
Magnetic order and excitations

in perovskite iridates studied with

resonant X-ray scattering techniques

Stefano Boseggia

A thesis presented for the degree of

Doctor of Philosophy

Department of Physics and Astronomy

University College London

United Kingdom

July 2014





I, Stefano Boseggia confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm

that this has been indicated in the thesis.





to Maya and Massimiliano





Magnetic order and excitations in

perovskite iridates studied with resonant

X-ray scattering techniques

Stefano Boseggia

Abstract

Transition metal oxides containing a 5d element are increasingly attracting

attention as an arena in which to search for novel electronic states. These

are proposed to derive from the interplay between the strong spin-orbit

interaction (SOI) in the 5ds, the electronic correlations and crystal field

effects. Iridium based compounds have featured predominantly in this

quest, with considerable focus on the layered perovskites in which a novel

“spin-orbit induced” Mott-like insulating state emerges. In this case, the

SOI leads to the jeff = 1/2 ground state for the Ir4+ (5d5) ions observed

in Sr2IrO4.

In this thesis I demonstrate that resonant X-ray scattering techniques

at the Ir L edges are a valuable tool to investigate the electronic and

magnetic properties of iridium oxides. In particular the evolution of the

jeff = 1/2 state as a function of structural distortions in the single layer

iridates Sr2IrO4 and Ba2IrO4, and as a function of the dimensionality in

the bilayer Sr3Ir2O7 is investigated. My findings show that the magnetic

and electronic structures in the single layered perovskites are remark-

ably robust to structural distortions. Conversely, adding an extra IrO6

layer (Sr2IrO4 → Sr3Ir2O7) the ground and excited states change dra-

matically. Both these phenomena can be linked directly to the unique

three-dimensional character of the jeff = 1/2 state.

Furthermore, the X-ray resonant scattering cross-section of Ir4+ at the

L2,3 edges, calculated in a single-ion model, shows a non-trivial depen-

dence on the direction of the magnetic moment, µ. These results provide

important insights into the interpretation of X-ray data from the iridates,

including that a jeff = 1/2 ground state cannot be assigned on the basis

of L2/L3 intensity ratio alone.
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Introduction

Interest in strongly correlated electronic systems has recently been ex-

tended from 3d transition metal oxides (TMOs) to 5d oxides. 3d TMOs

host a plethora of phenomena in solid state physics, from high temperature

superconductivity in cuprates, to colossal magnetoresistance in perovskite

manganites and, more recently, multiferroicity. These effects are mainly

ascribed to the strong electronic correlations that distinguish 3d TMOs.

5d TMOs are generally expected to be weakly correlated. However, the

interplay between the strong spin-orbit interaction (SOI) possessed by 5d

systems and correlation effects pushes these materials towards the strongly

correlated regime, favouring the emergence of new correlated ground states

with the added ingredient of entangled spin and orbital moments. As a

consequence, 5d TMOs show a rich phase diagram as a function of the

electronic correlation U/t, and the SOI λ/t, in units of the hopping am-

plitude t (see Fig. 1). In the bottom-left corner of Fig. 1 reside simple

metals or band insulators. In the top-left corner where the effect of elec-

tronic correlation dominates, lie Mott insulators. In the strong SOI regime

(bottom-right corner) we find topological insulators. At the center of the

phase diagram where electronic correlations and SOI cooperate, reside 5d

TMOs.

To date most attention has been focused on iridates, as a consequence

of the reported realization of a novel quantum “jeff = 1/2” ground state.

This state emerges from the combined effects of cubic crystal field and
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topological
band insulators

simple
metals or
band
insulators

Mott
ins.

strong spin-orbit
Mott insulators

5 systemsd

l/t

U
 t/

Figure 1: Schematic phase diagram for electronic material as a function of the
electronic correlation U/t and the SOI λ/t, where t is the hopping
amplitude. In the bottom-left corner reside simple metals or band
insulators. In the top-left corner where the effect of electronic cor-
relation dominates, lie Mott insulators. In the strong SOI regime
(bottom-right corner) we find topological insulators. At the center
of the phase diagram where electronic correlations and SOI cooper-
ate, reside 5d TMOs like iridates. Adapted from Ref. [1]

the SOI which act jointly on the Ir ion. This novel ground state shows

an unusual 3-dimensional shape which is a direct manifestation of the

spin-orbit entanglement. Since the macroscopic physical properties always

reflect the microscopic ones, a tool sensitive to the atomic wave functions

is highly desirable to derive a fundamental understanding of the displayed

phenomena. X-ray resonant scattering techniques have played a leading

role in driving this field forward, due to the fact that the incident X-ray

energy can be tuned to excite transitions between specific electronic wave

functions.

The purpose of this thesis is therefore to fully exploit the power of

resonant scattering techniques to investigate the magnetic order and the

excited states in layered perovskite iridates.

In Chapter 1 I present the main ingredients that characterize 5d TMOs

and distinguish them from the 3d counterpart. I introduce the “spin-orbit

induced” jeff = 1/2 state and discuss its dependence on the magnetic
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moment orientation and the tetragonal crystal field as obtained from a

single-ion model. Finally, I present the superexchange Hamiltonian usu-

ally used to describe layer perovskite iridates.

In the first part of Chapter 2 the general formalism of resonant X-ray

scattering is presented. The central part of the chapter is dedicated to the

calculation of the resonant scattering cross-section in iridium oxides within

a single ion model. As I will demonstrate, these calculations provide a

valuable tool to interpret the resonant elastic (REXS) and inelastic (RIXS)

X-ray scattering experiments performed at the Ir L2,3 edges presented in

Chapters 3–5.

In the last part of the Chapter 2, I briefly introduce two synchrotron

beamlines which have been used in the present work. I16 at Diamond Light

Source is a magnetic scattering beamline where the magnetic structure can

be investigated by means of resonant or non-resonant magnetic scattering

techniques. ID20 at the ESRF is a RIXS beamline dedicated to the study

of momentum-resolved magnetic and electronic excitations.

Chapters 3–5 contain the main experimental results. In Chapter 3, I

investigate the evolution of the jeff = 1/2 state as a function of structural

distortions in the single layer iridates Sr2IrO4 and Ba2IrO4. The first part

of the chapter is dedicated to the Sr based single layer iridate. Sr2IrO4 is

a prototype of the class of “spin-orbit induced” Mott insulators believed

to be described by a jeff = 1/2 ground state. In Sr2IrO4, the strong SOI is

predicted to manifest itself in the locking of the magnetic moments to the

correlated rotation of the oxygen octahedra that characterizes its twisted

layered perovskite structure. Using X-ray resonant magnetic scattering

(XRMS) at the Ir L3 edge I unravel fine details of the basal-plane canted

antiferromagnetic structure. Furthermore, I confirm that in Sr2IrO4 the

magnetic moments rigidly follow the rotation of the oxygen octahedra,

indicating that, even in the presence of significant non-cubic structural

distortions, it is a close realization of the jeff = 1/2 state.

The second part of Chapter 3 deals with the magnetic and electronic

properties of Ba2IrO4 and offers a comparative study with the Sr-based

compound. In Ba2IrO4, the lack of octahedral rotation leads to a simple

basal-plane antiferromagnetic structure which I report for the first time by

means of Ir L3 edge XRMS. A comparative study between the single layer
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iridates reveals that the dominant, long-range antiferromagnetic order is

remarkably similar in the two compounds. The robustness of the magnetic

properties to the considerable structural differences between the Ba and

Sr analogues is discussed in terms of the enhanced role of the spin-orbit

interaction in 5d transition metal oxides.

Chapters 4–5 explore the evolution of the jeff = 1/2 state as a function

of the dimensionality in the bilayer member of the Ruddlesden-Popper se-

ries Srn+1IrnO3n+1, Sr3Ir2O7. Chapter 4 is dedicated to the investigation

of the ground state properties of Sr3Ir2O7 by means of XRMS. Surpris-

ingly, the addition of an extra IrO6 layer greatly modifies the magnetic

structure of the bilayer compound which, in contrast to the single layer

iridates, shows a c-axis collinear antiferromagnetic state. However, the

jeff = 1/2 state is stable even for a system in proximity of a metal-to-

insulator transition, as established by my investigation.

Chapter 5 finally presents a comprehensive RIXS study of the mag-

netic excitations in Sr3Ir2O7. Ir L3 edge RIXS is a technique that has

emerged only very recently to study propagating magnetic excitations in

iridium oxides and can be seen as a complement in the hard X-ray regime

of the more established Cu L3 RIXS. In the first part of Chapter 5, I

present calculations of the RIXS cross-section for a single ion model which

demonstrate the possibility to observe “spin-flip” processes at the Ir L3

edge. In the second part I exploit L3 edge RIXS to study the low-energy

magnetic excitations in Sr3Ir2O7. My study reveals the presence of two

gapped magnetic modes that are assigned to transitions from a dimerised

singlet ground state to two triplet excited states. My findings reveal the

dominant role of the intrinsic strong anisotropies which distinguishes the

bilayer Sr3Ir2O7 from the single layer compounds.

Chapter 6 briefly summarizes the main conclusions of the present work

and introduces future developments linked to this subject.



Chapter 1

Novel electronic states in

perovskite iridates

Recently, Ir-based transition metal oxides (TMOs) have been identified as

a fertile ground to search for novel correlated ground states and excita-

tions. The salient interactions in these compounds (the electronic band

width, on-site Coulomb repulsion, and spin-orbit coupling) are on a simi-

lar energy scale, opening the doors to exotic new states of matter. In this

Chapter we will first introduce the main ingredients that characterize 5d

TMOs and distinguish them from the 3d counterpart. Afterwards, we will

introduce the “spin-orbit induced” jeff = 1/2 state and we discuss its de-

pendence on magnetic moment orientation and tetragonal crystal field as

obtained from a single-ion model. Finally, we present the superexchange

Hamiltonian currently used to describe layered perovskite iridates.
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1.1 Strongly correlated electron systems

In the last few decades transition metal oxides (TMOs) have been the

subject of intensive studies. This is due to the fact that these materials

host a number of intriguing phenomena: from high temperature super-

conductivity in cuprates [2], to colossal magnetoresistance in perovskite

manganites [3] and, more recently, multiferroicity [4]. This colourful range

of physical properties is due to the interplay of charge, spin, and orbital

degrees of freedom, which all play an active role in TMOs. Band structure

calculations often fail to describe the behaviour of the non-fully itinerant

electrons in these materials, mainly because they are treated as indepen-

dent particles. Actually, different particles cannot be treated as indepen-

dent and, in general

〈AB〉 6= 〈A〉〈B〉, (1.1)

i.e. the expectation value of a product of quantities usually differs from

the product of the expectation values of the single quantities. This effect

is called correlation and it is particularly relevant when electrons are con-

fined in space, as for example in the case of localized 3d bands (as it will

be show in the Section 1.2.2).

Significant theoretical efforts have been made to produce a new frame-

work to describe appropriately these systems. A model that has been

successfully used to describe 3d electrons in solids is the single-band Hub-

bard model [5, 6]. This is an extension of the tight-binding model where

an additional interaction term HI is added to the hopping term HH. The

total Hamiltonian is usually written as

H = HH +HI =
∑

i,j

∑

σ

tijc
†
iσcjσ + h.c.+ U

∑

i

ni↑ni↓ (1.2)

where c†iσ(ciσ) are operators that create (annihilate) an electron of spin
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Figure 1.1: Evolution of the density of states (DOS) of electrons in the dy-
namical mean-field solution of the Hubbard model at half filling.
U is the on-site electron correlation, W is the bandwidth of non-
interacting electrons which is proportional to the effective hopping
integral via the coordination number N . (a) For non interacting
electrons (U =0) the Fermi level is located at the middle of the
band and the system is a classical metal. (b) In the weakly corre-
lated regime (U/W< 1) electrons can be described as quasiparticle
whose DOS resembles the one of free electrons. (c) Enhancing the
level of correlation (U/W> 1) the spectrum shows 3 peaks typical
of correlated metals: a quasi-particle feature at the Fermi level and
a lower (for E < EF) and an upper (for E > EF) Hubbard band
start to grow more apart. (d) In the strongly correlated regime
(U/W ≫1) a Mott-Hubbard transition into an insulating state
takes place. Adapted from [7].
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σ =↑, ↓ at a site i, tij = tji is the hopping integral between adjacent sites,

and niσ = c†iσciσ. Two electrons at the same lattice site i pay a greater

energy cost U . This model describes in a very simple way the competition

between the kinetic term HH that tries to delocalize the electrons making

the system a conductor and the correlation term HI that forces the elec-

trons to remain localized near a site. If we consider a single electron per

site, i.e. a half filled band, in the limit U/t→ 0 the system is metallic, in

agreement with band theory calculations. In the opposite limit, U/t→ ∞
, a double occupation of the same site is energetically very unfavourable

and thus strongly suppressed. In this case 〈ni↑ni↓〉 cannot be factorized

since 〈ni↑ni↓〉 6= 〈ni↑〉〈ni↓〉 and the electronic correlations localize electrons

on a site driving the system into an insulating state. We will therefore

expect a metal-to-insulator (MIT) transition to happen as a function of

U/t, this is the so-called “Mott-Hubbard” transition. Fig. 1.1 shows the

evolution of the density of states (DOS) of electrons calculated in a dynam-

ical mean field approach for increasing values of U from a classical metal

(U =0) (a) to a Mott insulator (U/W ≫1)(d), where the bandwidth W

is proportional to the hopping term t via the coordination number N .

Several 3d TMOs undergo a “Mott-Hubbard” MIT, for a comprehensive

review see Ref. [8].

An interesting feature of the Hubbard model is that in the strong-

coupling limit (U/W ≫1), where electrons are mainly localized, it favours

an antiferromagnetic coupling between nearest neighbours. This is in fact

the only way electrons can hop to the nearest site respecting the Pauli

exclusion principle. Therefore, in the strong coupling regime, the Hubbard

model is converted into the antiferromagnetic Heisenberg model

H = J
∑

i,j

Si · Sj (1.3)

where J = 4t2/U is the superexchange between nearest neighbors i, j.

As will be shown in the next chapters, the Heisenberg term is often the

dominant in the low energy physics of layered perovskite iridates.
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1.2 From 3d to 5d TMOs

In the next sections we will show how the main ingredients that make

the physics of 3d transition metal compounds so peculiar and fascinating

are modified for the 5d counterpart. Moving down from the 3d transition

metal row to the 5d transition metal row we are dealing with much heavier

ions. This has two major consequences: a strong enhancement of the spin-

orbit interaction and a greater spatial extension of the valence d-orbitals.

1.2.1 Spin-orbit coupling

In this section we derive in a semiclassical way the spin-orbit coupling

term emphasizing its dependence on the atomic number Z. We consider a

hydrogen-like system with an electron orbiting around a positively charged

nucleus. This problem can be more conveniently reformulated in the elec-

tron rest frame, where a positively charged particle is orbiting around an

electron at rest (See Fig.1.2). The positive charge produces a magnetic

field B that tends to align the magnetic moment of the electron µ along

the direction of the field. The magnetic field experienced by the electron

at the origin is given by

B = −v × E

c2
= −v × (−∇V (r))

c2
=

1

c2
v × r

1

r

dV (r)

dr
, (1.4)

where V (r) is the electrostatic potential due to the nucleus and v is the

velocity of the electron (nucleus). Taking into account the definition of
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the orbital angular momentum, ~L = mev × r, Eq.1.4 can be rewritten

as:

B =
~

mec2
L
1

r

dV (r)

dr
. (1.5)

The magnetic moment of the electron interacting with this magnetic field

is given by

µ = − e

2me
~gS = − e

me
~S, (1.6)

where S is the spin angular momentum and a spin g-factor g=2 has been

assumed. The Hamiltonian representing the interaction between the mag-

netic field due to the orbiting nucleus and the electron magnetic moment

can be written as:

HSO = −µ ·B =
e~2

m2
ec

2
S · L1

r

dV (r)

dr
. (1.7)

Substituting the electrostatic potential in a hydrogen-like system, V (r) =

Ze/4πǫ0r, the Hamiltonian becomes

HSO =
Ze2~2

8πm2
ec

2ǫ0
S · L 1

r3
, (1.8)

where a factor 1/2, known as Thomas precession [9], has been added in

order to correct for the transformation from one inertial system to the

other. We note that an elegant derivation of the spin-orbit interaction

naturally comes out of the relativistic Dirac equation [10]. By recalling

that for a |n, l〉 electronic state

〈r−3〉n,l =
Z3

a30

2

n3l(l + 1)(2l + 1)
, (1.9)

where a0 is the Bohr radius, the spin-orbit Hamiltonian finally reads as

HSO =
Z4e2~2

4πm2
ec

2ǫ0a
3
0n

3l(l + 1)(2l + 1)
L · S = λL · S (1.10)

The term Z4/n3 explains the significant variation in the spin-orbit cou-

pling (SOC) constant λ that takes place moving from 3d ions (λ3d ∼ 20−40

meV) [11] to 5d ions (λ5d ∼ 200− 500 meV) [12].
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1.2.2 More delocalized d states

The second difference between 3d and 5d transition metal ions is that

the 5d orbitals are more delocalized than the corresponding 3d orbitals

of lighter atoms. In Fig.1.3 we show the radial distribution function

r2Rnd(r)
2 of cobalt and iridium, where Rnd(r) is the radial wave func-

tion that reads

R3d(r) =
1

9
√
30
ρ2
(
Zeff

a0

) 3
2

e−ρ/2, (1.11)

R5d(r) =
1

150
√
70

(
42− 14ρ+ ρ2

)
ρ2
(
Zeff

a0

) 3
2

e−ρ/2 (1.12)

in atomic units, for n =3, 5 respectively. ρ = 2Zeffr
3a0

, where a0 is the

Bohr radius and Zeff is the effective nuclear charge screened by the inner

electrons. We have chosen Zeff(3d) = 11.86 (for Co 3d7) and Zeff(5d) =

18.70 (for Ir 5d7) [13]. We notice that for a 3d-ion there is an increased

probability to find a d-electron very close to the nucleus at r∼ 0.4 Å,

whereas for the corresponding 5d-ion, the electron is more likely to be

found at r∼ 1 Å. This means that when the single ion is included in a

crystal the strength of the interactions with the surrounding ligands can

be rather different in the two cases.

A typical structure of transition metal oxides is a 6-fold coordinated

octahedron where the d-metal occupies the center of the octahedron and

the negatively charged ligands (usually oxygens) the vertexes (see for ex-

ample Fig 1.3 and Fig A.1). In this structure, the orbitals that point

toward the ligands experience a stronger Coulomb repulsion that the oth-

ers. This is evident if we look at the bottom panel of Fig. 1.3, where we

present a 3d and a 5d ion at the center of a octahedral cage of oxygens in

the xy plane, for a typical d-ion-O distance of about 2 Å. In the xy plane

the interactions with the oxygen atoms are mainly due to the metal xy

and x2 − y2 orbitals. Owing to the more extended nature of 5d orbitals,

the difference in the distance between the xy orbitals and the x2 − y2

orbital from the negatively charged oxygens (rnd2 − rnd1 ) is greater for the

bigger ion. As a consequence the difference in the electrostatic potential

experienced by xy and x2 − y2 orbitals respectively will be greater in 5d-
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systems. In general, the effect of the octahedral cage of oxygens will be to

reduce the symmetry of the metal ions from spherical to cubic (Oh) and to

split the atomic degenerate d-states into a lower triplet, the t2g states and

a upper doublet, the eg states. The latter being the orbitals that point

toward the ligand oxygens. A full derivation of the d-orbitals in a cubic

ligand field is given in Appendix A. Here we report only the conclusions.

The energy splitting between eg and t2g states is given by

E(eg)− E(t2g) = 10Dq =
35Ze2

4a5
2

105
〈r4〉nd (1.13)

where 〈r4〉nd =
∫
r4r2|Rnd(r)|2dr ands a is the distance between metal and

ligand atoms. Applying Eq. 1.13 with 〈r4〉3d = 1.28527 a40 and 〈r4〉5d =

20.2859 a40 to the Co and Ir ions, one gets 10Dq(3d)≈ 151 meV, and

10Dq(5d)≈ 2.34 eV respectively. Even if this result is the outcome of

a pure ionic model, where any covalency in the bonds has been neglected,

it provides a good estimate of the change in the strength of the crystal field

interaction when moving from 3d to 5d transition metal oxides. A direct

effect of the enhanced crystal field interaction is that 5d-ions are usually

in a low-spin configuration because it is more convenient to minimize the

strong crystal field energy rather than the Hund’s exchange coupling. Ex-

perimental values of the crystal field splitting in 5d-system are usually ∼ 3

eV [14, 15, 16, 17].

Another consequence of the more delocalized nature of 5d-orbitals is

that the bandwidth is increased in 5d compounds. In order to illustrate

this we refer to the tight-binding model. In this approximation the crystal

Hamiltonian can be written as a sum of the atomic one plus a term that

contains all the corrections to the atomic potential required to produce

the full periodic potential of the crystal,

H = Hat +∆U(r). (1.14)

Diagonalizing the Hamiltonian in the basis of a linear combination of

atomic orbitals gives the band dispersion ǫ(k) where the bandwidth W is
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proportional to the overlap integral

γij(R) = −
∫
φ∗
i (r)∆U(r)φj(r−R) (1.15)

where φi(r), φj(r − R) are the atomic wave function on different sites.

More delocalized atomic d states lead to a greater value of the overlap

integral γij and corresponding higher bandwidth W . Experimental values

of W range from 2 eV to 4 eV and 4 eV to 10 eV for 3d and 5d orbitals,

respectively. The bandwidth W has also important effects on the mobility

of the electrons. In fact writing the electron effective mass as

m∗ =
~
2

∂2ǫ(k)/∂k2
∼ ~

2

W
(1.16)

we notice that a narrow band results in an high effective mass. This

means that in a narrow 3d band electrons are heavier and slower whereas

in a wider 5d bands they are lighter and faster. The narrower a band,

the longer an electron resides on an atom experiencing the presence of

other electrons resulting in an enhancement of the electronic correlations

U . This is the reason why 3d systems are usually considered “strongly-

correlated electron systems” (U ∼ 5–7 eV), while 5d systems are described

as “weakly-correlated electron systems” (U ≤ 2 eV).

1.3 Phase diagram of 5d systems

In the previous section we have described how the most significant in-

teractions are modified by the inclusion of heavy 5d-atoms. The simple

Hubbard model of Eq. 1.2 will thus be modified by the addition of the

spin-orbit coupling term as:

H =
∑

i,j

∑

σ

tσijc
†
iσcjσ + h.c. + U

∑

i

ni↑ni↓ + λ
∑

i

Li · Si (1.17)

Witczak-Krempa et al. [1] and Pesin and Balents [18] have proposed a

schematic phase diagram based on the solution of Eq. 1.17 in terms of the

electronic correlation U/t and the SOC λ/t. The phase diagram (Fig. 1)
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is initially divided into four quadrants derived from the intersection of two

lines separating the weak from the strong correlation regimes and the weak

from the strong SOC regimes. The traditional 3d transition metals lie on

the left hand side of the diagram and a metal-insulator transition (MIT)

from a simple metal to a Mott insulator is expected when U/t ∼ 1. By

contrast upon increasing the SOC λ, a simple metal can be transformed

into a topological insulator1.

Considering the combined effect of electronic correlations and SOC,

we realize that the two phenomena tend to cooperate rather than com-

pete. Let consider first the effect of the SOC. This usually acts on the

valence electrons by removing degeneracies thus forcing the narrowing of

the valence bands. The narrower bands generated by SOC are then more

susceptible to the Coulomb repulsion U , resulting in a downward shift

of the horizontal boundary upon increasing λ. If we consider correlation

effects first, U favours a localization of the electrons, as a consequence

SOC that is usually insensitive to delocalization, is relatively enhanced.

In fact, in the U/t ≫ 1 regime, the low energy physics of the system is

dictated by superexchange J ∼ t2/U rather than the hopping process t.

This means that the SOC regime is greatly enhanced with increasing cor-

relations, since the effective bandwidth is J rather than t. A weak SOC

system should in fact satisfy λ ≪ J ≪ t. As a consequence, for U/t ≫ 1

the vertical boundary of the phase diagram shifts to the left.

There is an interesting intermediate region where the insulating be-

havior is obtained through the combined action of correlations and SOC.

In this area reside 5d-systems like iridium oxides and osmium oxides. The

former have attracted significant attention after the first observation of a

“spin-orbit induced” Mott-insulating state in Sr2IrO4 [19]. The major-

ity of these oxides are weakly insulating materials containing iridium Ir4+

ions. Since the orbital moment is no longer quenched like in 3d metals

due to the SOC effect, interactions are thought to depend strongly on the

lattice geometry.

Most interesting crystal structures are a large family of R2Ir2O7 (R =

1A topological insulator is a material with time reversal symmetry and non-trivial
topological order, that behaves as an insulator in its interior but whose surface contains
conducting states.
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rare earth) pyrochlores, the honeycomb lattice (Li/Na)2IrO3 and the lay-

ered perovskites (Ba/Sr)n+1IrnO3n+1 (n =1, 2, ∞). The pyrochlore iri-

dates host along the whole series from Ho to Nd a peculiar continuous

MIT that in most of the cases is connected to a magnetic transition to an

antiferromagnetic all-in all-out state [20]. For this class of material, exotic

topological phases have been predicted based on theoretical investigations,

ranging from topological insulators [1, 18], to spin liquid behaviour, Weyl

semimetals [21], and axion insulators [22].

The honeycomb lattice iridates (Li/Na)2IrO3 have been the subject

of several theoretical studies. They are in fact considered a promising

platform for the realization of the Kitaev-Heisenberg model, a perfect

solvable Hamiltonian relevant for quantum computing [23, 24]. Several

experimental studies followed these predictions looking for the footprint

of the realization of Kitaev Hamiltonian, e.g. the onset of a spin-liquid

state [25, 26, 27].

The latter class of iridates is composed by the Ruddlesden-popper se-

ries (Ba/Sr)n+1IrnO3n+1 (n =1, 2, ∞). The interest in these compounds

was first triggered by the observation of a “spin-orbit induced” insulating

state in Sr2IrO4 [19, 14]. Further impetus was added by their structural

and magnetic similarities to layered cuprates, and not least the predic-

tion of superconducting states in the doped compounds [28, 29]. Layered

perovskite iridates will be the main subject of this thesis.

1.4 The jeff = 1/2 state

Irrespective of the crystal structure adopted by these systems, the starting

point to describe iridium oxides is an Ir4+ ion in a 5d5 configuration at

the center of a IrO6 octahedron. As discussed in Section 1.2, the 5-fold

degenerate d-orbital states, under the influence of a cubic crystal field (Oh

symmetry), are split into a lower orbital triplet, the t2g states, and an

upper orbital doublet, the eg states. Due to the strong crystal field split-

ting (∼ 3 eV), the 5 d-electrons reside only in the t2g manifold, the Ir ion

adopts thus a low spin configuration and we can neglect as a good aprox-

imation the contribution of the eg orbitals. The system can be treated
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as a one-hole particle in the t2g subspace. It is known that the projec-

tion of the orbital angular momentum operator onto the t2g subspace is

equivalent to an effective angular momentum Leff =−1 [30]. This can be

seen by calculating the angular momentum matrices for one particle in

the d-states, which read:

Lx =




0 0 0 0 −i
0 0 0 0 −i

√
3

0 0 0 i 0

0 0 −i 0 0

i i
√
3 0 0 0



, Ly =




0 0 0 −i 0

0 0 0 i
√
3 0

0 0 0 0 −i
i −i

√
3 0 0 0

0 0 i 0 0




(1.18)

and Lz =




0 0 2i 0 0

0 0 0 0 0

−2i 0 0 0 0

0 0 0 0 i

0 0 0 −i 0



.

The matrices are given in the {|x2 − y2〉, |3z2 − r2〉, |xy〉, |xz〉, |yz〉} ba-

sis. The calculation is straightforward by writing the d-states in the spher-

ical harmonic basis |Yl,ml
〉 and by using the relations:

Lz|Yl,ml
〉 = ml~|Yl,ml

〉 and L±|Yl,ml
〉 = ~

√
l (l + 1)−ml (ml ± 1)|Yl,ml±1

〉
(1.19)

with L± = Lx±iLy . By inspecting the matrices 1.18, we notice that in the

eg subspace block the matrix elements of L are zero. This means that the

orbital angular momentum is completely quenched. Conversely, the ma-

trix elements in the t2g subspace are equivalent to that of an orbital angular

momentum −1: |Lz = 0〉 ≡ |xy〉 and |Lz = ±1〉 ≡ − 1√
2
(i|xz〉 ± |yz〉).

Adding the SOC to the Leff =−1 manifold, removes the degeneracies of

the t2g subspace via the formation of a total angular momentum quartet,

the jeff = 3/2 state, lower in energy, and an upper jeff = 1/2 doublet

(see Fig. 1.4). The former is fully occupied by 4 electrons, the latter

is half filled. The multiplet structure is therefore reversed compared to

the atomic orbital angular momentum l=1. This is in agreement with
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Figure 1.4: Schematic energy diagram for Ir 5d (t52g) configuration. The energy

levels of the Ir4+ ion are split first by a strong octahedral crystal
field, secondly by the action of the SOC that produces a filled
jeff = 3/2 quartet, and a half filled jeff = 1/2 doublet. The ground
state of the system is therefore a hole in the jeff = 1/2 state. A real
space representation of the wave functions of the jeff = 3/2 state
(|1,±〉 and |2,±〉 doublets) and the jeff = 1/2 state (|0,±〉 doublet)
are given. The |0,±〉, |1,±〉, and |2,±〉 doublets are defined in
Eqs. 1.34–1.36.

Hund’s third rule if we consider first the effect of SOC and subsequently

the octahedral crystal field. In this scenario the jeff = 1/2 state is branched

off from the atomic j=5/2 through the effect of the cubic crystal field [19].

The strong SOC that characterizes 5d-ions produces a very narrow

jeff = 1/2 band. The electronic correlations U , even if modest compared

to 3d-metals, act on an effective bandwidth that has been reduced by the

SOC and the system is close to the Mott instability, Weff

U
∼ 1. The coop-

eration between U and SOC drives the system into an insulating state by

splitting the jeff = 1/2 band into a lower and upper Hubbard band sepa-

rated by a small energy gap (∼ 0.5 eV) [31]. The onset of this insulating

state has been observed in several iridates: from the layered perovskites

Sr2IrO4 [32], Sr3Ir2O7 [33], Ba2IrO4 [34] to other crystal structures like

CaIrO3 [35], (Na/Li)2IrO3 [36] and the pyrochlores R2Ir2O7 [20].

The “spin-orbit assisted” Mott insulating model was first proposed

in the pioneering work of Kim et al. [19] in Sr2IrO4, based on optical
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conductivity, angle resolved photoemission (ARPES), X-ray absorption

spectroscopy (XAS) measurements and first-principle band calculations.

This novel ground state is a coherent superposition of the three t2g orbitals

with opposite spin polarization between xy and xz/yz states, and it is

usually written as:

|jeff = 1/2,±〉 = ±|xy,±〉+ |yz,∓〉 ± i|xz,∓〉√
3

(1.20)

where ± indicates the spin polarization. A direct consequences of Eq. 1.20

is that in the jeff = 1/2 state magnetic and electronic interactions are

strongly directionally dependent. This is due to the admixture of orbitals

of different symmetry by the SOC and is evident from the “3D shape” of

the jeff = 1/2 doublet. For a real space representation of the jeff = 1/2

wavefuncion see Fig.1.4. We emphasize that the pure jeff = 1/2 state

is realized only in perfect cubic symmetry. The effect of tetragonal or

trigonal distortions that typically affect the octahedral environment in

iridium oxides can significantly alter and, for strong non-cubic field, even

destroy the jeff = 1/2 state.

Another important point to note in the expression of the jeff = 1/2

state is that Eq. 1.20 is valid only for magnetic moments parallel to the

quantization axis z in the octahedral reference frame. As we show in

Section 1.4.1 when the magnetic moment lies in the basal-plane the jeff =

1/2 wave function has a different form (see Eq.1.40). Although this does

not have significant consequences on the physics at play, the resonant

scattering cross-section is strongly dependent on the moment direction

(see Section 2.3).

1.4.1 Single ion model: competition between SOC

and tetragonal distortion

The work presented in this section has been published as “Resonant X-

ray Scattering and the jeff = 1/2 Electronic Ground State in Iridate Per-

ovskite” by M. Moretti Sala, S. Boseggia, D. F. McMorrow and G. Monaco,

Phys. Rev. Lett. 112, 026403 (2014) [37].
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In order to investigate how the competition between SOC λ and tetragonal

crystal field ∆ affects the jeff = 1/2 state, we exploited a single-ion model,

in the t2g subspace, hole representation, where λ and ∆ are treated on an

equal footing. The Hamiltonian thus reads:

H = HSO +HCF = λL · S−∆L2
z, (1.21)

The calculation of the SOC Hamiltonian is straightforward in the spherical

harmonic basis and making use of Eq.1.18 together with

Sz|s,ms〉 = ms~|s,ms〉, S±|s,ms〉 = ~

√
s (s+ 1)−ms (ms ± 1)|s,ms±1〉

(1.22)

to calculate

HSO = λL · S = λ

(
LzSz +

1

2

(
L+S− + L−S+

))
. (1.23)

In order to include the explicit dependence on the magnetic moment di-

rection we have to bear in mind that spin-orbit coupling entangles spin

and orbital moments. We therefore derive an expression for the spin along

an arbitrary direction r and assume that the orbital moment points along

the same direction. In spherical coordinates

r = sin θ cosφx+ sin θ sin φy + cos θz. (1.24)

The spin angular momentum matrix for a generic spin direction will then

be

σ(θs, φs) = σx sin θs cosφs + σy sin θs sinφs + σz cos θs, (1.25)

where θs and φs are defined in Fig. 1.5 and σx, σy, σz are the Pauli

matrices. Calculating the eigenspinors of

σ|±〉 = ±1|±〉 (1.26)
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Figure 1.5: Orientation of the atomic spin moment in the octahedral reference
system. The angle θs controls the projection of the moment along
the z-axis, while the angle φs control the component of the moment
in the xy plane respect to the x-axis.

one obtains

|+〉 =
(
α+

β+

)
=

(
cos
(
θs
2

)

eiφs sin
(
θs
2

)
)

(1.27)

|−〉 =
(
α−

β−

)
=

(
sin
(
θs
2

)

−eiφs cos
(
θs
2

)
)

(1.28)

where α and β give the weight to the spin up and spin down component

along the quantization axis z. By making use of Eqs. 1.27–1.28 we can

calculate a spin-dependent transformation matrix from the 5d spherical

harmonic basis{|Y +
2,2〉, |Y −

2,2〉,|Y +
2,1〉, |Y −

2,1〉, |Y +
2,0〉, |Y −

2,0〉, |Y +
2,1

〉, |Y −

2,1
〉, |Y +

2,2
〉, |Y −

2,2
〉}

to the 5d real cubic basis {|x2 − y2,+〉, |x2 − y2,−〉, |3z2 − r2,+〉, |3z2 − r2,−〉,
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|xy,+〉, |xy,−〉, |xz,+〉, |xz,−〉, |yz,+〉, |yz,−〉} as:

T =
1√
2




α+ α− 0 0 −iα+ −iα− 0 0 0 0

β+ β− 0 0 −iβ+ −iβ− 0 0 0 0

0 0 0 0 0 0 −α+ −α− iα+ iα−

0 0 0 0 0 0 −β+ −β− iβ+ iβ−
0 0

√
2α+

√
2α− 0 0 0 0 0 0

0 0
√
2β+

√
2β− 0 0 0 0 0 0

0 0 0 0 0 0 α+ α+ iα+ iα−

0 0 0 0 0 0 β+ β+ iβ+ iβ−

α+ α− 0 0 iα+ iα− 0 0 0 0

β+ β− 0 0 iβ+ iβ− 0 0 0 0




. (1.29)

This is a unitary transformation, so that T †T = TT † = 1. In this way

every operator in the spherical harmonic basis Asph can be transformed

in the real cubic basis by

Acub = T †AsphT. (1.30)

For moments pointing along the octahedral z axis, i.e. θs = 0, α+(−) is

1(0) and β+(−) is 0(1). Matrix 1.29 is therefore reduced to the classical

way of writing d-states as a linear combination of spherical harmonics. By

applying Eqs. 1.29–1.30 to the SOC operator of Eq. 1.23 one can write

the spin-orbit Hamiltonian in the cubic harmonic basis as:

HSOc
=
λ

2




0 0 0 −i 0 1

0 0 −i 0 −1 0

0 i 0 0 −i 0

i 0 0 0 0 i

0 −1 i 0 0 0

1 0 0 −i 0 0




, (1.31)

for magnetic moments pointing along the octahedral z-axis (µ ‖ [0 0 1]),
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and

HSOab
=

λ

2
√
2




0 0 −i 1 i 1

0 0 −1 i −1 −i
i −1 0 0 0 i

√
2

1 −i 0 0 i
√
2 0

−i −1 0 −i
√
2 0 0

1 i −i
√
2 0 0 0




, (1.32)

for magnetic moments pointing along the xy octahedral direction (µ ‖ [1
1 0]). Here we have considered a reduced basis of only t2g states, {|xy,+〉,
|xy,−〉, |xz,+〉, |xz,−〉, |yz,+〉, |yz,−〉}. As already mentioned, neglecting the

contribution of the eg orbitals to the ground state is a good approximation

by virtue of the strong crystal field separating eg and t2g (10Dq ∼ 3

eV). This value has been inferred from several experimental studies via

different techniques such as XRMS [15, 16, 14], RIXS [38] and oxygen K

edge XAS [17].

