mapping technique’s output). The trapezoid
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method for measuring the area under the curve is used as it is the easier of the two
common types of methods to produce, and can be calculated using a simple formula in
Microsoft Excel, allowing for easy replication by practitioners. The trapezoid method
works by dividing the area under the curve into a series of trapezoids, calculating the area
for each, and then summing these to determine the total area. The area of each trapezoid
is calculated by determining the average height of the curve between two points and
multiplying this by the base. In Excel, this requires pairs of x axis coordinates (the
proportion of the study area) to be identified relative to pairs of y coordinates (the
proportion of offences) for the trapezoid input calculations. The area under the curve can

be calculated using the following formula in Excel:

SUMPRODUCT(A2:A100-A1:A99,(B2:B100+B1:B99)/2 3)

where A is the x array of values (i.e., proportion of study area), B is the y array of values
(i.e., proportion of offences), representing an example coverage of 100 values.

A distinction between measuring the predictive accuracy of mapping output compared to
the approach used for clinical prediction is that more value is placed in a mapping
technique that does well at predicting a high proportion of crime in small geographic
areas, rather than a general measure for the mapping technique for the whole study area.
That is, measuring the proportion of future crime that takes place in the relatively small
areas that were identified as hotspots (using retrospective crime data), rather than the
proportion of crime that took place in all areas for which a hotspot mapping technique
calculated values for. Therefore, rather than generating a single area under the curve
measure, values for this metric should be calculated across a range of area and offence

proportion sub-sections of the accuracy concentration curve.

Table 4.4 lists the proposed combinations of the study area and offence proportions for
measuring the area under an accuracy concentration curve for the purpose of determining
the spatial crime prediction performance of mapping output. An area under the curve
measure from the section of the accuracy concentration curve covering 0.5% of the study
area and 5% of offences will indicate the predictive ability of the mapping output for very
small areas (i.e., areas for focused police or crime prevention activity). This then extends
to 1% and 5% of the study area’s coverage area, relative to 10% and 25% of offences

respectively. These metrics continue in order to give a sense of any improvements or
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degradation in the mapping outputs prediction performance for larger coverages of the
study area (including 80% of the offences relative to 20% of the coverage area to utilise
the albeit arbitrary but indicative practice of the 80:20 rule (also referred to as the Pareto
Principle) that is commonly applied in crime analysis (Clarke and Eck, 2003)). A final
measure relating to the area under the entire curve (i.e., 100% of the coverage area and

100% of offences) is also calculated.

Table 4.3 also lists the maximum area under the curve for each of these metrics. For
example, for a perfect test covering the chart axis range of 0%-10% of the study area and
0%-50% of all offences, the maximum area would be 0.1*0.5 = 0.05. The closer the
observed area under the curve is to the maximum value, the better the prediction

performance of the mapping output.

Table 4.4. Proposed sub-sections for area under the curve measurements to test for
mapping output prediction performance

Area under 0.5% area 1% area 5% area 10% area 20% area 100% area
curve X X X X X X
metrics 5% offences | 10%offences | 25% offences | 50% offences | 80% offences | 100% offences
Maximum
area under
) 0.000250 0.001 0.0125 0.05 0.16 1
section of
curve

4.4.5. The crime prediction index

While the area under the curve provides a more complete measure for assessing the
prediction performance of mapping output, the values generated across each range of
study area and offence proportions do not allow for straight-forward comparisons. The
current research introduces the crime prediction index (CPI) as a simple way to overcome
this. The CPI is calculated by dividing the observed area under the curve for a given
proportion of the study area and offence range, by the maximum area under the curve for

this range.

Observed Area Under Curve

: = Crime Prediction Index 3
Maximum Area Under Curve
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For example, if an observed area under the accuracy concentration curve for the 0.5%
coverage area and 5% offences range was 0.000184, and as the maximum area under this
section of the curve would be 0.00025 (i.e., 0.005*0.05), the CPI would be 0.736 (1 is a
perfect prediction). If an observed area under the curve for the 5% coverage area and
25% offences range was 0.0081, and as the maximum area under this section of the curve
would be 0.0125 (i.e., 0.05*0.25), the CPI would be 0.648. The results using these
examples would show that the mapping method performs better at predicting crime for
smaller coverage areas than for larger coverage areas. The CPI therefore chimes with the
medical approach of using a classification point system for the accuracy of a diagnostic
test (e.g., 0.90 to 1 is an excellent prediction). The CPI also makes it easier for mapping
techniques to be compared for their prediction performance — the closer the observation

is to a value of 1, the better the prediction.

4.4.6. Summary of measuring the prediction performance of mapping output

Since 2008 a number of techniques have been developed to measure the prediction
performance of crime mapping output. These have included the hit rate, the search
efficiency rate and the prediction accuracy index. Of these, the PAI has become most
used by crime researchers. However, it is a simple method that does not allow for a full
comparison of the prediction performance of the mapping output across the complete
range of offence proportions in comparison to the size of the area that would need to be
searched to predict this level of offences. The accuracy concentration curve provides a
useful means for this more complete analysis of prediction performance. Curves for
different types of mapping techniques can be plotted on the same chart to compare
prediction performance. However, rather than just comparing curves, the area under the
curve and the crime prediction index each provide single, robust measures that allow for
a more straightforward comparison of the prediction performance between mapping
outputs. These approaches borrow the area under the curve approach used in several other
areas of science including medical trials and clinical predictions, but are customised for
policing and crime prevention by applying these metrics to sub-sections of the accuracy
concentration curve. These adaptations are in order to identify how spatial crime
prediction methods perform when only a very small coverage area is searched for the
offences that are predicted in comparison to how it performs as the area that needs to be
searched increases. That is, if the accuracy concentration curve is very vertical within the
0%-50% range of offence proportion values and where the proportion of the study area is

very small, and the CPI for this sub-section of the accuracy concentration curve is close
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to a value of one, this would suggest the mapping technique is an excellent predictor of
crime. If this curve then starts to flatten after the 50% offence proportion level, it could
be argued that the hotspot mapping technique has done its job by identifying small
geographic areas (in proportion to the study area) where it predicted a high proportion of

crime to take place.

The experiments carried out in the current research use a combination of the PAI, hit
rates, accuracy concentration curves, the area under the curve and the CPI to measure the
prediction performance of mapping outputs. This is in order to conduct the first

assessment of how these different prediction performance measures compare.

4.5.  Spatial analysis processes: testing for clustering, hotspot mapping techniques
and input parameters, temporal stability, temporal predictions, and
geographically weighted regression

4.5.1. Testing for clustering

The first research study involves testing each recorded crime data set for statistical

evidence of clustering. The application of these tests will determine the point in the

temporal input periods at which clustering is evident, and if this clustering continues
across all the temporal data input periods. Establishing if clustering is evident will
identify whether the data for this input period is suitable for further hotspot analysis. The
technical methodological processes for testing for statistical evidence of clustering are

explained in research study 1 (chapter 5).

4.5.2. Hotspot mapping techniques and input parameters

Research study 2 involves a metric comparison of the prediction accuracy of common
hotspot analysis techniques. Each of these techniques requires certain parameters to be
set for them to operate or for them to generate a visual map output. The research will
experiment with different parameters settings in order to identify the impact these have
on the prediction accuracy of mapping outputs. A technical description of each hotspot
analysis technique and the parameters each technique uses is provided in research study
2 (chapter 6).

If a common hotspot analysis technique is consistently identified to perform better than
the others for predicting spatial patterns of crime, this technique will be further examined

for the impact its input parameter settings have on the prediction performance of the
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output it generates. For example, if kernel density estimation is identified as the best of
the common hotspot analysis techniques, the two parameters it requires the researcher to
enter — the cell size and the bandwidth size — will be tested to identify the impact that
different sized parameters have on the prediction performance of the mapping output.
The technical methodological processes for this hotspot analysis technique’s parameter

settings will be described in detail in research study 3 (chapter 7).

Study 4 (chapter 8) of the research involves testing whether spatial significance mapping
using Local Moran’s I, Local Geary’s C and the Gi* statistic improves on the common
hotspot analysis techniques. The focus of these tests are to determine whether spatial
significance mapping output can unambiguously define the areas that are hotspots, and if
these outputs perform better at predicting where crime occurs in the future. The technical
features of these techniques, including the parameters they use, will be explained in
research study 4. The influence these technical parameters have on the outputs and in the
prediction performance of these spatial significance mapping techniques will also be
tested.

4.5.3. Temporal stability of hotspots

Study 5 (chapter 9) of the research involves examining the temporal stability of hotspots.
The study will involve using the hotspot analysis technique that consistently performed
the best in predicting spatial patterns of crime from research studies 2, 3 and 4. The
analysis will determine if the hotspots it identifies are based on high crime levels that
have persisted over the input data period, if high crime levels then endured in the hotspots
it identifies over the temporal output periods, and if these high levels of crime differ
between hotspots that were generated using different temporal data input periods. For
example, input data for 1 month and 3 months will be used for generating hotspots, from
which the data for the period before and during the input data period will be analysed to
identify if crime levels have remained stable and high in the hotspots, and if crime levels
have continued to remain stable and high across the data output periods in the hotspots.
This part of the research introduces the temporal stability index (Haberman and Ratcliffe,
2012) and will be explained in full in the method section for this research part.

4.5.4. Temporal predictions of mapping output
Study 6 of the research examines the influence that different retrospective periods of

crime data have on spatial crime predictions for different time periods of the future. This
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will involve testing the influence of repeat and near repeat patterning principles that have
been coded into the Vigilance Modeller prospective mapping tool. This process involves
using data for the seven days prior to a measurement date as the inputs to the Vigilance
Modeller. The mapping outputs from this technique will be tested to identify its
prediction performance for the near future (within the next seven days), and for longer
temporal output periods (e.g., the next two weeks, the next month, the next six months).
A full description of this process is provided in the method section for research study 6
(chapter 10). Research study 6 also involves comparing the research findings from this
set of experiments to the hotspot analysis results from parts 2 to 4. This will include
identifying whether prospective mapping performs better than hotspot analysis for
predicting spatial patterns of crime, and if this performance differs for the temporal output
periods. That is, the analysis will determine if prospective mapping performs better than
hotspot analysis in predicting where crime is likely to occur in the immediate future (i.e.,
the next few days), and for predicting where crime is likely to occur for longer periods of
the future (i.e., the next week, the next two weeks and for other periods beyond).

The prediction performance of each mapping output for research studies 2 to 6 will use a
combination of the prediction performance metrics described in section 4.4. GIS
functions, as described in section 4.2, will be used for processing hotspot analysis
techniques. The results of these functions will be calibrated in Microsoft Excel for further

analysis and for producing tabular and charting outputs.

4.5.5. Geographically weighted regression

The detailed methodological process for applying geographically weighted regression is
described in research study 7 (chapter 11) where this method is used. This includes a
description of the types of models that are applied, and the diagnostic statistical processes
that are tested that examine variable influence, model bias, model significance and model
performance. The use of the GWR outputs is also explained in the method section in

research study 7.

Two approaches are proposed for examining spatially varying relationships — a
hypothesis testing approach and an exploratory approach. The hypothesis testing
approach requires the researcher to consider, based on sound theoretical grounds, the
reason why a phenomenon may be present. For example, violent crime hotspots may

cluster in a city centre and around entertainment facilities. From this, it would be
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plausible to suggest that the reason why these violent crime hotspots are present are
because these are the areas where bars, pubs and nightclubs are located. The logic is that
the high concentration of violent crime in these hotspots is related to the location of
premises where people gather to consume alcohol. It would also be plausible to suggest
that the violent crime hotspots are related to altercations between pupils from rival
schools, with these altercations occurring where children from the schools come together
at the main transport hubs whilst returning home from school. These are two plausible
hypotheses that are based on sound logical and environmental criminology theoretical
grounds. These two explanatory variables (the location of bars, pubs and nightclubs; and
transport hubs) can then be included in the regression model to explore, statistically, if
they are related to violent crime, and if these relationships vary geographically. The
hypothesis driven approach, therefore, involves determining a plausible explanation at
the outset, determining the data that can be used to test the hypothesis, applying a spatial
regression model, and then using the results from the model to identify if there is evidence
that supports this theoretical reasoning.

The exploratory approach involves choosing a range of variables that are then tested in
the regression model, and where correlations are found, attempting to interpret the results
based on plausible logic or some theoretical basis. That is, it involves fitting a theory to
the results to explain the relationship between the dependent and each significant
explanatory variable. The exploratory approach can also be used when the researcher is
not initially confident on the theoretical grounds to determine plausible hypotheses, or is
limited with their access to data. For example, data may not exist that is perfectly
associated with a hypothesis, requiring the researcher to instead rely on a proxy measure

for exploring if a relationship exists.

The current research explores both approaches, seeking to identify strengths and
weaknesses that lead to identifying and validating the inclusion of explanatory variables
in a hotspot analysis process. To facilitate this part of the research, a number of datasets

for small areas were sourced. These are described in research study 7.

Recall that the main objective in examining the use of GWR is to help identify why
hotspots exist and for informing spatial predictions of crime. GWR will, therefore, be
tested to examine if it is suitable for helping to understand local variations in why hotspots

exist. Hotspots that are identified are likely to be small in area; therefore, GWR will be
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tested to see if the results it generates are geographically precise enough to facilitate this
type of hotspot interpretation. If these results prove promising, a hotspot modelling
process will be explored that will aim to identify a practical means of combining hotspot
mapping outputs with explanatory variables to generate a map that is more effective (than
hotspot mapping methods) for predicting spatial patterns of crime. At present, it is
anticipated that a raster summation (map algebra) process (de Smith et al., 2007) will be
used. This would involve combining the results from a hotspot mapping process (i.e., the
presence, or not, of the cell forming part of a crime hotspot) with results from a spatial
regression model (i.e., the presence, or not, of an explanatory variable in each cell). If
appropriate, the research will also consider the practicality of assigning spatially varying
weights to each of these variables.

4.5.6. Summary of spatial analysis processes

The first research study will identify the point in the temporal data input periods at which
clustering is evident, for each of the crime types, and for both of the study areas. From
this, assuming that there is some point at which clustering is evident, the common hotspot
analysis techniques (research study 2) will be tested for their prediction accuracy. Study
2 will involve some testing of each technique’s parameter settings that are used for
generating hotspot mapping output, however, these parameters will be examined in more
detail for one of the common hotspot mapping techniques in study 3. In study 3, only the
hotspot mapping technique that was identified to consistently produce spatial crime
predictions that were better than the others would be examined to determine the influence
its parameter values have on the prediction accuracy of the mapping output it generates.

Study 4 involves examining whether spatial significance mapping removes the ambiguity
of defining the areal coverage of hotspot areas, and if the areas that are statistically
defined as hot perform better in predicting where crime occurs in comparison to the
common hotspot analysis techniques. Study 5 analyses whether hotspots that are
identified are temporally stable so that practitioners can be confident that these are the
areas where crime is likely to continue to persist in the future, and therefore any resource
targeting should have some impact. These temporal features of hotspots are then
examined further in study 6 when the principles of repeat and near repeat patterns are
tested for producing accurate predictions. An examination of these temporal features will
involve using a prospective mapping tool to determine if good predictions are not only

generated for the near future but that these predictions are also valuable for predicting the
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longer-term future, or whether hotspot analysis techniques perform better at predicting

where crime is likely to occur for certain periods of the future.

Study 7 involves using GWR to help interpret why hotspots exist. This will involve
examining whether GWR is sensitive enough for exploring relationships between
explanatory variables and spatially varying levels of crime at the geographic scale at
which hotspots are identified. Consideration will need to be given to the type of GWR
model to apply (Gaussian or Poisson) alongside a full assessment of the diagnostic
statistical tests that are required for GWR modelling. The different approaches for
applying GWR (or any other form of regression analysis) will also be examined for their
merits — hypothesis testing and exploratory analysis. If the GWR results prove promising,
the technique will then be examined to identify if it can support an improvement in spatial
crime predictions by constructing a modelling process that includes explanatory variables
alongside, or in replacement of, retrospective data on crime. In addition, the potential use
of GWR mapping outputs will also be examined for their value in informing how crime

levels may change based on the change in one or a number of related variables.
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5. Research study 1: Testing for the presence of crime hotspots

5.1. Introduction

A preliminary stage in any form of hotspot analysis is to determine if there is evidence
that hotspots exist in the data under examination. Hotspots are spatial clusters of events,
for which a number of tests exist for examining the statistical presence of clusters. The
most common statistical tests for identifying clusters in spatial data are Moran’s I,
Geary’s C and the Nearest Neighbour Index. Research study 1 tests the hypothesis
(hypothesis 1) that hotspots can be identified using retrospective data for a short period
of time rather than requiring retrospective data for longer periods of time. In so doing,
the research will identify the position in retrospective crime data when crime hotspot
patterns first appear and if this statistical evidence for clustering continues across the

range of input data periods.

5.2.  Chapter aims and structure

Examined in this chapter is the use of spatial statistical tests for determining if hotspots
exist in the crime data that are examined. This includes determining if the presence of
hotspots (clusters of crimes) is statistically significant. The following method section
describes the technical features of Moran’s I, Geary’s C and the Nearest Neighbour Index,
and their suitability for testing for the presence of hotspots. The experiments that were
conducted are then described, including a description of the temporal periods that were
used for the input data. In these experiments, input data were structured differently to
that described in the general method chapter (chapter 4) in order to suit the requirements

of these statistical tests.

Section 5.4 presents the results from the statistical clustering experiments. These are then

summarised to inform how these results influence subsequent studies in this research.

53. Method

5.3.1. Statistical tests for clustering

This research study examines the use of Moran’s I, Geary’s C and the Nearest Neighbour
Index for testing for statistical evidence of clustering (i.e., hotspots) in the crime data
under examination. The following sections will describe each of these statistical
measures in turn to determine their suitability for testing for the presence of clustering in

crime data.
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I. Moran’s I

The Moran’s I statistic is a spatial autocorrelation test that compares the similarity in
values between each location and its near neighbours (Eck et al., 2005; Levine, 2010;
O’Sullivan and Unwin, 2003). Moran’s I requires an intensity value, and the position
(i.e., geographic coordinates) of each event that is under study in order to be calculated.
In practice, this requires crime data to be aggregated to some form of geographic unit
where its position is represented by the centroid of the geographic unit (e.g., a grid cell,
or output area). This centroid point is then assigned an intensity value that represents the

number of crimes in the geographic unit (Eck et al., 2005).

The Moran’s I result varies between —1.0 and +1.0. Where values in a geographic unit
are high and are surrounded by other geographic units with similarly high values, positive
spatial autocorrelation exists; that is, a spatial cluster of high crime is identified. When
areas with low values are surrounded by high crime areas and high crime areas are
surrounded by geographic units with low levels of crime, the series would display
negative spatial autocorrelation; that is, a spatial cluster of high crime areas is not
identified. For these reasons, Moran’s I has been used by practitioners to identify if
hotspots are present in spatially distributed crime data (Eck et al., 2005; Levine, 2010).
The significance of the Moran’s I result can be tested against a theoretical distribution
(one that is normally distributed) by dividing by its theoretical standard deviation (Levine,
2010). This determines, for example, if the clustering of the data (indicated by positive
spatial autocorrelation) is statistically significant to the 95" percentile, the 99" percentile
or the 99.9" percentile. However, as well as positive spatial autocorrelation indicating
the presence of clusters of crime, positive spatial autocorrelation also indicates areas
where low values are surrounded by low values. That is, evidence of positive spatial
autocorrelation using Moran’s I relates to areas that are surrounded by similar values,

rather than exclusively relating to areas where high crime levels cluster.

Il. Geary’s C

Geary’s C statistic is a spatial autocorrelation measure of the deviations in intensity values
of each point with one another. Similar to Moran’s I, it requires data to be aggregated to
some form of geographic unit (e.g., a grid cell, or output area) to determine an intensity
value. The location of the geographic unit is represented by the units’ centroid geographic
coordinates. The values of C typically vary between 0 and 2, where values less than 1

indicate evidence of positive spatial autocorrelation and values greater than 1 indicate
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evidence of negative spatial autocorrelation. The Geary’s C statistic can be tested for
significance against a theoretical distribution (one that is normally distributed) by
dividing by its theoretical standard deviation (Levine, 2010). Similar to Moran’s 1, this
can be used to determine the level of statistical significance in the Geary’s C result. Also,
similar to Moran’s I, evidence of positive spatial autocorrelation in data that are examined
using Geary’s C relates to areas that are surrounded by similar values, rather than

exclusively referring to areas where high (crime) levels cluster.

I11.Nearest Neighbour Index

The Nearest Neighbour Index (NNI) test compares the observed point-based spatial
distribution of the data under examination against random variation (Clark and Evans,
1954). That is, it does not require aggregation to a geographic unit to be performed prior
to applying the test. If the result generated from the NNI test is 1 then the data are
randomly distributed. If the NNI result is less than 1 then the data show evidence of
clustering. A NNI result that is greater than 1 indicates evidence of a uniform pattern in
the data. The statistical significance of the result can be derived (at least approximately)
by comparing the theoretical distribution of the nearest neighbour distances between
points under complete spatial randomness, with the observed nearest neighbour distances
(Bailey and Gatrell, 1995).

It was decided that the NNI would provide the better test for clustering of crime data.

This was for two reasons:

e Positive spatial autocorrelation under Moran’s I and Geary’s C requires further
investigation to identify if the clustering identified refers to areas of high crime
surrounded by high crime, rather than areas of low crime surrounded by low crime

e The data used in this research were point-based. Therefore, rather than losing some
spatial detail in the original data by aggregating the point data to geographic units in
order to perform Moran’s I or Geary’s C, a test of spatial clustering using the NNI

preserved a point-based analytical approach.

Two sets of experiments were carried out. The first set was based on input data for a set
of temporal periods prior to the measurement date. Typically, practitioners would use
data for a certain number of previous days or weeks for producing a hotspot map. The
first set of experiments replicated this process. The second approach used input data for

a set of uniform categories of n events prior to the measurement date (e.g., multiples of 5
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events). This approach would better determine the typical number of events that were
required for generating hotspot maps. The tests were repeated for each crime type for the

two study areas to examine consistencies in the findings.

5.3.2. Input data based on a set of temporal periods prior to the measurement date
Measurement dates for the Camden/Islington and Newcastle study areas were selected as
the 1% January 2010 and the 1% April 2010 respectively. Input data for both the study
areas and for each crime type (burglary dwelling, theft from the person, theft from vehicle,
theft of vehicle) were prepared into the temporal periods shown in Table 5.1. For
example, one day of burglary dwelling data (i.e., the day prior to the measurement date)
was selected and the NNI test was applied. The result of the test was noted, including
whether it was statistically significant to 95%. This approach meant that the typical
temporal period prior to the measurement date for which the crime data showed statistical
evidence of clustering could be determined. This resulted in 112 tests (14 temporal
periods X 4 crime types x 2 study areas). An additional set of fourteen NNI tests were
performed on the Newcastle assaults with injury data. Where there were no crime events
or only one crime event for any temporal input period, the nearest neighbour statistic

could not be applied.

Table 5.1. Temporal periods of input data used for NIl tests, for both study areas

Temporal
P 1 day 2 days 3 days 4 days 5 days 6 days 1 week
input
data
. 2 weeks | 3weeks | 4weeks | 5weeks | 6 weeks | 7 weeks | 8weeks
periods

5.3.3. Input data based on a set of uniform categories of n events prior to the
measurement date
NNI tests were also performed on input data for each of the study areas and for each crime
type for a set of uniform categories of n events. Table 5.2 lists these categories of input
data. For example, the ten burglary dwelling events that were committed immediately
prior to the study area’s measurement date were selected and the NNI test was applied.
The result of the test was noted, including whether it was statistically significant to 95%
confidence level. Using these results, an additional set of NNI tests was carried out to

determine the exact number of events in each data set when clustering was statistically
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significant. This resulted in 184 tests (23 temporal periods x 4 crime types x 2 study
areas), plus up to 64 further tests (up to 8 NNI tests to establish the exact point of
clustering x 4 crime types x 2 study areas). An additional set of 23 NNI tests were also
performed on the Newcastle assaults with injury data, including further tests to determine

the exact volume of data when clustering was significant to 95%.

Table 5.2. Uniform categories of input data used for NNI tests

Uniform | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60
input

data 65 | 70 | 75 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150
periods
5.4. Results

The first set of experiments was to determine if clusters (i.e., hotspots) were evident in
the sample data, and how much data were required before clustering was statistically
significant to 95%. The experiments were performed using two approaches:

e Using input data for a set of temporal periods prior to the measurement date (i.e., 1
day, 2 days, 3 days ... 8 weeks). This approach would determine the typical temporal
period of input data that was required to generate hotspot maps.

e Using input data for a set of uniform categories of n events prior to the measurement
date (i.e., 5, 10, 15 ... 150). This approach would determine the typical number of
events that were required for generating hotspot maps.

Figure 5.1 and Table 5.3 show that for Camden/Islington only 3 days of data on thefts
from vehicles were required before clustering was evident. Burglary dwelling and theft
from the person showed evidence of clustering using just 4 and 5 days of data
respectively, whereas theft of vehicles required 1 week and 3 days of data before
clustering was evident. Before these respective thresholds were reached, the crime data
displayed patterns of random variation or were significantly uniformly distributed (p =
0.05). Thatis, 1 week and 3 days of theft from vehicles data would typically be required
in order to be able to generate a meaningful map identifying where hotspots have
occurred. Figure 5.1 and Table 5.3 show the exact number of crime events that were
required in Camden/Islington before clustering was significant to 95%. This ranged from
45 offences for burglary dwelling and 66 offences for theft from vehicles. All data input

periods prior to the point at which clustering was found to be statistically significant also
118



showed evidence of clustering. For example, all longer data input periods for theft from
the person, prior to 5 days before the measurement date (representing 52 offences)
showed significant evidence of clustering.

Table 5.3. The amount of crime data, by volume and retrospective temporal period,

required in Camden/Islington and Newcastle for clustering to be statistically significant
to 95%

Camden/Islington Newcastle
Days/weeks of n of cases Days/weeks of n of cases
data for evidence | for evidence | data for evidence | for evidence
of clustering of clustering of clustering of clustering
Burglary dwelling 4 days 45 2 weeks 4 days 65
Theft from the person 5 days 52 2 weeks 5 days 34
Theft of vehicle 1 week 3 days 64 16 weeks 5 days 63
Theft from vehicle 3 days 66 1 week 1 day 37
Assaults with injury - - 1 week 5 days 51
NNI results for Camden and Islington NNI results for Camden and Islington
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Figure 5.1. NNI results for Camden/Islington burglary dwelling, theft from the person,
theft of vehicles and theft from vehicles for (a) a set of temporal periods of input data,
and (b) the volume of input data. Markers in (a) that are shaded represent a result that
was significant to 95%; circle markers represent clustering, diamond markers refer to
random spatial distribution and square markers represent a uniform spatial distribution.

Circular markers in (b) represent the point when clustering was determined to be
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significant to 95%. Before this point, clustering was not significant. After this point, all

sets of data were significantly clustered.

In Newcastle, 8 days to 16 weeks and 5 days of data were required before clustering was
evident across all crime types (see Table 5.3). Similar to Camden/Islington, theft from
vehicles required the fewest number of days of recorded crime data before clustering was
statistically significant (8 days), followed by burglary dwelling (2 weeks 4 days) and theft
from the person (2 weeks 5 days). One week and 5 days of assaults with injury data were
required for clustering to be evident. Over 16 weeks of theft of vehicles data were
required for clustering to be evident. Before these temporal thresholds, the crime data
displayed patterns of random variation or were significantly uniformly distributed (p =

0.05) in most cases.

NNI results for Newcastle NNI results for Newcastle

@ Burglary dwelling ——furglary dwelling

= Theft from the person

a5 \ @ Theft from the person 35

Thedt of mortor vehicle
-~ Theft from motor vehicle

=@ Assaudts with injury

Nearest Neighbour Index
Nearost Neighbour Index
"

~ 7 : = = - 3 : Voilume of Input data
Temporal periods for input data

(a) (b)
Figure 5.2. NNI results for Newcastle burglary dwelling, theft from the person, theft of
vehicles, theft from vehicles and assaults with injury for (a) a set of temporal periods of
input data, and (b) the volume of input data. Markers in (a) that are shaded represent a
result that was significant to 95%; circle markers represent clustering, diamond markers
refer to random spatial distribution and square markers represent a uniform spatial
distribution. Circular markers in (b) represent the point when clustering was determined
to be significant to 95%. Before this point, clustering was not significant. After this
point, all sets of data were significantly clustered. The theft from vehicles line stops at
110 because there were only 110 records in the full six months of input data for

Newcastle.
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The results from using the NNI to test for clustering are illustrative of the different levels
of crime in Camden/Islington and Newcastle. Figure 5.2 and Table 5.4 show the exact
number of crime events that were required in Newcastle before clustering was significant
to 95%. This ranged from 34 offences for theft from the person and 65 offences for
burglary dwelling. All data input periods prior to the point at which clustering was found
to be significant also showed evidence of clustering. For example, all longer data input
periods for burglary dwelling, prior to 2 weeks and 4 days before the measurement date

(representing 65 offences) showed significant evidence of clustering.

5.5. Interpretation and conclusions from research study 1

In relation to the research hypothesis (hypothesis 1) - hotspots can be identified using
retrospective data for a short period of time rather than requiring retrospective data for
longer periods of time - the results show differences between study areas and between
crime types in the volume of data that are required before hotspots are statistically evident
and hotspot mapping can be performed. For example, while 1 week of burglary dwelling,
theft from the person data and theft from vehicle data for Camden/Islington would be
sufficient for performing some level of hotspot analysis, mapping 1 week of crime data
for any of the crime types examined from Newcastle would just show random spatial
patterns of these crime types. In all cases for the Newcastle study area, over one week of
crime data were required for each crime type for clustering to be evident. In the case of
theft of vehicles in Newcastle, over 16 weeks of crime data were required for hotspots to
be statistically evident. Analysis of the number of crime events that were required showed
that clustering became evident when 34 theft from the person offences in Newcastle were
tested, while 66 theft from vehicle offences in Camden/Islington were required before
clustering was statistically determined to be evident. These results show that, although
in some cases short retrospective periods of crime data (of less than a week) or small
volumes of crime (less than 35 crimes) are sufficient for hotspots to be statistically
identified, the specific retrospective point when hotspots are evident varies. Once
clustering was detected in the crime point data, all other input data for longer periods

showed statistical evidence of clustering.

In practitioner terms, simply choosing a retrospective period, whether it be based on a
retrospective number of days or retrospective volume of crime, and expecting hotspots to
be present is not sufficient if the analyst then expects hotspots to appear on a map. The

results from this research study illustrate the value in performing the NNI test as a
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preliminary stage to hotspot mapping to ensure hotspots are present in the data that are
examined, particularly when only small volumes of data are available. Once hotspots
have been identified using the NNI, the analyst can be confident that any mapping of
these data will identify where these hotspots are present, rather than interpreting patterns
that may look like clusters but are based on random spatial variation. A number of

techniques exist for mapping hotspots. These are examined in the next research study.

122



6. Research study 2: A metric assessment of the prediction performance

of common hotspot analysis techniques

6.1.  Introduction

Research study 1 showed that the specific retrospective point when hotspots are evident
in crime data varies, and that the Nearest Neighbour Index is a simple way of testing for
the presence of hotspots. Once hotspots are statistically identified in crime data, a number
of techniques are available for mapping crime data to determine where the hotspots exist.
The mapping of standard deviation spatial ellipses, thematic mapping of geographic units
and kernel density estimation (KDE) have become popular techniques for mapping
hotspots of crime. Research study 2 tests the hypothesis (hypothesis 2) that common
hotspot mapping techniques differ in how accurately they predict spatial patterns of crime.

The mapping of hotspots using spatial ellipses, thematic mapping of geographic units and
kernel density estimation (KDE) have been subject to several reviews (see Chainey et al.,
2002; Eck et al., 2005; Jefferis, 1999). However, these reviews have been little more than
visual comparisons of each method or exercises that have evaluated their ease of use.
Importantly, these reviews demonstrated that different hotspot mapping techniques
produce different results in terms of identifying the location, size and shape of areas that
are defined as hotspots. None of these reviews, however, have determined which of these
techniques is best for helping to identify where spatial patterns of crime may occur in the
future. The research described in this chapter assesses the predictive accuracy of the

common hotspot mapping methods.

6.2. Chapter aims and structure

Examined in this chapter is the predictive accuracy of common hotspot mapping
techniques - spatial ellipses, thematic mapping of geographic units, thematic mapping of
grid cells and kernel density estimation. The research identifies if differences exist in the
spatial prediction performance of these techniques and if one technique consistently
provides the best predictions on where crime occurs in the future. This will involve
conducting a number of experiments using each hotspot analysis technique, for a range
of crime types, and a range of input data periods. These hotspot maps are then compared
against where crime has occurred for a range of data output periods.
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The approach that was adopted for the experiments is described in the method section
(6.3). The method section includes a description of the data used, descriptions of the
technical features about each common hotspot analysis technique, the method used for
determining values that represent hot from each technique’s hotspot analysis output and

the metrics that were used for measuring prediction performance.

Section 6.4 presents the results from the hotspot analyses experiments. These results are
then summarised, drawing from study 1 of the research to help interpret the results, and

to inform how these results influence subsequent studies in this research.

6.3.  Method

The experiments were organised in two parts. The first part involved an analysis of four
commonly used mapping techniques for generating hotspot maps using data for the
Camden/Islington study area. The techniques were spatial ellipses, thematic mapping of
boundary areas, grid thematic mapping and kernel density estimation. These techniques
were chosen as they are the most commonly used by those generating hotspot maps of
crime (Weir and Bangs, 2007). The second part involved a replication of the experiments
using Newcastle data to examine consistencies in findings with the Camden/Islington
experiments. The experiments for Newcastle included using assault with injury data as

well as the crime types that were used in the Camden/Islington study area.

6.3.1. Crime data

The analysis in this research study used the two measurement dates for Camden/Islington
described in chapter 4 (1% January 2010 and 11" March 2010) and the Newcastle
measurement date of the 1%t April 2010. The data input periods and data output periods
used were those described in the study areas and crime data section (4.3) in chapter 4.

6.3.2. Hotspot analysis techniques

Each of the hotspot analysis techniques requires the user to input certain parameters to
generate mapping output. The parameters that were set are described below for each
technique, with the method that was followed being either the procedure advised in the
supporting guidance provided with the software for that technique or the default options
for the technique. This method was followed to replicate the approach a police analyst

would most typically apply.
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I. STAC spatial ellipses

CrimeStat (Levine, 2010) was used for generating STAC standard deviational spatial
ellipses. The parameters that the user is required to enter are the search radius, the
minimum number of points-per-hotspot, the number of standard deviational ellipses used
to delineate the hotspots, the number of standard deviations to apply for the generation of
spatial ellipses, and the scan type. The triangular scan type was selected due to the
irregular road network within each study area (as advised by Levine, 2010). Spatial
ellipses were created to one standard deviation. Setting the minimum points-per-hotspot
and the number of ellipses proved to be more complex as it is difficult to universally apply
a fixed number of points-per-hotspot with the different periods of input data using STAC.
In the absence of any official direction, a variable minimum points-per-hotspot approach
was applied, in which the minimum number of points-per-hotspot producing the highest
number of hotspots under 20 was calculated using a trial and error method. This approach
generates ellipses (i.e., hotspots) that reflect the underlying crime events and eliminates
those ellipses that could be created to make up the numbers to reach 20.

The only guidance for applying a suitable search radius was experimentation and
experience (Levine, 2010). As aresult, three search radii were used to determine hotspots
—500m, 250m and a search radius equal to the default bandwidth that was to be applied
to the creation of KDE maps. The rationale for choosing the default bandwidth value is
explained below in the KDE section. This KDE bandwidth default derived parameter
determined an alternate search radius size that varied in accordance with the spatial
characteristics of the crime input data. The three approaches were called Spatial ellipses
500, Spatial ellipses 250 and Spatial ellipses HSD. Once these parameters had been set
and run in CrimeStat, the outputs were imported into MaplInfo for display and analysis of

each output’s predictive accuracy.

I1. Thematic mapping of administrative geographic units

The thematic mapping of administrative geographic units technique requires crime point
data to be aggregated to some commonly used geographic unit, such as police beats,
wards or census geography. Census output areas are the smallest unit of Census
geography in England and Wales, each covering approximately 125 households and are
commonly used for aggregating crime data (Chainey and Ratcliffe, 2005; Weir and
Bangs, 2007). A count of crime was generated for each output area, for each crime type.

This count of crime was performed using standard point in polygon aggregation routines
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in MapInfo. The selection of the thematic range method and values for determining the
crime hotspot threshold are explained below as they also apply to grid thematic mapping
and KDE.

I11.Grid thematic mapping

To perform grid thematic mapping in MaplInfo (and most other GIS software) the analyst
Is first required to draw a grid lattice that can be positioned across the study area. The
parameter the user must decide is the size of each square grid cell. There is little guidance
on which cell size to select; if the cells are too large, the resulting hotspot map will only
show coarse geographic patterns of crime, and if too small it can be difficult to discern
any spatial patterns from the hotspot map (Chainey and Ratcliffe, 2005). Experimentation
and experience are again the best advice, but for novices to hotspot mapping using the
grid thematic mapping technique, Chainey and Ratcliffe (2005) suggest a useful starting
point for grid cell size is to calculate the distance in the shortest extent of the study area,
and divide this distance by 50. Following the approach advised by Chainey and Ratcliffe
(2005) a grid cell size of 250 m was chosen for Camden/Islington and 320 m for
Newcastle. In addition, the calculations for the grid thematic mapping technique were
repeated using the bandwidth size determined from the KDE bandwidth default value (the
applicability of this technique is discussed in the KDE section). This determined an
alternate grid cell size that varied in accordance with the spatial characteristics of the
crime input data. However, this cell size measure for Newcastle was calculated to be the
same as the 320 m measure determined from the first grid cell size calculation method,
and therefore a second set of experiments on grid cell size for the Newcastle study area

was not required.

Once the grids had been calibrated, functions in MapInfo were used to calculate a count
of the number of crime points within each grid cell. The selection of the thematic range
method and values for determining the crime hotspot threshold are explained in detail

below.

V. Kernel density estimation (KDE)
The spatial application of kernel density estimation emerged as a popular technique in

spatial epidemiology to assist the study of disease patterns®. Similar to disease, crime

10 For an early example of the application of KDE, see Bithell, 1990
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incidents are most usually geographically referenced as points. The KDE function is
applied to these points to obtain a smooth surface estimate representing the density of the
point distribution. In mathematical terms, KDE is expressed as:

f(x.y) =

n:rLI2 Z?‘lk[%j )

where f(X,y) is the density value at location (x,y), n is the number of incidents/points, h is
the bandwidth, d; is the geographical distance between incident i and location (X, y) and k
is a density function, known as the kernel. k can take many forms although the results
between different functions produce very similar density values (Bailey and Gatrell,
1995). A common choice for k is the quartic function (Bailey and Gatrell, 1995; Chainey
et al., 2002; Chainey and Ratcliffe, 2005; Levine, 2010; Ratcliffe, 2004; Williamson et

al., 1999).

KDE hotspot maps were generated using Hotspot Detective for Mapinfo (Ratcliffe,
2004). The user is required to enter two parameters - the cell size and the bandwidth size.
Following the default settings is an approach that most analysts take, and indeed are

encouraged to take if they are not experts in spatial analysis.

These first experiments did not examine different cell sizes and bandwidth sizes.
Experimentation of these parameters would follow if KDE was identified as one of the
better common hotspot mapping techniques in this first round of experiments. Hotspot
Detective determines default settings for these parameters after performing an analysis of
the input data. KDE cell size is calculated by dividing the shorter side of the minimum
bounding rectangle around the study area by 150 (Ratcliffe, 2004). Bandwidth selection
is more complicated (Chainey and Ratcliffe, 2005). In Hotspot Detective, the calculation
of the default bandwidth value is not divulged to users, but it is known to be a function of
the shorter side of the minimum bounding rectangle surrounding the study area, divided
by a number that provides a suitable enough cell resolution without requiring a significant
number of iterations to generate a representative KDE surface (Ratcliffe — personal
communication). Experience with using these defaults suggests they are appropriate in
most cases for determining cell size and bandwidth settings applied to crime data. As the
approach used by Hotspot Detective considers the spatial characteristics of the study area

it was considered useful to use the KDE bandwidth default measure determined using
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Hotspot Detective as one of the search radii parameters for STAC and as one of the cell
sizes for the grid thematic mapping technique. Table 6.1 lists the parameter details that
were used for each of the common hotspot analysis techniques.

Another parameter that users of the KDE function in Hotspot Detective are invited to
enter is a weighting attribute. As each retrospective crime event was applied with equal
weight, no weighting scheme was applied to the input data.

Table 6.1. Common hotspot mapping techniques and the parameter values that were used

for producing hotspot maps

Study area Common hotspot mapping techniques and the parameters

used in each study area

Camden/Islington e STAC: search radius 250 m

e STAC: search radius 500 m

e STAC: 225m (Hotspot Detective KDE bandwidth)

e Thematic mapping of Census output areas (n = 1392)

e Thematic mapping of grid cells: cell size 250 m

e Thematic mapping of grid cells: cell size 225 m (Hotspot
Detective KDE bandwidth)

o Kernel density estimation: cell size 45 m, bandwidth 225 m

Newcastle e STAC: search radius 250 m

e STAC: search radius 500 m

e STAC: 320 m (Hotspot Detective KDE bandwidth)

e Thematic mapping of Census output areas (n = 888)

e Thematic mapping of grid cells: cell size 320 m (Hotspot
Detective KDE bandwidth)

o Kernel density estimation: cell size 64 m, bandwidth 320 m

6.3.3. Determining a thematic threshold for hotspots

A final parameter to consider in hotspot map generation is a threshold value for
determining which areas are hot. For spatial ellipses this is straightforward as it is simply
the area drawn by each ellipse. Thematic mapping of output areas, grid thematic mapping
and KDE produce areal values across a continuous range (e.g., for grid thematic mapping,
each grid cell has a value representing the number of crimes located within the cell). A
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threshold value must be determined that specifies that any values above this threshold can

be classified as an area that is a hotspot.

The same thematic range approach was applied to each of the three hotspot mapping
techniques (thematic mapping of output areas, grid thematic mapping and KDE) for the
purpose of simplicity and consistency in methodology. Five thematic classes were used
and default values generated using the quantile method in MapInfo were applied to the
thematic mapping of output areas, grid thematic mapping and KDE for determining
thematic classes. This approach for thematic classification was used because the number
of classes falls within the upper and lower settings specified by Dent (1999) and Harries
(1999), and the quantile method was chosen because it distributes the data in an
approximately equal balance between the classes, resulting in a visually balanced map
pattern (Monmonier 1996). This approach for determining thematic classes is also a
common approach that many practitioners apply for generating hotspot maps (Eck et al.,
2005).

Hot was then determined by the top thematic class. Figure 6.1 illustrates an example of
this approach - it shows a hotspot map generated using KDE where the thematic ranges
were grouped into five classes and arranged following the quantile range method default
in Maplinfo. Cells with values in only the top thematic class were then selected, with

these areas determined as the hotspots.
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(a) Hotspot map (b) Top thematic class of hotspot map

Figure 6.1. Hotspots were determined by selecting the uppermost thematic class
calculated using five classes and the default values generated from a quantile thematic

range method
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6.3.4. Measuring the prediction performance of common hotspot mapping output
This research study used the PAI to compare the prediction performance of the common
hotspot analysis techniques, rather than using accuracy concentration curves, area under
the curve and the crime prediction index. This was due to the multiple data input periods
and data output periods that were used in the experiments and the large number of
experiments this, therefore, required. In Johnson et al.’s (2008b) study that compared
results between mapping techniques using an accuracy concentration curve, the analysis
was only conducted for one input data period (two months) and one output data period
(seven days). Calculating an accuracy concentration curve is practical for comparing one
set of data input and output for two different techniques (i.e., two experiments). The
current research used ten different input data sets, and ten different output data sets for
seven different types of hotspot analysis, and for two study areas, therefore, involving
1400 experiments. The use of accuracy concentration curves, area under the curve and
the CPI for each experiment was, therefore, considered neither practical nor proportionate
to the aims of this particular research study (i.e., to compare the spatial crime prediction
performance of the common hotspot mapping techniques). The use of the PAI has since
been discussed further by Pezzuchi (2008), Levine (2008) and Chainey et al. (2008b;
2008c), with researchers concluding it to be a useful measure for comparing multiple
hotspot mapping outputs.

The PAI was, therefore, used to compare the spatial crime prediction performance of the
different common hotspot mapping techniques. Hotspot maps of different crime types
are typically regarded as being similar in their accuracy for predicting crime patterns. As
the experiments were also conducted across a range of crime types, the PAI was used to
identify if there were differences between the common hotspot mapping techniques for

the different types of crime.

6.4. Results
This research study examined each of the common hotspot mapping techniques to
determine if differences exist in their ability to predict future patterns of crime. Each of

the techniques was applied using data from Camden/Islington, and Newcastle*.

11 The method and majority of the results from this research study have already been published in the
Security Journal: Chainey, S.P., Tompson, L., and Uhlig, S. (2008), “The utility of hotspot mapping for
predicting spatial patterns of crime”, Security Journal 21:1-2. This PhD research, however, uses a more up-
to-date version of the Camden/Islington data but the results are consistent with the published paper. The
published paper did not include the results for Newcastle.
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Table 6.2. Prediction Accuracy Index values for different hotspot mapping techniques.
Results in bold relate to the highest PAI values and results in italics relate to the lowest
PAl values. Results are presented for each of the dates when hotspot maps were generated

for Camden/Islington, and the single date for Newcastle.

Camden and Islington Newcastle

Hotspot mapping technique Average PAI | Average PAI | Average PAI

(01/01/2010) | (11/03/2010) | (01/04/2010)
Spatial ellipses 250m 1.74 2.25 10.6
Spatial ellipses 500m 1.24 1.52 8.3
Spatial ellipses HSD 1.69 2.03 94
Thematic mapping of Output Areas 1.91 2.38 16.4
Thematic mapping of grids 2.00 2.34 -
Thematic mapping of grids HSD 2.06 2.63 34.5
Kernel density estimation 2.90 341 41.5

Table 6.2 shows the PAI results for the different hotspot mapping techniques. These
results are presented in three columns to show differences between the two measurement
dates in Camden/Islington and to compare against the results for Newcastle. Average
PAI values were calculated from the individual PAI values from hotspot maps for the
different input periods, the different output periods and for the different crime types.
These results show that there were differences between hotspot mapping techniques in
their ability to predict patterns of crime. KDE consistently proved to be the best hotspot
mapping technique for predicting where crimes may occur in the future and spatial
ellipses were the worst. The PAI results for Newcastle were also much higher than those
for Camden/Islington suggesting that the hotspot maps produced for Newcastle were
more accurate than those produced for Camden/Islington. This is likely to be due to the
more intense clustering of crime in Newcastle in comparison to Camden/Islington.
However, the differences in the PAI values between the two areas do not necessarily mean
that the prediction performance of the hotspot maps produced for Newcastle are more
accurate to the magnitude indicated by the differences in PAI values. The PAI is an
indicative measure of prediction performance, meaning that a map with a PAI of 10 is not
necessarily five times better than a hotspot map that has a PAI of 2. Differences in the
number of crimes that were predicted using hotspot maps for the two study areas are

examined further in section 6.3.5.
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Table 6.3. PAI values for different hotspot mapping techniques, by crime type.

(a)

Camden/Islington, calculated from the 1% January 2010 measurement date, (b)

Camden/Islington, calculated from the 11" March 2010 measurement date, and (c)

Newcastle, calculated from the 1% April 2010 measurement date. Results in bold relate

to the highest PAI values and results in italics relate to the lowest PAI values.