In the cubic t2g basis the tetragonal crystal field matrix is diagonal

and reads

HCF = ∆




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




. (1.33)

Combining Eq. 1.33 with Eq. 1.31 we can easily diagonalize the general

Hamiltonian H(Eq. 1.21). The resulting eigenvectors for magnetic mo-

ments µ ‖ [0 0 1] are the three doublets:

|0,±〉c =
±A|xy,±〉+ |yz,∓〉 ± i|xz,∓〉√

2 + A2
(1.34)

|1,±〉c =
|yz,±〉 ± i|xz,±〉√

2
(1.35)

|2,±〉c =
∓B|xy,±〉+ |yz,∓〉 ± i|xz,∓〉√

2 +B2
(1.36)
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of eigenvalues:

E0 =
λ

4

(
1 + δ +

√
9 + (δ − 2)δ

)
(1.37)

E1 = −λ
2

(1.38)

E2 =
λ

4

(
1 + δ −

√
9 + (δ − 2)δ

)
. (1.39)

If instead of Eq. 1.31 we make use of Eq. 1.32 we obtain the eigenvectors

for magnetic moments µ ‖ [1 1 0], as

|0,±〉ab =
A(±|xy,±〉 ∓ i|xy,∓〉)/

√
2 + |yz,∓〉+ i|xz,±〉√

2 + A2
(1.40)

|1,±〉ab =
|yz,±〉 − i|xz,∓〉√

2
(1.41)

|2,±〉ab =
B(∓|xy,±〉 ± i|xy,∓〉)

√
2 + |yz,∓〉+ i|xz,±〉√

2 +B2
. (1.42)

The parameters A =
−1+δ+

√
9+(−2+δ)δ

2
and B =

1−δ+
√

9+(−2+δ)δ

2
con-

trol the effect of the tetragonal crystal field via δ = 2∆/λ. We mainly

consider µ ‖ [0 0 1] and µ ‖ [1 1 0] because this is the case for the lay-

ered perovskite iridates Sr3Ir2O7 and (Ba/Sr)2IrO4, respectively. States

|n,+〉,|n,−〉 (n=0, 1, 2) are connected by a time-reversal symmetry, i.e.

are the so-called Kramers doublet. An unequal occupation of these dou-

blets produces magnetic order.

With five electrons occupying the three doublets, the system is left

with one hole in the |0,±〉 doublets that is therefore the ground state in

the hole representation. In the absence of any tetragonal crystal field,

∆= δ=0 (A=1), the pure jeff = 1/2 state is realized and Eqs. 1.34,1.40

become

|jeff = 1/2,±〉c =
±|xy,±〉+ |yz,∓〉 ± i|xz,∓〉√

3
, and (1.43)

|jeff = 1/2,±〉ab =
(±|xy,±〉 ∓ i|xy,∓〉)/

√
2 + |yz,∓〉+ i|xz,±〉√
3

(1.44)

respectively, whereas the eigenvalue E0 become equal to λ (See Fig. 1.6(b)).

This state is formed by even combination of the three t2g state |xy〉, |xz〉,
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Figure 1.6: Effective tetragonal crystal field dependence ∆ of (a) the ground
state orbital occupancy of the |xy,−〉 (orange line) and (|yz,+〉+
|xz,+〉)/

√
2 (grey line) states, respectively, (b) the eigenvalues of

Eqs. 1.34–1.36: E0 (green line), E1 (dashed purple line), E2 (orange
line), and (c) the expectation values of the orbital (〈Lz〉, purple),
spin (〈Sz〉, dotted grey), and total (〈µz〉, dashed orange) magnetic
moment components along z, and the angular part of the SOC
operator 〈L · S〉 (green). At the top a real space representation
of the wave function of Eq. 1.34 (|0,−〉 state) is given for spin up
(red) and spin down (blue) polarization. The shaded area in the
panels represents the value of ∆ inferred from our XRMS study on
Sr2IrO4 [39].
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|yz〉 with mixed spin polarization. A real space representation of the cor-

responding wave function as a function of the tetragonal crystal field ∆

for a value of the SOC (λ=0.42 eV), as extracted from experiments [16],

is given in Fig. 1.6. For ∆=0 the well-know “cubic shape” is realized.

This is due to the coherent superposition of all the t2g orbitals of different

symmetry.

For finite value of ∆ the admixture of orbital contribution is changed

and the ground state varies between a novel jeff = 1/2 system and a clas-

sical s=1/2 system with the ratio of SOC to tetragonal crystal field. For

∆≫λ and ∆≪−λ we recover the classical s=1/2 limit and the ground

state is |xy,±〉 and (|yz,∓〉 ± i|xz,∓〉) /
√
2, respectively. The ground

state orbital occupancies (ρ) for the |0,−〉 ground state are presented in

Fig. 1.6(a). At ∆=0 the occupancy is the same for the three orbitals:

ρ(|xy,−〉) ≡ ρ(|xz,+〉) ≡ ρ(|yz,+〉) = (1/
√
3)2 = 1/3.

In the absence of the tetragonal crystal field the lower doublets |1,±〉
and |2,±〉 collapse into the jeff = 3/2 quartet of energy E1 ≡ E2=−λ/2.
The separation between jeff = 1/2 and jeff = 3/2 states is therefore 3λ/2

(See Fig. 1.6(b)). A real space representation of these state at ∆=0 can be

found in Fig. 1.4. More generally, if some tetragonal splitting is included

the |1,±〉 and |2,±〉 are no longer degenerate and jeff = 3/2 and jeff = 1/2

states are mixed together.

By close inspection of Fig.1.6(b) we can now discuss the insulating

properties of iridium oxides. In the approximation of a pure ionic model

it is evident that the tetragonal crystal field ∆ has only a marginal effect on

the transport properties, and an insulating state persists in these materials

even far from perfect cubic symmetry, i.e. when the jeff = 1/2 state is

realized. In fact, the energy splitting between the |0,±〉 doublet and the

|1,±〉 doublet is barely reduced from the maximum value 3/2λ at ∆=0

to λ for ∆ → −∞. Therefore, even in the scenario of a strong non-cubic

distortion, a reasonably small on-site Coulomb repulsion U can split the

valence band and drive the system into an insulating state. Strong SOC

is ultimately the fundamental ingredient to explain transport properties

in iridium oxides.

Having determined the ground state wave function, we can now calcu-

late the orbital angular momentum and spin angular momentum matrices
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projected along z for µ ‖ [0 0 1] in the {|0,+〉, |0,−〉, |1,+〉, |1,−〉, |2,+〉,
|2,−〉} basis as

Lz =




− 2
2+A2 0 0 0 2√

(2+A2)(2+B2)
0

0 2
2+A2 0 0 0 −2√

(2+A2)(2+B2)

0 0 −1 0 0 0

0 0 0 1 0 0
2√

(2+A2)(2+B2)
0 0 0 − 2

2+B2 0

0 −2√
(2+A2)(2+B2)

0 0 0 2
2+B2




(1.45)

and

2Sz =




A2−2
2+A2 0 0 0 2+AB√

(2+A2)(2+B2)
0

0 −A2−2
2+A2 0 0 0 − 2+AB√

(2+A2)(2+B2)

0 0 1 0 0 0

0 0 0−1 0 0
2+AB√

(2+A2)(2+B2)
0 0 0 B2−2

2+B2 0

0 − 2+AB√
(2+A2)(2+B2)

0 0 0 −B2−2
2+B2




,

(1.46)

respectively. The expectation values of the magnetic moments relative to

the ground state are thus 〈0,−|Lz|0,−〉 = 2/(2 + A2), 〈0,−|2Sz|0,−〉 =
(2 − A2)/(2 + A2), 〈0,−|µz|0,−〉 = 〈Lz + 2Sz〉 = (4 − A2)/(2 + A2).

The variation of 〈Lz〉, 〈Sz〉, 〈µz〉 as a function of ∆ for the |0,−〉 state

is shown in Fig. 1.6(c). For ∆=0, this ionic model returns the values

〈Lz〉=2/3, 〈2Sz〉=1/3, and 〈µz〉=1, all in units of µB. This is a proof of

the unusual magnetic behaviour of the jeff = 1/2 state, already mentioned

in the previous section. Whereas the atomic j=1/2 state has a total

magnetic moments 〈Lz + 2Sz〉 = ±1/3 with opposite orbital and spin

direction, the jeff = 1/2 state has 〈Lz +2Sz〉 = ±1, with parallel spin and

orbital moments. The jeff = 1/2 (|Leff − S|) is in fact equivalent to the

j=1/2(|L − S|), mapping Leff ,z → −Lz . Observed experimental values

of the magnetic moment in Sr2IrO4 and Sr3Ir2O7 are actually reduced by

approximately a factor two [40, 41, 42]. This could be understood by
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extending the ionic picture to include itinerancy effects and 5d(Ir)-2p(O)

hybridization. A recent dynamical mean field theory study has in fact

reported that including such effects, the pure jeff = 1/2 moment 1 µB

becomes 0.55 and 0.58 µB in Sr2IrO4 and Sr3Ir2O7 respectively [43].

It is interesting to note that for ∆=λ/2 the spin moment vanishes

(Fig. 1.6(c)). For this tetragonal distortion the superexchange Hamilto-

nian that will be introduced in Section 1.5 predicts a spin-flop transi-

tion from a basal-plane canted antiferromagnetic (AF) state to a c-axis

collinear AF state. This behaviour could be reasonably captured in our

single ion model: at ∆=λ/2 the magnetic interactions have only orbital

character and the octahedral elongation could potentially favour the align-

ment of the moment along the c-axis.

Conversely, for magnetic moment pointing along the µ ‖ [1 1 0] one has:
〈Lx〉 = −〈Ly〉 =

√
2A/ (2 + A2), 〈2Sx〉 = −〈2Sy〉 =

√
2A2/ (4 + 2A2), and

〈µx〉 = −〈µy〉 =
√
2A (2 + A) / (2 + A2); in this case, 〈Lx〉, 〈2Sx〉 and 〈µx〉

reduce to
√
2/3,

√
2/6 and 1/

√
2, respectively, for ∆ = 0.

Finally the expectation value of the angular part of the spin-orbit

operator for both moment orientations, 〈L ·S〉 equals (1 + 2A) / (2 + A2),

which reduces to 1 for ∆ = 0 (See Fig. 1.6(c)). It should be noted that

the value of 〈L · S〉 calculated in an ionic model is underestimated. As

will be shown in Section 3.3.2, the experimental value inferred from X-ray

absorption spectroscopy measurements is more than twice the ionic value.

This is due to the admixture of the eg orbitals in the absorption process.

However, in the resonant scattering process, the approximation of limiting

ourself to the t2g subspace still holds.

Although the expression for the ground state doublet |0,±〉 (Eqs. 1.34, 1.40)
and the excited state doublets |1,±〉 (Eqs. 1.35, 1.41) and |2,±〉 (Eqs. 1.36, 1.42)
depends on the magnetic moment direction, the physics at play does not.

However, the calculation of the resonant scattering cross-section shows

a strong dependence on the moment orientation that significantly affects

the interpretation of experimental results. This will be treated in detail

in Section 2.3.
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1.5 Hamiltonian for layered perovskite iri-

dates

In the previous section we have derived the expression for the ground

state of the Ir4+ ion in a strong cubic crystal field in the presence of com-

peting SOC interaction and tetragonal distortion. In order to pass from

the one-particle ionic Hamiltonian to the many-body Hamiltonian that

describes the full system we need to consider the hopping of a jeff = 1/2

hole between adjacent Ir sites via ligand oxygens. Due to the peculiar

3D shape of the jeff = 1/2 state, multidirectional electronic and magnetic

interactions are allowed, enhancing the importance of the local symmetry.

Layered perovskite iridates belong to the so-called Ruddlesden-Popper se-

ries An+1IrnO3n+1, where A are divalent alkaline elements. This structure

includes in the unit cell two sets of n-IrO2 planes (see Fig. 1.7(a-b)), which

are connected via apical oxygens and separated by an intergrowth AO layer

of rock salt structures. Varying n in the layered perovskite structure cor-

responds to dimensionality control from a quasi 2D (n=1) single layer as,

for instance in Ba2IrO4 and Sr2IrO4, to a 3D bilayer as in Sr3Ir2O7, and

to the conventional cubic perovskite AIrO3 (n = ∞). The most famous

examples of n=1 compounds are Ba2IrO4 and Sr2IrO4. The former has a

perfect straight Ir-O-Ir bond geometry, the latter undergoes a correlated

alternated rotation about the c-axis of the IrO6 octahedra of about 12◦

(Fig. 1.7(a-b)). Adding an extra IrO6 layer of opposite octahedral rotation

to Sr2IrO4, results in the double layer perovskite Sr3Ir2O7.

A microscopic superexchange Hamiltonian for layered perovskite iri-

dates was derived in the seminal work of Jackeli and Khaliullin [23]. The

starting point is the jeff = 1/2 single-band Hubbard model in the hole

representation. We therefore rewrite Eq.1.2 as

H =
∑

i,j

∑

σ

tσijd
†
iσdjσ + h.c. + U

∑

i

ni,+ni,− (1.47)

where d†
iσ(djσ) creates (annihilates) a hole in the |0,±〉 Kramers doublets

and ni,σ = d†
iσdjσ. Considering the staggered rotation of IrO6 octahedra

typical of iridium layered perovskites the hopping integral between nearest
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neighbors tσij is spin dependent and the hopping probability amplitude has

a complex part. The resulting Hamiltonian is usually written as

Hij = JSi · Sj + JzS
z
i S

z
j +D · [Si × Sj] +H′. (1.48)

The terms on the righthand side are an isotropic Heisenberg superex-

change, a pseudo-dipolar (PD) interaction, the antisymmetric Dzyaloshinsky-

Moriya (DM) exchange, and finally an anisotropic contribution from the

Hund’s coupling. Si,j is a pseudospin operator acting on the jeff = 1/2

manifold. This Hamiltonian is controlled by two microscopic parameters:

the tetragonal distortion ∆ which mixes the different t2g orbitals in the

|0,±〉 ground state and the octahedral rotation ρ that, together with the

Hund’s coupling determines the strength of the anisotropic terms.

In the case of straight Ir-O-Ir bonds (ρ=0) the second and third term

vanishes and the system is described by a pure Heisenberg term that

supports an antiferromagnetic ground state like in Ba2IrO4. In this case

the small anisotropies are only due to Hund’s coupling. However, even for

ρ 6= 0, the anisotropies can be gauged away by proper site-dependent spin

rotation. The twisted Hubbbard model can than be mapped onto a SU(2)-

invariant pseudospin-1/2 system, like in the undistorted case (Ba2IrO4).

Here, the straight Ir-O-Ir bonds preserve the inversion symmetry, as a

consequence the DM interaction is no longer active and the system shows

a simple basal plane antiferromagnetic structure. To obtain the magnetic

structure of the twisted system, we have to transform the isotropic system

back. As a result, the spins are canted exactly like the IrO6 octahedra.

This is the case of the single layered Sr2IrO4 where a basal-plane canted

antiferromagnetic structure is observed. Here the spin canting angle φ is

controlled by the D/J ratio and in the strong spin-orbit coupling limit

(for ∆ → 0) φ/α approaches unity.

The strong link between lattice and magnetic degrees of freedom is

certainly a peculiarity of the orbital character of the jeff = 1/2 ground

state. The spin canting angle φ in units of the octahedral rotation ρ

as a function of the tetragonal distortion θ is shown in Fig. 1.7(c). θ

parameterizes the competition between SOC λ and effective tetragonal

crystal field ∆ as tan(2θ) = 2
√
2λ/(λ − 2∆). It is interesting to note
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that the Hamiltonian 1.48 supports two magnetic structures: a basal-

plane canted antiferromagnetic structure for θ ≤ π/4 and a collinear c-

axis magnetic structure for θ > π/4. Therefore, in principle, a significant

tetragonal distortion could cause a drastic spin reorientation.

Including interlayer coupling terms, the Hamiltonian 1.48 can be ex-

tended to the bilayer compound Sr3Ir2O7. Here, the anisotropic terms

cannot be gauged away by site-dependent spin rotation because the oc-

tahedral rotation has opposite sign between the two IrO6 layers. As a

consequence PD interactions are greatly enhanced and the collinear c-axis

magnetic structure is stable in a wider window of the θ parameter space.

The enhanced effect of the anisotropies is relevant not only to the mag-

netic structure but also to the excitation spectrum. In fact, as we will

show in Chapters 4-5 the addition of an extra IrO6 layer modifies deeply

the microscopic interactions.
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Figure 1.7: (a) A typical IrO6 perovskite layer. Ir4+ ions (blue) are at the
center of corner shared oxygen (red) octahedra which are rotated
alternatively by an angle ±ρ about the z axis. (b) Layered per-
ovskite structure in the basal-plane. (c) Spin canting angle φ (in
units of ρ) as a function of the tetragonal distortion parameter θ.
For perfect cubic symmetry (θ ≃ π/5), φ ≡ ρ. At θ = π/4 this
model supports a spin-flop transition from a basal-plane canted
antiferromagnetic state to a collinear c-axis state. Panel adapted
from Ref. [23].



Chapter 2

Resonant X-ray scattering:

theory and practice

Here we present the general formalism of resonant X-ray scattering. These

techniques have had a major impact in driving forward the field of irid-

ium oxides by allowing the study of the ground and excited states in these

compounds. The central part of the chapter is dedicated to the calculation

of the resonant scattering cross section in iridium oxides within a single

ion model as a function of tetragonal crystal field and magnetic moment

direction. These calculations provide a valuable tool to interpret reso-

nant elastic (REXS) and inelastic (RIXS) X-ray scattering experiments

performed at the Ir L2,3 edges. In particular, we find a non trivial depen-

dence of the resonant scattering cross section on the magnetic moment

direction which will be discussed in view of the experimental results of

the next chapters.

In the last part of the chapter we will present two synchrotron beam-

lines which have been used in the present work. I16 at Diamond Light

Source is a model magnetic scattering beamline where the magnetic struc-

ture can be investigated by means of resonant or non-resonant magnetic

scattering techniques. ID20 at the ESRF is a RIXS beamline dedicated

to the study of momentum-resolved magnetic and electronic excitations.
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2.1 General remarks

X-ray scattering techniques have recently become valuable tools for the

investigation of magnetic order and low energy excitations in solids, com-

plementing neutron scattering in a field of research that was once its sole

preserve. Neutrons have an intrinsic magnetic moment which interacts

with the field produced by unpaired electrons in crystals. Notably, the

strength of this interaction is the same order of magnitude of the one with

the atomic nucleus [44]. Although neutron scattering has to be considered

the first port of call for studying magnetic properties of crystals, it has

several limitations. The low neutrons fluxes (2 × 1013 neutrons cm−2 s−1

for the average flux of a spallation source, 1.5×1015 neutrons cm−2 s−1 for

a reactor source) implies that big samples (several mm3) have to be used.

Furthermore, the strong neutron absorption of some isotopes has to be

taken into account, this is the case for example of iridium where the natu-

rally occurring isotopes 191Ir (954 barns) and 193Ir (111 barns) are strong

neutron absorbers. The availability of only small single crystals (in the

order of few hundreds of microns) containing iridium and its strong ab-

sorption properties therefore makes neutron scattering a very challenging

technique to apply to iridium oxides.
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Figure 2.1: Left panel: Schematic representation of the RIXS(REXS) process.
Right panel: main absorption edges of Ir ions. The orange ar-
rows represent the dominant dipole transitions 2p 1

2
→ 5d (L2) and

2p 3
2
→ 5d (L3).

The scattering of X-rays with matter, and in particular with magnetic

moments, is quite different. The interaction between the magnetic field

of the electromagnetic wave and the magnetic moment of the electrons in

solids is due to small relativistic effects and was first studied in the pio-

neering work by de Bergevin and Brunel [45, 46] using a common X-ray

tube. Unfortunately, this scattering process is very weak (the intensity

is approximately 6-8 orders of magnitude weaker than the normal charge

scattering in an intermediate energy range (∼10 keV) [47]) and, in order

to become a useful technique, X-ray scattering had to await the avail-

ability of very high-brilliance sources, the modern synchrotron radiation

facilities. The discovery of a strong enhancement of the scattering signal

when the energy of the incoming radiation is tuned to an absorption edge

(resonance) of the material ( Hannon et al. [48]) has however pushed X-ray

scattering techniques to the front line in the study of magnetic phenomena.

X-ray resonant scattering is a second order process, its basic two-step

mechanism is illustrated in Fig. 2.1 (left panel). In the first step, a photon
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of energy ~ωk impinges on the sample promoting an electron from a core-

level to the valence band (absorption). This intermediate state is very

unstable due to a hole in the core level. The system will therefore decay,

within the lifetime of the intermediate state, emitting a photon of energy

~ωk′ (emission). Considering energy and momentum conservation for the

total system (photons + electrons) one has

~ωk − ~ωk′ = ~ω

k− k′ = K.
(2.1)

In general an excitation of energy ~ω and momentum K is created. The

study of the momentum and energy dependence of excitations in solids is

thus named Resonant inelastic X-ray scattering (RIXS). When ~ωk = ~ωk′

initial and final states coincide and the scattering mechanism is purely

elastic. In this case only momentum is transferred to the system. We

refer to this scattering mechanism as Resonant elastic X-ray scattering

(REXS)1. REXS gives access to the ground state of the system and permits

the study of ordering phenomena such as charge, orbital and magnetic

ordering. REXS and RIXS share several important common features:

1. Bulk sensitivity. RIXS and REXS are photon in-photon out tech-

niques. This means that in the hard X-ray regime (11–13 keV is

commonly used in iridates) the penetration depth of photons is some

tens of microns, making these scattering techniques a valuable probe

for the bulk nature of samples.

2. Element, oxidation, and orbital specificity. The possibility of tuning

the energy of the incoming photons to a specific absorption edge,

makes REXS/RIXS sensitive to the chemical species. This has the

important advantage that the effect of two different magnetic atomic

species on the overall magnetism can be disentangled. In addition,

absorption edges are usually sensitive to the ionic oxidation state

via a shift of the inner core levels. The study of charge ordering is

therefore greatly enhanced by the resonant process. Finally, since

1When this scattering mechanism was discovered, it was named X-ray resonant
exchange scattering. Here we use the acronym REXS in analogy with the resonant
inelastic resonant process (RIXS).
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the microscopic mechanism involves specific orbitals, REXS/RIXS

are valuable probes for investigating the orbital state. In iridium ions

the 5d valence electrons are responsible of magnetic and electronic

interactions. A strong dipole transition is thus available from the

inner 2p 1
2
→5d and 2p 3

2
→5d levels. These edges are usually called

L2 and L3 and reside at ∼11.2 keV and ∼12.8 keV, respectively.

An energy diagram of the main absorption edges of Ir is shown in

Fig. 2.1 (right panel).

3. Small samples. X-rays can easily be focused down to a few µm by

means of refractive lenses or mirrors. This permits the study of

very small samples which is not feasible with neutron techniques.

Furthermore, since a significant spatial resolution is obtained, X-ray

scattering techniques can be used as an imaging tool.

4. Momentum resolution. The momentum transferred to the system

during the scattering process is

|K| = 4π

λ
sin θ (2.2)

where 2θ is the scattering angle and λ is the wavelength of the incom-

ing radiation. For X-ray energies in the 11–13 kev range, λ measures

approximately 1 Å. This means that several Brillouin zones of the

reciprocal space can be investigated. Differentiating Eq. 2.2 we can

deduce that for a highly collimated X-ray beam, the small angular

divergence leads to a high momentum resolution, significantly bet-

ter than the neutron counter part. That is one of the reasons why

REXS is usually exploited to refine magnetic structures previously

studied with neutrons. One should note that in RIXS instruments,

in order to maximize the photon flux the angular acceptance of the

spectrometer is significant (θ ∼ 1–2◦). In view of this the momentum

resolution is usually much lower that in REXS instruments.

Finally, the polarization of the photon can be manipulated and mea-

sured. Although the incident polarization is easily varied for both the

techniques, the outgoing polarization is currently only measured in REXS

experiments, as measuring the polarization strongly decreases the photon
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flux and significantly degrades the energy resolution in RIXS measure-

ments.

A feature of fundamental importance in RIXS is the energy resolution.

For a long time RIXS was limited to a resolution greater than 1 eV.

This is due to the fact that photons of wavelength λ ∼1 Å correspond

to energies of several keV. A tremendous resolving power E/△E of the

order of 105 is therefore needed in order to reach a resolution in the meV

range. The scenario is different for inelastic neutron scattering (INS)

where, for the same wavelength, neutrons have energies in the meV range.

However, recent progress in RIXS instruments have dramatically improved

the resolution down to 25 meV in the favourable case of Ir L3 edge [49],

making RIXS a serious competitor of INS in the study of low energy

excitations and in particular magnons.

In order to take advantage of all the features of X-ray scattering tech-

niques, high brilliance, polarized, energy tunable sources are needed. This

implies the use of third generation synchrotrons.

2.2 REXS/RIXS cross section

In this section we derive the REXS and RIXS cross-section following

Blume [50]. We consider an ensemble of electrons interacting with a quan-

tized electromagnetic field described by a vector potential A(r, t). The

total Hamiltonian of the system derived from quantum electrodynamic

theory, in the non-relativistic limit, can be written as

H =
∑

j

1

2m

(
pj −

e

c
A(rj)

)2
+
∑

ij

V (rij)

− e~

2mc

∑

j

sj · ∇ ×A(rj)−
e~

2(mc)2

∑

j

sj · E(rj)×
(
pj −

e

c
A(rj)

)

+
∑

kλ

~ωk

(
c†λ(k)cλ(k) +

1

2

)
.

(2.3)

Here E(r) is the electric field of radiation, c†λ(k) (cλ(k)), in the language of

second quantization, are operators that create (annihilate) a photon with
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quantum numbers (k,λ), sj and pj are the spin and momentum operator of

the jth electron at the site rj . The first term of Hamiltonian 2.3 contains

the kinetic energy of an electron modified by the magnetic field, the second

represents its potential energy. The third and fourth terms describe the

interaction between the electron spin and the radiation field. They are

the Zeeman term and spin-orbit interaction, respectively. The last term

corresponds to the radiation field. The vector potential can be expanded

as a sum of plane-waves, characterized by a wavevector k and by one of

the two polarization modes λ = 1, 2 as

A(r, t) =
∑

k,λ

(
2π~c2

Ωωk

)1/2 [
ǫλ(k)cλ(k)e

i(k·r−ωkt) + ǫ∗λ(k)c
†
λ(k)e

−i(k·r−ωkt)
]
,

(2.4)

where Ω is a quantization volume which will not be considered in any

physically meaningful quantity, ωk is c|k|, ǫλ is the unit polarization vec-

tor associated with the mode λ. Because of the transversality of electro-

magnetic waves,

k · ǫλ(k) = 0. (2.5)

In order to derive the X-ray scattering cross-section we need to sep-

arate the Hamiltonian H into a term that describes the photon-electron

interaction H′ and a term that corresponds to the unperturbed system H0

which will be the sum of the electronic Hamiltonian Hel and the Hamil-

tonian relative to the radiation HR. The scattering process can thus be

described as a transition between the eigenstates of Hel and HR induced

by the perturbation H′. Scattering cross sections are calculated assuming

that the solid is in an initial state |a〉, which is an eigenstate of Hel with

energy Ea and a single photon |kλ〉 is present. The probability of the

transition induced by H′ to a state |b〉 plus a photon |k′λ′〉 is given by

Fermi’s “golden rule” to second order

w =
2π

~

∣∣∣∣∣〈f |H
′|i〉+

∑

n

〈f |H′|n〉〈n|H′|i〉
Ei −En

∣∣∣∣∣

2

δ(Ei −Ef ), (2.6)

where |i〉 ≡ |a;kλ〉, |f〉 ≡ |b;k′λ′〉 and n runs over the intermediate states

|n〉, eigenstates of the unperturbed Hamiltonian H0 with energies En. |i〉
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and |f〉 are eigenstates of H0 of energy Ei = Ea+~ωk and Ef = Eb+~ωk′,

respectively and

Hel|a〉 = Ea|a〉 (2.7)

Hel|b〉 = Eb|b〉. (2.8)

In order to extract H′ from the Hamiltonian 2.3 we rewrite the electric

field vector as E = −∇φ− 1
c
∂A
∂t
. The Hamiltonian 2.3 is thus written as

H = Hel +HR +H′, (2.9)

with

Hel =
∑

j

1

2m
p2
j +

∑

ij

V (rij) +
e~

2(mc)2

∑

j

sj · (∇φj × pj) (2.10)

HR =
∑

kλ

~ωk

(
c†λ(k)cλ(k) +

1

2

)
(2.11)

H′ =
e2

2mc2

∑

j

A2(rj)−
e

mc

∑

j

A(rj) · pj

− e~

mc

∑

j

sj · (∇×A(rj))−
e~

2(mc)2
e2

c2

∑

j

sj ·
(
∂A(rj)

∂t
×A(rj)

)

≡ H′
1 +H′

2 +H′
3 +H′

4.

(2.12)

H′
1 and H′

4 are quadratic in A, while H′
2 and H′

3 are linear. Since the

scattering process conserves the number of photons and the operator A

is linear in the creation and annihilation operators, the H′
1 and H′

4 term

will contribute only to first order perturbation, whilst H′
2 and H′

3 will

contribute to second order. Eq. 2.6 will thus be modified as

w =
2π

~

∣∣∣∣〈b;k′λ′|H′
1 +H′

4|a;kλ〉

+
∑

n

〈b;k′λ′|H′
2 +H′

3|n〉〈n|H′
2 +H′

3|a;kλ〉
Ea + ~ωk − En

∣∣∣∣∣

2

δ(Ea −Eb + ~ωk − ~ωk′).

(2.13)
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Inserting Eq. 2.12 into Eq. 2.13, the total cross-section is derived by mul-

tiplying the transition probability w by the density of final states and

dividing by the incident flux:

d2σ

dΩ′dE ′ = wρ(Ef)/I0, (2.14)

with

ρ(Ef ) =
Ω

(2π)3
ω2
k′

~c3
, I0 =

c

Ω
. (2.15)

The scattering cross-section finally reads

d2σ

dΩ′dE′ =

(
e2

mc2

)2
ωk′

ωk

∣∣∣∣∣∣

〈
b

∣∣∣∣∣∣
∑

j

eiK·rj

∣∣∣∣∣∣
a

〉
ǫ′ · ǫ

− i
~(ωk + ωk′)

2mc2

〈
b

∣∣∣∣∣∣
∑

j

eiK·rjsj

∣∣∣∣∣∣
a

〉
ǫ′ × ǫ+ 1

m

∑

c

∑

ij



〈
b
∣∣∣(ǫ′ · pi − i~ (k′ × ǫ′) · si) e−ik′·ri

∣∣∣ c
〉〈

c
∣∣∣ (ǫ · pj + i~ (k× ǫ) · sj) eik·rj

∣∣∣ a
〉

Ea − Ec + ~ωk − iΓc/2

+

〈
b
∣∣∣ (ǫ · pi + i~ (k× ǫ) · si) eik·ri

∣∣∣ c
〉〈

c
∣∣∣(ǫ′ · pj − i~ (k′ × ǫ′) · sj) e−ik′·rj

∣∣∣ a
〉

Ea − Ec − ~ωk′



∣∣∣∣∣∣

2

δ(Ea −Eb + ~ωk − ~ωk′),

(2.16)

where ǫ ≡ ǫλ(k), ǫ
′ ≡ ǫ∗λ′(k′), and K = k−k′ is the scattering vector. The

first term of Eq. 2.16 represent the usual Thomson scattering for |a〉 = |b〉
and ωk = ω′

k
. It contains the dependence on the Fourier transform of

the electron density
∑

j e
iK·rj and when the periodicity of the crystal is

taken in account it originates Bragg scattering. This scattering mecha-

nism dominates when the incident energy ~ωk is much higher than any

resonance of the material. When |a〉 6= |b〉 and ωk 6= ω′
k
this term give also

rise to non-resonant inelastic X-ray scattering (IXS). The second term is

a genuine magnetic scattering term which depends on the spin density

Fourier transform
∑

j e
iK·rjsj and it is reduced, compared to Thomson

scattering, by a factor ~ω/mc2. For photons at the Ir L2,3 edges (11-13

KeV) and given mc2 ∼ 0.511 MeV, ~ω/mc2 is about 0.02. The third and

fourth terms derive from second order perturbation theory and contain
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dispersive corrections to the scattering amplitude via an energy depen-

dent denominator. A −iΓc/2 term has been added to the third term in

order to avoid any nonphysical divergence in the denominator and to take

into account the finite lifetime the intermediate |c〉 states. These terms

are both reduced by a factor ~ω/mc2 with respect to Thomson scattering,

however the amplitude of the third term can be greatly enhanced when

the incident energy is tuned to a resonance, ~ωk ∼ Ec − Ea. Hidden in

the last two terms there is a non resonant contribution that must be sep-

arated and added to the second term. In order to do this we rewrite the

denominators of Eq. 2.16 as

1

Ea − Ec + ~ωk − iΓc/2
=

[
1

Ea − Ec + ~ωk − iΓc/2
− 1

~ωk

]
+

1

~ωk

=

[
−Ea − Ec − iΓc/2

~ωk

1

Ea − Ec + ~ωk − iΓc/2

]
+

1

~ωk

=





1
~ωk

for ~ωk ≫ Ec − Ea

−Ea−Ec

~ωk

1
Ea−Ec+~ωk−iΓc/2

for ~ωk ≈ Ec −Ea

(2.17)

and

1

Ea − Ec − ~ωk

=

[
1

Ea −Ec − ~ωk

+
1

~ωk

]
− 1

~ωk

=

[
Ea −Ec

~ωk

1

Ea − Ec − ~ωk

]
− 1

~ωk

=




− 1

~ωk

for ~ωk ≫ Ec −Ea

Ea−Ec

~ωk

1
Ea−Ec−~ωk

for ~ωk ≈ Ec −Ea.

(2.18)

We distinguish two regimes, one when the energy of the incoming radiation

is far from any absorption edge and the denominators are well approxi-

mated by ±~ωk. The corresponding term must be added to the second

term of Eq. 2.16 to obtain the full non resonant scattering cross-section.

By contrast,when the incoming energy is tuned to a resonance of the ma-

terial, the 1
Ea−Ec+~ωk−iΓc/2

denominator becomes dominant. After some

algebras and applying the closure relation to the sum of the intermediate
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state we rewrite the scattering cross-section as

d2σ

dΩ′dE ′ =

(
e2

mc2

)2
ωk′

ωk

|A0 +Anonres +Ares|2 δ(Ea − Eb + ~ωk − ~ωk′).

(2.19)

where A0 is the first term of Eq. 2.16. Anonres is the pure non-resonant

magnetic scattering which reads

Anonres = −i~ωk

mc2

〈
b

∣∣∣∣∣
∑

j

eiK·rj
(
i
K× pj

~k2
·A′ + sj ·B′

)∣∣∣∣∣ a
〉

= −i~ωk

mc2

(
1

2
L(Q) ·A′′ + S(Q) ·B′

)
,

(2.20)

where A′, A′′, B′ are beam dependent factors, L(Q) and S(Q) are the

Fourier transform of the orbital and spin magnetization density. Since

non-resonant magnetic scattering techniques have not been exploited in

this thesis work we will not fully develop this term. However, it is impor-

tant to mention the great advantage of this scattering mechanism: by a

close inspection of Eq. 2.20, we see that orbital and spin magnetization

densities are associated with different polarization vectors. This means

that by analyzing the polarization of the scattered radiation is possible

to disentangle the spin from the orbital contribution, a peculiarity not

accessible with neutron scattering techniques.

Regarding the resonant term, for energies typical of core levels the

dominant term has been estimated to be ǫ · p [51, 52], therefore will be

the only one considered in the following. The pure resonant scattering

amplitude will then be

Ares ≈ − 1

m

∑

c

∑

ij

Ea − Ec

~ωk

(〈
b
∣∣(ǫ′ · pi − i~ (k′ × ǫ′) · si) e−ik′·ri

∣∣ c
〉 〈
c
∣∣ (ǫ · pj + i~ (k× ǫ) · sj) eik·rj

∣∣ a
〉

Ea − Ec + ~ωk − iΓc/2

)

= − 1

m

∑

c

∑

ij

Ea − Ec

~ωk

(〈
b
∣∣(ǫ′ · pi) e

−ik′·ri
∣∣ c
〉 〈
c
∣∣ (ǫ · pj) e

ik·rj
∣∣ a
〉

Ea −Ec + ~ωk − iΓc/2

)
.