(a) Camden/Islington: 1 January 2010 measurement date

—_

. . Burglary | Theftfrom | Theftfrom Theft of
Hotspot mapping technique _ ) )
dwelling the person vehicle vehicle
Spatial ellipses 250m 14 24 2.2 1.7
Spatial ellipses 500m 1.3 15 15 0.8
Spatial ellipses HSD 1.4 2.5 2.1 1.3
Thematic mapping of output areas 1.1 4.2 1.2 1.2
Thematic mapping of grids 250m 1.7 4.0 1.8 14
Thematic mapping of grids HSD 1.7 35 2.1 2.1
Kernel density estimation 2.3 4.7 2.3 2.3
b) Camden/Islington: 11" March 2010 measurement date
. . Burglary | Theftfrom | Theft from Theft of
Hotspot mapping technique _ ) )
dwelling the person vehicle vehicle
Spatial ellipses 250m 1.32 2.59 2.15 2.93
Spatial ellipses 500m 1.31 1.40 1.55 1.82
Spatial ellipses HSD 1.29 2.63 2.63 1.59
Thematic mapping of output areas 1.25 3.32 2.93 2.01
Thematic mapping of grids 250m 1.67 3.58 2.43 1.66
Thematic mapping of grids HSD 1.95 4.14 2.55 1.89
Kernel density estimation 2.33 4.59 3.66 3.05
(c) Newcastle: 1%t April 2010 measurement date
Theft Theft Assault
. . Burglary Theft of
Hotspot mapping technique _ from the from _ with
dwelling vehicle
person vehicle injury
Spatial ellipses 250m 51 23.2 4.3 0.3 19.9
Spatial ellipses 500m 4.3 17.1 3.9 0.2 16.1
Spatial ellipses HSD 4.7 19 41 0.3 19.1
Thematic mapping of output areas 8.2 36.3 6.5 0.5 30.6
Thematic mapping of grids m 10.8 78.5 7.7 0.5 74.9
Thematic mapping of grids HSD - - - - -
Kernel density estimation 121 103.5 94 1.2 81.1

132




Table 6.3 shows the average PAI values for each hotspot mapping technique for each
crime type. These were calculated from averaging the PAI values for each crime type, for
each hotspot mapping technique, and for all periods of input and output data. These
results were generated to see if differences in the prediction performance of hotspot
mapping techniques were consistent, and to explore differences between crime types. The
results from Table 6.3 show that for each crime type, KDE consistently proved to be the
best technique for predicting patterns of crime. The spatial ellipses technique was not,
though, the poorest performer for each crime type. Thematic mapping of output areas
generated the lowest PAI values in Camden/Islington for burglary dwelling and in one
case for thefts from vehicles. However, in Newcastle, the spatial ellipses technique was

consistently the poorest performer.
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Figure 6.2. Hotspot maps generated from three months of Camden/Islington burglary

dwelling input data (measurement date of the 1% January 2010) using (a) STAC, (b)
thematic mapping of output areas, (c) grid thematic mapping, and (d) kernel density
estimation. Each map is shown with its PAI value measured for one month of output

data.
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Figure 6.2 shows hotspot maps generated for each of the common hotspot analysis
techniques from three months of Camden/Islington burglary dwelling input data when the
measurement date was the 1% January 2010. The figures show that each technique
identified similar areas, but in terms of the ability to predict spatial patterns of burglary
dwelling over the next one month, the KDE map had a higher PAI value (2.18 compared
to 1.64, the next highest PAI value for thematic mapping of grid cells output). That is,
KDE mapping output was better than the others at predicting where burglary dwellings

occurred.

Table 6.4. PAI values for burglary dwelling, theft from the person, theft from vehicles,
theft of vehicles in Camden/Islington and Newcastle, and for assaults with injury in
Newcastle. The higher the PAI, the greater the ability of the hotspot map to predict where
future crimes (of the same respective type) will occur. Results in bold relate to the highest

PAI values and results in italics relate to the lowest PAI values.

Camden/Islington Newcastle

Average Standard Average Standard Average Standard
PAI deviation PAI deviation PAI deviation

Crime type (01/01/2010) | of PAl | (11/03/2010) | of PAI | (01/04/2010) | of PAI
Burglary dwelling 1.56 0.39 1.59 0.42 7.5 3.4
Theft from the person 3.24 1.17 3.18 1.07 46.3 36.2
Theft from Vehicle 1.89 0.41 2.56 0.65 6.0 23
Theft of Vehicle 1.53 0.52 214 0.60 0.5 0.3
Assault with injury 40.3 29.7

Table 6.4 summarises the PAI values for each crime type. These are presented in the
table as three sets of results — for Camden/Islington when the measurement date was the
1% January 2010 and when it was the 11" March 2010; and for Newcastle using the
measurement date of 1% April 2010. These results show there were differences among
the hotspot maps for different crime types in their ability to predict spatial patterns.
Hotspot maps of theft from the person consistently produced the highest PAI values, and
were clearly higher than PAI values for the other crime types. This is with the exception
of the PAI values for assault with injury from Newcastle that also generated high PAI
values. PAI values for burglary dwelling and theft of vehicles in Camden/Islington were
similar to each other; however, in Newcastle the PAI value for theft of vehicles was very
low. This low PAI value for theft of vehicles was perhaps a reflection of the low volume
of crimes of this type in Newcastle, and (in following the results from research study 1 —
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chapter 5) the lower extent of spatial clustering — over 16 weeks of theft from vehicle data
were required before any clustering was significant. The consequence of this is that
hotspots determined using retrospective data on theft of vehicles in Newcastle appear not
to be that useful for predicting where these types of crime will occur in the future. The
standard deviation values for the crime types indicated the variability in the results

generated by hotspot mapping techniques.

Many practitioners make two assumptions from hotspot maps: all techniques are as good
as each other, and no differences exist between crime types (Eck et al., 2005). These
results counter these two assumptions. Firstly, hotspot maps generated for different crime
types were found to differ in their performance for predicting patterns of crime. These
results suggest that hotspot maps of theft from person are better at predicting where these
types of incidents occur in comparison to hotspot maps of burglary dwelling, theft from
vehicles and theft of vehicles. The results from Newcastle also showed the high level of
prediction performance of retrospective data on assaults with injury. Secondly, the results
show that different techniques vary in their performance to predict where crime may occur
in the future, with KDE consistently outperforming the other common hotspot analysis
techniques.  Additionally, analyses using data for two measurement dates for
Camden/Islington, and comparing to a different measurement date for Newcastle, have
shown the results on the prediction performance of common hotspot analysis techniques

and the results between crime types to be consistent.

6.4.1. How many crimes can a hotspot map predict?

The PAI provides a useful comparative measure, but more useful to practitioners is a
measure that compares how many crimes a hotspot map is likely to predict. To measure
and compare the number of crimes a hotspot map is likely to predict requires the area that
the mapping technique determines as hot to be controlled for in size. That is, there would
be little use in saying that a technique can predict 100% of all future crimes if the area it
determines as hot is the entire study area. For the purposes of demonstrating how many
crimes a hotspot mapping technique can predict, the area determined as hot was controlled
to be 3% of the entire study area'?. As KDE consistently produced the highest PAI values,

12 39%% was chosen as this was considered to be representative of the size of area to which police resources
could practically be allocated and targeted.
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the KDE technique was selected for comparing how many crimes could be predicted for

each of the different crime types.

Table 6.5 shows PAI results for KDE when three months of input data were used for
generating hotspot maps for each crime type to determine the number of crimes that it
could predict in the month following the measurement date. Table 6.5a shows the results
for Camden/Islington using a measurement date of the 1% January 2010. Table 6.5b

shows the results for Newcastle using a measurement date of the 1%t April 2010.

Table 6.5. PAI and actual crimes predicted using KDE to generate a hotspot map from
the previous three months of crime data and determine where crimes in the next month
may occur, using (a) a measurement date of the 1% January 2010 for Camden/Islington,
and (b) a measurement date of the 1%t April 2010 for Newcastle. The area determined as
hot was controlled to represent the top 3% of KDE values within the study area.

(@) Camden/Islington

Crimes Number of | Percentage of
Crime type PAI committed in | crimesin crimes in
January 2010 hotspots hotspots
Burglary dwelling 2.77 470 39 8%
Theft from the person 6.59 460 91 20%
Theft from vehicle 3.98 962 115 12%
Theft of vehicle 3.26 307 30 10%
(b) Newcastle
Crimes Number of | Percentage of
Crime type PAI committed in | crimesin crimes in
April 2010 hotspots hotspots
Burglary dwelling 6.7 130 21 16%
Theft from the person 389.1 60 41 68%
Theft from vehicle 94 190 48 25%
Theft of vehicle 0.0 11 0 0%
Assault with injury 79.2 154 68 44%

The results shown in Table 6.5 again highlight the differences between crime types in
their PAI values and show the relatively high PAI results that KDE generated.
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Interestingly, these PAI values were higher than the previous average values (Table 6.4)
indicating that the currency of input data and the output period may influence differences
in PAI results. When the size of the area that was determined as hot was controlled to
represent the top 3% of KDE values in the study area, it was possible to compare the
number of crimes for each crime type that occurred in the next month in the areas
determined as hotspots. The results from this analysis show that for Camden/Islington,
in all cases at least 8% of crime took place in the month that followed the measurement
date, in an area representing only 3% of the study area. This result, suggesting that least
8% of crime took place in 3% of the study area, is useful for validating the role of hotspot
mapping for helping to determine where to focus police and crime prevention resources.
The proportion of crime in the hotspots was higher for theft from vehicles (12%) and theft
from the person (20%), indicating that for the latter, if crime prevention resources are
targeted to just those areas determined as hotspots, there is the chance of tackling a fifth

of all crime that is committed across the whole study area.

The results for Newcastle show that up to 68% of theft from the person and 44% of assault
with injury offences were predicted to occur in the hottest 3% of the study area. The
levels of crime prediction in Newcastle were also higher than Camden/Islington’s results
for burglary dwelling (16%) and theft from vehicles (25%). However, for theft of
vehicles, none of the crimes that took place in April 2010 were committed in the areas
that were identified as hotspots. This is likely to reflect the low volume of theft of vehicle
offences that occurred in Newcastle in April 2010 (n=11), and the fact that three months
of theft of vehicle input data were not clustered (i.e., the areas identified as hotspots were

not statistically defined as being hotspots).

6.5. Interpretation and conclusions from research study 2

With reference to this research study’s hypothesis (hypothesis 2) — common hotspot
mapping techniques differ in how accurately they predict spatial patterns of crime - the
results show that kernel density estimation consistently outperformed the other common
hotspot mapping techniques in predicting spatial patterns of crime. This consistency in
KDE outperforming the other techniques was not only across the two study areas and for
different measurement dates, but also for the range of different crime types. The results
also showed how hotspot maps differed in their prediction performance for different

crime types, with theft from the person hotspot maps proving to be better predictors of
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where these types of crime are likely to occur in the future than hotspot maps for

predicting vehicle crime and burglary dwelling.

When the hotspot area was controlled to represent the top 3% of KDE values (i.e.,
covering 3% of the study area), the results showed the high levels to which KDE hotspot
analysis can predict crime. For example, 68% of thefts from the person and 44% of
assaults with injury were predicted to occur in the areas representing just 3% of the study
area of Newcastle. However, KDE hotspot maps were not excellent predictors of crime
in all cases. For example, none of the Newcastle thefts of vehicle offences that occurred
in the prediction measurement period of April 2010 took place in the areas representing
the top 3% of KDE values determined using crime data on where thefts of vehicles had
previously occurred. However, it is important to recall that three months of retrospective
crime data were used in the creation of each KDE map where the top 3% of KDE values
were analysed for the number of crimes that were predicted. In research study 1, the
results showed that 16 weeks and 5 days of data were required before the theft of vehicle
input data for Newcastle showed significant evidence of clustering. For all other crime
types, hotspots were evident from only a few weeks of retrospective crime data. In
research study 2, the hit rate calculations for the top 3% of KDE values were determined
from KDE maps generated using three months of crime data. Statistically, hotspots of
theft of vehicles were not present in three months of retrospective crime data, and instead,
the theft of vehicle data were randomly distributed for this period. This means that the
KDE map generated from three months of theft of vehicles data was in fact only a
geographical representation of a random spatial pattern, albeit with a range of KDE values
representing this pattern. This leads to the conclusion that if hotspots do not exist in the
crime data that are used for producing KDE maps, it is unlikely that these maps will
perform well in predicting where crime may occur in the future. In contrast, when
hotspots are identified from retrospective crime data and these are shown geographically

using KDE, these hotspot maps are good predictors of where crime is likely to occur.

The KDE technique requires the user to enter two input parameters to generate mapping
output — the cell size and the bandwidth size. Different KDE cell sizes and bandwidth
sizes were used for the two study areas, and in part may help explain the differences in
the PAI results for the two areas. The next research study will examine the influence that
KDE cell size and bandwidth size have on the spatial crime prediction performance of

KDE hotspot maps.
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7. Research study 3: A metric comparison of the influence that
technical parameters used in hotspot analysis can have on spatial

crime prediction performance

7.1.  Introduction

Research study 2 showed that kernel density estimation consistently outperformed the
other common hotspot analysis techniques in predicting where crime is most likely to
occur. KDE has also increasingly become the hotspot analysis technique of choice by
police and public safety analysts and researchers (Chainey, 2013; Eck et al., 2005).
Because of these research findings and KDE’s popularity with researchers and
practitioners, the focus of research study 3 is on KDE, testing whether the parameters a
user is required to enter when producing KDE hotspot mapping have an influence on the

technique’s spatial crime prediction performance (hypothesis 3).

Like many spatial analysis techniques, KDE requires the researcher to input values of
certain parameters in order to produce mapping output. The two main parameters for
KDE are the value for the cell size (sometimes referred to as the resolution) and the value
for the bandwidth (often referred to as the search radius). An alternative method to
specifying a fixed bandwidth is the adaptive KDE approach where the bandwidth varies
based on a user-determined number of neighbours to include in the kernel density
calculation. The adaptive kernel approach is rarely used by crime mapping practitioners.
This is because the study of crime hotspots is often towards crime concentrations in urban
areas, rather than rural areas where, for the latter, an adaptive bandwidth may be more
appropriate (Chainey et al., 2008). The focus of this next research study was towards the

more commonly used fixed kernel bandwidth approach.

There is currently very little guidance on cell size and bandwidth size selection for the
practical application of KDE hotspot mapping for policing and public safety, with the
researcher either giving little thought to these values and their influence, settling for the
default values determined by their KDE software application, or drawing from their own
particular whims, fancies or experience (Chainey and Ratcliffe, 2005; Eck et al., 2005).
Also, in a number of studies that have used KDE (such as Jefferis’ 1999 assessment of
KDE and other hotspot analysis techniques, and Johnson et al.’s 2009 and 2012 analyses
of KDE in comparison to prospective mapping) either little thought has been given to
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parameter selection, or little attention has been placed on the influence that KDE input

parameters may have on the research findings.

7.2.  Chapter aims and structure

Examined in this research study is the influence that cell size and bandwidth size have on
the prediction performance of KDE hotspot mapping outputs. Section 7.3 describes the
method for these experiments and includes a detailed examination of the KDE equation
to identify the role that cell size and bandwidth size parameter values have on KDE
output. The current guidance on determining values for these parameters and the values
used for this research study’s experiments are then reviewed. The experiments conducted
in this research study use a different set of input data periods and data output periods than
those used in study 2. These are described in the method section along with the prediction
measures that were used to determine the influence that different cell sizes and bandwidth

sizes have on the prediction performance of KDE hotspot analysis outputs.

Section 7.4 presents the results from these KDE cell size and bandwidth size experiments.
These results are then considered collectively to interpret how this research study’s

findings may influence practice and how the results influence subsequent research parts.

7.3.  Method

This research study follows the general methodological process that was used in study 2
(that compared the spatial prediction measures of commonly used hotspot mapping
techniques) by comparing the influence that different cell size and bandwidth size values
have on the spatial prediction performance of KDE hotspot mapping outputs®®. The
research also uses the more detailed and complete measures of spatial prediction that were
described in the method chapter (e.g., accuracy concentration curves) and compares these
to PAI values.

7.3.1. An examination of the KDE function to explore the influence that cell size
and bandwidth size has on the density values that are calculated
Recall from chapter 2 that the kernel density estimation function is applied to a dataset of

points to obtain a smooth surface estimate representing the density of the point

13 A paper describing this method and the results has been published: Chainey, S.P. (2013), “Examining the
influence of cell size and bandwidth size on kernel density estimation crime hotspot maps for predicting
spatial patterns of crime”, Bulletin of the Geographical Society of Liege 60: 7-19.
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distribution. In mathematical terms, KDE is expressed as:

)= L, zk[%j (5)

where f(x,y) is the density value at location (x,y), n is the number of incidents/points, h is
the bandwidth, di is the geographical distance between incident i and location (X, y) and k
Is a density function, known as the kernel. Although k can take many forms (with there
being little difference in the results between different functions, e.g., Bailey and Gatrell,
1995), a common choice for k is the quartic function (Bailey and Gatrell, 1995; Chainey
et al., 2002; Chainey and Ratcliffe, 2005; Levine, 2010; Ratcliffe, 2004; Williamson et
al., 1999).

Examination of the components of the KDE equation show that the density value for each
location is affected by the number of points, the spatial distribution of these points, and
the bandwidth size. For the purpose of generating a KDE hotspot map of crime for a
single study area using data for one particular retrospective period of previous incidents,
the number of crime incidents across the area would remain the same, the spatial
distribution of the crime incidents would also remain the same, therefore neither would
have an effect on generating different density estimates. The size of the bandwidth is
determined by the user, therefore, for a KDE hotspot map of crime for a single study area
using data for one particular retrospective period of previous incidents, different values
of f may be calculated at each x,y location when different bandwidth sizes are used,
consistent with volume preservation across the study area as a whole. Each x,y location
is represented as a grid cell (the coordinates referring to the centroid of that cell), with the
calculated density value f attributed to each cell. The cell size chosen by the researcher
can vary, resulting in many calculations of f if the cell size is small or much fewer
calculations if the cell size is large. While cell size is not an input to the KDE equation,
the representation of these density values for areas of different size will be subject to the
Modifiable Areal Unit Problem (Openshaw, 1984) — different size cells may produce
different results of the KDE distribution of crime.

There is currently very little guidance on the choice of cell size a researcher should select
and no research that investigates the impact it can have on the prediction performance of
KDE crime hotspot maps. The little guidance that is offered is by Chainey and Ratcliffe
(2005) who recommend that a suitable KDE cell size to choose for crime hotspot mapping

is to divide the shorter side of the study area’s minimum bounding rectangle (MBR) by
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150. Whilst simple to calculate and used to determine the default cell size in the Hotspot
Detective Maplinfo add-on (Ratcliffe, 2004), this approach has not been rigorously
evaluated.

The choice of bandwidth size for crime researchers to select is similarly not prescribed.
For applications where these is a need to determine the number of neighbouring
geographic polygon units to include in a calculation, such as with local spatial regression
where local regression equations are applied to geographic units that make up defined
sets of neighbourhoods, several bandwidth size optimisation routines such as the Mean
Integrated Square Error (Bowman and Azzelini, 1997; Fotheringham et al., 2000), the
Akaike Correlation Coefficient and the Cross Validation method (Brunsdon, 1995;
Fotheringham et al., 2002; Silverman, 1986) can be used. However, these bandwidth
optimisation routines are not appropriate for point pattern analysis. As an alternative,
Bailey and Gatrell suggest a value derived from calculating h = 0.68n°?as a ‘rough
choice’ (Bailey and Gatrell, 1995: 86) for the bandwidth (where n is the number of
observed events across the study area). However, as Bailey and Gatrell’s measure does
not consider the spatial distribution of the observed events, this can mean that two sets of
data for the same study area, with the same spatial coverage of events, but much different
volumes of events, can produce very different bandwidth values. Instead, it is often
advised that bandwidth size should be specified from experience and in ways that are
sensitive to the nature of the application and the context in which it is applied (Bailey and
Gatrell, 1995; Chainey and Ratcliffe, 2005). Even while experience may guide an
appropriate choice of bandwidth size, to date, a detailed examination of the influence that
bandwidth size may have on KDE hotspot mapping output has not been conducted, with
many crime researchers, instead, not considering whether their choice of bandwidth size
influenced their findings. For example, Johnson et al. (2008b) chose a bandwidth size of
200 m in their study that compared KDE to a prospective mapping approach, with the
choice of this bandwidth not being subject to any further investigation as to whether its
size had an impact on their findings.

Chainey (2011) recommends a good starting bandwidth size to apply for KDE is to
measure the shorter side of the study area’s MBR, divide by 150 (i.e., the calculation that
is used to determine an appropriate cell size as described above), and multiply this value
by 5. Whilst simple to calculate, the choice of this bandwidth size has not been evaluated,

but is commonly applied - this bandwidth size calculation is used by Hotspot Detective
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for Maplinfo (Ratcliffe, 2004). Others suggest experimenting with different sizes of
bandwidth (Bailey and Gatrell, 1995; Chainey and Ratcliffe, 2005; Eck et al., 2005).
Whilst experimenting in this way encourages the researcher to explore their data under
different bandwidth conditions, it often leaves the researcher choosing the mapping
output that ‘looks the best” (Chainey and Ratcliffe, 2005: 159) in the context that KDE is
applied (e.g., rural versus urban areas), rather than being more scientifically informed on
the influence that bandwidth size selection may have on the prediction performance of

KDE hotspot mapping output.

7.3.2. Data inputs, data outputs and measurement date used for generating KDE
maps of different cell sizes and bandwidth sizes
Kernel density estimation hotspot maps were created using MaplInfo version 10.5 and the
Hotspot Detective v2.1 add-on (Ratcliffe, 2004). One study area was chosen for this
research study - Newcastle - and two crime types were chosen for analysis — burglary
dwelling and assault with injury. It was believed the study did not need replicating for
the Camden/Islington study area, nor for a larger number of crime types because the
results of the experiments would provide sufficient information to make conclusions on
the impact that cell size and bandwidth has on KDE mapping output. Newcastle was
selected as the study area rather than Camden/Islington because of the focus on burglary
dwelling and assault with injury that was planned in subsequent studies in the current

research.

In following the method described in the method chapter (Chapter 4) a suitable date had
to be chosen within the Newcastle data time period as the day on which retrospective data
were selected to generate hotspot maps against which future events could be compared.
For simplicity, the 1% April 2010 was used to maximise the use of six months of
retrospective data for generating KDE hotspot maps, and to use the complete set of six
months of data after this date for measuring the hotspot maps’ performance for predicting
future events. Different measurement dates were not applied because research study 2
that compared different measurement dates found no difference in the results. Confidence
was, therefore, placed in the selection of the 1% April 2010 as a measurement date that

would generate representative results.

The retrospective time data were organised into six time periods and used as input data

to generate KDE hotspot maps. This meant that rather than using just one retrospective
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time period (e.g., the three months prior to the measurement date) which may generate an
anomalous result, the use of a number of retrospective time periods would form a more
reliable basis on which to draw conclusions. Retrospective input data were organised into
the time periods shown in Table 7.1a, for each crime type. This approach in using
different periods of data as the input data was also followed through to the analysis
involving the output data. Six time periods of output data were used. This meant that
rather than using just one output data period for the research (e.g., the three months after
the measurement date), multiple output data time periods were used in order to generate
results from which more reliable conclusions could be made. Output data were organised
into the time periods shown in Table 7.1b. This meant that KDE hotspot maps that were
generated for each period of input data would be measured for their performance to
predict spatial patterns of crime, when the prediction period was the next month, the next

two months, and to the next six months.

Table 7.1. (a) The temporal periods of input data for generating hotspot maps, for a
measurement date of the 1% April 2010 and (b) the temporal periods of output data for
calculating the performance of KDE hotspot maps for predicting spatial patterns of crime
(a)

Time periods of data used to create KDE hotspot maps

1 month 2 months 3 months 4 months 5 months 6 months
1 Mar2010- | 1Feb2010- | 1Jan2010- |1 Dec2009- | 1 Nov 2009 - | 1 Oct 2009 -
31 Mar 2010 | 31 Mar 2010 | 31 Mar 2010 | 31 Mar 2010 | 31 Mar 2010 | 31 Mar 2010
(b)
Time periods of data used to measure the prediction performance of KDE hotspot maps
1 month 2 months 3 months 4 months 5 months 6 months
1 Apr2010- | 1 Apr2010- | 1 Apr2010— | 1 Apr2010- | 1 Apr2010- | 1 Apr 2010 -
30 Apr 2010 | 30 May 2010 | 31 Jun 2010 | 31 Jul 2010 31 Aug 2010 | 30 Sep 2010

7.3.3. Cell and bandwidth sizes used for determining the influence these
parameters have on KDE hotspot analysis output

Eight cell size values were chosen for comparison: 30 metres, 60 m, 90 m, 120 m, 150 m,

180 m, 210 m and 240 m. A value that is often used for the cell size (as referred to in

section 7.3.1) is the result from measuring the shortest side of the minimum bounding

rectangle of the study area, and dividing this distance by 150. Although the choice of 150

is rather arbitrary, in practice it provides a useful starting measure. This calculation gave
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the value of 89.6 (rounded up to 90 m). It was, therefore, thought useful to generate
results for this measure in comparison to other cell size values, using multiples of 30 m
in the cell size experiments. For each cell size experiment, the bandwidth was controlled
to a single size: a bandwidth of 450 m was used (five times 90 m), as per the guidance

described in section 7.3.1.

Five bandwidth size values were chosen for comparison: 100 m, 200 m, 300 m, 400 m,
and 500 m. If the recommendations of Chainey (2011) were followed (i.e., five times the
cell size) this would have suggested a bandwidth value of 450 m. Rather than use
multiples of 150 m, multiples of 100 m were used instead in order to explore the influence
of a small bandwidth (100 m) and to help more simply present the results. This approach
would also still enable a comparison between the outputs generated between 400 m and
500 m as an indication of the effectiveness of the rather crude selection of 450 m as a
bandwidth size. For each bandwidth-size experiment, the cell was controlled to a single

size: a cell size of 90 m was used, as per the approach described in the paragraph above.

A final parameter to consider for KDE hotspot map generation was the threshold value
for determining which areas were hot. For purposes of research comparison, the method
used in study 2 of the research was followed. This involved using five thematic classes
and default values generated from using the quantile thematic classification method in
Maplnfo. Hot was then determined by the top thematic class (see Figure 6.1 in the method

section of research study 2, chapter 6, for an illustration of this process).

7.3.4. Measuring the prediction accuracy of KDE hotspots produced using
different cell sizes and bandwidth sizes
A combination of PAI, accuracy concentration curves, area under the curve and CPI
measures were used for measuring the prediction performance of KDE hotspot maps
produced using different cell sizes and bandwidth sizes. PAI measures were aggregated
and averaged for the periods of input data and for the periods of output data. This meant
that the PAI measures could be compared, with any differences being explained in
relation to the cell size and bandwidth size rather than different periods of input and output
data. Aggregating and averaging PAI results was applied separately to the two crime
datasets: burglary dwelling and assault with injury. The standard deviation and
coefficient of variation of the PAI for each crime type across the eight different cell size

values and eight bandwidth values were also calculated.
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Accuracy concentration curves were calculated for both burglary dwelling and assault
with injury KDE hotspot maps, for the full range of cell sizes and bandwidths, for a single
input data period of six months and a single output data period of six months. Area under
the curve and CPI values were calculated for the sub-sections of the accuracy
concentration curves as described in the method chapter (chapter 4) and listed in Table
4.3. These were compared to their equivalent PAI values to examine whether the simple
to calculate PAI missed any important details in assessing the prediction performance of

mapping outputs.

7.4. Results
7.4.1. The influence of cell size on KDE hotspot maps for predicting where crime
may occur

Table 7.2 shows the PAI results for Newcastle burglary dwelling and assault with injury
KDE hotspot maps for different cell sizes. The PAI results for burglary dwelling varied
between 6.6 for a cell size of 240 m to 7.1 for 30 m and 60 m cell sizes. The PAI results
for assault with injury were much higher than those for burglary dwelling, but again
showed only a small amount of relative variation from 59.9 for a cell size of 210 m to
68.5 for a cell size of 60 m. These results suggest that although PAI values decreased
with increases in cell size, this difference was marginal. These results are also shown in
Figure 7.1. There was little statistical variation in the results for each cell size, as
indicated by the low coefficient of variation (CV) values, and little difference in the CV

values between cell sizes.

Table 7.2. KDE hotspot map PAI, standard deviation (SD) and coefficient of variation
(CV) results for burglary dwelling and assault with injury for different cell sizes

Burglary dwelling Assault with injury
Cell size PAI SD CcVv PAI SD CVv
30 7.1 0.60 0.08 68.4 3.06 0.04
60 7.1 0.66 0.09 68.5 2.96 0.04
90 6.7 0.53 0.08 65.1 2.66 0.04
120 6.9 0.57 0.08 64.5 2.50 0.04
150 6.7 0.53 0.08 63.0 3.17 0.05
180 6.8 0.64 0.10 64.3 2.95 0.05
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210 6.7 0.46 0.07 59.9 2.39 0.04
240 6.6 0.48 0.07 60.2 2.85 0.05

The influence of cell size on the spatial prediction
accuracy of KDE hotspot maps
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Figure 7.1. The influence of cell size on KDE hotspot map PAI values for burglary
dwelling and assault with injury

Table 7.3. Crimes predicted using KDE outputs of different cell sizes for burglary
dwelling and assault with injury, using three months of input crime data (January — March
2010) and three months of output data (April — June 2010). The area determined as hot

was controlled to cover 1% of the study area’s total area.

Crimes Number of
] ] ] Percentage
] ) committed crimes in ) ]
Crime type and cell size (m) ) of crimes in
April - hotspots
hotspots
June 2010 (1% of area)
Burglary dwelling: 30 m 329 29 8.8%
Burglary dwelling: 240 m 329 28 8.5%
Assaults with injury: 30 m 459 158 34.4%
Assaults with injury: 240 m 459 153 33.3%

The similarity in results for different cell sizes was further illustrated by the difference in
the number of crimes predicted in KDE generated hotspot areas that were produced using
different cell sizes (Table 7.3). When the KDE hotspot areas were controlled to identify
1% of the total study area (i.e., the 1% of areas with the highest KDE values), generated
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from 3 months of input data using cell sizes of 30 m and 240 m to predict where crimes
would occur in the next 3 months, very similar results were produced. For burglary
dwelling, KDE outputs generated using a 30 m cell size predicted 29 crimes, in
comparison to 28 crimes using a cell size of 240 m. For assaults with injury, KDE outputs
generated using a 30 m cell size predicted 158 crimes, in comparison to 153 crimes using
a cell size of 240 m. That is, as the spatial resolution of the KDE hotspot map began to
degrade, the ability of the map to predict where crime occurred in the future reduced, but

only marginally.

7.4.2. The influence of bandwidth size on KDE hotspot maps for predicting where
crime may occur
Table 7.4 shows the PAI results for burglary dwelling and assault with injury for different
bandwidth sizes. The PAI results for burglary dwelling varied between 5.6 for bandwidth
sizes of 700 m to 13.1 for 100 m bandwidth sizes. The PAI results for assault with injury
were much higher than those for burglary dwelling, but also showed large variation from
42.9 for bandwidth sizes of 800 m to 142.8 for bandwidth sizes of 100 m. These results
suggest that as bandwidth size increases, the performance of the KDE hotspot map to
predict spatial patterns of crime degrades. These results are also shown in Figure 7.2.
With the exception of burglary dwelling KDE hotspot maps generated using a bandwidth
of 100 m, there was little statistical variation in the PAI results for each bandwidth size

and little difference in the CV values between bandwidth sizes.

Table 7.4. KDE hotspot map PAI, standard deviation (SD) and coefficient of variation

(CV) values for burglary dwelling and assault with injury for different bandwidth sizes

Burglary dwelling Assault with injury

Bandwidth size

PAI SD CVv PAI SD Ccv
(m)
100 131 2.8 0.22 142.8 | 11.53 0.08
200 111 1.3 0.12 91.7 4.65 0.05
300 8.7 1.0 0.12 79.4 3.03 0.04
400 7.1 0.7 0.10 68.3 3.54 0.05
500 6.5 0.6 0.09 60.2 2.60 0.04
600 5.9 0.6 0.11 54.3 2.52 0.05
700 5.6 0.6 0.11 48.6 2.23 0.05
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800 5.7 0.5 0.09 42.9 1.98 0.05

The influence of bandwidth size on the spatial
prediction accuracy of KDE hotspot maps
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Figure 7.2. The influence of bandwidth size (m) on KDE hotspot map PAI values for

burglary dwelling and assault with injury

Table 7.5. Crimes predicted using KDE outputs of different bandwidth sizes for burglary
dwelling and assault with injury, based on using three months of input crime data (January
— March 2010) and three months of measurement data (April — June 2010). The area

determined as hot was controlled to cover 1% of the study area’s total area

Crimes Number of
) ) ) Percentage
_ ] ) committed crimesin ] i
Crime type and bandwidth size (m) ) of crimes in
April — hotspots
hotspots
June 2010 (1% of area)
Burglary dwelling: 100 m 329 35 10.6%
Burglary dwelling: 800 m 329 22 6.7%
Assault with injury: 100 m 459 166 36.2%
Assault with injury: 800 m 459 137 29.8%

The difference in results for different bandwidth sizes is further illustrated by the
difference in the number of crimes predicted from KDE generated hotspot maps of
different bandwidth sizes (Table 7.5). To illustrate this, the KDE hotspot areas were
controlled to identify only the top 1% of density values (i.e., the 1% of areas with the

highest KDE values), generated from 3 months of input data using bandwidth sizes of
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100 m and 800 m to predict where crimes would occur in the next 3 months. For burglary
dwelling, KDE outputs generated using a 100 m bandwidth size predicted 35 crimes (i.e.,
11% of all burglaries in just 1% of the study area), in comparison to 22 crimes using a
bandwidth size of 800 m. For assaults with injury, KDE outputs generated using a 100
m bandwidth size predicted 166 crimes (i.e., 36% of all violent assaults in 1% of the study
area), in comparison to 137 crimes using a bandwidth size of 800 m. That is, as the
smoothing of the KDE hotspot map increased (caused by increases in bandwidth size),
the performance of the map to predict where crime occurred degraded. These results also

illustrate the relatively high proportion of crime that KDE hotspot maps can predict.

7.4.3. Using accuracy concentration curves, the area under the curve and the CPI
to measure the prediction performance of KDE hotspot analysis output

I Cell size results

The PAI provides a simple measure for comparing prediction performance of hotspot

analysis output. A more detailed measure is the accuracy concentration curve. This

allows the prediction of mapping output to be compared across the full areal extent of the

study area (i.e., by comparing the number of crimes predicted at very small areal coverage

levels (e.g., 1%) to larger areal coverage levels (e.g., 25%, 50%, 75% and to 100%)).

Figure 7.3 shows accuracy concentration curves for KDE hotspot maps of different cell
sizes, of burglary dwelling for Newcastle, generated using six months of input data and
six months of output data. These graphs are shown at different axis levels to examine in
detail the variation between cell sizes. The graphs are interpreted by identifying the area
that needs to be searched (by the proportion of the study area) for a certain proportion of
offences to be identified. The area searched is ordered from high to low kernel density
values. For example, in Figure 7.3a the top 20% of KDE values generated from six
months of burglary dwelling data identified where approximately 60% of all offences

took place in the following six months.

Figure 7.3a shows there was very little difference between the range of cell sizes used for
the areas searched and the areas where offences occurred for the section of the graph
between 0% to 35% of the study area coverage. That is, the prediction performance of
the KDE hotspot maps generated for different cell sizes showed very little difference for
the top 35% of KDE values. From approximately 35% of the study area, the prediction

performance of KDE output generated using a cell size of 120 m began to degrade in
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comparison to the other KDE outputs for other cell sizes. This is illustrated in Figure 7.3a
by the line representing the KDE output generated using a 120 m cell size being less
vertical and separating from the other lines. However, from approximately 40% of the
study area, each of the lines representing the KDE outputs for other cell sizes also
flattened and began to show some differences in their prediction performance (as shown

by the separation in the lines in Figure 7.3a).
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Figure 7.3. Accuracy concentration curves of Newcastle KDE burglary dwelling hotspot
maps, generated using different cell sizes (and using a fixed bandwidth of 450 m)

Closer examination of the KDE hotspot outputs for each cell size explains why these

differences occurred at these study area proportion levels in Figure 7.3a. The last column
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in Table 7.6 lists the proportion of the study area that was covered by KDE values. The
KDE hotspot maps for each cell size are also shown in Figure 7.4. KDE values generated
using a cell size of 120 m covered 32% of the study area (see Figure 7.4d). The remaining
68% of the cells covering the study area had density values of zero. This spatial coverage
of KDE values is reflected in the line drawn for the 120 m cell size in Figure 7.3a that
separates from the lines for the KDE outputs for other cell sizes. Up to a coverage of
32% of the study area, the KDE values generated using a cell size of 120 m provided
some indication of where burglary dwelling may occur in the future, but after this point,
the line reflects random variation. That is, the cells at this point were not arranged in order
of where crime was predicted to occur (all cell values were zero), and, therefore, the
likelihood that an offence fell inside a cell is down to random chance. Similarly, KDE
values generated using cell sizes of 30 m, 60 m, 90 m and 150 m covered 44%, 43%, 40%
and 40% of the study area respectively (see Figures 7.4a, b, c and e). It is again at these
points on the chart in Figure 7.3a that the lines for each cell size flatten and follow a trend
that reflects random variation.

Table 7.6. The proportion of the Newcastle study area searched across hotspots maps
generated using KDE (six months of input data), relative to 5%, 10%, 25%, 50%, and
80% of burglary dwelling offences, for different cell sizes. Values in bold represent the

smallest area that was searched for identifying the relevant proportion of crime.

% of offences and the area searched % of study area
_ (burglary dwelling) with KDE
Cell size
values
(m)

5% of | 10% of | 25% of | 50% of | 80% of

offences | offences | offences | offences | offences
30 0.19% 0.71% 3.57% 11% 30% 44%
60 0.18% | 0.64% 3.96% 11% 32% 43%
90 0.21% 0.65% 3.71% 11% 32% 40%
120 0.22% 0.72% 3.26% | 11.5% 34% 32%
150 0.22% 0.68% 3.51% | 11.5% 32% 40%

Closer examination of KDE hotspot analysis outputs for different cell sizes at smaller
levels of the proportion of the study area again show there to be little difference in their
prediction performance. Figure 7.3b, ¢ and d show the lines representing the different

cell sizes to vary very little, with there being no consistency in cells of a particular size
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showing any differences to others. This is supported by visual inspection of the hotspot
maps for the different cell sizes in Figure 7.4, showing the same areas identified as

hotspots, and with the main difference being the greater pixilation of the hotspot maps as

cell size increases.
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Figure 7.4. KDE burglary dwelling hotspot maps of Newcastle, generated using six
months of data and a fixed bandwidth of 450 m for cell sizes of (a) 30 m, (b) 60 m, (c) 90
m, (d) 120 m, and (e) 150 m

Table 7.6 lists the proportion of the area that would need to be searched for 5%, 10%,
25%, 50% and 80% of all offences to be identified (i.e., the size of the area where 5%,
10% ... 80% of all burglaries were predicted to occur). These results identify the highly
predictive nature of KDE hotspot maps. For example, KDE hotspot maps identified that
25% of all burglary dwelling offences that occurred during the output data period took

place in less than 4% of the study area (identified from the top 4% of KDE values).

Accuracy concentration curves provide a useful means of examining in detail the
prediction performance of mapping output across a full study area and across the full
proportional range of offence volume. The area under the curve and Crime Prediction
Index add to this detailed visual representation of the prediction performance of mapping
output by providing statistical measures that allow for further interpretative analysis.
Also, by splitting the area under the curve into sections helps to determine if there are
differences in the prediction performance of KDE hotspot maps at different levels of study

area coverage.

Table 7.7 lists the area under the curve and CPI values for KDE burglary dwelling hotspot
mapping output for different cell sizes. These results help to further show that cell size
has little impact on influencing the predictive performance of KDE hotspot mapping
output. For example, for the section of the accuracy concentration curve representing
0%-0.5% of the study area and up to 5% of all offences, the area under the curves for the
different cell sizes ranged between 0.000207 (for a cell size of 150 m) to 0.000216 (for a
cell size of 30 m). For the section of the accuracy concentration curve representing 0%-
5% of the study area and up to 25% of all offences, the area under the curves for the
different cell sizes ranged between 0.008917 (for a cell size of 90 m) to 0.009219 (for a
cell size of 120 m).

The CPI provides a better means of directly comparing the sub-sections of the area under
the curve results (a CPI value of 1 represents a perfect prediction). CPI values for the full
coverage and full offence extent ranged from 0.815 to 0.833, indicating the KDE burglary

dwelling hotspot maps generated using different cell sizes were good predictors of where
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crime occurred in the future (see Table 7.7b). Closer examination of CPI values for
different study area coverages and offence proportions showed that the KDE burglary
dwelling hotspot maps performed better at predicting crime for the highest KDE values
(i.e., the top 0.5% of KDE values). CPI values for the top 0.5% of KDE values ranged
from 0.829 to 0.863. CPI values then fell to 0.55 for the top 20% of KDE values. These
values reflect the gradual reduction in gradient of the accuracy concentration curve as it
extends from 0% to 20% of the coverage of the study area (as shown in Figure 7.3a).

Table 7.7. (a) Area under the accuracy concentration curves, and (b) CPI values for
Newcastle burglary dwelling KDE hotspot maps of different cell sizes (using a fixed
bandwidth of 450 m). Values in bold relate to the largest area and largest CPI values.

(a)
Cell size
- 0.5% x5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
30 0.000216 | 0.000763 | 0.009191 | 0.029892 | 0.088646 0.833007
60 0.000215 | 0.000768 | 0.009021 | 0.028862 | 0.087532 0.826522
90 0.000210 | 0.000771 | 0.008917 | 0.028702 | 0.087136 | 0.821530
120 0.000208 | 0.000736 | 0.009219 | 0.029465 0.08689 0.814785
150 0.000207 | 0.000727 | 0.009184 | 0.027834 | 0.085292 0.821723
Max values | 0.00025 0.001 0.0125 0.05 0.16 1

(b)
Cell size 0.5% x5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
(m) CPI CPI CPI CPI CPI CPI
30 0.863 0.763 0.735 0.598 0.554 0.833
60 0.858 0.768 0.722 0.577 0.547 0.827
90 0.841 0.771 0.713 0.574 0.545 0.822
120 0.830 0.736 0.738 0.589 0.543 0.815
150 0.829 0.727 0.735 0.557 0.533 0.822

The results using the metrics of accuracy concentration curves, the area under the curve
and the CPI are comparable to the results generated using the PAI — that cell size has little
influence on the prediction performance of KDE hotspot analysis output. This, therefore,
shows the PAI provides a simple, yet effective measure of the prediction performance of

hotspot analysis outputs. However, not only do the additional metrics of the accuracy
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concentration curves, the area under the curve and the CPI provide further detail in
helping to examine hotspot mapping output prediction performance, they also appear to
provide a better means of comparing the prediction performance results between different
mapping outputs. In addition, these more detailed measures appear to offer a better means
of examining the prediction performance of mapping output across a range of coverage
areas and offence proportions. A weakness of the PAI is that there is no easy way to
determine how much better a high PAI value is over a lesser value. While higher PAI
values indicate a better prediction performance in the mapping output, it is a relative value
rather than one that provides an absolute measure of good or not so good. The CPI
provides a better means of determining direct comparability between hotspot mapping
output — the closer the CPI value is to 1, the better the prediction. For example, the CPI
value of 0.863 for the sub-section of the accuracy concentration curve from 0% to 0.5%
of the study area for a cell size of 30 m suggests that KDE performs very well at predicting
spatial patterns of crime for this very small area. In comparison, the CPI value of 0.735
for the sub-section of the accuracy concentration curve between 0% to 25% of the study
area for the same cell size suggests the KDE hotspot mapping output does not perform as

well in its prediction performance.

Generating CPI values across the range of coverages for the study area and offence
proportions helps determine at which place across the coverage the mapping output
predictions perform best. This is of value because in most cases police and crime
prevention interest is towards the focusing of resourcing to small geographic areas. CPI
values generated across the range of areal coverage levels and offence proportions
provide a better means of determining if the output is good for predicting crime for very
small coverage levels (the top proportion of mapping output values) and whether this then
degrades as the predictions from the mapping output then decrease in value. That is, most
practitioners are more likely to find value from a mapping technique that is very good at
predicting crime for very small areas that can be specifically targeted rather than how the

mapping technique performs in predicting crime for 25% or 50% of the coverage area.

Figure 7.5 shows the accuracy concentration curves for Newcastle KDE hotspot maps of
different cell sizes for assault with injury. These again show that cell size had little
influence on the prediction performance of KDE hotspot maps, and all of the main
variation that occurred above study area proportion levels of 30% was a reflection of the

coverage extent of KDE values and cells that had values of zero. For example, Table 7.8
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shows the KDE assault with injury values extended to 30% to 42% of the coverage area
for the different cell size outputs. Above these KDE study area extent levels, the accuracy
concentration curves follow a trend of random variation, reflecting the fact that cells for
these areas were not populated with KDE density values (i.e., these areas did not
experience any crime). These KDE value coverage extents are shown in the Figure 7.6
hotspot maps with large areas containing no values. Similar to the hotspot maps for
burglary dwelling shown in Figure 7.4, the KDE hotspot maps for assault with injury
show very little variation in density representation of the spatial distribution of these
offences, with the main differences being the greater pixilation of the hotspot maps as cell

size increases.
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Figure 7.5. Accuracy concentration curves of Newcastle KDE assault with injury hotspot

maps, generated using different cell sizes (and using a fixed bandwidth of 450 m)

The more detailed examination of the accuracy concentration curves up to 5%, 1%, and
0.5% of the study area (Figure 7.5b, ¢ and d respectively) shows how much more vertical
the curves for assault with injury were in comparison to the curves generated for burglary
dwelling (Figure 7.3). This is indicative of a higher level of prediction performance in
the assault with injury KDE hotspot maps. This is illustrated in Table 7.8, which shows
that only 0.02% to 0.05% of the study area needed to be searched to identify 5% of all
assaults, and no more than 0.32% of the study area needed to be searched to identify 25%
of all assaults (compared to 0.2% and 3.5% of the study area respectively for burglary

dwelling offences).

Table 7.8. The proportion of the Newcastle study area searched across hotspots maps
generated using KDE (six months of input data), relative to 5%, 10%, 25%, 50%, and
80% of assault with injury offences, for different cell sizes. Values in bold relate to the

smallest area that was searched for identifying the relevant proportion of crime.

%o of offences and the area searched
S % of study
_ (assaults with injury) _
Cell size (m) area with KDE
5% of | 10% of | 25% of | 50% of | 80% of |
values
offences | offences | offences | offences | offences
30 0.02% | 0.09% 0.27% | 3.37% 20% 42%
60 0.03% 0.09% 0.29% 3.40% 20% 40%
90 0.03% 0.10% 0.29% 3.42% 20% 37%
120 0.05% | 0.08% 0.32% 3.78% 20% 30%
150 0.04% 0.10% 0.32% | 3.07% 20% 37%

The area under the curve values for the different cell sizes presented in Table 7.9 also
showed very little variation. For example, for the section of the accuracy concentration
curve representing 0%-5% of the study area and up to 25% of all offences, the area under
the curves for the different cell sizes ranged between 0.01213 (for a cell size of 150 m) to
0.01218 (for a cell size of 90 m).
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Figure 7.6. KDE assault with injury hotspot maps of Newcastle, generated using six
months of data and a fixed bandwidth of 450 m for cell sizes of (a) 30 m, (b) 60 m, (c)
90 m, (d) 120 m, and (e) 150 m

The high degree of prediction performance in the KDE assault with injury hotspot maps
is also illustrated in the CPI results. Recall that a perfect prediction is 1. CPI values for
the sections of the accuracy concentration curve representing up to 10% of the study area
and up to 50% of all offences were no lower than 0.93 (see Table 7.9b). Indeed, CPI
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values were particularly high (up to 0.98) for the section of the accuracy concentration
curve representing 0%-0.5% of the top KDE values covering the study area. Similar to
the KDE hotspot maps produced for burglary dwelling, the CPI values fell as KDE values
reduced, albeit at a lower rate of degradation (see Figure 7.7), suggesting that the highest
values produced by KDE for hotspot analysis (i.e., covering the top 0.5% of the study
area) provided a more accurate prediction of where crime may occur in the future than
lower KDE values. Examination of the prediction performance of KDE assault with
injury hotspot maps for these different cell sizes showed that smaller cell sizes tended to

produce the better results. However, the differences in these results were marginal.

Table 7.9. (a) Area under the accuracy concentration curves, and (b) CPI values for
Newcastle assault with injury KDE hotspot maps of different cell sizes (using a fixed

bandwidth of 450 m). Values in bold relate to the largest area and largest CPI values.