(2.21)
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Eq. 2.21 determine the amplitude of REXS when |a〉 ≡ |b〉 (~ωk = ~ωk′)

and and RIXS when |a〉 6= |b〉 (~ωk 6= ~ωk′) and it is usually referred as

the Kramers-Heisenberg (KH) formula. By looking closely at Eq. 2.21, an

explicit dependence on scattering from magnetic moments is not present.

One may thus wonder where the sensitivity to magnetic degrees of freedom

comes from. The latter is mainly due to the joint effect of two ingredients:

the Pauli principle and the SOC. The Pauli principle enters due to the

dependence of the scattering amplitude on the availability of intermediate

states. Let’s assume a magnetic polarization of the valence states of an

atom. This would mean a predominance of unoccupied states with the

polarization of the minority. As a consequence, since the spin is conserved

in optical transitions, electrons with the same spin as the unoccupied

states will be promoted from a core level to the valence band. In case of

core levels with l 6= 0 the SOC acts polarizing the orbital state via the

coupling of spin and orbital degrees of freedom—this is for instance the

case of the L2 and L3 edge of Ir. Because of the selection rules to the

intermediate state, this orbital polarization translates into an imbalance

in the different matrix elements which lead to a non-vanishing magnetic

scattering amplitude.

In iridium oxides the orbitals involved in chemical bonds, thus re-

sponsible for magnetic and electronic interaction, are the Ir 5d orbitals.

In order to access these intermediate states, optical transitions from 2p 1
2

(L2) and 2p 3
2
(L3) levels to 5d state can be exploited. These states are

said to be accessible by electric dipole transition. In this approximation

we can stop at the first order in the expansion of the eik·r ∼ 1+ k · r+ . . .

term of Eq. 2.21. In addition, by making use of the commutator

[Hel, r] =
~

i

p

m
(2.22)



2.2 REXS/RIXS cross section 67

we can write

〈
c
∣∣∣ (ǫ · pj) e

ik·rj
∣∣∣ a
〉
≈ 〈c |(ǫ · pj)| a〉

= i
m

~
〈c |(ǫ · [Hel, rj])| a〉

= −im
~
(Ea −Ec) 〈c |(ǫ · rj)| a〉

= −im
~
(Ea −Ec) 〈c |Dǫ| a〉

(2.23)

where the expression of the operator Dǫ justifies the name an electric

dipole. In view of this, Eq. 2.21 becomes

Ares ≈ m
∑

c

∑

ij

(Ea − Ec)
3

~3ωk

(
〈b |(ǫ′ · ri)| c〉

〈
c
∣∣ (ǫ · rj)

∣∣ a
〉

Ea − Ec + ~ωk − iΓc/2

)
(2.24)

Since in iridium oxides the dipole channel dominates, it will be the only

one considered in this thesis work.

2.2.1 X-ray resonant magnetic scattering (XRMS)

Here we focus only on the elastic part of the Kramers-Heisenberg equa-

tion 2.24, i.e. our interest regards only the study of the ground state of

the system and in particular the investigation of the magnetic structure

of a system. For interpreting the majority of XRMS experiments it is

not necessary to evaluate Eq. 2.24, but it is sufficient to use an expression

derived by Hannon et al. [48] where the explicit dependence of the XRMS

cross-section on the polarization of the photons and the direction of the

magnetic moments is extracted from Eq 2.24. Here we follow the notation

of Hill and McMorrow [53].

By expanding the matrix element in the form of vector spherical har-

monics an explicit dependence of the scattering amplitude on the polar-

ization vector and the moment orientation can be obtained

AREXS
jE1 = (ǫ′ · ǫ)F 0 − i (ǫ′ × ǫ) · ẑjF 1 + (ǫ′ · ẑj)F 2 (2.25)
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Figure 2.2: Coordinate system used in X-ray magnetic scattering.

with

F 0 = (3/4k) [F11 + F11] (2.26)

F 1 = (3/4k) [F11 − F11] (2.27)

F 2 = (3/4k) [2F10 − F11 − F11] (2.28)

where FLM are factors that determine the strength of the resonance based

on the atomic properties and ẑj is a unit vector pointing in the direction of

the magnetic moment of the jth ion. The first term of Eq 2.25 contains no

dependence on the magnetic moment and it contributes to the Thomson

scattering. The second therm is linear in the magnetic moment direction

and produces first-harmonic magnetic satellites in antiferromagnets. The

third term is quadratic in the magnetic moments direction and leads to

second-harmonic magnetic satellites. Before proceeding further we defined

the coordinate system used in magnetic scattering experiments. In order

to describe the polarization of the incident (scattered) beam, the polariza-

tion vector is usually projected onto an orthogonal two vector basis either

perpendicular (σ) or parallel (π) to the scattering plane. The dependence

of the scattering amplitude on the photon polarization can therefore be
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expressed in terms of a 2×2 matrix in the (σ,π) basis as

(ǫ′, ǫ) =

(
(ǫ′σ, ǫσ) (ǫ′σ, ǫπ)

(ǫ′π, ǫσ) (ǫ′π, ǫπ)

)
. (2.29)

Furthermore, we can define a coordinate system ûi with respect to the

diffraction plane (see Fig. 2.2)

û1 =
(
k̂ + k̂′

)
/2 cos θ

û2 =
(
k̂× k̂′

)
/ sin 2θ

û3 =
(
k̂− k̂′

)
/2 sin θ

. (2.30)

The polarization factor of the first term in Eq. 2.25 can thus be written

as

ǫ′ · ǫ =
(
1 0

0 k̂′ · k̂

)
. (2.31)

It is therefore clear that this term connects states in the (σ-π) basis for

which the polarization is unchanged, characteristic of charge scattering.

By contrast, the polarization dependence of the second term of Eq. 2.25,

in its matrix representation, reads

(ǫ′ × ǫ) · ẑj =
(

0 k̂

−k̂′ k̂′ × k̂

)
· ẑj . (2.32)

In this case the mixing between different polarization channels is allowed

but scattering in the σ-σ channel is forbidden. The matrix representation

of the third term can be obtained along similar lines.

Finally, resolving each vector along the ûi coordinate system defined

in Eq. 2.30 (Fig. 2.2) we write the dipole XRMS amplitude as

AXRMS
jE1 = −iF 1

(
0 k̂ · ẑj

−k̂′ · ẑj (k̂′ × k̂) · ẑj

)

= −iF 1

(
0 z1 cos θ + z3 sin θ

z3 sin θ − z1 cos θ −z2 sin 2θ

) (2.33)

where we have neglected the third term of Eq. 2.25 as second harmonic
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satellites are not observed in iridium oxides. θ is the Bragg angle and zi are

the components of the magnetic moments along the ûi axis. From Eq. 2.33

is possible to determine which component of the magnetic moment con-

tributes to the resonant magnetic scattering for a given experimental ge-

ometry. This is, for instance, the principle exploited in the azimuthal

scans to determine the magnetic moment direction in this work, that will

be presented in the next chapters.

The cross-section derived up to now is valid for a single isolated ion.

In order to extend the scattering amplitude to a periodic distribution of

magnetic ions, one has to sum over the magnetic atoms that form the

magnetic unit cell. The final expression for the scattering amplitude will

then be

A(K) =
∑

j

ei2πK·rjAXRMS
j (2.34)

2.3 Cross-section for iridates

The work presented in this section has been published as “Resonant X-

ray Scattering and the jeff = 1/2 Electronic Ground State in Iridate Per-

ovskite” by M. Moretti Sala, S. Boseggia, D. F. McMorrow and G. Monaco,

Phys. Rev. Lett. 112, 026403 (2014) [37].

The first REXS/RIXS experiment conducted on iridium oxides was a

XRMS study at the Ir L2,3 edge in Sr2IrO4 performed by Kim et al.

[14]. Fig. 2.3 shows the resonant enhancement for the (1 0 22) magnetic

reflection in the proximity of the Ir L edges. Whereas the magnetic signal

is greatly enhanced at the Ir L3 with a typical single Lorentzian shape

resonance of dipolar origin, this behaviour is almost entirely missing at

the Ir L2. This anomalous observation was attributed to the realization

of a pure jeff = 1/2 state in Sr2IrO4. In fact, according to Kim et al.

[14] interpretation the scattering amplitude at the L2 edge vanishes com-

pletely in the strong SOC coupling regime, i.e. when the symmetry of the

system is exactly cubic. In this scenario, an increasing tetragonal distor-

tion would lead to a proportional increase of the magnetic signal at the

L2 edge and the XRMS intensity ratio IL2/IL3 would give the robustness
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Figure 2.3: Resonant enhancement of the (1 0 22) magnetic reflection at the Ir
L2,3 edges in Sr2IrO4. From Ref. [14].

of the jeff = 1/2 state. This enhanced sensitivity to the orbital state was

proposed as a novel intriguing feature of X-ray scattering techniques in

5d iridates. However, some doubts have been raised concerning this in-

terpretation [54, 55]. In order to understand the link between the novel

jeff = 1/2 ground state and the intensity of the REXS/RIXS processes at

the Ir L edges we have solved the KH equation (Eq. 2.24) that we rewrite

as

Aǫǫ
′

|f,±〉 =
∑

n

〈f,±|D†
ǫ′
|n〉 〈n |Dǫ| 0,−〉

E0 − En + ~ωk − iΓn/2
. (2.35)

In the hole representation, |0,−〉 is the ground state in iridium layered

perovskites, and its expression is given in Eq. 1.34 for µ‖[0 0 1] and in

Eq. 1.40 for µ‖[1 1 0]. |f,±〉 is the final state, Dǫ(D†
ǫ′
) is the absorption

(emission) dipole operator. The emission operator is obtained from the

Hermitian conjugate of the absorption one. Assuming that at a given

absorption edge all the intermediate states |n〉 have the same lifetime, the

denominator of Eq. 2.36 can be discarded and the KH formula simplifies

to

Aǫǫ
′

|f,±〉 ≈
∑

n

〈f,±|D†
ǫ′
|n〉 〈n |Dǫ| 0,−〉 . (2.36)
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2.3.1 Matrix elements in dipole approximation

The calculation of the electric dipole matrix elements are carried out along

similar lines of Ref. [56, 57] for L2,3 edge RIXS in Cu2+ cuprates, i.e. one-

hole eg systems. As we have shown in Section 2.2, the electric dipole

operator can be written as Dǫ = ǫ · r. Therefore, in order to calculate the

transition probability from an initial state Ψi to an intermediate state Ψn

we have to evaluate integrals of the form

〈Ψn|ǫ · r|Ψi〉 =
∫ ∞

0

r2R∗
nn,lnRni,lidr

∫ 2π

0

∫ π

0

Y ∗
ln,mn

ǫ · r Yli,mi
sin θdθdφ

=

∫ ∞

0

r3R∗
nn,lnRni,lidr

∫ 2π

0

∫ π

0

Y ∗
ln,mn

ǫ · r̂Yli,mi
sin θdθdφ

(2.37)

where we have separated radial and angular parts of the wave function

according to

Ψn,l,m(r, θ, φ) = Rn,l(r) · Yl,m(θ, φ). (2.38)

Since the integral over the radial part
∫∞
0
r3R5d(r)R2p(r)dr is in common

for all the 2p→ 5d transition, it will be neglected in the following and the

atomic wave functions will be express only in term of their angular part.

We can now expand the dipole operator in spherical harmonics as

ǫ · r̂ = ǫx sin θ cos φ+ ǫy sin θ sinφ+ ǫz cos θ (2.39)

=

√
4π

3

(
ǫzY1,0 +

−ǫx + iǫy√
2

Y1,1 +
ǫx + iǫy√

2
Y1,1

)
(2.40)

=

√
4π

3

∑

q

Y1,qPǫ,q (2.41)

where

Pǫ,q =





ǫz = zǫ for q = 0

−ǫx+iǫy√
2

= Rǫ for q = 1

ǫx+iǫy√
2

= Lǫ for q = -1

(2.42)

are polarization factors that depend on the polarization state of the light.

q=0, 1, -1 for linear polarization along the quantization axis z, for right
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Figure 2.4: Scattering geometry and coordinate system used in the calculation
of the X-ray resonant scattering cross-section. The x, y, and z are
the octahedral axis in the sample reference.

circular (RC) polarization, and for left circular (LC) polarization respec-

tively. The scattering geometry and the polarization of the radiation enter

in the calculation of the cross section by means of these polarization fac-

tors.

In order to calculate the dipole transition probabilities for a particular

experiment geometry and for a particular light polarization the scatter-

ing geometry has to be defined. The incoming and the outgoing unit

wavevectors, in spherical coordinates, are defined according to

k = sin θ cosφx+ sin θ sinφy + cos θ z (2.43)

k′ = sin θ′ cosφ′ x+ sin θ′ sinφ′ y + cos θ′ z (2.44)

where θ(θ′), φ(φ′) are the polar and azimuthal angles of the incoming

(scattered) radiation in the octahedral reference system of the sample.

Along similar lines of Section 2.2.1 we can project the incoming (outgoing)
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polarization ǫ(
′) onto the (σ, π) basis

ǫ(
′)
σ = k× k′ (2.45)

ǫ(
′)
π = k(′) × ǫσ. (2.46)

From these, the polarization factors Pǫ,q can be derived as

z
ǫ(

′) = ǫ(
′) · z (2.47)

R
ǫ(

′) = − 1√
2

(
ǫ(

′) · x− iǫ(
′) · y

)
(2.48)

L
ǫ(

′) =
1√
2

(
ǫ(

′) · x + iǫ(
′) · y

)
(2.49)

with ǫ(
′) = ǫ

(′)
σ , ǫ

(′)
π . The scattering geometry together with the definition

of the angles are shown schematically in Fig. 2.4.

We have now all the instruments to calculate the angular part of

Eq. 2.37. By making use of the 3j-symbols we can calculate the inte-

gral over the three spherical harmonics:

∫ 2π

0

∫ π

0

Yl1,m1Yl2,m2Yl3,m3 sin θdθdφ =

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
,

(2.50)

with m1 +m2 = −m3.

The matrix element of the electric dipole operator from an initial state

li =2, mi=0,± 1,± 2, to an intermediate state ln =1, mi=0,± 1, thus
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|Y +
2,2〉 |Y −

2,2〉 |Y +
2,1〉 |Y −

2,1〉 |Y +
2,0〉 |Y −

2,0〉 |Y +
2,1

〉 |Y −
2,1

〉 |Y +
2,2

〉 |Y −
2,2

〉

〈Y +
1,1| −

√
6Lǫ 0

√
3zǫ 0 −Rǫ 0 0 0 0 0

〈Y −
1,1| 0 −

√
6Lǫ 0

√
3zǫ 0 −Rǫ 0 0 0 0

〈Y +
1,0| 0 0 −

√
3Lǫ 0 2zǫ 0 −

√
3Rǫ 0 0 0

〈Y −
1,0| 0 0 0 −

√
3Lǫ 0 2zǫ 0 −

√
3Rǫ 0 0

〈Y +
1,1

| 0 0 0 0 −Lǫ 0
√
3zǫ 0 −

√
6Rǫ 0

〈Y −
1,1

| 0 0 0 0 0 −Lǫ 0
√
3zǫ 0 −

√
6Rǫ

Table 2.1: Dipolar matrix elements between the spherical harmonic basis sets
{|Y ±

1,m〉} and {|Y ±
2,m〉} in units of

√
15
∫∞
0 r3Rnd(r)Rnp(r)dr

reads

∑

q

√
4π

3
〈Yln,mn

|Pǫ,qY1,q|Yli,mi
〉 =

=
∑

q

√
4π

3
Pǫ,q

∫ 2π

0

∫ π

0

Y ∗
ln,mn

Y1,qYli,mi
sin θdθdφ

=
∑

q

(−1)mn

√
4π

3
Pǫ,q

∫ 2π

0

∫ π

0

Yln,mn
Y1,qYli,mi

sin θdθdφ

=
∑

q

(−1)mn
√
15Pǫ,q

(
1 1 2

0 0 0

)(
1 1 2

mn q mi

)
.

(2.51)

Dipolar matrix elements between the spherical harmonic basis sets {|Y ±
1,m〉}

and {|Y ±
2,m〉} in units of

√
15
∫∞
0
r3Rnd(r)Rnp(r)dr are shown in Tab. 2.1.

The same matrix elements can be more conveniently expressed in the

{|pj,mj
〉} basis and the real harmonic cubic 5d basis. In order to do that,

we have first to calculate the matrix Tp which transform the {|Y1,m〉} basis

set into the {|pj,mj
〉} basis. This can be easily done by diagonalizing the

spin-orbit Hamiltonian calculated for p states in the spherical harmonics

{|Y1,m〉} basis making use of Eq 1.23. The Tp matrix, which transforms

the {|Y +
1,1〉, |Y −

1,1〉,|Y +
1,0〉, |Y −

1,0〉, |Y +
1,1
〉, |Y −

1,1
〉} basis into the {|pj, mj〉} basis
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{|p 1
2
,− 1

2
〉, |p 1

2
, 1
2
〉, |p 3

2
,− 3

2
〉, |p 3

2
,− 1

2
〉, |p 3

2
, 1
2
〉, |p 3

2
, 3
2
〉} finally reads

Tp =




0 0 0 0 0 1

0
√

2
3

0 0
√

1
3

0

0 −
√

1
3

0 0
√

2
3

0√
1
3

0 0
√

2
3

0 0

−
√

2
3

0 0
√

1
3

0 0

0 0 1 0 0 0




. (2.52)

The transformation matrix T from the {|Y2,m〉} basis set to the 5d real

cubic basis set has already been calculated in Section 1.4.1 (see Eq. 1.29).

The matrix elements from 2p {|pj,mj
〉} to 5d real cubic harmonics can

finally be derived as

D|5d〉→|pj〉 = T †
p D|Y2,m〉→|Y1,m〉 T. (2.53)

Dipolar matrix elements between the {|pj, mj〉}and the t2g {|xy,±〉, |xz,±〉,
|yz,±〉} basis sets, in units of

√
15
∫∞
0
r3Rnd(r)Rnp(r)dr, are presented in

Tab. 2.2.

2.3.2 Results of the calculations

Having derived the matrix elements for 2p to 5d transitions we can proceed

to evaluate Eq. 2.36. We now focus on the resonant elastic process where

the initial and final |0,−〉 states coincides. We recall that the ground state

reads

|0,−〉c =
−A|xy,−〉+ |yz,+〉 − i|xz,+〉√

2 + A2
(2.54)

for magnetic moment µ ‖ [0 0 1] as in the bilayer perovskite Sr3Ir2O7, and

|0,−〉ab =
A(−|xy,−〉+ i|xy,+〉)/

√
2 + |yz,+〉+ i|xz,−〉√

2 + A2
(2.55)

for magnetic moment µ ‖ [1 1 0] as in the single layer perovskites Sr2IrO4

and Ba2IrO4. By making use of the matrix elements of Tab. 2.2, and the

scattering geometry and the polarization vectors of section 2.3.1 we can
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7

|xy,+〉 |xy,−〉 |xz,+〉 |xz,−〉 |yz,+〉 |yz,−〉

〈p 1
2
,− 1

2
| i

√
2α+Rǫ i

√
2α−Rǫ

β+(Lǫ−Rǫ)
√

2
−α+zǫ

β
−
(Lǫ−Rǫ)
√

2
−α−zǫ − 1

2 i
(√

2β+ (Lǫ+Rǫ)+ 2α+zǫ
)

− 1
2 i
(√

2β− (Lǫ+Rǫ)+ 2α−zǫ
)

〈p 1
2
, 1
2
| i

√
2β+Lǫ i

√
2β−Lǫ

α+(−Lǫ+Rǫ)
√

2
− β+zǫ

α
−
(−Lǫ+Rǫ)

√

2
− β−zǫ

1
2 i
(√

2α+ (Lǫ+Rǫ)+ 2β+zǫ
)

1
2 i
(√

2α− (Lǫ+Rǫ)+ 2β−zǫ
)

〈p 3
2
,− 3

2
| −i

√
3β+Rǫ −i

√
3β−Rǫ

√
3
2β+zǫ

√
3
2β−zǫ i

√
3
2β+zǫ i

√
3
2β−zǫ

〈p 3
2
,− 1

2
| −iα+Rǫ −iα−Rǫ β+ (Lǫ−Rǫ)+

α+zǫ
√

2
β− (Lǫ−Rǫ)+

α
−
zǫ

√

2
− 1

2 i
(
2β+ (Lǫ+Rǫ)−

√
2α+zǫ

)
− 1

2 i
(
2β− (Lǫ+Rǫ)−

√
2α−zǫ

)

〈p 3
2
, 1
2
| iβ+Lǫ iβ−Lǫ α+ (Lǫ−Rǫ)− β+zǫ

√

2
α− (Lǫ −Rǫ)− β

−
zǫ

√

2
− 1

2 i
(
2α+ (Lǫ+Rǫ)−

√
2β+zǫ

)
− 1

2 i
(
2α− (Lǫ+Rǫ)−

√
2β−zǫ

)

〈p 3
2
, 3
2
| i

√
3α+Lǫ i

√
3α−Lǫ −

√
3
2α+zǫ −

√
3
2α−zǫ i

√
3
2α+zǫ i

√
3
2α−zǫ

Table 2.2: Dipolar matrix elements between the {|pj ,mj〉} and the t2g {|xy,±〉, |xz,±〉, |yz,±〉} basis sets in units of√
15
∫∞
0 r3Rnd(r)Rnp(r)dr



78 Resonant X-ray scattering: theory and practice

calculate the scattering amplitude as

Aǫǫ
′

REXS =
∑

n

〈0,−|D†
ǫ′
|n〉 〈n |Dǫ| 0,−〉

E0 −En + ~ωk − iΓn/2
. (2.56)

At the Ir L2 edge the summation runs over the |p 1
2
,− 1

2
〉 and |p 1

2
, 1
2
〉 inter-

mediate states. The final scattering amplitudes read

Aσσ′

REXS =
(A− 1)2

2 + A2
(2.57)

Aσπ′

REXS = −i(A− 1)2 cos θ′

2 + A2
(2.58)

Aπσ′

REXS = −i(A− 1)2 cos θ

2 + A2
(2.59)

Aππ′

REXS = −(A− 1)2 cos θ cos θ′

2 + A2
(2.60)

for magnetic moments along the [0 0 1] direction and

Aσσ′

REXS =
(A− 1)2

2 + A2
(2.61)

Aσπ′

REXS = 0 (2.62)

Aπσ′

REXS = 0 (2.63)

Aππ′

REXS = −(A− 1)2 cos θ cos θ′

2 + A2
(2.64)

for magnetic moments along the [1 1 0] direction. We recall that the pa-

rameter A =
−1+δ+

√
9+(−2+δ)δ

2
controls the effect of the tetragonal crystal

field ∆ via δ = 2∆/λ, where λ is the Ir SOC constant.

Ignoring the σσ′ scattering channel for which no magnetic scattering

is allowed once the magnetic structure factor is taken into account, we

notice that for µ‖ [0 0 1] the scattering amplitude vanishes only when the

pure jeff = 1/2 state is realized, i.e. for ∆=0 (A=1). This is the case, for

example, of the bilayer iridate Sr3Ir2O7 in which an analysis of the L2/L3

XRMS intensity ratio can be applied in order to determine the deviation

from the jeff = 1/2 state due to the tetragonal crystal field. On the

contrary, for µ‖ [1 1 0] the scattering amplitude in the cross-polarized σπ′

and πσ′ channels is identically zero irrespective of the tetragonal crystal
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field. This implies that the jeff = 1/2 state cannot be inferred from the

L2/L3 XRMS intensity ratio when the magnetic moment lies in the ab

plane as in the single layer iridates Sr2IrO4 and Ba2IrO4 [58, 14, 16]. This

is an important result since most of XRMS experiments are carried out in

the cross-polarized channels in order to minimize the background due to

charge scattering. However, in the ππ channel the scattering amplitude

vanishes only for ∆=0, in analogy with the µ‖ [0 0 1] case.

At the Ir L3 edge the summation runs over the four |p 3
2
,− 3

2
〉, |p 3

2
,− 1

2
〉,

|p 3
2
, 1
2
〉, and |p 3

2
, 3
2
〉 intermediate states. At this edge the scattering ampli-

tudes read

Aσσ′

REXS =
2 (1 + A + A2)

2 + A2
(2.65)

Aσπ′

REXS =
i[(A− 2)A− 2] cos θ′

2 + A2
(2.66)

Aπσ′

REXS =
i[(A− 2)A− 2] cos θ

2 + A2
(2.67)

Aππ′

REXS =
6 sin θ sin θ′ − 2 (1 + A+ A2) cos θ cos θ′

2 + A2
(2.68)

for magnetic moments along the [0 0 1] direction and

Aσσ′

REXS =
2 (1 + A+ A2)

2 + A2
(2.69)

Aσπ′

REXS =
3iA(cosφ− sinφ) sin θ′√

2 (2 + A2)
(2.70)

Aπσ′

REXS = −3iA(cos φ− sinφ) sin θ√
2 (2 + A2)

(2.71)

Aππ′

REXS =
e−iφ

4 (2 + A2)

[
24eiφ sin θ sin θ′

− 8
(
1 + A + A2

)
eiφ cos θ cos θ′

+(3 + 3i)
√
2A
(
i+ e2iφ

)
sin(θ + θ′)

]
(2.72)

for magnetic moments along the [1 1 0] direction. It is interesting to note

that for µ‖ [0 0 1] the scattering amplitude in the cross-polarized chan-

nels goes to zero when A = 1 +
√
3; this corresponds to ∆ = 3λ/2. The

ground state wave function is in fact a linear combination of orbitals of

different symmetry and different spin polarization: |xy,−〉, |xz,+〉, and
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|yz,+〉. When the system has a perfect cubic symmetry, the SOC mixes

exactly in the same proportion the three t2g states and the scattering

amplitude at the L2 edge shows a destructive interference between the

different channels. On the other hand, the presence of the tetragonal

crystal field changes the mixing between the different t2g orbitals, and

when the tetragonal crystal field ∆ equalizes the energy separation be-

tween jeff = 1/2 state and jeff = 3/2 state (∆ = 3λ/2), a destructive

interference takes place at the L3 edge. As a consequence the scattering

amplitude for µ‖ [0 0 1] vanishes.

Having determined the scattering amplitudes at the Ir L2,3 edges we

have now all the ingredients to calculate the L2/L3 XRMS intensity ratio

for µ‖ [0 0 1]. The total scattering cross-section is usually calculated as the

squared modulus of the amplitude, taking into account the phase factor

deriving from the magnetic structure factor, i.e. the relative position of

the Ir atoms within the magnetic unit cell. However, this phase factor is

equal for the two L edges, and since we are evaluating an intensity ratio

it cancels out. The L2/L3 XRMS intensity ratio in the cross-polarized

channels finally reads

Iσπ′

L2/L3
=

Iσπ′

L2

Iσπ′

L3

=

∣∣Aσπ′

L2

∣∣2
∣∣Aσπ′

L3

∣∣2 =
(A− 1)4

[(A− 2)A− 2]2
cos2 θ′L2

cos2 θ′L3

, (2.73)

Iπσ′

L2/L3
=

Iπσ′

L2

Iπσ′

L3

=

∣∣Aπσ′

L2

∣∣2
∣∣Aπσ′

L3

∣∣2 =
(A− 1)4

[(A− 2)A− 2]2
cos2 θL2

cos2 θL3

. (2.74)

The L2/L3 intensity ratio in the σ–π′ and π–σ′ polarization channels as

a function of the tetragonal crystal field splitting ∆ ranging from -1 to

1 eV, for a given value of the spin-orbit coupling constant (λ=0.42 eV),

is shown in Fig. 2.5. Here we have neglected the cos2 θ′L2
/ cos2 θ′L3

and

cos2 θL2/ cos
2 θL3 terms as they are constant factor in the order of unity.

The calculated branching ratio drops to zero for ∆=0, while it diverges

for ∆=3λ/2. In the limit for ∆ ≫ λ, the ratio tends to unity, and to

1/4 for ∆ ≪ −λ. The calculated L2/L3 intensity ration will be used in

Chapter 4 to interpret the XRMS data in the proximity of the L2,3 edges

in Sr3Ir2O7.

When the resonant process involves a transition from the initial |0,−〉
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Figure 2.5: L2/L3 XRMS intensity ratio for µ‖ [0 0 1] as a function of the
tetragonal crystal field splitting ∆ ranging from -1 to 1 eV, for a
given value of the spin-orbit coupling constant (λ=0.42 eV).

state to the final |0,+〉 state, the system undergoes a“ spin-flip” process

and a magnetic excitation is created. The RIXS cross-section relative

to the “spin-flip” channel can be determined in analogy with the REXS

cross-section as

Aǫǫ
′

RIXS =
∑

n

〈0,+|D†
ǫ′
|n〉 〈n |Dǫ| 0,−〉

E0 −En + ~ωk − iΓn/2
. (2.75)

Surprisingly the RIXS scattering intensity shows a reciprocal behaviour,

vanishing at the L2 edge in any polarization channels when the magnetic

moments point along the [0 0 1] direction. While for µ‖ [0 0 1] it goes to

zero only if ∆ = 0. This will be discussed more in details in Section 5.2.1.

In a similar way if the final states of the RIXS process are the |1,±〉,
|2,±〉 states, a d-d excitation is created. The scattering amplitudes of

this process can be calculated along similar lines of REXS amplitudes and

RIXS amplitudes for the “spin-flip” channel. However this goes beyond

the scope of this work.
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2.4 Experimental set-up

Before presenting two prototypical beamlines, I16 at Diamond Light Source

and ID20 at the ESRF, which respectively represent the state-of-the-art

for REXS and RIXS instruments, we briefly point out that in both cases a

synchrotron source is needed. A charged particle, when accelerated, emits

radiation. Synchrotrons are storage rings where particles such as electrons

or positrons are accelerated close to the speed of light and are kept in a

circular orbit by means of bending magnets. Historically, the radiation

coming from the bending magnet— used to maintain the particles in a

closed orbit— was the first to be exploited for scientific studies.

Nowadays, in third generation synchrotrons, more powerful sources in-

stalled in the straight sections of the storage ring have become the first

port of call for “photon-demanding” techniques such as REXS and RIXS.

These sources, called undulators, are arrays of permanent magnets that

force the electrons to follow an oscillating path rather than moving in a

straight way. Since the magnetic field in undulators is rather small, elec-

trons experience small amplitude oscillations and the radiation produced

from each oscillation adds up coherently. As a consequence, X-ray ra-

diation from the undulator devices has a very low divergence, very high

brilliance and spatial coherence, and it is almost monochromatic. For a de-

tailed treatment of synchrotron radiation source see for instance Attwood

[59].

2.4.1 A REXS beamline: I16 at Diamond Light Source

Most of this PhD project work has been carried out at the I16 beamline,

Diamond Light Source, Didcot, UK. The beamline is optimized for REXS

and X-ray magnetic scattering. These techniques require high photon

flux, energy tunability, variable incident polarization, analysis of the scat-

tered beam polarization, high momentum resolution, azimuthal scanning

capability and different sample environments.
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Optics

At the I16 beamline X-rays are generated by means of a 2m Diamond U27

(27 mm period ) in-vacuum undulator insertion device that gives a con-

tinuous energy spectrum of X-rays from 3.5 keV to 15 keV. After a fixed

gas bremsstrahlung collimator, a liquid-nitrogen-cooled monochromator

is used to monochromatize the beam. In this stage three interchangeable

crystals are installed: a channel-cut Si (1 1 1), a Si (1 1 1) double crys-

tal and a Si (3 1 1) double crystal. Since the channel-cut Si (1 1 1) has

demonstrated to be very stable and easy to use, although a small verti-

cal movement of the beam when the energy is changed has to be taken

in account, it is the usual crystal exploited in the beamline. The energy

resolution of the incident beam due to the Darwin width of the crystal

monochromator (∆E/E = 1.33×10−4 for Si 111 [60]) is ∼1.49 eV at 11.2

keV plus a small contribution from the undulator.

The X-ray beam is then focused by a pair of 1.2 m mirrors. The first,

a 96 mm radius sagittal cylinder, focuses the beam vertically, the second

flat mirror with a circular mechanical bender (tangential radius ∼5.8 km)

gives the horizontal focusing. The result is a beam of gaussian shape

with a focus very close to the theoretical value. The beam at the sample

position has a 20µm× 200µm (V×H) size. The coating of the first mirror

(Si or Rh selectable) provides the rejection of the higher harmonics coming

from the undulator and the monochromator. Additional focusing up to

few µm is available via Kirkpatrick-Baez (KB) mirrors.

Between the monochromator and the mirrors a in-vacuum quarter-

wave phase retarder permits the manipulation of the photon polarization.

This device consists of a diamond crystal that exhibit birefringence close

to the Bragg condition. After the mirrors, numerous slits, monitors, at-

tenuators permit to control the intensity, divergence and size of the beam.

A schematic view of the optics and experimental hutch layouts is shown

in Fig. 2.6.

Diffractometer and sample environment

The core of the beamline is a Newport 6-axis N-6050 Kappa diffractome-

ter. This diffractometer permits to work in both vertical and horizontal
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scattering geometry. Compared to a classical eulerian diffractometer, the

k-circle allows more “exotic” sample environments and gives access to large

scattering angles. Several cryostats can be attached to the diffractometer.

Most used are a closed cycle Displex cryocooler and, if vibrations must

be avoided and the transition temperature is above the nitrogen boiling

point, a nitrogen gas jet cooler.

One fundamental property of any modern diffractometer is the possibil-

ity to perform azimuthal scans. They consist in measuring the scattering

intensity as a function of the azimuthal angle Ψ while rotating constantly

the sample around the scattering vector K (see Fig. 2.6, bottom panel). In

this way the projection of the magnetic moment with respect to the coor-

dinate system is varied (see Eq 2.33) and the magnetic moment direction

can be determined.

Detectors and polarization analyzer

The detector arm supports six permanently mounted X-ray detectors.

Five of these, an avalanche photodiode, a Si drift detector, a scintillation

detector, a PIN diode and a high resolution imager are mounted on the

secondary detector arm of a polarization analyzer (PA) stage. Separate

to this, with an angular offset of 9◦ on the main diffractometer detector

arm, a Pilatus 100K area detector is selectable.

The PA stage is composed of a crystal of a specific material at the

center of a small two-circle diffractometer. The crystal scattering angle

2θp is set in order to satisfy the Bragg condition. In this way only nearly

elastic radiation can be transmitted after the analyzer, and the signal

is cleaned from all the fluorescence background that is usually emitted

several eV below the absorption edges. In addition to this the crystal acts

as a polarizer. Recalling the polarization dependence of charge scattering

(Eq. 2.31)

ǫ′ · ǫ =
(
1 0

0 k̂′ · k̂

)
=

(
1 0

0 cos 2θp

)
(2.76)

it can be seen that for θp=45◦ it is possible to filter only the polarization

component perpendicular to the scattering plane of the crystal analyzer.

Therefore, by rotating the crystal analyzer around the beam direction by
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Figure 2.6: Top panel: schematic view of the optics and experimental hutch
layouts of I16, Diamond Light Source, UK, showing the diffrac-
tometer with the cryostat attached. The detector arm assembly is
shown, illustrating the in-vacuum polarization analyzer with five
detector systems, the permanent vacuum beam tube, and the Pi-
latus 100K area detector (blue box), under which is a set of slits.
Reproduced from Ref. [61]. Bottom panel: horizontal scattering
geometry and polarization analysis.
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an angle η different components of the polarization vector can be selected.

η=0◦ corresponds to σ′ polarized light whereas η=90◦ corresponds to π′

polarized light.

Since in REXS experiments the energies are fixed by the absorption

edges of the material, working in the ideal θp =45◦ is impossible. The crys-

tal analyzers close to this condition are Au (3 3 3) (θp ∼ 45◦) and graphite

(8 0 0) (θp ∼ 41◦) in the case of Ir L3 edge. Although Au (3 3 3) offers

a better polarization filtering due to a Bragg reflection closer to 45◦, a

graphite crystal offers higher reflectivity and a bigger angular acceptance.

At the Ir L2 edge the best match is provided by Cu (3 3 3)(θp ∼ 44◦).

However, in order to compare the scattering intensity with measurements

at the L3, we have used the same Au (3 3 3). At these energies the analyzer

scattering angle measures (θp ∼ 38◦). In order to take into account the

non ideal nature of the analyzer the measured intensities can be corrected

according to [62]:

Iσσ′ =
Imσσ′ − Imσπ′ cos2 θp

1− cos4 2θp

Iσπ′ =
Imσπ′ − Imσσ′ cos2 θp

1− cos4 2θp
,

(2.77)

where Imσσ′ and Imσπ′ are the measured scattering intensities. Similar ex-

pression can be obtained for incident π polarization.