(a)
Cell size
m) 0.5% x 5% | 1% x 10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
30 0.000246 | 0.000964 | 0.012178 | 0.046834 | 0.128185 | 0.901299
60 0.000243 | 0.000964 | 0.012175 | 0.046573 | 0.125711 0.892741
90 0.000241 | 0.000955 | 0.012180 | 0.046573 | 0.127434 0.896380
120 0.000232 | 0.000949 | 0.012148 | 0.046270 | 0.125633 | 0.882987
150 0.000238 | 0.000959 | 0.012130 | 0.046513 | 0.125964 | 0.891772
Max values | 0.000250 0.001 0.0125 0.05 0.16 1

(b)
Cell size 0.5% x 5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
(m) CPI CPI CPI CPI CPI CPI
30 0.983 0.964 0.974 0.937 0.801 0.901
60 0.971 0.964 0.974 0.931 0.786 0.893
90 0.966 0.955 0.974 0.931 0.796 0.896
120 0.929 0.949 0.972 0.925 0.785 0.883
150 0.952 0.959 0.970 0.930 0.787 0.892
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Crime Prediction Index values for KDE burglary dwelling and KDE assault

with injury hotspot maps (cell size 30m, bandwidth 450m)
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Figure 7.7. CPI values for KDE burglary dwelling and KDE assault with injury hotspot

maps of Newcastle, created using a cell size of 30 m and bandwidth of 450 m

1. Bandwidth size results

Figure 7.8 shows the accuracy concentration curves for KDE burglary dwelling hotspot
maps of Newcastle for different bandwidth sizes. Figure 7.8a shows a greater degree of
variation in the lines when compared to the cell size charts for the same crime type.
However, similar to the cell size charts (Figure 7.3), the points where each line tends to
follow a flatter gradient reflects the coverage extent of KDE values and cells that have
values of zero. For example, Table 7.10 shows the KDE values for burglary dwelling
that were calculated using a bandwidth of 100 m extended to cover only 4% of the study
area. This is reflected in the graph as this is the point where the curve flattens, and then
takes a course that follows a trend of random variation. That is, from this point, every cell
contains a value of zero and is not organised into any form of hierarchy, meaning that the
chance of a crime being located in one cell is the same as it occurring in any other cell.
Similarly, the point on the graph where the curve representing a bandwidth of 300 m
flattens (Figure 7.8a) is at 39% of the proportion of the study area, reflecting the extent
of KDE values for this bandwidth covering 39% of the study area (Table 7.10).
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Figure 7.8. Accuracy concentration curves of Newcastle KDE burglary dwelling hotspot

maps, generated using different bandwidth sizes (and using a fixed cell size of 90 m)

Examination of the sub-sections of the accuracy concentration curves up to 5%, 1% and
0.5% of the study area (Figure 7.8b, ¢, and d) does, though, show some variation in curve
gradients that cannot be explained purely by the extent of KDE values. While the
proportion of offences that are predicted changes little in a manner that is consistent
between 0%-0.5% and 0%-1% of the study area, it appears that the smoothing created
with larger bandwidths has more of an impact from approximately 1.5% of the study area
coverage. That is, from this point, KDE burglary dwelling hotspot maps generated using
smaller bandwidths produced better predictions of where crime may occur when
compared to KDE hotspot maps using larger bandwidths. This is reflected in the findings
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presented in Table 7.10 that show the area that needed to be searched to identify different
proportion levels of offences. At small coverage area levels (i.e., reflecting the highest
KDE values), the differences were marginal. For a KDE map produced using a bandwidth
of 300 m, 0.17% of the area needed to be searched to identify 5% of burglary dwellings,
compared to a search of 0.24% of the area for KDE maps produced using bandwidths of
100 m, 400 m and 500 m. At larger coverage area levels, the differences were greater.
For a KDE map produced using a bandwidth of 100 m, 2.75% of the area needed to be
searched to identify 25% of burglary dwellings, compared to a search of 4.32% of the
area for KDE maps produced using bandwidths of 400 m and 500 m.

Table 7.10. The proportion of the Newcastle study area searched across hotspots maps
generated using KDE (six months of input data), relative to 5%, 10%, 25%, 50%, and
80% of burglary dwelling offences, for different bandwidth sizes. Values in bold

represent the smallest area that was searched for identifying the relevant proportion of

crime.
% of offences and the area searched
_ ) % of study
Bandwidth (burglary dwelling) _
] area with KDE
size (m) 5% of | 10% of | 25% of | 50% of | 80% of |
values
offences | offences | offences | offences | offences

100 0.24% 0.80% 2.75% 26% 48% 4%
200 0.20% 0.82% 3.12% 10.5% 42% 23%
300 0.17% | 0.64% 3.62% 11.5% 30% 39%
400 0.24% 0.64% 4.32% 12.% 30% 50%
500 0.24% 0.67% 4.32% 12% 32% 57%

Figures 7.9a-e show the smoothing effect in KDE hotspot mapping output created from
using larger bandwidth sizes. These maps show that for small bandwidths, a large number
of small areas are shown to be hotspots. As bandwidth size increased these small areas
began to merge together to form fewer, albeit larger hotspots. This is as a direct result of
a larger number of crime points across a larger local area being used in the kernel density

calculation of crime points as the size of the bandwidth increases.
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Figure 7.9. KDE burglary dwelling hotspot maps of Newcastle, generated using six
months of data, a fixed cell size of 90 m for bandwidth sizes of (a) 100 m, (b) 200 m, (c)
300 m, (d) 400 m, (e) 500 m

The variation in the prediction performance of KDE maps produced using different
bandwidths is also shown in the area under the curve and CPI results (Table 7.11). These
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results show that KDE hotspot maps generated using smaller bandwidths produced better
predictions - all the highest CPI values for the sub-sections under the accuracy
concentration curves were for smaller bandwidth sizes. The CPI values also indicated the
good level of prediction performance of KDE hotspot maps for burglary dwelling, but
that the strength of the predictions reduced as the KDE values also reduced (and the size
of area these KDE values represented increased). For example, KDE hotspot maps
produced using a bandwidth of 200 m generated a CPI value of 0.867 for the section of
the accuracy concentration curve presenting 0%-0.5% of the study area and up to 5% of
burglary dwellings. The CPI value fell to 0.551 for the section of the accuracy
concentration curve presenting 0%-20% of the study area and up to 80% of burglary

dwellings.

Table 7.11. (a) Area under the accuracy concentration curves, and (b) CPI values for
Newcastle burglary dwelling KDE hotspot maps of different bandwidth sizes (using a

fixed cell size of 90 m). Values in bold relate to the largest area and largest CPI values.

(a)
Bandwidth
size (m) 0.5% x5% | 1% x10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
100 0.000207 | 0.000702 | 0.009687 | 0.027860 | 0.067119 0.752322
200 0.000217 | 0.000705 | 0.009426 | 0.030776 | 0.088112 0.804257
300 0.000212 | 0.000770 | 0.009222 | 0.028702 | 0.087085 0.821714
400 0.000203 | 0.000755 | 0.008757 | 0.027383 | 0.083872 0.824681
500 0.000195 | 0.000718 | 0.008590 | 0.026488 | 0.081396 0.824780
Max values | 0.00025 0.001 0.0125 0.05 0.16 1

(b)
Bandwidth 0.5% x5% | 1% x10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
size (m) CPI CPI CPI CPI CPI CPI
100 0.828 0.702 0.775 0.557 0.419 0.752
200 0.867 0.705 0.754 0.616 0.551 0.804
300 0.846 0.770 0.738 0.574 0.544 0.822
400 0.810 0.755 0.701 0.548 0.524 0.825
500 0.781 0.718 0.687 0.530 0.509 0.825

The CPI values for the results shown in Table 7.11 reveal the danger of relying on just a

value representing 100% of the coverage area and 100% of offences. For KDE maps of
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burglary dwelling in Newcastle, the CPI full coverage value was highest for a bandwidth
of 500 m (0.825) and was lowest for KDE hotspot maps generated using a bandwidth of
100 m (0.752). This, however, is a reflection of the coverage extent of KDE values under
the different bandwidth sizes. For smaller bandwidths, the extent of the study area that
was covered in KDE values was significantly smaller. For example, for a 100 m
bandwidth, only 4% of the study area was covered by KDE values (see Figure 7.9a),
leaving the prediction of crime in the area not covered by KDE values (e.g., the remaining
96% of the coverage area of a 100 m bandwidth KDE hotspot map) to follow a trend of
random variation. This is shown in the flattening of the accuracy concentration curve for
a bandwidth of 100 m at the 4% of the study area point in Figure 7.8a. At larger
bandwidths, KDE hotspot maps produced values for cells that covered a larger geographic
extent. For example, for a KDE burglary dwelling hotspot map produced using a
bandwidth of 500 m, KDE values were generated for 57% of the coverage area, leaving
only 43% of the study area to follow a trend of random variation. Hence, by the 4% study
area coverage mark, the KDE hotspot map produced using a bandwidth of 100 m had
done its job in generating a good level of crime prediction, whereas the KDE hotspot map
generated using a bandwidth of 500 m was continuing to do its job for up to 57% of the
study area coverage. The area under the curve calculations and CPI values reflect these
differences across the full coverage of the study area.

Figure 7.10 shows the accuracy concentration curves for KDE assault with injury hotspot
maps for different bandwidths. These results again show that the main separation and
flattening of each curve occurred when the KDE values reached the extent of their
coverage (as shown in Table 7.12). For example, KDE assault with injury values
calculated using a bandwidth of 100 m populated only 4% of the cells covering
Newcastle. Figure 7.10a shows that at the 4% coverage level, the accuracy concentration
curve for a 100 m bandwidth begins to flatten and from this point follows a trend of
random variation. Similarly, the flattening point for the 200 m bandwidth accuracy
concentration curve was at 21%, reflecting the geographic extent of KDE values for this
bandwidth.

166



Accuracy concentration curves of KDE assaults with Accuracy concentration curves of KDE assaults with
injury hotspot maps, using different bandwidths injury hotspot maps, using different bandwidths

90
80 /// 20 f

70 /
g / g
$ & £ 15 {
3 - % |
% o9 [ k-]
§ —100 5 —100
g a0 | § 10
[ 200 g 200
& 20
—300 ’ —1300
20 5
— 400 —400
10
500 500
o 0
o% 20% ao% S0 S0% 100% 0% 1% 2% 3% % 5%
Proportion of study area Propartion of study area
(@) (b)
Accuracy concentration curves of KDE assaults with Accuracy concentration curves of KDE assaults with
injury hotspot maps, using different bandwidths injury hotspot maps, using different bandwidths
10 5
9 , 45 //
8 4
“ 7 # 35
§ & 3.
: 6 : 3
3 %
L B s
8 e 100 § 100
:e 3
8 200 3 200
& 3 & 15
, —300 —300
2 1
— 400 / —400
1 05
‘ 500 500
[ ]
0.0% 0.2% 0.4% 0.6% 0.8% 1.0% 0.0% 0.1% 0.2% 0.3% DA% 0.5%
Proportion of study area Proportion of study area
(c) (d)

Figure 7.10. Accuracy concentration curves of Newcastle KDE assault with injury
hotspot maps, generated using different bandwidth sizes (and using a fixed cell size of 90

m)

Examination of the sub-sections of the accuracy concentration curves up to 5%, 1%, and
0.5% of the study area (Figure 7.10b, ¢ and d respectively) show again how much more
vertical the curves for KDE maps of assault with injury were in comparison to the curves
generated for burglary dwelling (Figure 7.8). The differences in the gradient of each
curve for different bandwidths were marginal. However, a pattern that was evident was
that the smaller bandwidths had steeper curve gradients than larger bandwidths reflecting
the greater prediction performance of small bandwidths. This is also illustrated in Table

7.12, which shows that for each sub-section of the accuracy concentration curves, the area
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that needed to be searched for the upper limit volume of assaults to be identified was
smallest for the lowest bandwidth size of 100 m. This is with the exception of the area
that needed to be searched to identify 80% of assaults due to the KDE hotspot map for

the 100 m bandwidth only covering 4% of the coverage area.

Table 7.12. The proportion of the Newcastle study area searched across hotspots maps
generated using KDE (six months of input data), relative to 5%, 10%, 25%, 50%, and
80% of assault with injury offences, for different bandwidth sizes. Values in bold relate

to the smallest area that was searched for identifying the relevant proportion of crime.

%o of offences and the area searched
) L % of study
Bandwidth (assaults with injury) )
) area with KDE
size (m) 5% of | 10% of | 25% of | 50% of | 80% of |
values
offences | offences | offences | offences | offences

100 0.02% 0.05% | 0.20% | 2.50% 30.0% 4%
200 0.03% 0.08% 0.29% 3.53% 20.0% 21%
300 0.03% 0.11% 0.31% 3.27% 20.0% 37%
400 0.03% 0.12% 0.33% 3.21% 18.0% 47%
500 0.05% 0.14% 0.32% 3.41% 18.0% 54%

Similar to the KDE hotspot maps for different bandwidth sizes of burglary dwelling, the
KDE hotspots maps of assaults with injury in Figure 7.11a to e show the smoothing effect
created from using larger bandwidth sizes. In contrast to the burglary dwelling KDE
hotspot maps, there was one main location (covering Newcastle city centre) that was an
assault with injury hotspot, with the spatial extent of this area changing less significantly
than the merging of the large number of small hotspots that were observed in the burglary
dwelling KDE maps. Some merging, caused by the smoothing effect of larger bandwidths
did take place, but this marginal change in the spatial extent of this city centre hotspot
was reflected in the more marginal change in the areas searched to identify 5%, 10%,
25% and 50% of assault with injury offences.
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Figure 7.11. KDE assault with injury hotspot maps of Newcastle, generated using six
months of data, a fixed cell size of 90 m for bandwidth sizes of (a) 100 m, (b) 200 m, (c)
300 m, (d) 400 m, (e) 500 m.

The high degree of prediction performance in the KDE assault with injury hotspot maps
is again shown in the CPI results (see Table 7.13). CPI values for the sub-sections of the
accuracy concentration curves representing up to 10% of the study area and up to 50% of

all offences were no lower than 0.95. The highest value of 0.985 was for the section of
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the accuracy concentration curve representing 0%-5% of the top KDE values covering
the study area, for a bandwidth of 100 m. CPI values also showed little degradation across
the small coverage area ranges (i.e., up to 5% of the study area), with the main
degradations only occurring when the KDE values had reached the extent of their

geographic coverage.

Table 7.13. (a) Area under the accuracy concentration curves, and (b) CPI values for

Newcastle assault with injury KDE hotspot maps of different bandwidth sizes (using a

fixed cell size of 90 m. Values in bold relate to the largest area and largest CPI values.

(a)
Bandwidth
size (m) 0.5% x5% | 1% x 10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
100 0.000245 | 0.000979 | 0.012310 | 0.047361 | 0.112659 | 0.850360
200 0.000244 | 0.000968 | 0.012235 | 0.046888 | 0.126895 | 0.883171
300 0.000243 | 0.000957 | 0.012149 | 0.046627 | 0.126728 0.895842
400 0.000241 | 0.000949 | 0.012114 | 0.046368 | 0.127309 | 0.901356
500 0.000243 | 0.000950 | 0.012105 | 0.045896 | 0.126611 | 0.902336
Max values | 0.000250 0.001 0.0125 0.05 0.16 1

(b)
Bandwidth | 059 x5% | 1% x10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
size (m) CPI CPI CPI CPI CPI CPI
100 0.979 0.979 0.985 0.947 0.704 0.850
200 0.975 0.968 0.979 0.938 0.793 0.883
300 0.971 0.957 0.972 0.933 0.792 0.896
400 0.962 0.949 0.969 0.927 0.796 0.901
500 0.971 0.950 0.968 0.918 0.791 0.902

7.5.  Interpretation and conclusions from research study 3

The aim of research study 3 was to test whether the technical parameters used in hotspot
analysis techniques influence the techniques’ spatial crime prediction performance
(hypothesis 3). Following the results of research study 2, KDE was consistently found to
generate hotspot maps with the highest level of prediction performance in comparison to
the other commonly used hotspot analysis techniques, and therefore the parameter

settings for KDE were the ones subject to analytical scrutiny in research study 3. The
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two main technical parameters that the analyst is required to enter for producing KDE
mapping output are the cell size and the bandwidth size. To date, the advice given on cell
size and bandwidth size to use has either not been appropriate for spatial crime analysis,
or has been lacking in scientific merit. Research study 3 set out to establish if the selection
of the cell size and bandwidth size selected by the crime analyst mattered, particularly in
terms of the influence these parameters have on the prediction performance of KDE
hotspot maps.

The results for study 3 show that cell size has little impact on the prediction performance
of KDE hotspot maps. However, as small cell sizes offer the advantage in improving the
resolution and visual appeal of the hotspot map (rather than the map looking pixelated)
and as they also offer small marginal improvements in the prediction performance of KDE
output, it is recommended that analysts use small cell sizes. A disadvantage in using
small cell sizes is that extra processing is required for calculating KDE values and extra
processing is also required in displaying the results. However, with increasing computer

processing performance this disadvantage is becoming of less concern.

The choice of bandwidth size does, though, have an impact on the prediction performance
of KDE hotspot maps, with smaller bandwidths producing the best results. The trade-off
with this, however, is that KDE maps generated using small bandwidths can result in
many small (very localised) hotspots being identified. The results for the Newcastle data
illustrated this was more of a problem for burglary dwelling where the spatial distribution
of this crime type, while concentrated at certain places, was more dispersed across the
study area. The problem of many small hotspots was less of a problem for assault with
injury KDE hotspot maps because only one main area of crime concentration was
identified in and around the city centre of Newcastle. The practical implications of this
trade-off between using small KDE bandwidths that generate maps of higher prediction
accuracy but many different areas to target resources to, and the use of larger bandwidths
that generate maps of lower prediction accuracy, but fewer areas to focus resource

targeting is discussed further in chapter 12 (discussion and implications).

The results from the study 3 experiments and those from study 2 show that KDE hotspot
mapping can produce output that offers a high level of prediction performance,
particularly when care is taken in selecting cell size and bandwidth values. However,

KDE is not without its weaknesses. In particular, a weakness with KDE mapping is that
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there is no objective method for determining the areas that are identified as hot. An
alternative approach to identifying hotspots of crime is by using spatial significance
mapping. Spatial significance mapping techniques offer the ability to identify areas that
can be statistically determined as hot. Research study 4 will examine the application of
spatial significance mapping techniques for identifying hotspots of crime and whether

these perform better than KDE in predicting where crime is likely to occur.
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8. Research study 4: Improving hotspot analysis using spatial
significance mapping

8.1.  Introduction

This research study aims to test whether spatial significance mapping methods provide

an improved means of predicting where crime is likely to occur in comparison to common

hotspot mapping techniques, and removes the ambiguity of defining areas that are hot

(hypothesis 4).

Study 2 of the research has shown that kernel density estimation is the best of the common
hotspot analysis techniques for predicting where crime is likely to occur, with part 3 then
showing the influence that KDE parameter settings, namely the cell size and bandwidth
size, can have on the prediction performance of KDE hotspot maps. The main findings
were that cell size had little impact on the prediction performance of KDE hotspot
mapping output, but that small bandwidth sizes tend to produce KDE mapping output that
perform better in predicting where crime is likely to occur. With the use of the Crime
Prediction Index, the research also showed the very good predictive performance of KDE

maps for certain crime types, particularly theft from the person and assaults.

However, KDE is not without its faults. The main weakness with KDE is that the
selection of values that are used to determine thematic thresholds is left to the choice and
convention of the analyst, rather than the selection being determined by some statistical
process. That is, the analyst subjectively determines the numerical thematic threshold for
what is hot, rather than being guided by a robust systematic process. Choosing the
numerical distinctions between thematic classes for KDE hotspot maps is very much left
to trial and error, experimentation, experience, or whatever suits the analyst’s
circumstance. The selection of a desired thematic classification method is also a
straightforward functional choice in a GIS, with the crime analyst being able to choose
between equal ranges, equal count, natural break, standard deviation or quantile
classification options at a single click of a button. Figure 8.1a and 8.1b illustrate examples
of this problem with KDE mapping output: both figures are based on the same crime data,
yet Figure 8.1b gives the impression that the crime problem is much worse. The
difference between the maps is purely due to the difference in the values that are used to
determine the thematic classes between high density levels of crime (i.e., the areas that
can be referred to as hotspots) and low density levels of crime. Figure 8.1b was generated
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using the equal count thematic classification method*, whereas Figure 8.1a was
generated using the equal ranges® thematic classification method. The result of using
two different thematic classification methods meant that the threshold value representing

high density in Figure 8.1b was lower than the value used to represent high density in

Figure 8.1a.
. »

' 9 ‘
: \ '

. v

KODE hotspot legend » KODE hotspot legend

G S Oenaty . - Hgh Crme denily
Low crme Sensity 3 I8 g LOW oreme Oonsly )
" e, P
(a) (b)

Figure 8.1. Camden/Islington KDE hotspot maps produced using the same data, but
different thematic classification methods: (a) equal ranges, and (b) equal count

Spatial significance mapping offers potential in removing this ambiguity in defining
hotspots by using the principles of statistical significance testing. Although the nature of
the KDE technique and the Gi* statistic are different — KDE seeks to redistribute
occurrences under a continuous global volume preserving structure, whereas Gi* is a local
test of spatial association — the popularity of the KDE technique for crime hotspot analysis
and the increasing interest in the GI* statistic as an application for crime hotspot analysis
are why an assessment between the two are sought. If, in a statistical sense, the areas that
are hotspots can be determined using Gi*, it is also possible that these identified areas

offer a more accurate means of determining where crime is likely to occur in the future.

8.2.  Chapter aims and structure
This research study examines whether hotspot analysis can be improved by using spatial
significance mapping. The improvements that are examined are whether the subjective

selection of the area determined as hot on a KDE hotspot map can be removed using the

14 The equal count method organises data into a user defined number of categories where the number of
events in each thematic class is equal.
15 The equal ranges method organises data into a user defined number of categories where the range in the
values across each thematic class is equal.
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principles of statistical significance testing, and whether this then improves the prediction

performance of the mapping output.

The chapter begins by building on the introduction of Local Moran’s I, Local Geary’s C
and the Gi* statistic from chapters 2 and 3 by describing further the technical features of
these statistics. This focus on the technical features of these statistics includes
determining if one is more suitable than the others for hotspot analysis of crime data, and
examining the input parameter requirements for each statistic that the analyst is required
to determine. A set of experiments are then performed that test spatial significance
mapping output for its prediction performance. These experiments broadly followed the
method from research parts 2 and 3. The process that was used for conducting these
experiments is described in section 8.4, including a description of the prediction measures
that were used for assessing the prediction performance of the spatial significance

mapping outputs.

The results from these spatial significance mapping experiments are then presented and

interpreted to inform how they influence subsequent research parts.

8.3.  Spatial significance mapping techniques for identifying hotspots

Mapping techniques that examine the distribution and concentration of events, and
employ a test for spatial statistical significance include Local Moran’s I, Local Geary’s
C and the Getis-Ord Gi* statistic. These techniques are described as local indicators of
spatial association (LISA statistics) (Anselin, 1995) in that they identify the association
between a single point and its neighbours up to a specified distance from the point. LISA
statistics can therefore provide an indication of the extent to which the value of an
observation is similar or different to its neighbouring observations, but they do so in
different ways. Chapters 2 and 3 provided an introduction to these techniques. In the

following section the technical detail of each is described in more detail.

8.3.1. Local Moran’s I and Local Geary’s C

Local Moran’s I and Local Geary’s C can be used to determine for each observation the
extent to which there is spatial association; that is, clustering of similar values around that
observation. An exact test of significance is not possible for Local Moran’s I nor Local
Geary’s C because the distribution of each statistic is not known, and the expected value

of I or C and the variance of | or C are very complicated mathematically. Instead, high
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positive or high negative standardised scores of | (termed Z(li)) and C (termed Z(Ci)) are
taken as indicators of similarity or dissimilarity (Levine, 2010). A high positive value for
the Z(li)s or Z(Ci)s indicates the spatial clustering of similar values (either high or low),
while a high negative score indicates clustering of dissimilar values (a high area
surrounded by low areas or a low area surrounded by areas with high values). The higher
the value of Z(li) or Z(Ci), the more the observation is similar (positive) or dissimilar
(negative) to its neighbours. This means that the Local Moran’s I statistic and the Local
Geary’s C statistics can potentially be good indicators of the presence of crime hotspots
that, in a spatial sense, are statistically significant. It does, though, require the analyst to
review the values for each of the geographic units that are of interest to see if they
represent a statistically significant hotspot or a statistically significant coldspot (i.e.,
observations with low levels of crime surrounded by other observations with low levels

of crime).

8.3.2. Gi* statistic

The Gi* statistic is a measure that compares local averages to global averages to identify
those areas that are significantly different in comparison to what is generally observed
across the whole study area (Ord and Getis, 1995). The Gi* statistical outputs are
standardised Z scores. Z scores indicate the place of a particular value in a dataset relative
to the mean, standardised with respect to the standard deviation. When Z equals zero, the
observation is equivalent to the sample (data) mean. When Z is less than zero the
observation is a value less than the mean. When Z is greater than zero, the observation is
a value greater than the mean. Z scores are used extensively for determining whether an
observation is statistically significant. When a normal distribution of the observations is
assumed, Z score values of 1.96, 2.576 and 3.291 are used to determine 95%, 99% and
99.9% statistical significance levels respectively. That is, if a Gi* result for an
observation is greater than or equal to 1.96, the observation is determined as being
statistically significant to 95%. This means the Gi* statistic can potentially be used to
distinguish those areas that, in a statistical sense, are hot from those that are not hot (i.e.,
where there is significant spatial concentration in the distribution of crime data across a

study area in comparison to the spatial distribution of crime that is not significant).

When using Local Moran’s I and Local Geary’s C, the analyst is required to review the
results for each of the geographic units that are significant to determine if they represent

a statistically significant hotspot or a statistically significant coldspot. In the case of Gi*
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results, this is not required because areas where low levels of crime cluster are represented
by negative Z scores and areas where high levels of crime cluster are represented by
positive scores. Because of this, it was decided that the Gi* statistic would be the
preferred method of further study. The Gi* statistic was also chosen for further study
because it is a technique that has been receiving increasing interest for improving crime
hotspot analysis (Chainey and Ratcliffe, 2005; Eck et al., 2005; Hart and Zandbergen,
2012), but to date no systematic study has been completed that compares whether the
output the GI* statistic produces performs any better in predicting spatial patterns of

crime when compared to KDE hotspot analysis output.
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Figure 8.2. 16x16 matrix of cells, each holding a value representing the number of crimes

within their respective areas

The statistical function of the Gi* statistic is best described with an example. Figure 8.2
shows a 16x16 grid lattice. Each cell can be identified by its centroid point and each cell
has a count of the number of crimes in that area. Consider the point positioned in the
eighth row of the eighth column in Figure 8.2. This point (i) has the value 9. The null
hypothesis states that site i is not the centre of a group of unusually high values centred

on i and its surrounding cells (its neighbours j), such that the sum of values at all the j
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sites within a radius d of i is not more (or less) than one would expect by chance given all
the values in the entire study area (both within and beyond the distance d). If local spatial
association exists, it will be exhibited by a spatial clustering of high or low values. When
there is a clustering of high values, the Gi* values will be positive, while a clustering of
low values will yield a negative Gi* value (Anselin, 1995; Chainey and Ratcliffe, 2005;
Getis and Ord, 1996; Ord and Getis, 1995).

The Gi* statistic typically requires the analyst to determine the value for one parameter —
the lag distance. A lag distance is the radius of a moving three-dimensional sphere that
visits each grid cell. In many ways it is similar to the bandwidth measure that is used for
kernel density estimation, except that a suitable value is slightly easier to determine.
Typically, our interest is in the local association between a geographic unit and its nearest
neighbours, and most usually the immediate surrounding neighbours. The lag distance
should, therefore, be at least the distance of the radius from each cell’s centroid that has
a coverage that will consider all of its immediate neighbours (Chainey and Ratcliffe,
2005; Eck et al., 2005). The distance between the grid cells in the example 16x16 cell
grid in Figure 8.2 is 125 m. A suitable lag distance to apply would be 178 m as this is the
furthest distance to include the eight immediate neighbours (the cells on the diagonal i.e.,
V(125%+ 1252%)). As the lag distance is based on the calculation of the cell size, the cell
size, therefore, will have an influence on the Gi* output that is generated. The current
research study examines the influence that different cell sizes and, hence, different lag

distance have on the Gi* outputs.

In some circumstances (depending on the software that is used) the analyst may also be
required to determine the number of lags they wish to apply. A lag of 1 refers to the lag
distance as above. Increasing the number of lags, as in this example, allows different
multiples of 178 m to be explored. For example, a lag of 3 for the 16x16 matrix will

calculate Gi* values within a distance (d) of 178 m, 356 m, and 534 m.

Table 8.1 shows the Gi* statistics for the cell positioned in the eighth row of the eighth
column with the crime count value of 9. Higher positive values of Gi* indicate greater
clustering of high values. At a lag of 1 the Gi* statistic is positive. This high and positive
Gi* statistic indicates that there is positive local spatial association between this cell and
its neighbouring cells. That is, this particular cell, and the eight cells immediately

surrounding it and forming a 3 x 3 matrix, sum to a relatively high total count that is
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greater than the global average. The Gi* statistic at a lag of 2 is also positive but not as
high as the Gi* statistic at a lag of 1. The Gi* value remains similar for a lag of 3. For
those cells that have low values (i.e., low crime counts) and which are also surrounded
by cells of low values, the Gi* statistic would be negative (Chainey and Ratcliffe, 2005;
Getis and Ord, 1996; Ord and Getis, 1995).

Table 8.1. Gi* statistics for the cell positioned in the eighth row of the eighth column of
the 16x16 grid (Figure 8.2), for lags 1-3

Gi*atOto | Gi*atOto | Gi*atOto
<=178m <=356m <=534m
(Lag 1) (Lag 2) (Lag 3)
4.2 24 2.3

In the first part of this section it was explained that as the Gi* calculations are Z scores,
statistical significance levels can be determined using the standard measures of 1.96,
2.576 and 3.291 for 95%, 99% and 99.9% confidence levels respectively. However, an
issue with the application of this approach for spatial data is that it assumes that the
determination of each Z score value is independent. With spatial analysis, treatment of
statistical tests is usually (as in this case) not only applied to the observation but also to a
defined set of neighbours. This means that each observation is not used just once, but a
multiple number of times because it is included as a neighbour for many other
observations. This issue of multiple testing results in the increased probability of
incorrectly rejecting the null hypothesis — a Type | error. Failure to account for these
effects results in over identification of clusters using Gi* (Anselin, 1995; Getis and

Aldstadt, 2004; Ord and Getis, 1995).

A number of approaches exist to correct for multiple testing. False discovery rate (FDR)
controlling procedures seek to reduce the expected proportion of Type | errors (i.e., false
discoveries) when the issue of multiple testing is present (for an example of FDR applied
to geographic data see Caldas de Castro and Singer, 2006). However, FDR approaches
tend not to be that conservative, resulting in a higher chance of Type | errors remaining.
Familywise error rate (FWER) approaches seek to reduce the probability of even one false
discovery, or Type | errors, and, therefore, tend to be more conservative than FDR

approaches (Charlton and Brunsdon, 2011).
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Ord and Getis (1995) suggest a Bonferroni correction (a FWER procedure) to help
address the problem of multiple testing associated with the application of the Gi* statistic.
The Bonferroni procedure has the immediate advantage of being straight-forward to
calculate (therefore, allowing for easy replication by practitioners). However, the
Bonferroni correction can be very conservative if there are a large number of tests. Also,
the Bonferroni correction procedure comes at the cost of increasing the probability of
producing Type Il errors (i.e., the failure of detecting whether an effect is present) and
can result in a lack of statistical power (i.e., the probability that the null hypothesis is
rejected when clustering actually occurs) (Charlton and Brunsdon, 2011). In the current
research, as the number of surrounding areas used in the computation of each Gi* statistic
is small (i.e., only the eight immediate neighbours are used), although conservative, the
Bonferroni correction is considered to be accurate in these circumstances (Rogerson,
2004). In addition, a conservative determination of statistical significance thresholds is
considered a positive feature for spatial crime analysis because it may be useful in
identifying small, specific areas for focused policing and crime prevention targeting. If
the use of the Bonferroni correction produces results that appear to be far too conservative
(i.e., it is difficult to discern clusters of crime from Bonferroni corrected Gi* mapping

output), alternative correction procedures will then be considered.

In practice, a Bonferroni correction to determine the Z score representing a 95%

significance threshold involves a two-step process:

e First, the analyst must calculate the number of cells representing 5% of the study area:
0.05/number of cells covering the study area (0.05 is used as it is equivalent to 95%)

e Second, the analyst needs to determine the Z score that represents this corrected
percentile. The most practical way to do this is for the analyst to use a percentile to
Z score calculator to determine the Z score value that represents a 95% statistical
significance threshold. Many such tools exist online. One such online tool is

available at http://www.measuringusability.com/zcalcp.php

The process above can then be repeated for determining Bonferroni corrected 99% and
99.9% statistical significance threshold values, substituting the initial calculation using
0.01/number of cells covering the study area (for determining the 99% statistical
significance threshold value) and 0.001/number of cells (for determining the 99%

statistical significance threshold value).
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For the illustration sample of a 16x16 grid matrix, a Bonferroni corrected 95% statistical
significance threshold value was calculated to be 3.725 (i.e., the result of 0.05/256 (16x16
= 256), which is then converted to a standardised Z-score). That is, under a Bonferroni
correction, any cell in the 16x16 matrix that has a Gi* value that is greater than or equal
to 3.725 is statistically significant to 95% level of confidence. The Gi* value for the
example cell (eighth row, eighth column in Figure 8.2), at a lag of 1 is 4.2. This means
that there is significant statistical evidence (to 95%) of crimes clustering at the cell
positioned in the eighth row of the eighth column of the 16x16 grid, up to a lag 1 distance.

The Gi* values for a lag of 2 and lag of 3 were not statistically significant.

The results from the example using the 16x16 grid matrix suggest that the Gi* statistic
offers a distinct advantage over techniques such as KDE for hotspot analysis by
identifying those areas that can be statistically defined as hot. That is, if we decided to
apply a 95% significance threshold to determine areas that are hot, any cells with Gi*
values that were determined to be significant to at least 95% would be classed as hotspots.
Alternatively, different thematic classes could be determined with respect to the different
levels of spatial significance. This means that the application of the Gi* statistic could
help remove the ambiguity of defining areas that are hot. It may also suggest that this
additional statistical rigour to hotspot analysis using the Gi* statistic may result in better

predictions of where crime may occur in the future.

A problem sometimes associated with KDE is that in some locations it may smooth across
or into areas where there is no recorded crime because it is not constrained to the high
detail of the underlying geography of the crime point distribution. An advantage of the
Gi™* statistic is that it compares local averages against global averages, and can exclude
in an analysis areas where it is impossible for certain crimes to occur (e.g., for burglary
dwelling this would include parkland and rivers or any other areas where there was no
residential housing). Areas that can be excluded can be identified in a GIS and the grid
cells that cover these areas could be extracted from the full grid coverage so they do not
influence the global average. Another problem associated with KDE is that it may smooth
away the peaks in areas where the specified bandwidth aggregates high values with
neighbouring low values, and as a result overlooks areas where the concentration of crime
is tightly compact. The Gi* statistic may potentially not overlook these areas, and,
therefore, may be a more accurate technique for identifying these highly spatially

concentrated crime hotspots.
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The Gi* statistic, therefore, appears to offer the potential to more accurately and robustly
(in a statistical sense) identify where hotspots occur, and in turn where crime may occur
in the future. That is, it may be better than common hotspot mapping methods such as
KDE used in policing and public safety for determining where crime is predicted to occur.
To date, very little use has been made of the Gi* statistic in spatial crime analysis, and no
assessment has been made of whether it performs better than KDE in predicting spatial

patterns of crime. This research study aims to fill that gap.

8.4. Method

This research study involved conducting a number of experiments to determine if the Gi*
statistic could improve the spatial categorisation of areas determined as hot, and how Gi*
hotspot analysis output compared to KDE in its spatial crime prediction performance.
The research study also tested whether the cell size, and hence the lag distance, influenced
the prediction performance of Gi* hotspot analysis output.

The following sections explain how Gi* hotspot analysis output was compared to KDE
mapping output, the crime types, data input period and data output periods that were

chosen for analysis, and how prediction performance was measured.

8.4.1. Comparing the hotspot analysis outputs produced using Gi* against those
produced using KDE for three different thematic classification methods
The first experiment involved producing two examples of Gi* hotspot analysis output and
comparing these to KDE hotspot maps to identify if Gi* output could be used to define
the spatial extent of areas that are determined as hot. A Gi* hotspot map using three
months of burglary dwelling data was produced for the Camden/Islington study area.
This Gi* hotspot map was then compared against KDE burglary dwelling hotspot maps
(using the same data) produced using the equal interval thematic classification method,
natural breaks thematic classification method, and quantile thematic classification
method. A Gi* hotspot map using three months of theft from the person data were
produced for Newcastle and compared against KDE theft from the person maps using the
same three thematic classification methods that were used in the Camden/Islington
examples. In each case, KDE maps were produced using a cell size of 20 m and a
bandwidth size of 300 m. These parameters were chosen for consistency between the two

study areas and because they provided representative KDE output.
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No guidance exists on the appropriate cell size to use for generating Gi* output. Indeed,
it is possible that no strict mathematical process can be devised for selecting the cell size
because the cell size is dependent upon the spatial structure of the study area and of the
phenomenon under investigation. After some experimentation with different cell sizes
that balanced between the generation of counts for each cell and the visual output of the
results, a cell size of 150 m was chosen for the experiments for both Camden/Islington
and Newcastle. The interest in the Gi* statistic is for identifying local clusters, and,
therefore, it was logical to only include the immediate nearest neighbours in the Gi*
calculation of the local average (i.e., the eight cells surrounding the central cell for which
the Gi* statistic is calculated). This meant the lag distance could be determined as a
function of the cell size (as explained in section 8.3.2). The lag distance for both areas
was calculated as 213 m. A Bonferroni correction was applied to determine the Gi*

statistical significance levels.

8.4.2. Crime types, data input periods and data output periods

Data for Camden/Islington and Newcastle on burglary dwelling, theft from the person,
theft from vehicles and theft of vehicles, and additionally Newcastle assault with injury
data were used for determining the prediction performance of Gi* hotspot analysis. The
data input periods and data output periods used were for the most part those described in
the study areas and crime data section of the method in chapter 4. The exception was that
only the 1% January 2010 was used as a measurement date for Camden/Islington, rather
than the two measurement dates (i.e., the 1% January 2010 and the 11" March 2010) used
previously. This was because the previous studies in the current research showed no

difference in the results for different measurement dates.

8.4.3. Measuring the prediction performance of Gi* hotspots

A combination of PAI measures, accuracy concentration curves, area under the curve and
Crime Prediction Index measures were used for assessing the prediction performance of
Gi* hotspot maps. PAI measures were aggregated and averaged for the periods of input
data and for the periods of output data. The standard deviation of the PAI for each crime
type across the different data input and data output periods was also calculated. This
would allow for comparisons between the PAI results for KDE and those for Gi*. Gi*
statistical significance levels were calculated using a Bonferroni correction procedure.

Gi* PAI values were calculated in each experiment for each of the 95%, 99% and 99.9%
183



significance levels in order to determine whether PAI values were different between these

hotspot categories.

These first experiments that used the PAI as a prediction measure used a cell size of 150
m for generating Gi* hotspot maps for both study areas (the reasons for this are described

in section 8.3.2.). This meant a lag distance of 213 m was used for both study areas.

A second set of experiments were then conducted to examine the influence that cell size
had on the prediction performance of Gi* hotspot analysis output. This involved using
cell sizes of 50 m. 100 m, 150 m, 200 m and 300 m for both Camden/Islington and
Newcastle experiments. These experiments used accuracy concentration curves, the area
under the curve and the Crime Prediction Index, alongside the PAI, to examine the
influence that cell size had on Gi* output. The experiments were conducted using data
on burglary dwellings and theft from the person for Camden/Islington, and burglary
dwellings, theft from the person and assault with injury for Newcastle. For these
experiments, three months of input data were used for creating Camden/Islington and
Newcastle Gi* hotspot analysis outputs, and these findings were compared with crime
patterns in the three months following the measurement date for both study areas. The
GI* results were then compared against KDE hotspot analysis output for the same crime

types and the same data input and output periods.

8.5. Results
8.5.1. Comparing the hotspot analysis outputs produced using Gi* against those
produced using KDE for three different thematic classification methods

The first experiment examined how Gi* hotspot analysis output compared to KDE output,
and whether the use of the Gi* statistic helped to overcome the ambiguity in defining
areas that were hotspots. Figure 8.3 shows examples of KDE burglary dwelling hotspot
maps for Camden/Islington generated using three standard thematic classification
methods. Figure 8.4 shows examples of KDE hotspot maps of theft from the person for

Newcastle using the same three thematic classification methods.

The KDE examples in Figures 8.3 and 8.4 for both study areas show different areas were
identified as hotspots (with the exception of Figure 8.4a and 8.4b which show only a
marginal difference due to the intense clustering of theft from the person in Newcastle).

This finding highlights the ambiguous nature to defining hotspots using KDE. Figure
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8.3d and Figure 8.4d show examples of Gi* hotspot analysis output, with each thematic
class determined by the standardised Z scores that represent (Bonferroni corrected) 95%,

99% and 99.9% levels of spatial statistical significance.
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Figure 8.3. A comparison of Camden/Islington KDE burglary dwelling hotspot maps
(using a cell size of 20 m and bandwidth of 300 m) using (a) equal interval thematic
classification, (b) natural breaks thematic classification, (c) quantile thematic
classification, and (d) a Gi* burglary dwelling map of (Bonferroni corrected) spatial

significance (using a cell size of 150 m).

While the areas that are identified on the Gi* hotspot maps in Figures 8.3 and 8.4 are
comparable to the KDE generated hotspots, four main differences can be observed. In
the first instance, areas on the Gi* maps that are not determined to be hot are not included.
While only the high density areas could have been shown on each of the KDE maps, this
would still have identified differences in the areas identified as hot in each of the KDE

maps.
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Figure 8.4. A comparison of Newcastle KDE theft from the person hotspot maps (using
a cell size of 20 m and bandwidth of 300 m) using (a) equal interval thematic
classification, (b) natural breaks thematic classification, (c) quantile thematic
classification, and (d) a Gi* burglary dwelling map of (Bonferroni corrected) spatial

significance (using a cell size of 150 m).

Secondly, the identification of hot areas in the Gi* maps were systematically classified
using statistical principles (i.e., statistical significance), rather than through a subjective
process (i.e., the analyst’s choice of thematic classification method) as in the case of KDE
hotspot mapping output. For example, by observing the top thematic class for each KDE
burglary dwelling hotspot map in Figure 8.3, the threshold value that determines each
category of high density ranges from 0.028 crimes per square km to 0.072 crimes per
square km. This variation in KDE threshold values for defining the areas that are hot
explains why the maps show differences in the areal extent of hotspots. Gi* hotspot
analysis helps remove the ambiguity in defining hotspots, albeit requiring the analyst to
determine if a highly focused approach is needed by defining the threshold for what is hot

using a 99.9% statistical significance, rather than a 95% definitional threshold. That is,
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although the determination of the areas that are hot (using the Gi* statistic) follow a
statistically defined classification process, the determination of hot areas is still somewhat
subjective as it is based on the analyst’s decision on which statistical significance

threshold and correction procedure to apply.

Thirdly, in places, KDE appears to smooth out hotspots in areas where the crime
concentration is very compact (Figures 8.3a and 8.3b), or over-exaggerates these compact
concentrations of crime when the quantile range method is used (Figure 8.3c and Figure
8.4c). The Gi* outputs in Figure 8.3 appear to be better at identifying small compact
concentrations of crime (overcoming the smoothing nature of KDE) but not to the extent
of visually exaggerating the area of influence these compact concentrations have at the

local level.

Finally, the KDE maps do, though, have the advantage of looking more visually
appealing, a strength that has been noted by several commentators (Chainey et al., 2008;
Chainey and Ratcliffe, 2005; Eck et al., 2005). In comparison to the KDE maps, the Gi*
hotspot analysis output appears more blocky, influenced in part by the choice of a 150 m

cell size.

8.5.2. Examining the prediction performance of Gi* hotspots

Table 8.2 lists the PAI results for each crime type for the Camden/Islington and Newcastle
study areas. The PAI results were calculated by averaging the individual PAI values for
each input dataset and each output dataset. A statistical significance threshold of 95%
was used to define the areas that were hot from Gi* hotspot analysis output. These results
show that the Gi* PAI results for Camden/Islington were consistently higher than the
equivalent KDE PAI values across all crime types. However, PAI Gi* values in the
Newcastle study area were lower than the equivalent KDE PAI values, albeit marginally,
across all crime types (with the exception of theft of vehicles). These results suggest that
although Gi* hotspot analysis helps remove much of the ambiguity in defining the areas
that are hotspots, it does so without necessarily improving the prediction performance of
the hotspot analysis output.

The finding that Gi* hotspot analysis may not necessary improve the prediction
performance of hotspot analysis output is examined in further detail by reviewing the

results in Table 8.3. Previous analysis in research study 2 that used KDE hotspot analysis
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outputs (generated from three months of input data) to give some indication of how many
crimes are predicted using KDE hotspots analysis, employed a process of using the top
3% of KDE values to control for the size of the hotspots. This process was repeated for
the Gi* statistic, but rather than using the top 3% of Gi* values, the proportion of the area
representing a Bonferroni corrected 95% statistical significance threshold was used.
While this resulted in the sizes of areas defined as hot differing between crime types for
the two study areas, this process was considered to be useful to help indicate how many
crimes were predicted using this statistical hotspot definition process in comparison to

previous KDE findings.

Table 8.2. PAI values of KDE and Gi* hotspot maps for burglary dwelling, theft from the
person, theft from vehicles, and theft of vehicles for Camden/Islington and Newcastle,

and assault with injury for Newcastle. Values in bold relate to the highest PAI values for

that study area.
Camden/Islington Newcastle
KDE GI* Standard KDE Gi* Standard
average | average | deviation | average | average | deviation of

Crime type PAI PAI of Gi* PAI PAI PAI Gi* PAI
Burglary dwelling 1.56 2.05 0.18 7.5 7.6 0.96
Theft from the person | 3.24 4.35 0.42 46.3 45.8 8.57
Theft from Vehicle 1.89 3.10 0.34 6.0 59 0.53
Theft of Vehicle 1.53 245 0.31 0.5 1.3 0.08
Assault with injury - - 40.3 37.7 4.53

Table 8.3a shows that the size of the areas the Gi* method defined as hot in
Camden/Islington were similar in three out of four crime types to the top 3% KDE
controlled areas, therefore, providing some direct comparisons. In three of the four crime
types, KDE PAI values were marginally higher than Gi* PAI values, with this being
reflected in the smaller additional proportion of crimes that were predicted in the KDE
hotspots. The one result where the Gi* prediction performance was better than that for
KDE was for theft of vehicles where the area that the Gi* analysis determined to be hot
was much smaller (1.4%) than the controlled 3% area used in the KDE PAI calculations.
Similar results were found for Newcastle (see Table 8.3b), where the KDE PAI results
for three of the five crime types were higher. The exceptions were burglary dwelling
where the Gi* hotspot analysis performed better than KDE, and theft of vehicles where
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the Gi* analysis of three months of crime data could not predict where the 11 vehicle
thefts took place in the month following the measurement date. Of note, though, was that
the areas identified as hot from the Gi* analysis were smaller than the KDE 3% controlled
areas, and significantly so in the case of theft from the person (0.6% of the study area),

theft of vehicles (0.8%) and assaults with injury (1%).