2.4.2 A RIXS beamline: ID20 at the ESRF

The RIXS measurements of this work have been carried out at the ID20

(previously ID16) beamline at the ESRF, France. A RIXS beamline usu-

ally has similar requirements of REXS beamlines: high brilliance, good

momentum resolution and energy tunability. In addition, the possibility

to analyze the energy of the scattered beam with high resolution is an

essential capability.

Optics

Since RIXS is a “photon-hungry” technique, on ID20 the photon flux is

maximized by a 6 m long straight section equipped with 4 in-vacuum
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U26 undulators and 3 in-vacuum U32 which produce a continuous spec-

trum from 4 keV to 20 keV. After a collimating mirror (CM) X-rays

are monochromatized via a high heat-load liquid-nitrogen-cooled Si(1 1 1)

double-crystal monochromator up to a bandwidth of ≈ 1.5 eV at 11.217

keV (this bandwidth is comparable to the usual energy resolution in REXS

beamlines). In order to reduce the bandwidth of the incident radiation

to the meV range the common set-up exploited in hard X-rays is a sec-

ond monochromator working in a close-to-backscattering geometry. This

means that a suitable Bragg reflection has to be found and that the ex-

perimental set-up is appropriate only for a particular energy range. In the

following we will present the high resolution set-up for Ir L3 edge. The

choice of the high resolution monochromator is a channel-cut Si (8 4 4)

which gives an energy bandwidth, due to the Darwin width of the crys-

tal, ∆EDW ≈ 15 meV. At 11.217 keV, the (8 4 4) Bragg reflection of Si

is found at θB =85.73◦ The fully monochromatic beam is then focused in

two steps, firstly by means of a toroidal focusing mirror (FM) and then via

KB mirrors on the sample at the center of the RIXS spectrometer. The

beamsize at the sample position measures 8×16 µm2 (V×H). As we will

see in the following section the vertical spot size is a critical parameter in

the final resolution of a RIXS spectrometer. The optical layout of ID20 is

illustrated in Fig. 2.7.

RIXS spectrometer

The core of a RIXS beamline is the spectrometer. At ID20 it is mounted

on a 4 circle Huber diffractometer that permits us to maneuver the sample

orientation and to determine the scattering geometry both in the vertical

(σ incoming light) and horizontal (π incoming light) scattering plane (See

Fig. 2.7(b)). The scattered radiation is collected by a 100 mm-diameter

Si (8 4 4) spherical diced analyzer (A) which operates at the same Bragg

angle θB as the back-scattering channel-cut monochromator, and then fo-

cused on a 2D pixelated Medipix2 detector (55×55 µm2 pixel size). The

spectrometer works in the Rowland circle geometry, i.e. the sample (S),

analyzer and detector (D) position lies on the Rowland circle and the

curvature radius of the analyzer (R=2 m) matches the diameter of the
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Figure 2.7: (a) Schematic view of the optical layout of the ID20 beamline,
ESRF, France. (b) ID20 spectrometer. (c) The diced analyzer and
the 2D position-sensitive detector are shown in detail. (d) The
position of the source, analyzer, and detector is illustrated in a top
view of the Rowland circle.
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Rowland circle itself (see Fig. 2.7(d)). The diced analyzers have been

introduced to overcome the elastic distortion characteristic of bent ana-

lyzers which was degrading the resolution in the former RIXS instruments.

They consist of a polygonal approximation to a spherical crystal analyzers

made by perfectly cubed dices of edge size c=0.72 mm and spacing be-

tween cube centers r=0.94 mm (See Fig. 2.7(c)). However, the finite size

of a single dice causes a contribution to the resolution of the form [63]:

∆E

E
=

c

R
cot θB. (2.78)

The more the analyzer angle moves away from a perfect backscattering

geometry (θB =90 ◦), the bigger is this contribution. In general the broad-

ening due to the size of the dice cannot be decreased below 300 meV [64]

for R=2 m, making impossible to use RIXS to study low energy excita-

tions. A way to overcome this limitation has been proposed by Huotari

et al. [64, 63] and takes advantage of 2D position-sensitive detector. In

fact, every dice crystal disperses in the analyzer vertical scattering plane,

since at different Bragg angles correspond different energies of the scat-

tered photons. Since the Rowland condition is satisfied, the image at the

detector will be twice the size of a single dice 2c, and the contribution of

different dices almost perfectly superimpose at the detector surface. In

the detector plane, in the dispersive direction, there is a well-defined rela-

tionship between the energy of the photons and the spatial position x at

which photons impinge on the detector surface (see Fig. 2.7(c)):

dE

dx
=

E

2R
cot θB. (2.79)

In the case of Ir L3 edge (E=11217 eV, R=2 m, θB=85.73◦) the disper-

sion is about 210 meV/mm. This means that the resolution is now limited

by the pixel size p as
∆E

E
=

p

2R
cot θB. (2.80)

For the Ir L3 set-up the pixel size (55 µm) contribution to the resolu-

tion will therefore be ∆Epixel ≈ 11 meV. The last contribution to con-

sider to the overall resolution is the finite-size of the source s at the
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Figure 2.8: Experimental energy resolution at the Ir L3 edge as determine from
an energy scan on a polymer. The purple line is a fit to a Pearson
VII function of FWHM=25 meV. Green dotted (orange dashed)
lines are fit to a Gaussian (Lorentzian) line shape. The inset show
the same plot on a logarithmic scale to emphasize the effect of the
tail of the resolution function.

sample position (∆Es ≈ 4 meV for s=8 µm). Adding quadratically

all these contribution one gets the resolution of the RIXS spectrometer

∆Ecalc
RIXS =

√
2∆2

DW +∆2
s +∆2

pixel ≈ 24meV. This value can be compared

with the experimental resolution measured on a polymer in order to avoid

inelastic contaminations due to the sample. The results together with

a fit to a Pearson VII (purple line), Gaussian (dotted green line), and

Lorentzian (orange dashed line) functions are presented in Fig. 2.8. The

resolution function includes clearly both a Lorentzian and a Gaussian con-

tribution. In virtue of this a Pearson VII line shape that varies from a pure

Lorentzian function form=1 to a pure Gaussian function form=∞ gives

the best fit. The corresponding full-width at half-maximum (FWHM) is

∆Eexp =25.2(2) meV, in excellent agreement with the calculated resolu-

tion.

Concerning the momentum resolution of the spectrometer, this is de-

termined by the angular acceptance of the crystal analyzer. For an ana-
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lyzer diameter of 60 mm2 and a 2 m spectrometer the angular acceptance

is ± 0.85◦. The corresponding K resolution obtained from Eq.2.2 is there-

fore ± 0.28 Å−1.

2the full analyzer of diameter 100 mm is usually masked to reduce background and
improve the K resolution.





Chapter 3

The magnetic and electronic

structure of (Sr,Ba)2IrO4

studied with XRMS

Sr2IrO4 is a prototype of the class of Mott insulators in the strong spin-

orbit coupling (SOC) limit described by a jeff = 1/2 ground state. In

Sr2IrO4, the strong SOC is predicted to manifest itself in the locking of

the canting of the magnetic moments to the correlated rotation by 11.8(1)◦

of the oxygen octahedra that characterizes its distorted layered perovskite

structure. Using X-ray resonant scattering at the Ir L3 edge we have

measured accurately the canting of the magnetic moments to be 12.2(8)◦.

We thus confirm that in Sr2IrO4 the magnetic moments rigidly follow the

rotation of the oxygen octahedra, indicating that, even in the presence of

significant non-cubic structural distortions, it is a close realization of the

jeff = 1/2 state.

Ba2IrO4 is a close relative of Sr2IrO4. In this compound, the lack of

octahedral rotation leads to a simple antiferromagnetic structure which

is observed with Ir L3 edge XRMS. A comparative study of these com-

pounds reveals that the dominant, long-range antiferromagnetic order is

remarkably similar. The robustness of the magnetic properties to the

considerable structural differences between the Ba and Sr analogues is
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discussed in terms of the enhanced role of the spin-orbit interaction in 5d

transition metal oxides.
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3.1 Introduction

The discovery of a novel jeff = 1/2 state in Sr2IrO4 has triggered intensive

theoretical and experimental efforts to understand the validity and limi-

tation of this model [65, 16, 58, 54, 55]. While this model is interesting in

its own right, further impetus to the study of these materials is added by

the prediction of becoming superconducting upon electron-doping [28, 29].

The search for novel superconductivity represents a flourishing branch of

condensed matter physics. In strongly correlated systems, superconduc-

tivity is often realized when a long-range order state is destabilized by,

for instance, fluctuations. Both cuprate and pnictide superconductors, for

example, emerge when doping destabilizes long range antiferromagnetic

order, and in each case obtaining a microscopic understanding of the mag-

netic ground state of the parent compound has played a pivotal role in our

knowledge [66, 67]. In particular, Sr2IrO4 and Ba2IrO4 show striking sim-

ilarities with the parent compound of high–TC superconductors La2CuO4.
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They both crystallize in a layered perovskite structure close to the K2NiF4-

type, i.e., in a quasi-two-dimensional structure. They have effectively one

hole per Cu or Ir ion, and they show s = 1/2 or jeff = 1/2 antiferromag-

netic (AFM) order. In La2CuO4, it is well established that the low-energy

magnetic excitations are described by a spin 1/2 AFM Heisenberg model

with large superexchange J interactions. As shown in Section 1.5, the

dominant low-energy interactions in single layer perovskites are predicted

to follow the same model, despite the novel jeff = 1/2 wave function. A

detailed study of the magnetic state in Sr2IrO4 and Ba2IrO4 is therefore

required to place a strong constraint on the Hamiltonian and the theoret-

ical model of perovskite iridates.

3.2 Locking of magnetic moment to the oc-

tahedral rotation in Sr2IrO4

Although first synthesized more than 50 years ago [68], Sr2IrO4 has only

recently attracted significant interest. The attention of the scientific com-

munity was first boosted by the discovery of superconductivity in the

close isostructural compound Sr2RuO4 [69], and finally exploded after

the report of being the first example of “spin-orbit induced” Mott in-

sulator [19]. Since then, several experimental and theoretical studies

have investigated the structural, electronic, and magnetic properties of

Sr2IrO4 [14, 55, 42, 23, 43]. They all agree on the insulating behaviour

of Sr2IrO4 at all temperatures and on the fact that Sr2IrO4 shows a weak

ferromagnetic state below 240 K. However, the magnetic structure was

not fully established before this work. In particular the relation between

the macroscopic weak ferromagnetism and the microscopic magnetic in-

teraction was not unambiguously proved although Crawford et al. [70]

proposed that the weak ferromagnetic moment can be originated by a

canting of the dominant antiferromagnetic structure.

In Section 3.2.1 we present a general review on the physical properties

of Sr2IrO4. In Section 3.2.2 we then discuss our comprehensive study of

the magnetic structure via XRMS. Finally, in Section 3.2.3, we address

the problem of determining the canting angle in Sr2IrO4 by a comparison
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of measured intensities relative to specific magnetic reflections with the

scattering intensity calculated for a particular arrangement of Ir moments.

3.2.1 Review on bulk properties of Sr2IrO4

Sr2IrO4 crystallizes in the tetragonal space group I41/acd (a= b=5.48

Å, and c=25.8 Å) [70]. The symmetry is reduced from the K2NiF4-type

structure (space group I4/mmm) by a correlated staggered rotation of the

IrO6 octahedra by 11.8◦ about the c axis. This generates a larger unit

cell,
√
2a×

√
2b× 2c, under the rotation of the I4/mmm cell by 45◦ [70].

The crystal structure of Sr2IrO4 is shown schematically in Fig. 3.1. IrO6

layers where the Ir atoms (grey) are at the center of corner sharing oxygen

(red) octahedra are separated by Sr atoms (light green). The significant

distance between IrO6 layers (>6 Å) forces the electronic and magnetic

interactions to mainly take place in the IrO6 planes. As a consequence,

Sr2IrO4 is expected to exhibit all the “physical attributes” of a quasi-2D

system.

Another feature of this crystal structure is that the IrO6 octahedra

are slightly (4%) elongated along the c axis. This means that it is not

a priori obvious that the pure jeff = 1/2 state is realized in a system

which deviates from a perfect cubic symmetry. Although the exact space

group was recently called into question by two different neutron studies

[40, 42], the subtle difference from the commonly used I41/acd is most

likely not relevant in terms of the magnetic structure and therefore the

I41/acd reference will be used in the rest of this work.

As introduced in Chapter 1, Sr2IrO4 was initially expected to be a

metallic system. Since then, evidence for its insulating behaviour has been

provided [31, 14, 32]. Fig. 3.2 (a) shows the temperature dependence of

the in-plane (ρab) and out-of-plane (ρab) resistivity measured by Kim

et al. [14]. The most relevant peculiarities are a significant anisotropic be-

haviour of the resistivity between the in-plane and out-of-plane directions,

which reflects the bi-dimensional nature of this compound, and the lack

of anomalies at the magnetic transition TM =240 K which suggests that

the insulating behaviour is not correlated with magnetic degrees of free-

dom. The temperature dependence of the resistivity can not be fitted to a
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Figure 3.1: Crystal structure of Sr2IrO4 (space group I41/acd). IrO6 layers
where the Ir atoms (grey) are at the center of corner sharing oxygen
(red) octahedra are separated by Sr atoms (purple). The IrO6

octahedra undergo a staggered correlated rotation of ∼ 11.8◦ about
the c axis [70].

simple model. However, most authors assume an Arrhenius-type [71, 14],

which is characteristic for semiconductor-like behavior.

Further proof of the insulating behaviour in Sr2IrO4 and more insights

into its electronic properties can be found in optical conductivity measure-

ments. Fig. 3.2 (c) shows the temperature-dependent optical conductivity

spectra σ(ω) of Sr2IrO4 measured by Moon et al. [31]. A clear optical gap

of about 0.25 eV can be observed up to room temperature. Furthermore,

two distinct peaks can be observed at all the temperatures at about 0.5 eV

(α) and 1 eV (β). As illustrated in the cartoon of Fig. 3.2 (c), top panel,

peak α corresponds to the optical transition from the lower Hubbard band

to the upper Hubbard band of the jeff = 1/2 states. Peak β corresponds

to the optical transition from the jeff = 3/2 band to the upper Hubbard

band of the jeff = 1/2 states. The observation of these well defined tran-

sitions is a further confirmation of the strong spin-orbit coupling regime
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Figure 3.2: (a) Temperature dependence of in-plane resistivity (ρab) and out-
of-plane resistivity (ρc). From [14]. (b) Magnetic susceptibility
χ(T )=M(T )/H of Sr2IrO4 at H =0.5 T along the two principal
crystallographic directions. Inset: ∆χ−1 in function of the tem-
perature for T > TM , with ∆χ−1 = χ(T ) − χ0. From [32]. (c)
Top panel: schematic band diagram of the electronic structure of
Sr2IrO4. Peak α corresponds to the optical transition from the
lower Hubbard band to the upper Hubbard band of the jeff = 1/2
states. Peak β corresponds to the optical transition from the
jeff = 3/2 band to the upper Hubbard band of the jeff = 1/2
states. Bottom panel: temperature-dependent optical conductiv-
ity spectra σ(ω) of Sr2IrO4. Taken from [31].

in Sr2IrO4.

Fig. 3.2 (b) shows the magnetic susceptibility χ(T )=M(T )/H of Sr2IrO4

at H =0.5 T along the two principal crystallographic directions a and c.

There is evidence for weak ferromagnetism below TM =240 K for both di-

rections above a critical magnetic field HC =0.2 T. The large anisotropy

of the magnetic susceptibility clearly indicates that the easy axis is aligned

with the a axis. The magnitude of the weak ferromagnetic moment was

estimated to be µFM ∼ 0.03 µB/Ir. Such a small value cannot be assigned

to jeff = 1/2 magnetic moments perfectly aligned ferromagnetically. In

fact, in Section 1.4.1 we have shown that, in the ionic limit, the expected
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magnitude of the magnetic moment for the jeff = 1/2 state is 1 µB. To

justify these findings Crawford et al. [70] suggested that a canted anti-

ferromagnetic (AF) state could be realized in Sr2IrO4. In this scenario,

the ferromagnetic moment would represent only a small fraction of the

total magnetic moment. This is exactly what happens in Sr2IrO4 and a

definitive proof can be provided via XRMS measurements.

3.2.2 XRMS study of magnetic structure

The work presented in this section has been published as “Robustness of

Basal-Plane Antiferromagnetic Order and the jeff = 1/2 State in Single-

Layer Iridate Spin-Orbit Mott Insulators” by S. Boseggia, R. Springell,

H. C. Walker, H. M. Rønnow, Ch. Rüegg, H. Okabe, M. Isobe, R. S.

Perry, S. P. Collins, and D. F. McMorrow, Phys. Rev. Lett. 110, 117207

(2013) [16].

In order to investigate the magnetic structure of Sr2IrO4 we performed an

XRMS study at the Ir L3 edge. The XRMS experiments were conducted

at the I16 beamline at Diamond Light Source, Didcot, UK and at the P09

beamline of Petra III, Hamburg, Germany. On I16 a monochromatic X-

ray beam was provided by means of a U27 undulator insertion device and

a channel-cut Si (1 1 1) monochromator, focused to a beam size of 20×200

µm2 at the sample position. An avalanche photodiode (APD) was used to

detect the scattered photons, together with a Au (3 3 3) crystal to analyze

the polarization of the scattered beam. The Sr2IrO4 sample was mounted

in a closed-circle cryostat with the [0 0 1] (perpendicular to the sample

surface) and [1 0 0] directions in the vertical scattering plane of a Newport

6-circle Kappa diffractometer at the azimuthal origin. On P09 the X-

rays were provided by means of a 2 m long U32 spectroscopy undulator

insertion device, and focused to a beam size of 50× 50 µm2 at the sample

position, using a set of focusing mirrors and beryllium compound refractive

lenses. The scattering geometry was equivalent to the one adopted on the

I16 beamline. An APD was used to detect the scattered photons together

with a pyrolytic graphite (0 0 8) crystal to analyze the polarization of the
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Figure 3.3: θ scan across the (0 0 24) Bragg reflection at room temperature in
Sr2IrO4.

scattered beam.

Sr2IrO4 single crystals have been prepared at the University of Edin-

burgh following the standard self-flux technique [32]. The crystal mosaic,

determined from the full-width at half-maximum (FWHM) of the θ scan

across the (0 0 24) specular reflection, was determined to be 0.02◦ (See

Fig. 3.3).

With the incident energy tuned at the Ir L3 edge (11.217 keV) and
well below the expected magnetic transition temperature (T= 10 K), we
have explored an extended region of reciprocal space looking for magnetic
peaks in the σ-π scattering channel. Magnetic Bragg reflections were ob-
served at (0 1 4n + 2) and (1 0 4n) positions (See Fig. 3.4), which implies
that the magnetic moments in the IrO6 layers are mainly aligned anti-
ferromagnetically1. The canting of the moments by an angle φ yields a
small ferromagnetic (FM) moment within a layer, which orders in a up-
down-down-up sequence along the c axis, generating magnetic scattering
intensity at the (0 0 2n + 1) positions (see Fig. 3.4). This can be easily
verified by calculating the squared magnetic structure factor for the sys-
tem. Taking into account the position of the eight magnetic atoms that
form the unit cell (see Fig 3.7) this is

1It should be noted that the charge (0 1 4n + 2) and (1 0 4n) reflections are not
allowed in the I41/acd space group.
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in agreement with the observed magnetic reflections. Clearly the inten-

sity of the (0 0 2n+1) reflections is much weaker than the (0 1 4n+2) and
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(1 0 4n) basal-plane AF reflections, being the FM component only a frac-

tion of the total moment. In the absence of canting (φ→ 0) the magnetic

scattering intensity at the (0 0 2n+1) positions will ultimately disappear.

The analysis of the FM component will be the main subject of Section

3.2.3.

These results confirm the first XRMS study by Kim et al. [14]. In

this study the magnetic structure in an applied magnetic field was also

explored. When the applied field in the ab-plane is greater than a critical

value HC =0.2 T, the magnetic structure changes. The magnetic peaks

at (0 1 4n + 2) are substituted by peaks at the (0 1 2n + 1) positions and

the canting-derived component aligns in a ferromagnetic way in the planes

generating a macroscopic field. As a consequence the (0 0 2n+1) magnetic

peaks disappear too. This magnetic structure unambiguously explains the

weak ferromagnetism observed in bulk measurements (see Fig. 3.2 (b)).

Examples of the basal-plane antiferromagnetic peaks at the (1 0 24)

position are shown in Fig. 3.5(a) in reciprocal lattice units (r.l.u.). σ-π in-

tensity is shown by solid blue circles and σ-σ by open green diamonds. As

expected from magnetic scattering probed through electric dipole transi-

tions (see Section 2.2.1), the signal appears only in the rotated polarization

channel σ-π. From a comparison with a nearby charge peak, we conclude

that the magnetic peaks are at the resolution limit in the momentum space

establishing the long-range nature of the magnetic order.

The magnetic nature of the observed reflections is further confirmed

by the energy scan in proximity of the Ir L3 edge. Fig. 3.5 (b) shows the

resonant enhancement of the (1 0 24) reflection at the Ir L3 edge at T =90

K. This data are not corrected for self-absorption since no absorption

spectrum was taken during the magnetic scattering measurements. The

energy dependence of the magnetic Bragg peak shows a Lorentzian shape

(FWHM = 6.26(9) eV), typical of dipole-dipole transitions. It should

be noted that the FWHM decreases slightly when absorption corrections

are taken into account. The resonant behaviour and the width of the

resonance are in agreement with the previous XRMS study [14].

The temperature evolution of the staggered magnetization and the on-

set of long-range antiferromagnetic order was monitored by means of θ−2θ

scans across the (1 0 24) magnetic reflection as a function of temperature,
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Figure 3.6: The azimuthal dependence of the (1 0 24) magnetic reflection (solid
light green spheres) in Sr2IrO4, T =90 K. The lines are the az-
imuthal dependencies calculated for three different antiferromag-
netic structures where the magnetic moments are pointing along
the [1 0 0] (light green line), [0 1 0] (dotted orange line), and [0 0 1]
(dashed purple line) directions, respectively. The azimuthal angle
Ψ is defined with respect to the reference vector [1 0 0].

in the σ-π channel. Fig. 3.5 (c) shows the integrated intensity obtained

by fitting a Lorentzian peak shape to the individual scans as a function of

temperature. The transition appears to be second order and a long-ranged

antiferromagnetic order is realized below the Neel temperature TN ∼ 225

K. At this temperature, the onset of the weak ferromagnetism is observed

in bulk measurements (See Fig. 3.2(b)), as expected from ferromagnetism

derived from the canting of the antiferromagnetic structure.

Having determined the relative phase between the Ir magnetic mo-

ments we now focus on the moment direction of the dominant antiferro-

magnetic structure, i.e. the (1 0 4n+2) and (0 1 4n) type of reflections. This

point is particularly relevant since theory makes precise predictions on the

moment direction in layered perovskite iridates (see for instance Fig. 1.7).

Furthermore, as treated in detail in Section 2.3, the XRMS cross-section

is highly dependent on the moment direction. As mentioned in Section

2.2.1, a powerful tool to establish the moment directions are azimuthal
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scans. This method consists of measuring rocking curves of the sample

for different Ψ angles, rotating the sample around the scattering vector.

From the azimuthal modulation of the intensity of the XRMS signal it is

possible, under favourable circumstances, to determine the orientation of

the magnetic moments in an antiferromagnetic material.

Fig. 3.6 shows the azimuthal dependence of the antiferromagnetic re-

flection (1 0 24) (light green spheres) together with the azimuthal depen-

dence calculated from Eq. 2.33 for three different antiferromagnetic ar-

rangement: µ‖[1 0 0] (light green line), µ‖[0 1 0] (dotted orange line), and

µ‖[0 0 1] (dashed purple line), respectively. Experimental data are cor-

rected for self absorption using Eq. 3.2. The azimuthal angle Ψ is defined

with respect to the reference vector [1 0 0]. By close inspection of Fig. 3.6

we conclude that the dominant antiferromagnetic component in Sr2IrO4

points along the [1 0 0] direction. We note that XRMS does not couple

to the canting of the moments since the latter can be seen as a in-plane

ferromagnetic component of the magnetic structure. As a consequence,

this scattering mechanism occurs in the same position in the reciprocal

lattice as the charge scattering and cannot be observed in (1 0 24)-type

reflections. In the next Section we will describe a way to utilize XRMS to

measure the canted component.

Our finding that the magnetic moments in Sr2IrO4 mainly point along

the a axis have profound implications on the REXS cross-section for Ir

ions in a octahedral cage. In fact, as seen in Section 2.3 (Eq. 2.61), when

the magnetic moments are in the ab-plane, the REXS cross-section in the

rotated polarization channel is identically zero irrespective of the tetrag-

onal crystal field, implying that the jeff = 1/2 state cannot be deduced

from the analysis of the L2/L3 XRMS intensity ratio.

The realization of the jeff = 1/2 state in Sr2IrO4 has however been con-

firmed with complementary techniques such as angle resolved photoemis-

sion spectroscopy (ARPES), oxygen K-edge XAS and RIXS [19, 72, 73].

3.2.3 Determining the canting angle using XRMS

The work presented in this section has been published as “Locking of

iridium magnetic moments to the correlated rotation of oxygen octahedra



106 The magnetic and electronic structure of (Sr,Ba)2IrO4

in Sr2IrO4 revealed by X-ray resonant scattering” by S. Boseggia, H. C.

Walker, J. Vale, R. Springell, Z. Feng, R. S. Perry, M. Moretti Sala, H. M.

Rønnow, S. P. Collins and D. F McMorrow, J. Phys.: Condens. Matter

25, 422202 (2013) [39].

As we have shown in Chapter 2, XRMS is a powerful tool to study the

orbital state, and in particular the spin-orbit entangled wave function that

distinguishes iridates. However, in the case of magnetic moments lying in

the basal–plane, the jeff = 1/2 state cannot be inferred from a simple

analysis of the L2/L3 XRMS intensity ratio. An insight of the true nature

of the ground state can instead be achieved by a complete understanding

of its magnetic structure. In fact, theory makes accurate predictions on

the magnetic ordering in Sr2IrO4 which can be tested using XRMS [23]. In

our first study we established that in Sr2IrO4 the moments lie in the basal

plane and form a canted antiferromagnetic (AF) structure. Employing

azimuthal scans of magnetic Bragg peaks we have shown that the AF

component of the moment is along the a axis in the I41/acd reference

system [16]. We now address the issue of determining the magnitude of

the canting angle φ, which has also been discussed in a recent neutron

diffraction investigation [40].

From the theoretical point of view, the determination of the canting

angle places a strong constraint on the Hamiltonian and the theoretical

model of perovskite iridates. As shown in Section 1.5, an effective Hamil-

tonian including the both tetragonal crystal field (∆) and octahedral ro-

tation (ρ) has been derived by Jackeli and Khaliullin [23]. According to

this model, in the strong SOI limit (for ∆ → 0), the ratio of the magnetic

moment canting angle to the IrO6 octahedral rotation (φ/ρ) approaches

unity (see Fig. 1.7).

From the theoretical point of view, a strong link between the crystal

and magnetic structure is predicted. Due to strong spin-orbit coupling and

the tilting of the IrO6 octahedra, a Dzyaloshinsky-Moriya (DM) interac-

tion arises. However, the anisotropy of the single-layer compound can be

gauged away by proper site-dependent spin rotations. The twisted Hub-

bard model can then be mapped onto a SU(2)-invariant pseudospin-1/2
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system, being isostructural with, for instance, the close relative Ba2IrO4.

In this latter compound, the straight Ir-O-Ir bonds preserve inversion sym-

metry so that the system shows a simple basal-plane antiferromagnetic

structure as we will show in Section 3.3.2 [16]. In the case of Sr2IrO4, to

obtain the magnetic structure of the twisted system, we have to transform

the isotropic system back. As a result, the spins are canted exactly like the

IrO6 octahedra. The proposed magnetic structure of Sr2IrO4, illustrated

in Figure 3.7, can be decomposed into a basal-plane antiferromagnetic sub-

lattice A, where the moments are pointing along the [1 0 0] direction, and a

net b-axis ferromagnetic moment due to canting of Ir magnetic moments,

that generates a stacked antiferromagnetic structure (−++−) along the

c axis (sublattice B). The A sublattice is responsible for the (1 0 4n) and

(0 1 4n+2) magnetic peaks, and the B for the (0 0 2n+1) magnetic peaks.

The relative intensity of the magnetic reflections associated with the two

magnetic sublattices is ultimately linked to the projection of the magnetic

moment on the a and b axes, respectively. In the total absence of the

b-axis ferromagnetic component, the intensity of the (0 0 2n+1) magnetic

reflection vanishes, as is the case for Ba2IrO4 [16]. It is therefore possible

to infer the direction of Ir magnetic moments from the comparison be-

tween a theoretical model for the magnetic moments and the measured

intensity ratio IA/IB between several magnetic reflections.

With the energy of the incoming photons tuned to the Ir L3 edge

we measured several magnetic peaks along the (1 0 4n), (0 1 4n+2), and

(0 0 2n+1) directions in the σ-π polarization channel at T = 10 K. θ-2θ

scans of each magnetic peak were numerically integrated and corrected for

self-absorption by multiplying the observed intensity by the factor:

Abs(K, ψ) = 1 +
sinα(K, ψ)

sin β(K, ψ)
, (3.2)

where α(K, ψ) and β(K, ψ) are respectively the incident and exit angle

with respect to the (0 0 1) sample surface. The results as a function of the

reciprocal lattice direction l are plotted in Fig. 3.8. In order to interpret

the experimental data, and to extract the canting angle of Ir magnetic

moments, we calculated the resonant scattering cross section for the mag-

netic moment arrangement of Fig. 3.7. Following the formalism described
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Figure 3.7: Left panel: ab-plane canted magnetic structure of Sr2IrO4. The
magnetic moment canting angle follows the octahedral rotations
rigidly. Right panel: Magnetic stacking pattern along the c axis.
Sites 1-8 in the space group I41/acd (#142, origin choice 1) for the
Ir ions were used to calculate the XRMS cross section. Ir magnetic
moments are canted by an angle φ from the a axis. The golden
arrows represent the canting-derived ferromagnetic component.

in Section 2.2.1 (Eq. 2.25) we can write the E1-E1 resonant magnetic

scattering amplitude as:

AXRMS
jE1 = −iF (1)

E1 (ǫ
′ × ǫ) · ẑj (3.3)

where ǫ (ǫ′) is the incoming (scattered) X-ray linear polarization orienta-

tion, and ẑj is a unit vector in the direction of the Ir magnetic moments

(see Fig. 2.2). F
(1)
E1 are coefficients dependent on the electronic transitions

that determine the strength of the resonant process [48].

We can then calculate the magnetic scattering amplitude for the Ir

magnetic moments pointing along the a axis (sublattice A) as:

AXRMS
jE1A,(104n)

∝ iẑj cosφ (cos ξ cos θ cosψ + sin θ sin ξ) (3.4)



3.2 Locking of magnetic moment to the octahedral rotation 109

and

AXRMS
jE1A,(014n+2)

∝ iẑj cos φ cosψ cos θ, (3.5)

and the magnetic scattering amplitude for the Ir magnetic moments point-

ing along the b-axis as

AXRMS
jE1B

∝ iẑj sinφ sinψ cos θ, (3.6)

where φ is the canting angle as defined in Fig.3.7, ψ is the azimuthal

rotation about the scattering vector Q, θ is the Bragg angle, and ξ is the

angle between the scattering vector Q and the c axis. The total scattering

cross section is then calculated as the squared modulus of the amplitude,

taking into account the phase factor deriving from the magnetic structure

factor as

I ∝
∣∣∣∣∣
∑

j

e2πiK·rjAXRMS
jE1

∣∣∣∣∣

2

, (3.7)

where K is the scattering vector and rj is the crystallographic coordinate

of the jth Ir ion. The positions of the eight Ir ions over which the sum

runs are illustrated in Fig. 3.7. We can now calculate the resonant cross

section for the reflections of the two magnetic sublattices as:

IA,(104n) ∝
∣∣∣+2

(
1 + e

iπl
2

) (
1 + eiπl

)
iẑj cos φ (cos ξ cos θ cosψ + sin θ sin ξ)

∣∣∣
2

,

(3.8)

IA,(014n+2) ∝
∣∣∣−2

(
−1 + e

iπl
2

) (
1 + eiπl

)
iẑj cosφ cosψ cos θ

∣∣∣
2

, (3.9)

and

IB ∝
∣∣∣∣−2

(
−1 + e

iπl
2

)2 (
1 + e

iπl
2

)
iẑj sinφ sinψ cos θ

∣∣∣∣
2

. (3.10)

Fig. 3.8(b) shows the comparison between the calculated intensity ra-

tio IA/IB(φ) and the experimental value for five different magnetic reflec-

tions: (1 0 24), (0 1 22), (0 1 18) associated with sublattice A, and (0 0 19),

(0 0 21), and (0 0 23) associated with the canting-induced magnetic sublat-

tice B. The azimuthal angle was kept fixed at 220◦ from the a axis. From

the intersection between the calculated IA/IB(φ) curves and the observed

value we can deduce the canting angle of the Ir magnetic moments.
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grated intensity of the measured magnetic scattering corrected for
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bars represent the calculated intensity for the magnetic moment
arrangement of Figure 3.7(c) for a canting angle φ = 12.2◦. (b) In-
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Figure 3.9: Tetragonal crystal field parameter (∆) as a function of the spin-
orbit coupling λ. The boundaries of the tetragonal crystal field
were obtained from the Hamiltonian of [23] using, as an input
parameter, the error bar in the canting angle φ obtained from the
present study. The shaded area represents the error in the deter-
mination of φ as calculated from the standard deviation.

A deviation from the a axis by 12.2(8)◦ is obtained averaging the

canting angle associated with the three intensity ratios I(1 0 24)/I(0 0 23),

I(0 1 18)/I(0 0 23), and I(0 1 22)/I(0 0 21) (see Fig. 3.8(b)). We therefore conclude

that, within the experimental error, the magnetic moments in Sr2IrO4 fol-

low the octahedral rotations rigidly. We note that we cannot determine

the sign of the canting angle φ from our analysis. Based on the prediction

of theoretical models for iridate perovskites, we exclude that the Ir mo-

ments could rotate in antiphase with the oxygen octahedra. Our findings

therefore support the Hamiltonian derived by Jackeli and Khaliullin [23]

for layered iridates in the strong SOC limit. In fact, according to their

theoretical model, when the tetragonal crystal field is not strong enough

to modify the jeff = 1/2 state, magnetic and crystal structures are inti-

mately related resulting in a perfect equivalence of the magnetic moment

and octahedral rotation angles (φ = ρ). This significant coupling between

magnetic and structural degrees of freedom suggests the existence of a

strong magnetoelastic effect, already observed in Sr2IrO4 [74, 75].

Extending further our analysis, the Hamiltonian 1.48 allows us to es-
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timate the magnitude of the DM interaction. If we consider two Ir ions

(for instance Ir 1 and Ir 2 of Fig. 3.7), the point bisecting the straight

line connecting the two ions lies on a 2-fold axis pointing along the [1 1 0]

direction. According to the fourth rule by Moriya [76], the DM vector in

Sr2IrO4 should point perpendicular to the two-fold axis and therefore along

the c axis: Dij =(0 0Dz). From the exchange Hamiltonian of Eq. 1.48 the

canting angle is determined by the ratio Dz/J as tan(2φ) = Dz/J . Using

a superexchange parameter J =60 meV, as extracted from RIXS mea-

surements [72], we obtain |D| ≈ 27 meV, a value in excellent agreement

with recent calculations [77, 78], and almost ten times larger than that

in the single layer cuprate La2CuO4 [79]. This enormous value of the

DM interaction is certainly a consequence of the strong spin-orbit cou-

pling that characterizes the jeff = 1/2 state. In fact, the DM interaction

is remarkably reinforced by the strong SOC and the antiferrommagnetic

superexchange via the equation D ∼ λJ/∆E, where ∆E is the first exci-

tation energy for antisymmetric exchange interaction [34].

Furthermore, using the error bar in the determination of the canting

angle φ as an input parameter, together with the model Hamiltonian 1.48,

we can set constraints on the effective tetragonal crystal field affecting the

Ir4+ ground state. Figure 3.9 shows the tetragonal crystal field parameter

∆ as a function of the SOI constant λ. For a typical value of λ=420(5)

meV in iridates [16, 65, 80], we find −60meV ≤ ∆ ≤ 35meV, a value

too small to induce a significant deviation from the pure jeff = 1/2 pic-

ture in Sr2IrO4. The measured canting angle φ=12.2◦ corresponds to a

tetragonal crystal field ∆=−12 meV. Adopting a pure ligand-field theory

approach, this result could appear surprising. In fact, due to an elon-

gation of the IrO6 octahedra along the c axis (4%), one should expect a

positive tetragonal crystal field acting on the t2g manifold. However, this

is a local approach which considers only the nearest-neighbours ligands,

and long-range crystalline anisotropy is completely neglected. A recent

LDA + DMFT calculation, which takes into account also many-body ef-

fects, shows that the effective crystal field goes exactly in this direction

and that an additional elongation of the c axis is required to recover the

SU(2)limit [43]. Our findings suggest that the role of longer-range crys-

talline anisotropy could be fundamental in generating non-cubic potentials
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that compete with local distortions of the ligand cage, an aspect not in-

cluded in ligand-field theory.

Another possible mechanism that could in principle explain the lock-

ing of the magnetic moments to the octahedral rotation is the single-ion

anisotropy. This effect has found to be negligible in this system by re-

cent ab initio calculations [81, 43]. Furthermore, the single-ion anisotropy

breaks the rotational symmetry of the in-plane spin components by se-

lecting a local easy axis, whereas DM does not. Sr2IrO4 susceptibility

data show no detectable in-plane anisotropy[32], thus supporting the DM

scenario.

3.3 Magnetic and electronic properties of

Ba2IrO4

The work presented in this section has been published as “Robustness of

Basal-Plane Antiferromagnetic Order and the jeff = 1/2 State in Single-

Layer Iridate Spin-Orbit Mott Insulators” by S. Boseggia, R. Springell,

H. C. Walker, H. M. Rønnow, Ch. Rüegg, H. Okabe, M. Isobe, R. S.

Perry, S. P. Collins, and D. F. McMorrow, Phys. Rev. Lett. 110, 117207

(2013) [16].

Ba2IrO4 is a close relative of Sr2IrO4. Its synthesis involves more difficult

procedures in high pressure press. As a consequence is much less common

and studied. In this section we will first introduce Ba2IrO4 general prop-

erties. We then present a detailed XRMS study that unravels for the first

time its magnetic structure. Finally, by a comparison between Ba2IrO4

and Sr2IrO4 we will show how the jeff = 1/2 state evolves as a function of

local symmetry and structural distortions.

3.3.1 General overview

Ba2IrO4 was first synthesized by Okabe et al. [34] in 2010. It crys-

tallizes in the K2NiF4-type structure (space group I4/mmm), and it is

therefore a closer 5d structural analogue of La2CuO4 than the Sr com-



114 The magnetic and electronic structure of (Sr,Ba)2IrO4

pound. A comparison of the crystal structures of Ba2IrO4 and Sr2IrO4

is shown in Fig. 3.10. The crystal structure of Sr2IrO4 (space group

I41/acd) is obtained from the one of Ba2IrO4 by rotating the Ba2IrO4

unit cell cell by 45◦. This generates a larger unit cell:
√
2a ×

√
2b × 2c.

The inset of Fig. 3.10(a) demonstrates the equivalence of the [1 1 0] in the

I4/mmm space group with the [1 0 0] direction in I41/acd by means of a

two-dimensional projection onto the basal plane of the unit cell.

The basal-plane crystal structure of the two compounds is rather dif-

ferent. While in Sr2IrO4 the IrO6 octahedra undergo an alternated cor-

related rotation about the c axis which produces a 156◦ Ir-O-Ir bonds,

Ba2IrO4 has perfectly straight Ir-O-Ir bonds with no octahedral rotation

(see Fig. 3.10(b)). Furthermore, in Ba2IrO4, the Ir–O apical distance is

2.155(8) Å, exceeding the in-plane Ir-O length (2.0155(6) Å). This indi-

cates that the tetragonal distortion of the IrO6 cage in Ba2IrO4 (∼7%)

almost doubles the relative distortion in Sr2IrO4 (∼4%) (see Fig. 3.10(c)).

These significant structural differences have important implications on

the respective magnetic and electronic properties of the two compounds.

From the theoretical point of view, in fact, a strong link between the

tetragonal distortion, the presence or otherwise of octahedral rotations,

and the magnetic structure of single layer iridates is expected. First,

as we have shown in Section 1.4.1, it should be noted that the jeff =

1/2 state itself is only strictly realized in a system of cubic symmetry

and that a spin flop transition from a basal-plane to a c-axis AF state is

predicted when the tetragonal crystal field is greater than a critical value

(see Fig. 1.7). Second, the DM interaction, responsible for a canted AF

state in Sr2IrO4 is not allowed in Ba2IrO4. Ba2IrO4, in fact, crystallizes

in the centrosymmetric space group I4/mmm. In this case, the in-plane

ligand oxygen (4c) connecting two adjacent Ir ions has a site symmetry

“mmm” and preserves inversion. This is consistent with the necessary and

sufficient condition for the absence of the DM interaction: D=0 [76]. As

we have already explored the consequences of these structural features for

the electronic and magnetic properties of Sr2IrO4, a natural extension of

our work is the study of the magnetic structure of Ba2IrO4. In addition,

a comparative study of the magnetic structure of the two compounds can

provide significant insights on the evolution of the jeff = 1/2 state as a
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function of structural distortion.

In analogy with Sr2IrO4, Ba2IrO4 is a “spin-orbit driven” Mott insu-

lator. Fig. 3.11(a) shows the temperature dependence of the electrical

resistivity ρ for polycrystalline Ba2IrO4. The increasing of ρ with decreas-

ing temperature indicates that Ba2IrO4 behaves like a small band gap

insulator in analogy with the Sr counterpart. Recent ARPES measure-

ments on Ba2IrO4 confirm the similarity between the electronic structure

of the single layer iridates [82].

The magnetic structure of polycrystalline Ba2IrO4 has been investi-

gated via bulk measurements and muon spin rotation (µSR) [34]. Ba2IrO4

is found to be an antiferromagnet below TN ∼240 K. This could be seen

in Fig. 3.11(c) where the temperature dependence of the muon spin pre-

cession frequencies is shown. From the fit of the experimental data to a

f1(T ) = f(0)[1 − T/TN]
β function, the Néel temperature TN = 243(1) K

and the critical exponent β = 0.18(1) can be extracted. In reality the

non-zero muon signal below 240 K indicates only that there exists a co-

herent internal magnetic field induced by long-range ordered spins. The

existence of weak ferromagnetism observed in Sr2IrO4 can be excluded on

the basis of magnetic susceptibility measurements (Fig. 3.11(b)), in which

no signal enhancement due to spontaneous magnetization was observed

for the entire measured temperature range. The lack of a cusp typical of

antiferomagnetic systems around TN is attributed to the short range order

nature of the quasi-2D magnet Ba2IrO4, where the spins are thought to

be highly correlated but strongly fluctuating within each IrO2 planes.

3.3.2 Magnetic structure: an XRMS study

In order to ascertain the nature of magnetism and the ground state of

Ba2IrO4 we performed an XRMS study in proximity of the Ir L2,3 edges.

The experiment on a Ba2IrO4 single crystal was conducted at the I16

beamline of the Diamond Light Source, Didcot, UK. A vertical scatter-

ing geometry (σ incoming polarization) was exploited. On I16, X-rays

were focussed to a beam size of 20×200 µm2 (V×H) at the sample posi-

tion. The sample was mounted in a Displex cryostat with the [1 1 0] and

[0 0 1] directions (in the I4/mmm system) in the vertical scattering plane.
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Figure 3.10: The crystal structure of Ba2IrO4 (space group I4/mmm, left pan-
els) is compared to the crystal structure of Sr2IrO4 (space group
I41/acd, right panels). Panel (a) shows the overall crystal struc-
ture of Ba2IrO4 and Sr2IrO4. The [1 0 0] direction in I41/acd
corresponds to the [1 1 0] in the I4/mmm space group, as demon-
strated in the inset by means of a two-dimensional projection onto
the basal plane of the unit cell. Panel (b) shows the basal plane
crystal structure. In contrast to Sr2IrO4, Ba2IrO4 possesses per-
fectly straight Ir-O-Ir bonds. (c) IrO6 octahedra are elongated
along the c axis by 7% in Ba2IrO4. This must be compared to a
4% elongation in Sr2IrO4.
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Figure 3.11: (a) Temperature dependence of electrical resistivity ρ for poly-
crystalline Ba2IrO4. The inset shows a ln ρ− 1/T plot. (b) Tem-
perature dependence of magnetic susceptibility χ(= χobs − χdia)
for Ba2IrO4, where χobs is the raw data measured under H =1
T and χdia (∼ 1.42 × 10−4 emu/mol) is the closed–shell diamag-
netic susceptibility. The inset is a magnification of the χ − T
curve around 300 K. (c) Temperature dependence of the muon
spin precession frequencies fi. The red line indicates numerical
fit of the f1 data using the equation f1(T ) = f(0)[1 − T/TN]

β,
where TN = 243(1) K, and β = 0.18(1). Adapted from [34].
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The incoming energy was tuned to 11.217 keV (L3) and 12.831 keV (L2)

probing electric dipole transition from 2p3/2 and 2p1/2 to the 5d states, re-

spectively. The polarization of the scattered beam was analyzed by means

of a Au (3 3 3) crystal at both edges.

Single crystals of Ba2IrO4 were prepared at the National Institute for

Materials Science (NIMS), Japan, from the solid-state reaction of a stoi-

chiometric mixture of BaO2 (99.9 %, Furuuchi Chemical Co., Ltd.) and

Ir metal powder (99.96 %, Furuya Metal Co., Ltd.), enclosed in platinum

capsules. During the crystal growth, the pressure was kept at 3 GPa and

the temperature was gradually lowered from 1725 ◦C to 1625 ◦C for 6

hours before quenching to room temperature. The samples of size ∼ 200

µm × 200 µm × 200 µm, were initially checked with a Supernova X-ray

diffractometer using a monochromatic Mo source at the Research Com-

plex at Harwell (RCaH), Chilton, UK. The diffraction data are consistent

with the I4/mmm space group and cell parameters a= b=4.0223(4) Å

and c=13.301(3) Å at room temperature. However, a note of caution

should be made regarding the sample stability. Single crystals of Ba2IrO4

were found to degrade in presence of air, water, oxygen, etc. To prevent

sample degradation, Ba2IrO4 should be kept in a controlled atmosphere

such as argon, nitrogen or in high vacuum.

Ordering wave vector

The crystal mosaic, determined from the full-width at half-maximum

(FWHM) of the (0 0 14) specular reflection was 0.08◦. With the photon

energy tuned close to the L3 edge (11.217 keV) and the sample cooled to

50 K, sharp peaks were found at the reciprocal lattice points (1
2

1
2
l) with l

even. These peaks existed in the rotated photon polarization channel σ-π

only (see Fig. 3.12) as expected from the selection rules for XRMS arising

from electric dipole transitions (see Eq. 2.25). We thus deduce that the

Ir4+ magnetic moments order in an antiferromagnetic structure, with a

doubling of the basal-plane unit cell, described by a magnetic propaga-

tion vector of k= [1
2

1
2
0]. Examples of these peaks along the h (a), k (b),

and l (c) directions at the (1
2

1
2
8) position are shown in Fig. 3.12 in re-

ciprocal lattice units (r.l.u.). σ-π intensity is shown by solid green circles
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and σ-σ by open purple triangle. From a comparison with a nearby charge

peak, we conclude that the magnetic peaks are at the resolution limit in

all three directions. From the half-width at half-maximum (HWHM) of

the magnetic peaks we can determine the lower limit of the respective

magnetic correlation length to be ξMAG = latt/(2π HWHM) (where latt

is the lattice parameter), to be ξMAG ≥ 120, 178 and 155 Å along the a,

b, c crystallographic directions, respectively.

It should be noted that since the (1
2

1
2
l) reflections in the I4/mmm sys-

tems correspond to the (1 0 2l) reflection in the I41/acd reference systems

(see inset of Fig. 3.10(a)), Ba2IrO4 shows essentially the same antiferro-

magnetic structure as Sr2IrO4. However, the (0 0 2n + 1) canting-derived

peaks are missing in Ba2IrO4 meaning that the system is a simple antifer-

romagnet.

Order parameter

The thermal evolution of the antiferromagnetic order was determined by

performing θ − 2θ scans of the (1
2

1
2
10) reflection in the σ − π channel at

the energy (11.217 keV) that maximizes the XRMS response. Fig. 3.12(d)

shows the integrated intensity obtained by fitting a Lorentzian peak shape

to the individual scans as a function of temperature. The transition ap-

pears to be second order, and the intensity of the magnetic scattering at

the antiferromagnetic Bragg peak is directly proportional to the square of

the staggered magnetization M2. Therefore, from the fit to a A(1− T
TN

)2β

function the Neel temperature TN =241(2) K and β=0.25(4) can be ob-

tained. β is the critical exponent relative to magnetization [83]. The

factor two is due to the fact that in scattering experiments an intensity

is measured, which correspond to a magnetization squared. These values

are in good agreement with the ones found by µSR measurements [34].

Although the measurements of the temperature dependence of the

magnetic peak were not specifically designed to study in detail the critical

behaviour of the system we can discuss a bit further the significance of

this value of the critical exponent. Experimental values of the critical ex-

ponent β usually range between 0.2–0.4. Ginzberg-Landau theory (mean

field approach) predicts β=0.5, whilst β is expected to be 0.325 for the
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three-dimensional (3D) Ising model , 0.346 for the 3D X −Y model , and

0.3647 for the 3D Heisenberg model [83]. Ba2IrO4 is considerably far from

these values of critical exponent and approaches more closely values for

two-dimensional (2D) systems. For 2D systems, an exact solution exists

only for the 2D Ising model (β=0.125) [84], while no longer range order

at finite temperature is expected for 2D X-Y and 2D Heisenberg model,

where a vortex state and the suppression of long range order by thermal

fluctuation are predicted, respectively. However, a weak interplanar inter-

action, always presents in any real system can stabilize long range order.

Typical example of 2D-like systems are for example compounds isostruc-

tural to Ba2IrO4 as K2NiF4 (2D Heisenberg) or K2CoF4 (2D Ising) where

the measured value of β are 0.138 [85], and 0.123 [86], respectively. In-

terestingly, Bramwell and Holdsworth [87] have reported the existence of

a class of material, namely 2D X − Y systems with weak perpendicular

coupling J⊥ (J‖/J⊥ ∼ 103 − 104) with β= 0.23. This value is very close

to the one we observe in Ba2IrO4. This is not surprising, in fact, the

spin-orbit entangled wave function typical of the jeff = 1/2 state has a 3D

shape that naturally favours 3D-like interactions and it is reasonable to

consider Ba2IrO4 as a quasi-2D magnet with weak interlayer coupling J⊥.

Energy dependence of XRMS

In Fig. 3.13 we present the energy dependence of the magnetic scatter-

ing at (1
2

1
2
8) position together with X-ray absorption near edge struc-

ture (XANES) measurements (in total fluorescence yield) for energies in

the vicinity of the L3 and L2 edges. The most notable features of this

data are the existence of a well-defined resonance at the L3 edge, and the

complete absence of a response at the L2 edge within experimental un-

certainty. Concerted attempts to find a magnetic response at the L2 edge

by investigating various magnetic reflections all ended in failure. Initially,

we interpreted this result along similar lines of the work of Kim et al.

[14] in Sr2IrO4, i.e. that the absence of any XRMS signal at the L2 edge

serves as a unique fingerprint of the jeff = 1/2 state [16]. However, as

we will show in the next section, in Ba2IrO4 the magnetic moments lie

in the basal-plane in analogy with Sr2IrO4. Therefore, according to our
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Figure 3.13: Resonant enhancement of the (12
1
2 8) magnetic reflection across

the L2,3 edges at T = 50 K in Ba2IrO4. The solid orange line
shows the X-ray absorption near edge structure (XANES) spec-
tra, measured in fluorescence mode, normalized to the number of
initial states. The green spheres (σ-π) and purple triangles (σ-
σ) show the intensity of the (12

1
2 8) reflection. The black dashed

line demarcates the integrated white line used to calculate the
branching ratio.

calculations, the REXS cross-section in the cross-polarized channels (see

Eq. 2.61) at the L2 is identically zero irrespective of the realization of the

jeff = 1/2 state. This is consistent with the total absence of XRMS signal

at the Ir L2 edge.

By a close inspection of Fig. 3.13 we can infer some general elec-

tronic properties of iridate perovskites. The width of the L3 resonance

is FWHM = 7.6(1) eV, comparable to the values found in Sr2IrO4 and in

Sr3Ir2O7 [14, 15]. The position of the resonance (11.217 keV), similarly

to those of Sr2IrO4 and Sr3Ir2O7, is 3 eV below the maximum of the L3

white line (11.220 KeV). This shift, as we will show later, represents a

good estimation of the cubic crystal field separating the t2g from the eg

states, 10Dq. In fact, the magnetic peaks at 11.217 keV in the XRMS sig-

nal, is only due to the transition from the 2p3/2 core level to an empty t2g
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state, which in our case is the jeff = 1/2 state. Whereas, the strong peaks

in the absorption spectrum is a sum of 4 empty eg states and a single t2g

state, which cannot be disentangled for the core-hole broadening typical

of XAS measurements. Therefore, the eg states would lie at slightly higher

energies than the maximum in the XAS signal.

However, also the t2g state would reside at higher energies than the

maximum of the XRMS signal. This is due to self-absorption effects that

influence every scattering process. These effects are not particularly rele-

vant at the Ir L-edge energies but they still have to be taken in account

to interpret fine details. The XRMS energy scan of Fig. 3.13 can there-

fore be corrected for self-absorption using the X-ray attenuation coefficient

µ(E), as explained more in detail in Section 4.4.5. The corrected data (see

Fig. 3.14 (b)), show a line shape closer to a perfect Lorentzian, with χ2

decreasing from 2.2 (raw data) to 1.8, the FWHM becoming 6.3(1) eV

and the center shifting to slightly higher energies (11.2177 keV). Consid-

ering the XAS white line as an average contribution between one hole in

the t2g state and four holes in the eg state we estimate 10Dq=2.9 eV.

This large value of the cubic crystal field justifies the initial assumption

of neglecting the contribution of eg intermediate states in the calculation

of the REXS/RIXS cross-section in our single-ion model (see Section 2.3).

Branching ratio in XAS

A physical quantity that is is directly related to the expectation value of

the spin-orbit operator in the valence states is the branching ratio (BR)

of core-valence transitions in X-ray absorption spectroscopy [88, 89, 90].

Significant insights on the spin-orbit coupling in Ba2IrO4 can therefore be

obtained by analysing the XANES spectra at the L3 and L2 edges. The

absorption spectrum is formed by three main features: a) a step-like edge

which corresponds to transitions from the 2p states to a continuum of

electronic excitations, b) a sharp white line associated with dipole tran-

sitions to bound states 2p → 5d, and c) an oscillating feature at higher

energies which is due to the scattering of the ejected photoelectrons by

the local environment. Here we focused only on the L2,3 white lines which

are particularly strong in transition metal oxides due to a substantial
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The shaded area has been numerically integrated to calculate the
white line intensity. (b) Resonant enhancement, corrected for self-
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2 8) magnetic reflection across the L3 edge at

T = 50 K in Ba2IrO4. The fit to a Lorentzian function (χ2 =1.8)
gives a resonance centered at E=11.2177 keV of FWHM=6.3
eV.

concentration of well localized states close to the Fermi level. The inte-

grated intensity of these white lines is proportional to the local density

of unoccupied final states in the system (in our case the population of 5d

holes) [91].

The pioneering work of van der Laan and Thole [88] has demonstrated

that the “branching ratio” of the L2,3 white line, BR = IL3/IL2, is directly

related to the ground-state expectation value of the angular part of the

spin-orbit operator of the d-states via BR = (2 + r)/(1 − r) (in units of

~
2), where r = 〈L · S〉/〈nh〉 and nh is the number of the holes in the d

levels [89]. This result is perhaps not surprising in view of the fact that

XAS must obey the selection rules for dipole-allowed electronic transitions
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(∆J = 0,±1). This means that, in the atomic limit, the L2 edge (2p1/2)

involves transitions only to 5d3/2 unoccupied states, whereas the L3 edge

(2p3/2) involves transitions to both 5d3/2 and 5d5/2. In the limit of zero

SOC the 5d3/2 and 5d5/2 multiplets are degenerate and the branching

ratio reflects the number of initial states (2p21/2, 2p
4
3/2), i.e. BR=2. An

interesting exercise is then to calculate the BR for our single-ion model.

This can be done by exploiting the matrix elements of Tab. 2.2 and the first

step (absorption process) of the Kramers-Heisenberg formula (Eq. 2.56).

The BR then reads

BR =

∑

n

|〈n |Dǫ| 0,−〉|2

∑

j

|〈j |Dǫ| 0,−〉|2
=

2 (1 + A+ A2)

(A− 1)2
, (3.11)

where the summations run over the n = {|p3/2, m3/2〉} and j = {|p1/2, m1/2〉}
states and A =

−1+δ+
√

9+(−2+δ)δ

2
controls the effect of the tetragonal crys-

tal field ∆ via δ = 2∆/λ (see Section 1.4.1), where λ is the Ir SOC

constant. The calculated BR as a function of the tetragonal crystal field

is shown in Fig. 3.15. The BR tends to the statistical value 2 for ∆ ≫ λ

and ∆ ≪ −λ, i.e. in a regime of weak spin-orbit coupling when a classical

s=1/2 state is realized. In the strong SOC limit the jeff = 1/2 state is

realized, and BR → ∞ for ∆=0, which is consistent with the expression

BR = (2 + r)/(1 − r) with 〈L · S〉jeff = 1 (see Section 1.4.1) and nh=1.

The divergence of the BR for ∆=0 is due to a vanishing XAS signal at

the L2 edge and it is strictly realized only when the effect of the jeff = 3/2

states is neglected. The inclusion of a small contribution of the jeff = 3/2

states gives a finite signal at the L2 edge and the BR no longer diverges.

Since XAS is a process that involves all the 5d levels, Laguna-Marco

et al. [92] have shown through configuration interaction calculations that

the measured 〈L · S〉 will be the sum of two contributions: a direct term,

which involves a single hole in the jeff = 1/2 state (〈L · S〉jeff = 1) and an

indirect term that derives from the mixing between jeff = 3/2 and eg states

and involves 4 holes in the eg states (〈L · S〉eg ∼= 4× 3λ5d/10Dq) [92]. In

the limit 10Dq → ∞ this term vanishes and we recover our calculations.

In order to calculate the experimental BR we performed a careful
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analysis of the white line intensity. First, the absorption spectra were

normalized to the number of initial states in such a way that the con-

tinuum step at the L3 is equal to unity and the step at the L2 is half

of that value. Second, we determined the intensity of the white lines by

means of two different procedures. In the first method, we subtracted from

the experimental data (green line in Fig. 3.14(a)) an arctangent function

(dashed orange line) centered at the maximum of the fluorescence spectra.

We then integrated numerically only the contribution of the white line,

from below the edge up to the intersection with the arctangent function

(shaded area). In the second method we fit the experimental data using

an arctangent +n-Lorentzian fit function which reads

µ(E) = C1 +
C2

π
arctan

(
E − E0

Γc/2

)
+

n∑

i=1

Di
1

1 +
(

E−Ei

Γc/2

)2 , (3.12)

where the arctangent, as in the first method, derives from the convolution

of the edge step function with the core-hole lifetime Γc and it is used to

model the edge jump at E0. The n-Lorentzians are exploited to model the

possible transitions. In our case a single Lorentzian centered at E1 ≡ E0

was exploited. C2, Di are scaling factors and C1 describes µ(E) at low

energies. The result of these fits at the L3 edge is illustrated by the

dotted purple line in Fig. 3.14(a). The fit clearly fails to reproduce the

high energy fine structure oscillations but captures most of the low energy

features. Within the limits of the experimental uncertainties, both the

numerical integration and the fitting analysis produced the same results,

i.e. BR=5.4(2). A BR significantly greater than the statistical one indi-

cates a strong coupling of the spin and orbital components within the 5d

manifold. Using nh = 5 we obtain 〈L · S〉 ∼= 2.67~2, significantly larger

that the value of ∼ 2 found for BaIrO3 [92] and 2.1 for Sr2IrO4 [55], but

comparable to the value found for a large class of iridates [93]. It should

be noted that a large value of 〈L · S〉 and the correspondent BR is only a

sufficient condition for a strong-spin orbit coupling regime. In fact, in case

the spin or orbital moments are quenched the expectation value 〈L · S〉
can vanish even in presence of strong SOC. Taking into account the two

contributions to the BR: 〈L · S〉jeff = 1 and 〈L · S〉eg , and the octahedral
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crystal field splitting (10Dq=2.9 eV) previously determined, we can ob-

tain the SOC parameter λ5d ∼=0.42 eV, a value in good agreement with

the standard estimation of about 0.4 eV for the SOC in iridium [12].

We can now discuss the relevance of these results to the jeff = 1/2

picture in Ba2IrO4. In order to do this we adopt an energy diagram

(Fig. 3.15(b)) which is complementary to the one illustrated in Fig. 1.4.

Here we apply to the 5dmanifold, in reversed order respect to Fig. 1.4, first

the SOC, and second the cubic crystal field. In this picture the jeff = 3/2

states are derived from the lower-lying j = 3/2 atomic states, while the

jeff = 1/2 state are branched out from the upper j = 5/2 atomic states

by the action of the cubic crystal field. A branching ratio significantly

larger than the statistical one means that the dipole transitions from the

L2 edge (2p1/2 → 5d3/2) are highly unlikely, and the population of the 5d

holes has mainly a d5/2 character, in agreement with the energy diagram

of Fig. 3.15(b) and the jeff = 1/2 physics. In a classical s=1/2 system,

the ground state is a mixture of jeff = 1/2 and jeff = 3/2 states and

transition from the L2 and L3 are equally allowed. This is confirmed by

our single-ion calculation, which shows that the BR varies between a novel

jeff = 1/2 system (BR → ∞) and a classical s=1/2 system (BR → 2)

with the ratio of SOC to tetragonal crystal field.

An unambiguous method to determine the realization of the jeff = 1/2

state is via oxygen K-edge XAS. This technique is in fact sensitive to

the symmetry of the hole in the Ir t2g orbitals which hybridizes with 2p

oxygen orbitals. Our recent O K-edge XAS measurements confirm the

robustness of the jeff = 1/2 state in Ba2IrO4 showing an isotropic orbital

ratio xy ÷ yz ÷ zx ∼= 1÷ 1÷ 1 among the t2g states [73].
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3.3.3 Ba2IrO4 vs. Sr2IrO4: equivalence of basal-plane

antiferromagnetism

Having investigated the electronic properties of Ba2IrO4 by means of a

detailed analysis of the absorption spectra, we return now to the problem

of determining the exact magnetic structure of Ba2IrO4.

In order to determine the possible magnetic structures in Ba2IrO4,

we performed representation analysis by means of the SARAh [94] pack-

age. Representational analysis allows the determination of the symmetry-

allowed magnetic structures that can result from a second-order magnetic

phase transition, given the crystal structure before the transition and the

propagation vector of the magnetic ordering. The magnetic represen-

tation of a crystallographic site can then be decomposed in terms of the

irreducible representations (IRs). For a second-order transition a powerful

simplification to the number of possible structures arises as a consequence

of the Landau theory: the ordering transition can involve only one IR

becoming critical. Accordingly, the basis vectors involved in the resulting

structure are limited to those associated with a single IR and the number

of “symmetry-allowed” magnetic structures possible for a particular crys-

tallographic site is simply the number of nonzero IRs in the decomposition

of its magnetic representation [94].

The input parameters of this calculations were the system space group

I4/mmm, confirmed from X-ray diffraction, the magnetic propagation vec-

tor k = [1
2

1
2
0], resulting from the XRMS measurements, and the atomic

coordinates of the Ir atoms. The results of the SARAh calculations are

presented in Table 3.1. For Ba2IrO4 only 3 IRs, with the associated basis

vectors, are possible: Γ3, Γ5 and Γ7 (following the numbering scheme of

Kovalev [95]). Contrary to Sr2IrO4, the symmetry of the system, that pre-

serves the inversion symmetry, rules out any representation that involves a

ferromagnetic component, due to the fact that the Dzyaloshinsky-Moriya

interaction is not effective [76].

In order to discriminate between the 3 possible structures, we per-

formed azimuthal scans of the (1
2

1
2
10) magnetic reflection at the Ir

L3 edge, T = 50 K. This has been achieved by measuring θ-2θ scans

for different Ψ angles, rotating the sample around the scattering vector.
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IR BV Atom BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ3 ψ1 1 0 0 1 0 0 0
Γ5 ψ2 1 1 1 0 0 0 0
Γ7 ψ3 1 1 -1 0 0 0 0

Table 3.1: Basis vectors for the space group I4/mmm with k=[12
1
2 0]. The

decomposition of the magnetic representation for the Ir site (0, 0, 0)
is ΓMag = 0Γ1

1+0Γ1
2+1Γ1

3+0Γ1
4+1Γ1

5+0Γ1
6+1Γ1

7+0Γ1
8. The atom

of the primitive basis is defined according to 1: (0, 0, 0).

Fig. 3.16(b) shows the azimuthal dependence of the (1
2

1
2
10) reflection

(green spheres) corrected for self-absorption using Eq. 3.2. The dashed or-

ange line, solid green line, and dotted purple line are the azimuthal depen-

dence calculated for the Γ3 (µ‖[0 0 1]), Γ5 (µ‖[1 1 0]) and Γ7 (µ‖[1 1 0]) IR,
respectively. The experimental curve most closely resembles the calcula-

tion for the Γ5 representation. We therefore conclude unambiguously that

Ba2IrO4 adopts a basal-plane antiferromagnetic structure with the mag-

netic moments pointing along the [1 1 0] direction. The magnetic structure

of Ba2IrO4 is shown in Fig. 3.16(a).

We can now compare the azimuthal dependence relative to the (1
2

1
2
10)

reflection of Ba2IrO4 (Fig. 3.16(b)) with the analogous azimuthal depen-

dence of the (1 0 24) reflection for Sr2IrO4 (Fig. 3.6). We recall that the

[1 1 0] direction in Ba2IrO4 corresponds to the [1 0 0] direction in Sr2IrO4

(see inset of Fig. 3.10(a)), so that the Ψ angles in the two figures are

equivalent. It is clear that in Sr2IrO4 the antiferromagnetic component

is oriented along the [1 1 0] direction of the I4/mmm reference system in

analogy with Ba2IrO4. We therefore conclude that the two compounds

have essentially the same basal-plane antiferromagnetic structure.

We now discuss our results in view of the available theoretical models

relative to perovskite iridates. As we have mentioned in Section 3.2.3,

the Hamiltonian 1.48 has been used to successfully account for the canted

magnetic structure observed in Sr2IrO4. For Ba2IrO4, it would also seem to

offer a natural explanation of our results: with ρ=0, the second and third

terms are identically zero, leaving a leading isotropic exchange along with

a weaker anisotropy which derives only from Hund’s coupling, a Hamil-
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Figure 3.16: Panel (a) shows the basal-plane antiferromagnetic structure of
Ba2IrO4, where the magnetic moments are pointing along the
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1
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defined with respect to the reference vector [1 1 0] in the I4/mmm

space group.

tonian that readily supports the commensurate antiferromagnetic order

observed in our experiments. One important proviso, however, is that the

magnetic ground state supported by this Hamiltonian becomes unstable

above a critical value of tetragonal distortion leading to a spin reorienta-

tion where the moments point along the [0 0 1] direction. Nevertheless it

seems, that nearly doubling the tetragonal distortion in moving from Sr

to Ba is insufficient to exceed the critical threshold.

Although the above analysis provides a general framework for us to un-

derstand the formation of magnetic structures in the layered perovskites,

and most especially the canting of the moments in Sr2IrO4, it does not

address the key fact revealed in our experiments that the antiferromag-

netic components in the two compounds are essentially identical. For this

we refer to explicit calculations of the exchange coupling J by Katukuri
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et al. [96], who have exploited an ab-initio many-body approach. Their

calculations show that when the SOC is switched off, the ground state and

the magnetic interactions are extremely sensitive to the local symmetry

and so are very different in the two systems: Ba2IrO4 has a hole in the

xz/yz states and a strong antiferromagnetic J interaction (∼ 15.4 meV),

Sr2IrO4 has a hole in the xy state and a ferromagnetic J interaction (∼ –

19.2 meV). The fact that in Sr2IrO4 the nearest-neighbour interactions are

ferromagnetic can be easily understood in term of Goodenough-Kanamori

rules for superexchange [97]. A hole in the xy state will be in fact highly

sensitive to the distorted nature of the Ir-O-Ir bonds in Sr2IrO4 making

oxygen mediated superexchange not effective. However, upon including

the SOC, the hole acquires an equal xy, zx and yz character in both com-

pounds and J in Sr2IrO4 becomes antiferromagnetic (∼ 51.3 meV), and

almost identical to that in Ba2IrO4 (∼ 58 meV).

However, a recent study by the same authors has overturned part of

this calculation showing that in the absence of SOC Ba2IrO4 has a hole

in the xy states while Sr2IrO4 has a hole in the xz/yz [98]. This is in

agreement with our experimental results that ∆=−12 meV in Sr2IrO4

and ∆=50 meV in Ba2IrO4 [73]. Superexchange is always AF in Sr2IrO4

while in Ba2IrO4 with no SOC the nearest-neighbours J has different signs

at different levels of approximation: if just intersite t2g − t2g excitations

(Anderson-like) are considered, J is AF (15 meV). If O 2p to Ir 5d and

intersite t2g − eg excitations are further added, J turns weaker and FM

(−2 meV) [98]. Upon the inclusion of the SOC, in analogy with the pre-

vious calculation, the t2g hole is equally distributed between the three

orbitals and the single layer perovskite show an almost identical AF su-

perexchange, which is the main conclusion of our XRMS investigations.

Therefore, the robustness of antiferromagnetic order in the layered per-

ovskites to structural distortions is ultimately linked to the strong SOI,

which produces a ground state wave function that is three dimensional

and inherently less perturbed by structural distortions.
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3.4 Conclusions

In this chapter we presented a detailed analysis of the magnetic structure

of the single layered perovskite iridates Sr2IrO4 and Ba2IrO4 via X-ray

resonant magnetic scattering at the Ir L2,3 edge. We confirm that Sr2IrO4

adopts a canted antiferromagnetic structure, as observed in previous stud-

ies [14]. We extend these investigations by solving unambiguously the

magnetic structure determining that the dominant antiferromagnetic com-

ponent of the moment points along the a axis in the I41/acd space group,

while the total moment is locked to the rotation of the IrO6 octahedra.

These are both consequences of the strong spin-orbit coupling regime and

the close realization of the jeff = 1/2 state in Sr2IrO4. By means of a

comparative XRMS study in the related compound Ba2IrO4 we show how

the jeff = 1/2 state evolves as a function of structural distortions. Surpris-

ingly, despite the significant structural difference between the compounds,

we show that Sr2IrO4 and Ba2IrO4 share the same basal-plane antiferro-

magnetic structure. The presence of the strong SOC regime is ascertained

by means of XAS measurements which show a very large branching ratio.

Therefore, both the magnetic and electronic structures in the single-

layered perovskites are remarkably robust to structural distortions, a fact

that can be linked directly to the unique three-dimensional character of the

jeff = 1/2 state produced by the strong SOC which renders it insensitive

to the perturbations in local symmetry. Furthermore, our findings sup-

port the Hamiltonian developed by Jackeli and Khaliullin [23] (Eq.1.48)

to describe layer perovskite iridates, which predicts a basal-plane canted

antiferromagnetic structure in Sr2IrO4 and a simple basal-plane antiferro-

magnetic structure in Ba2IrO4.





Chapter 4

The magnetic and electronic

structure of Sr3Ir2O7 studied

with XRMS

The evolution of the jeff = 1/2 state as a function of dimensionality is

studied by a comprehensive investigation of the electronic and magnetic

properties of the bilayer Sr3Ir2O7 by means of XRMS. Despite the

greater metallicity of the bilayer compound, the jeff = 1/2 state survives

in Sr3Ir2O7, as determined by the vanishing L2/L3 XRMS intensity

ratio. However, the addition of an extra IrO6 layer radically modifies the

magnetic structure forcing a spin-flop transition from the basal-plane

canted antiferromagnetic structure of the single layer Sr2IrO4 to the

c-axis collinear magnetic structure of Sr3Ir2O7.
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4.1 Introduction

The bilayer Sr3Ir2O7 is the n=2 compound along the Ruddlesden-Popper

series Srn+1IrnO3n+1 from Sr2IrO4. As n is increased, the system is thought

to become less insulating up to a strongly correlated metal for n=∞
(SrIrO3). This is due to the fact that the bandwidth W is proportional

to the number of neighboring Ir atoms N [99]. N is 4 in the single-layer

Sr2IrO4, 5 in the bilayer Sr3Ir2O7 and 6 in the cubic perovskite SrIrO3.