Table 8.3. PAI and actual crimes predicted using KDE and Gi* (cell size 150 m; 95%
Bonferroni corrected). Each KDE and GI* output was generated using three months of
crime data to determine where crimes in the next month may occur. Values in bold relate
to the highest PAI values. *The Newcastle theft of vehicles hotspot maps were generated

using six months of input data because clustering was not evident from three months of

input data.
(a) Camden/Islington
] % of area % of
Crimes
) determined hot n of % of crimes
. committed . ) . ) .
) Gi* | KDE ) using Gi* crimes crimes in KDE
Crime type in . . .
PAI PAI (Bonferroni in Gi* in Gi* hotspots
January
corrected hotspots | hotspots | (3% of
2010
p=0.05) area)
Burglary dwelling 2.3 2.8 470 3.0% 32 7% 8%
Theft from person 6.5 6.6 460 3.1% 93 20% 20%
Theft from vehicle 3.4 4.0 985 3.0% 100 10% 12%
Theft of vehicle 4.4 3.3 307 1.4% 19 6% 10%
(b) Newcastle
% of area % of
Crimes determined hot n of % of crimes
. Gi* KDE | committed using Gi* crimes crimes in KDE
Crime type ) ) ) o o
PAI PAI in April (Bonferroni in Gi* in Gi* | hotspots
2010 corrected hotspots | hotspots | (3% of
p=0.05) area)
Burglary dwelling 7.2 6.7 130 2.4% 22 17% 16%
Theft from person 101.9 | 389.1 60 0.6% 34 58% 68%
Theft from vehicle 8.9 9.4 189 2.1% 35 19% 25%
Theft of vehicle* 0.0 0.0 11 0.8% 0 0% 0%
Assault with injury | 37.9 79.2 154 1.0% 56 36% 44%
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8.5.3. Significance level and prediction performance

Table 8.4 lists the Gi* PAI values for the three spatial statistical significance levels, for
different crime types, for the two study areas. These results consistently show that the
prediction performance of Gi* hotspot output improved as the significance level was set
higher. For example, Table 8.4a shows the PAI values for burglary dwelling improved
from 2.1 at the 95% significance level, to 2.3 at 99% and 2.7 at 99.9%. This trend is most
likely to be due to smaller hotspot areas being identified.

Table 8.4. PAI values for Gi* hotspot analysis (cell size 150 m; Bonferroni corrected) of
95%, 99% and 99.9% statistical significance levels for (a) Camden/Islington, and (b)
Newcastle dataset. Values in bold relate to the highest PAI values.

(a) Camden/Islington

Average PAI for Gi*

Burglary Theft from Theft from | Theft of

dwelling the person vehicle vehicle
95% 2.1 4.4 3.0 2.5
99% 2.3 5.0 3.0 3.0
99.9% 2.7 5.9 3.3 3.4

(b) Newcastle

Average PAI for Gi*

Burglary Theft from Theft from | Theft of | Assault with

dwelling the person vehicle vehicle injury
95% 7.5 110.8 9.1 0 45.3
99% 7.6 123.5 9.2 0 56.9
99.9% 7.8 149.2 94 0 59.2

8.5.4. An analysis of accuracy concentration curves, the area under the curve, CPI
values and the influence of cell size on Gi* hotspot analysis
So far, the results comparing Gi* to KDE suggest that while Gi* hotspot analysis allows
for a more systematic identification of hot areas using statistical confidence levels, the
Gi* outputs did not necessarily offer an improvement in the prediction performance of
KDE hotspot maps. These results have been determined using the PAI. The next set of
experiments involved comparing Gi* and KDE hotspot analysis outputs using accuracy
concentration curves, the area under the curve and the Crime Prediction Index. The
experiments also tested the impact that cell size (and hence lag distance) has on the

prediction performance of Gi* hotspot analysis outputs.
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Figure 8.5. Accuracy concentration curves of Camden/Islington Gi* burglary dwelling
hotspot analysis for different cell sizes. The results are shown for (a) the full study area,
and sub-sections relating to (b) 5% of the study area, (c) 1% of the study area and (d)
0.5% of the study area.

Figure 8.5 shows the accuracy concentration curves for Gi* burglary dwelling hotspot
maps for Camden/Islington. The first observation was that there was little difference in
the prediction performance of Gi* hotspot analysis outputs for different cell sizes. The
step changes in certain curves shown in Figure 8.5¢ and d was more noticeable for Gi*
output generated using larger cell sizes. It is unlikely that these step changes indicate any

optimum points of prediction performance for the crime phenomenon under investigation,

191



and is more likely to be an artefact of the spatial distribution of the crime points and cell
sizes. These sections of steep gradients on these curves occurred when a single individual
cell captured a large volume of offences, with the cumulative addition of this offence
volume having a knock on effect for the next immediate cells that cover the study area.
This type of scenario is more likely when using larger cells than smaller cells. For
example, Table 8.5 lists the Gi* hotspot analysis output for the five cells with the top Gi*
values, generated using a cell size of 200 m. This shows the number of offences for
0.25%, 0.5%, 0.75% and 1% of all offences was captured in just one cell, representing
0.1% of the study area.

Table 8.5. (a) Cells with the top Gi* values (Camden/Islington burglary dwelling) and (b)
their effect on measures representing the proportion of the study area searched to identify

the relevant proportion of offences

(a) (b)
Cell Gi* | Gi* Zscore n of crimes in Proportion | n of offences Proportion of
rank cell during of offences | equivalent to study area
month proportion of searched to
following offences identify
measurement proportion of
date offences
1 7.062 15 0.25 4 0.10%
(i.e., one cell)
2 6.357 2 0.5 7 0.10%
(i.e., one cell)
3 6.004 3 0.75 11 0.10%
(i.e., one cell)
4 5.652 4 1 15 0.10%
(i.e., one cell)
5 5.300 3 1.25 19 0.30%
(i.e., three cells)
15 22 0.40%
(i.e., four cells)
1.75 26 0.50%
(i.e., five cells)

The marginal differences between the prediction performance of Gi* hotspot mapping
outputs generated using different cell sizes are also shown in Table 8.6. The proportion
of crime predicted differed little between Gi* hotspot maps of different cell sizes,

although in general, smaller cell sizes performed better than larger cell sizes.

Also of note from Table 8.6 were the small sizes of areas that were determined as hot
using spatial statistical significance measures. For example, the hot areas identified on

the Gi* burglary dwelling hotpot map that used a cell size of 100 m represented only
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1.8%, 0.5% and 0.4% of the study area at the 95%, 99% and 99.9% confidence levels.
This finding suggests that the prediction performance of Gi* hotspot analysis should
primarily be analysed for these statistically determined hotspot areas, rather than
assessing the prediction performance of Gi* hotspot analysis across coverage areas that
include areas where the concentration of crime is not statistically significant. Indeed, of
the results shown for the areas that would need to be searched to find the proportion of
offences by the categories listed in Table 8.6, only three of the twenty five results related
to search areas that were statistically significant. For example, the Gi* burglary dwelling
hotspot mapping output that was generated using a cell size of 150 m identified hotspots
to 95% significance that covered an area representing 2.4% of the study area. The area
searched to identify 5% of offences was 1.8%, and therefore all the values for this area
were significant to at least 95%. This identification of relatively small areas that are

hotspots highlights the conservative nature to Bonferroni correction.

Table 8.6. The proportion of the study area searched across maps generated using Gi*
(using three months of input data) relative to 5%, 10%, 25%, 50%, and 80% of burglary
dwelling offences, for different cell sizes. The proportion of the study area with Gi*
values relative to 95%, 99% and 99.9% is also listed. Values in bold represent the
smallest areas searched. Where the area searched was not greater than the proportion of
the area that was statistically significant, this is highlighted as follows: *** 99.9% ** 99%
* 95%.

Cell % of offences and area searched % of study area with
) (burglary dwelling) significant Gi* values
e 5% of | 10% of | 25% of | 50% of | 80% of | 95% | 99% | 99.9%
(m) offences | offences | offences | offences | offences
50 2.2% 5.2% 12.7% | 29.6% |650% |[1.1% |05% |0.2%

100 2.2% 4.5% 13.5% |29.9% |52.9% 1.8% |0.5% |0.4%

150 1.8%* | 5.0% 144% | 32.3% | 53.6% 24% |0.9% | 0.5%

200 2.1%* | 4.9% 13.8% |341% |[528% |3.6% |0.7% |0.6%

250 2.3%* | 5.0% 13.3% | 33.1% |54.1% 29% [0.4% |0.4%
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Figure 8.6. Camden/Islington Gi* burglary dwelling hotspot maps produced using three

months of input data and cell sizes of (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m, and (e)

250 m

The Bonferroni corrected Gi* burglary dwelling hotspot maps in Figure 8.6 (produced
using three months of input data) also highlight the conservative nature of this technique.
In each map, between 1.1% (cell size of 50 m) to 3.6% (cell size of 200 m) of the study

area was identified as hot. Table 8.7 lists the Bonferroni corrected Z scores for 95%, 99%
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and 99.9% significance levels and highlights the higher Z score significance threshold
values this correction determines in comparison to uncorrected Z scores. For example,
rather than using 1.96 to determine 95% significance for a cell size of 100 m, the
Bonferroni corrected Z score for this significance level was 3.828. The maps in Figure
8.6 also show that as cell size increases, the number of hotspots begin to reduce. This is
as a result of very small (e.g., single cell) hotspots losing their significance as cell sizes
increase by taking into consideration the volume of crime across a larger local
neighbourhood. For example, in Figure 8.6e seven hotspots are identified compared to

the 52 hotspots (some of which are single cells) identified in Figure 8.6a.

Table 8.7. Bonferroni corrected Z score spatial statistical significance values for
Camden/Islington Gi* maps of different cell sizes. Uncorrected Z scores: 95%: 1.960;
99%: 2.576; 99.9%: 3.291

Cell n of cells | Bonferronicorrected Z scores
sizes (m) | coveringstudy | 95% 99% 99.9%
area
50 15066 4.150 4.972 5.401
100 3872 3.828 4.702 5.152
150 1753 3.628 4,537 5.001
200 1010 3.483 4.419 4.489
250 662 3.369 4.327 4.810

Table 8.8 shows again that, when considering the area under the curve and CPI values for
the different sub-sections of the Camden/Islington burglary dwelling accuracy
concentration curves (for consistency, using the same sub-sections as the analysis in study
3), no apparent pattern consistency in prediction performance emerges between small cell
sizes and larger cell sizes. Of note, however, are the low CPI values in comparison to
previous analysis of KDE outputs (study 3, chapter 7). Of more interest would be how
these area under the curve and CPI measures compare at the 95%, 99% and 99.9%
significance levels rather than these arbitrary selected sub-sections, in comparison to

KDE values. This is examined in section 8.5.5.

195



Table 8.8. Camden/Islington Gi* burglary dwelling hotspot analysis of (a) the area under

accuracy concentration curves, and (b) CP1 values, for different cell sizes. Values in bold

relate to the largest area under the curve and the largest CPI values.

(a)
Cell size
(m) 05%Xx5% | 1%x10% | 5%x25% | 10% x50% | 20% x 80% | 100% X 100%
50 0.000023 | 0.000108 | 0.002797 | 0.010287 | 0.039342 0.645000
100 0.000063 | 0.000185 | 0.002901 | 0.010276 | 0.037582 0.652613
150 0.000046 | 0.000177 | 0.002828 | 0.010096 | 0.035721 0.644417
200 0.000054 | 0.000155 | 0.002769 | 0.009964 | 0.036068 0.640565
250 0.000033 | 0.000204 | 0.002798 | 0.010498 | 0.037784 0.648155
Max values | 0.00025 0.001 0.0125 0.05 0.16 1
(b)
Cell size | 05%x5% | 1%x10% | 5%x25% | 10% x50% | 20% X 80% | 100% x 100%
(m) CPI CPI CPI CPI CPI CPI
50 0.090 0.107 0.224 0.206 0.246 0.645
100 0.254 0.185 0.232 0.206 0.235 0.653
150 0.182 0.177 0.226 0.202 0.223 0.644
200 0.216 0.155 0.222 0.199 0.225 0.641
250 0.132 0.204 0.224 0.210 0.236 0.648

1. Camden/Islington theft from the person

Figure 8.7 shows the accuracy concentration curves for Camden/Islington Gi* theft from

the person hotspot maps. These results show little variation in the gradients of the curves

up to the point representing 40% of the study area. After this point the Gi* hotspot

analysis output that was generated using a cell size of 50 m flattens in comparison to

outputs generated using other cell sizes. Figures 8.7b, ¢ and d, and Table 8.9 show that

the Gi* hotspot analysis outputs that were generated using small cell sizes produced the

best predictions. Table 8.9 also shows that the proportion of the areas searched to identify

up to 10% of all theft from the person offences were for areas that the Gi* mapping output

identified to be statistically significant to 99.9%, for all cell sizes.
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Figure 8.7. Accuracy concentration curves of Camden/Islington Gi* theft from the person
hotspot analysis for different cell sizes. The results are shown for (a) the full study area,
and sub-sections relating to (b) 5% of the study area, (c) 1% of the study area and (d)
0.5% of the study area.

Figure 8.8 shows the Bonferroni corrected Gi* theft from the person hotspot maps
(produced using three months of input data). In each map, between 1.8% (cell size of 50
m) to 4.8% (cell size of 250 m) of the study area was identified as hot. The maps also
show that as cell size increases, the number of hotspots begin to reduce, caused by very
small (e.g., single cell) hotspots losing their significance as larger cell sizes begin to

include the volume of crime across a larger local neighbourhood.
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Table 8.9. The proportion of the Camden/Islington study area searched across maps
generated using Gi* (three months of input data) relative to 5%, 10%, 25%, 50%, and
80% of theft from the person offences, for different cell sizes. The proportion of study
area with Gi* values relative to 95%, 99% and 99.9% is also listed. Values in bold
represent the smallest areas searched. Where the area searched was not greater than the
proportion of the area that was statistically significant, this is highlighted as follows: ***
99.9% ** 99% * 95%.

Cell % of offences and area searched % of study area with
size (theft from the person) Gi* values

(m) 5% of | 10% of | 25% of | 50% of | 80% of | 95% | 99% | 99.9%

offences | offences | offences | offences | offences

50 0.3%*** | 0.8%*** | 4.1% 19.0% | 59.7% | 1.81% | 1.20% | 1.20%
100 | 0.5%*** | 1.1%*** | 4.9% 18.6% | 50.2% | 3.33% | 2.09% | 1.86%
150 | 0.5%*** | 1.6%*** 5.9% 18.6% | 47.2% | 4.28% | 2.80% | 1.94%
200 | 0.7%*** | 2.0%*** 6.8% 20.3% | 50.0% | 4.46% | 2.77% | 2.77%
250 | 0.8%*** | 2.1%*** 8.5% 21.3% | 49.2% | 4.83% | 3.17% | 2.57%

Table 8.10 shows results for the area under the curve and CP1 values for the different sub-
sections of the Camden/Islington GI* theft from the person accuracy concentration
curves. Small cell sizes generated the best results for up to 20% of the study area. Table
8.10 also shows that the best results were for the smallest areas searched. For example,
the CPI value for Gi* hotspot maps, produced using 50 m cells, under the 0.5% of the
study area sub-section of the accuracy concentration curve, was 0.831 compared to 0.439
for the 20% of the study area sub-section of the accuracy concentration curve. This
suggests that the prediction performance of Gi* hotspot analysis was better for small areas
searched, reflecting the identification of these areas as being spatially statistically
significant. It also suggests that Gi* hotspot analysis generated using small cell sizes may
produce better predictions of crime than those generated using larger cell sizes. Also of
note were the higher CPI values for Gi* theft from the person hotspot analysis output
This finding

suggests that retrospective data on theft from the person was better for predicting hotspots

compared to the CPI values for burglary dwelling Gi* hotspot maps.

of this crime type compared to the use of retrospective data on burglary dwelling for

predicting burglary dwelling hotspots.
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Figure 8.8. Camden/Islington Gi* theft from the person hotspot maps produced using
three months of input data and cell sizes of (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m,

and (e) 250 m
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Table 8.10. Camden/Islington Gi* theft from the person hotspot analysis of (a) the area

under accuracy concentration curves, and (b) CP1 values, for different cell sizes. Values

in bold represent the largest area under the curve and the largest CPI values.

(a)
Cell size | 05%x5% | 1% x 10% | 5% X 25% | 10% x 50% | 20% x 80% | 100% x 100%
(m)
50 0.000208 | 0.000690 | 0.008988 | 0.025317 | 0.070272 | 0.71100
100 0.000134 | 0.000476 | 0.007657 | 0.023237 | 0.068515 | 0.734313
150 0.000098 | 0.000388 | 0.006642 | 0.021311 | 0.065648 | 0.738449
200 0.000112 | 0.000382 | 0.005973 | 0.01914 0.060804 | 0.730548
250 0.000098 | 0.000319 | 0.004967 | 0.014322 | 0.055415 |0.721725
Max values | 0.00025 0.001 0.0125 0.05 0.16 1
(b)
Cell size | 05% x5% | 1% x10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
(m) CPI CPI CPI CPI CPI CPI
50 0.831 0.689 0.719 0.506 0.439 0.711
100 0.536 0.476 0.613 0.465 0.428 0.734
150 0.391 0.388 0.531 0.426 0.410 0.738
200 0.450 0.382 0.478 0.383 0.380 0.731
250 0.390 0.319 0.397 0.286 0.346 0.722

I11.  Newcastle burglary dwelling

Figure 8.9 shows the accuracy concentration curves for Newcastle Gi* burglary dwelling

hotspot analysis outputs. These show a noticeable flattening of the curve gradients at
about 8% of the study area coverage for the 50 m cell size, 25% for 100 m, 38% for 150

m, 42% for 200 m and 50% for 250 m. These inflection points relate to where Gi* values

turned from positive to negative Z scores. Examination of the 0%-5% study area sub-

section of the accuracy concentration curves show a noticeable difference in the gradients

of each cell size curve from above 1% of the study area, with smaller cell sizes having

curves with steeper gradients than larger cell sizes. However, below 1% of the study area,

this pattern is more mixed, with no cell sizes consistently performing better than others

(see Figures 8.9 c and d).
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Figure 8.9. Accuracy concentration curves of Newcastle Gi* burglary dwelling hotspot
analysis for different cell sizes. The results are shown for (a) the full study area, and sub-
sections relating to (b) 5% of the study area, (c) 1% of the study area and (d) 0.5% of the

study area.

Table 8.11 lists the proportion of the area searched to find 5%, 10%, 25%, 50% and 80%
of burglary dwelling offences in the one-month output period. These results show there
to be no consistency in the prediction performance between different cell sizes. Table
8.11 also shows that the areas that needed to be searched to identify 5% and 10% of all
burglary dwelling offences contained Gi* values that were statistically significant to at
least 99.9%.
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Table 8.11. The proportion of the Newcastle study area searched across maps generated
using Gi* (three months of input data) relative to 5%, 10%, 25%, 50%, and 80% of
burglary dwelling offences, for different cell sizes. The proportion of the study area with
Gi* values relative to 95%, 99% and 99.9% is also listed. Values in bold represent the
smallest areas searched. Where the area searched was not greater than the proportion of
the area that was statistically significant, this is highlighted as follows: *** 99.9% ** 99%

* 95%.

Cell % of offences and area searched % of study area with
size (m) (burglary dwelling) Gi* values

5% of | 10% of | 25% of | 50% of | 80% of | 95% | 99% | 99.9%

offences | offences | offences | offences | offences

50 0.40*** | 0.93*** | 3.23 11.9 41.0% |1.0% | 1.0% | 1.0%
100 0.24*** | 0.90 *** | 3.65 10.95 36.9% |2.3% | 1.5% | 1.5%
150 0.23*** | 0.83*** | 4.7 12.39 30.4% | 2.4% |2.4% | 1.6%
200 0.30*** | 0.76*** | 4.15 13.84 30.6% |3.6% |2.8% |2.1%
250 0.21*** | 0.82*** | 4.63 13.13 319% | 4.0% |3.2% | 2.7%

Table 8.12 lists the Newcastle Gi* Bonferroni corrected Z scores for 95%, 99% and
99.9% significance levels for the different cell sizes, and highlights the higher Z score
significance threshold values this correction determines in comparison to uncorrected Z
scores. For example, rather than using 1.96 to determine 95% significance for a cell size

of 50 m, the Bonferroni corrected Z score for this significance level was 4.875.

Table 8.12. Bonferroni corrected Z score spatial statistical significance values for

Newcastle burglary dwelling Gi* maps of different cell sizes

Cell n of cells | Bonferronicorrected Z scores
sizes (m) | coveringstudy | 95% 99% 99.9%
area

50 46019 4.875 5.184 5.598
100 11685 4.597 4.922 5.355
150 5272 4.429 4.764 5.209
200 3012 4306 | 4.650 5.104
250 1942 4.208 4.559 5.021
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Figure 8.10. Newcastle Gi* burglary dwelling hotspot maps produced using three months
of input data and cell sizes of (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m, and (e) 250 m

Figure 8.10 shows the Newcastle Gi* burglary dwelling hotspot maps (using three months

of input data) for different cell sizes. Similar to the previous Camden/Islington examples

in Figures 8.6 and 8.8, these maps show how the number of hotspots identified reduced

as cell size increased. The area under the accuracy concentration curves and CP1 values
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shown in Table 8.13 also suggest that Gi* hotspot maps generated using the smaller cell
sizes (50 m to 150 m) performed better in predicting spatial patterns of crime. For
example, the CPI value for the 0%-0.5% sub-section of the accuracy concentration curve
for a Gi* hotspot analysis using a 100 m cell size was 0.853 compared to 0.773 for a Gi*

hotspot analysis using a 250 m cell size.

Table 8.13. Newcastle Gi* burglary dwelling hotspot analysis of (a) the area under
accuracy concentration curves, and (b) CPI values, for different cell sizes. Values in bold

represent the largest area under the curve and the largest CPI values.

(@)

Cell size | 05% x5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%

(m)
50 0.000188 | 0.000617 | 0.009474 | 0.03222 0.083873 | 0.79853
100 0.000213 | 0.000676 | 0.009082 | 0.029513 | 0.086828 | 0.816491
150 0.000187 | 0.000736 | 0.008539 | 0.026002 | 0.082336 | 0.822238
200 0.000189 | 0.000706 | 0.008438 | 0.026248 | 0.079797 | 0.822238
250 0.000193 | 0.000701 | 0.008221 | 0.025392 | 0.078442 | 0.822802
Max values | 0.00025 0.001 0.0125 0.05 0.16 1
(b)
Cell size 0.5% x5% | 1% x 10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
(m) CPI CPI CPI CPI CPI CPI
50 0.751 0.617 0.758 0.644 0.524 0.799
100 0.853 0.676 0.727 0.590 0.543 0.816
150 0.750 0.736 0.683 0.520 0.515 0.822
200 0.754 0.706 0.675 0.525 0.499 0.822
250 0.773 0.701 0.658 0.508 0.490 0.823

IV.  Newcastle theft from the person

Figure 8.11 shows the accuracy concentration curves for Newcastle Gi* theft from the
person hotspot analysis outputs. These curves show a noticeable flattening of the
gradients from about 5% of the study area coverage for 50 m cell size to about 22% for
250 m cell size. This flattening relates to the point that Gi* values turned from positive
to negative Z scores. Examination of the 0%-5%, 0%-1% and 0%-0.5% study area sub-

sections of the accuracy concentration curves show the very high curve gradients for each
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cell size, indicative of a high degree of prediction performance in these Gi* hotspot

analysis outputs. Although there is little difference between the curves, the curve for the

cell size of 50 m consistently had the steepest gradient across each of the sub-sections. A

similar pattern is found in the results for the proportion of the study area searched (Table

8.14), the areas under the accuracy concentration curves and the CPI values (Table 8.15)

— with the best results being for the Gi* hotspot analysis that used a 50 m cell size.

Accuracy concentration curves of Gi* theft from the
person hotspot maps, using different cell sizes
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Figure 8.11. Accuracy concentration curves of Newcastle Gi* theft from the person

hotspot analysis for different cell sizes. The results are shown for (a) the full study area,

and sub-sections relating to (b) 5% of the study area, (c) 1% of the study area and (d)

0.5% of the study area.
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Table 8.14. The proportion of the Newcastle study area searched across maps generated

using Gi* (three months of input data) relative to 5%, 10%, 25%, 50%, and 80% of theft

from the person offences, for different cell sizes. The proportion of study area with Gi*

values relative to 95%, 99% and 99.9% is also listed. Values in bold represent the smallest

areas searched. Where the area searched was not greater than the proportion of the area

that was statistically significant, this is highlighted as follows: *** 99.9% ** 99% * 95%.

Cell % of offences and area searched % of study area with
size (theft from the person) Gi* values

(m) 5% of 10% of 25% of 50% of | 80% of | 95% | 99% | 99.9%

offences | offences | offences | offences | offences

50 0.02%*** | 0.02%*** | 0.06%*** | 0.81% 18.2% | 0.36% | 0.36% | 0.36%
100 | 0.05%*** | 0.08%*** | 0.14%*** | 0.76% 18.3% | 0.73% | 0.65% | 0.64%
150 | 0.04%*** | 0.06%*** | 0.15%*** | 0.85% 14.0% | 0.80% | 0.72% | 0.68%
200 | 0.07%*** | 0.07%*** | 0.24%*** | 0.80%*** | 14.2% | 0.93% | 0.90% | 0.90%
250 | 0.05%*** | 0.10%*** | 0.21%*** | 0.98%*** | 16.7% | 0.98% | 0.98% | 0.98%

Table 8.15. Newcastle Gi* theft from the person hotspot analysis of (a) the area under

accuracy concentration curves, and (b) CPI values, for different cell sizes. Values in bold

represent the largest area under the curve and the largest CPI values.

(a():e” size (m) | 0.5%x5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
50 0.000245 | 0.000985 | 0.01242 | 0.0491 0.135 0.901
100 0.000235 | 0.000953 | 0.01231 | 0.0489 0.141 0.907
150 0.000238 | 0.000967 | 0.01228 | 0.0487 0.112 0.907
200 0.000233 | 0.000950 | 0.01222 | 0.0486 0.110 0.913
250 0.000227 | 0.000936 | 0.01217 | 0.0485 0.124 0.909
Max values | 0.00025 0.001 0.0125 0.05 0.16 1
(b)
Cell size (m) | 05% x5% | 1% x10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
CPI CPI CPI CPI CPI CPI
50 0.981 0.985 0.993 0.981 0.842 0.901
100 0.938 0.953 0.985 0.978 0.879 0.907
150 0.951 0.967 0.982 0.974 0.699 0.907
200 0.934 0.950 0.977 0.972 0.691 0.913
250 0.907 0.936 0.973 0.969 0.776 0.909
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Figure 8.12. Newcastle Gi* theft from the person hotspot maps produced using six months

of input data and cell sizes of (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m, and (e) 250 m

Figure 8.12 shows the Newcastle Gi* hotspot maps generated for the different cell sizes.
All five maps show that the city centre of Newcastle featured as the main hotspot, with
this identified area changing little across maps of different cell sizes. A similar pattern is

shown in the prediction performance of each Gi* hotspot map (i.e., the CPI values shown
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in Table 8.15), with little difference between the outputs generated for different cell sizes.
The Gi* theft from the person hotspot map generated using a cell size of 50 m (Figure
8.12a) does, though, illustrate the more focused area that a small cell size Gi* map
produces, particularly when the clustering of crime is geographically compact (as in the

case of theft from the person in Newcastle).

V. Newcastle assaults with injury

Figure 8.13 shows the accuracy concentration curves for Newcastle Gi* assault with
injury hotspot analysis outputs. These show a noticeable flattening of the curve gradients
from about 10% of the study area coverage for 50 m cell size to about 50% for 250 m cell
size. This flattening relates to the point that Gi* values turned from positive to negative
Z scores. Examination of the 0%-5%, 0%-1% and 0%-0.5% study area sub-sections of
the accuracy concentration curves show the very steep curve gradients for each cell size,
indicative of a high degree of prediction performance in these Gi* hotspot analysis
outputs. Although there is little difference between the curves, the curve for the cell size
of 50 m consistently had the steepest gradient across each of the sub-sections. This is
also reflected in the results for the proportion of the study area searched (Table 8.16), the
areas under the accuracy concentration curves and the CPI values (Table 8.17) — with the
best results being for the Gi* hotspot analysis that used a 50 m cell size.
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Figure 8.13. Accuracy concentration curves of Newcastle Gi* assault with injury hotspot

analysis for different cell sizes. The results are shown for (a) the full study area, and sub-
sections relating to (b) 5% of the study area, (c) 1% of the study area and (d) 0.5% of the

study

area.

Table 8.16. The proportion of the Newcastle study area searched across maps generated
using Gi* (three months of input data) relative to 5%, 10%, 25%, 50%, and 80% of

assaults with injury offences, for different cell sizes. The proportion of study area with

Gi* values relative to 95%, 99% and 99.9% is also listed. Values in bold represent the

smallest areas searched. Where the area searched was not greater than the proportion of

the area that was statistically significant, this is highlighted as follows: *** 99.9% ** 99%

* 95%.

Cell % of offences and area searched % of study area with
size (assaults with injury) Gi* values

(m) 5% of 10% of 25% of 50% of | 80% of | 95% | 99% | 99.9%

offences | offences | offences | offences | offences

50 |0.02%*** | 0.06%*** | 0.23%*** | 31.0% 22.8% | 0.60% | 0.60% | 0.44%
100 | 0.06%*** | 0.12%*** | 0.33%*** | 36.1% 18.7% 0.80% | 0.77% | 0.77%
150 | 0.06%*** | 0.09%*** | 0.34%*** | 37.9% 18.5% | 1.02% | 0.95% | 0.91%
200 | 0.07%*** | 0.10%*** | 0.40%*** | 39.8% 18.4% | 1.20% | 1.20% | 1.13%
250 | 0.05%*** | 0.10%*** | 0.36%*** | 43.3% 20.2% 1.44% | 1.44% | 1.34%
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Table 8.17. Newcastle Gi* assault with injury hotspot analysis of (a) the area under

accuracy concentration curves, and (b) CPI values, for different cell sizes. Values in bold

represent the largest area under the curve and the largest CPI values.

(a)
Cell size (m) | 05% x5% [ 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
50 0.000246 | 0.000974 | 0.01229 | 0.0472 0.1226 0.878
100 0.000229 | 0.000936 | 0.01213 0.0463 0.1260 0.885
150 0.000230 | 0.000942 | 0.01215 | 0.0459 0.1257 0.894
200 0.000233 | 0.000935 | 0.01209 | 0.0457 0.1260 0.899
250 0.00023 0.000938 | 0.01210 0.0454 0.1229 0.895
Max values | 0.000250 | 0.001 0.0125 0.05 0.16 1
(b)
Cell size (m) | 05% x5% | 1% x 10% | 5% x 25% | 10% x 50% | 20% x 80% | 100% x 100%
CPI CPI CPI CPI CPI CPI
50 0.983 0.973 0.983 0.944 0.766 0.878
100 0.916 0.936 0.970 0.927 0.788 0.885
150 0.920 0.942 0.972 0.918 0.785 0.894
200 0.934 0.935 0.967 0.913 0.787 0.899
250 0.934 0.938 0.968 0.908 0.768 0.895

Figure 8.14 shows the Newcastle Gi* assaults with injury hotspot maps generated for the

different cell sizes. These show from Figure 8.14a through to 8.14e the city centre of

Newcastle to feature as the main hotspot, with this identified area changing little across

these five maps of different cell sizes. However, the Gi* hotspot map generated using a

cell size of 50 m not only captures the statistically significant concentration of crime in

the Newcastle city centre area in a more focused manner, but also shows other hotspots

in other parts of the district. These features of this small cell size Gi* hotspot map are

perhaps reflected in its consistently high CPI values for sub-sections of the concentration

accuracy curves representing up to 50% of offences (see Table 8.17).
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Figure 8.14. Newcastle Gi* assaults with injury hotspot maps produced using six months
of input data and cell sizes of (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m, and (e) 250 m

8.5.5. A metric assessment that compares the prediction performance of Gi*
hotspot analysis to KDE hotspot analysis

The analysis so far in study 4 of the research has shown that while Gi* hotspot analysis

helps remove much of the ambiguity in defining areas that are hotspots (compared to

KDE and the other common thematic hotspot analysis techniques), it may not necessarily
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be better at predicting crime than KDE hotspot analysis output. So far, these comparisons
have only been in relation to the PAI. The more complete analysis of the prediction
performance of Gi* hotspot analysis using accuracy concentration curves and calculating
CPI values has shown that Gi* outputs can generate very good spatial predictions of
crime. This section compares these more complete and detailed prediction measures for

Gi* with their equivalent KDE results.

(@) (b)

(c) (d)
Figure 8.15. A comparison of Gi* and KDE hotspot analysis accuracy concentration

curves (for sub-sections of 10% of the study area and 1% of study area) for

Camden/Islington (a and b) burglary dwelling and (c and d) theft from the person

Figures 8.15 and 8.16 show the accuracy concentration curves for Gi* and KDE hotspot
maps of burglary dwelling and theft from the person in Camden/Islington, and of burglary
dwelling, theft from the person and assaults with injury in Newcastle. The charts depict
the proportion of crime predicted by each technique within 10% and 1% of the study area
(i.e., the top 10% and top 1% of Gi* and KDE values). The analysis focused on sub-

sections below 10% of the study area because this is the size of the area where the highest
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prediction levels are of most value to support the targeted nature of policing and public
safety. The KDE hotspot analysis for each crime type and study area used the bandwidths
that produced the highest CPI values. Similarly, the Gi* hotspot analysis for each crime

and study area used the cell size that produced the highest CPI values.

@ b)

© 0

(e) Proportian of sty s !

Figure 8.16. A comparison of Gi* and KDE hotspot analysis accuracy concentration
curves (for sub-sections of 10% study area and 1% of study area) for Newcastle (a and b)

burglary dwelling, (c and d) theft from the person, and (e and f) assaults with injury
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Using the charts for 0%-10% of each study area (Figure 8.15a and c, and 8.16a, ¢ and e),
the results show the prediction performance of Gi* and KDE maps to be very similar,
although in one case (Camden/Islington theft from the person — Figure 8.15c) Gi* results
were marginally better than those for KDE, but for another (Newcastle theft from the
person — Figure 8.16¢) KDE results were marginally better than those for Gi*. Of note
was that Gi* Bonferroni corrected 95% statistical significance levels for Newcastle theft
from the person extended to less than 1% of the study area — it was above this point that
the Gi* and KDE accuracy concentration curves separated (as shown in Figure 8.16c¢).
This finding suggests that beyond this 1% point, the clustering of crime was not spatially
significant, and hence any predictions of crime would be outside the areas that were
determined as hot. Closer analysis using the 0%-1% of the study area charts again showed
there to be little difference at the very small area level between Gi* and KDE hotspot
analysis results. The main difference was between the better results for Gi* hotspot
analysis of Camden/Islington theft from the person (Figure 8.15d) and the marginally
better results for KDE hotspot analysis of Newcastle burglary dwelling than those using
Gi* (Figure 8.16b).

Analysis using CPI values in the previous sections presented these CPI values using sub-
sections of the accuracy concentration charts. This approach is useful when there is no
means for determining when the spatial concentration of crime can be defined as hot. In
the case of Gi* hotspot analysis, hot can be determined using statistical significance
levels. Our interest is, therefore, towards the CPI values for study area extents determined
as hot from Gi* hotspot analysis.

Recall that a perfect prediction is where the CPI is equal to one. Table 8.18 lists the CPI
values for Newcastle burglary dwelling, theft from the person and assault with injury Gi*
hotspot analysis for the areas determined as hot (using a 95% Bonferroni corrected
statistical significance level), and for outputs generated using 50 m, 100 m and 150 m cell
sizes (i.e., the areas shown in the Gi* maps in Figures 8.10, 8.12 and 8.14 a, b and c).
The results show that for all crime types the CPI values were very high, ranging from
0.953-0.960 for burglary dwelling, 0.995-0.997 for theft from the person, and 0.992—
0.996 for assault with injury. These results are also illustrated in Figure 8.17, which
shows the near vertical accuracy concentration curves for each of these crime types, in
particular theft from the person and assault with injury. The graphs depict the proportion

of the study area by the proportion of offences relative to the area of the study area that
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was determined as hot, and using equal axes values to accurately represent the gradient

of the accuracy concentration curves.

Table 8.18. CPI values for Newcastle Gi* hotspot analysis for different cell sizes, and

within the extent of areas that were statistically determined as hot

Crime type Cell size CPI values for significance levels
(m) 95% 99% 99.9%
Burglary dwelling 50 0.960 0.960 0.960
100 0.953 0.959 0.959
150 0.955 0.955 0.963
Theft from the 50 0.997 0.997 0.997
person 100 0.996 0.996 0.996
150 0.995 0.995 0.995
Assault with injury | 50 0.995 0.995 0.996
100 0.993 0.993 0.993
150 0.992 0.992 0.993

The CPI values for Gi* (shown in Table 8.18) were higher than any KDE CPI values
generated in research study 3. While this research has shown that, following a complete
metric assessment that has compared Gi* results to KDE results, that the prediction
performance of the two techniques does not differ substantially, the identification of
hotspots using KDE is subjective and ambiguous. This means that the prediction
performance of KDE hotspot analysis can be varied because different researchers may
choose different sized areas in their determination of what is hot. For example, a
researcher may choose the quantile range thematic classification method rather than the
equal ranges method, or use the top 10% of KDE values rather than the top 5% of KDE
values to define his/her hotspot. Gi* hotspot analysis helps remove much of this
ambiguity in determining areas that are hot, with the result being the identification of
areas that are selected based on statistical grounds and that perform extremely well in

identifying where crime is likely to occur in the future.
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Figure 8.17. Examples of accuracy concentration curves for Newcastle Gi* hotspot
analysis (generated using a cell size of 50 m in each case), with axes controlled to be
equal and extend to the coverage area that was statistically determined to be hot: (a)

burglary dwelling, (b) theft from the person and (c) assault with injury

8.6.  Interpretation and conclusions from research study 4

This research study’s detailed assessment of the Gi* statistic for predicting spatial
patterns of crime has resulted in six main findings:

e Although KDE produces hotspot maps that perform well in predicting spatial patterns

of crime, the selection of areas that are hot is subjective. The Gi* mapping output
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identifies similar areas to KDE, and helps remove the ambiguity in defining areas that
are hot by using the statistical principles of significance testing. However, due to the
analyst being required to choose their preference in the multiple testing correction
procedure (e.g., Bonferroni rather than false discovery rate) and the statistical
significance threshold to apply (e.g., 99% rather than 95%) there remains some
subjectivity in determining the areas that are hot.

Gi* mapping output can be used to identify only those areas that are statistically
significant, rather than produce a geographical representation showing all areas where
crime has been committed. This can help in visually targeting attention to the areas
that matter most — the hotspots

A weakness of KDE is that it can smooth out hotspots in areas where the crime
concentration is very spatially compact, or can exaggerate these when the numerical
density value that is used to define hot (the upper thematic range) is relatively low
(e.g., when a quantile range method is used). Gi* mapping output offers a better
means of identifying small compact concentrations of crime but not to the extent of
visually exaggerating the area of influence these compact concentrations have at the
local level

The prediction performance of Gi* mapping output initially appeared to be equivalent
in performance to KDE hotspot mapping output. This was confirmed through the use
of the full range of prediction performance measures — the PAI, accuracy
concentration curves, the area under the curve and the CPI

The prediction performance of Gi* mapping output improved as the statistical
significance level was set higher. That is, Gi* mapping output that used a 99.9%
statistical significance level to determine the areas that were hot were more accurate
in predicting crime than when a 99% or 95% statistical significance level was used
The initial comparison between Gi* and KDE mapping output was based on
examining the prediction performance of the two techniques for different sub-sections
of the accuracy concentration curves. This allowed for like-for-like comparisons
between the prediction performance of Gi* and KDE outputs for a range of areal
coverages of the study area. This approach is useful when there is no means for
determining when the spatial concentration of crime can be defined as hot, but in the
case of Gi* hotspot analysis, hot is determined using statistical significance levels.
Analysis then revealed that many of the areal coverages that were used to compare
Gi* to KDE included a proportion of the area that the Gi* statistic had identified to

not be statistically significant. When only the areas that had been determined by the
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Gi* statistic to be statistically significant were measured for their prediction
performance, this analysis produced CPI values above 0.95 for burglary and above
0.99 for theft from the person and for assaults with injury. If we recall that a perfect
prediction is 1, these results suggest that Gi* mapping output performs extremely well
in predicting spatial patterns of crime, and offers an improvement on the equivalent
CPI values that were generated for KDE. That is, the Gi* statistic appears to offer
more accurate spatial predictions of crime than KDE.

With reference to the central hypothesis for research study 4 (hypothesis 4) — spatial
significance mapping methods provide an improved means of predicting where crime is
likely to occur, and remove the ambiguity of defining areas that are hot — the
comprehensive range of experiments have resulted in providing evidence that supports
both parts of this statement. Additionally, the ability to remove much of the subjectivity
in identifying areas that are hotspots by using the Gi* statistic also makes it easier to then
choose these defined hotspot areas and subject them to further analysis. This analysis can
include examining the geographical characteristics of these hotspots to help determine
why crime concentrates to high levels at these locations. When using KDE, because of
the lack of clarity in defining the area that is hot, where the size of the hotspots would
vary according to the thematic classification choice of the analyst, this in turn makes it

difficult to clearly define the hotspot areas that should be subjected to further analysis.

The results have also shown that while cell size, and hence lag distance, typically only
has a marginal influence on the prediction performance of Gi* hotspot mapping output,
smaller cell sizes are preferable for their slightly higher levels of prediction performance.
Also noticeable in the results, particularly when only the statistically defined hotspot
areas were analysed for their prediction performance, was the extremely high CPI values.
Not only do these results suggest that the Gi* statistic can be extremely effective in
determining in a much focused (conservative) manner where police and crime prevention
resources could be targeted and have significant impact, but that also there appears to be

great value in using retrospective crime data for predicting spatial patterns of crime.

The results from this research study set an impressive benchmark for spatial crime
prediction performance using the Gi* statistic, against which other techniques for
predicting spatial patterns of crime can be compared. In research study 6, the prediction

performance of Gi* hotspot analysis is compared to one of these other predictive mapping
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techniques - prospective mapping. A first task, however, is to analyse the stability of
hotspots by examining the extent to which patterns of crime from the past can predict
patterns of crime in the future. This is the focus of research study 5.
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9. Research study 5: Examining the temporal stability of hotspots

9.1. Introduction

Research study 1 identified that an examination of retrospective crime data is required in
order to establish if hotspots are present in crime data. Research studies 2 — 4 have then
examined a number of hotspot analysis techniques for spatially representing hotspots,
with attention also towards examining the potential in mapping where crime has
concentrated previously for predicting where crime is likely to occur in the future. An
examination of the common hotspot analysis techniques revealed KDE to perform best in
predicting spatial patterns of crime. The Gi* statistic was then found to improve upon
KDE by being less ambiguous in determining areas that are hot by using statistical
significance principles and by performing better in predicting where crime is likely to
occur. The research study that is the focus of this chapter aims to build upon these
previous four research studies by examining in further statistical detail the temporal

stability of hotspots.

Recent research suggests that hotspots tend to move around (Johnson and Bowers, 2004b;
Johnson et al., 2008a). These findings into the fluid spatial patterns of crime reflect the
foraging behaviour of offenders who operate in spates before moving on to other areas
(Johnson et al., 2009). This mobility of offenders means that if areas are identified as
hotspots based on a recent short-lived period of high crime, any targeting of policing or
crime prevention activity to these areas may arrive after the crime issue has since moved
on. The theoretical principles of offender foraging behaviour have been shown to be
evident in patterns of repeat and near repeat victimisation (Fielding and Jones, 2012;
Johnson et al., 2009) with these findings informing the prospective mapping approach to
predicting spatial patterns of crime (Bowers et al., 2004). This research that has resulted
in the development of prospective mapping has though exclusively focused on burglary
dwelling®® rather than examining whether these spatially fluid patterns of crime are

evident in other crime types.

Results so far in this PhD research suggest, however, that the analysis of retrospective

crime data provides a powerful means of predicting where crime is likely to occur. The

16 Repeat victimisation and near repeat victimisation research has been conducted on crime types other
than burglary dwelling, but the research on fluid spatial patterns and the foraging behaviour of offenders
is more exclusive to just burglary dwelling.
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current research, therefore, suggests that hotspots tend to be stable. This finding is
consistent with other research that has shown the persistent longevity of crime at certain
places (Brantingham and Brantingham 1981; Groff et al., 2008; Shaw and McKay, 1942;
Weisburd et al., 2004). These findings on the stability of spatial patterns of crime,
therefore, would appear to contradict the other findings about offender mobility and

foraging behaviour and how spatial patterns of crime can be predicted.

There is, therefore, a need to examine the extent to which hotspots of crime are stable —
both in terms of the stability of retrospective crime concentration and the stability of the
predicted crime concentration. In relation to the research study’s hypotheses (hypotheses
5) - areas that are identified as hotspots of crime are places where the concentration of
crime has been endured consistently for at least one year, and where the concentration

of crime is likely to continue to persist into the future.

It is argued that the stability of crime hotspots may be influenced by the volume of
retrospective recorded crime data that is used to identify these spatial clusters. That is,
does crime data for a short retrospective period of time identify different hotspots to those
identified when a much larger retrospective period of crime data is used? Secondly, there
is also a need to examine whether the hotspots identified using different retrospective
periods of crime data identify different areas where crime is predicted to cluster in the
future. For example, it is not known whether crime hotspots that occur in the future are
more accurately identified using large or small (and more recent) retrospective periods of
crime data. If crime hotspots are highly stable, regardless of the retrospective period of
crime data that is used, this would make the selection of recorded crime data for hotspot
analysis to be more straightforward. Also, if crime hotspots are highly stable it would
mean that the targeting of police and public safety resources to these hotspots can be done
in the confidence that this is where crime is most likely to occur in the future.

9.2.  Chapter aims and structure

This research study aims to establish if the areas identified as hotspots of crime are places
where the concentration of crime has been endured consistently over the retrospective
past (i.e., the same hotspots are identified for different periods of retrospective crime
data). The research study then examines if areas identified as hotspots are where the

concentration of crime is likely to continue to persist in the future.
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The chapter begins by describing the method that was used for measuring the stability of
hotspots. This includes describing the data that were used and introduces the temporal
stability index. Section 9.4 presents the results from the experiments that tested the
temporal stability of hotspots under a variety of conditions. These findings are then
interpreted to inform how they may influence the subsequent research studies in this

thesis.

9.3.  Method

Research study 4 found the Gi* statistic to be an effective means of identifying the spatial
area of hotspots and for predicting spatial patterns of crime. These Gi*-identified hot
areas can then be tested to determine the consistency in the volume of crime levels in

these areas.

The stability of hotspots can be measured using a homogeneity index, a measure that is
commonly used in social science research to summarise the distribution of data across
nominal categories (Blau, 1977; Chainey and Ratcliffe, 2005; Gibbs and Martin, 1962).
The homogeneity index (which, from this point, for crime hotspot analysis will be referred
to as the temporal stability index) takes crime data that have been segmented into equal
temporal periods and measures whether crime in the identified area is as a result of crime
occurring over a short period, or whether the level of crime has been stable over a longer
period. The temporal stability index (TSI) is computed using the formula TSI =1 —
¥ p;? where p; is the proportion of crime within each time category of the total number
of crimes in the hotspot for the temporal period that is being analysed. The TSI is bounded
by a minimum value of 0 and a maximum of 1 — 1/n; where n; is the total number of
observed categories. A value close to the maximum indicates the data are heterogeneous,
or that the level of crime is equally dispersed across the observed categories. A value of
0 indicates complete homogeneity or that the crimes are entirely concentrated within just
one category (Haberman and Ratcliffe, 2012).

Table 9.1 illustrates an example of the TSI for two crime hotspots over a twenty-four-
week period. The twenty-four-week period is divided into six equal four-week periods.
The number of crimes in each hotspot for each four-week period is calculated. The
volume of crime for each four-week period is expressed as a fraction of the total volume
of crime for the entire period of interest (e.g., the number of crimes in the hotspot for the

full twenty-four week period). This value for each four-week period is then squared, and
222



these values summed. One minus the sum of this value represents the TSI value for crime
in this hotspot over the twenty-four week period. In this example, the maximum TSI is
0.833 (1-(1/6)). The example in Table 9.1 shows there were 18 crimes in hotspot 1 and
18 crimes in hotspot 2 over the twenty-four week period. In hotspot 1, the eighteen crimes
were spread equally over the six four-week periods, with three crimes being experienced
in each period. Once the calculations described above have been made, this shows that
the TSI for this hotspot is 0.833, equal to the maximum TSI value. This result illustrates
that crime levels in this hotspot over the half-year period have been perfectly stable. In
contrast, hotspot 2 has a TSI of 0 (following the same calculations as above). This is

because all 18 crimes occurred in one of the six four-week periods.