By means of optical conductivity measurements Moon et al. [99] have

investigated the electronic properties of Sr2IrO4, Sr3Ir2O7, and SrIrO3.

As discussed in Chapter 3, Sr2IrO4 shows an optical gap of about 0.3 eV

and two well defined features: a peak α corresponding to the transition

within the jeff = 1/2 manifold from the lower Hubbard band (LHB) to

the upper Hubbard band (UHB), and a peak β relative to transitions from

the jeff = 3/2 band to the UHB of the jeff = 1/2 band (see Fig. 4.1(a)).

As expected, these features become broader and decrease in energy in

Sr3Ir2O7. Furthermore, the optical gap is almost absent in the bilayer

spectra (see Fig. 4.1(b)). In the n=∞ compound, SrIrO3, peak α is no

longer present and the system behaves like a metal (Fig. 4.1(c)). The

n=2 case, the bilayer perovskite Sr3Ir2O7, clearly lies in the proximity of

a metal-to-insulator transition which should take place between Sr3Ir2O7

and SrIrO3, as illustrated in the schematic band diagram of Fig. 4.1(right

panel). In this context, it is of considerable importance to understand

whether the jeff = 1/2 state is robust enough to overcome the enhancement

in the bandwidth. The greater metallicity of the double layer compound

could in principle modify the subtle balance between spin-orbit coupling

and electronic correlations and lead to a different ground state.
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Another important feature of the bilayer structure is that Sr3Ir2O7 is

no longer a quasi-2D system like Sr2IrO4 or Ba2IrO4. The addition of an

extra IrO6 layer, in fact, means that the physics at play can be significantly

different from the single layer counterpart: the interlayer interactions can

in principle play a fundamental role in determining the ground and ex-

cited states of Sr3Ir2O7. This is strengthened by the fact that the three-

dimensional shape of the jeff = 1/2 state favours directionally dependent

interactions.

In this chapter we address how the jeff = 1/2 state evolves as a func-

tion of dimensionality in the bilayer Sr3Ir2O7. In Section 4.2 we present

the results of our investigation of the crystal structure of Sr3Ir2O7. Under-

standing the crystal structure in detail is a fundamental requirement to

the study of the magnetic structure in this compound. In Section 4.3 we

present a general overview of bulk properties in Sr3Ir2O7. Finally, in Sec-

tion 4.4, we present a detailed XRMS study which establishes for the first

time the magnetic structure and the ground state properties of Sr3Ir2O7.

4.2 Crystal structure

Sr3Ir2O7 was first reported to crystallize in the tetragonal I4/mmm space

group [100]. This picture was refined by recent reports of an orthorhombic

Bbcb space group [33, 101]. Therefore the exact crystal structure remains

debated. It is clear that the structure contains strongly coupled double

Ir-O layers, separated by layers of Sr-O and offset along the c axis, which

results in a double-layered framework of Ir atoms centered inside oxygen

octahedra. It is the rotation of these octahedra and the correlation be-

tween the rotations that lead to the subtle differences in crystal structure

reported thus far.

In order to investigate the crystal structure of Sr3Ir2O7, we performed

an X-ray diffraction study. Single crystals of Sr3Ir2O7 were grown at the

Clarendon Laboratory, Oxford University, UK and at the University of

Edinburgh, UK. These were synthesized in Pt crucibles using the self-flux

technique from off-stoichiometric IrO2, SrCO3, and SrCl2 compounds. The

mixture was heated to 1440◦C, fired for 20 h and slowly cooled at 3◦C/h.
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The resulting samples were plate-like with the c axis along the shortest

dimension of 2× 2× 0.1 mm size crystals. In terms of crystal structure,

samples from different growers do not show significant differences.

Crystallographic data were collected with a Supernova X-ray diffrac-

tometer equipped with a microfocused monochromatic Mo source at the

Research Complex at Harwell (RCaH), Chilton, UK. The Sr3Ir2O7 crystal

had dimensions of 0.108×0.134×0.072 mm. Using an ω-scan mode within

a 2θ range of 7.84◦ to 64.6◦ we measured 1369 reflections (204 unique) at

room temperature. The data were corrected for Lorentz, polarization and

absorption effects. The 1369 reflections were used to obtain the cell param-

eters: a=3.987(5) and c=20.892(5) Å. For Z =2, the calculated density

was 7.947 g/cc.

Initially, we modelled the structure with an I4/mmm space group with

a full occupancy of the atom sites. As a consequence we obtained a large

reliability factor (R >0.7) and the thermal parameter of O3 became very

large compared to the other atoms, and strongly anisotropic with an ellipse

highly elongated along the a axis. The next step was then to remove the

O3 atom from its position on the mirror plane and shift it by 0.4 Å from the

mirror plane, assigning it an occupancy of 0.5. This model decreased the

R-factor up to 4% and lead to a O3 thermal parameter of the same order

of magnitude of the other atoms (see Tab. 4.1). Subsequent refinement of

several parameters (isotropic extinction, anisotropic thermal parameter for

Ir and Sr, isotropic thermal parameters for O) by full-matrix least-squares

techniques converged at R= 0.044, wR=0.09, and S=1.089, where wR

is the weighted residual factor and S represents the fit goodness as defined

in the International table for Crystallography [102]. This refinement is in

close agreement with the initial report on the crystal structure of Sr3Ir2O7

by Subramanian et al. [100].

The crystal structure of Sr3Ir2O7 is shown in Fig. 4.2(a); the atomic

positions and site symmetries are given in Tab. 4.1. Purple spheres and

light blue spheres represent Sr and Ir atoms, respectively. The oxygen O1

and O2 are represented by red spheres while grey spheres indicate oxygen

atoms with 50% occupancy (O3). The partial occupation of the O3 sites

generates the octahedral rotation about the c axis of 11.95◦ in analogy

with the single layer counterpart Sr2IrO4. The principal bond angles are
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Atom Site x y z Uiso(Å
2) Occupancy

Ir 4e 1/2 1/2 0.59741(4) 0.0080(3) 1
Sr1 2b 0 0 1/2 0.0128(6) 1
Sr2 4e 0 0 0.68702(11) 0.0125(4) 1
O1 2a 1/2 1/2 1/2 0.014(4) 1
O2 4e 1/2 1/2 0.6943(8) 0.015(3) 1
O3 16n 0 0.605(4) 0.5964(6) 0.013(3) 0.5

Table 4.1: Atomic coordinates and isotropic displacement parameters of
Sr3Ir2O7 at 293(2) K, in the I4/mmm space group; a=3.897(5) Å,
c=20.892(5) Å, and V =317.3(6) Å3. Reliability factors: R=0.044,
wR=0.09, and S=1.089.

given in Tab. 4.3.

The model with a partial occupation of the O3 sites can be interpreted

either as the presence of disorder due to a short-range nature of the corre-

lated octahedral rotations or the average of a two-twin structure with fully

correlated rotations. In fact the I4/mmm structure with 50% occupancy

of O3 sites can be decomposed in the sum of two pseudo-orthorhombic

rotated twins: Bbcb and Acaa, both belonging to the No. 68 space group

of the International Tables for Crystallography. We recall that the unit

cell in the Bbcb (Acaa) reference system is rotated by 45◦ in respect to

the I4/mmm unit cell. The only difference between these twins is in the

vertical stacking of the layers for the rotated octahedra. This is illustrated

in Fig. 4.2(b-c), while keeping the I4/mmm reference system. Here grey

(blue) octahedra represent clockwise (anti-clockwise) rotations about the

c axis. For a pair of vertical neighbors, the octahedral rotations are in op-

posite directions. The coexistence of Bbcb and Acaa was first suggested by

Matsuhata et al. [101] for polycrystalline sample. From the interatomic

distances of Tab. 4.2 we can infer that the octahedral oxygen cage is less

distorted than in the single layer compounds Ba2IrO4 and Sr2IrO4, being

elongated along the c axis by only 2%. As already discussed in Sections

1.4.1,1.5, this can be relevant for the jeff = 1/2 picture.

In order to investigate in more detail the subtle effects in the po-

sition of the oxygen atoms, we recently performed single crystal X-ray

diffraction at the ID09 beamline, at the ESRF, Grenoble. These mea-
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jeff=3/2

jeff=3/2

jeff=3/2

jeff=1/2

jeff=1/2

Figure 4.1: Left panel: optical conductivity spectra σ(ω) of (a) Sr2IrO4, (b)
Sr3Ir2O7, and (c) SrIrO3. In (a), σ(ω) of other Mott insulators,
such as 3d LaTiO3 and 4d Ca2RuO4, are shown for comparison.
Peak α corresponds to the optical transition from the LHB to the
UHB of the jeff = 1/2 states. Peak β corresponds to the transition
from the jeff = 3/2 bands to the UHB. Right panel: schematic
band diagrams of 5d Srn+1IrnO3n+1 compounds: (i) Mott insulator
Sr2IrO4, (ii) barely insulator Sr3Ir2O7, and (iii) correlated metal
SrIrO3. EF represents the Fermi level and the arrow indicates the
increasing direction of the bandwidth W . Figure adapted from
Ref. [99].

Ir-O1 2.0351(9) Sr1-O3 2.534(14)
Ir-O2 2.023(17) Sr2-O2 2.760(4)
Ir-O3 1.991(4) Sr2-O3 3.025(14)
Sr1-O1 2.756(4) O3-O3 0.82(3)

Table 4.2: Interatomic distances (Å) of Sr3Ir2O7 at 293(2) K, in the I4/mmm

space group.
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Sr

O

Ir

O3
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a b c

Twin A Twin B

Figure 4.2: (a) The Sr3Ir2O7 I4/mmm crystal structure with two bilayer
molecules per unit cell. A 50% occupancy of the O3 sites (grey
atoms) results in an octahedral oxygen environment of the Ir ions
rotated from one layer to the next. The I4/mmm crystal structure
can be decomposed into two symmetry-related twins: A (b) and B
(c). The difference between these twins is in the vertical stacking
of the octahedral rotations which is opposite in the two cases. Here
grey (blue) octahedra represent clockwise (anti-clockwise) rotations
about the c axis. For a pair of vertical neighbors, the octahedral
rotations are in opposite directions.

surements show a 90◦ twinned structure where a single twin was refined

according to theBbcb space group with lattice parameters a=5.5342 (2) Å,

b=20.9864 (12) Å, c=5.5350 (2) Å (see Tab. 4.4). This corroborates the

existence of two pseudo-orthorhombic twins and the interpretation of

the tetragonal I4/mmm system as an average of them. The use of the

Bbcb+Acaa system or alternatively the I4/mmm is equivalent in terms

of describing the magnetic structure of Sr3Ir2O7. In fact, as we will show

in Section 4.4.1, the irreducible representations generated by the symme-

try operations associated with the different space groups are identical.

However, having identified the presence of crystallographic domains will
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O3-Ir-O3 178.8(7) Ir-O3-Ir 156.1(8)
O3-Ir-O1 89.4(4) O3-Ir-O2 90.6(4)

Table 4.3: Bond angles (deg.) of Sr3Ir2O7 at 293(2) K, in the I4/mmm space
group.

Atom Site x y z Uiso(Å
2)

Ir 8f 1/2 0.09741(4) 0 0.0104(3)
Sr1 4a 1/2 0 1/2 0.0135(6)
Sr2 8f 1/2 0.31251(5) 0 0.0125(4)
O1 8f 1/2 0.19471(4) 0
O2 4b 1/2 0 0
O3 16i 0.2118(3) 0.09669(6) 0.2125(5)

Table 4.4: Atomic coordinates and isotropic displacement parameters of
Sr3Ir2O7 at 293(3) K, in the Bbcb space group; a=5.5342(2) Å,
b=20.9864(12), c=5.5350(2) Å, and V =642.85(5) Å3. Reliability
factors: R=0.061, wR=0.077.

be useful to interpret the magnetic domains observed in Sr3Ir2O7 (Section

4.4.3), which appear to be strongly correlated with the crystal structure.

4.3 Overview of bulk properties

Sr3Ir2O7 displays bulk properties similar to the single layer compound

Sr2IrO4. The first report by Cao et al. [33] established, in fact, that

Sr3Ir2O7 it is barely an insulator which exhibits weak ferromagnetism

in the basal plane below TC∼ 285 K. Fig. 4.3(a) shows the resistivity

ρ as a function of temperature for the basal plane and the c axis. In

analogy with Sr2IrO4 (see for example Fig. 3.2(a)), the resistivity shows

a semiconductor-like behaviour in both directions. However, in the bi-

layer compound, the resistivity is significantly reduced, reflecting the more

metallic nature of the system. Furthermore, a significant increase of ρ at

TC ∼ 285 K, concomitant with the onset of the weak ferromagnetism, sug-

gests a coupling of magnetic and transport properties.

Concerning the magnetization data, a weak ferromagnetic component

appears in the ab-plane at TC∼ 285 K, and a second transition, resulting

in a further increase in magnetization, occurs at T ⋆∼ 260 K, attributed to
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a spin-reorientation (see Fig. 4.3(b)). The magnetic moment reported at

150 K in an applied field of 7 T is less than 0.003 µB/Ir [33], much smaller

than the corresponding magnetic moment in Sr2IrO4 (∼ 0.07 µB/Ir) [103].

The effective moment, deduced from a high-temperature Curie-Weiss fit

to the magnetic susceptibility χ in a field of 7 T, was reported to be 0.67

µB/Ir, comparable to the value of 0.5 µB/Ir found in Sr2IrO4 [32]. These

results indicate a similar microscopic magnetism in the Sr-based layered

iridates but a different origin of the weak ferromagnetic components in

the two compounds.

Fig. 4.3(b) shows the basal plane magnetization M at 0.01 T in a zero

field cooled (ZFC) and field cooled (FC) sequence measured by Cao et al.

[33]. The inset shows the magnetization behaviour for field cooling at

different temperatures. The most notable features of these data are the

onset of a weak ferromagnetic component at TC ∼ 285 K with a further

increase of the magnetization at T ⋆∼ 260 K. Below TD =50 K there is a

downturn in the magnetization which becomes negative below 20 K. This

behaviour is strongly dependent on the field cooling temperature and is

absent in the ZFC measurements where no anomalies are observed.

In order to understand the link between the macroscopic physics and

the microscopic properties determined by X-ray scattering techniques,

we performed magnetization measurements on Sr3Ir2O7 samples grown

at Clarendon Laboratories (sample A) and at the Edinburgh University

(sample B). The bulk magnetization data were collected using a Quantum

Design MPMS-7 superconducting quantum interference device (SQUID)

magnetometer, at the London Centre for Nanotechnology, UCL, London,

UK. Fig. 4.3(c) shows the magnetization M (µB/Ir) as a function of tem-

perature T , measured in the basal plane for sample A. Field-cooled (FC)

measurements were made on cooling in an applied magnetic field, ranging

from 0.05 to 0.5 T. On inspection of the FC data, it is clear that there are

two transitions at high temperature, TC and T ⋆, with a downturn in the

magnetization at low temperature, beginning at ∼ 50 K. This downturn

becomes an upturn in M at higher fields and could be interpreted as a

canting of magnetic moments in the direction of the applied field. From

the second derivative of the 0.005-T FC data, we calculated TC=275 K

and T ⋆=230 K.
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Figure 4.3: (a) Resistivity ρ as a function of temperature for the basal plane
and the c axis. Inset: ρ vs T at B=0, 0.05, and 0.5 T. (b) Magne-
tization M for the basal plane as a function of temperature at 0.01
T. Inset: M vs T measured using the field-cooled (FC) sequence
that starts at T =300, 260, and 230 K, respectively. Panel (a)
and (b) are reproduced from Ref. [33]. (c) SQUID magnetization
data, as a function of temperature for FC measurements in the
basal plane, ranging from 0.005 to 0.5 T applied magnetic field for
the single crystals grown at the Clarendon Lab, Oxford (sample A).
Two transitions can be observed at high temperature along with a
downturn in the magnetization at 50 K, which becomes a positive
upturn as the field is increased. (d) Comparison between the 0.005
T magnetization data relative to sample A (purple dashed line)and
sample B, grown at the University of Edinburgh (green line).
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These data are qualitatively similar to those reported previously by

Cao et al. [33]. The lower transition temperatures in our case may be

due to variations in the sample quality or small differences in oxygen stoi-

chiometry between the two studies. Fig. 4.3(d) shows a comparison of the

0.005-T FC data of sample A and sample B. The data are qualitatively

similar although for sample B the T ⋆ transition is absent and the down-

turn of the magnetization below 50 K is less pronounced. Furthermore,

the onset of the ferromagnetic component takes place at slightly higher

temperature in sample B (TC ∼ 290 K). For both samples the ZFC mea-

surements (not shown here) closely resemble the FC data in contradiction

with Ref. [33] but in agreement with later reports [41]. The reversal of

magnetization below 20 K was not observed in our data in analogy with

Ref. [41].

The peculiar temperature dependence of magnetization in Sr3Ir2O7

and the differences among various studies seems to suggest that the weak

ferromagnetism could originate from an extrinsic moment produced by

defects rather than a canting mechanism as in the single layer counter-

part. As we will show in the next sections, the canting picture is in fact

inconsistent with the observed magnetic and crystal structure.

4.4 Magnetic and electronic properties

The work presented in this section has been published as “Antiferromag-

netic order and domains in Sr3Ir2O7 probed by X-ray resonant scattering”

by S. Boseggia, R. Springell, H. C. Walker, A. T. Boothroyd, D. Prab-

hakaran, D. Wermeille, L. Bouchenoire, S. P. Collins, and D. F. McMor-

row, Phys. Rev. B 85, 184432 (2012) [15].

In order to unravel the electronic and magnetic properties of the ground

state in Sr3Ir2O7, we performed a detailed XRMS study at the Ir L2 and L3

edge. XRMS experiments were conducted at the I16 beamline of the Dia-

mond Light Source, Didcot, UK, and at the BM28 (XMaS) beamline [104]

at ESRF, Grenoble, France. The experimental set-up of I16 has already

been described in detail in Section 2.4.1. At the BM28 bending magnet
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beamline the photon energy was selected using a double-bounce Si (111)

monochromator, and higher order harmonics were rejected by rhodium-

coated mirrors, providing a beam footprint of ∼ 300 × 800 µm2 at the

sample position. The diffractometer was a vertical scattering Eulerian

cradle type with a Si-drift vortex detector mounted on the 2θ (detector)

arm. The degree of linear polarization in the plane of the storage ring

(referred to as σ-polarized light) was close to 100%. In both cases the

samples were mounted in Displex cryostats with the [0 0 1] direction (per-

pendicular to the sample surface) and the [1 1 0] direction in the vertical

scattering plane. A Au (3 3 3) analyzer was exploited to analyze the out-

going polarization for both edges.

The samples grown at the Clarendon Lab (sample A) and at the Edin-

burgh University (sample B) do not show any significant variation in the

magnetic structure but do exhibit different magnetic transition tempera-

tures. In the following we will therefore refer exclusively to sample A and

the difference between the samples will be discussed only in Section 4.4.2.

The tetragonal I4/mmm reference system will be used and reference to

the corresponding orthorhombic Bbcb space group will be given if needed.

4.4.1 Ordering wave vector

The crystal mosaic, determined from the full width at half maximum

(FWHM) of the specular reflection (0 0 24) in the unrotated σ-σ channel,

was 0.044◦. In the σ-π rotated channel with the energy of the incoming

beam tuned in correspondence of the Ir L3 edge, peaks were found at the

(1
2

1
2
l) positions of the I4/mmm space group. Fig. 4.4(a) shows magnetic

Bragg peaks over a wide range of l, with (hk) fixed at (1
2

1
2
). These

positions are crystallographically forbidden and imply that Ir magnetic

moments are ordered antiferromagnetically within an IrO2 plane. The

magnetic cell is thus doubled in the basal-plane and described by the

magnetic propagation vector k= [1
2

1
2
0]. Examples of these peaks at the

(1
2

1
2
23) and (1

2
1
2
24) reflections are shown in Fig. 4.4(b), as measured on

I16 at 60 K at the L3 edge, in reciprocal lattice units (r.l.u). σ-π intensity

is shown as the full green circles and σ-σ intensity as the open purple

diamonds. As expected from pure magnetic scattering no signal is evident
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in the σ-σ channel. The solid line is a fit to a Lorentzian peak shape for

each reflection in the σ-π channel. FWHM values of 0.031(4) and 0.024(3)

r.l.u were found for the (1
2

1
2
23) and (1

2
1
2
24) reflections, respectively. From

a comparison with the nearby charge reflection (0 0 24) (orange line in

Fig. 4.4(b)) we conclude that the magnetic peaks are at the resolution

limit and that the long range order extends for at least 200 Å along the

c direction (ξMAG ≥ 215 Å)1. As we shall show, the scattering intensity

at both l= even and l= odd positions is due to the presence of magnetic

domains. The strong modulation of the scattering intensity as a function

of l reflects the bilayer magnetic structure factor that is expected to have

a periodicity 1/b=5.1335 Å−1, where b represents the interlayer distance

within a bilayer.

In order to determine the magnetic structure compatible with the ob-

served magnetic propagation vector k= [1
2

1
2
0] we performed representa-

tion analysis using the SARAh package [94], in analogy with Section 3.3.

As input parameters we used the space group I4/mmm and the Ir atomic

positions obtained from the refinement of the crystal structure (Section

4.2). The results of the calculation are given in Tab. 4.5. The possible

irreducible representations (IRs) Γi involve either an antiferromagnetic

(AF) interlayer coupling (Γ2n) or a ferromagnetic (FM) interlayer cou-

pling (Γ2n+1), where the magnetic moments point along the [0 0 1] direc-

tion (Γ2,3), [1 1 0] direction (Γ5,6), or [1 1 0] direction (Γ7,8). The scatter-

ing intensity observed at the (1
2

1
2
l) positions can be explained by these

IRs and by decomposing the propagation vector k= [1
2

1
2
0] into the two

arms kA = [1
2

1
2
0] and kB = [1

2
-1
2
0] responsible for the magnetic reflections

(1
2

1
2
2n) and (1

2
1
2
2n + 1), respectively. The resulting magnetic structure

then consists of two domains, which have intensity for even (domain A)

or odd (domain B) l peaks, respectively.

Fig. 4.5 shows the h, k reciprocal space map for l=2n (a) and l=2n+1

(b). The green circles and the orange squares are the magnetic peaks

associated with the magnetic propagating vector kA= [1
2

1
2
0] and kB = [1

2
-

1
2
0], respectively. In order to disentangle the contribution of the two

domains one can keep fixed the in-plane component of the momentum

1ξMAG is estimated as in Section 3.3.2
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Figure 4.4: (a) l-scan profile along the (12
1
2 l) direction in the σ-π channel at

T =60 K in Sr3Ir2O7. (b) l-scan profile of the (12
1
2 23) and (12

1
2 24)

magnetic reflections in the σ-σ (purple open diamonds) and σ-π
(light green spheres) polarization channels. The light green line
and the orange line represent a fit to a Lorentzian function and the
resolution function, respectively.
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Figure 4.5: Reciprocal space map at constant l=2n (a) and l=2n + 1 (b).
The grey triangles represent charge peak. The green circles (or-
ange squares) are the magnetic peaks associated with the magnetic
propagating vector kA= [12

1
2 0] (kB =[12 -

1
2 0]).

kh,k = [1
2

1
2
] and vary the out-of-plane l component.

It should be noted that the choice of the orthorhombic Bbcb space

group instead of the high-symmetry tetragonal space group I4/mmm,

could in principle lead to different results in terms of IRs due to the differ-

ent symmetry operations in the space groups. We therefore performed rep-

resentational analysis using the Bbcb space group and the magnetic prop-

agation vector k= [1 0 0], which is equivalent to k= [1
2

1
2
0] in the I4/mmm

reference system. The resulting IRs, shown in Appendix B, are identical to

the ones given in Tab. 4.5 for the I4/mmm space group. Remarkably, for

both the I4/mmm and Bbcb systems, only collinear magnetic structures

are allowed with no evidence of a canted antiferromagnetic state.

We now turn to the l-dependence of the magnetic scattering, in order

to extract the relative phase of the interlayer coupling within a bilayer

by calculating the magnetic structure factor. The magnetic atoms in

the unit cell are located at the positions: Ir1=(0, 0,−z), Ir2=(0, 0, z),

Ir3=(1
2
, 1
2
, 1
2
− z) and Ir4=(1

2
, 1
2
, 1
2
+ z) (see Fig.4.11). The squared mag-
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IR BV Atom BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ2 ψ1 1 0 0 1 0 0 0
2 0 0 -1 0 0 0

Γ3 ψ2 1 0 0 1 0 0 0
2 0 0 1 0 0 0

Γ5 ψ3 1 1 1 0 0 0 0
2 1 1 0 0 0 0

Γ6 ψ4 1 1 -1 0 0 0 0
2 -1 1 0 0 0 0

Γ7 ψ5 1 1 -1 0 0 0 0
2 1 -1 0 0 0 0

Γ8 ψ6 1 1 1 0 0 0 0
2 -1 -1 0 0 0 0

Table 4.5: Basis vectors for the space group I4/mmm with k=[12
1
2 0]. The

decomposition of the magnetic representation for the Ir site
(0, 0, .09743) is ΓMag = 0Γ1

1+1Γ1
2+1Γ1

3+0Γ1
4+1Γ1

5+1Γ1
6+1Γ1

7+1Γ1
8.

The atoms of the nonprimitive basis are defined according to 1:
(0, 0, .09743), 2: (0, 0, .90257).

netic structure factor for a generic (hk l) reflection can be calculated as

∣∣F(hkl)

∣∣2 ∝
∣∣∣∣∣
∑

j

ei2πK·rjAj

|Aj|

∣∣∣∣∣

2

, (4.1)

where rj is the coordinate of the magnetic atoms in the unit cell, and Aj

is the atomic scattering amplitude. We therefore distinguish four possible

cases.

1. For A2=A3=−A1=−A4, the magnetic structure factor squared

reads

∣∣∣FA,AF
(hkl)

∣∣∣
2

∝
∣∣∣ei2πlz − e−i2πlz + ei2π(

h
2
+ k

2
+ l

2
−lz) − ei2π(

h
2
+ k

2
+ l

2
+lz)
∣∣∣
2

∝
∣∣∣2i sin(2πlz)

(
1− ei2π(

h
2
+ k

2
+ l

2
)
)∣∣∣

2

,

(4.2)
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which for h,k= 1
2
becomes

∣∣∣FA,AF

( 1
2

1
2
l)

∣∣∣
2

∝
∣∣2i sin(2πlz)

(
1 + eiπl

)∣∣2 . (4.3)

2. For A1=A2=−A3=−A4,

∣∣∣FA,FM

( 1
2

1
2
l)

∣∣∣
2

∝
∣∣2 cos(2πlz)

(
1 + eiπl

)∣∣2 . (4.4)

3. For A2=A4=−A1=−A3,

∣∣∣FB,AF

( 1
2

1
2
l)

∣∣∣
2

∝
∣∣2i sin(2πlz)

(
1− eiπl

)∣∣2 . (4.5)

4. For A1=A2=A3=A4,

∣∣∣FB,FM

( 1
2

1
2
l)

∣∣∣
2

∝
∣∣2 cos(2πlz)

(
1− eiπl

)∣∣2 . (4.6)

The first term of Eq. 4.3-4.6 is a sin2 (cos2) of periodicity 1/2z=5.1335,

which represents the bilayer modulation due to interlayer AF (FM) cou-

pling. The second term of Eqs. 4.3–4.4 vanishes only for l= odd and there-

fore explains the magnetic reflections (1
2

1
2
2n) observed for the magnetic

domain A. The second term of Eqs. 4.5–4.6 is zero only for l= even and

thus explains the magnetic reflections (1
2

1
2
2n + 1) observed for the mag-

netic domain B. Fig. 4.6(a) shows the calculated magnetic structure factor

|FA
( 1
2

1
2
l)
|2 as a function of l relative to the magnetic domain A. The green

(purple dashed) line represents AF (FM) ordering between two neighbor-

ing IrO2 planes. Fig. 4.6(b) shows the calculated magnetic structure factor

|FB
( 1
2

1
2
l)
|2 as a function of l relative to the magnetic domain B for AF (or-

ange line) and FM (grey dashed line) ordering, respectively. It is clear

that the experimental data of Fig. 4.4 closely resemble the behaviour of a

two-domain picture with AF interlayer coupling.

In order to make a more precise comparison between theory and ex-

periment we have carefully measured several (1
2

1
2
2n) peaks relative to

the magnetic domain A. The integrated intensity corrected for absorption

according to Eq. 3.2 is plotted in Fig. 4.6(c) and represented by purple

spheres. The experimental data can be modelled with great accuracy by
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the magnetic structure factor of Eq. 4.3 and by calculating explicitly the

atomic scattering amplitude A according to Eq. 2.25 for magnetic mo-

ments pointing along the c axis. We therefore conclude that the coupling

between neighbour IrO2 layers is antiferromagnetic and Sr3Ir2O7 is a G-

type antiferromagnet.

4.4.2 Order parameter

In order to determine the transition temperature of the magnetic ordering

and the type of phase transition occurring in Sr3Ir2O7, we measured the

intensity of the (1
2

1
2
24) and (1

2
1
2
23) reflections as a function of temper-

ature in proximity of the L3 edge resonance in the rotated σ-π channel

for sample A. Fig. 4.7 (a) shows the integrated intensity of θ-2θ scans at

the l=23, 24 peaks along with FC SQUID magnetization data, measured

in 0.005 T. The transition appears to be second order with a Néel tran-

sition to a commensurate antiferromagnet at TN ≈ 230 K. This is very

close to the transition T ⋆ observed in the bulk magnetization data shown

in Fig. 4.7(a) and described in Section 4.3. However, the same measure-

ments on the samples grown at the Edinburgh University (sample B) show

that the onset of the long range order magnetic scattering at TN is closely

related to the first temperature transition TC ≈ 290 K observed in the

SQUID data (see Fig. 4.7(b). We believe that the lower Néel temperature

TN in sample A could be due to differences in the oxygen stoichiometry.

The magnetic signal measured in the SQUID data at TC ≈ 285 K in sample

A could be due to some local field, and the system is long-range ordered

only below TN ≈ 230 K.

The unusual low-temperature behavior of the magnetization (T < 50

K) seen in Fig. 4.3 is dependent on the applied field, and could suggest a

canting mechanism away from the direction of the ordered magnetic mo-

ments. This would indicate that the zero-field antiferromagnetic ordering

does not change at low temperature. In order to verify this, we carried out

several measurements from 20 to 70 K, shown as the solid grey triangles

in Fig. 4.7 (a), which are approximately constant in intensity.
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Figure 4.6: (a) Calculated magnetic structure factor |F( 1
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1
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l)|2 as a function

of l for the magnetic domain A. The green (purple dashed) line
represents AF (FM) ordering between two neighboring IrO2 planes.
(b) Calculated magnetic structure factor |F( 1

2
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l)|2 as a function

of l for the magnetic domain B. The orange (grey dashed) line
represents AF (FM) ordering between two neighboring IrO2 planes.
(c) l-scan across the (12

1
2 l) magnetic reflections at T =60 K for the

magnetic domain A. The purple spheres represent the integrated
intensity of the measured magnetic scattering, whilst the heights
of the light blue bars represent the calculated intensity for the
magnetic scattering as discussed in the text.
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1
2 24) (blue spheres) and

(12
1
2 23) (grey open triangles) peaks , measured on sample A at the

L3 edge on the BM28 beamline, compared to the SQUID magneti-
zation data. The transition temperature of the observed magnetic
reflections, determined by XRMS, coincides with the second tran-
sition, T⋆ =230 K, in the bulk magnetization data. The solid grey
triangles show additional low-temperature data down to 20 K. (b)
The temperature dependence of the (12

1
2 24) (purples spheres) and

(12
1
2 23) (green open diamonds) peaks, measured on sample B at the

PO9 beamline of Petra III, is compared to the SQUID magnetiza-
tion data. In this case the onset of antiferromagnetism determined
by XRMS coincides with transition at TC=290 K in the SQUID
data.
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4.4.3 Imaging magnetic domains

In order to investigate the possibility of domains of odd (even) l in our

samples, we compared the intensities of several magnetic reflections. The

similar intensities of the (1
2

1
2
24) and (1

2
1
2
23) peaks measured on the XMaS

beamline suggest that if the two-domain picture is correct then the do-

mains are significantly smaller than the 300×800 µm2 beam size utilized

on BM28. An approximately equivalent number of these domains would

then be illuminated at each of the peak positions. On the I16 beamline,

however, the x rays are much more tightly focused at the sample position.

The beam spot is reduced, using a pair of parallel double focusing mirrors

and slits, which results in a footprint on the sample surface of 18×100

µm2. In this case, we observed large differences in the intensities of odd

(even) l magnetic reflections as a function of the spatial coordinates.

In order to image the intensity of these magnetic reflections over a

selected sample volume we performed a raster in x and y sample position

at the l=23, 24 magnetic reflections, at the L3 edge peak resonance en-

ergy at 40 K. Fig. 4.8(a) shows contour plots of the (1
2

1
2
24) and (1

2
1
2
23)

reflections over a 100×300 µm2 area of the sample. The results are clear;

in regions of the sample where there is little to no intensity of the l=24

peak there is a maximum in the intensity of the l=23 peak and vice versa.

Domains of odd and even l persist throughout the sample. This is not dif-

ficult to imagine, since the only difference between the two ordering wave

vectors kA and kB is the respective orientation of one magnetic bilayer to

another and these are of equivalent energy cost. These images indicate a

domain size of approximately 100×100 µm2 and confirm the calculations

and results presented in Section 4.4.1, supporting the determination of the

magnetic structure.

Furthermore, we investigated the temperature dependence of the mag-

netic domain population. Figure 4.8(b) shows the domain pattern for the

(1
2

1
2
24) peak, rastered over an area of approximately 1 mm2 at 90 K, well

below the transition temperature, heated above the Néel transition to 300

K and then cooled back to 90 K, revealing domains that are independent

of the thermal history. For these measurements, the X-ray beam size was

further reduced to 20×50 µm2 (V×H) by a set of slits.
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The independence of the magnetic domain population on the ther-

mal history suggests that the magnetic domains are locked to the crystal

structure and probably associated to the crystallographic twins Bbcb and

Acaa. An unambiguous proof of this could be obtained by mapping the

crystallographic twins by looking at Bragg reflections representative only

of one specific space group. In fact, the Bbcb and Acaa structures show

l-dependent extinction rules of charge scattering similar to the one ob-

served for magnetic scattering relative to A and B domains. Bragg peaks

corresponding to the correlated rotation of the oxygen octahedra can be

detected at the (3
2

1
2
l) positions (in the tetragonal reference system) with

l=2n (2n+1) for the Bbcb (Acaa) space group. The (3
2

1
2
l) reflections are

also allowed for magnetic scattering since the magnetic propagation vector

has the form k=[1
2

1
2
0]. The contribution of magnetic scattering can be

minimized by measuring in the σ-σ scattering channel. We have observed

examples of these peaks, which contain both charge and magnetic con-

tributions, but a complete 2D-map as a function of the sample position

has not been measured. The intrinsic weakness of these oxygen-related

reflections requires the use of synchrotron radiation light.

4.4.4 Spin-flop transition

The work presented in this section has been published as “On the mag-

netic structure of Sr3Ir2O7: an X-ray resonant scattering study” by S.

Boseggia, R. Springell, H. C. Walker, A. T. Boothroyd, D. Prabhakaran,

S. P. Collins, and D. F. McMorrow, J. Phys.: Condens. Matter 25, 422202

(2013) [105].

In the previous sections we have investigated the magnetic structure of

Sr3Ir2O7. Our study has established some essential features of the elec-

tronic and magnetic properties of Sr3Ir2O7: Sr3Ir2O7 is a G-type antifer-

romagnet below 290 K. Magnetic domains associated with two different

arms of the propagation vector k= [1
2

1
2
0] have been mapped as a function

of the sample spatial coordinates.

The following section aims to fully explore the azimuthal and polariza-



4.4 Magnetic and electronic properties 157

0.28 0.24

0

5

10

15

20

25

30

35

0.5

0.6

0.7

0.8

p
o
s
it
io

n
 (

m
m

)
y

x position (mm)
0.20 0.28 0.24 0.20

y
(m

m
)

1

1

T=90 K T=300 K T=90K

x (mm)
b

a ( 24)½ ½ (½ ½ 23)

Figure 4.8: (a) Intensity of the (12
1
2 24) reflection (left panel) and (12

1
2 23) re-

flection (right panel), as a function of x and y sample position.
These measurements were made at the L3 edge resonance at a
temperature of 40 K, well below the Néel temperature TN=230 K.
The beam size projected on the sample surface is highlighted by
the yellow rectangle in the left-hand panel. (b) The intensity of
the (12

1
2 24) reflection, measured as a function of x and y sample

position in a temperature sequence 90 K → 300 K → 90 K. The
bright yellow regions are areas of high intensity and the dark areas
are close to zero intensity.
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tion dependencies of XRMS in order to determine the magnetic moment

orientation in Sr3Ir2O7. The X-ray magnetic scattering experiment was

performed at the I16 beamline, Diamond Light Source, Didcot, UK. A

Sr3Ir2O7 single crystal was mounted on a boron capillary and a nitrogen

gas jet cooler was exploited to avoid mechanical vibrations that might pro-

duce uncertainty in the sample position with respect to the incident X-ray

beam. The sample was oriented with the [0 0 1] direction perpendicular to

the sample surface and the [0 1 0] direction lying in the scattering plane

at the azimuthal origin. An horizontal scattering geometry (π polarized

incident beam) was used for the polarization analysis whereas a vertical

scattering geometry (σ polarized incident beam) was exploited for mea-

suring the azimuthal scans. The experimental geometry is illustrated in

Fig. 4.9(d).