Table 9.1. An example of the Temporal Stability Index for two hotspots

Four-week periods
1 2 3 4 5 6 Sum TSI
n crimes in hotspot = 18 3 3 3 3 3 3 0.8333
Hotspot
1 Fraction of crime 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167
Fraction of crime2 0.0278 | 0.0278 | 0.0278 | 0.0278 | 0.0278 | 0.0278 | 0.1667
n crimes in hotspot = 18 0 0 0 0 18 0 0.000
Hotspot
5 Fraction of crime 0 0 0 0 1 0
Fraction of crime? 0 0 0 0 1 0 1

Experiments into the temporal stability of hotspots were conducted using Newcastle
burglary dwelling, theft from the person and assault with injury data. These crime data
were selected because they would provide the opportunity to examine differences in the
temporal stability of hotspots for three distinct crime types. It was considered
unnecessary to repeat the analysis for the Camden/Islington study area because results to
date between the two study areas had been consistent, and instead a focus towards analysis
of these three crime types in Newcastle would offer findings sufficient for the aims of this
research study. Gi* hotspot analysis was used to identify the areas that could be defined
as hot. A cell size of 150 m was used to produce Gi* hotspot maps in all experiments.
Gi* hotspots were identified using a Bonferroni corrected 95% statistical significance
threshold. If a hot cell was adjacent to one or more other hot cells, the cells were
combined to form a single hotspot. The number of hotspots generated and the area of

each were noted.

Gi* hotspot maps were generated using five input data periods:
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e 12 months (the period covering the full data set, from 1% October 2009 to 30"
September 2010

e 6 months (the six months prior to the 1% April 2010 measurement date)

e 3 months (the three months prior to the 15 April 2010 measurement date)

e 1 month (the month prior to the 1% April 2010 measurement date)

e The retrospective period for each crime type at which the clustering of crime was first
statistically significant to 95%. For example, for burglary dwelling this was 2 weeks

4 days (from research study 1).

These separate temporal input periods were used to examine if the volume of crime data
influenced the temporal stability of the hotspots they identified. Experiments were
conducted by testing the temporal stability of hotspots over a one-year period, using
thirteen four-week data periods. For example, Gi* hotspot maps generated using six
months of input data were tested to examine the stability of crime levels in each identified
hotspot across the thirteen four-week periods for the six months that were used to create
the hotspot map and for the six months that followed. Similarly, Gi* hotspot maps
generated using one month of input data were tested by using the thirteen four-week
periods for the five months preceding the one month input data period, the one month
period for which the hotspot map was generated, and for the six months that followed.
For each Gi* hotspot map produced (using different retrospective periods of crime data),
and for each crime type, it was expected that a number of hotspots would be identified.
The TSI was calculated for each hotspot identified using the Gi* statistic. Table 9.2
provides an example of the TSI calculation process, showing the number of crimes

recorded in a single identified hotspot for each four-week data period.

These experiments, therefore, would enable the stability of hotspots to be tested across a
range of input data periods. This means that different retrospective input periods could
be examined to determine if the hotspots identified from each different input period were
places where crime had been endured at high levels for each of the four-week periods
over the previous half year. Similarly, the retrospective input data could be used to
determine if the hotspots these data identified were where crime continued to persist
beyond the measurement date of the 1% April 2010. In turn, this methodological approach
examined if there were differences in the stability of crime levels based on the
retrospective input period of data that were used to create the hotspots. That is, the

research study tested whether hotspots that were identified were stable and persistent, or
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whether they tended to be more fleeting and were based on short periodic increases in

crime.

Table 9.2. Examples showing the arrangement of crime data for calculating the Temporal
Stability Index of hotspots. Hotspots were identified using the defined period of input

data, from which the volume of crime for thirteen four-week periods were then calculated.

Input data: 6 months 4 week periods and count of crime
Hotspot | ncrimesin |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11 |12 |13
hotspot
1 678 59|61 |75 |56 |44 53|49 |58 |43 36|48 |51 |45
Input data: 1 month 4 week periods and count of crime
Hotspot | n crimes in 1} 2| 3| 4, 5, 6| 7| 8| 9|10| 11|12 13
hotspot
1 636 56| 55|70 5339|4849 |56 43|35 44|47 | 41

TSI values were also calculated for each crime type for the whole Newcastle study area
in order to compare the stability of crime levels in each individual hotspot to the stability

of crime across the study area.

9.4. Results

9.4.1. Temporal stability of burglary dwelling hotspots

Table 9.3 shows the number of Newcastle Gi* burglary dwelling hotspots identified from
each data input period and the proportion of crime that was identified in these hotspots.
The number of burglary hotspots identified ranged from sixteen using a 12 month data
input period, to nine hotspots using 1 month and nine hotspots using 2 weeks and 4 days
of input data (2 weeks and 4 days was the retrospective point from the measurement date
at which clustering was significant to 95%). The proportion of burglary dwellings in the
hotspots (of all burglary dwellings in Newcastle) ranged from 25% using 12 months of
input data to 10% using 1 month and 11% using 2 weeks and 4 days. These findings
suggest that, using the example of Newcastle, larger retrospective periods of input data

are better at identifying hotspots where the highest level of crime concentrates.

On occasion, the experiments identified small hotspots that were made up of single cells
or a small number of cells. If a hotspot contained six or fewer crimes over the thirteen

four-week data periods these were noted (as shown in Table 9.3) but were not included
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in the TSI analysis. The fact that an area with a small number of crimes was identified as
a hotspot is of interest and will be discussed further in section 9.5. These low volume
hotspots were not included in the TSI analysis because, following the recommendation of
Haberman and Ratcliffe (2012), at least seven crimes would be required for an analysis
of the temporal stability of crime over thirteen four-week temporal periods. For all except
one burglary dwelling input data period, a number of these low volume hotspots were
identified. These ranged from seven of the sixteen hotspots identified using 12 months

of input data, to none identified using 2 weeks and 4 days of input data.

Table 9.3. The number of Gi* burglary dwelling hotspots identified for a range of input
data periods, and the proportion of burglaries (compared to all burglary in Newcastle)
contained within them. The number of hotspots with six or fewer offences across the

analysis period is also listed.

Gi* hotspot input data 2 weeks
) 12 months | 6months | 3months | Imonth

period 4 days

n of hotspots identified 16 12 14 9 9

Hotspots with <= 6 offences

across analysis period

Proportion of crime in all
24.9% 22.0% 17.8% 10.4% 11.1%
hotspots

The maximum possible TSI for a thirteen four-week analysis period was 0.923 (for all
crime types analysed). Therefore, the closer a hotspot TSI value was to this maximum
value, the more stable the hotspot, suggesting the hotspot experienced a consistently high
level of crime. The minimum TSI was 0. The burglary dwelling TSI for the whole
Newcastle study area was 0.920, suggesting that the volume of burglary dwelling offences

across Newcastle had been very stable over the thirteen four-week analysis periods.

Table 9.4 lists the TSI results for Newcastle Gi* burglary dwelling hotspots for the range
of data input periods that were used to create hotspot maps. Each hotspot that was
identified is listed in Table 9.4 with a numerical identifier (e.g., the nine hotspots
identified using 12 months of input data are listed in Table 9.4 from 1 to 9). Firstly, these
results show that the hotspots identified using each of the input data periods were very
stable. For example, the majority of hotspots had TSI values greater than 0.85. The

highest TSI values tended to be for the largest hotspots that had been identified using at
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least 3 months of input data. For example, the TSI values for the largest hotspot identified

from 12 months, 6 months and 3 months of input data ranged between 0.897 — 0.920.

Table 9.4. TSI values for Newcastle Gi* burglary dwelling hotspots using input data for
(@) 12 months, (b) 6 months, (c) 3 months, (d) 1 month, and (e) 2 weeks and 4 days. The
highest TSI value for each input period is shown in bold and the lowest TSI value is
shown in italics. The number of burglary dwelling offences for the thirteen four-week
analysis period was 1302.

(@) Input data period: 12 months

Hotspot # 1 2 3 4 5 6 7 8 9
Hotspot TSI | 0.920 | 0.879 | 0.880 | 0.861 | 0.862 | 0.874 | 0.857 | 0.872 | 0.800
ncrimesin | 114 43 23 29 21 25 21 24 10

hotspot

(b) Input data period: 6 months
Hotspot# |1 2 3 4 5 6 7 8 9 10
Hotspot 0.897 [0.839 | 0.865 | 0.867 | 0.836 | 0.870 | 0.837 | 0.865 | 0.805 | 0.727
TSI
n crimes in | 102 22 17 30 15 20 19 28 13 16

hotspot

(c) Input data period: 3 months
Hotspot # 1 2 3 4 5 6 7 8 9
Hotspot TSI | 0.904 | 0.867 | 0.840 | 0.858 | 0.827 | 0.857 | 0.875 | 0.826 | 0.816
ncrimesin | 64 26 26 25 14 21 19 11 7

hotspot

(d) Input data period: 1 month

Hotspot # 1 2 3 4 5 6 7
Hotspot TSI | 0.853 | 0.871 | 0.860 | 0.832 | 0.828 | 0.862 | 0.735

n crimes in 19 33 10 23 13 28 7

hotspot

(e) Input data period: 2 weeks 4 days

Hotspot # 1 2 3 4 5 6 7 8 9
Hotspot TSI | 0.839 | 0.839 | 0.875 | 0.844 | 0.865 | 0.851 | 0.851 | 0.776 | 0.760

ncrimesin | 23 21 12 24 17 24 7 7 10
hotspot
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TSI values for hotspots identified using shorter periods of input data (as shown in Table
9.4) were also high (ranging between 0.735 — 0.875), but did not contain the high levels
of crime experienced in the hotspots identified using longer periods of input data. For
example, while the TSI value for the main hotspot (hotspot # 1) that was identified using
2 weeks and 4 days of input data was 0.839, only 26 crimes took place in this hotspot
over the thirteen four-week periods. This compared to 114 crimes that were experienced
in the main hotspot identified using 12 months of input data, over the thirteen four-week
periods. The lowest TSI values were consistently for hotspots that contained the lowest

number of offences over the thirteen four-week analysis period.

The results into the temporal stability of burglary dwelling hotspots suggests that if at
least three months of burglary dwelling data are used, burglary dwelling hotspots that
experience persistent levels of crime can be effectively identified. Shorter periods of
retrospective burglary dwelling data are less likely to identify the full extent of the main
areas where high levels of crime are likely to concentrate in the future, although the

temporal distribution of crime in these identified hotspots are also highly stable.

9.4.2. Temporal stability of theft from the person hotspots

Table 9.5 shows the number of Newcastle Gi* theft from the person hotspots identified
from each data input period and the proportion of crime that was identified in these
hotspots. Only one hotspot was identified using each of the data input periods. The
proportion of theft from the person offences identified in this single hotspot (of all theft
from the person offences in Newcastle) ranged from 52% using 12 months of input data
to 49.2% using 2 weeks and 5 days of input data (2 weeks and 5 days was the retrospective
point from the measurement date at which clustering was statistically significant to 95%).
This suggests, using the example of Newcastle, there was little difference across the input
data periods in identifying hotspots where the highest level of theft from the person
offences concentrated, albeit the higher values were for the hotspot identified using the

longer retrospective periods of input data.

Table 9.6 lists the TSI results for Newcastle Gi* theft from the person hotspots for the
range of data input periods. The study area theft from the person TSI was 0.911. This
suggests that the volume of theft from the person offences across Newcastle was very
stable over the thirteen four-week analysis period. The TSI value for the single hotspot

was 0.913 for all of the input data periods. The volume of crime in the hotspot area that
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each data input period identified also ranged very little (between 385 to 405 offences),

with the highest values being for the hotspots identified using 6 months and 12 months of

input data. These results suggest the single theft from the person hotspot that the Gi*

analysis identified is very stable, and that even a short period of retrospective data was

effective in identifying where this type of crime has consistently concentrated.

Table 9.5. The number of Gi* theft from the person hotspots identified for a range of

input data periods, and the proportion of theft from the person offences (compared to all

theft from the person offences in Newcastle) contained within them.. The number of

hotspots with 6 or fewer offences across the analysis period are also listed.

Gi* hotspot input data 2 weeks
) 12 months | 6months | 3months | Imonth

period 5 days
n of hotspots identified 1 1 1 1 1
Hotspots with <= 6 offences

) ) 0 0 0 0 0
across analysis period
Proportion of crime in all

51.9% 51.7% 49.3% | 49.6% 49.2%

hotspots

Table 9.6. TSI values for Newcastle Gi* theft from the person hotspots using (a) 12

months, (b) 6 months, (c) 3 months, (d) 1 month, and (e) 2 weeks and 4 days of input

data. The number of theft from the person offences for the thirteen four-week analysis

period was 781.

(@) Input data period: 12 months
Hotspot# |1
Hotspot 0.913
TSI
n of crimes | 405
in hotspot

(d) Input data period: 1 month
Hotspot# |1
Hotspot 0.913
TSI
n of crimes | 387
in hotspot

(b) Input data period: 6 months

(c) Input data period: 3 months

Hotspot# |1
Hotspot 0.913
TSI

n of crimes | 385
in hotspot

Hotspot# |1
Hotspot 0.913
TSI
n of crimes | 404
in hotspot

(e) Input data period: 2 weeks 5 days
Hotspot# |1
Hotspot 0.913
TSI
n of crimes | 385
in hotspot
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9.4.3. Temporal stability of assault with injury hotspots

Table 9.7 shows the number of Newcastle Gi* assault with injury hotspots identified from
each data input period and the proportion of assaults (of all assaults in Newcastle) that
was identified in these hotspots. Only one hotspot was identified using data for the 12
month and 6 month input periods, compared to two, four, and six hotspots using 3 months,
1 month, and 1 week and 5 days of input data respectively (1 week and 5 days was the
retrospective point from the measurement date at which clustering was statistically
significant to 95%). However, two of the four hotspots identified using 1 month of input
data and four of the six hotspots identified using 1 week and 5 days of input data contained
six or fewer offences over the thirteen four-week analysis period. The proportion of crime
identified in the hotspots ranged from 37% using 12 months, 6 months and 3 months of
input data to 30% using 1 week and 5 days of input data. These results suggest, using the
example of Newcastle, that the main hotspots were identified using each of the input data
periods, albeit the higher values were for the hotspot identified using the longer periods
of input data.

Table 9.7. The number of Gi* assault with injury hotspots identified for a range of data
input periods, and the proportion of assault with injury offences (compared to all assault
with injury offences in Newcastle) contained within them. The number of hotspots with

6 or fewer offences across the analysis period are also listed.

Gi* hotspot input data 1 week 5
) 12 months | 6months | 3months | 1Imonth

period days

n of hotspots identified 1 1 2 4 6

Hotspots with <= 6 offences

across analysis period

Proportion of crime in all
36.9% 37.3% 36.9% 35.4% 29.5%

hotspots

Table 9.8 lists the TSI results for Newcastle Gi* assault with injury hotspots for the range
of data input periods. The study area assault with injury TSI was 0.921. This suggests
that the volume of assault with injury offences across Newcastle has been very stable over
the thirteen four-week analysis period. The TSI value for the main hotspot identified by
each of the data input periods ranged from 0.919 to 0.921. The volume of crime identified
in this main hotspot was more varied, ranging from 511 identified offences in the hotspot

identified using 1 week and 5 days of input data to 686 offences in the hotspot area
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identified using 6 months of input data. These results suggest that this hotspot was very
stable, with crime persisting across the full thirteen four-week analysis period. The results
also suggest that only a short period of retrospective data were required to identify the
main area where these assaults were most persistent, but that the area identified using a
larger period of input data was more effective in identifying the full extent of the area

where high levels of assaults were most experienced.

Table 9.8. TSI values for Newcastle Gi* assault with injury hotspots using (a) 12 months,
(b) 6 months, (c) 3 months, (d) 1 month, and (e) 1 week and 5 days of input data. The
highest TSI value for each input period is shown in bold and the lowest TSI value is
shown in italics. The number of theft from the person offences for the thirteen four-week

analysis period was 1838.

(a) Input data period: 12 months (b) Input data period: 6 months (c) Input data period: 3 months
Hotspot# | 1 Hotspot# | 1 Hotspot# | 1 2
Hotspot 0.920 Hotspot 0.920 Hotspot 0.920 | 0.741
TSI TSI TSI
n of crimes | 678 nof crimes | 686 n of crimes | 670 9
in hotspot in hotspot in hotspot

(d) Input data period: 1 months (e) Input data period: 1 week 5 days
Hotspot # | 1 2 Hotspot# | 1 2
Hotspot 0.921 | 0.776 Hotspot 0.919 | 0.852
TSI TSI
n of crimes | 636 7 nofcrimes | 511 13
in hotspot in hotspot

9.5. Interpretation and conclusions from research study 5

This research study examined the temporal stability of hotspots by analysing whether
areas identified using hotspot analysis are the places where crime has previously persisted
at high levels and are where crime is likely to persist at high levels in the future. The
research also compared whether there was a difference in the stability of crime levels in
hotspots when hotspots were identified using short and longer retrospective periods of

crime data.

The research findings suggest that hotspots identified using the Gi* statistic display high
levels of temporal stability. The research findings did, though, show some differences

between crime types, with hotspots of burglary dwelling tending to vary most in their
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temporal stability, whereas hotspots of thefts from the person and hotspots of assault with
injury were highly stable. Another difference that distinguished these crime types were
the number of hotspots that were identified — many more hotspots of burglary dwelling
were identified than those for theft from the person and assaults. The larger number of
burglary dwelling hotspots and the lower stability in burglary levels in these hotspots
would then suggest that spatial patterns of burglary tend to be more fluid than those for
theft from the person and assaults. This finding offers some support to the research from
Johnson and Bowers (2004b) and Johnson et al. (2008a) where they describe burglary
hotspots as often moving location, reflecting the foraging behaviour of offenders.
However, when at least three months of retrospective crime data were used, burglary
dwelling hotspots did display high levels of temporal stability.

The results for theft from the person and assaults with injury indicated that a short
retrospective period of crime data, such as data for the temporal period from which
clustering is statistically significant, can be sufficient in identifying the places where high
levels of these types of crime are likely to continue to persist. Findings for theft from the
person and assaults in this research study (and in the previous research studies of this
thesis) also showed that the geographic concentration of these two crime types were
spatially compact to a small number of hotspots. This may then suggest that when crime
patterns exhibit a high level of spatial concentration, the levels of crime in these areas are
more likely to be highly stable. In turn, this suggests that rather than the commission of
offences being explained by offender foraging behaviour (that is used to explain why
hotspots may move location), a different type of offending behaviour is occurring in

temporally stable hotspots.

In the next research study the theoretical principles for explaining the spatial behaviour
of offenders and the differences in the temporal stability of spatial crime patterns are
examined further. The focus of this next study is to compare the spatial prediction
performance of the prospective mapping approach and the use of recent individual

incidents of crime, to hotspot analysis.
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10.Research study 6: Examining the influence that recent incidents of

crime have on predicting different future periods of crime
10.1. Introduction
This research study tests the hypothesis (hypothesis 6) that recent incidents of crime
provide an effective means of accurately predicting the immediate future, but the accuracy

in these predictions reduces for longer periods of the future.

Study 5 of the research has illustrated the stable nature of hotspots, yet other
commentators (e.g., Johnson and Bowers, 2004b; Johnson et al., 2008a) have suggested
that hotspots are more slippery in nature, moving to other (albeit nearby) locations. The
findings that suggest hotspots to be unstable draw on the theoretical arguments of the
boost account and foraging nature of offenders: where offenders operate in spates,
boosted from the successful commission of a very recent offence to quickly commit
additional offences, before moving on to other areas. The boost account and foraging
behaviour have also been shown to be the principal theoretical reasons for explaining the
spatial patterns of repeat and near repeat victimisation (Bowers and Johnson, 2004;
Johnson et al., 2008a).

The empirical findings into the patterns of repeat and near repeat victimisation have
shown previous incidents to be very good predictors of where crime is likely to occur in
the future (Johnson and Bowers, 2004a). This prediction quality is now often used in
policing for targeting operational resources to prevent more burglaries occurring at
recently burgled and neighbouring properties by minimising this predicted heightened
risk (Chainey, 2012b; Fielding and Jones, 2012). The prediction quality recognised from
the patterns of repeats and near repeats also forms the foundation of the prospective
mapping technique of spatial crime prediction (Bowers et al., 2004). The prospective
mapping approach creates a risk surface based on the spatial distribution of recent
incidents to predict where crime is likely to occur. It has been suggested that this
prospective mapping approach performs better in predicting spatial patterns of crime than
hotspot analysis, however, the only comparison to date has been against KDE (Johnson
et al., 2008b). The research by Johnson et al. (2008b) also only compared prospective
mapping to KDE for burglary dwelling, and only for differences in predicting crime for
the seven days following the date of the production of the mapping outputs. Indeed, to
date, most attention has been placed on using patterns of repeats and near repeats to

233



predict where crime is likely to occur very soon (i.e., over the next few days) rather than
for predictions for any further point in the future (i.e., over the next month). No
consideration was given either in Johnson et al.’s (2008b) study into whether the volume
of retrospective crime data used in the production of the prospective mapping and KDE
mapping outputs would have an influence in the prediction performance of the mapping

outputs.

Study 1 of this PhD research showed that in many cases a number of weeks of
retrospective crime data are required before statistical evidence of clustering is present.
Furthermore, several other parts of this PhD research have shown that if retrospective
crime data are used for hotspot analysis before the point that clustering has been evident,
then any resulting map is unlikely to be useful in predicting where future offences are
likely to occur. That is, to identify where crime is likely to concentrate in the future,
hotspots need to be identified in the first place from the available retrospective data. If
only very recent incidents are used, this may be at the point before clustering is
statistically evident in the retrospective data and, hence, any attempts to produce a
meaningful hotspot map would be futile. Studies 2 to 5 of this research have shown that
once hotspots are identified using retrospective crime data, the hotspots are very effective
in predicting spatial patterns of crime.

The collective findings from both previous and the current research, therefore, suggest
the following: recent incidents that are modelled following repeat and near repeat
patterning principles (i.e., prospective mapping) appear to be very good in predicting
where crime is likely to occur over the next few days; and hotspot analysis using the Gi*
statistic appears to be very good in predicting where high crime levels are likely to persist.
What is not known, however, is whether the predictive quality of prospective mapping
using recent incidents is consistently more or less accurate than Gi* hotspot analysis for
a range of temporal prediction periods (i.e., for the next few days, the next week, the next

month and other periods beyond).

10.2. Chapter aims and structure

This research study examines the prediction performance of the prospective mapping
technique in comparison to the Gi* statistic. In this study, the approach to measuring
prediction performance examines the differences between the techniques for predicting

the immediate future (i.e., for the next 7 days) in comparison to the near future (the period
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beyond the next seven days). The study also focuses on using only recent incidents of
crime to generate mapping output. This is with the hypothesis of determining whether
recent incidents of crime not only provide an effective means of accurately predicting the
immediate future, but also whether the predictions using recent incidents are equally as
accurate beyond this immediate future. The findings from research part 4 on the
prediction performance of Gi* hotspot analysis provide the benchmark against which the
predictions using a prospective mapping approach will be made. Additional Gi* hotspot
analysis is provided where necessary in order to compare against the spatial prediction

performance of prospective mapping.

The chapter begins by describing the method that was used for producing prospective
mapping output and the metrics that were used for measuring prediction performance.
The results section then presents these findings, comparing them against Gi* hotspot
analysis. The results are then interpreted to inform how they influence subsequent

research parts.

10.3.  Method

The Vigilance Modeller prospective mapping tool was used in this study to generate
predictive mapping output. The Vigilance Modeller is based on an algorithm that
incorporates the patterning principles of repeats and near repeats. The Vigilance Modeller
uses data on crimes that have taken place over a one week period to generate mapping

output that identifies places at the highest risk of crime for each week thereafter.

Prospective mapping output was generated (using the Vigilance Modeller) from
Newcastle burglary dwelling, theft from the person and assaults with injury data for the
input period of 25-31 March 2010 (i.e., using a measurement date of the 1 April 2010).
The output from the Vigilance Modeller is a series of cell-based risk surfaces, with each
cell scored in relation to the level of crime risk at each location. Each cell is 100 m x 100
m in size. There is no published account of why cells of this size are used, nor a published
account of analysis that has tested different cell sizes. The higher the risk value in each
cell, the more likely it is that crime will occur in this area. These risk values for cells are
generated from the location of recent incidents, with the influence of each incident
decaying with distance. This means that when only a short retrospective period of crime

data is used (and thus the volume of crime data is likely to be low), many areas across the
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study area will not be populated with cells, and therefore zero risk of future crime is

associated with these areas.

Each prospective risk surface for each crime type were measured for their ability to
predict crime that took place in the 7 days, 4 weeks, 12 weeks and 24 weeks following
the measurement dates of the 1 April 2010. Prediction performance was calculated using
a hit rate, accuracy concentration curves, the area under the curve and the Crime
Prediction Index. These results were compared against equivalent Gi* prediction

performance results.

10.4. Results

Figure 10.1 shows the prospective mapping output that was generated from Newcastle
burglary dwelling, theft from the person and assault with injury data for the input period
of 25-31 March 2010. These maps show the areas of risk, based on where incidents of
crime occurred during the 25-31 March 2010 period. Table 10.1 lists the sizes of areas
covered by each prospective mapping output and the number and proportion of offences
that were committed in the prospective mapping risk areas, by output period. The area of
the prospective mapping outputs, as shown in Figure 10.1, varied in size, from 2% of the
entire study area for theft from the person to 12% for burglary dwelling and theft from

the person.

The results in Table 10.1 show that for each crime type, the prediction performance of
the prospective mapping approach was highest for the 7 days following the input data
period. The proportion of offences that were committed in the area identified using
prospective mapping then reduced for each longer output period. For example, the
prospective mapping area identified 62% of the burglaries that were committed in the 7
days immediately following the input data period. This then reduced to 43%, 38% and
38% for the 4 weeks, 12 weeks and 24 weeks output periods respectively. One exception
to this declining prediction performance was assault with injury, where the 24 weeks

output period recorded the second highest proportion of offences.
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Table 10.1. Sizes of area covered by each prospective mapping output and the number

and proportion of offences committed in the prospective mapping risk areas, by output

period. Values in bold relate to the highest value for the proportion of offences in

prospective mapping areas for each crime type.

_ Prosp_ective Output n of offences | n offence§ in _% of offenc_es
Crime type mapping % : during output | prospective | in prospective
of study area period period mapping area | mapping area
7 days 26 16 61.5%
Burglary 11.9% 4 weeks 138 59 42.8%
dwelling ' 12 weeks 329 123 37.5%
24 weeks 691 259 37.5%
7 days 19 14 73.7%
Theft from 1.6% 4 weeks 60 37 61.7%
the person ' 13 weeks 187 88 47.1%
24 weeks 324 152 46.9%
7 days 37 25 67.6%
Assault with 11.7% 4 weeks 154 95 61.7%
injury ' 12 weeks 459 274 59.7%
24 weeks 835 527 63.1%
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Figure 10.2 shows accuracy concentration curves for Newcastle prospective mapping
outputs of burglary dwelling, theft from the person and assaults with injury. The curves
trend towards random variation from the point representing the extent of the spatial
coverage of the prospective mapping output. For example, for burglary dwelling (Figure
10.2a), from 12% of the study area (which represents the spatial coverage of the
prospective risk surface), the accuracy concentration curve follows a pattern representing
spatially random variation. Sub-sections of the accuracy concentration curves for the
study area coverage of between 0% to 5% allow for a more detailed examination of the

differences by crime type and output period.

The charts in Figure 10.2 consistently show that the steepest curve gradients were for the
7 days output period. It was also noticeable that the curves for theft from the person and
assault with injury had almost vertical gradients, reflecting the high prediction
performance of the prospective mapping technique. In addition, the curve for the 7 days
output period for burglary dwelling was much steeper up to the 12% of offences point,
than curves for other periods. This indicates that prospective mapping output is sensitive
to repeats and near repeats. That is, the highest risk scores are generated for those areas
where a burglary has recently occurred, and where, as in this example, subsequent
burglaries have occurred in these high-risk areas in the week following the initial

incidents.

Table 10.2 lists CPI values for sub-sections of the accuracy concentration curves for
prospective mapping output generated for burglary dwelling, theft from the person and
assaults with injury in Newcastle. These results show that the CPI values were
consistently highest for the 7 days output period and tended to be lowest for the longer

output periods.
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Accuracy concentration curves of ProMap burglary
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Figure 10.2. Accuracy concentration curves for 100% and 5% of the proportion of the

study area of prospective mapping output of Newcastle (a) burglary dwelling, (b) theft
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from the person, and (c) assault with injury, for data outputs periods of 7 days, 4 weeks,

12 weeks and 24 weeks

Table 10.2. Crime Prediction Index values for different sub-sections of accuracy
concentration curves, for 7 days, 4 weeks, 12 weeks and 24 weeks out periods and for (a)
burglary dwelling, (b) theft from the person and (c) assault with injury. Values in bold
represent the largest CPI values and those in italics the smallest CPI values.

(a) Burglary dwelling

Output | 05%x5% | 1% x 10% | 5% x 25% | 10% x50% | 20% x 80% | 100% x 100%
period CPI CPI CPI CPI CPI CPI

7 days 0.902 0.935 0.772 0.658 0.605 0.758

4 weeks 0.810 0.733 0.635 0.490 0.432 0.661

12 weeks 0.710 0.631 0.608 0.455 0.392 0.638

24 weeks 0.602 0.528 0.553 0.440 0.389 0.637

(b) Theft from the person

Output | 05%x5% | 1% x 10% | 5% x 25% | 10%x50% | 20% x80% | 100% x 100%
period CPI CPI CPI CPI CPI CPI
7 days 0.991 0.993 0.998 0.994 0.947 0.868
4 weeks 0.986 0.992 0.997 0.993 0.812 0.810
12 weeks 0.985 0.992 0.987 0.938 0.627 0.736
24 weeks 0.990 0.990 0.991 0.959 0.646 0.737
(c) Assault with injury
Output | 05%x5% | 1%x10% | 5% x25% | 10%x | 20%x80% | 100% x 100%
period CPI CPI CPI 2% CPI CPI
CPI
7 days 0.941 0.934 0.969 0.943 0.779 0.806
4 weeks 0.940 0.908 0.952 0.887 0.688 0.771
12 weeks 0.933 0.897 0.948 0.836 0.651 0.758
24 weeks 0.940 0.923 0.958 0.881 0.690 0.777

Similar to how statistical significance thresholds define the extent of hotspots using the
Gi* statistic, prospective mapping generates output that has a limited areal coverage
representing risk — the gird cells with values greater than O are where crime is predicted
to occur (as shown in Figure 10.1). As reported in Table 10.1, the extent of the
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prospective risk mapping surfaces was 11.9% for burglary dwelling, 1.6% for theft from
the person, and 11.7% for assault with injury. CPI values for these prospective mapping
coverage areas were calculated in order to offer direct comparison to CPI values for Gi*
output. A Bonferroni corrected 95% significance threshold was applied to Gi* hotspot
mapping output for calculating CPI values for burglary dwelling, theft from the person
and assault with injury. Three months of input data were used to create the Gi* hotspot
maps, and CPI values were generated for each of the 7 days, 4 weeks, 12 weeks and 24

weeks output periods.

Table 10.3. CPI values for Gi* (based on three months of input data with hotspots defined
using a Bonferroni corrected p=0.05 threshold) and for prospective mapping (based on
seven days of input data), for output periods of 7 days, 4 weeks, 12 weeks and 24 weeks,
and for burglary dwelling, theft from the person and assault with injury. Values in bold

represent the largest CPI values.

Output Crime type Gi* Prospective mapping
period CPI CPI

Burglary dwelling 0.598 0.641
7 days Theft from the person 0.995 0.995
Assault with injury 0.991 0.942
Burglary dwelling 0.942 0.493
4 weeks Theft from the person 0.995 0.992
Assault with injury 0.991 0.874
Burglary dwelling 0.950 0.456
12 weeks | Theft from the person 0.996 0.991
Assault with injury 0.993 0.812
Burglary dwelling 0.963 0.429
24 weeks | Theft from the person 0.997 0.990
Assault with injury 0.995 0.857

Table 10.3 shows that in comparison to Gi* hotspot analysis CPI values, prospective
mapping CPI values for the 7 day output periods were higher than the comparable Gi*
CPI values for burglary dwelling, were the same for theft from the person, but were lower
than the comparable Gi* CPI values for assault with injury. None of the prospective
mapping CPI values for output periods of 4, 12 or 24 weeks for burglary dwelling, and
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assaults with injury were higher than the Gi* CPI equivalent values, but for theft from the
person the Gi* and prospective mapping CPI values were very similar. These results
suggest that the predictive performance of the prospective mapping technique is best for
predicting the immediate future rather than predicting where crime is likely to occur in
the more distant future. While the prospective mapping technique was very good in some
situations for predicting where crime may occur for more distant periods in the future,
these predictions were not consistently better than comparable spatial predictions of crime

generated using Gi* hotspot analysis.

10.5. Interpretation and conclusions from research study 6

In this research study, the hypothesis that was tested (hypothesis 6) was whether recent
incidents of crime provide an effective means of accurately predicting the immediate
future, but the accuracy in these predictions reduces for longer periods of the future. To
test this hypothesis involved examining the prediction performance of prospective
mapping for different output periods — the immediate future (predicting where crime was
likely to occur over the next 7 days), and for periods thereafter (4 weeks, 12 weeks and
24 weeks). The prediction performance of the prospective mapping output was then

compared to the prediction performance of the Gi* statistic.

The results from this research show that the prospective mapping approach, using the
example of crime data for Newcastle, was effective at predicting the immediate future
(i.e., within the next 7 days), but was less effective at predicting where crimes occurred
for more distant periods of the future. That is, in reference to the research hypothesis,
recent incidents of crime provide an effective means of accurately predicting the
immediate future, but the strength in these predictions reduces for longer periods of the
future. For two of the three crime types (burglary dwelling and theft from the person),
the prospective mapping approach performed better than the Gi* statistic for predicting
where crime occurred within the next seven days. However, for longer periods beyond
seven days, the prediction performance of the Gi* statistic was just as good for theft from
the person, but better for burglary dwelling and assaults with injury than that for

prospective mapping.

The prospective mapping approach is based on the frequently observed finding of repeat
and near repeat patterns in crime data for many different crime types. This approach has

also become a popular technique that is used in practice for predicting spatial patterns of
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crime and determining where to target operational police resources. The findings from
this research study suggest that the use of recent incidents is better than Gi* hotspot
analysis for predicting where crime happens in the immediate future for offences such as
burglary dwelling, but no better than Gi* hotspot analysis for predicting theft from the
person and assault with injury in this same immediate timeframe. Inaddition, Gi* hotspot
analysis was found to be consistently more effective at predicting where crime is likely
to occur over longer periods. These findings have practice implications for targeting
policing and crime prevention resources that will be discussed further in chapter 12. The
theoretical implications from the findings in these differences will also be considered in

chapter 12.
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11.Research study 7: Examining the use of geographically weighted
regression for helping to explain why hotspots exist, and for

informing spatial predictions of crime

11.1. Introduction

The research across studies 1 to 6 has shown that the presence of crime hotspots in crime
data can be determined by the application of a simple statistical process (the nearest
neighbour index), that the Gi* statistic provides an effective means of helping remove
much of the ambiguity in defining the spatial areas that are hotspots (separating
statistically what is hot from what is not hot) and that the areas it identifies produce
effective predictions of where crime is likely to concentrate in the future. The research
has also shown that crime hotspots display temporally stable patterns, and that while
recent events can have a bigger influence in determining where crime is likely to occur in
the immediate future for certain crime types, the performance of these predictions can
quickly reduce for more distant temporal periods of the future. All the analytical
processes behind these findings have used a single source of information to guide these

predictions — recorded crime data.

A sound theoretical framework has been developed to help explain the spatial distribution
of crime, and was described in chapter 2. In summary, the routine activity approach
provides a model to predict if a crime has the necessary components to occur, involving
the presence of a likely offender and a suitable target, and the absence of a capable
guardian, meeting in time and space. The rational choice perspective enables us to
determine some of the thinking behind an offender’s ultimate decision to commit a crime,
by understanding how offenders weigh up the risks, efforts and rewards during the crime
commission process. In the case of property offences, offenders are drawn to targets and
products that meet appealing CRAVED qualities. Crime pattern theory then helps to
explain the spatial and temporal patterning of crime, drawing together the concepts of
awareness space, opportunity space and the least effort principle. Together, these theories
help explain why the spatial distribution of crime tends not to be uniform or random.
Added to this theoretical framework are the concepts of offender foraging and the boost
account: combined, these two theories state that short periodic spates of crime that are
committed by offenders are due to the boost in confidence they receive to return to
locations where they have previously been successful in the commission of crime (i.e.,

crimes committed in the last few days). These boost and foraging behavioural principles
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also help explain how offenders take advantage of similar opportunities nearby before
moving on in order to avoid capture, and/or because the opportunity resource has been
exhausted. This PhD research has also shown that hotspots experience very stable
patterns of crime, with these areas over time being the places to which many offenders
are likely to be drawn because of the enduring crime opportunity characteristics these
areas tend to retain. To some degree these crime opportunity characteristics can be
explained by the background norms of these areas, drawing from the original social
disorganisation concepts of the Chicago School, and from the flag hypothesis that
suggests certain targets signal an opportunity for crime due to some enduring quality that

attracts offenders to these targets.

In terms of the latter, the characteristics of an area, determined by its background norms
and crime opportunity space, can present a rich and attractive range of targets.
Recognising how the characteristics of an area may influence its crime levels then
suggests there is value in using information, other than retrospective crime data, to help
explain why these places are where crime tends to concentrate. That is, while hotspot
analysis effectively identifies where crime is likely to take place in the future, it does not
identify the physical, social or economic conditions that give rise to why these
concentrations occur at these specific locations. If the conditions that explain the
presence of crime hotspots can be identified using data modelling, then these conditions
could be used alongside or in replacement of retrospective crime data to produce

predictions on where crime is likely to occur.

Chapter 2 introduced geographically weighted regression (GWR) as an analytical
framework for helping to determine the conditions that explain why crime concentrates
in certain locations, and if these explanations vary spatially. The ability to be able to
identify and explain the spatial variation in relationships between crime and other
characteristics of the area may indeed help identify that the reasons for the presence of
one hotspot in a study area may be different to the reasons for another in the same study
area. Using this analytical framework, GWR could provide an effective means of
developing statistical insight into determining those conditions (hereafter referred to as
variables) that explain why crime concentrates in some areas and not in others. This
knowledge can then inform a more data-rich approach to hotspot analysis through the
inclusion of these variables alongside, or in replacement of retrospective crime data. This

PhD research has already shown the value of retrospective crime data for predicting
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spatial patterns of crime. Therefore, the inclusion of any additional variables requires
careful scrutiny to ensure they provide the relevant level of precise spatial scale to support
hotspot analysis, are data that are easy to access and consistent in format for use by crime
researchers, and can be effectively embedded into a hotspot modelling process that
improves spatial crime predictions. In relation to the hypotheses proposed in chapter 3,
this research study tests the hypothesis (hypothesis 7) that GWR provides an effective
means of determining at the local level the reasons why hotspots exist, and why these

explanatory variables vary between hotspots.

An additional or alternative analytical framework that uses GWR involves examining
how a change in explanatory variables can influence a change in future crime levels in
order to support long-term predictions of crime. This alternative analytical framework
would involve using explanatory variables to test what if scenarios and direct strategic
policy in crime reduction. For example, this might involve predicting how crime may
change based on a change in an explanatory variable. In relation to the hypotheses
previously proposed, this research study also tests whether GWR analysis can be
effectively used for supporting long-term predictions of crime by examining how a
change in explanatory variables can influence a change in future crime levels (hypothesis
8).

11.2. Chapter aims and structure

This research study examines whether GWR provides an analytical framework for
helping to determine why crime hotspots exist, and if the reasons for the presence of
hotspots across a study area vary. This research involves scrutinising the application of
GWR using crime data, and at the spatial scale that hotspots are identified. The research
study also examines if GWR provides a further means to support spatial crime prediction

by examining how a change in explanatory variables may influence a change in crime.

The chapter begins by describing the methodological application of GWR and the
necessary conditions to consider in the treatment of spatial data for regression analysis.
This methodological process includes a description of Ordinary Least Squares (OLS)
regression, Gaussian and Poisson approaches to linear regression and GWR, the spatial
scale of data required for GWR, and the types of transformations and standardisation

methods that may be required to prepare spatial data for spatial regression analysis.
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Outlined in the method section is the step-by-step process involved in calibrating a GWR
model, beginning with the analysis of an OLS model and a number of statistical diagnostic
tests to determine how well the OLS model performs. The results from the OLS
regression analysis and the statistical diagnostic tests also determine whether the model
is suitable for GWR analysis. The GWR analysis process is then applied to two examples
of crime data to test whether a GWR analysis can help determine why hotspots exist.
Using these two examples, the research examines if the reasons for explaining hotspots
within the same study area vary, if these findings can support a more data rich hotspot
modelling framework (using explanatory variables alongside crime data), and/or if the
results can be used for supporting long-term predictions of crime by testing what if

scenarios.

11.3. Method

11.3.1. Modelling approaches and data

Ordinary Least Squares (OLS) regression is a widely used technique for identifying
relationships between a dependent variable and one or more explanatory variables. For
example, it might be used to explore the relationship between crime and variables such
as poverty, deprivation and unemployment. An OLS regression produces a global model,
explaining the relationships (and their significance) between the dependent and
explanatory variables. However, in reality, these variables are likely to vary spatially,
with the relationship between the variables in one area possibly being stronger (or weaker)
than the relationship in another area. This, therefore, suggests that any analysis that aims
to examine relationships between different types of spatial data should be sensitive to

exploring whether the relationships vary spatially.

An assumption in the application of OLS regression is that the error terms are independent
of one another. However, with most forms of spatial data this assumption is violated,
because (in following with Tobler’s First Law of Geography) observations close together
will tend to be similar than those further apart (Tobler, 1970). This relationship between
geographical observations is effectively the positive spatial autocorrelation that is
observed in many forms of geographic data, or in relation to this research, the observation
that crime tends to cluster into hotspots. The effect of spatial autocorrelation in an OLS
regression model, therefore, results in the violation of the assumption of independently
distributed errors of the model’s variables (Haining, 1990), the underestimation of the

standard errors when positive spatial autocorrelation is present in the residuals, and the
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potential inflation of Type 1 errors (i.e., the incorrect rejection of the null hypothesis)
(Legendre, 1993). These problems result in unreliable statistical inferences and can lead
to conclusions that a supposed effect or relationship exists between variables when in fact
they do not (Anselin and Griffith, 1988). These issues do not mean that we cannot apply
regression analysis to spatial data, but their application does require these spatial effects
to be explicitly incorporated into the specification of the regression model, with the model
used being appropriate for spatial data (Fotheringham et al., 2002; Voss et al. 2006). In
practice, this requires the application of several statistical diagnostic tests for model

significance and model bias (e.g., tests for spatial stationarity and heteroscedasticity).

In chapter 2, GWR and a number of other spatial regression techniques were introduced.
These other spatial regression techniques included spatial lag and generalised additive
models, with the results from numerous studies (Bini et al., 2009; Nakaya et al., 2005;
Wang et al., 2005; Zhang et al., 2005, Zhang et al., 2009) concluding that GWR
consistently performed as well or better than other alternatives for modelling spatial non-
stationarity and for accounting for spatial autocorrelation in parameter residuals. GWR
is also available to practitioners in ArcGIS and as a free standalone software application.
The findings from other research into the modelling performance of GWR (as described
in chapter 2) and its availability in software were the main reasons for its selection in this
research for modelling spatially varying relationships between crime and other variables.
There has also been mention by some commentators on the use of GWR for prediction.
Harris et al.’s (2010) discussion of GWR for spatial prediction referred to the use of the
technique as a spatial interpolation method (estimating values for unsampled locations
based on the values at sampled locations), while Zhang et al. (2009) referred to the use of
GWR for producing accurate predictions of the response variable from the explanatory

variable inputs.

GWR is not without its flaws, with some critics advocating other techniques as being
superior to GWR. Most recently, this has included several researchers advocating
Bayesian spatially varying coefficient models by comparing the processes and outputs
from these models to GWR (Waller et al., 2007; Wheeler and Calder, 2007; Wheeler and
Waller, 2009). Outcomes from the research by others suggest that Bayesian modelling
produces more accurate inferences than GWR, and that GWR output can result in strong
dependence between estimated parameter surfaces (even when these parameters are

associated to be independent of each other in the modelling generation process).
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However, these Bayesian modelling approaches are significantly more expensive in
computer processing time, and require a greater level of sophistication in determining
inputs to the modelling procedure (Waller et al., 2007; Wheeler and Waller, 2009). While
GWR may, therefore, not provide a perfect spatial regression modelling process, it is
considered to be sufficiently robust for crime analysis practitioners to use, and, hence the
decision to focus attention on this technique in this research study. Possible advantages
in using Bayesian spatially varying coefficient models and others will be discussed further

in chapter 12 following the results from this chapter.

Many of the previous studies in this PhD research have examined techniques for their
spatial crime prediction performance. The aim of this research study was not necessarily
to measure the prediction performance of the model results, but rather to identify an
analytical process that would help explain why hotspots exist, explore whether these
results could potentially inform a more data-rich hotspot analysis process, and identify if
GWR could be used to test what if strategic prediction scenarios using variables that have

been determined to spatially correlate with crime patterns.

This research study involved using GWR to develop two types of models. The first used
an exploratory approach to examine the spatial relationships between burglary dwelling
and several explanatory variables. The second used a hypothesis testing approach to
examine the spatial relationships between violent assaults and several variables that were
theoretically considered to be associated with hotspots of this type of crime. The crime
data in both types of models were treated as the dependent variables. The study area for
both models was Newcastle because of the availability of data for these two contrasting
crime types and because of the availability of data that could be used as explanatory
variables. Analysis using burglary dwelling and assault with injury data, under two
different modelling processes, was considered to be sufficient for examining if a GWR
modelling processes could help explain why hotspots exists and inform spatial predictions
of crime. The entire one year period of crime data for Newcastle was used (October 2009
— September 2010). The full Newcastle crime data set was used in order to help address
any issues of low counts for small areas. Data for use as the explanatory variables were
collected from a number of agencies including the Office for National Statistics (data
from the 2011 Census and the 2007 Index of Deprivation), Newcastle City Council (data
on licensed premises), and Northumbria Police (data on the home addresses of offenders).

Table 11.1 lists the twenty-five data variables that were sourced from the Office for
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National Statistics and the Newcastle agencies. The table includes a description of each

variable and the spatial scale for which they were available. GWR in ESRI ArcGIS v10.1
and GWR v4.0 (developed by Nakaya et al., 2012) were used to perform the OLS and

GWR analyses.

The ArcGIS GWR application was used because it provides more

diagnostic statistical results than GWR v4.0 to aid model selection and allows for direct

interaction between the GWR modelling process and the mapping of results. However,

ArcGIS only contains the functionality to apply Gaussian GWR modelling, with any

Poisson GWR modelling requiring the application of the standalone GWR software.

Table 11.1. Explanatory variables used in the regression analysis of burglary dwelling

and assault with injury in Newcastle

population aged 40-49

Data variable Source Description Spatial scale
Household density Census 2011 | Households per km? Output areas (OAS)
Population density Census 2011 | Population per km? 0OAs
Low level of education | Census 2011 | Percentage of population with no | OAs
qualifications or have only achieved
Level 1 status (1+°O° level passes,
1+CSE/GCSE any grades, NVQ level 1,
Foundation GNVQ)
Asian population Census 2011 | Percentage of population that are Asian OAs
Black population Census 2011 | Percentage of population that are Black OAs
Chinese population Census 2011 | Percentage of population that are Black | OAs
Student population Census 2011 | Percentage of the normally resident | OAs
population that are students (attending a
higher education establishment)
Owned housing Census 2011 | Percentage of households where the | OAs
household head owns the property (with
or without a mortgage)
Socially rented housing | Census 2011 | Percentage of households rented from the | OAs
local Council or Housing Association
Private rented housing | Census 2011 | Percentage of households privately rented | OAs
Population age 20 to 29 | Census 2011 | Percentage of the normally resident | OAs
population aged 20-29
Population age 30 to 39 | Census 2011 | Percentage of the normally resident | OAs
population aged 30-39
Population age 40 to 49 | Census 2011 | Percentage of the normally resident | OAs

250




Population age 50 to 59 | Census 2011 | Percentage of the normally resident | OAs
population aged 50-59

Population age 60 to 69 | Census 2011 | Percentage of the normally resident | OAs
population aged 60-69

Population age 70 and | Census 2011 | Percentage of the normally resident | OAs

over population aged 70 and over

Population born in the | Census 2011 | Percentage of the population that were | OAS

UK born in the UK

Population that arrived | Census 2011 | Percentage of the population that arrived | OAs

from outside the UK in the UK between 2001 - 2003

between 2001-2003

Population that arrived | Census 2011 | Percentage of the population that arrived | OAs

from outside the UK in the UK between 2004 - 2006

between 2004-2006

Population that arrived | Census 2011 | Percentage of the population that arrived | OAs

from outside the UK
between 2007-2009

in the UK between 2007 - 2009

Serious Acquisitive | Northumbria | The number of SAC offenders per 1000 | Home address
Crime (SAC) offenders | Police population. SAC offences include
(2010) burglary dwelling, theft of vehicles, theft
from vehicles, and robbery (from people
and businesses)
Income Deprivation Index of | The percentage of children that live in | Lower super output
Deprivation | families that are income deprived (i.e., in | areas (LSOAS)
(2010) receipt of Income Support, Income based
Jobseeker's Allowance, Working
Families' Tax Credit or Disabled Person's
Tax Credit below a given threshold)
Education and skills | Index of | A score relating to the education and | LSOAS
deprivation Deprivation | Skills attained by children and young
(2010) people
Living environment | Index of | A score relating to quality of the indoors | LSOAS
deprivation Deprivation | living environment of housing
(2010)
Licensed premises Newcastle Registered licensed premises, including | Address of premise
City Council | nightclubs, bars, pubs and off-licenses
(2010)
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The research was organised into four parts:

e An assessment of the spatial scale of crime data and the data variables against which
these data were to be modelled

e Anassessment of the data variables to determine whether Gaussian and Poisson GWR
modelling was required, and if these data needed to be transformed to make them
suitable for analysis. This also included a critical assessment of these modelling
processes to crime data

e An analysis of OLS and diagnostic statistical results to determine whether the
variables selected for a model were suitable for GWR analysis

e A GWR analysis of dependent and explanatory variables, including an assessment of

the spatial bandwidth for modelling spatially varying relationships.

11.3.2. Assessment of spatial scale

The first part of the regression analysis process involved an assessment of the spatial scale
of crime data and the explanatory data variables against which crime data were to be
analysed. Throughout the research study, regression analysis was to be applied to the
entire study area, albeit with the aim of conducting analysis at a level of spatial precision
that would allow hotspots to be distinguished from each other and from those areas that
were not hotspots. Hotspots were identified using the Gi* statistic following the method
that was used in research study 4 (chapter 8). Gi* hotspots were identified using a 95%
significance level to maximise the areal size of those areas statistically determined as
hotspots. The assessment of spatial scale involved an examination of the size of hotspots
and whether the explanatory data variables were of a geographic scale that was

compatible for exploring relationships with these hotspots.

11.3.3. Gaussian GWR, Poisson GWR and data transformations

Consideration was given in each modelling process to determine whether a Gaussian or
Poisson GWR modelling approach would be applied and if any transformation of
variables were required. Gaussian GWR assumes both dependent and explanatory
variables to be normally distributed, and is applied to continuous data. Poisson GWR is
suitable for count data that follow a Poisson distribution (i.e., where there may be many
observations with low counts, and fewer with high counts). A natural logarithm
transformation was applied to data where necessary to help address any non-normal data

distributions and where certain statistical diagnostic results advised on transforming data
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in this way. A full description of the statistical diagnostic tests is provided in section
11.3.3.

In the first case, a Gaussian approach was applied to the GWR modelling of burglary
dwelling data. This followed the conversion of burglary dwelling count data to burglary
rates (burglaries per 1000 households per annum), and an assessment of whether a
transformation of these rates was required. The conversion of the burglary dwelling point
data to a rate also meant these data had to be aggregated to Census output areas for which
household data were available. An analysis of the explanatory variables was then
performed to determine if each followed a normal distribution. Where they did not, the
variable was also transformed using a natural log approach. All explanatory variables
were then used in the first part of the modelling process to explore which were statistically
significant. This selection was then refined through an iterative process to determine
which model was most suitable for GWR analysis. A full description of this iterative
process is described in the results section.

Assault with injury crime data cannot be suitably converted to a rate because an area’s
population does not accurately represent the on-street population where many of these
types of violent incidents occur. Census workplace statistics are also not a substitute
measure for the on-street population as they do not account for trips such as those for
shopping or trips associated with people travelling to town centres to enjoy the area’s
night-time economy (Chainey and Desyllas, 2008). Assault with injury data therefore

remained in count format.

The GWR modelling of assault with injury data followed a hypothesis testing approach.
This approach involved choosing variables based on sound theoretical principles and
supported with empirical research. In the first instance, a model was created using only
licensed premises data as an explanatory variable. This was for two reasons. Firstly,
licensed premises data were available as point data, meaning that counts of assaults and
counts of licensed premises could be aggregated to a precise user defined set of grid cells
rather than constrained to geographic administrative areas of varying sizes and shapes
(e.g., output areas). Secondly, there is much evidence that suggests a relationship
between alcohol consumption and violent assaults, and that such assaults are concentrated
in the same places where pubs, bars and nightclubs (collectively referred to hereafter as

licensed premises) are similarly located (for example, see Babor et al., 2003; Graham and
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Homel, 2008; Maguire and Hopkins, 2003). The relationship between assaults and
licensed premises is both associated with violence inside the premises and the violence
that occurs outside these premises. In terms of the later, the contemporary view is that
violent incidents that occur on the streets outside licensed premises is directly correlated
with drinking alcohol purchased from licensed premises (Institute of Alcohol Studies,
2013). That is, if it were not for the presence of these licensed premises, assaults would
not take place at the volumes and in the location that is observed. The licensed premises
data supplied by Newcastle City Council contained both on-licenses (pubs, bars,
restaurants, nightclubs) and off-licenses (shops selling alcohol). A subset of these data
was created containing only night-time economy related off-licenses (i.e., pubs, bars and
nightclubs) to allow for further analysis between assaults and this specific variable.

Four different grid cell sizes (150 m, 300 m, 500 m and 1000 m) were used in the analysis
of assaults and licensed premises to determine how many cells contained zero assaults.
At present, there is little guidance on the size of cells to use for GWR analysis, and instead
the selection of suitable cell size requires some experience of the study area and
consideration of the interplay between the possible spatial relationships of variables. This
consideration of the interplay between variables requires an assessment that ensures that
the cell size is large enough for cells to display a range of values from low to high, but
not too large to negate an examination of local spatial relationships. The application of
GWR, therefore, requires the researcher to make an assessment of the interaction between
the variables that are to be analysed, drawing from their experience to do so, rather than
relying on an analytic solution to determine the optimal size of geographic unit. If a large
number of cells contained zero values, this would be problematic for the modelling
process. A zero-inflated modelling approach could be applied, but to be fully robust
required specialist software. Additionally, the research focus was to explore how
functionality available to a wide audience of crime analysts (e.g., GWR in ArcGIS or the
free to download GWR v4.0 software) could be used for modelling spatially varying
relationships. The zero-inflated approach is, though, discussed further in the results

section and in chapter 12.

Both assaults with injury and licensed premises data were in count form. This meant that
a Poisson GWR model was applied in the first instance. The results of the Poisson GWR
model then informed whether other explanatory variables were required for the model,

and hence whether the aggregation of data could remain in grid cell format or needed to
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be aggregated to Census geography to make it compatible with the spatial scale of these
other explanatory variables. The results on whether to apply grid cells or Census
geographic units then determined whether a Gaussian GWR modelling approach would
be more suitable following the necessary transformation of the assault data and any

explanatory variables.

11.3.4. OLS regression and diagnostic statistical tests

The first stage of GWR modelling required an OLS regression analysis to test if the
variables chosen provided a suitable model for explaining the presence of the dependent
variable. Where variables were not significant, they were excluded from the model until
only those variables that were significantly correlated remained. Another part of this
initial process involved performing several statistical diagnostic tests to determine if the
model was suitable for GWR, or if there was a need to revise the variables that were
included in the model (and if there was a need to revise the hypothesis that explained the
presence of the dependent variable). The tests were grouped into three categories: model

performance, model significance, and model bias.

Tests for model performance determined if there was, in a statistical sense, a relationship
between the dependent variable and the explanatory variables. The test results of interest
were the adjusted R?, the coefficient for the explanatory variable, the Koenker statistic,
and the probability or robust probability measures of relationship significance. When the
model consisted of multiple variables, the variation inflation factor (VIF) also required
assessment. Each of these test statistics were used as follows:

e Adjusted R2: this statistic helps describe the goodness of fit of a model and the
percentage of the explained variance. The adjusted R? adjusts for the number of
explanatory terms in a model. Unlike R?, the adjusted R? increases only if a new
variable that has been added improves the model more than would be expected by
chance. In the case of using multiple variables to explain the dependent variable, the
adjusted R2 statistic is a better measure to use than R2.

e Coefficient of the explanatory variable: this represents the strength and type of
relationship between the explanatory variable and the dependent variable. For
instance, it can be used to suggest that for every one unit change in the explanatory
variable, the dependent variable increases by the amount equivalent to the coefficient.

o Koenker statistic: this is primarily used as a model significance measure (explained

in the following section), but its use for model performance is to determine whether
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probability or robust probability measures should be used. If the Koenker statistic is
significant then the robust probability results should be used rather than the standard
probability results.

Probability/Robust probability: this is a measure of the significance of the relationship
between the dependent variable and each explanatory variable. An explanatory
variable’s coefficient means little if the relationship is not statistically significant.
Variation Inflation Factor (VIF): the VIF quantifies the severity of multicollinearity
in the model. If the modelling begins by including a number of explanatory variables,
it is possible that probability results show that several of the explanatory variables
were not statistically significant. This means that consideration should now be given
to removing these variables from the OLS model that do not appear to be contributing
in any way in helping to explain the variation in the dependent variable. To help with
this process of selecting variables to remove from the model, the VIF for each variable
indicates if the variable is not contributing to the model. If the VIF value for a variable
is greater than 7.5 this suggests the variable is redundant in the model and should be
removed. The same procedure applies when an explanatory variable is significant,
but has a VIF value that is greater than 7.5. This is likely to be because this variable
offers a similar explanation to another (statistically significant) variable, and therefore

one (the variable with the highest VIF) should be removed.

Tests for model significance help determine if the model is a good candidate for GWR.

For this purpose, interest is in the results of three tests: the Koenker statistic, the Joint F

statistic, and the Joint Wald statistic:

Koenker statistic: this is a measure of stationarity in the model. That is, it determines
whether the explanatory variables in the model have a consistent relationship with the
dependent variable. There are two ways to consider the behaviour of these
relationships. In spatial terms, the spatial processes represented by the explanatory
variables behave the same everywhere. In data terms, it also means that the variation
in the relationship between the dependent variable and each explanatory variable does
not change with changes in the magnitude of the explanatory variable (i.e., there is no
heteroscedasticity in the model). For example, the relationship between the
dependent variable and the explanatory variables is just as accurate in areas where
observations for the explanatory variable are low and where these observations are
high. If the Koenker statistic is significant, it suggests there is heteroscedasticity

and/or non-stationarity in the model, meaning the relationship between the dependent
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and explanatory variables vary across space, and that the model is therefore a good
candidate for GWR.

e Joint F statistic and Joint Wald statistic: these statistics are measures of overall model
statistical significance. If the Koenker statistic for the model is statistically
significant, the Joint F statistic’s result is unreliable, and therefore the Joint Wald

statistic should be used instead.

The third group of tests are for model bias. Firstly, this requires an analysis of the

residuals (the difference between the observed value of the dependent variable and the

estimated value - based on the statistical relationship with the explanatory variables) to
determine if they are normally distributed. Secondly, the residuals are then tested to
determine if they are spatially clustered. The two tests for these are the Jarque-Bera

statistic and Moran’s I:

e Jarque-Bera statistic: if this statistic is significant, it suggests the model is biased.
This would be, for example, where the model performs well for low values but does
not perform well for high values. If the model is biased then there is the option to
transform the variables or remove influential outliers (Rosenshein et al., 2011), or
include other explanatory variables in the model

e Moran’s I: this second test for model bias identifies whether the residuals are spatially
clustered. If they are then this suggests that a key variable is missing from the model
(to explain the observed spatial patterns in the dependent variable). If the Moran’s |
result suggests evidence of clustering in the residuals, then mapping the residuals
thematically may help identify the explanatory variable that is missing. That is, where
residual values are high, and clustered, what else is present in this area that could help
explain the presence of the phenomenon, in addition to or in replacement of the

existing explanatory variables?

The initial OLS regression and statistical diagnostic process identifies if the model is
suitable for GWR. If not, for example, the Jarque-Bera statistic is significant, a further
analysis of explanatory variables is required before progressing to developing a GWR
model. Once a suitable OLS model has been identified, the explanatory variables from
this model can be applied to a GWR model. This involves a straightforward process of
using the statistically significant explanatory variables from the final OLS regression
model for inclusion in the GWR model. At this stage it is also useful to record the

Corrected Akaike Information Criterion coefficient (AlICc) value for the OLS regression
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model that, for most software applications of GWR, is calculated as part of this initial
diagnostic process and is also calculated for subsequent GWR models. The AICc will
indicate if the GWR model performs better than the OLS model. The lower the AlCc,
the better the model.

11.3.5. GWR modelling and spatial bandwidths

The GWR model requires the specification of a bandwidth that defines the size of the
neighbourhood over which relationships between the dependent variable and the
explanatory variables will be explored. A Cross Validation method and the AICc are
considered to be useful bandwidth optimisation methods (both built into the two GWR
software options), although Fotheringham et al. (2002) recommend the use of the AlCc
to determine optimal bandwidth size for GWR models. The GWR modelling process
results in the automated calculation of the bandwidth size, determined by minimising the
AlCc value. An alternative approach is for the user to specify a bandwidth size, with the
user then evaluating the performance of this GWR model by comparing AlICc measures.
A fixed or adaptive bandwidth can also be applied. The fixed approach determines an
optimal single bandwidth size for exploring the relationship between variables across the
whole study area. The adaptive approach determines an optimal number of neighbours
to include, therefore, allowing the metric size of the bandwidth to vary across space (i.e.,
smaller in metric size for small geographic units of analysis and larger in metric size for
larger geographic units of analysis). For both the burglary dwelling and assault with
injury GWR models an AICc bandwidth optimisation process was used, applying both
fixed and adaptive bandwidth processes. The GWR models that produced the lowest

AlICc values and the highest adjusted R2 values were the ones selected for further analysis.

The GWR modelling process generates a number of outputs for mapping. The first of
these is a local R? value that indicates the relationship between the explanatory variables
and the dependent variable and how this relationship varies across the study area. The
local R? value may indicate that the relationship between these variables is stronger in
some areas than others. In the areas where the relationship is weak, other variables, other
than the explanatory variables used in the model, are likely to explain the patterning of
the dependent variable in these areas. A second value generated is a condition number.
This indicates if the results are unstable due to local multicollinearity. A value greater
than 30 for any of the geographic areas suggests that the result for this cell is unreliable.

In addition to this value, the Coefficient of Standard Error that is also generated from the
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GWR model for each geographic area helps determine if the local R? values are reliable.
Where the Coefficient of Standard Error value is small, confidence can be placed in the
relationship between the dependent and explanatory variables. Maps of GWR output

were generated for both the burglary dwelling and assault with injury models.

11.4. Results
11.4.1. Using GWR to determine at the local level the reasons why hotspots exist,
and that explanatory variables vary between hotspots

In research study 4 (Chapter 8), Gi* hotspot maps were produced for burglary dwelling
and assault with injury for the Newcastle study area using six months of input data. For
research study 7 (the current chapter), the analysis of the spatial relationships between
crime and the explanatory variables used twelve months of data in order to help minimise
the problem of many small areas containing zero or low counts of crime. In the first
instance, Gi* hotspot maps of burglary dwelling and assault with injury were produced
using six months of data and twelve months of data to compare if the areas identified
were different. Each of the Gi* hotspot maps were generated using a cell size of 150 m.
The maps in Figure 11.1 show there to be no major differences between the areas

identified as hotspots.

Twenty hotspots of burglary dwelling were identified using twelve months of input data.
The size of these hotspots ranged from 0.023 km2 to 0.855 kmz2, and had a mean size of
0.162 km? (see Table 11.2). Only one hotspot of assault with injury was identified in the
study area, and was 1.148 km? in size.

To perform regression analysis of burglary dwelling, these crime data had to be
aggregated to the smallest geographic area for which the explanatory variables were
available. While many of these data variables were available at the Census output area
level (OAs), deprivation data were only available at the lower super output area level
(LSOAs). This meant that in order to make direct comparisons between the crime data
and the explanatory variables, all data had to be aggregated to LSOAs. In addition, an
analysis of twelve months of crime data aggregated to OAs revealed 36% of OAs
contained no burglaries and 44% contained no assaults with injury. If OAs had been used
as the geographic unit of analysis, the high proportion of OAs with zero counts would

likely to have caused difficulties.
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Figure 11.1. Gi* hotspot maps of burglary dwelling generated using (a) six months of

input data, (b) twelve months of input data, and of assault with injury generated using (c)

six months of input data, (d) twelve months of input data

Table 11.2. Mean, minimum, maximum and standard deviation of the size of Gi* hotspots

for burglary dwelling and assault with injury in Newcastle

Crime type Mean size of | Minimum Maximum Standard
hotspots hotspot size | hotspot size deviation of
(km2) (km2) (km?) hotspot size (km?)
Burglary dwelling 0.162 0.023 0.855 0.197
Assault with injury 1.148 1.148 1.148 -

Table 11.3 lists the mean, minimum, maximum and standard deviation of the size of the
Newcastle LSOAs. The figures show that these areas were of a much larger spatial size

than the areas that were identified as hotspots. For example, the mean size of the LSOAs

was over four times larger than the mean size of the burglary dwelling hotspots.
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Additionally, Figure 11.2 shows a number of the burglary dwelling hotspots and their
respective LSOAs. The figure illustrates that many of the hotspots were of a much
smaller size than the geographic units of the explanatory variables. Figure 11.2 also
shows that many of the Gi* hotspots had a spatial coverage that overlapped several
LSOAs, meaning that any analysis that explored the relationship between burglary
dwelling and the explanatory variables would relate to the whole of each LSOA that
overlapped the hotspots, rather than the specific areas that had been identified as hotspots.
These findings mean that a comparison between the specific causes of these spatially
precise burglary dwelling hotspots was not possible due to this mismatch between spatial

scales of the geographic units of analysis.

Table 11.3. Mean, minimum, maximum and standard deviation of the size of Newcastle
LSOAs

Crime type Mean size Minimum | Maximum | Standard deviation
(km?) size (km?) size (km?) of size (km?)
LSOAs 0.663 0.071 15.545 1.594
N

I/ \% ¥ g ‘w—\/\b‘-\ {Lg&/( MLAeg\end\

[ Newcastle LSOAs _
N7 G’\V o~

™= Gi* hotspots

Figure 11.2. Burglary dwelling Gi* hotspots in Newcastle compared to their respective
LSOAs
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Assault with injury regression analysis followed a hypothesis testing approach rather than
an exploratory approach. The initial hypothesis was that the spatial distribution of assault
with injury could be explained in relation to the distribution of licensed premises.
Licensed premises data were available in point form, meaning that data could be
calibrated for analysis using grid cells rather than being constrained to LSOAs. The
availability of point format data for both data sets, therefore, offered promise that the
analysis into the relationship between assaults and licensed premises could be explained
using these more specific grid cells, thus allowing for analysis of whether the influence

of licensed premises varied among hotspots.
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Figure 11.3. Histograms of Gi* values for (a) assault with injury and (b) licensed premises

in Newecastle

In the first instance, the use of Gi* values that represented the distribution of assault with
injury and Gi* values representing the distribution of licensed premises, using the same
grid cells for each, was considered the optimal basis for comparing the relationship
between these two variables. This is not only because this method is the means by which
hotspots were identified, but also because the approach resulted in each cell within the
study area containing a value relating to the spatial distribution of crime and the spatial
distribution of licensed premises. An approach using Gi* values for both data variables
would also avoid any problems created from many geographic units containing zero

values. Figure 11.3 shows histograms of the distribution of the Gi* values for assault
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with injury and licensed premises in Newcastle. This figure shows the data to be highly
skewed, following a Poisson distribution. This would then suggest a Poisson GWR model
would be most suitable for these data. However, this presented three difficulties.

Firstly, Poisson regression analysis cannot be applied to variables that have negative
values (as in the case of Gi* values). An option then would be to apply a Gaussian
regression analysis approach after a log transformation of these Gi* values, but
transformation of negative values is not possible. An option to address this is to add a

constant to each value before applying the log transformation.

Secondly, Poisson regression assumes that the occurrence of an event (e.g., crime) will
not make another event more or less likely. However, co-dependence among events is an
established feature of crime, as evident in the patterns of repeat victimisation and near
repeat victimisation as explained and empirically evidenced by the boost account and
offender foraging theories in chapters 2 and 10.

Third is the problem of overdispersion. An alternative to using the Gi* values was to use
the count of the number of assaults and the count of the number of licensed premise in
each grid cell, and apply a Poisson regression against these variables. Poisson regression
assumes the mean is equal to the variance in the variables. Where the variance is greater
than the mean, overdispersion is present. The presence of overdispersion could cause an
underestimation of the standard errors in the estimated variable, meaning that a variable
may appear to be a significant predictor of the dependent variable, when in fact it is not.
This issue of overdispersion is a common feature in spatially distributed crime data,
particularly for crimes which are highly clustered (such as assault with injury offences),
because the data displays some locations where the volume of crime is high, and many

places where it is zero.

The initial methodological proposal was to explore the use of different cell sizes for
spatial regression. In the first instance this approach would involve choosing a suitable
cell size that minimised the number of cells with zero counts and balanced this with
examining spatially varying relationships at the scale relevant to hotspot analysis. The
Gi* hotspot maps presented in Figure 11.1 used a cell size of 150 m. If this cell size was
used as the basis for exploring the relationship between assaults and licensed premises, it

would be extremely problematic since 85% of cells covering the study area contained a
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zero count. Table 11.4 shows the problem of zero counts extended to cell sizes of 300 m,
500 m and 1000 m. In the latter case, a 1000 m cell size was representative of the entire
size of the assault with injury Gi* hotspot, but even at this spatial scale, 43% of cells

covering the Newcastle study area contained zero counts.

Table 11.4. The proportion of cells containing zero counts of assault with injury offences
for different cell sizes

150m 300m 500m 1000m

Proportion (and n) of cells
) 85% (4509) | 70% (968) | 56% (296) | 43% (65)
with zero counts

To overcome the problem of overdispersion a number of solutions are available. One
involves addressing the large number of zeros in the data by producing a zero-inflated
model (i.e., by adding a value of one to all observed incidents). However, for the analysis
of crime data it is important to distinguish areas where there has been no crime from those
where there has been crime, particularly for rare crimes (e.g., robbery, sexual assaults).
Some zero-inflated models specify separating the analysis of the cells that originally
contained a value of zero from those that contained a value greater than zero. However,
the analysis and interpretation of spatial data that are split in this way can be cumbersome
without specialised software for treating zero-inflated models. A second solution that is
designed to help address the issue of overdispersion involves applying a Poisson Gamma
regression model. However, this modelling approach was not available in the software
used in this analysis. A third solution considered was to apply a log transformation to the
assaults and licensed premises data, and apply a Gaussian regression analysis. However,
even with large grid cells of 1000 m in size, a log transformation would not be possible
for 43% of the data (the cells that contained a zero count), therefore, this approach was
not pursued. A fourth option was to reduce the number of geographic units that contained
zeros in the assault with injury data by increasing the size of the geographic units that

were used for analysis.

It was decided that three approaches would be applied to progress the analysis of the
relationships between assault with injury offences and licensed premises. In the first
instance, an attempt would be made to apply a Poisson GWR regression analysis to the
1000 m grid cells using the GWR software and examine the results. The second approach

involved removing the majority of 1000 m cells that contained zero values, but to still
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produce a study area that was spatially contiguous, and apply Poisson GWR to these data.
This resulted in creating a City grid lattice of 82 cells covering the southern areas of the
Newecastle district study area (see Figure 11.4a). Only four of these 82 cells contained
zero values. The distribution of the number of assaults in each cell still followed a Poisson
distribution (see Figure 11.4b). The third approach involved aggregating assaults and
licensed premises data to LSOASs, applying a log transformation to these two variables,
and performing a Gaussian GWR analysis using ArcGIS. Aggregating assaults data in
this way resulted in only nine out of 173 LSOAS containing zero counts (representing 5%
of the geographic units in the study area). As previously noted, an assaults rate was not
used because suitable denominator data, such as an on-street pedestrian count, was not
available. Application of the Gaussian GWR model in ArcGIS would also allow a more
comprehensive statistical diagnostic assessment of the relationship between assaults and
licensed premises (the standalone GWR software does not include the same extensive
range of measures for model performance, significance and bias described above).
Additionally, this approach using LSOAs would allow an assessment of whether licensed
premises alone were enough to explain the spatial distribution of assaults with injury and
if model performance improved with the addition of other variables. In turn, this would
permit a more straightforward interactive regression modelling approach in ArcGIS by
refining hypotheses and selecting other variables alongside, or in replacement of licensed

premises data.
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Returning to the first of the two hypotheses for this chapter’s empirical study, the research
involved examining whether GWR could provide an effective means of determining at
the local level the reasons why hotspots exist, and whether the explanatory variables that
were identified to be significantly related to crime, varied between hotspots. The results
described in this section have shown that local level analysis of spatially varying
relationships at the spatial scale at which hotspots are identified is problematic for three
main reasons. The first problem relates to a mismatch in the spatial resolution of crime
data and the spatial resolution of data against which relationships are explored: data that
are used as explanatory variables are typically not available at the spatial scale for areas
that are identified as crime hotspots, and instead requires crime data to be aggregated to
larger spatial scales (e.g., LSOAs for which data on explanatory variables are available)
for relationships to be explored. Secondly, where explanatory variables are available at
the spatial scale for which hotspots are identified, the very feature of the clustering of
crime data into hotspots creates the problem of many other areas containing zero counts,
causing the crime data to be overdispersed. The issue of overdispersion then results in
difficulties in the application of standard Poisson regression modelling. The third
problem then relates to compromising the examination of spatially-varying relationships
at the precise spatial level at which hotspots are identified, due to the requirement to
aggregate crime data to large geographic units: the tendency of crime to spatially cluster
and the requirement to minimise the number of geographic units that contain zero counts
results in the need for crime data to be aggregated to large geographic units for the
purposes of performing spatial regression analysis. This requirement to aggregate crime
data to large geographic units then reduces the ability to examine at the local spatial scale
at which hotspots are identified the conditions that help explain the presence of these

hotspots.

11.4.2. GWR modelling of burglary dwelling

The analysis of burglary data (aggregated to LSOAS) followed an exploratory approach.
This initially involved including all of the twenty-five explanatory variables listed in
Table 11.1 in a single preliminary exploratory OLS regression model and a statistical
diagnostic analysis process. The burglary dwelling rate was transformed using a natural
log approach in order to orient the distribution of the dependent variable towards a normal

distribution.
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Table 11.5 lists the main findings. These show that only four variables were significantly
correlated to burglary dwelling. These variables were the number of Serious Acquisitive
Crime (SAC) offenders per 1000 households, deprivation of education and skills, the 50-
59 year old age group, and residents born in the UK. These variables were selected for
Model 1, and the OLS and diagnostic analysis process was re-run. The analysis processes
would then determine, if together, these variables were significant, and calculate key
characteristics of the model in relation to its performance, significance and bias. This
analysis process was re-run seven times using different combinations of explanatory
variables until the model passed the necessary tests for it to be suitable for GWR. Due to
the large number of variables included in the preliminary model, it was expected that a
high degree of multicollinearity would be present. This was the case, with many variables
that were identified as not significant having VIF values greater than 7.5. For each model
that then followed, the VIF for each explanatory variable was less than 7.5 indicating the
issue of multicollinearity had been addressed by including only those variables that were
statistically significant. The decision-making behind the choice of explanatory variables
was as follows:

e Model 1: This model included only those variables (from all variables listed in Table
11.1) that were significantly related to burglary dwelling: SAC offenders per 1000
households, deprivation of education and skills, 50-59 year old age group and
residents born in the UK. From the preliminary model, both SAC offenders and
deprivation were positively associated with burglary dwelling, whereas 50-59 year
olds and UK born residents were negatively associated with burglary dwelling.
Following the recalibration of the model using just these four variables, all variables
were significant except for deprivation of education and skills. SAC offenders
remained positively associated with burglary dwelling, and the 50-59 year old age
group and UK born residents remained negatively associated with burglary dwelling.
The Jarque-Bera statistic was significant, suggesting the model was biased because
the residuals were not normally distributed.

e Model 2: This model included only those variables that were significant in Model 1.
This resulted in the combination of SAC offenders, the 50-59 year old age group and
residents born in the UK explaining 29% of the dependent variable. The Jarque-Bera
statistic, however, remained significant.

e Model 3: This model used the natural log transformations of the explanatory variables
used in Model 2 to attempt to pass the Jarque-Bera test. The Jarque-Bera statistic

remained significant.
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Model 4: As mentioned in the method section (section 11.3), mapping a model’s
residuals thematically can help identify explanatory variables that could contribute to
the model. An analysis of the distribution of Model 2 residuals was conducted,
followed by a thematic spatial analysis of each of the twenty-one explanatory
variables that had been removed following the analysis of the preliminary model. The
thematic spatial analysis of these twenty-one explanatory variables suggested that the
proportion of the population that was Asian visually matched with the mapped
distribution of the Model 2 residuals and was, therefore, considered to be a variable
that could contribute to the three variables used in Model 2. The processing of this
model (Model 4) resulted in SAC offenders, the 50-59 year old age group and
residents born in UK continuing to be significantly correlated to burglary dwelling,
but the Asian population was not significantly correlated to burglary dwelling.
Model 5: Following the thematic spatial analysis of each explanatory variable that
was included in Model 4, an analysis of the Model 4 residuals, and further thematic
analysis of all of the other initial explanatory variables, the proportion of the
population that were students were included in Model 5 alongside the three variables
from Model 2. The student population was included because the distribution of this
variable visually matched with the mapped distribution of the Model 2 residuals. The
analysis of Model 5 revealed the student population to be significantly positively
associated to burglary dwelling, but at the cost of the proportion of the 50-59 age
group no longer being significant. Model 5 did however lead to an improvement in
the model as shown by a small increase in the adjusted R? (from 0.29 in Model 2 to
0.30 in Model 5) and a small reduction in the AlICc (from 372 in Model 2 to 369 in
Model 5). However, the Jarque-Bera statistic remained significant.

Model 6: This model used only those variables that were significant in Model 5:
student population, SAC offenders and UK born population. All explanatory
variables were significant, but the Jarque-Bera statistic remained significant
suggesting the model was still biased.

Model 7: Following analysis of the distribution of Model 6 residuals and a thematic
spatial analysis of each of the twenty-five explanatory variables, the proportion of the
population that was Asian was included in Model 7 alongside the three variables in
Model 6. This resulted in both the Asian population and the UK born population not
being significantly correlated to burglary dwelling. The Jarque-Bera statistic

remained significant.

268



Model 8: The results of Model 7 showed the Asian population was only marginally

not significant (p=0.07) compared to the UK born population (p=0.18). The Asian

population was, therefore, included alongside the SAC offenders and the student

population as the explanatory variables in Model 8. This resulted in all three being

significant and positively associated to burglary dwelling, an adjusted R2 that matched

the highest from all previous models, the lowest AICc compared to previous models,

and a non-significant Jarque-Bera statistic. A Moran’s I test was performed on the

model’s residuals and these were determined not to be clustered.

Table 11.5. Main results from OLS models, identifying explanatory variables that were

significant, model performance, significance and bias. LN = natural log transformation.

ID | Model variables Coefficient Adjusted R2 | AICc | Jarque-
(significance) (model Bera
significance) significance
(p=0.05)
1 | e SAC offenders rate e 0.14 (p=0.001) |0.29 372 | Significant
e Deprivation education/skills e -0.004 (p=0.19) | (p=0.001)
e 50-59 year old age group e -7.05 (p=0.001)
¢ Residents born in UK o -1.80 (p=0.01)
2 | e SAC offenders rate e 0.10 (p=0.001) | 0.29 372 | Significant
e 50-59 year old age group e -6.69 (p=0.001) | (p=0.001)
e Residents born in UK e -1.96 (p=0.001)
3 | ¢ SAC offenders rate (LN) e 0.26 (p=0.001) |0.26 379 Significant
e 50-59 year old age group (LN) | e -0.66 (p=0.001) | (p=0.001)
e Logresidents bornin UK (LN) | o -1.41 (p=0.01)
4 | e SAC offenders rate e 0.10 (p=0.001) |0.28 372 | Significant
e 50-59 year old age group e -6.76 (p=0.01) | (p=0.001)
e Residents born in UK e -1.79 (p=0.05)
e Asian population o 0.002 (p=0.74)
5 | ¢ SAC offenders rate e 0.12 (p=0.001) | 0.30 369 Significant
e 50-59 year old age group e -3.73(p=0.17) | (p=0.001)
e Residents born in UK e -1.64 (p=0.01)
e Student population e 0.01 (p=0.05)
6 | e SAC offenders rate e 0.13 (p=0.001) |0.30 370 | Significant
e Residents born in UK e -1.87 (p=0.001) | (p=0.001)
e Student population e 0.02 (p=0.001)
7 | « SAC offenders rate e 0.14 (p=0.001) | 0.30 370 Significant
e Residents born in UK e -0.93(p=0.19) | (p=0.001)
e Student population e 0.02 (p=0.001)
¢ Asian population o 0.01 (p=0.08)
8 | e SAC offenders rate e 0.16 (p=0.001) | 0.30 369 Not
e Student population e 0.02 (p=0.001) | (p=0.001) significant
[}

e Asian population

0.01 (p=0.001)
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A number of additional exploratory models were calibrated in an attempt to improve
Model 8. This involved adding the following variables in turn to the three explanatory
variables from Model 8: 30-39 age group population, 40-49 age group population, 50-59
age group population, 60-69 age group population, 70 years and older age group
population, population that arrived and became resident in 2007-2009, population that
arrived and became resident in 2004-2006, social rented housing, owned housing, living
environment deprivation, income deprivation, and the deprivation of education and skills.

None of these other combinations improved on Model 8.

Model 8, consisting of the student population, the Asian population and SAC offenders
offered the best combination of explanatory variables to produce a model with the highest
level of performance, was significant, and was unbiased. This model resulted in an
adjusted R2 of 0.3 and an AICc of 369. Figure 11.5 shows the distribution of each of
these explanatory variables across Newcastle. The maps show the student population to
concentrate around the city centre, the Asian population to be greatest to the west of the
city centre, and the SAC offenders’ rate to be highest across the southern border of the
district and in the central district area. Figure 11.5d shows the burglary rate to be highest
in the southern and central regions of the district of Newcastle. Each of the three variables
were found to be positively correlated with the log of the burglary dwelling rate, with the
following coefficient values: SAC offenders rate 0.16; proportion of the population that
were students 0.02; and the proportion of the population that were Asian 0.01. The
modelling applied to burglary dwelling was an exploratory approach. This approach
directs the analyst to identify variables that result in a good global model (such as Model
8), and a model that can then be applied using GWR. Following the application of a
GWR model using the exploratory approach, the onus is then on the analyst to interpret
the results based on plausible logic or some theoretical basis. The interpretation of the
relationship between SAC offenders, the student population and the Asian population

follows the GWR analysis of these variables.
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Figure 11.5. The distribution of (a) the student population, (b) the Asian population, (c)

SAC offenders and (d) the burglary rate across the district of Newcastle

The three variables from Model 8 (SAC offenders, the student population and the Asian

population) were used in two GWR models: one that applied a fixed bandwidth selection

process and a second that applied an adaptive bandwidth selection process. The optimal

fixed bandwidth was calculated to be 2421 m and 44 neighbouring LSOAs were

determined as optimal for the adaptive bandwidth approach.

Table 11.6. Adjusted R2 and AICc results comparing the OLS model for burglary

dwelling against the Asian population, the student population, and SAC offenders, in

relation to fixed and adaptive bandwidth GWR models

OLS OLS AICc | GWR Fixed | GWR Fixed | GWR GWR

adjusted adjusted R?2 | AlICc Adaptive Adaptive

R2 adjusted R2 | AlCc
0.30 369 0.39 353 0.42 348
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Table 11.6 lists the adjusted R? and AICc values for the OLS model and the two GWR
models. The table shows that both GWR models improved upon the OLS model, and that
the adaptive GWR model performed the best of all three — with an adjusted R2 of 0.42
and an AICc of 348. These results show that rather than there being a stationary global
relationship between burglary and the three explanatory variables (SAC offenders,
student population and the Asian population), the relationship with these variables varied
spatially, as indicated by the model improvements using GWR. Using an adaptive
bandwidth, the student population, Asian population and the SAC offenders’ rate
variables were able to explain 42% of the distribution of burglary dwelling, with an
improved AlCc of 348, compared to the OLS model results of an adjusted R? of 0.30 and
an AlCc of 369.

The GWR results from the adaptive bandwidth model were used for further analysis. A
number of outputs were provided from the GWR adaptive model for each geographic
unit:

e Condition number: if this value is greater than 30 for any geographic unit, this
suggests the presence of strong collinearity, and the results can be unreliable. None
of the LSOAs had a condition number greater than 30. The highest was 8.3.

e Local R2 these values describe how well the model fits with the observed values. The
values range from zero to one, and are reflective of the model’s global R* value. Low
values indicate where the local model does not perform well, whereas higher values
show where it performs best. Figure 11.6a shows the mapped Local R2 values for the
GWR adaptive model. This Local R2 map shows that in the southern and south eastern
parts of Newcastle (the more urban parts of the district) the model performed best,
whereas in the more suburban and rural areas of the district, and in Newcastle city
centre, the model did not perform as well. These results suggest that certain
conditions relating to burglary dwelling and its relationship with the student
population, the Asian population and the distribution of SAC offenders differed
between urban residential areas, rural parts of the district of Newcastle, and Newcastle
city centre.

e Standardised residuals: the standardised residuals have a mean of zero and a standard
deviation of 1. Thematically mapping the distribution of the standardised residuals
shows where the predicted value for the dependent variable (based on the relationship

with the explanatory variables) has been over-estimated or under-estimated, relative
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to the standard deviation of the residuals. Only nine of the 173 LSOAs had residuals
greater than 2 standard deviations of the residuals’ mean, with all these being less

than 2.5 standard deviations from this mean (see Figure 11.6b).
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(a) (b)
Figure 11.6. (a) Local R? and (b) standardised residuals maps of the GWR model for
burglary dwelling (dependent variable) and the student population, the Asian population,
and SAC offenders

Figure 11.7 shows the mapped coefficient values and mapped standard errors of each of
the three explanatory variables. Each coefficient illustrates the spatially varying
relationship between the variable and burglary dwelling. For example, Figure 11.7a
shows there was a stronger positive relationship between burglary and the student
population in the central and eastern regions of the district, and that in the western region
this relationship was negative. Similarly, the maps showing the relationship between the
Asian population and burglary dwelling (Figure 11.7c), and the SAC offender rate and
burglary dwelling (Figure 11.7e), show the relationship between these variables varied
spatially.  These results illustrate the value of analysing and determining if the
relationships between the dependent variable and explanatory variables vary across space,
rather than assuming the relationship to be stationary. The maps of standard errors
(Figures 11.7b, d and f) show the areas where there was a greater level of reliability in
the results for each explanatory variable —where these errors were small, more confidence
can be placed in the relationship between the dependent variable (burglary dwelling) and

each of the explanatory variables.
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Figure 11.7. GWR model outputs of the student population, the Asian population and the

SAC offender rate in relation to burglary dwelling: (a) coefficient and (b) standard error

of student population; (c) coefficient and (d) standard error of Asian population; (e)

coefficient and (f) standard error of SAC offender rate.

The results of the OLS regression analyses and GWR modelling for burglary dwelling

illustrate the value in examining whether relationships between dependent and
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explanatory variables vary across space. In this example, an exploratory approach
identified three variables that were significantly correlated with the distribution of
burglary dwelling, and that the relationships between these explanatory variables and
burglary dwelling varied spatially. The exploratory approach to a GWR analysis then
requires the analyst to attempt to interpret the results based on plausible logic or some

theoretical basis.

The positive relationship between SAC offenders and the burglary dwelling rate is
supported by research into offender journey to crime patterns — offenders who commit
burglary are likely to not travel far and live locally to the locations where they commit
these offences (Rossmo, 2000, contains an extensive review of the journey to crime
literature). The positive relationship between the distribution of SAC offenders and the
burglary rate did though vary, with the relationship being stronger in some areas than it
was in others. In one area, the relationship between SAC offenders and burglary levels
was found to be negative (in the central eastern part of the district). This could be as a
result of local offenders that reside in the district of Newcastle not offending in this area,
or could be associated with offenders that live close to this area but over the district border
in North Tyneside being responsible for the high levels of burglary in this area. Or, the
explanation for the high level of burglary in this area could be for reasons not identified
from this analysis (recall the best performing model explained 42% of the distribution of
burglary dwelling) and remains unexplained. The positive relationship between the
student population and Asian population can most likely be explained by the higher level
of vulnerability to burglary these two demographic groups typically endure. For example,
with students, multiple-occupancy living and the ownership of many electronic items,
combined with a general relaxed attitude towards personal security presents them as
attractive targets to offenders (McCreith and Parkinson, 2004). Similarly, Asian
households tend to be attractive targets to offenders because of the high level of gold
ownership associated with this demographic group, and the likelihood that this gold is
stored within the house with limited in-built security to protect these valuable possessions
(Gray, 2000). These interpretations could then inform policing and community safety
initiatives that help reduce the positive and significant relationships between SAC
offenders, the student population and the Asian population, with burglary dwelling in

Newcastle.
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While the spatial scale of analysis did not permit an analysis that could determine
differences in the causes of the different hotspots, the GWR analysis has identified
variables that appear to have a spatially varying influence on burglary dwelling levels
across Newcastle. These findings suggest there may be potential in using results from a
GWR analysis to inform the direction of crime prevention policy. For example, the
results from the GWR analysis for burglary and the student population indicates that any
measures designed to help tackle the high levels of burglary victimisation experienced by
students could be best targeted to those areas where the relationship between the student
population and burglary is strongly positive. In turn, planned strategic activity to reduce
vulnerability to burglary amongst this highly victimised group could be measured in terms
of the predicted crime reduction that could come from a targeted strategic activity. These
strategic predictions of crime would be based on measuring the value an initiative may
have in changing the explanatory variables (or the relationship with burglary) in some
way. The possibility of GWR informing spatial predictions of crime is discussed further
in section 11.4.4 following an analysis of assault with injury offences using GWR.

11.4.3. GWR modelling of assault with injury

The use of GWR for modelling assault with injury offences followed a hypothesis testing
approach. The hypothesis testing approach involved selecting explanatory variables that
were determined to theoretically explain the variation in assault levels. In the first
instance, only licensed premises data were selected as the single explanatory variable.
This was because of the theoretically determined strong relationship between the presence
of licensed premises and violent assaults. In addition, licensed premises data were one
of the few explanatory variables that were available at the point level and thus allowing
for a grid based GWR analysis rather than one that was constrained to geographic

administrative units such as super output areas.

In the first instance the standalone GWR software was used to conduct a GWR Poisson
(GWPR) analysis of the 1000 m x 1000 m grid cells covering the full Newcastle study
area, using a fixed bandwidth approach and an adaptive bandwidth approach. The GWR
software simultaneously conducts an OLS analysis, albeit with a less comprehensive
range of statistical diagnostic tests compared to the ArcGIS OLS modelling function. For
a Poisson regression analysis, the proportion of the deviance explained rather than a R2
value is generated. Table 11.7 lists the OLS and GWPR modelling results. The

application of the GWPR models significantly improved the proportion of the deviance
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explained, from 0.55 using an OLS regression to 0.86 and 0.87 using GWPR fixed
bandwidth and GWPR adaptive bandwidth modelling respectively. In both models using
GWPR, the AlCc also significantly improved, from 3404 for the OLS model to 1097
(GWPR fixed bandwidth) and 1028 (GWPR adaptive bandwidth). These results showed
the adaptive GWPR model performed the best. What was also of note was the large
proportion of deviance (0.87) that was explained from the GWPR adaptive bandwidth

model using the single explanatory variable of licensed premises.

Table 11.7. OLS, GWPR fixed bandwidth and GWPR adaptive bandwidth model results

of assault with injury (dependent variable) and licensed premises (explanatory variable)

in Newcastle
Proportion | AICc | Bandwidth Summary statistics for
of deviance local coefficients
explained Mean SD
OLS analysis 0.55 3404 | - - -
GWPR fixed 0.86 1097 | 1803 m 0.073 0.044
GWPR adaptive | 0.87 1028 | 44 grid cells 0.261 0.263

Figure 11.8 shows the variation in the spatial distribution of the explained local deviance,
the estimated local coefficient values, the standard errors, and t-values for the relationship
between licensed premises and the distribution of assault with injury offences. These
maps show that the strength and significance in the relationship between licenced
premises and assault with injury was greatest around the city centre of Newcastle. The t-
value results also show that the relationship between licensed premises and assaults was
not significant in the north part of the district and towards the west. However, in both
GWPR models the large number of cells containing zero values resulted in a problem of
overdispersion. The presence of overdispersion meant that the standard errors between
assaults and licensed premises could be underestimated, meaning that licensed premises

may appear to be a significant predictor of assaults, when in fact they are not.

The most practical solution for helping to address the problem of overdispersion was to
remove the majority of cells that contained zero values. This involved applying GWPR
using the city grid lattice of 82 cells covering the southern areas of the district. Table
11.8 lists the results following the application of an OLS, fixed bandwidth and adaptive

bandwidth GWPR analyses to the city grid cells. Removing the majority of grids that
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contained a zero count of assault with injury immediately resulted in an improvement in
the proportion of the deviance explained under an OLS regression analysis from 0.55 to
0.71. In addition, the removal of these cells and a city-wide focus for GWPR analysis
resulted in neither model showing evidence of overdispersion. Both GWPR models
(using fixed and adaptive bandwidths) improved on the OLS model, with the fixed model
performing best (AlCc 696 and 0.83 of the deviance explained). Figure 11.9 shows the
variation in the distribution of the explained local deviance, the estimated local coefficient
values, the standard errors, and t-values between licensed premises and the distribution
of assault with injury offences. These maps show similar results to those for the full
district grid cell coverage shown in Figure 11.8, albeit results that are more reliable: the
strength and significance in the relationship between licensed premises and assault with

injury was greatest around the city centre of Newcastle.
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Figure 11.8. Adaptive bandwidth GWPR results showing (a) the local deviance in assaults
explained by licensed premises, (b) the variation in the coefficients, (c) the standard

errors, and (d) local t-values between licensed premises and assaults with injury
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Table 11.8. OLS, GWPR fixed bandwidth and GWPR adaptive bandwidth model results

of assault with injury and licensed premises for the city grids Newcastle study area

Proportion | AlICc | Bandwidth Summary statistics for
of deviance local coefficients
explained Mean SD

OLS analysis 0.71 1174 | - - -

GWPR fixed 0.83 696 1803 m 0.031 0.048

GWPR adaptive | 0.81 753 45 grid cells 0.041 0.087
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Figure 11.9. Fixed bandwidth GWPR results of the city grids study area showing (a) the

local deviance in assaults explained by licensed premises, (b) the variation in the

coefficients, (c) the standard errors, and (d) local t-values between licensed premises and

assault with injury offences

The results using grid cells show that the relationship between assaults and licensed

premises was significant, that the distribution of licensed premises explained a significant

proportion of the deviance in assaults, and that this relationship spatially varied.
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However, even using grid cells of 1000 m, the spatial scale of analysis was not fine
enough to determine if there were differences in the relationship between assaults and
licensed premises within and immediately around the single assault with injury hotspot
that was identified using Gi* (recall that the Gi* assault with injury hotspot was only
marginally greater in size than a single 1000 m grid cell). This inability to determine if
there were differences in the relationship between assaults and licensed premises within
and immediately around the single assault with injury hotspot was due to two main
reasons. Firstly, aggregating assault and licensed premises data to the spatial scale of
1000 m grid cells was required in order to avoid the problem of a large number of
geographic units containing zero counts and in turn causing a problem of overdispersion.
Secondly, the need to use large bandwidths (that were determined as optimal) in the
GWPR modelling process for examining the relationship between assaults and licensed
premises (the size of which were also a reflection of the size of the geographic unit of
study). For example, for the city grids fixed GWPR model, a bandwidth of 1803 m was
determined as optimal — twice the size of the Newcastle city centre assault with injury

hotspot that was identified using Gi*.