The magnetic domains of size ∼ 100µm × 100µm observed in Sr3Ir2O7

makes the use of azimuthal scans very challenging since the rotation about

the scattering vector K changes the relative position between sample and

beam. In order to minimize any systematic error deriving from the si-

multaneous illumination of different domains, we performed polarization

analysis at two different azimuthal angles in horizontal scattering geom-

etry, keeping the polarization of the incoming photons (π polarization)

fixed and varying continuously the polarization of the scattered beam by

rotating the polarization analyzer about the scattering vector by an angle

η (see Fig. 4.9(d)). By looking at Eq. 2.25 we notice that using σ polarized

incoming light, the cross product ǫ′×ǫ is constant and equal to −k̂′, leav-

ing unchanged the projection of the magnetic moment ẑj with respect to

the reference system. On the contrary, using π polarized incoming light,

the cross product ǫ′ × ǫ in Eq. 2.25 varies in the plane delimited by the

vectors k̂ and k̂ × k̂′ as a function of the analyzer angle η. For instance

at η=0◦ (σ outgoing polarization) XRMS is sensitive only to the projec-

tion of the magnetic moment orthogonal to the scattering plane (along

û2). On the contrary, for η=90◦ (π outgoing polarization), XRMS probes

only the projection of the magnetic moment which lies in the scattering

plane (along û1, û3). In this way one is able to infer the moment orien-

tation by measuring the polarization dependence for two distinct azimuth

separated by 90◦ and comparing it with the theoretical dependence for a
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Figure 4.9: Polarization dependence of the (12
1
2 24) magnetic reflection for two

different azimuthal angles Ψ= 45◦ (a) and Ψ= -45◦ (b) defined
with respect to the reference vector [0 1 0] (π incoming polariza-
tion). (c) Azimuthal dependence of the (12

1
2 24) magnetic reflec-

tion at the Ir L3 edge in the rotated σ-π polarization channel. The
solid black spheres represent the integrated intensity of the exper-
imental (12

1
2 24) magnetic reflection as a function of the analyzser

rotation η. The black dashed line is a fit to the equation 4.7. The
orange solid line, the purple dotted line and the blue dashed line
show the FDMNES calculation relative to the IRs Γ2, Γ6 and Γ8,
respectively. (d) The experimental configuration used to perform
the azimuthal scans and the polarization analysis measurements.
The sample has been oriented with the (0 0 1) and the (0 1 0) re-
flections lying in the scattering plane, defined by the incoming and
outgoing wavevectors. Azimuthal scans were performed in a ver-
tical scattering geometry (σ polarized incident beam) by rotating
the sample around the Ψ axis. For domain imaging measurements
and the polarization dependence of the X-ray magnetic scattering,
a configuration with the [0 0 1] and [0 1 0] directions lying in the
horizontal scattering plane was used (π polarized incident beam).
The polarization of the scattered beam was scanned between η=0◦

and 180◦, where η=0◦ corresponds to a σ polarized beam.
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precise arrangement of magnetic moments.

Fig. 4.9(a-b) shows calculations for the three IRs Γ2,6,8 (orange solid,

purple dotted and blue dashed lines, respectively) determined in Section

4.4.1 performed by means of the FDMNES software [106] (see Section 4.4.5

for more details), and the integrated intensity of the (1
2

1
2
24) magnetic

reflection (black solid points) as a function of the analyser rotation, η, for

two fixed azimuthal angles, 45◦ (a) and -45◦ (b). The dashed black line is

a fit to the equation [107, 108]

I =
I0
2
|1 + P1 cos 2η + P2 sin 2η)| . (4.7)

P1 and P2 are Poincarè-Stokes parameters, where P1 = (Iσ− Iπ)/(Iσ+ Iπ)
and P2 = (I+45 − I−45)/(I+45 + I−45). For a detailed report about the use

of the Poincarè-Stokes parameters in magnetic scattering see Ref. [109].

For the 45◦ (a) azimuth shown in Fig. 4.9(a), only the calculations for

the Γ2 or Γ8 IRs well replicate the experimental data. In (b) (-45◦), it

is the Γ2 and Γ6 IRs that lie close to the dashed black line, although the

Γ2 representation most precisely follows the data. It is clear that only

calculations based on a Γ2 irreducible representation are able to model

the experimental data for both the polarization dependence of the scat-

tered X-rays and the azimuthal dependence. These results indicate that

the magnetic moments are aligned along the c axis in the low temperature

G-type antiferromagnetic phase, at least for the (1
2

1
2
2n) domain probed

thus far. In order to determine the orientation of magnetic moments for

both domains, we measured the intensity of (1
2

1
2
23) and (1

2
1
2
24) magnetic

reflections as a function of the analyser rotation, η, in a horizontal scat-

tering geometry at T =90 K at the Ir L3 edge. Data were collected over a

wide range of azimuthal angles, Ψ and fitted to Eq. 4.7, these are shown

in panels (a) and (c) of Fig. 4.10 for the l=23, 24 reflections, respectively.

FDMNES calculations based on the Γ2 representation were performed in

order to model this experimental data and these are shown in panels (b)

and (d). The data are well modelled by these calculations, which are based

on a two-domain picture of the G-type antiferromagnetic structure with

wavevectors kA= [1
2

1
2
0] and kB = [1

2
-1
2
0], with moments aligned collinear

along the c axis.



4.4 Magnetic and electronic properties 161

-135

-90

-45

Experimental

0.0

0.13

0.25

0.38

0.50

0.63

0.75

0.88

1.0

0 45 90 135 180
-45

0

45

Calculated

0 45 90 135 180

Y
(°

) 
(½

 ½
 2

3
)

Y
(°

)
2

4
)

(½
 ½

h(°) h(°)

a b

c d

Figure 4.10: The intensity of the (12
1
2 23) and the (12

1
2 24) magnetic reflections

were fitted to Eq. 4.7 and are shown in panels (a) and (c), respec-
tively. The experimental data were acquired with a π polarized
incoming beam at the Ir L3 edge at 90 K. Panels (b) and (d)
show FDMNES calculations for the (12

1
2 23) magnetic reflection

and the (12
1
2 24) magnetic reflection as a function of the analyser

rotation η and the azimuthal angle Ψ.

Similar measurements performed at BM28, ESRF, France, for applied

magnetic fields ranging from 0.05 T to 1 T, do not show any variation of the

polarization dependence, confirming that the dominant antiferromagnetic

order is insensitive to the applied magnetic field.

In order to confirm these observations we investigated the azimuthal

dependence of the (1
2

1
2
24) magnetic reflection at T =90 K, using the res-

onant enhancement at the Ir L3 edge (see Fig. 4.9(c)). The sample was

rotated about the scattering vector K by an angle Ψ and the intensity

in the rotated σ-π channel was measured. To avoid to move outside the

magnetic domain during the rotation about K, we maximized the XRMS

signal by scanning the x, y sample position after each Ψ movement. The

integrated intensity of this reflection as a function of azimuthal angle, Ψ, is

represented by the solid black points and this has been compared to calcu-
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lations performed using the FDMNES code for the three possible IRs, Γ2,6,8

described earlier in the text. It is clear that only the Γ2 representation,

associated with an ordered structure where the magnetic moments point

along the [0 0 1]-axis, can adequately model the data. Fig. 4.11 shows rep-

resentations of the magnetic structures A and B. The magnetic moments

are ordered in a G-type antiferromagnetic arrangement with the moments

pointing along the c axis. Two of the moments have been highlighted in

each case to show the difference between the two magnetic wavevectors kA

and kB, responsible for the domain-like nature of the resonant scattering

picture.

The spin flop transition taking place when moving from the n=1

compound (Sr2IrO4) to the n=2 compound (Sr3Ir2O7) has no analogue

in 3d transition metal oxides unless accompanied by orbital reconstruc-

tion. This is for instance the case in cuprates, where the planar x2 − y2

ground state cannot support a c-axis magnetic structure once an extra

CuO2 layer is added. By contrast, the “3D” shape of the jeff = 1/2 wave

function supports naturally directionally-dependent interactions which are

strongly sensitive to the number of neighbouring ions. As a consequence,

the physics in double-layer iridates is not a simple extension of the physics

in the single-layer counterpart. These unique features of magnetism in irid-

ium oxides are strongly related to the spin-orbit entangled wave function

that distinguishes this class of materials.

We now discuss our findings in the context of the theoretical models

for bilayered systems in the strong spin-orbit coupling regime. As already

mentioned in Section 1.5, a good starting point to describe layered iridate

is the Hamiltonian 1.48 which we reproduce here for clarity

Hij = JSi · Sj + JzS
z
i S

z
j +D · [Si × Sj] +H′. (4.8)

The terms on the righthand side are an isotropic Heisenberg superex-

change, a pseudo-dipolar (PD) interaction, the antisymmetric Dzyaloshinsky-

Moriya (DM) exchange, and finally an anisotropic contribution from the

Hund’s coupling. Si,j is a pseudospin operator acting on the jeff = 1/2

manifold. This Hamiltonian supports the basal-plane canted (collinear)

antiferromagnetic structure observed in Sr2IrO4 (Ba2IrO4) and predicts a
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spin-flop transition in Sr2IrO4 as a function of the tetragonal crystal field

θ. However, in Sr2IrO4 the anisotropies due to the PD interaction and

DM interaction can be gauged away by a proper site-dependent spin rota-

tion, and the system can be mapped onto a dominant isotropic Heisenberg

model with weak anisotropies induced only by the Hunds’s coupling term.

This is not the case of Sr3Ir2O7 where, due to the presence of the interlayer

coupling, a full elimination of the twist cannot be carried out, resulting

in an intrinsic anisotropy of Sr3Ir2O7. Extending the Hamiltonian 4.8

to interlayer interactions strongly enhances the PD interaction which is

responsible for the magnetic moment reorientation along the c axis.

By solving Hamiltonian 4.8 Kim et al. [110] have obtained a phase

diagram as a function of η and θ (see Fig. 4.14(b)), where η is the ratio

between Hund’s coupling and on-site Coulomb repulsion and θ parameter-

izes the tetragonal crystal field. Whereas for Sr2IrO4 a distinct spin flop

transition from a basal-plane canted to a c-axis collinear AF state takes

place at θ=π/4 (∆=λ/2), in Sr3Ir2O7 the c-axis collinear AF structure

is stable in a wider window of the parameter space and the PD interaction

drives the spin-flop transition which is almost insensitive to the tetragonal

distortion θ. Fig. 4.14(b) shows the phase diagram of Sr2IrO4 (dashed line)

and Sr3Ir2O7 (solid line). The shaded area shows the values of θ inferred

from the L2/L3 XRMS intensity ratio as measured in our experiment (see

Section 4.4.5).

A different approach to interpret the c-axis collinear magnetic structure

would be to consider the interlayer superexchange J⊥ as comparable or

even greater than the intralayer superexchange J‖. This can be justified by

the fact that the in-plane Ir-O-Ir bons are twisted by about 11.95◦ while

the out-of-plane bonds are perfectly straight. In virtue of the Goodenough-

Kanamori-Anderson rules [97], the interlayer superexchange interaction

should be greater than the in-plane one . In order to avoid the competition

between interlayer superexchange J⊥ and DM interaction which favours

basal-plane canting, the system will adopt a c-axis magnetic structure

with the moments parallel to the DM vector, which minimizes the DM

interaction. An alternative model for magnetism in Sr3Ir2O7 based on a

dominant interlayer superexchange J⊥ will be presented in Section 5.3 in

order to interpret the magnetic excitation spectra of Sr3Ir2O7.
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Finally we briefly discuss the relation between the microscopic mag-

netic structure addressed in our study and the bulk susceptibility data.

The c-axis collinear AF state explains the lack of zero-field magnetic sus-

ceptibility, measured along the [0 0 1] direction, reported previously [33].

However, the origins of the unusual low temperature, ab-plane behaviour,

and the small inconsistencies found in different reports are a more com-

plex problem [33, 15, 41, 103]. Although XRMS cannot detect a pure

canting-derived ferromagnetic component, as we have discussed in Sec-

tion 4.4.1 and in Appendix B the IRs associated with the crystallographic

space group I4/mmm and Bbcb do not support a canted ground state.

This is in agreement with the study of Lovesey et al. [111] in which

the authors suggested that the magnetic structure observed in Sr3Ir2O7

has to be associated with either the Cmcm or Cmma space group in or-

der to allow an in-plane weak ferromagnetic component. However, our

high-resolution X-ray analysis confirms that the crystal structure can be

decomposed into two symmetry related twins: Bbcb and Acaa (see Section

4.2) in correspondence to a study on policrystalline material [101]. Our

XRMS experiment suggests that the magnetic domains are pinned to the

crystallographic twins. We thus believe that the weak ferromagnetic com-

ponent observed in bulk measurements is not an intrinsic property of the

system but could reasonably originate in the domain walls which separate

different crystallographic twins/magnetic domains. This could explain

the peculiar temperature dependence of the magnetic susceptibility (see

Fig. 4.3) and the differences between reported studies [33, 15, 41, 103].

4.4.5 Energy dependence and branching ratio

We now turn to the energy dependence of the magnetic scattering in

Sr3Ir2O7, which can be used to determine the Ir wave function by measur-

ing the L2/L3 XRMS for magnetic moments pointing perpendicularly to

the perovskite planes. Before proceeding with the analysis of the energy

dependence of XRMS we briefly discuss how magnetic scattering data are

corrected for absorption effects.
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Figure 4.11: The c-axis G-type magnetic structure of Sr3Ir2O7 for the magnetic
domains A and B. The arrows on light purple highlight the differ-
ent phase between the magnetic domains. The numbers indicate
the Ir atomic positions used to calculate the magnetic structure
factor.

Absorption corrections

The first step in the correction of resonant magnetic scattering data con-

sists in obtaining the linear absorption coefficient µ(E). A detailed treat-

ment of this is given for instance in Ref. [112, 113]. The absorption coef-

ficient far from any absorption edge is roughly proportional to λ3, where

λ is the incident photon wavelength. Values of µ far from the absorption

edge are tabulated [114]. However, in proximity of the absorption edges,

the absorption coefficient changes rapidly and the values from the tables

have to be integrated by a direct estimate of µ obtained via fluorescence or

transmission measurements I(E). Here we assume the absorption coeffi-
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cient µ to be isotropic. This is not a priori true, but measurements of µ in

different experimental geometries have not shown significant anisotropy.

The energy dependent absorption coefficient near the absorption edge for

a thick crystal can be calculated as [112]:

µ(E) = µL+µa(E) = µL+
(I(E)− IL)

(
1 + sinα

sinβ

)
µL(µH − µL)

(IH − IL)
(
µH + µL

sinα
sinβ

)
− (I(E)− IL) (µH − µL)

,

(4.9)

where µL is the absorption coefficient far below the absorption edge which

can be found in tables [114], and µa(E) is the energy dependent part of

the absorption coefficient. The latter can be calculated from the tabulated

values of µ far below (above) the edge µL (µH), the fluorescence spectrum

I(E), the value of the fluorescence spectrum well below (above) the edge IL

(IH), and the angle α (β) between the incoming (outgoing) wavevector k

(k′) and the sample surface. The absorption coefficient µ(E) in proximity

of the L3 edge is shown in Fig. 4.12 (purple line) together with tabulated

values from Ref. [114] (green line). Finally for a thick crystal the measured

intensity has to be multiplied by the factor

Abs(K, ψ) = µ

(
1 +

sinα(K, ψ)

sin β(K, ψ)

)
, (4.10)

where K and ψ are the scattering vector and the azimuthal angle, respec-

tively.

L2/L3 XRMS intensity ratio and BR

We can now discuss the energy dependence of the magnetic scattering and

the absorption branching ratio in Sr3Ir2O7. Fig. 4.13(a) shows the resonant

enhancement of the (1
2

1
2
24) magnetic reflection across the Ir L3 and L2

edges in the σ-π (green spheres) and σ-σ (purple diamonds) polarization

channels along with the XANES spectra (orange line). Magnetic scatter-

ing data have been corrected for self-absorption according to Eq. 4.10 and

for the non ideality of the polarization analyzer according to Eq. 2.77.

As already reported in the single layer Ba2IrO4 and Sr2IrO4 a strong

resonant enhancement is observed at the L3 edge, whilst at the L2 edge
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Figure 4.12: Linear absorption coefficient µ as a function of the incoming pho-
ton energy (purple line) as calculated from Eq. 4.9. The light
green line are tabulated values for normal incidence and sample
density of 7.47 g/cc [114].

magnetic scattering is significantly weaker. The L3 resonance shows a

nice Lorentzian shape (FWHM=6.83 eV) which peaks at 11.2186(3) eV.

The maximum in the XANES spectra is instead 3 eV above the mag-

netic resonance in analogy with Ba2IrO4 (see Section 3.3.2). Along sim-

ilar lines we can thus estimate the cubic crystal field to be 10Dq=2.7

eV in Sr3Ir2O7, which is in good agreement with Ba2IrO4 and other iri-

dates [65, 73, 16, 80], validating the approximation of considering only

the t2g subspace in the calculation of the REXS cross section (see Section

2.3). At the L2 edge, the much weaker magnetic scattering signal peaks at

12.831 eV (FWHM=5.03 eV) in correspondence of the maximum in the

XANES spectrum. This is in analogy with the single layer counterpart

Sr2IrO4 (see Fig. 2.3). This could suggest that the signal measured at the

L2 edge is due to a weak mixing of the eg and t2g states, and the magnetic

signal owing to the t2g orbitals only is actually less.

To analyze the L2/L3 XRMS intensity ratio quantitatively, we have in-

tegrated the XRMS signal at both edges. From the area of the Lorentzian

function (blue dashed line in Fig. 4.13(a)) that has been fit to the XRMS



168 The magnetic and electronic structure of Sr3Ir2O7

signal we calculate that the L2/L3 XRMS intensity ratio is less than 0.3

%. Since the magnetic moments point along the c axis in Sr3Ir2O7 (see

Section 4.4.4), the XRMS cross section at the L2 edge vanishes only in

perfect cubic symmetry (see Eq.2.57) and it is possible to investigate the

realization of the jeff = 1/2 state from the L2/L3 XRMS intensity ratio.

In Fig. 4.13(b) we therefore compare the measured L2/L3 XRMS inten-

sity ratio with the calculated one according to Eq. 2.73. The experimental

ratio of at most 0.3% provides the lower and upper bounds for a nearly

pure jeff = 1/2 ground state. We note, however, that these bounds corre-

spond to a relatively large energy window in ∆ (0.37 eV≤ ∆ ≤0.21 eV),

for which the ground state may deviate slightly from the pure jeff = 1/2

state, as seen for instance in the change of the shape of the ground state

wave function (see top panel of Fig. 4.13(b)).

In order to better understand the origin of the very small L2/L3 XRMS

intensity ratio, calculations were performed with the FDMNES code [106].

FDMNES is an ab initio cluster-based, monoelectronic code that calcu-

lates XAS and REXS spectra. We used the fully relativistic monoelec-

tronic calculation (DFT-LSDA) with spin-orbit coupling on the basis of

the Green formalism (multiple scattering) for a muffin-tin potential. In

order to take into account the effect of the on-site Coulomb repulsion U ,

not negligible in many theories of 5d Mott-insulators, we included the

Hubbard correction (LSDA+U). The value of U =0.25 eV was chosen ac-

cording to the optical conductivity measurements reported by Moon et al.

[99] which identify at this energy the transition between lower and upper

Hubbard band (see Fig. 4.1). The simulated spectrum derives entirely

from the dipole-dipole interaction (we previously checked there were no

effects due to higher order terms). For the calculation we used a magnetic

unit cell of size 2a× 2b× c containing 128 atoms with a cluster radius 3.8

Å with an average of 19 atoms per cluster.

Fig. 4.14 shows a comparison of several different calculation in order

to quantify the potential effect of the SO coupling and the Hubbard U

term on the relative intensities of the L2,3 edge resonances for the (
1
2

1
2
24)

magnetic reflection. It is clear that the spin-orbit coupling term plays the

greater role in the relative strengths of the L3 and L2 edge resonances.

Including the Hubbard U term dampens the L2 edge signal still further,
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Figure 4.13: (a)Resonant enhancement of the (12
1
2 24) magnetic reflection

across the L2,3 edges at T =20 K in the σ-π (green spheres) and
σ-σ (purple diamonds) scattering channel. The solid orange line
shows XANES spectra, measured in fluorescence mode, normal-
ized to the number of initial states. The black dashed line demar-
cates the integrated white line used to calculate the absorption
branching ratio, while the dashed blue line represents a fit to a
Lorentzian shape function. Panel (b) shows the L2/L3 XRMS
intensity ratio for µ‖ [0 0 1] as a function of the tetragonal crys-
tal field splitting ∆ ranging from -1 to 1 eV, for a given value of
the spin-orbit coupling constant (λ=0.42 eV) as calculated from
Eq. 2.73. The shaded area demarcates values of the tetragonal
crystal field for which the measured L2/L3 XRMS intensity ra-
tio is less than 0.3%. The top panel shows the evolution of the
angular part of the ground state wave function varying ∆.
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1
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and U = 0.25 eV [99] (orange line), and SOC + U = 0.5 eV (purple
line). (b) The ground state phase diagram of the Hamiltonian 1.48
in terms of η = JH/U and the tetragonal distortion parameter θ.
The solid (dashed) line marks the spin-flop transition in bilayer
(single-layer) system. The shaded area indicates the parameter
space for Sr3Ir2O7 constrained by the current study. Adapted
from Ref. [110]

but there is relatively little difference between 0.25 eV and 0.5 eV; the

values calculated for the Sr3Ir2O7 and Sr2IrO4, respectively [99]. How-

ever, the L2/L3 XRMS intensity ratio (∼20%) is largely overestimated by

the FDMNES calculation. We believe this is due to the fact that this

calculation fails to reproduce the cubic symmetry of the novel jeff = 1/2

ground state that is ultimately responsible of the destructive interference

in the matrix elements at the L2 edge.

In analogy with the Ba2IrO4 compound we can calculate the XAS

branching ratio (BR). The procedures to extract the BR from the XAS

spectra have already been discussed in detail in Section 3.3.2. Fig. 4.13(a)

shows the XANES spectra together with the black dashed line which de-

marcates the integrated white line used to calculate the absorption branch-

ing ratio, BR=4.84(3). This value is slightly smaller than in the Ba

single-layer, but much greater than the statistical one (BR=2) and in
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good agreement with other iridium oxides [93]. The large BR is a further

confirmation of the strong SOC regime in Sr3Ir2O7.

4.5 Conclusions

In this chapter we have presented a detailed study of the electronic and

magnetic properties of Sr3Ir2O7 using XRMS at the Ir L2,3 edge. Sr3Ir2O7

is found to be a G-type antiferromagnet. From the l dependence of mag-

netic scattering we deduce that magnetic moments show an antiferromag-

netic coupling both in-plane and out-of-plane. The observation of scatter-

ing intensity for (1
2

1
2
2n) and (1

2
1
2
2n+1) magnetic reflections suggest the

presence of two magnetic domains A and B, associated with two arms of

the magnetic propagation vector k= [1
2

1
2
0]: kA= [1

2
1
2
0] and kB = [1

2
-1
2
0],

respectively.

From the comparison of the experimental L2/L3 XRMS intensity ratio

with single-ion calculations, we deduce that the jeff = 1/2 state survives

even in the bilayer compound despite Sr3Ir2O7 being a more metallic sys-

tem in proximity of a metal-to-insulator transition.

Contrary to the single layer counterpart which is found to be a basal-

plane canted antiferromagnet, in Sr3Ir2O7 the addition of an extra IrO6

layer strongly enhances the interlayer interactions and favours a c-axis

collinear magnetic ground state. This unusual behaviour can be ascribed

to the “3D” nature of the jeff = 1/2 wave function.





Chapter 5

Magnetic excitations in

Sr3Ir2O7 investigated with

RIXS

In copper oxides, Cu L2,3 edge RIXS direct “spin-flip” scattering is allowed

and widely used to study collective magnetic excitations. In a similar way

we show that Ir L3 edge spin-flip direct RIXS is allowed in iridium oxides.

L3 edge RIXS is then performed on the Sr3Ir2O7 system where single

magnons, multi magnons and a spin-orbit exciton are observed. Notably

the low-energy magnetic spectrum shows unusual features: a dispersive 90

meV-gap mode and a more weakly dispersive 155 meV-gap mode which

suggest that strong anisotropies dominate in the bilayer iridates and the

physics at play is not a simple continuation of the one of the single layer

Sr2IrO4.

With the help of a theoretical model developed by our collaborators

at the EPFL, we are able to assign these modes to excitations from a

dimerised singlet ground state to a transverse and longitudinal triplet

states, respectively.
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5.1 Introduction

Although resonant inelastic X-ray scattering (RIXS) was discovered more

than 30 years ago [115], its renaissance is rather recent. This has been

driven by the substantial increase of the energy resolution up to a resolving

power (E/∆E) of 105, which has made RIXS a valuable tool to study low-

energy magnetic and electronic excitations.

The systems that have been mostly studied with RIXS are the high-TC

cuprate superconductors and their parent compounds. This is mainly due

to the fact that spin waves may provide the “glue” which binds the elec-

trons in Cooper pairs in copper oxides. A comprehensive understanding

of magnetic excitations of these compounds could therefore lead to sig-

nificant insights into the superconducting mechanism. Due to the strong

exchange coupling between spins in cuprates (J ∼ 100 meV), it is nowa-

days possible to study magnetic excitations with soft RIXS at the Cu L2,3

edge. Direct RIXS in the soft X-ray regime, like in cuprates and nickelates,

involves very strong 2p → 3d resonances which can be used to increase

the measured signal although the access to reciprocal space is limited to

a small portion of the Brillouin zone (λphoton ∼ 13 Å).

A theoretical description of how the dispersion of magnetic excitations

in copper oxides can be determined using RIXS has been given by Ament

et al. [116]. One of the pioneering RIXS experiments in the copper oxide

La2CuO4 performed by Braicovich et al. [117] shows that the momentum

dependence of the spin waves can be measured by RIXS in analogy with
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INS (see Fig. 5.1(e)). The microscopic mechanism involves the creation

of a local spin-flip by transferring the angular momenta of the photons to

the system. Contrary to neutron scattering where spin 1/2 particles can

transfer only ∆Sz =0,1, photons of angular momentum L=1 can transfer

∆Sz =0,1,2, potentially creating not only single-magnon excitations with

∆Sz =1 but also ∆Sz =2 two-magnons excitations. The transfer of the

photon angular momentum to the spin of the electrons is due to the SOC

of the core hole, as explained in Section 2.2.

The spin-flip process is described by the Kramers-Heisenberg formula

(Eq. 2.36), and strongly depends on the polarization of the electromag-

netic radiation and the symmetry of the atomic wave functions. If spin-

flip scattering is allowed, the full magnetic dispersion can be measured.

Spin waves can be seen as the superposition of spin-flips at different sites

which carry a non-local magnetic excitation with momentum ~K. In order

to obtain the total RIXS cross section, one has to multiply the spin-flip

cross section by the appropriate spin-susceptibility in analogy with neu-

tron scattering. In this way one obtains the momentum dependence of

the magnetic excitations that can be measured with RIXS [116]. For a

comprehensive theoretical and experimental review of RIXS in transition

metal oxides see Ref. [118].

As we will show in the next sections RIXS gives also access to high-

energy excitations like d-d and charge transfer (CT) excitations, which are

more difficult to study with INS.

5.2 L3 edge RIXS studies in iridates, back-

ground

As mentioned in Chapter 2, resonant scattering at the Ir L2,3 edges involves

very strong dipolar transitions from the 2p core level to the 5d valence

band. In analogy with soft RIXS at the L edges in 3d TMOs we can exploit

hard RIXS at the Ir L edges to study collective electronic and magnetic

excitations in iridium oxides. The possibility of using Ir L3 RIXS to study

dynamical properties of iridates was first proposed by Ament et al. [120]

for the case of magnetic moments aligned along the octahedral z axis.
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In the following we will complete this picture by presenting the RIXS

scattering amplitude for out-of-plane and in-plane magnetic moments as

a function of the tetragonal crystal field ∆.

5.2.1 Spin-flip cross-section in iridium oxides

This calculation is an extension of the REXS cross-section calculation

presented in Section 2.3. In order to calculate the RIXS scattering ampli-

tude in the spin-flip channel we need to evaluate the Kramers-Heisenberg

formula which we rewrite as

Aǫǫ
′

RIXS =
∑

n

〈0,+|D†
ǫ′
|n〉 〈n |Dǫ| 0,−〉

E0 −En + ~ωk − iΓn/2
, (5.1)

where initial and final states are defined in Eqs.1.34,1.40 for moments

pointing along the [0 0 1] and [1 1 0] direction, respectively. Having derived

in Section 2.3.1 the matrix elements for dipolar transitions from 2p to 5d

states, we can proceed to evaluate Eq. 5.1. By making use of the matrix

elements of Tab. 2.2, the scattering geometry and the polarization vectors

of Section 2.3.1 we can calculate the RIXS scattering amplitude in the

spin-flip channel.

At the Ir L2 edge the summation runs over the |p 1
2
,− 1

2
〉 and |p 1

2
, 1
2
〉

intermediate states. The final scattering amplitudes read

Aσσ′

RIXS = 0 (5.2)

Aσπ′

RIXS = 0 (5.3)

Aπσ′

RIXS = 0 (5.4)

Aππ′

RIXS = 0 (5.5)
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for magnetic moments along the [0 0 1] direction and

Aσσ′

RIXS = 0 (5.6)

Aσπ′

RIXS =
i(A− 1)2 cos θ′

2 + A2
(5.7)

Aπσ′

RIXS =
i(A− 1)2 cos θ

2 + A2
(5.8)

Aππ′

RIXS = 0 (5.9)

for magnetic moments along the [1 1 0] direction. We recall that the pa-

rameter A =
−1+δ+

√
9+(−2+δ)δ

2
controls the effect of the tetragonal crystal

field ∆ via δ = 2∆/λ, where λ is the Ir SOC constant. The scattering ge-

ometry together with the definition of the angles are shown schematically

in Fig. 2.4.

At the Ir L3 edge the summation runs over the four |p 3
2
,− 3

2
〉, |p 3

2
,− 1

2
〉,

|p 3
2
, 1
2
〉, and |p 3

2
, 3
2
〉 intermediate states. At this edge the scattering ampli-

tudes read

Aσσ′

RIXS = 0 (5.10)

Aσπ′

RIXS =
3A(i cosφ+ sinφ) sin θ′

2 + A2
(5.11)

Aπσ′

RIXS = −3iAe−iφ sin θ

2 + A2
(5.12)

Aππ′

RIXS = −3Ae−iφ sin(θ + θ′)

2 + A2
(5.13)

for magnetic moments along the [0 0 1] direction and

Aσσ′

RIXS = 0 (5.14)

Aσπ′

RIXS =
−2i[(A− 2)A− 2] cos θ′ + 3

√
2A(cosφ+ sin φ) sin θ′

2 (2 + A2)
(5.15)

Aπσ′

RIXS =
e−iφ

{
−4i[(A− 2)A− 2]eiφ cos θ + 6(−1)3/4A

(
i+ e2iφ

)
sin θ

}

4 (2 + A2)

(5.16)

Aππ′

RIXS =
3A(sinφ− cosφ) sin (θ + θ′)√

2 (2 + A2)
(5.17)
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for magnetic moments along the [1 1 0] direction.

By inspecting Eqs. 5.2–5.17 we notice that, in contrast to the elastic

channel, σ-σ′ scattering cannot reverse the electron spin and it is therefore

not allowed in the spin-flip channel. At the L2 edge the RIXS cross-section

in the spin-flip channel shows a reciprocal behaviour as a function of the

moment direction compared to the REXS cross-section. For magnetic

moments pointing along the [0 0 1] direction it is identically zero in every

polarization channel irrespective of the tetragonal crystal field ∆. For

magnetic moments along the [1 1 0] direction the RIXS cross-section van-

ishes in the cross-polarized channel only for ∆=0. i.e. when the pure

jeff = 1/2 state is realized.

At the Ir L3 RIXS is fully allowed in agreement with Ament et al. [120],

and can be used to study magnetic excitations. In a similar way, if the

final states of the RIXS process are the |1,±〉, |2,±〉 states (for a definition
see Eqs. 1.35–1.36,1.41–1.42), an intra-t2g excitation is created with an

additional magnon if the spin of the electron is reversed (|1,+〉, |2,+〉
states). The scattering amplitudes of these transitions can be calculated

along similar lines, however this goes beyond the scope of this work.

The total RIXS spectra as a function of transferred energy can be

calculated as

Iǫ

RIXS(ωk, ωk′) =
∑

ǫ′

∑

f

∣∣∣Aǫǫ
′

|f,±〉

∣∣∣
2 Γf/π

(Ef + ~ωk′ − E0 − ~ωk)
2 + Γ2

f/4
,

(5.18)

where the energy-conservation δ-function is broadened into a Lorentzian

of FWHM Γf in order to account for the finite lifetime of the final states

f . The sum over the outgoing polarization is necessary because in RIXS

experiments the outgoing polarization is not currently analyzed. Notably,

the lifetime broadening of the final state Γf ≡ Γ5d in RIXS is strongly

reduced compared to the lifetime broadening of the intermediate state

Γn ≡ Γ2p, which corresponds to the final state in absorption spectro-

scopies. In this way RIXS can easily overcome the core-hole broadening

which limits the resolution in absorption experiments.
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5.2.2 Magnetic excitations in Sr2IrO4

The first L3 edge RIXS experiment in Sr2IrO4 was performed by Ishii

et al. [121]. This study reports a strong resonant inelastic signal, how-

ever, due to the low-energy resolution of the experimental set-up (∼1 eV),

the low-energy magnetic and electronic excitations were not investigated.

Following this preliminary experiment, a comprehensive study of the mag-

netic and electronic excitations in Sr2IrO4 was conducted by Kim et al.

[72]. In this pioneering study, taking advantage of the improved energy

resolution of ∼130 meV, the full dispersion of the single magnon spectrum

was mapped over the entire Brillouin zone.

The magnon dispersion (Fig. 5.1(a)) and the momentum dependent

spectral weight (Fig. 5.1(b)) show striking similarities to those observed

in cuprates, for instance in La2CuO4 (Fig. 5.1(c-d)) [119]. The magnon

dispersion of Sr2IrO4 closely resembles the one of La2CuO4. In Sr2IrO4

magnons disperse up to ∼ 205 meV at the zone boundary (BZ) as com-

pared to ∼ 300 meV in La2CuO4 [119]. The intensity of the magnetic

excitations diverges at (π,π) where the magnons collapses into the mag-

netic Bragg peak and vanishes at (0,0). The high-symmetry points are

shown in the inset of Fig. 5.1(b). The dispersion at (π/2,π/2) is reduced

by a ferromagnetic next nearest neighbour interaction J ′. From the fit of a

linear spin wave theory based on the Hamiltonian 1.48 to the experimental

data, the superexchange parameters J =60, J ′ =-20, and J ′′ =15 meV are

extracted. The first nearest neighbour parameter J is in good agreement

with abinitio many-body calculations [96]. The reduction of J compared

to cuprates is consistent with a smaller on-site Coulomb repulsion U and

hopping parameter t in iridates.

Although in Sr2IrO4 the jeff = 1/2 spin-orbit entangled wave function

is significantly different from the s=1/2 pure spin state in La2CuO4, the

measured magnon dispersion supports a low-energy Hamiltonian which

maintains a dominant 2D Heisenberg-like character in agreement with the

theoretical arguments presented in Section 1.5.

In addition to the low-energy magnon spectrum, high-energy excita-

tions in the range 0.4–0.8 eV are observed in Sr2IrO4. These features will

be discussed in Section 5.3.3 for the Sr3Ir2O7 compound.
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5.3 Spin waves and spin-orbit excitations in

Sr3Ir2O7

In Chapter 4 we used REXS to investigate the evolution of the jeff =

1/2 ground state in the bilayer compound Sr3Ir2O7. We now address

the investigation of the excited states of the bilayer Sr3Ir2O7 by RIXS

and compare it to the single layer counterpart. We recall that passing

from Sr2IrO4 to Sr3Ir2O7, the system shows a weaker insulating state and

the addition of an extra IrO6 layer changes dramatically the magnetic

structure from a basal-plane canted antiferromagnetic (AF) state to a

c-axis collinear AF (see Section 4.4.4). In this context, the excitation

spectra can thus deviate significantly from the Heisenberg-like behaviour

exhibited by the single layer counterpart.