The analysis was re-run, this time using data for LSOAs and applying a Gaussian GWR
approach on log transformed variables of assault with injury and licensed premises. The
purpose of re-running the analysis was to determine if there were differences in the results
when compared to the GWPR analysis, and identify if other variables (available only for
census districts), rather than just the single licensed premises variable, improved the
model. A Gaussian GWR analysis using ArcGIS also allowed for a more comprehensive
examination of OLS statistical diagnostic tests (available in the ArcGIS application of

GWR) and for a more interactive mapping and modelling iteration process.

Table 11.9 lists the OLS regression results from seven models that analysed the
relationship between assaults, licensed premises and other explanatory variables for
LSOAs in Newcastle. These other variables were chosen due to a hypothesised reasoning
for their inclusion. The first model (Model 1) used only licensed premises as an
explanatory variable and resulted in an unbiased model (i.e., the Jarque-Bera statistic was
not significant), but an adjusted R? of 0.16, much lower than the explained deviance of
0.55 from the full 2000 m grid coverage OLS model of Newcastle. This suggests that
changing and increasing the spatial scale of the unit of analysis from 1000 m grids to

LSOAs may have resulted in the loss of some of the detail in the relationship between
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assaults and licensed premises. The second model included the student population,
income deprivation and living conditions deprivation, alongside licensed premises data,
as explanatory variables on the basis of hypothesising that each of these three new
variables contributed to patterns of assaults across Newcastle — students, through their
active engagement with the night-time economy, income deprivation because a number
of studies have identified a link between this variable and assaults (e.g., Ching-Chi Hsieh
and Pugh, 1993), and living conditions due to research findings linking this variable to
assaults (e.g., Roncek, 1981). Of these variables, only income deprivation was found to
be statistically significant (and positively associated to assaults). The third model used
log transformations of each of these variables (licensed premises, student population,
income deprivation and living conditions deprivation), but again, only licensed premises
and income deprivation were identified as significant explanatory variables (and both

positively associated to assaults).

The fourth model involved the inclusion of only licensed premises (log transformed) and
income deprivation. Both variables were statistically significant and resulted in a large
improvement in model performance (compared to Model 1) with an adjusted R2 of 0.46
and an AICc of 390 (from Model 1 the adjusted R? of 0.16 and the AICc of 466).
However, the Jarque-Bera statistic was significant indicating bias in the model. A log
transformation of the income deprivation variable also resulted in the same conclusions
(Model 5), and no improvement in model performance over Model 4. At this point it was
decided to use a sub-set of only those licensed premises associated with Newcastle’s
night-time economy from the full licensed premises dataset. The selected premises would
include only bars, pubs and nightclubs rather than off-licenses because it was
hypothesised that this sub-set was more likely to be associated with assaults. Using this
subset of night-time economy licensed premises and income deprivation (Model 6)
resulted in an improved and unbiased model (adjusted R2 of 0.52, AICc of 373, and a non-
significant Jarque-Bera statistic). The VIF for the two variables was 1.0, indicating that
both variables contributed to the model. The Koenker statistic for Model 6 was
statistically significant (p=0.01), suggesting the relationship between the dependent and
explanatory variables varied across space, and that the model was a good candidate for
GWR. A re-run of Model 6 using a log transformation of income deprivation (Model 7)
did not result in any model performance improvement. Therefore, at the LSOA level, the
relationship between assault with injury and licensed premises was improved by

including only those licensed premises associated with the night-time economy and
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through the inclusion of income deprivation. An analysis of the residuals from Model 6
determined that these were randomly distributed (Moran’s I z-score = 0.81). A GWR
analysis was then performed using night-time economy licensed premises and income

deprivation as the two explanatory variables for the model.

Table 11.9. OLS regression summary statistics for models examining the relationship
between explanatory variables and assaults with injury in Newcastle at the LSOA level.

LN = natural log transformed.

Model variables Coefficient Adjusted R? | AICc | Jarque-
(significance) (model Bera
significance) significance
(p=0.05)
e Licensed premises (LN) e 0434 0.16 466 Not
(p=0.001) (p=0.001) significant
e Licensed premises (LN) e 0.36 (p=0.01) |0.47 390 Significant
e Student population e -0.003 (ns) (p=0.001)
e Income deprivation e 3.58 (p=0.001)
e Living conditions deprivation o 0.017 (ns)
o Licensed premises (LN) e 0.39 (p=0.01) |0.44 398 Significant
e Student population (LN) e 0.054 (ns) (p=0.001)
¢ Income deprivation (LN) e 0.62 (p=0.001)
e Living conditions deprivation (LN) | 4 _5 13 (ns)
o Licensed premises (LN) e 0.43 (p=0.001) | 0.46 390 Significant
¢ Income deprivation e 3.75(p=0.001) | (p=0.001)
e Licensed premises (LN) e 0.41 (p=0.001) | 0.45 395 Significant
¢ Income deprivation (LN) e 0.59 (p=0.001) | (p=0.001)
e NTE licensed premises (LN) e 0.81 (p=0.001) | 0.52 373 Not
e Income deprivation e 3.80 (p=0.001) | (p=0.001) significant
o NTE licensed premises (LN) e 0.80 (p=0.001) | 0.51 376 Not
Income deprivation (LN) e 0.61 (p=0.001) | (p=0.001) significant

Table 11.10 lists the GWR model performance results (using both a fixed and adaptive
bandwidth) of assault with injury offences in relation to night-time economy licensed
premises and income deprivation. A bandwidth of 3242 m was calculated as optimal for
the fixed GWR model, and a bandwidth of 55 neighbours was calculated as optimal for
the adaptive GWR model. The results show that both GWR models improved upon the
performance of the OLS model, and that while both GWR models generated the same
AICc value, the adaptive GWR model performed marginally better with an adjusted R2
of 0.58.
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Table 11.10. Adjusted R? and AICc results comparing the OLS model for assault with
injury offences against night-time economy licensed premises and income deprivation, in

relation to fixed and adaptive bandwidth GWR models

OLS OLS AICc | GWR Fixed | GWR Fixed | GWR GWR

adjusted adjusted R?2 | AICc Adaptive Adaptive

R? adjusted R? | AlCc
0.52 373 0.55 364 0.58 364

Figure 11.10 shows outputs from the adaptive GWR model. Figure 11.10a shows the
relationship between assaults, night-time economy licensed premises and income
deprivation varied spatially, with this relationship being strongest in around the city
centre and in the Walker and Byker neighbourhoods to the east of the city centre. The
standardised residuals map (Figure 11.10b) shows the model performed well in most
areas, with the lowest levels of performance in the suburban areas around the city centre
area and in some outlying rural areas of the district. The coefficient map of night-time
economy licensed premises (Figure 11.19c) shows how the relationship with assaults
varied across Newcastle, with this relationship being highly positive and most significant
(Figure 11.19e map of t-values) in and around the city centre area, but negative (and not
significant) in the west and northern-most region of the district. The supporting standard
error map of the night-time economy licensed premises coefficient values shows the
results were most reliable in the city centre area. Figure 11.10f shows the relationship
between assaults and income deprivation also varied spatially, with all areas exhibiting a
positive and significant relationship (Figure 11.10h) between these two variables, with
the relationship being strongest in the Lemington and Gosforth neighbourhoods of

Newcastle.

The results of the OLS regression analyses and GWR modelling for assault with injury
offences illustrate the value in exploring whether relationships between dependent and
explanatory variables vary across space. In this example, a hypothesis testing approach
was applied, using an iterative process to include explanatory variables that were
considered to be related to violent assaults, based on sound theory and empirical evidence.
While the spatial scale of analysis did not permit an analysis that could determine
differences within and around the single assault hotspot in Newcastle city centre, the
GWR analysis did identify variables that appeared to have a spatially varying influence

on assault levels across the district of Newcastle.
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Figure 11.10. GWR model outputs of (a) Local RZ and (b) standardised residuals for

assault with injury (dependent variable) and night-time economy licensed premises and

income deprivation, and (c) coefficient, (d) standard error and (e) local t-values of night-
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time economy licensed premises; and (f) coefficient, (g) standard error and (h) local t-

values of deprivation income

The analysis also employed two different types of GWR modelling: a GWR Poisson
model and a GWR Gaussian model. Both models produced similar results, illustrating
the strong and positive relationship between assaults and licensed premises, with the
GWR Gaussian model that was applied to LSOAs having the benefit of testing whether
other variables alongside licensed premises explained the spatial distribution of assaults.
However, the compromise in using LSOAs rather than smaller grid cells came at the cost
of losing some of the spatial detail in explaining the relationship between assaults and
licensed premises. The GWPR modelling also presented the challenge of tackling
overdispersion, which was solved by removing a large number of grid cells that contained
zero counts and focusing instead on a sub set of the full study area which covered the
main city conurbation of Newcastle. The results of the GWR modelling also further
indicate (following the findings from the GWR modelling of burglary) the potential in
using a GWR analysis process for informing the direction of crime prevention policy and
strategic crime prediction. For example, if crime prevention activity is targeted to
licensed premises in the areas where the GWR model has indicated the relationship with
assaults is strongly positive, this may help reduce crime, and to a level that can be
measured using the coefficient calculated for licensed premises. The potential of using

GWR to inform spatial predictions of crime is discussed further in the next section.

11.4.4. Use of GWR outputs for directing policy for strategic crime prediction

The results from the two GWR case studies (burglary dwelling and assaults with injury
in Newcastle) have illustrated how analysis into the relationships between variables that
attempt to explain the distribution of crime can be conducted, and how these relationships
vary across space. However, the findings have also shown that the spatial scale of
analysis required for GWR is most likely to be greater than the geographical size of crime
hotspots identified using techniques such as the Gi* statistic. Hence, it would appear
from the research findings, using the case studies from Newcastle, that a GWR analytical
process does not permit an analysis that determines explanatory differences between
individual hotspots. Inturn, this means that a more data-rich approach to hotspot analysis
through the inclusion of variables alongside, or in replacement of retrospective crime data

cannot be instructed from a GWR analysis.

285



The critiques of GWR in other fields of science (as previously discussed in Chapter 2 and
section 11.3 of the current chapter) have also expressed some concerns over the extent of
using GWR results for inference. However, there is a danger in statistical modelling of
failing to account for the balance that is required between the technical specification of a
technique and its practical application. The analysis in this chapter has illustrated that in
practice, the purity of a statistical modelling process needs to be balanced by specifying
the model to suit the data and the context in which these data are applied. Through the
diligence of correctly specifying a model (without compromising the model’s technical
integrity), balanced with the constraints that data may place on the modelling process, the
results from this research are illustrative of the valuable contribution that GWR modelling
could offer to policing and public safety practice. The use of GWR for policing and
public safety applications may not only include identifying variables that have a spatially
varying relationship with crime, but also could be used to inform strategic predictions of
crime. For example, as the results from one of the case studies showed evidence of a
relationship between assaults, night-time economy licensed premises and income
deprivation, these results could be used to help inform policy direction for long-term
crime reduction strategies and offer some predictive indication of how crime may change

as a result.

The manner in which GWR modelling could be used to inform strategic predictions of
crime is provided in the following two examples. Both examples illustrate the potential
of using GWR for strategic crime prediction based on the results from the best performing
models from the analyses in sections 11.4.2 and 11.4.3. The coefficients determined from
the GWR modelling results are designed to be illustrative of potential changes in crime
rather than offering exact forecasts. Other events may have a long-term impact on crime
(such as, the national introduction of a minimum price per unit of alcohol on violent
assaults) or changes in crime may result from the strategic activity that was informed
from a GWR modelling process (e.g., the geographical displacement of crime to other
areas). Nevertheless, identifying variables that statistically correlate and spatially vary
with patterns of crime provides practitioners with a potential opportunity for targeting
strategic activity and predicting its impact.
e An interpretation of the GWR modelling of burglary dwelling (albeit with some
caution to the exact extent of the statistical inference results) could be used to inform
policy and a strategic reduction plan for burglary. The OLS and GWR modelling of

burglary dwelling identified the student population (coefficient 0.02), the Asian
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population (coefficient 0.01) and the SAC offender rate (coefficient 0.16) as being
significant explanatory variables. An adaptive GWR model of these variables
resulted in an adjusted R? of 0.42, with Figures 11.6 and 11.7 showing how the
relationship between burglary dwelling and these explanatory variables varied across
Newcastle. While it is unlikely and unethical to expect the number of students or the
Asian population to be changed in those areas where the relationship with burglary
dwelling is strongest, the GWR results help identify where crime reduction
programmes could be targeted to address the significantly observed relationship (and
high level of victimisation) experienced by these two groups. Targeted activity
towards offenders of burglary (and offenders of other serious acquisitive crimes), that
would include their intensive supervision, disruption, reduction in repeat-offending,
and their removal (e.g., through the serving of custodial sentences), could also result
in burglary dwelling reductions, particularly in the neighbourhoods where this
relationship was found to be strongest. For example, using the coefficient determined
from the OLS model as an indication of the impact of this type of offender targeted
activity, for every one unit reduction in the number of SAC offenders per 1000
households we could anticipate a reduction of 16% in the burglary rate (recall the
burglary rate was log transformed for the OLS and GWR modelling). In the areas of
Newcastle where this relationship was strongest, we could anticipate a reduction in
the burglary rate of 26% for every one unit reduction in the SAC offenders’ rate.
While other factors may influence a change in offending behaviour, the GWR analysis
is illustrative of the predicted impact a change in one variable may have on changes
in crime.

The best performing model that used LSOAs to examine the relationship between
assaults with injury and a number of explanatory variables was Model 6 (see Table
11.9). Model 6 included night-time economy related licensed premises and income
deprivation. Recall that the assaults and licensed premises data were log transformed
while income deprivation data remained in its original indexed format. Income
deprivation values for Newcastle ranged between 0.01 and 0.61, with higher values
representing a higher level of income deprivation. Using the results from the OLS
model of assaults aggregated to LSOASs, a strategic programme aimed at addressing
income deprivation that resulted in a reduction in the income deprivation score of 0.1
could yield a reduction of assaults of the order of 38% (taken from the coefficient of
3.8 in Table 11.9). The income deprivation coefficient for this relationship with

assaults was highest in the Lemington and Gosforth areas, with values on average of
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4.2 (see Figure 11.10). These results suggest that a reduction in income deprivation
in the Lemington and Gosforth areas could have a greater effect on reducing the
number of violent assaults. Similarly, a 1% reduction in the number of licensed
premises could yield a 0.8% reduction in assaults (taken from the coefficient of 0.81
— Table 11.9). There are just over 100 night-time economy related licensed premises
in Newcastle, and in 2009/2010 there were 1841 recorded assaults. Therefore, for
every licensed premise that closed, we could anticipate a reduction of approximately
15 assaults per year. However, this relationship with assaults was highest in
Newecastle city centre, with coefficient values of 1.0 on average. This suggests that a
reduction in the proportion of licensed premises in the city centre area could yield a
larger reduction in assaults. Conversely, if the number of licensed premises in
Newcastle was allowed to increase, we would expect an increase in violent assaults,
with this increase in assaults effect being greatest if new licensed premises opened in

the city centre.

Reducing the actual number of licensed premises could be problematic, so an
alternative crime reduction solution that is often used instead is to implement stricter
licensing conditions on pubs, bars and nightclubs in crime hotspots. A strategic policy
that implemented stricter licensing conditions on pubs, bars and nightclubs in
Newcastle city centre (such as, police and community safety officials working more
closely with managers of these premises to reduce violent assaults) could prove
fruitful in reducing the strong relationship between violent assaults and licensed
premises in the city centre. A target for this strategic policy would be to reduce violent
assaults in the city centre so this area did not stand out as being any more problematic
than other areas of the district (e.g., reducing the average coefficient value for the city
centre from 1.0 to some new, lower target). In practice, this could also involve a more
detailed analysis of each licensed premise to identify which experienced (or were
associated with) the highest volumes of assaults, with focused policing and
community safety activity towards these. This more detailed analysis of licensed
premises could also examine whether the type and size of venue, and the volume of

customers during opening hours also had an influence on the levels of violent assaults.

11.5. Interpretation and conclusions from research study 7
The spatial scale at which hotspots are identified to assist the targeting of operational

policing tactics and crime prevention initiatives is at a much finer level than spatial
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regression analysis using GWR allows. Therefore, (and in relation to hypotheses 7) GWR
does not provide a means of determining why individual hotspots exist, and identifying
if there are explanatory differences between these hotspots. In turn, this means that a
GWR analysis is not able to inform a more data-rich approach to hotspot analysis that
uses explanatory variables alongside, or in replacement of retrospective recorded crime
data. However, at a broader scale of analysis, GWR can be used to identify those
variables that explain crime levels, and importantly show how these explanatory
relationships vary. This has included identifying those areas where crime levels are
highest (but larger in area than the hotspots identified using Gi*) and the strength (and
reliability) of the relationship between the distribution of crime and explanatory variables.
While there remain some concerns over the extent to which GWR results can be used for
determining inference, the results do at least provide some indication of the changes in
crime that could be anticipated if action was targeted to address the conditions resulting
in the explanatory variables being significantly correlated to crime. That is, (and in
relation to hypothesis 8) the results of this type of GWR analysis do offer value in helping

to inform crime prediction for strategic and policy forecasting purposes.

The findings from research study 7 also illustrate some of the technical spatial analysis
challenges associated with handling spatial scale in spatial regression modelling. These
challenges include recognising that different explanatory variables are likely to be
measured at different levels of spatial scale (e.g., point level or census output area level),
and that the scale at which the model attempts to represent the observable world (e.g.,
using grids of different sizes) and the relationships between variables (i.e., different
bandwidth sizes) is likely to impact upon the modelling process and the results. The
effect of all these issues associated with spatial scale are then compounded in a
multivariate model. Furthermore, the desire to perform precise spatial examinations of
the relationships between crime and explanatory variables using GWR appeared to be
held back due to the large bandwidths that were determined as optimal for the modelling
process. This suggests that some further examination of bandwidths for the GWR
analysis of crime data would merit some attention. In addition to this, an examination of
other spatial regression methods that permit a more local examination of spatially varying

relationships would also be of benefit.

Correlation of course does not equal causation, therefore, there is the need to ensure that

any modelled relationship, and how it spatially varies, can be interpreted on sound
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theoretical grounds. For example, the journey to crime research literature shows that
offenders tend to travel short distances to commit crime, particularly crimes such as
burglary. Therefore, a high rate of burglars in an area is likely to result in a high level of
burglary in that same area. There is often also the need to examine any identified
relationship further in order to accurately interpret what the patterns infer. For example,
the presence of a high concentration of licensed premises in an area, may alone not
necessarily fully explain the high levels of violent assaults in this area. Instead, the high
levels of violent assaults could be due to a small number of particularly problematic
premises being the main cause of the problem, amongst a high density of licensed
premises. This, therefore, indicates the importance of additional analysis that examines
and further explains correlations between explanatory variables and patterns of crime

revealed from a GWR analysis before policy decisions are made.

In this research study, two approaches were used for modelling spatial relationships: an
exploratory approach and a hypothesis testing approach. The exploratory approach (on
burglary dwelling) began with twenty-five variables and through a series of iterations
resulted in the selection of three variables for the model. The hypothesis testing approach
(on assault with injury) began with one variable and resulted in a subset of this initial
variable and one other variable for the model. While both approaches resulted in
producing GWR models that showed how relationships spatially varied, a level of
hypothesis testing was also required in the selection of variables for the iterations of the
exploratory approach. The iterative process to the exploratory approach illustrated that
rather than choosing variables at random to add to a model, practical efficiency directed
the selection of other explanatory variables on the basis of some theoretical grounds. In
addition, even when an exploratory approach identifies relationships between dependent
and explanatory variables, these relationships need interpretation to ensure there is sound
theoretical reasoning to explain the relationships. This interpretation is also important for
helping to determine the types of policing and public safety activities that could then be

designed to influence reductions in crime.

The research has also exposed the challenges in performing spatial regression analysis on
crime data. This not only refers to the violation of assumptions in regression analysis that
are presented when exploring spatial relationships, but the very nature of crime to cluster
in space. The spatial patterning of crime into hotspots naturally results in producing

statistical outliers (i.e., the hotspots) and areas where very little or no crime occurs. This
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then creates the challenge of ensuring that appropriate regression analysis techniques are
used, and a comprehensive statistical diagnostic analysis of the dependent and
explanatory variables is performed to ensure the results are not misinterpreted. This
includes checking for overdispersion and the spatial clustering of residuals. The required
rigour in appropriately specifying a model for analysis, from which the results can be
trusted, illustrates the importance of correctly accommodating the unique nature of spatial
data, and understanding the spatial qualities of the data that are to be applied to a spatial

regression modelling process.
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12.Discussion, implications, contribution to the field, potential new

areas for research and conclusions
The research that has been conducted over seven empirical studies has examined
differences in the prediction performance of hotspot mapping techniques and how other
spatial analysis techniques can contribute alongside hotspot analysis in predicting where
crime is likely to occur. The research has also identified the temporal stable nature of
crime concentration, while further illustrating the value of using recent crime events for
predicting where crime is likely to occur in the immediate future. Analysis of the
conditions that are significantly related to the spatial distribution of crime has also
provided some indication of how this can be used to predict the impact of strategic plans

for crime reduction.

In this final chapter, the results across the seven research studies are brought together and
discussed in more detail. This discussion begins by considering how the current research
has answered the primary research question and tested each hypothesis that was used to
frame the direction of each empirical research study. The discussion in this chapter then
considers how the technical and methodological findings from the research could have an
influence on analytical practice in policing and public safety, the implications of the
findings on policing and public safety tactical and strategic response practice, and the
policy implications of these findings. The implications of the research findings on
environmental criminology theory are also discussed. The final sections of this chapter
record the contributions to the field that this research offers, potential areas of new

research and the primary conclusions from the research findings.

12.1. Summary of findings in relation to the primary research question and
hypotheses
The primary question this PhD research aimed to answer was to what extent can hotspot
mapping be used to effectively predict where crime is likely to occur? This PhD research
has shown that extremely accurate predictions of where crime is likely to concentrate in
the future can be determined by using good hotspot analysis of where crimes have
concentrated in the past. The current research has also shown, however, the importance
of qualifying what is meant by ‘the future’ (in a predictive sense), with the distinction
being made between spatial crime predictions that relate to the immediate future, the near
future and the more distant future. By considering the prediction of spatial patterns of
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crime in these three temporal terms of the future has allowed for a more considered
assessment of how hotspot analysis and other spatial analysis techniques can provide
accurate predictions of where crime is likely to occur. The need to consider predictions
of the spatial patterns of crime for these three different temporal periods is discussed

further in section 12.7 of this chapter.

Eight hypotheses were used to frame the direction of the seven empirical research studies
that were completed. The results from each hypothesis that was tested are considered in
the section that follows, and collectively are discussed further in this chapter in relation

to how the research findings have implications on practice, policy and theory.

Hypothesis 1: Hotspots can be identified using retrospective data for a short period
of time rather than requiring retrospective data for longer periods of time

The findings from the research that tested hypothesis 1 (chapter 3, research study 1)
showed that hotspots of crime that are likely to exist in the future can be determined from
relatively short retrospective periods of recorded crime data, albeit with differences in the
retrospective period between study areas and crime types. The statistical presence of
clustering in retrospective crime data can be identified using the Nearest Neighbour Index
(NNI). Using the NNI, the research relating to hypothesis 1 showed that for the
Camden/Islington study area, only one week of burglary dwelling, theft from the person
data and theft from vehicle data for Camden/Islington was required for identifying the
presence of hotspots. However, for the Newcastle study area, over one week of crime
data was required for each crime type for hotspots to be evident. In the case of theft of
vehicles in Newcastle, over 16 weeks of crime data was required for hotspots to be
statistically evident. Analysis of the number of crime events that were required before
hotspots were evident showed that this number ranged from 34 theft from the person
offences in Newcastle to 66 theft from vehicle offences in Camden/Islington. Once
hotspots were detected in the crime point data, all other input data for longer retrospective

periods showed statistical evidence of clustering.

In practitioner terms, simply choosing a retrospective period, whether it be based on a
retrospective number of days or retrospective volume of crime, and expecting hotspots to
be present is not sufficient if the analyst then expects hotspots to appear on a map. The

results from testing this first hypothesis illustrated the value in performing the NNI test
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as a preliminary stage to hotspot mapping to ensure hotspots are present in the data that

are examined.

Hypothesis 2: Common hotspot mapping techniques differ on how accurately they
predict spatial patterns of crime

To test hypothesis 2, a series of experiments were conducted (research study 2) that
compared the spatial crime prediction performance of spatial ellipses, thematic mapping
of geographic units, thematic mapping of grid cells and kernel density estimation. The
results from testing hypothesis 2 showed that KDE consistently outperformed the other
common hotspot mapping techniques in predicting spatial patterns of crime. The
consistency in KDE outperforming the other techniques was not only across the two study
areas and for different measurement dates, but also for the range of different crime types.
In one example, KDE hotspot maps of theft from the person in Newcastle predicted where
68% of crimes of this type were predicted to occur, in an area representing just 3% of the
study area of Newcastle.

Hypothesis 3: The technical parameters used in hotspot analysis techniques have an
influence on the techniques’ spatial crime prediction performance

As a result of testing hypothesis 2, KDE was identified as the commonly used hotspot
analysis technique that consistently outperformed the other common hotspot techniques
in predicting spatial patterns of crime. The technical parameters of KDE, namely the cell
size and the bandwidth size, were then the subject of analysis relating to hypothesis 3
(research study 3) to determine if these two parameters influenced KDE hotspot mapping
spatial crime prediction performance. The findings from testing hypothesis 3 showed that
the bandwidth size rather than the cell size did have an influence on KDE spatial crime
prediction performance. The range of cell sizes that were used for producing KDE
hotspot maps were found to mainly have an impact on the resolution of the density
surface, with smaller cells improving the visual appeal of the KDE hotspot map, rather
than cell size having an impact on spatial crime prediction performance. The choice of
bandwidth size did, though, have an impact on the prediction performance of KDE
hotspot maps, with smaller bandwidths consistently producing the best prediction

performance results.
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Hypothesis 4: Spatial significance mapping methods provide an improved means of
predicting where crime is likely to occur in comparison to common hotspot mapping
techniques, and removes the ambiguity of defining areas that are hot

To test hypothesis 4, research study 4 compared KDE hotspot analysis to the Gi* statistic.
The Gi* statistic can be used to identify areas where the spatial concentration of crime is
statistically significant. As result of a number of experiments that compared hotspot
mapping output generated using Gi* in comparison to mapping output generated using
KDE, the use of the Gi* statistic was found to help remove much of the ambiguity in
determining hotspot areas and consistently performed better than KDE for predicting
where crime was likely to occur. The Bonferroni correction measure was also used with
the Gi* statistic to further improve the determination of hotspot areas by helping to

address the issues of multiple testing.

Hypothesis 5: Areas that are identified as hotspots of crime are places where the
concentration of crime has been endured consistently for at least one year, and
where the concentration of crime is likely to continue to persist into the future

The research results from testing hypothesis 5 (research study 5) found that hotspots
identified using the Gi* statistic displayed high levels of temporal stability — both in terms
of the longevity in where crime had previously been endured, and where the concentration
of crime then continued to persist into the future. The research findings did, though, show
some differences between crime types, with hotspots of burglary dwelling tending to vary
most in their temporal stability, whereas hotspots of thefts from the person and hotspots

of assault with injury were highly stable.

Hypothesis 6: Recent incidents of crime provide an effective means of accurately
predicting the immediate future, but the accuracy in these predictions reduces for
longer periods of the future

The results from testing hypothesis 6 (research study 6) showed that the prospective
mapping approach, based on using only data from the recent past and predicting where
crime was likely to occur based on the patterning principles of repeat and near repeat
victimisation, was effective at predicting the immediate future (i.e., within the next 7
days), but was less effective at predicting where crimes occurred for more distant periods
of the future. However, in comparison to the Gi* statistic, for only one of the three crime
types that were tested (burglary dwelling) did the prospective mapping approach perform

better than Gi* for predicting where crime occurred within the next seven days. For
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longer periods beyond seven days, the prediction performance of the Gi* statistic was
better than prospective mapping for burglary dwelling and assaults with injury. The
prediction performance of where theft from the person offences occurred were similar for

Gi* and prospective mapping for both the immediate future and periods beyond.

Hypothesis 7: GWR provides an effective means of determining at the local level the
reasons why hotspots exist, and that these explanatory variables vary between
hotspots

The spatial scale at which hotspots were identified in the current research (research study
7) was found to be at a much finer level than spatial regression analysis using GWR
allowed. Therefore, GWR did not provide a means of determining why individual
hotspots exist, and identifying if there were explanatory differences between these
hotspots. In turn, this meant that a GWR modelling process was not able to inform a
more data-rich approach to hotspot analysis that used explanatory variables alongside, or
in replacement of retrospective recorded crime data.

Hypothesis 8: GWR analysis can be used for supporting long-term predictions of
crime by examining how a change in explanatory variables can influence a change
in future crime levels

Although, following the testing of hypothesis 7, GWR was not suitable for effectively
determining at the local level the reasons why hotspots exist, it was found, however, that
at a broader scale of analysis, GWR was suitable for identifying those variables that
explained crime levels, and how these explanatory relationships spatially varied (research
study 7). This included identifying those areas where crime levels were highest, and the
strength (and reliability) of the relationship between the distribution of crime and
explanatory variables. While other researchers have expressed some concern about the
extent to which GWR results can be used for determining inference, the results that related
to testing hypothesis 8 did, though, provide some promising indications of the changes in
crime that could be anticipated if crime prevention activity was targeted to address the
conditions relating to the explanatory variables that were identified as being significantly
correlated to crime. That is, the results from testing the application of GWR modelling
for supporting long-term predictions of crime by examining how a change in explanatory
variables can influence a change in future crime levels did illustrate the value of this
spatial regression technique for helping to inform crime prediction for strategic and policy

forecasting purposes.
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The eight hypotheses that were tested to frame the direction of the empirical studies for
this PhD research have resulted in a comprehensive set of research results. In the sections
that follow, the results from the current research are more collectively discussed in

relation to how the research findings have implications on practice, policy and theory.

12.2.  Measures for spatial crime prediction

To date, as the concept of predictive policing and techniques for predicting where crime
is likely to occur have developed, very little attention has been given to the use and
recommended standardisation of measures for calculating and comparing the accuracy of
mapping techniques for predicting spatial patterns of crime. Hit rates provide a quick and
easy means of measuring how many crimes were successfully predicted, but they require
the size of the prediction areas to be controlled in order to provide comparisons. The
Prediction Accuracy Index (PAI) was introduced as a measure to help address this
problem by taking into consideration the size of the areas that were determined to be hot.
However, single global measures such as the PAI and hit rates restrict the examination of

how effective the technique is for crime prediction at different spatial scales.

Johnson et al. (2008b, 2012) illustrated the use of accuracy concentration curves as a
means of improving the measurement of spatial crime prediction performance of different
mapping techniques. The accuracy concentration curves approach allows for the spatial
prediction performance of the mapping technique to be compared across the full range of
spatial scales of a study area by charting the number of crimes that were successfully
predicted against the incremental percentile coverage of the study area. However, this
process typically requires the researcher to make some visual comparison between
different mapping techniques’ accuracy concentration curves, rather than determining
from the charts some value that provides a simpler metric comparison. In this PhD
research, the use of accuracy concentration curves has been taken forward by drawing
from the analogy of similar metrics used for determining the effectiveness of treatments
and programmes in other scientific disciplines (e.g., medical tests and clinical trials into
the effectiveness of drugs and other treatments). This involved introducing a simple, yet
effective means of measuring the area under the accuracy concentration curve and
standardising this to an index — the Crime Prediction Index. The CPI can be used to
determine how good a mapping technique is at predicting spatial patterns of crime. The

research has also shown the importance of generating these area under the curve measures
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and CPI values for several sub-sections of the accuracy concentration curve to determine
how the mapping technique differs in its spatial prediction performance at different spatial
scales.

In the research studies (chapters 5-11) that used the range of spatial crime prediction
metrics described above, the results on the performance of mapping techniques for
predicting spatial patterns of crime were presented across several sub-sections in each
chapter. Here | introduce a measurement template that captures the key metrics for
documenting the spatial prediction performance of a mapping technique’s output. Figure
12.1 provides an illustration of a completed spatial crime prediction measurement
template. Figure 12.1a shows burglary dwelling Gi* hotspots (using a grid cell size of
150 m) for the district of Newcastle-upon-Tyne. Several hotspots are identified, with the
suggestion being that these are the areas where burglary dwelling is predicted to occur.
Figure 12.1b and 12.1c show accuracy concentration curves for the Gi* output, for the
full study area coverage and for the Gi* coverage that represents 1% of the study area
coverage (i.e., those geographic cells that represent the top 1% of Gi* values). In Figure
12.1b, the more vertical the accuracy concentration curve (especially for small
proportions of the study area), the better the spatial crime prediction. Figure 12.1c
provides an indication of the proportion of crime that could be prevented if policing
resources were allocated to the area representing the top 1% of Gi* values. The measure
of curve gradient on the accuracy concentration curve graphs can be determined from the
Crime Prediction Index, where a value of 1 indicates a perfect prediction. Figure 12.1d
lists the CPI values for the spatial crime predictions determined using the Gi* statistic
(for three statistical significance thresholds). A completed measurement template could
then be used to compare against the spatial crime prediction performance of output

generated from other mapping techniques.
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Figure 12.1. Newcastle burglary dwelling (a) Gi* hotspot map, accuracy concentration
curves for (b) the full coverage and (c) 1% of the study area coverage, and (d) CPI values

for Gi* statistical significance threshold levels
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The ability to use the spatial crime prediction measurement template to compare between
mapping techniques is illustrated using a second example shown in Figure 12.2. Figure
12.2 shows the results for mapping output generated using kernel density estimation
(using a cell size of 30 m and a bandwidth of 300 m). In this example from Figure 12.2,
because KDE does not statistically determine the areas that are hot, 0.5%, 1%, and 5% of
the study area were chosen to illustrate CPI values. Both the Gi* and KDE results from
Figures 12.1 and 12.2 show they are very good at predicting spatial patterns of burglary
dwelling at small spatial scales, illustrated by the near vertical gradient of the accuracy
concentration curves for very small proportions of the study area and the CPI values (as
shown in both Figures 12.1 and 12.2) being close to 1. The CPI values provide a useful
means of quantifying the spatial prediction performance of different hotspot mapping
techniques. This example shows that those areas where the concentration of crime was
determined by the Gi* statistic to be significant at the p<0.001 level had a CPI value of
0.963 compared to a CPI of 0.846 for 0.5% of the coverage area produced from the KDE
hotspot map. The results from this comparison, as illustrated using the spatial crime
predication measurement template, suggests the Gi* hotspot map of burglary dwelling is

a better predictor of spatial patterns of crime than the KDE hotspot map.
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Figure 12.2. Newcastle burglary dwelling (a) KDE hotspot map, accuracy concentration

curves for (b) the full coverage and (c) 1% of the study area coverage, and (d) CPI values

for 0.5%, 1% and 5% of the study area coverage
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12.3. Hotspot analysis: implications of the research findings

Hotspot analysis has become a common feature of crime analysis. Hotspot analysis uses
data from the past to identify where crime has concentrated, and in turn uses this mapping
output to help determine where police and public safety resources can be targeted.
However, to date, a rigorous examination has not been conducted of the differences in the
spatial prediction performance of hotspot mapping techniques, the influence of technical
parameters and the influence of different retrospective periods of input data on hotspot
analysis results. Since the commencement of this PhD research, developments in
predictive policing have gathered pace, with new techniques being introduced that claim
to offer more accurate means for determining where crime may occur in the future. While
the purpose of this PhD research has not been to evaluate these new methods, it has aimed
to provide a comprehensive metric examination of hotspot analysis, and in so doing
establish a set of benchmark results against which other techniques can be compared.
This detailed metric examination has also involved examining the technical features of
hotspot analysis and certain statistical procedures that are valuable in helping to ensure

that hotspot map production follows some good practice principles.

An often overlooked preliminary process of hotspot mapping involves testing
(statistically) whether hotspots are evident in the crime data being examined. If there is
no evidence of spatial clustering, any subsequent attempts at hotspot mapping would be
futile and potentially misleading. With the increasing international adoption of and
improvements in electronically recorded crime records and the geocoding of these records
to the exact location where each crime event occurred, the Nearest Neighbour Index has
become the preferred measure for determining if there is statistically significant evidence
of hotspots being present in the data that are examined. Where crime data are only
available as aggregated counts to geographic units, spatial autocorrelation measures such
as Moran’s I and Geary’s C should be used to determine if there is statistical evidence of
hotspots. The research has shown there is no single rule for how many geocoded crime
records are required for clustering to be evident because the number can vary between
crime types and for different study areas. Therefore, when an analyst is confronted with
the question of whether they have enough data for hotspot mapping, the simple procedure
of testing for clustering using the NNI would determine whether the application of hotspot

mapping is worthwhile.
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Figure 12.3. Hotspot maps generated from three months of burglary dwelling input data
for the Camden/Islington study area using (a) spatial ellipses, (b) thematic mapping of
Output Areas, (c) grid thematic mapping, and (d) kernel density estimation. Each map is

shown with its PAI value, based on one month of output data.

There are a number of techniques that are commonly available in GIS to analysts and
researchers for mapping hotspots. Kernel density estimation has increasingly becoming
the hotspot mapping technique of choice, partly based on the findings from previous
reviews that have profiled the technique’s ability to outperform others in accurately
identifying the location, size, orientation and spatial distribution of the underlying point
data, and the visual appeal in the output that the KDE technique generates (Chainey and
Ratcliffe, 2005, Eck et al., 2005). This PhD research has shown that KDE is also the best
of the commonly used hotspot mapping techniques for predicting spatial patterns of
crime. Grid thematic mapping proved to be slightly better than thematic mapping of
geographic administrative units (using output areas), while standard deviation spatial
ellipses were the worst at predicting spatial patterns of crime. As an example, Figure 12.3
shows hotspot maps generated for each of these techniques from three months of burglary
dwelling input data for Camden and Islington when the measurement date was the 1%
January 2010. The figures show that each technique identified similar areas, but in terms

of the ability to predict future spatial patterns of burglary dwelling over the next month,
303



KDE was better at predicting where burglaries dwellings did occur. While different
techniques may be more suitable for certain scenarios (e.g., thematic mapping of
geographic administrative units is suitable when wishing to compare changes in crime for
jurisdictional performance assessment purposes), these results suggest that KDE should
be the analyst’s technique of choice when assisting in determining the targeting of

resources.

KDE, like many mapping methods, requires the user to determine certain technical
parameters as inputs to the spatial calculations: the cell size and bandwidth size. The
results from this PhD research (research study 3, chapter 7) show that KDE hotspot maps
generated using different cell sizes have little impact on the mapping outputs ability to
predict spatial patterns of crime, but that different bandwidth sizes do have an impact.
Cell size mainly impacts on the visual appeal of the KDE mapping output, with higher
resolutions producing maps that avoid the blocky pixilation of outputs generated using
larger cell sizes. For example, the maps shown in Figure 12.4 are equally as good as each
other for predicting where crime may occur in the future. However, Figure 61a, which
uses a much smaller cell size, is preferable due to its more appealing visual representation
of the density distribution of crime. While smaller cell sizes require greater computer
processing due to the larger number of calculations that are required. This extra length of

processing was not a significant impairment in the experiments that were conducted.
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Figure 12.4. A comparison of KDE burglary dwelling hotspot maps for Newcastle,
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generated using the same bandwidth but with different cell sizes (a) 30 m (PAI of 7.0)
and (b) 240 m (PAI of 7.0)
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Bandwidth size does though affect the performance of KDE hotspot maps to predict
spatial patterns of crime. For example, the maps shown in Figure 12.5 were generated
using the same input data, the same cell sizes, but different bandwidth sizes. The PAI
values for the KDE map produced using the smaller bandwidth was 119 compared to a
PAI of 40 for the KDE map produced using a larger bandwidth. That is, the smaller the
bandwidth, the better the KDE map is at predicting spatial patterns of crime.
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Figure 12.5. A comparison of KDE assault with injury hotspot maps generated using the
same cell size but with different bandwidth sizes: (a) 100 m (PAI of 119.3), and (b) 800
m (PAI of 40.4)

The results from this PhD research of different cell sizes and bandwidth sizes now offer
practitioners the means to better qualify the default parameter values that are determined
by GIS products such as ESRI’s ArcGIS Spatial Analyst and Crime Analyst extensions,
and Crime Profiler and Hotspot Detective for MapInfo. The results indicate that defaults
for cell size such as those generated using Hotspot Detective (which involves dividing
the shorter side of the MBR by 150) offer a useful starting point, but reducing this value
further will generate maps of greater visual appeal without affecting the map’s ability to
predict where crime is likely to occur in the future. However, bandwidth default values
need scrutiny by practitioners to ensure they are not too large and impair the purpose of
the KDE hotspot mapping output. For example, the default Hotspot Detective KDE
bandwidth size for three months of violent assaults data for Newcastle-upon-Tyne was
450 m — a bandwidth size that generated a hotspot map with PAI value of 60, compared
to a PAI of 143 if a bandwidth of 100 m was used.
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Figure 12.6. A procedure for creating precise and practical KDE hotspot maps for

accurately assisting in the targeting of policing and crime prevention resources: (a) is a
KDE hotspot map generated for a large area for identifying the key areas for focus
(bandwidth 300 m; cell size 90 m). Once a focus area is identified, data for this area is
selected and a KDE hotspot map is generated using a smaller bandwidth (100 m) and

smaller cell size (10m).

The arguments so far suggest that all KDE hotspot maps should be produced using small
cell sizes and small bandwidths. However, small bandwidth values produce KDE hotspot
maps that appear spikey, with many small areas identified as hotspots. In practice, this
type of hotspot map is often considered unsuitable because it does not sufficiently narrow
down the number of areas that require operational attention. Therefore, it is argued that
a balance is required between KDE hotspot prediction accuracy, and output that is useful
in practice. A way in which this can be overcome is to use a bandwidth size that is large
enough initially to identify key hotspot areas, with these areas then being focused upon
and a second hotspot map generated based on the distribution of crime in focus area.
Figure 12.6 illustrates an example of this. Figure 12.6a uses a bandwidth size of 300 m
and cell size of 90 m to identify the assault with injury hotspots in Newcastle-upon-Tyne.
The main hotspot then becomes the area of attention, with a second KDE hotspot map
generated for this area to more precisely identify the areas that are required for police
attention. Figure 12.6b was generated using a bandwidth of 100 m and a cell size of 10
m. This two-step process to KDE hotspot map production offers the benefit of producing
a visually accurate and appealing hotspot map for the study area, showing those areas
where crime most concentrates, and then precisely showing the areas where crime

hotspots exist and retaining visual appeal in the KDE mapping output.
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Figure 12.7. Newcastle theft from the person hotspot maps, produced using KDE and (a)
the quantile thematic classification method, and (b) the equal intervals thematic

classification method, and (c) using the Gi* statistic.

KDE is not without its weaknesses. The procedure described above could fail to identify
areas where there is a high and spatially compact concentration of crime when the entire
study area is examined because of the smoothing characteristic of KDE. An additional
weakness is that the KDE requires the researcher to determine what is hot by deciding the
value for the top thematic class. In most GIS software, several options are offered for the
user to determine a thematic classification method preference, leading to subjectivity in
KDE hotspot mapping output. The current research has illustrated how the Gi* statistic
can overcome much of the subjectivity in defining the areas that are hot in hotspot
analysis, and improve on (or at least retain) high levels of spatial crime prediction that

good KDE hotspot analysis can offer. That is, in a statistical sense, the Gi* statistic can
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define those areas that are hotspots. The application of the Gi* statistic in the current
research also included using the Bonferroni correction procedure to help address the issue
of multiple testing, and set statistical significance thresholds that provide a spatially
focused approach to identifying hotspots of crime. For example, Figure 12.7 shows
hotspot maps of theft from the person generated using KDE and Gi*. While the hotspot
areas identified are similar, the Gi* approach helps remove much of the ambiguity in
defining the areas that are hot compared to the two KDE examples that define different
hotspot areas, simply due to the thematic classification method that was used. The Gi*
statistic is increasingly available to analysts and researchers, with it being packaged in
ESRI ArcGIS since version 9.3, to MapInfo users in the HS Gridder add-on (Mashford,
2008), and available as a free Excel add-on (importing the results into any GIS) in the

Rooks Case tool developed by the University of Ottawa (Sawada, 1999).

Gi*, like KDE, requires the researcher to determine certain input parameters. However,
the current research has shown that, compared to KDE bandwidth sizes, the lag distance
has less of an effect on the spatial prediction accuracy of the hotspot mapping output,
albeit with small rather than large lag distances being preferred. The lag distance is
calculated from the cell size that is used, and by including only those immediate
neighbours (the eight cells surrounding the cell of interest). This approach to calculating
the lag distance helped to retain a focus on generating local detail in Gi* hotspot analysis,
minimising the problems of edge effects. However, one advantage that KDE retains over
Gi* mapping output is the visual appeal of the hotspot maps that KDE generates. Gi*
hotspot maps cannot simply be improved by using smaller cell sizes because this results
in many cells containing zero or low counts. The use of small cell sizes has the knock-
on effect of the sum of the count of crime in the cells representing the local neighbourhood
of analysis to also be low in number, with little then to compare between these local
neighbourhood averages and the global average. A procedure to improve this would be
to use small cell sizes and to increase the lag distance beyond the eight immediate
neighbours, but in doing so this may cause further problems with multiple testing. For
example, rather than each cell being used nine times in the calculation of Gi* values,
widening the lag distance will increase the number of times each cell is used to calculate
Gi* values. This calls for more research to explore how the visual output of Gi* hotspot

maps can be improved, while addressing these technical spatial statistical challenges.
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The current research has also revealed differences in the spatial prediction performance
of hotspot maps between crime types. For example, Figures 12.8a and 12.8b show Gi*
hotspot maps of burglary dwelling and theft from the person in Newcastle. Each hotspot
map identifies areas that were statistically significant. However in Figure 12.87b, the
hotspot areas (determined using a 95% significance threshold) were where 49% of thefts
from the person were committed in the six months that followed, compared to the hotspot
areas in Figure 12.8a where 18% of burglaries were committed in the same following
period. This indicates that the prediction of where certain types of crime occur is easier

than it is for others.
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(a) Burglary dwelling (b) Theft from the person
Figure 12.8. Newcastle Gi* hotspot maps of (a) burglary dwelling and (b) theft from the
person, generated from six months of input data

The results from the current research have also shown that hotspot maps of street crime
offences against the person (such as assault with injury and theft from the person) were
consistently better in their spatial prediction performance than any of the other crime
types (see Table 12.1). Closer examination of hotspot maps of assaults and thefts from
the person suggest that the reason for better levels of prediction performance is most
likely due to the manner in which opportunities for these types of crime tend to
concentrate. The areas where assaults and thefts from the person offences predominantly
occurred were in areas where shops, bars, restaurants, markets and other forms of retail
and entertainment concentrate. Areas with these types of land use offer many
opportunities to commit street crime offences. This type of land use also tends to be
clustered at particular localities, which in turn results in the highly concentrated spatial
distribution of people to these localities, suggesting that the opportunity for street crime

against the person would similarly be highly concentrated. These types of land use also
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tend to be static, in that they do not shift around the urban landscape but instead become
a stationary part of an area’s environmental fabric. Crime patterns tend to follow
opportunities to commit crime (Cohen and Felson, 1979; Cornish and Clarke, 1986).
Hence, as the opportunities to commit street crime remain highly concentrated and fairly
static in geographic space, it is likely that retrospective data on where street crimes have
occurred previously would be a good indicator of where street crime may occur in the
future. This is the most likely reason that hotspot maps of assaults and thefts from the

person generated high spatial prediction values.

Table 12.1. Proportion of crime predicted in Newcastle Gi* hotspots (defined using a
95% statistical significance threshold, 150 m cell size and six months of input data) in the

six months that followed

Proportion of
Crime type crime predicted in
Gi* hotspots

Burglary dwelling 18%
Theft from motor vehicle 26%
Theft of motor vehicle 21%
Theft from the person 49%
Assault with injury 37%

In comparison to the prediction performance of hotspot maps generated for assaults and
theft from the person, opportunities to commit thefts from vehicles and thefts of vehicles,
while they may be concentrated to certain places, tend to be more diffuse. Parked vehicles
can be found in many locations — in garages, on driveways, on the street, and in car parks.
This means the opportunity to commit crimes against vehicles is more widely spread than
the opportunities that exist for committing assaults and thefts from the person. While
hotspots of vehicle crime may occur and be influenced by land use, and the socio-
economic and physical characteristics of areas, the wider geographic spread of where
vehicles can be found (and targeted by offenders) would result in crime patterns for
vehicle crime to be similarly more dispersed than where assaults and theft from the person
offences are committed. In turn, the wider spatial distribution of opportunities to commit
vehicle crime suggests that retrospective data on where vehicle crime occurs would most
likely be less effective than retrospective data on assaults and theft from the person for

predicting spatial patterns of future offences. Similarly, residential properties are
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typically more geographically spread than retail and entertainment facilities. While
certain types of property may be more prone to burglary than others, the opportunity to
commit burglary is not as heavily concentrated as opportunities to commit assaults and
thefts against the person. This difference in the geographic distribution of opportunities
is again the most likely reason that the spatial prediction performance of burglary

dwelling hotspot maps were lower than those for assaults and thefts from the person.

Average TSI values for Gi* hotspots identified using different
periods of retrospective crime data (max TSI = 0.923)

-~ ———— -~~~
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Burglary dweiling === Theft from the person Assault with injury

Figure 12.9. Temporal stability index values for Gi* hotspots identified using different
retrospective periods of input data, for burglary dwelling, theft from the person and
assault with injury. The average TSI value was taken from the TSI values for each hotspot

identified from each retrospective input data period.

The differences in the ability to predict spatial patterns of crime for different crime types
can be further illustrated through the analysis of the temporal stability of hotspots.
Previous research has suggested that spatial patterns of burglary tend to shift frequently
(Johnson et al., 2008a; Johnson and Bowers, 2004b). The results from this current PhD
research have countered this finding by illustrating a consistent stability in hotspot
patterns for each of the crime types analysed. For burglary dwelling, theft from the person
and assault hotspots, Temporal Stability Index values were consistently above 0.85
(where perfect stability was indicated with a TSI of 0.923 and perfect instability indicated
with a TSI of zero). That is, the results from the current research indicate that where
crime has previously concentrated is where crime is likely to persist. However, through
the analysis of different input periods for hotspot map generation, different results were

found. For theft from the person and assaults, TSI values were very similar for all periods
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of retrospective crime data that were used. For burglary dwelling, TSI values showed a
different trend, reducing in line with shorter input periods (see Figure 12.9). The results
into the differences in the temporal stability of hotspots based on the period of
retrospective data that were used suggest that for thefts from the person and for assaults,
the same hotspot areas were identified when both short and long retrospective periods of
crime input data were used, and the spatio-temporal patterns of these types of crime were
highly stable. However, for burglary dwelling, the temporal stability of hotspots was
lowest at the point that crime concentration was first evident, and increased as more
retrospective data were used. These results suggest that spatial patterns of burglary
dwelling tend to be less stable when only a short retrospective period of input data are
used.

So far, the research results show that where crime has previously concentrated is where
crime is highly likely to concentrate again. This is a research finding that has been
consistently reported in many previous studies of hotspot analysis. However, the current
research offers a comprehensive metric examination across techniques, crime types and
for different retrospective periods of crime concentration. Research study 6 (chapter 10)
examined whether the prospective mapping prediction method that uses recent individual
incidents, and hence before the point that spatial concentration is likely to be evident,
produces better spatial predictions of crime than Gi* hotspot mapping output. The results
from research study 6 showed that spatial predictions of crime using prospective mapping
were highest for the immediate future (i.e., within the next 7 days), but reduced as the
temporal period of prediction increased (see Figure 12.10). The results also showed that
spatial predictions generated using prospective mapping were only better for burglary
dwelling and that Gi* hotspot analysis was just as good at predicting the immediate future
for theft from the person and assaults. Beyond the immediate future, the results showed
that Gi* hotspot analysis was better than prospective mapping for predicting where crime
was likely to occur. These findings that compare the prediction performance of Gi*
hotspot analysis and prospective mapping using different periods of retrospective crime
data for different crime types suggest that prior to the point of spatial clustering appearing
in retrospective crime data, prospective mapping provides an effective means of
predicting where crime is likely to occur (and most so for burglary dwelling), but these
predictions are most accurate only for the immediate future. The predictions for this
immediate future are for single offences that follow repeat and near repeat patterns.

Beyond this immediate future is when many single offences begin to cluster, with the
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results suggesting that hotspot maps generated using Gi* provide a more accurate means
of predicting where crime is likely to occur than the prospective mapping approach. That
IS, once the point of spatial clustering in prospective crime data is reached, it is likely that
a hotspot map generated from the clustering from retrospective crime data will be more
accurate than using single very recent incidents in determining where crime is likely to
occur. Therefore, from the point of spatial clustering in retrospective crime data, a Gi*
hotspot map will provide a more accurate spatial prediction of where crime is likely to

cluster than the predictions produced using the prospective mapping approach.

Proportion of crime predicted to occur in areas identified using

Prospective Mapping, for different future periods
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Figure 12.10. A comparison of the proportion of crime predicted to occur in areas

identified using prospective mapping, for different future periods.

The findings from the current PhD research suggest the need to consider a two-step
process to inform spatial crime prediction. The first step involves using prospective
mapping and very recent incidents to predict the immediate future (i.e., where crime may
occur over the next few days). The second step uses Gi* hotspot analysis and
retrospective incidents that show evidence of clustering to predict where crime is likely
to occur beyond the immediate future (i.e., the near future). As the vogue of predictive
policing has developed, police agencies have increasingly erred to the use of single
techniques to inform their spatial crime predictions and operational service delivery. The
results from this research suggest caution is required in expecting a single technique to
provide accurate predictions for both the immediate and near future. Instead, more

accurate predictions can be generated using a two-step approach.
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12.4. Explaining why crime hotspots exist: using the causes of crime to produce
crime predictions
The original motivation for researching spatial regression was to help quantify why
hotspots exist, identify causation differences between hotspots, and then use these results
to explore whether data, other than retrospective crime data, improved spatial predictions
of crime. The research has shown that at present, data for explanatory variables are
typically not spatially precise enough to permit causation distinctions to be made between
hotspots. In addition, GWR analysis is not spatially precise enough for determining
inferential differences between crime hotspots at the spatial scale that hotspots are
identified. The spatial regression analysis of crime data also presents several other
challenges, particularly with regards to the treatment of highly clustered spatial patterning
and the handling of multiple units containing zero counts. While Poisson models provide
a viable option for the regression modelling of crime that typically display these spatial
qualities, issues such as overdispersion and the spatial clustering of residuals may remain.
To identify and address these issues requires the researcher to be knowledgeable and strict
in the application of statistical diagnostic procedures that test for model suitability. The
researcher may also have to treat their data, such as perform logarithmic transformations
and select data sub-sets for processing (e.g., removing geographic units containing zero
crime counts), in order to ensure the model is not bias and so that confidence can be
placed in the results. The interpretation of model results also relies on good knowledge
of theoretical principles for explaining spatial patterns of crime, regardless of whether an
exploratory or hypothesis testing approach is used in calibrating explanatory variable
inputs. The current research has also illustrated the iterative manner in which spatial
regression modelling needs to be applied — involving a process of model variable
selection, treatment of variables, interpretation, and model refinement — in order to
generate models that not only perform well, but are also reliable and can be explained in

theoretical and empirically evidenced terms.

While GWR modelling may not offer the ability to distinguish spatially varying
relationships at the scale of hotspot identification, the research literature suggests
potential in Bayesian spatially varying coefficient (SVC) models for analysis at more
precise spatial scales. A key drawback of GWR modelling is the heavy smoothing that
is a feature of the technique. Bayesian SVC models explore spatial relationships based
on adjacency rather than a kernel size (Waller et al., 2007). The research literature also

shows how Bayesian SVC models can improve model fit by avoiding the use of a single
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bandwidth applied to all explanatory variables (as applied in GWR) and using instead
separate adjacency measures for each explanatory variable (Waller et al., 2007). In
addition, it is suggested that Bayesian SVC models allow for more robust and accurate
inferences to be determined, including reducing the levels of collinearity that can be a
problem with GWR models (Wheeler and Calder, 2007, Wheeler and Tiefelsdorf, 2005)
and how statistical significance prediction intervals can be generated (Wheeler and
Waller, 2009). This calls for further research that examines whether Bayesian SVC
models applied to crime data improve on the findings of the use of GWR from this PhD

research.

GWR, though, has shown potential to offer an additional temporal dimension to spatial
crime prediction. Through the spatial modelling of crime patterns and explanatory
variables, those variables that help explain the spatial distribution of crime can be
identified and whether the relationship between these variables spatially varies. While
some caution is required in using GWR for inferential purposes, the results from this type
of modelling can at least indicate which variables appear to significantly correlate with
the distribution of crime and where these variables have their biggest impact. This can
then help inform the direction of strategic crime reduction policy through the design,
development and spatial targeting of initiatives that aim to reduce the impact these
variables have on crime. In statistical terms, this would involve aiming to reduce the
significant and spatially varying influence these variables have on crime. For example,
where the distribution of the student population is significantly (positively) correlated
with spatial patterns of burglary dwelling, a strategic initiative would be to reduce this
high level of student vulnerability. Similarly, where the distribution of licensed premises
is positively correlated with violent assaults, this finding could inform policy on the
issuing of licenses to these premises and any additional premises that wish to open in
areas where this relationship is most significant. These findings on the use of GWR for
identifying spatially varying relationships between crime and explanatory variables
suggests the need to consider a three-step process to inform spatial crime prediction, with

spatial regression modelling informing long-term predictions.

12.5. Crime prediction: currency, concentrations and causes
Spatial crime prediction is reliant on the input of data variables for accurately informing
where crime is likely to occur in the future. To date, little consideration has been given

in practice to the actual prediction period of the future — is the aim to predict where crime
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is likely to occur in just the next day, the next week, the next month or the next year, or
Is the prediction assumed to be accurate for all periods of the future? In practice, agencies
plan their service provision across all these temporal periods, albeit with some oriented
more towards one than the other. Police forces very much focus on the here and now,
oriented towards tactical responses for the next operational police shift that support
reductions in crime; Community Safety Partnerships have a focus towards designing
responses that may require contributions from a number of agencies, oriented towards
implementing initiatives that may take several weeks to organise and that deliver
sustainable reductions in crime; whereas a City Mayor or Police and Crime Commissioner
may have a focus towards policy changes, introducing new programmes that reduce
victimisation against those who are most vulnerable, and achieving reductions in crime.
These variations in focus require consideration of the input data variables that are most

suitable for informing these crime predictions for different temporal periods.

This PhD research has shown the value of hotspot mapping for accurately predicting
spatial patterns of crime. It has shown that perhaps the most powerful variable for
predicting where crime is likely to occur is where crime has previously occurred. Other
variables such as land use, demography, and socio-economic conditions that influence
the opportunity for crime to occur may explain why crime patterns spatially vary, but
typically these data are not spatially precise enough to be used alongside or in replacement
of crime data to improve spatial predictions of crime. Indeed, even if these variables were
available at the detailed resolution of recorded crime data they may actually offer little to

improve spatial predictions of crime that use only retrospective recorded crime data.

To date, KDE has become the hotspot analysis technique of choice amongst police and
crime reduction practitioners and researchers. This PhD research has illustrated the
accurate spatial crime predictions that the KDE technique can generate, and how it can
be improved with attention to bandwidth choice. The current research has also shown
how hotspot analysis can be improved further by using the Gi* statistic to help remove
much of the ambiguity in defining hotspots and produce predictions that at least equal or
are better than those produced using KDE. For some crime types, the spatial crime
predictions generated using Gi* hotspot analysis were exceptionally high, illustrated by
CP1 values that were almost perfect. This finding helps set a benchmark for which other

techniques can be compared.
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The current research has also shown that hotspot analysis is better at predicting where
hotspots are likely to exist in the future in comparison to prospective mapping. That is,
patterns of retrospective spatial clustering are of great value in predicting patterns of
future spatial clustering. When predicting the immediate future, differences were
observed in the performance of prospective mapping and hotspot analysis. Prospective
mapping, rather than hotspot analysis, appeared to be more accurate in determining where
crimes against property, such as burglary dwelling incidents, were likely to occur.
However, prospective mapping did not appear to offer any additional value in predicting

where crimes against the person were likely to occur.

These findings on the differences in the prediction performance of prospective mapping
for different crime types appears to be related to the spatio-temporal stability of crime
patterns, with those crime types that are less stable and susceptible to spates committed
by the same foraging offender being more suited to prospective mapping treatment.
Where there is a very high degree of spatio-temporal stability in crime patterns and the
commission of these offences is less to do with spates of offending being committed by
a returning offender, prospective mapping appears to offer no improvement in the spatial
crime predictions that are generated by good hotspot analysis. Therefore, while currency
in retrospective crime data appears to be relevant for informing the choice of technique
that is used to generate spatial predictions of crime, this currency needs to be considered
alongside the type of crime that is being predicted and a clear theoretical understanding
of why crime may tend to take place in the locations where it is predicted to occur. In
practical operational terms, while accurately predicting where crime may occur in the
next day, week, month or year will support the targeting of policing and crime reduction
resources, understanding why crime is likely to occur in these locations will inform the
actual activity conducted in these locations. Optimal foraging theory and the boost
account help explain why an offender may return to an area where they recently
committed a crime, with crime pattern theory helping to explain the preference in choice
of area based on the individual’s awareness of opportunities. The combination of these
theories provides the foundation for explaining where crime is likely to be committed in
the immediate future. As a result, several police agencies have already adopted tactics to
directly counter this predictable foraging and boost behaviour (Chainey, 2012b). A gap
in the theory appears, however, in drawing together crime pattern theory and other
environmental criminology concepts for explaining why clusters begin to form in the near

future, and why they may go on to persist for some time.
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12.6. Theoretical developments: explaining why crime hotspots emerge using the
watering hole principle
Optimal foraging theory, boost account theory and crime pattern theory help explain the
preference of the individual offender to return to the same target to commit a crime (i.e.,
commit a repeat offence) or to a similar target in close proximity (i.e., commit a near
repeat). In particular, optimal foraging and boost account theories help explain why these
repeat and near repeat offences occur swiftly after an initial incident, with crime pattern
theory helping explain why the offence is likely to occur in a place that is familiar to the
offender, based on their routine activities and the distribution of opportunities. Each of
these theories draws from the theoretical concepts of least effort: the knowledge and
selection of opportunities to commit crime tend to result in a short journey to crime (and
short journey to the place of foraging); and repeated offending trips take place because
the offender is boosted in the knowledge learnt from the initial offence, rather than
applying more effort to seek new opportunities. These theoretical principles of foraging,
boost account, crime pattern theory and least effort help to explain individual offending
behaviour and predictions on where crime may occur within the immediate period

following an initial incident (i.e., within one week).

A gap appears, however, in how we can fully explain the individual behaviour of
offenders that, when aggregated, helps to explain why the crimes they commit will begin
to form hotspots. We can, of course, draw on crime pattern theory, the principles of least
effort, the routine activity approach and the rational choice perspective to help explain
why crime patterns tend not to be spatially random, but concentrate at certain locations.
However, a specific theory that draws these theoretical principles together to explain
where and why hotspots may begin to form in the near and more distant future (similar
to how optimal foraging theory helps us to explain where and why crime may occur at
certain locations in the immediate future) has yet to be articulated in the environmental
criminology literature. Brantingham and Brantingham (1995) introduced the concepts of
crime generators, crime attractors, crime enablers and crime-neutral sites to help make
descriptive distinctions between different types of spatial crime distribution. In this
section | introduce the watering hole principle to help advance the understanding of why
crime tends to form hotspots, and make clear the distinctions between this new theoretical

concept and the Brantingham’s typology of spatial crime distribution.
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There are also two distinctions to consider for explaining why hotspots of crime will tend
to form. The first is that the crime committed in a hotspot may appear as an aggregation
of many individual offenders committing multiple crimes in the same area and who are
boosted by their commission of recent offences (i.e., several offenders committing spates
of crime in the same area). The second is where the crime committed in a hotspot may
appear as an aggregation of many individual offenders committing single offences that
are not boosted by their commission of recent offences (i.e., multiple offenders
committing single offences in an area). The similarity in both cases is that the areas where
hotspots begin to form are likely to be where conditions are favourable for the

commission of crime.

The watering hole principle helps advance the understanding of why crime tends to form
hotspots. The principle also offers additional theoretical validity to why hotspot analysis
can be effective in predicting where crime is likely to occur in the near future (at the point
when individual offences begin to form clusters). The main distinction between the
watering hole principle and the concepts of attractors, generators, enablers and neutral-
sites is that the latter offer a set of a posteriori descriptive typologies for the range of
spatial crime distribution, while the former provides an a priori theoretical explanation
of spatial crime concentration. The distinction between the watering hole principle and
crime attractors, generators, enablers and neutral-sites is elaborated on below after

introducing the watering hole principle in full.

Purposely, the watering hole principle draws from ecology because it provides the best
analogy for explaining this principle in a crime sense, and because it naturally fits
alongside the criminological explanations introduced by Johnson et al. (2009) in optimal
foraging theory. In addition, in the same way that the ecological concept of foraging links
to the boost account, the ecological concept of the watering hole, as explained further
below, links to the flag account. The idea of using a watering hole analogy is not new to
crime. For example, Felson (1987: 914) stated, ‘Just as lions look for deer near their
watering holes, criminal offenders disproportionately find victims in certain settings or
high-risk occupations’. However, the idea of using this ecological analogy has not been
expanded upon by Felson or others. As elaborated here, the analogy provides the primary
theoretical explanation for locations where conditions are favourable for the commission

of crime.
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A watering hole in ecological terms is a pool where animals come to drink. For the
watering hole to exist, favourable conditions have to be present: it can only form in a
natural geographic depression, and not on flat land and where the water table reaches the
surface; the soil and underground rock conditions must not cause the water to drain away;
and rainfall needs to be frequent enough to replenish the watering hole. In an
environmental criminology sense, a cluster of crime will form in areas where favourable
conditions are present: it can only form in a place where suitable targets are concentrated;
the targets are not removed; or if removed are frequently replenished. These core
favourable conditions establish the theoretical basis for explaining prior to crime

commission the locations that are likely to experience spatial concentrations of crime.

The watering hole principle provides an a priori explanation of spatial crime
concentration. That is, the principle explains pre-event, the locations that are likely to
experience spatial concentrations of crime. This is distinct to the concepts of crime
generators, attractors, enablers and neutral-sites which provide a set of a posteriori
descriptive typologies for the range of spatial crime distribution. That is, generators,
attractors, enablers and neutral-sites describe post-event the range in levels of the
geographic distribution of crime in relation to the characteristics of areas. Additionally,
the typologies of generators, attractors, enablers and neutral-sites were constructed to
describe the spatial distribution of crime from an offending viewpoint, with the focus
being towards the offender’s choice of targets, their target areas, and motivational desire
(Brantingham and Brantingham, 1995). The watering hole principle considers the spatial
distribution of crime from both an offending motivation viewpoint and from a
vulnerability of victimisation perspective. That is, the principle considers favourable
conditions in locations, both from the perspective that provide favourable conditions for
the commission of crime and the conditions that are favourable for increasing the risk of
crime. Furthermore, the application of generators, attractors, enablers and neutral
typologies were devised for ‘types of urban sites that need to be considered’ (Brantingham
and Brantingham, 1999: 7), whereas the theoretical concept of the watering hole principle
is applicable for all landscape settings — from urban to rural, and all categories between.
Generators, attractors, enablers and neutral-site typologies are also more suited to the
micro and meso geographic scales, whereas the application of the watering hole principle
can be applied to micro, meso and macro scales. For example, the notion of favourable
conditions for offending or risk of victimisation can refer to particular targets (e.g., a unit

on an industrial estate that has no perimeter fencing and easy egress to the estate’s main
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entrance and exit exhibits more favourable conditions for burglary than those units
located deep into the industrial estate and that have secure perimeter fencing), particular
areas (e.g., city centre night-time economy areas where there are more favourable
conditions for assault), and regions (e.g., student residential areas within a city where
there are more favourable conditions for domestic burglary). Table 12.2 provides a
summary of the conceptual differences between the watering hole principle and
generators, attractors, enablers and neutral-sites.

Table 12.2. Conceptual differences between the watering hole principle and generators,

attractors, enablers and neutral-sites

Watering hole principle

Generators, attractors, enablers, and
neutral-sites

Definition: locations where there are
favourable conditions for crime to
occur

An a priori explanation of spatial
crime concentration — explaining pre-
event the locations that are likely to
experience spatial concentrations of
crime

Considers crime from an offending
viewpoint and from a vulnerability of
victimisation perspective

Can be applied to the full range of
urban to rural settings — focus is
towards all types of favourable
conditions for crime to occur: from the
built environment (e.g., land use,
housing type, street morphology) to
demographic and socio-economic
conditions that influence the spatial
distribution of crime

Can be applied at micro, meso and
macro geographic scales. For
example, favourable conditions can
refer to particular targets, particular
areas, and regions

Can be used to explain the flag account
theory — flags are enduring conditions
that make certain targets more
favourable than others

Definition: description of different

types of spatial crime distribution

e A set of a posteriori descriptive
typologies for the range of spatial
crime distribution — describing post-
event the range in levels of the
distribution of crime in relation to an
area’s characteristics

e Describe the spatial distribution of
crime mainly from an offending
viewpoint rather than from a
vulnerability of victimisation
perspective

e Have an urban and situational focus —
focus is towards the built environment
rather than also considering the
influences of demographic and socio-
economic conditions on the spatial
distribution of crime

e More suitably applied to the micro and
meso geographic scales, and not the
macro scale. For example, describing
the range in levels of the distribution
of crime in relation to characteristics
of particular targets (e.g., differences
between the types of shops) and
particular areas (e.g., city centres and
shopping  malls), rather  than
differences between regions

e Can not be used to explain the flag

account theory of offender target

selection as it provides a description

for a range of different types of spatial

crime distribution
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Flag account theory is used to help explain why some enduring characteristic about a
target makes it a higher risk for being vulnerable to crime. Watering holes are places
where many flags may exist, offering a plentiful supply of suitable targets. In this sense,
similar to how foraging theory links to the boost account to explain spates of crime
committed by the same offender, the watering hole principle links to the flag account to
explain the stable nature of crime concentration in places where many favourable

conditions to commit crime exist.

The watering hole principle also has the flexibility in being able to be applied to the two
offending distinctions described previously on why hotspots of crime form. Firstly, the
watering hole is where many individuals (who are not prolific offenders) commit single
offences because the conditions are favourable for the commission of crime. Secondly,
the watering hole is where individual offenders who are more prolific in their offending
activity commit many crimes and where their spates of offending overlap. The use of the
watering hole principle is illustrated for burglary dwelling. Burglaries of residential
properties can be predicted in the immediate future by using the spatial and temporal
attributes of recent incidents — offenders will be attracted to forage for further
opportunities to commit burglary by returning to the same property or nearby properties.
Hotspots of burglary dwellings can be predicted for the near future by identifying where
hotspots previously occurred. These hotspots can be predicted because offenders will be
attracted to the watering holes where a plentiful pool of suitable targets are available,
displayed either through the aggregation of multiple offender’s foraging and boost
behaviour (i.e., the collective aggregation of their spates of crime), through the
aggregation of multiple offenders committing single offences, or a combination of the
two. The current research has indicated that for the study area of Newcastle, the
favourable geographic conditions that resulted in high levels of burglary dwelling were
influenced by the area being in close proximity to where known offenders live, it being

an area with a large student population, and/or an area with a large Asian population.

For some types of crime, the theoretical concepts of foraging and the boost account do
not apply. For example, violent assaults in a busy town centre do not tend to result from
a person who got into a drunken brawl the previous night returning the next night or the
next weekend, foraging for another drunken brawl, boosted from the previous event.

Therefore, it is not suitable to use the concepts of foraging and boost behaviour to explain
322



why crimes of this type may occur. Spatial patterns of repeats and near repeats may still
be observed in the distribution of violent assaults, but an explanation other than foraging
and the boost account is required to explain these patterns. This current research has
shown that good hotspot mapping is just as accurate, if not better, than prospective
mapping for predicting spatial patterns of violent crime. To provide an explanation
behind the effective prediction of this type of crime, the watering hole principle, rather
than foraging and boost behaviour, is more suitable: the locations where future violent
assaults are most likely to occur will be in the watering holes where a plentiful pool of
suitable targets are available, displayed through the aggregation of multiple offenders
committing single offences. This research has indicated that for the study area of
Newcastle, the favourable geographic conditions that result in high levels of violent
assaults are influenced by where pubs, bars and nightclubs are located, and/or by areas

that experience high levels of income deprivation.

By using the watering hole principle to help explain where and why hotspots are likely to
occur (and in clearer theoretical terms than offered by the a posteriori descriptive
typologies of crime generators, attractors, enablers and neutral-sites), the explanations
associated with the watering hole principle can also help determine how these predictable
hotspots can be tackled. As the watering hole is where favourable geographic conditions
are present, policing and crime reduction resourcing should be focused towards
addressing these favourable conditions. Strategies could involve protecting the most
vulnerable individuals, raising awareness that helps reduce the vulnerability of certain
groups, making it more risky for offenders to commit crime, increasing the effort it takes
for offenders to commit crime, and reducing the rewards from the commission of crime.
With reference to the theoretical link between the watering hole principle and the flag
account theory, the targeted focus of crime prevention activity in the watering holes
would be akin to removing the enduring characteristics that make the targets vulnerable

to crime.

12.7. Practice and policy implications: the Crime Prediction Framework - a
temporal framework for spatial crime prediction

Previous research (e.g., Johnson et al., 2009) and the current research have shown how

the spatial attributes of recent offences can be very effective in predicting where

individual crimes may occur in the immediate future. The ability to be able to make these

predictions of crime in the immediate future is based on the well-researched and
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frequently empirically observed spatial and temporal patterns of repeat and near repeat
victimisation. However, the effectiveness of this prospective approach for predicting
where crime is likely to occur decays as the temporal horizon extends — it is effective at
predicting the immediate future, but beyond this timeframe the accuracy in the predictions
begin to reduce. Once crime patterns begin to form into hotspots, the places where crimes
previously formed hotspots appear to provide more accurate spatial crime predictions
than using just the patterning principles of repeats and near repeats. A third temporal
frame for predicting spatial patterns of crime is the more distant, long-term future.
Through the spatial modelling of crime patterns against variables that are hypothesised to
explain the spatial distribution of crime, the relationship with these explanatory variables
can be quantified and used to inform the direction of strategic policy and predict how

crime levels may change as a result.

To date, the attention to spatial crime prediction (so called predictive policing) has been
towards using single, all-encompassing techniques to produce predictions. Often, little
thought is given to how the currency of data may influence these predictions and to
whether these predictions are more suitable for the immediate future (i.e., the next day),
the near future (i.e., the next week or month) or are better at providing a long-term forecast
(i.e., for several months and beyond). Little thought has also been given to whether the
technique of choice is equally suitable for providing accurate predictions for all types of
crime. The findings from the current research suggest it is not sufficient to consider that
a single spatial analysis technique will be accurate for predicting where crime is likely to
occur for all crime types and for all periods of the future.

To help illustrate this, | use a weather forecasting analogy. Data on current and very
recent weather conditions are perhaps the best predictors of what the weather is likely to
be like in the immediate future. To forecast what the weather may be like next month,
data in addition to recent conditions would be used. To forecast what the weather may
be like next year, data other than that on recent conditions and from just the last month
would be used. Similarly, the analytical technique or model that is used to forecast what
the weather may be like tomorrow is different to the technique or model used to forecast
the weather outlook for next month, with another different technique or model being used
to forecast what the weather may be like next year. Also, different models are used in
different areas to reflect the predominant type of weather each area experiences. For

example, different models are used in temporal climate zones to those used in tropical
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areas. Using this analogy for crime, it would appear unsuitable to use a single technique,
with little thought given to the input data, to determine accurate spatial predictions of
crime for different periods of the future. Therefore, a temporal framework is suggested

for spatial crime prediction — the crime prediction framework.

The crime prediction framework consists of three temporal prediction periods —
predictions for the immediate future, predictions for the near future and predictions for
the distant future. However, due to important distinctions that explain spatial patterns of
different types of crime, two frameworks are suggested — one where spatial patterns of
crime in the immediate future can be explained using foraging and boost account
behaviours, and a second framework where foraging and boost account behaviours cannot

be used to explain spatial patterns of crime.

Table 12.3. The crime prediction framework - a temporal framework for spatial crime
prediction, where the commission of crime can in part be explained using foraging and

boost account theoretical principles

Time Spatial analysis Input data Theoretical Responses
frame technique reasoning
Optimal Police tactics
Immediate | Prospective Crime records showing foraging Targeted
future mapping recent incidents Boost offender
account supervision
Watering ]
. ] ] Crime
Near Gi* hotspot Crime records showing hole )
. o prevention
future analysis recent hotspots principle S
initiatives
Flag account
. . i Strategic
. Geographically Crime records showing ] )
Distant _ ) Background interventions
weighted persistent hotspots
future _ _ norms and changes
regression Explanatory variables . .
in policy

Table 12.3 shows the crime prediction framework and illustrates the key characteristics
of the first temporal prediction period for spatial crime prediction. The framework
suggests that for the purposes of predicting the immediate future, the prospective mapping

technique should be used. These predictable patterns of crime can be explained using
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foraging and boost account behavioural principles. These types of predictions for the
immediate future are most likely suited to targeting police patrols in those areas where
incidents are predicted, using the patrols’ high visibility to deter any further offending,
utilising stop and search on known offenders who are suspected to have recently
committed incidents, and speaking to people who live or frequent this area, encouraging
them to carry out practical crime prevention activity that will minimise their risk of
victimisation. The immediate activity should also involve minimising the heightened risk
of victimisation to the person or other target that has recently been victimised, and
utilising offender supervision resources to help disrupt and deter the activity of those

suspected to be involved in the commission of crime in this area.

For the purpose of predicting the near future, the crime prediction framework (as
illustrated in Table 12.3) shows that hotspot mapping using the Gi* statistic should be
used. These predictable hotspots of crime can be explained using the watering hole
principle and the flag account theory. However, further analysis would need to be
conducted on the hotspot to determine the favourable geographic conditions that cause
this area to be a watering hole. Police and other agency activity should therefore be
focused on addressing these favourable and enduring conditions that make crime

particularly conducive in this area.

For the purpose of predicting the distant future and long-term change, the crime prediction
framework illustrated in Table 12.3 shows that a GWR analysis of crime, against a
hypothesised set of explanatory variables, is required. The variables that are significantly
correlated in this type of modelling and that can be explained in clear theoretical terms
would inform the direction of strategic interventions. Activity that is focused on
addressing the influence these variables have on crime (where the relationship is
significantly positive) and improving the influence these variables have on crime (where
the relationship is significantly negative) would help bring long-term reductions in crime

that focus on addressing the underlying norms that influence crime levels.

The second version of the crime prediction framework is applied to crime types where
the theoretical concepts of foraging and boost account behaviour are not valid for
explaining the commission of crime. This second framework would, therefore, only
utilise the spatial analysis techniques of Gi* hotspot mapping and GWR analysis for

predicting spatial patterns of crime. The second version of the crime prediction
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framework is illustrated in Table 12.4 and shows that the same principles apply to the
framework illustrated in Table 12.3, with the exception of any prospective mapping
approach. The immediate and near future time frames are combined, with response
activity on where crime is likely to occur within these two time frames following the
analysis of where recent hotspots occurred. The police tactics and focused offender
supervision described in relation to the temporal period of the immediate future from
Table 12.3 would instead be targeted towards where hotspots are predicted to occur.

Table 12.4. The crime prediction framework - a temporal framework for spatial crime
prediction, where the commission of crime cannot be explained using foraging and boost
account theoretical principles

Time frame | Spatial analysis Input data Theoretical Responses

technique reasoning

e Police tactics

e Watering e Targeted

Immediate _ e Crime records hole offender
Gi* hotspot ) o -
and near . showing recent principle supervision
analysis
future hotspots e Flag e Crime
account prevention
initiatives

e Crime records

) showing e Strategic
. Geographically ) ) )
Distant ) persistent e Background interventions
weighted )
future ) hotspots norms and changes in
regression _
e Explanatory policy
variables

These two crime prediction frameworks help direct a realistic response structure for
reducing crime in the areas where it is predicted to occur — in the immediate, near and
more distant temporal terms. In order to determine the types of response most suitable, a
clear theoretical explanation for the patterns needs to be provided. These theoretical
explanations also need to be sensitive and aligned to the different temporal response
arrangements of different agencies — where the focus on police services is to respond
quickly with tactics, while for other agencies some further planning may be required to
organise the response activity. The crime prediction framework points towards the

theoretical principles that explain these spatial patterns and the types of service response
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that would be most suitable. To identify and predict spatial patterns of crime, different
techniques are required, using different types of input data. The frameworks also point
towards the input data that are required and the spatial analysis techniques that are most
suitable for each time frame. The frameworks are also sensitive to what the current
research has distinguished as broadly two groupings of crime — where the commission of
crime can, in part, be explained by foraging and boost behaviour principles, and where
these principles do not apply. It is hoped, therefore, that with wide promotion, the
adoption of the crime prediction framework will further improve how police and public

safety agencies respond to and reduce crime.

12.8. Contributions to the field

This research offers many technical and practical contributions to the study of

geographical patterns of crime and spatial crime prediction. In addition, the research

suggests a new contribution to environmental criminology theory and offers a

comprehensive benchmark analysis of hotspot mapping techniques against which other

spatial crime prediction techniques can be compared. Specific contributions that the
research offers include:

e The introduction of new techniques for measuring spatial crime prediction. These are
the Prediction Accuracy Index, the illustration of the area under the curve measure
applied to spatial crime analysis and the introduction of the Crime Prediction Index

e A template for capturing the key metrics for documenting the spatial prediction
performance of a crime mapping output

o lllustration of the use of the Nearest Neighbour Index for determining if clustering is
present in the crime data being examined and whether these data can be considered
for hotspot analysis

e The first comprehensive metric examination of the commonly used hotspot mapping
techniques for their ability to predict spatial patterns of crime — kernel density
estimation, grid thematic mapping, thematic mapping of administrative areas, and
standard deviation spatial ellipses

e The first comprehensive metric examination of the influence that cell size and
bandwidth size has on KDE hotspot mapping output and this output’s spatial crime
prediction performance

e The first comprehensive metric examination of the Gi* statistic for producing spatial
predictions of crime. This included comparing the standard approach for determining

statistical significance thresholds to the Bonferroni corrected approach, examining the
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influence of cell size and lag distance, and illustrating how the Gi* statistic helps
remove much of the ambiguity in defining areas that are hotspots

The first rigorous assessment of how the temporal stability of hotspot mapping output
compares in relation to the temporal period of input data

The first critical assessment of prospective mapping for generating spatial crime
predictions for different periods of the future and how this compares to Gi* hotspot
mapping

The first comprehensive assessment of how GWR can be applied to crime data. While
previous research has used GWR on crime data, little to date has been documented
using crime data to illustrate the rigorous diagnostic statistical processes that are
applied, the treatment that is often required to make crime data suitable for GWR
modelling, and the interpretation of the results. The research was the first that has
examined the differences in the results between using a Poisson GWR approach and
a Gaussian GWR approach to crime data. In addition, this research was novel in
examining both the hypothesis and exploratory approaches to GWR modelling and
how GWR results could inform long-term spatial crime prediction

The watering hole principle as an advancement to existing environmental criminology
theory to help explain why crimes tend to form clusters. This has included describing
how optimal foraging theory and the boost account theory are often not sufficient on
their own for explaining where crimes such as street crimes against the person are
likely to be committed in the immediate future

The concept of a temporal framework for spatial crime prediction (the crime
prediction framework), recognising that a single technique is unlikely to be suitable
for accurately predicting all spatial patterns of crime and the importance of using
different input data for different prediction time frames. The crime prediction
framework also helps indicate why certain patterns of crime are likely to occur and is
designed to help practitioners recognise the different response roles for countering the
spatial crime patterns that can be accurately predicted.

12.9. Possible new areas of research

The results from this research, while comprehensive, are still limited by the testing of

hypotheses in only one or two study areas and using a sub-set of crime types. However,

analysis of different crime types has helped show where there are consistencies and

differences in the results, with these then being explained by drawing on key theoretical

principles to assist their interpretation. Analysis for two study areas, with differences in
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geography and the spatial distribution of crime has also allowed for a greater level of
robustness in the findings and the practical and policy impacts of these results. That said,
further research that repeats the methods used in this research using data for other areas,
for the same and other crime types and for different time periods would of course be of

value.

The research into KDE focused on using a fixed bandwidth approach. An alternative
approach using an adaptive approach was not applied. The adaptive approach involves
applying a bandwidth size that varies across the study area, determined by an upper limit
in the number of neighbours that are used in any KDE calculation. A focus on only a
fixed bandwidth approach in the current research calls for experiments similar to those
used in this research to test the spatial crime prediction performance of an adaptive
bandwidth approach to KDE, and how the limit on neighbours influences the results. A
weighted approach to KDE can also be applied. The weighted approach involves
weighting the input data by some attribute. For example, this attribute could include
weighting recent events more heavily in the calculation of KDE values. Experiments that
examine and test different weights for different attributes and how they influence spatial

crime predictions may also be a worthwhile area for future research.

The Gi* statistic compares local averages to global averages, and in the experiments
conducted in this PhD research, all areas were considered in the study area for the Gi*
calculations. For certain areas in the study area, the commission of certain types of crime
is not possible. For example, burglaries cannot be committed in lakes or on areas of open
land. Cells representing areas where the commission of crime is not possible could be
removed from the Gi* calculation process to produce a more accurate measure that
compares local averages for where crime is possible, to the global average where crime
is possible. This refinement may improve the prediction performance of Gi* hotspot

analysis.

Throughout, a Bonferroni correction procedure was applied to the Gi* statistic results.
While concerns had been expressed about the highly conservative nature of the
Bonferroni correction approach in an earlier section (section 8.3.2), the approach
produced results where it was easy to discern hotspots of crime. Indeed, the conservative
determination of statistical significance thresholds from applying the Bonferroni

correction appeared to offer an advantage for spatial crime analysis because it produced
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results that led to identifying small, specific areas that were extremely accurate in
predicting where crime was likely to occur. However, further research may involve
experimenting with other types of correction procedures to examine whether these
alternative correction approaches produce spatial predictions of crime that are better than

the Bonferroni corrected Gi* results.

The examination, results and discussion of GWR applied to crime data also introduced
Bayesian spatially varying coefficient modelling as an alternative approach to spatial
regression. The research literature suggests that Bayesian SVC modelling has several
advantages over GWR. However, Bayesian SVC modelling involves significantly more
computer processing in comparison to GWR and at present the availability of the software
is limited to certain specialist products. To date, no application of Bayesian SVC
modelling of crime data has been documented, but again, opportunities for exploring the

application of Bayesian SVC modelling to crime data would be of value.

The focus of the current research has been on examining crime hotspots — the locations
where crime concentrates. However, the examination of crime coldspots — locations
where there is a significant absence of crime — is also of interest. The identification and
analysis of coldspots could, for example, help to better understand the characteristics that
are present that lead to the absence of crime. Research into crime coldspots may then
help identify the conditions that practitioners may then want to promote in helping to

prevent crime in areas where crime hotspots exist.

Finally, the introduction of the watering hole principle, although supported by the
empirical observations from this research, requires further testing. Introducing the
watering hole principle to a wide range of academics for their review and the further
testing of the principles against crime data would be of benefit. For example, this could
include the specific examination of the watering hole principle to crime data, similar to

Bowers and Johnson’s (2004) test of the boost account theory.

12.10. Research summary and conclusions

Hotspot analysis involves identifying areas where there is a high concentration of crime,
relative to the distribution of crime across the study area of interest. Hotspot analysis has
become a common feature of police and community safety analysis to assist in the

targeting of resources. In this sense, hotspot mapping is perhaps the most basic form of
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spatial crime prediction: using crime data from the past to predict where crimes are likely
to occur in the future. In recent years, new mapping techniques have emerged under the
developments of predictive policing, with the claim of offering more accurate spatial
predictions of crime. This PhD research has involved a comprehensive metric
examination of hotspot analysis to investigate the extent to which hotspot analysis
techniques accurately predict spatial patterns of crime and set a benchmark measure for
comparison to these new predictive mapping techniques. The current research has also
developed new technical and theoretical knowledge to support improvements in the

geographical analysis of crime and spatial crime prediction.

The findings from this PhD research have shown the high degree of stability that exists
in spatial patterns of crime. While previous research has also illustrated similar results,
the findings from the current research have extended these previous results in two ways:
examining the influence of different temporal periods of retrospective crime data on the
stability of spatial crime patterns; and examining when crimes that occur in the future

reach a stage of spatial stability.

The findings from this PhD research show that concentrations of crime that are likely to
exist in the future can be determined from relatively short retrospective periods of
recorded crime data. This clustering in retrospective crime data can be identified using
the Nearest Neighbour Index, after which a hotspot mapping technique can be used to
determine where these clusters are evident. A number of techniques are available for
producing hotspot maps of crime. The techniques that have been commonly used in
practice include spatial ellipses, thematic mapping of geographic administrative units,
thematic mapping of grids and kernel density estimation. The current research has shown
that of these techniques, KDE is the one that performs best for determining where crime
is likely to occur in the future.

To compare the performance of different mapping techniques for predicting spatial
patterns of crime, this PhD research has developed a new set of measures for spatial crime
prediction. The first of these was the Prediction Accuracy Index, a simple global measure
that provides an easy to calculate means of comparing the spatial prediction performance
of mapping techniques. During the time this PhD research has developed, the use of the
accuracy concentration curve was illustrated by Johnson et al. (2008b), and was shown

to measure spatial prediction accuracy in more detail by comparing the performance of a
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mapping technique across the full analytical range of spatial scales. This PhD research
has added to the measure provided by the accuracy concentration curve by borrowing
from other fields of scientific study, in particular clinical trials, and introduced the area
under the curve and the Crime Prediction Index to quantify spatial crime prediction

performance more clearly.

While KDE may be the best of the common hotspot mapping techniques for predicting
spatial patterns of crime, practice shows that the hotspot maps generated using this
technique can significantly vary visually when different settings are used for the two main
technical input parameters — the cell size and bandwidth size. To date, analysts and
researchers have been offered little guidance on suitable cell size and bandwidth values
for crime analysis, and no advice on how these parameters influence the predictive
accuracy of the KDE mapping output that is generated. This research has shown that
while cell size has little influence on the prediction performance of KDE hotspot maps,
small cell sizes produce maps with greater visual appeal. Bandwidth size does though
have an influence, with small sizes improving the prediction performance of the KDE

hotspot map.

KDE hotspot mapping, though, is not without its weaknesses, the most problematic being
the difficulty in determining the areas that are hot. This PhD research has examined the
use of the Gi* statistic for identifying areas where the spatial concentration of crime is
statistically significant. In-so-doing, this has helped remove much of the ambiguity in
determining hotspot areas and has shown that this technique consistently performs better
than KDE for predicting where crime is likely to occur. The Bonferroni correction
measure has also been used to further improve the determination of these hotspot areas

by helping to address the issues of multiple testing.

As the interest in predictive crime mapping has developed over the last few years, little
attention has been given to the retrospective period of crime data to use to inform these
predictions, and whether these predictions are consistently accurate for all periods of the
future. In addition, little attention has also been given to whether these spatial crime
predictions are stronger for some crime types than others, whether certain techniques are
more suitable for certain crime types, and why. If the reason why crime is likely to occur
in a certain place at certain time in the future cannot be clearly explained, this then limits

its practical use and the determination of the types of response that would be most suitable
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for addressing the crime that is predicted to occur. This is seen to be a weakness in many
commercially driven predictive mapping techniques which use data for multiple
retrospective periods, on multiple crime types, expecting a single algorithm to produce

accurate predictions for periods of the future.

Prospective mapping stands aside from these new predictive policing techniques because
it is built directly on the frequently observed patterns of repeat and near repeat
victimisation, and the theoretical principles of optimal foraging theory, boost account
theory and crime pattern theory. The prospective mapping technique is sensitive to how
offenders tend to operate in spates, and has become a popular technique of choice for
predicting spatial patterns of burglary. When comparing, in the current research, the
output from prospective mapping of burglary to Gi* hotspot analysis, prospective
mapping performed better for predicting where burglaries were likely to occur in the
immediate future (within the next week). However, for street crimes against the person
such as theft and assaults, Gi* hotspot analysis more accurately predicted where these
types of crimes were most likely to occur. The reason for Gi* hotspot analysis performing
better in predicting spatial patterns of crime was considered to be due to the offending
behavioural concepts of foraging and the boost account being less relevant for theft from
the person and assault offences. Instead, the spatial clustering of theft from the person
and assaults was considered to be more related to occurring in areas where the geographic
conditions for this type of crime are highly favourable. In addition, the findings showed
that the predictions generated using prospective mapping were less accurate than those
generated using Gi* when the time frame was for the near future (beyond the next week).
Collectively, these findings that compared the results for Gi* hotspot analysis to
prospective mapping, for different crime types, for different retrospective periods of
crime data and for predicting crime for different time periods of the future have resulted
in the introduction of the watering hole principle to help theoretically explain why crime
is attracted to areas where favourable geographic conditions exist. While crime pattern
theory, the routine activity approach and the rational choice perspective help to explain
why spatial patterns of crime concentrate in places, the watering hole principle helps
further explain where these concentrations are most likely to emerge and why. Asaresult,
in many cases a combination of prospective mapping and hotspot mapping should be used
for predicting where crime is likely to happen in the near future. This combined approach
that uses these two spatial analysis techniques is captured in the crime prediction

framework. The crime prediction framework shows when and why hotspot analysis
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and/or prospective mapping should be used, the input data required, the theoretical
reasoning that explains the spatial patterns that are likely to occur, and the types of
response activity most suitable.

The original ambition for examining the use of geographically weighted regression was
to determine at the local level the reasons why hotspots exist, and whether these reasons
differed between hotspots. At present, the spatial precision of most of the data of interest
for exploring spatial relationships with crime is not precise enough to enable these
explanatory distinctions between hotspots. Additionally, the heavy smoothing nature of
GWR does not permit analysis at the spatial scale that hotspots are identified. While
techniques such as Bayesian spatially varying coefficient models appear to offer some
potential in exploring these spatially precise relationships, GWR modelling still offers the
ability to identify more macro spatially varying relationships between crime patterns and
other variables. The findings from the current research have illustrated the use of GWR
for identifying the variables that spatially vary in their relationship with the distribution
of crime has introduced a third temporal prediction period to the crime prediction
framework. This third temporal prediction period is used for informing the direction of

strategic policy and making long-term predictions on how crime may change.

This PhD research has shown that extremely accurate predictions of where crime is likely
to concentrate in the future can be best determined by using good hotspot analysis of
where crimes have concentrated in the past. While prospective mapping continues to
offer better predictions of where crime against property is likely to occur in the immediate
future, good hotspot analysis using the Gi* statistic is better at identifying where street
crimes against the person are likely to occur in the immediate future and for identifying
where crimes are likely to form hotspots in the near future. The reasons for these hotspots
can now be better explained with the improvement in the theory (the watering hole
principle) on why crime is likely to form clusters, which in turn can better assist
practitioners in determining how to address the favourable conditions that lead to these
concentrations of crime. Spatial crime prediction is expected to continue to gain interest
in the coming years. This PhD research offers a significant step forward in helping to
inform practitioners about how spatial crime patterns can be predicted, contributes to
developments in environmental criminology on why crime hotspots are likely to form,
and offers a comprehensive metric examination into the technical application of hotspot
mapping for improving the geographical analysis of crime.
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