Before proceeding to present our high-resolution RIXS study of magnons

in Sr3Ir2O7, we briefly mention which excitations can be measured with L3

edge RIXS in iridium oxides. Fig. 5.2 shows a RIXS map at low-energy-

resolution (∼ 130 meV) in Sr3Ir2O7 acquired at the ID20 beamline, where

the energy loss is measured as a function of the incoming energy of the

photons. Four main features are observable. Close to zero energy loss

an elastic line and magnetic excitations are found. At increasing energy

loss, features can be assigned to intra-t2g (t52g→ t52g) at ∼0.5 eV, t2g to eg

(t52g→ t42ge
1
g) at ∼3 eV, and charge transfer (CT) excitations (5d5→ 5d6L)

at ∼8 eV, where L represents a hole in the ligand oxygens. This as-

signment is consistent with quantum chemistry calculations for layered

iridates [96]. The fact that the energy loss is independent of the incident

energy is a direct signature of the Raman character of the excitations,

which correspond to specific atomic transitions and cannot be ascribed to

a fluorescence signal. Whereas t2g to eg and CT excitations resonate at

the maximum of the XAS signal (11.2188 keV, dashed line), magnetic and

intra-t2g excitations are more enhanced about 3 eV below the maximum in

the absorption spectrum (11.2158 keV, solid line). This can be explained

using the same argument of Section 3.3.2. While the former transitions

promote an electron into an intermediate eg state, the latter remain only

within the t2g manifold, resonating 10Dq before the absorption edge. For
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Figure 5.2: (a) X-ray absorption spectrum (XAS) of Sr3Ir2O7 in proximity of
the Ir L3 edge. (b) RIXS color map of energy loss vs. incident
photon energy at K=(12

1
2 25.5). The dashed line corresponds to

the maximum in the XAS spectrum at which t2g → eg and charge
transfer (CT) excitations (11.2188 keV) resonate. The solid line
corresponds to the energy that maximizes intra-t2g and magnetic
excitations (11.2158 keV).

the high-energy resolution RIXS measurements we have fixed the incident

energy of the photons at 11.2158 keV in order to maximize intra-t2g and

magnetic excitations.

5.3.1 Experimental results

Resonant inelastic X-ray scattering (RIXS) measurements were performed

at the new ID20 beam line of the European Synchrotron Radiation Facility

(ESRF), Grenoble. The experimental set-up for Ir L3 measurement is

given in Section 2.4.2 . The overall energy-resolution achieved was 25

meV, implying a resolving power better than 4 × 105. The scattering

plane was horizontal in the laboratory frame, as was the polarization of

the incoming radiation (π incident polarization). The Sr3Ir2O7 sample was
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an oriented single crystal, used for the XRMS study presented in Chapter

4. The sample temperature was kept at 15 K during the whole experiment

by means of a He-flow cryostat.

Fig. 5.3(a) shows a color map of the RIXS data measured along the

in-plane high symmetry directions and out-plane scattering vector fixed

at Kc=28.5 r.l.u. in Sr3Ir2O7. Fig. 5.4 shows the same data by means

of stack plots. A strong elastic feature with some phonon contribution

(A) dominates the spectra at energies close to zero. At higher energy a

magnetic band dispersing from 90 to 180 meV is found (B). The gap of this

feature is comparable with the overall bandwidth. The fact that feature B

is highly sensitive to the magnetic transition and its spectral weight peaks

at (π,π) (see Fig. 5.7(b)), i.e. in correspondence of the antiferromagnetic

wavevector, suggest its magnetic nature. Feature C copies the dispersion

of B at higher energies.

Features A, B, C were already reported in a previous RIXS study per-

formed by Kim et al. [122]. Our data shows two additional features: a

weakly dispersive feature around 155 meV (D) and a highly dispersive fea-

ture (E) between 400 and 600 meV. Feature E, not present in the data of

Ref. [122] because they extend only up to 400 meV energy loss, corresponds

to a spin-orbit exciton, as reported in Sr2IrO4 [72]. Feature D, reported

for the first time in our investigations, is more visible around the (0,0)

point where it displays a small, but finite dispersion versus momentum

transfer around 155 meV. Conversely, away from the Γ point, it practi-

cally merges into feature B and contributes to its lineshape and spectral

weight. Noteably, its intensity is strongly dependent on the out-of-plane

component of the momentum transfer: feature D almost completely van-

ishes when changing the out-of-plane component of the momentum trans-

fer from l=28.5 to l=25 r.l.u. (see Fig. 5.3(b)). Raw spectra for in-plane

transferred momentum close to the Γ point are reported in Fig. 5.6. Fea-

ture D (purple line) is clearly distinguished as a separate peak for l=28.5,

while it is barely visible for l=25 r.l.u..

Features B and C have been identified and discussed by Kim et al.

[122]. In particular, feature B has been interpreted as the superposition

of almost degenerate acoustic and optical magnons and their dispersion

was modeled on the basis of Hamiltonian 1.48, as used in Sr2IrO4, and in
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Sr3Ir2O7 once that interlayer coupling terms are included.

It is common knowledge that bilayered systems present a magnetic ex-

citation spectrum formed by parity-even and parity-odd excitations which

are named optical and acoustic magnons in analogy with the terminol-

ogy used for lattice vibrations. Indeed optical and acoustical magnetic

modes have been revealed by means of INS in bilayer manganites [123]

and cuprates [124]. The following Hamiltonian has been successfully used

to interpret the experimental results in these studies

H = J‖
∑

n=1,2

∑

〈i,j〉
Sn
i · Sn

j + J⊥
∑

i

S1
i · S2

i , (5.19)
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where J⊥ is the superexchange coupling between adjacent planes, J‖ is

the in-plane nearest neighbour superexchange constant, 〈i, j〉 is a in-plane

nearest-neighbor pair, and n is the layer index. The interaction in these

3d TMOs are well described by a dominant Heisenberg model with dif-

ferent in-plane and out-of-plane isotropic interactions. Diagonalization of

Hamiltonian 5.19 according to spin wave theory of the Holstein-Primakoff

type [125] results in the magnon dispersion

E(Kab)
2 =

(
2J‖ +

1

2
J⊥
)2

−
(
J‖ (cosKx + cosKy)±

1

2
J⊥
)2

, (5.20)

where Kx and Ky are the in-plane component ofK. The sign +(−) applies

to acoustic (optical) magnons.

Fig. 5.5 shows the dispersion calculated according to Eq. 5.20 with

J‖=85 meV and J⊥=25 meV, together with the in-plane dispersion of

the main magnetic mode B in Sr3Ir2O7. It is clear that the magnetic

excitations in Sr3Ir2O7 cannot be described by a simple Heisenberg model

for bilayered systems but additional anisotropies must be included. It

should be noted that usually acoustic and optical magnetic excitations

can be distinguished by different dependencies of their intensity on the

out-of plane momentum Kc [124]

(
d2σ

dΩdE

)

acoustic

∼ f 2(K) sin2(πld)

E(Kab)
, (5.21)

(
d2σ

dΩdE

)

optical

∼ f 2(K) cos2(πld)

E(Kab)
, (5.22)

where d is the interlayer distance and f(K) is the magnetic form fac-

tor. We therefore measured the intensity of feature B for several l but

did not observe any substantial variation. This can be seen for instance

in Fig. 5.3(b) where feature B has similar intensity for l=25, 28.5 r.l.u.

corresponding to Kc ∼ 0, π, respectively.

In the study by Kim et al. [122] the magnetic feature B has been

interpreted as the superposition of quasi-degenerate optical and acoustic

mode. This is supported by the fact that the energy position of feature
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B shifts by 5 meV upon scanning the out-of-plane momentum Kc from

0 to π. This energy shift is due to the spectral weight of feature B that

according to Eq. 5.21 moves from the acoustic branch at Kc=π to the

optical one at Kc=0, producing a dispersive behaviour as a function of

Kc. Feature C, instead, has been assigned to multi-magnon excitations

and we support this hypothesis on the basis of the energy scale of this

feature and on the fact that it mimics the dispersion of the single magnon

process.

Feature D, on the contrary, has not been previously detected, likely

because of the nontrivial dependence of its intensity on momentum trans-

fer. The dispersion and the integrated intensity of features B, C, D, and

E as a function of the in-plane momentum transfer, for l=28.5 r.l.u., is

summarized in Fig.5.7(a,b), respectively. The dispersion curves of fea-

tures B and C are similar and agree well with published results [122] ,

while feature D behaves somewhat differently: in particular, features B

and D almost coincide at (π/2,π/2) and are well separated around (0,0),

with intersecting points around (0,π/4) and (π/4,0). It should be noted

that the dispersion curves of features B and D are not compatible with

those corresponding to an acoustical and optical magnetic excitations.

The data in Fig. 5.7(a,b) have been obtained by fitting the RIXS raw

spectra. Examples of the fitting procedure for different momentum trans-

ferK=(π/7 π/7 28.5) (a),K=(2π/7 2π/7 28.5)(b),K=(π/7 π/7 25)(c),

and K=(2π/7 2π/7 25)(d) are given in Fig. 5.6. Feature A has been fit

to a sum of an elastic and quasi-elastic Pearson VII functions to include

the phonon contribution. Features B-E were fit to four Pearson VII func-

tions with an additional Pearson VII to include higher-energy inelastic

signal. We recall that the Pearson VII function is found to represent well

the experimental resolution (see Section 2.4.2). The elastic and single

magnon peaks were constrained to have a FWHM of 25 meV, which is the

instrumental resolution determined in Section 2.4.2.

5.3.2 Theory, the strong coupling limit

In order to elucidate the nature of these excitations, our collaborators

from École polytechnique fédérale de Lausanne (EPFL) have developed
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a model Hamiltonian based on a pseudospin-1/2 frustrated Heisenberg

model which simultaneously takes into account intrinsic anisotropy and

spin-orbit coupling effects. For a detailed review of the theoretical model

see Ref. [126]. The starting point is to introduce an anisotropic Hamilto-

nian with frustration and longer range interactions

H =J
||
1

∑

<i,j>, l

[
cos(2θ)Sli · Slj + 2 sin2(θ)Sz

liS
z
lj

− ǫiǫl sin(2θ)(Sli × Slj) · êz
]

+ J⊥
∑

i

S1i · S2i + J⊥
d

∑

<i,j>

S1i · S2j

+ J
‖
2

∑

≪i,j≫,l

Sli · Slj + J
‖
3

∑

≪i,j≫,l

Sli · Slj. (5.23)

The indices <i, j>, ≪i, j≫ and ≪i, j≫ denote nearest, next-nearest

and next-next-nearest neighbours within each layer l = 1, 2. θ is the twist-

ing angle of the Ir6 octahedra in each layer. The second term 2 sin2(θ)Sz
liS

z
lj

accounts for pseudodipolar interactions driven by Hund’s coupling and the

staggered rotation of the IrO6 octahedra. Dzyaloshinskii-Moriya interac-

tion is included with the third term ∝ (Sli × Slj) · êz. The magnetic

interactions of Hamiltonian 5.23 are illustrated in Fig. 5.8(a). As the

interlayer coupling can in principle be the dominant magnetic interac-

tion in Sr3Ir2O7, it is reasonable to try to describe the system in terms

of singlet and triplet bonds between pairs of spins. The so-called bond-

operator mean-field method, introduced by Sachdev and Bhatt [127], has

proved to be an accurate method for many bilayer spin systems and was

successfully applied to describe magnetic interactions of spin ladder sys-

tems [128, 129, 130].

The four states |↑↓〉, |↓↑〉, |↑↑〉 and |↓↓〉 on each rung can be combined

to form one singlet state |s〉 and three triplet states |tα〉, α=x, y, z. Singlet
and triplet creation operators, that create the states out of the vacuum
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|0〉, are introduced:

|s〉 ≡s† |0〉 = 1√
2
(|↑↓〉 − |↓↑〉),

|tx〉 ≡tx,† |0〉 = − 1√
2
(|↑↑〉 − |↓↓〉),

|ty〉 ≡ty,† |0〉 = i√
2
(|↑↑〉+ |↓↓〉),

|tz〉 ≡tz,† |0〉 = 1√
2
(|↑↓〉+ |↓↑〉). (5.24)

The bond operators create and annihilate singlet and triplet bonds be-

tween a pair of spins. The representation is useful in describing the tran-

sition between dimerised and magnetically ordered phases of quantum

antiferromagnets. Inserting this representation into the Hamiltonian 5.23

one can try to describe the ground state by a condensation of singlet

and triplet tz operators. With this assumption, the Hamiltonian can be

easily diagonalized via Bogoliubov transformation to obtain two disper-

sive modes, one longitudinal and one two-fold degenerate transverse mode.

This approach is an alternative to the theory developed in Ref. [122] which

applies spin wave theory to an ordered Néel state where J‖ ≫ J⊥. Here

we come from the other side of the phase diagram where J‖ ≪ J⊥. As a

consequence we obtain a dimerised singlet ground state that shows exci-

tations into gapped triplet states (see Fig. 5.8(b)).

The comparison between theoretical and experimental results is pre-

sented in Fig. 5.7(a). The in-plane momentum transfer dependence of

features B and D is remarkably well reproduced by the dispersion curves

associated to the transverse (blue line) and the longitudinal (purple line)

triplet modes, respectively. The best agreement is obtained for J
‖
1 =26,

J
‖
2 =-21, J

‖
3 =8, J⊥ =125, J⊥

d =38, and θ=15◦ which indicates a strong

interlayer coupling of J⊥/J
‖
1 =4.8 in combination with a small ferromag-

netic next-nearest in-plane coupling.

Using this model the intensity of the transverse and and longitudinal

modes can be calculated from the spin-spin correlation function. Unfor-

tunately the detailed analysis is still ongoing and will not be presented

here. However, it is important to mention that the intensity measured
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with RIXS is a superposition of the symmetric and antisymmetric intensi-

ties depending on the out-of-plane component of the momentum transfer

in analogy with Eqs. 5.21–5.22. In the case of the longitudinal mode this

simplifies to IL ∝ cos2(πld) and the intensity is simply a periodic function

of the out-of-plane component of the momentum transfer. It is now clear

that the point l=28.5 (l=25) r.l.u. is close to a maximum (minimum)

of the scattering intensity, therefore explaining the behaviour observed in

Figs. 5.3,5.6 and the fact that feature D has not been observed in the data

set of Kim et al. [122].

The excitation spectrum of Sr3Ir2O7 strongly deviates from the 2D

Heisenberg model which has been used to describe the single layer Sr2IrO4.

The addition of an extra IrO6 layer seems to strongly enhance interlayer

interactions which produce a dimerized system with the magnetic moment

pointing along the c axis. The low-energy magnetic excitations are there-

fore composed of a dispersive 90 meV-gap transverse triplet and a more

weakly dispersive 155 meV-gap longitudinal triplet. While our model is

able to explain the existence of feature D in the RIXS data, which is

reported here for the first time and is not compatible with theoretical ar-

guments of Ref. [122], it falls short in calculating the magnitude of the

ordered moment, which appear to be one order of magnitude smaller that

the value measured with neutron scattering [41].

5.3.3 Spin-orbit exciton

We now briefly discuss the feature E observed in the 400–600 meV energy

range. This energy range belongs to d-d excitations, and in particular to

the intra-t2g excitations. These excitations have been widely investigated

in 3d TMOs. In cuprates very strong d-d excitations are found, which show

a negligible momentum dispersion due to their local character [57, 117].

In iridates, intra-t2g excitations are observed due to electronic transitions

from the |0,±〉 ground state to the |1,±〉 and |2,±〉 multiplets. The RIXS

amplitude can be calculated with Eq. 5.1 where the final state is substi-

tuted by the |1,±〉 and |2,±〉 states, whose definition we have already

reported in Section 1.4.1 (Eqs. 1.34–1.42). In the case of perfect cubic

symmetry the |1,±〉 and |2,±〉 multiplets degenerate into the jeff = 3/2
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band, and RIXS measures transitions from the jeff = 1/2 to the jeff = 3/2

bands. It is therefore not surprising that the energy scale of these exci-

tations coincides with the energy scale of the SOC, since the separation

between jeff = 1/2 and jeff = 3/2 states is about 3λ/2 (see Eqs. 1.37–1.39).

In several iridates like the honeycomb (Na/Li)2IrO3 [80], Sr3CuIrO6 [65]

or the pyrochlore RE2Ir2O7 [131] these excitations maintain a local char-

acter. On the contrary in the single layer Sr2IrO4 [72] and in Sr3Ir2O7 the

intra-t2g excitations show a strong momentum dependence. This is due to

the fact that the spin-orbit excitations between jeff = 1/2 and jeff = 3/2

band propagate through the system. A detailed treatment of this process

is given in Ref. [72].

The RIXS process, schematically illustrated in Fig. 5.8(c), creates a

hole on the site e in the |1,±〉, |2,±〉 quadruplet that is almost degenerate

in the strong SOC limit (∆ → 0). The hole can then hop to the neigh-

boring site f with an intermediate energy U . The hole in the jeff = 1/2

manifold on the site f hops back to the e site completing the hopping

process and producing a magnetic excitations.

Our RIXS data set does not extend to energies higher that 600 meV

showing the dispersion of only one of the “spin-orbit exciton” modes (ei-

ther |1,±〉 or |2,±〉) in the jeff = 3/2 manifold. Feature E shows the

same momentum dependence as the lower-energy mode of the spin-orbit

exciton observed in Sr2IrO4 [72], a large bandwidth of about 200 meV

and a minimum in the dispersion at (π/2,π/2). Analogies with cuprate

superconductors can be found by noticing that a hole propagating in the

background of AF order in copper oxides shows a minimum in the dis-

persion at (π/2,π/2), i.e. at the boundary of the AF Brillouin zone [132].

In layered iridates, instead, we have chargeless particles that propagate

through the lattice in a very similar way, therefore strengthening the pre-

diction that doped carriers in layered iridate will show similar dynamics

to the motion of the doped carriers in cuprates [29, 28].
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Figure 5.7: (a) Momentum dependence of the energy position of the transverse
magnetic mode (blue dots), longitudinal magnetic mode (purple
dots), multiple magnetic excitations (green dots) and spin-orbit ex-
citon (orange dots) as extracted from the fit to the RIXS data. The
solid line superimposed to the transverse and longitudinal magnons
are fit from the theory model.(b) The integrated intensity of fea-
tures B and D is reported as a function of the in-plane momentum
for Kc=28.5 r.l.u..
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Figure 5.8: (a) Schematic of the dominant magnetic interaction in Sr3Ir2O7.
(b) Schematic of the creation of magnetic excitations in Sr3Ir2O7.
A dimerised spin singlet is excited into a triplet state and a magnon
is created. (c) Schematic representation of the spin-orbit exciton
hopping process. The RIXS process creates a hole on the site e in
the |1,±〉, |2,±〉 quadruplet that is almost degenerate in the strong
SOC limit (∆ → 0). The hole can then hop to the neighboring site
f with an intermediate energy U . The hole in the jeff = 1/2 man-
ifold on the site f hops back to the e site completing the hopping
process and producing a magnetic excitations.
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5.4 Conclusions

In this chapter we have presented a detailed L3 edge RIXS study of the

low-energy magnetic excitation in Sr3Ir2O7. RIXS is demonstrated to be a

powerful tool to study momentum dependent excitations in 5d transition

metal oxides due to the strong enhancement of the inelastic signal at the

5d L edges and the large access to the reciprocal space that this energy

range allows.

Our RIXS experiment establishes the existence of two main magnetic

modes: a dispersive 90 meV-gap mode already reported in Ref. [122] and

a more weakly dispersive 155 meV-gap mode never reported previously.

Using a bond-operator mean-field method on a pseudospin-1/2 frustrated

Heisenberg model developed by our collaborators at the EPFL, we are

able to assign these modes to excitations from a dimerised singlet ground

state to a transverse and longitudinal triplet states, respectively.

From the fit of the theoretical model to the experimental data the

leading superexchange parameters are extracted. Surprisingly the nearest-

neighbour interlayer superexchange J⊥ is found to be five times larger that

the in-plane superexchange J‖, marking a significant departure from the

2D Heisenberg model used to described the properties of the single layer

cousin Sr2IrO4.





Chapter 6

Conclusions and perspective

In this thesis I have investigated the magnetic order and excitations in lay-

ered perovskite iridates with resonant X-ray scattering techniques. Lay-

ered perovskite iridates belong to a recently rediscovered class of 5d tran-

sition metal oxides, where it is now realized that a novel jeff = 1/2 ground

state emerges from the combined effect of cubic crystal field and the spin-

orbit interaction which act jointly on the Ir ion.

X-ray resonant scattering techniques have played a leading role in driv-

ing the field forward mainly due to the fact that iridate samples are ex-

tremely small, and Ir is a strong neutron absorber, making the use of

more popular techniques like neutron scattering extremely challenging for

these materials. Furthermore, by exploiting atomic resonances in corre-

spondence of the Ir L2,3 edges the scattering signal is greatly enhanced

and the access to a large portion of the reciprocal space is allowed. In this

scenario, XRMS and RIXS techniques have been used to investigate the

ground and the excited states of perovskite iridates, respectively.

It has been established earlier that XRMS can be used to determine

the atomic wave function in iridium oxides due to the inherent quantum

interference between different scattering paths which distinguishes XRMS.

In this work I have developed a single ion model that treats on an equal

footing the spin-orbit interaction (SOI) and the tetragonal crystal field

which typically affects the Ir ion in perovskite iridates. By calculating



198 Conclusions and perspective

the XRMS cross-section as a function of the magnetic moment direction I

have shown that XRMS exhibits a non-trivial dependence on the moment

direction. While XRMS allows the observation of the orbital state when

the magnetic moments point perpendicular to the perovskite planes like in

the bilayer Sr3Ir2O7, on the contrary, when the moments lie in the basal-

plane like in the single layer perovskites Sr2IrO4 and Ba2IrO4, XRMS

prevents to unambiguously determine the atomic wave function.

XRMS at the Ir L3 edge has been used to study the magnetic and

electronic structures of the single layered iridates Ba2IrO4 and Sr2IrO4.

Ba2IrO4 is found to be a basal-plane commensurate antiferromagnet be-

low TN=241 K. Azimuthal scans combined with group theory calculations

have been employed to prove that the moments order along the [1 1 0] di-

rection. From a comparison with XRMS data on the related compound

Sr2IrO4, I have established that both compounds have essentially the same

basal-plane antiferromagnetic structure, in spite of their structural differ-

ences. Thus the magnetic structures in the layered perovskites are remark-

ably robust to structural distortions, a fact that can be linked directly to

the unique three-dimensional character of the jeff = 1/2 state produced by

the strong SOI, which renders it insensitive to the perturbations in local

symmetry.

In Sr2IrO4 a correlated alternated rotation of the IrO6 removes the in-

version symmetry on the Ir sites activating a finite Dzyaloshinskii-Moriya

interaction. As a consequence, in Sr2IrO4 the total moment is slightly

canted from the simple basal-plane structure of Ba2IrO4. From a compar-

ison between the observed intensity of several magnetic Bragg peaks and

the calculated resonant magnetic cross-section for a model arrangement of

Ir moments, I have found that the Ir magnetic moments rigidly follow the

IrO6 octahedra deviating by 12.2◦ from the a axis. My results thus add

to the growing weight of evidence that, in spite of the fact that the local

environment of the Ir4+ ions is distorted from perfect cubic symmetry,

the ground state in Sr2IrO4 has many of the attributes of the proposed

jeff = 1/2 state. More generally, the fact that the magnetic moment cant-

ing is locked to the oxygen rotation lends strong support to the theoretical

model which has been developed to understand the properties of this and

other iridate perovskites.
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The effect of dimensionality on the magnetic and electronic properties

of perovskite iridates has been investigated in the bilayer system Sr3Ir2O7.

Here, the addition of an extra IrO6 layer pushes the system closer to a

metal-to-insulator transition and introduces additional interlayer intera-

cions. From the analysis of the L2/L3 XRMS intensity ratio we show that

Sr3Ir2O7 lies in proximity of a pure jeff = 1/2 state. Despite this, the

addition of an extra IrO6 layer significantly modifies the magnetic struc-

ture of Sr3Ir2O7 which, compared to the single layer counterpart Sr2IrO4,

shows a c-axis collinear antiferromagnetic structure.

The fact that the physics at play in the bilayer iridate greatly de-

parts from the 2D Heisenberg-like one which distinguishes the single layer

Sr2IrO4 is further confirmed by our high-energy-resolution L3 edge RIXS

study of the low energy magnetic excitations. In the RIXS spectra we iden-

tify two main magnetic modes: a dispersive 90 meV-gap mode observed

also in previous studies, and a more weakly dispersive 155 meV-gap mode

never reported previously. Using a bond-operator mean-field method on a

pseudospin-1/2 frustrated Heisenberg model developed by our collabora-

tors at the EPFL, I am able to assign these modes to excitations from an

essentially dimerised singlet ground state to a transverse and longitudinal

triplet states, respectively. Surprisingly the nearest-neighbour interlayer

interaction results five time bigger that the in-plane one, marking a sig-

nificant departure from the 2D-like physics of the single layer compound.

Tuning electronic states in layered perovskite iridates via pressure,

epitaxial strain, and doping is the natural continuation of the work de-

scribed in this thesis. Since the orbital state, due to the SOI is no longer

quenched like in 3d metals, interactions are thought to depend strongly

on the lattice geometry and give rise to new exotic phases. A change

in the local symmetry can be induced in several ways. The first port of

call is the application of hydrostatic pressure. Another possibility is the

growth of epitaxially strained film on top of various substrates. Both this

two methods will permit to study the entanglement between lattice and

electronic/magnetic degrees of freedom that is predicted to dominate in

iridates.

Doping an AFM system could have unexpected consequences. For ex-

amples, in the case of layered cuprates doping studies led to the discovery
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of high-TC superconductivity. Interestingly, superconductivity has been

predicted in electron-doped layered iridates too [28, 29]. RIXS at the Cu

L3 has developed into a very powerful tool to study magnetic excitations

in high-TC cuprates as a function of doping. Along similar lines, the study

of the magnetic excitations in doped iridates by exploiting the very high

energy resolution of Ir L3 RIXS could become a new flourishing field.

In addition to the studies on the iridates, new exotic properties are

emerging in other 5d TMOs. In particular, osmium oxides are attracting

growing attention. The ground state in the osmates does not show the

same symmetry properties as in the iridates, namely the realization of the

jeff = 1/2 state. Nonetheless, the SOI is strong in osmates too, and un-

usual metal-insulator transitions, correlated with the magnetic degrees of

freedom occur [133, 134]. It is therefore of significant interest to elucidate

the correlated physics of osmates in comparison with the iridium oxides.

With the development of X-ray free electron lasers (XFELs), time-

resolved RIXS studies of excited electronic states have become possible.

Such studies can be carried out in a pump-probe mode where an optical

or THz pump pulse is used to induce an out-of-equilibrium state, and the

X-ray probe pulses reveal the time evolution of low-energy excited states.

Contrary to synchrotron radiation sources where within a femtosecond

time interval no more than a single photon is typically present in the

sample, the XFEL pulses contain up to 109 equivalent photons within the

same time interval. In this context, iridium oxides represent an interesting

playground for the full development of time-resolved RIXS.



Appendix A

Atomic d orbitals in cubic

ligand field

In an isolated atom the potential experienced by a single electron is spher-

ical. In a molecule or a crystal it has in general a lower symmetry. There-

fore electronic states that are degenerate in the isolated atom can be sep-

arated in the crystal. This is due to the crystal field, that is in general

a sum of two contributions, the Coulomb potential generated by all the

surrounding atoms, and the ligand field with the nearest neighbors. In

the following we will assume that the crystal is ionic and the ions can be

regarded as point charges, neglecting thus the ligand field.

We consider an hydrogen-like atom surrounded by 6 point charges,

−Ze, with Z > 0 for the negative charges and Z < 0 for the positive ones

at a distance a from the central atom M(see Fig. A.1). The potential
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energy of an electron at a position r generated by the 6 charges at a

position Ri is given by

Vc(r) =
6∑

i=1

Ze2

|Ri − r| = Ze2

[
1√

(x− a)2 + y2 + z2
+

1√
(x+ a)2 + y2 + z2

+
1√

x2 + (y − a)2 + z2
+

1√
x2 + (y + a)2 + z2

+
1√

x2 + y2 + (z − a)2

+
1√

x2 + y2 + (z + a)2

]
.

(A.1)

Expanding Vc(r) around the origin the first non vanishing term is:

Vc(r) = V0 +D

(
x4 + y4 + z4 − 3

5
r4
)

(A.2)

where V0 =
6Ze2

a
shifts all the atomic energy by the same amount, on the

contrary D = 35Ze2

4a5
is the term responsible of removing the degeneracy

between the atomic states as we will show later. In order to calculate

the matrix elements of the cubic potential in the atomic d-state basis is

convenient to expand Vc(r) in terms of spherical harmonics as:

Vc(r) =
6Ze2

a
+

7Ze2

2a5

√
4π

9
r4

[
Y 4
0 (θ, φ) +

√
5

14

(
Y 4
4 (θ, φ) + Y 4

−4(θ, φ)
)
]

(A.3)

where

Y 4
0 (θ, φ) =

3 (3− 30 cos(θ)2 + 35 cos(θ)4)

16
√
π

,

Y 4
±4(θ, φ)

3

16
e±4iφ

√
35

2π
sin(θ)4.

Bearing in mind that the atomic d-wave functions can be written as

Ψnlm(r) = Rnd(r) · Y l
m(θ, φ) (A.4)

where Rnd(r) is the radial wave function of the d-states that depends on

the principal quantum number n. Y l
m are spherical harmonics representing
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the angular component of the wave functions, where l=2 and m=2, 1, 0,

-1, -2.

We are now interested in calculating the matrix element of the cubic

potential in the d-state basis

〈Ψnlm|Vc(r)− V0|Ψnlm′〉 =
∫

Ψnlm(r)
∗(Vc(r)− V0)Ψnlm′(r)dr (A.5)

where the cubic potential has been rigidly shifted by the quantity V0 which

is independent on the spatial coordinates. We can now proceed in evaluat-

ing the matrix elements of the crystal field potential calculating integrals

of the form:

∫ π

0

∫ 2π

0

Y 2
m(θ, φ)

∗Y 4
k (θ, φ)Y

2
m′(θ, φ) sin(θ)dφdθ (A.6)

The calculation is straightforward and the non vanishing matrix elements

are the following:

〈Ψn20|Vc(r)− V0|Ψn20〉 = 6Dq

〈Ψn2±1|Vc(r)− V0|Ψn2±1〉 = −4Dq

〈Ψn2±2|Vc(r)− V0|Ψn2±2〉 = Dq

〈Ψn2±2|Vc(r)− V0|Ψn2∓2〉 = 5Dq

(A.7)

where q = 2
105

〈r4〉nd and 〈r4〉nd =
∫
r4r2|Rnd(r)|2dr. The crystal field

splitting can be obtained by diagonalizing the crystal field Hamiltonian

HCF =




Dq 0 0 0 5Dq

0 −4Dq 0 0 0

0 0 6Dq 0 0

0 0 0 −4Dq 0

5Dq 0 0 0 Dq



. (A.8)

We find that the eigenvectors are composed by double degenerate states
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Figure A.1: Angular behaviour of the atomic d states in a cubic crystal field.
The orbitals pointing toward the ligands form the higher eg doublet
(3z2− r2, x2−y2), whilst the others form the lower t2g triplet (xy,
xz, yz).

of energy 6 Dq

|Ψn20〉 = |3z2 − r2〉
1√
2
[|Ψn22〉+ |Ψn22〉] = |x2 − y2〉





eg, (A.9)

which are commonly referred as eg states, and 3-fold degenerate eigen-

states of energy -4Dq

1√
2
[|Ψn22〉 − |Ψn22〉] = |φ1〉

|Ψn21〉 = |φ2〉
|Ψn21〉 = |φ3〉





φi. (A.10)

The latter eigenvectors are not real in the φi basis, but by choosing a
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suitable unitary transformation

U =




0 0 i
i√
2

1√
2

0
i√
2

−1√
2

0


 , (A.11)

we can obtain the well known t2g states as |t2g〉 =
∑

i U |φi〉,

i√
2
[|Ψn22〉 − |Ψn22〉] = |xy〉

1√
2
[|Ψn21− − |Ψn21〉] = |xz〉

i√
2
[|Ψn21− + |Ψn21〉] = |yz〉





t2g. (A.12)

Finally the crystal field splitting is given by

E(eg)− E(t2g) = 10Dq (A.13)

Therefore considering negative point charges (Z >0) the energy of the eg

states will be higher than that of the t2g states. This result can be easily

interpreted by looking at the real space angular dependence of the d-state

wave functions (Fig. A.1). The electrons belonging to an eg orbital, which

points directly to the negative ligand, will experienced a stronger Coulomb

repulsion than the t2g electrons.

We note that in order to calculate precisely the crystal field splitting in

real materials this model is not sufficient. In fact, the adoption of a pure

ionic model lead us to neglect any covalent effect, potentially significant,

between nearest neighbors. Corrections to the point charge approximation

and the inclusion of the ligan field by means of density functional theory

calculation are often necessary to estimate the crystal field splitting.





Appendix B

Irreducible representations for

the Bbcb space group in

Sr3Ir2O7

We report group theory calculations with the SARAh package [94] for the

irreducible representations (IRs) relative to space group Bbcb in Sr3Ir2O7.

The input parameters were the magnetic propagation vector k= [1 0 0]

which corresponds to k= [1
2

1
2
0] in the I4/mmm reference system, as ob-

tained from the XRMS experiment presented in Section 4.4.1, and the Ir

atomic positions of Tab. 4.4.

The results of the calculations are shown in Tab. B.1. The obtained

IRs are equivalent to the one in Tab. 4.5 calculated for the I4/mmm

space group. In particular the IRs Γ1 and Γ2 of Tab. B.1 correspond to

Γ2 of Tab. 4.5 for the different magnetic domains A and B, respectively,

i.e. to the G-type c-axis collinear magnetic structure observed in Sr3Ir2O7.

On the contrary, the Γ7 and Γ8 IRs of Tab. B.1 correspond to Γ3 of Tab.

4.5 where the bilayer are coupled ferromagnetically. Notably, even for the

Bbcb space group, there is no IRs which involve any in-plane ferromagnetic

component that explains the ab-plane weak ferromagnetism observed in

Sr3Ir2O7.
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IR BV Atom BV components
m‖a m‖b m‖c im‖a im‖b im‖c

Γ1 ψ1 1 0 0 1 0 0 0
2 0 0 -1 0 0 0
3 0 0 -1 0 0 0
4 0 0 1 0 0 0

Γ2 ψ2 1 0 0 1 0 0 0
2 0 0 -1 0 0 0
3 0 0 1 0 0 0
4 0 0 -1 0 0 0

Γ3 ψ3 1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 -1 0 0 0 0 0
4 -1 0 0 0 0 0

ψ4 1 0 1 0 0 0 0
2 0 -1 0 0 0 0
3 0 -1 0 0 0 0
4 0 1 0 0 0 0

Γ4 ψ5 1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0

ψ6 1 0 1 0 0 0 0
2 0 -1 0 0 0 0
3 0 1 0 0 0 0
4 0 -1 0 0 0 0

Γ5 ψ7 1 1 0 0 0 0 0
2 -1 0 0 0 0 0
3 -1 0 0 0 0 0
4 1 0 0 0 0 0

ψ8 1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 -1 0 0 0 0
4 0 -1 0 0 0 0

Γ6 ψ9 1 1 0 0 0 0 0
2 -1 0 0 0 0 0
3 1 0 0 0 0 0
4 -1 0 0 0 0 0

ψ10 1 0 1 0 0 0 0
2 0 1 0 0 0 0
3 0 1 0 0 0 0
4 0 1 0 0 0 0
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IR BV Atom BV components
ma mb mc ima imb imc

Γ7 ψ11 1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 0 0 -1 0 0 0
4 0 0 -1 0 0 0

Γ8 ψ12 1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 0 0 1 0 0 0
4 0 0 1 0 0 0

Table B.1: Basis vectors for the space group Ccca: origin 1 with k=[1 0 0].The
decomposition of the magnetic representation for the Ir site
(0, 0, .0974) is ΓMag = 1Γ1

1+1Γ1
2+2Γ1

3+2Γ1
4+2Γ1

5+2Γ1
6+1Γ1

7+1Γ1
8.

The atoms of the nonprimitive basis are defined according to 1:
(0, 0, .0974), 2: (0, 0, .9026), 3: (0, .5, .4026), 4: (0, .5, .5974).
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